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ABSTRACT
Part I - Dipole Properties of Atoms and Molecules in the Random Phase

Approximation

A random phase approximation (RPA) calculation and a direct sum
over states is used to calculate second-order optical properties and
van der Waals coefficients. A basis set expansion technique is used
and no continuum-like functions are included in the basis. However,
unlike other methods we do not force the basis functions to satisfy
any sum-rule constraints but rather the formalism (RPA) is such that
the Thomas Reiche~Kuhn sum rule is satisfied exactly. Central atten-.
tion is paid to the dynamic polarizability from which most of the
other properties are derived. Application is made to helium and
molecular hydrogen. In addition to the polarizability and van der
Waals coefficients, results are given for the molecular anisotropy of
H,, Rayleigh scattering cross sections and Verdet constants as a func-
tion of frequency. Agreement with experiment and other theories is
good. Other energy weighted sum-rules are calculated and compare very
well with previous estimates. The practicality of our method suggests

its applications to larger molecular systems and other properties.

Part II - Photoionization Cross Sections for H2 in the Random Phase

Approximation with a Square-Integrable Basis

Total photoionization cross sections for H2 are calculated in
the Random Phase Approximation (RPA) through a numerical analytic con-.

tinuatioh procedure applied to the polarizability for complex values
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of the frequency. The representation of the polarizability that is
required is obtained from a discrete set of excitation energies and
oscillator strengths that satisfies the Thomas-Reicﬁ-Kuhﬁ sum rule
exactly and other energy-weighted sum rules approximately. The fact
that the excitation spectrum is obtained through a solution of the
RPA equations with no continuum functions added to the basis makes

the method well suited for general molecular photoionization calcula-~
tions. The results are compared with experiment and good agreement

is found.

1

‘Part III - Oscillator Strengths for the X Z+ - A]H System in CH'

from the Equations of Motion Method

The equations of motion method is used to study the X]z+-A]H
system in CH+. In a computationally simple scheme, these calculations,
which were done in modest sized basis sets, provide transition moments
and oscillator strengths that agree well with the best CI calculations

to date.
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Part T - Dipole Properties of Atoms and Molecules in the

Random Phase Approximation



I, INTRODUCTION,

Atomic and molecular polarizabilities (along with the aniso-
tropy in the case of molecules) play a central role in the investigation
of such important properties as the optical refractivity, 1 Faraday
rotation, 2 Rayleigh scattering cross sections3 and van der Waals
coefficients. 4

Experimental data on these atomic and molecular properties are
far from satisfactor:y over a wide range of frequency values (e. g.,
in the vacuum uv), Experimental data are especially scarce in the case
of Rayleigh scattering cross sections and depolarization ratios as well
as in the rotational and vibrational Raman scattering cross section
where the polarizabiiity tensor and its variation with internuclear
distance is required, 5 Although Raman scattering experiments could
in principle provide a direct measurement of the polarizability
anisofropy, very few values have actually been obtained.

Theoretical predictions of atomic and molecular polarizabilities
are therefore useful in the analysis of available experimental data and
are frequently the only available estimates of many second-order
optical properties. For this reason considerable effort has been put
on the theoretiqal and semi-empirical computation of the dynamic
polarizability of atomic and molecular systems. These methods

involve procedures which circumvent the infinite sum over intermediate
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states in the Kramers-Heisenberg dispersion formula. One such
class of methods consists of employing oscillatér strength distributions
and excitation energies from theoretical calculationé? or experiment
to éonstruct bounds for the polarizability using the theory of moments, 6
Padé approximants, 7 gaussian quadratures8 and similar bounding
techniques. 2

An alternative approach is the semi-enipirical one10 in which
oscillator strength distributions from experiment are used in the
Kramers-Heisenberg dispersion formula. In cases where sufficient
spectral data are available, accurate results can be obtained.

Another alternative, and this one more closely related to ours,
is the'variational one, 11-16 In this method the oscillator strength

distributions are determined from a variational procedure subject to

certain sum-rule constraints. The resulting finite spectrum does not
necessarily represent an actual one (i.e., not all the poles correspond
to actual states of the system) but can provide accurate values of the
polarizability. |

The method used in the present work is a direct sum over
states procedure in which the spectrum is obtained from the random
phase approximation. Next we describe our approach and apply it to

several second-order optical properties of helium and molecular

hydrogen, In general,agreement with previous computations and with
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the available experimental data is seen to be good. The basis sets

and excitation spectra used are given inAppendices II and II,

respectively,



-5-
II. THEORY

Application of the semi-classical theory of the interaction of
radiation with matter is known to lead to the correct results for a
wide variety of phenomena of interest., Such is the caSe, for example,
of the dynamic dipole polarizability of atomic and molecular systems,
for which the formal Kramers-Heisenberg dispersion formula applies:17

f
aw)= § =m0 (1)
n=0 Yno” ¢

where the S is a summation over the discrete part and an integration
over the él;gcinuous part of the spectrum. Atomic units are used
throughout unless otherwise stated, The fno and w o are the oscillator
strength and the excitation energy,respectively,for the transition between
state |n) and the ground state !O) of the system,

Similarly, the long range van der Waals force coefficients for

the interaction between two species A and B is given by18’ 19

afb

| f
C,p = & (a,1) 5 S - “Ob(moa 5 (2)
w w

n#0 m#0 no  mo no +wmo

where g(a, b) is a constant which depends on the nature (whether
atom or molecule) of the species and symmetry of the component of

the polarizability to which the Ca in question is related. Table Al

b
of Appendix I gives the values of 5 (a, b) for various atom-molecule
and molecule-molecule interactions. These may be easily derived

from the definitions of the van der Waals coefficients in terms of
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the polarizability for imaginary frequencies as given elsewhere, 10

We assume the following definitions for the oscillator strengths

and polarizability components:

N
o206 [Tz w 3)
i=1
o= 1<ow o | (4)
fH
o (w)-a”(w)— S (5)
n=0) w f-w
@) = @ (w)-—-S - . (6)
m=0 wmo

In the above equations z points along the internuclear axis,

The trace of the polarizability is given by:

o) = 3-[2a, (©) + o) @)] (")
and the anisotropy by
v ()= aH(w) -a, (W) (8)

Several macroscopic properties are directly related to and
determined by the microscopic atomic and molecular polarizability
and anisotropy. The optical refractivity is connected to a(w) by

‘the Lorenz-Lorentz formula:



nw)-1=2rN, o), (9)

where N, is the number density of a dilute gas. The Verdet constant
is related to the frequency derivative of the polarizability through

the Becquerel formula

V)= —— o dn@) (10)
2¢? dw

where c is the Veldcity of light. The Rayleigh scattering cross
section involves both the trace of the polarizability a(w) and the
anisotropy v (w):

0= 2L w3aW) +3-yW)] ; (11)
- 9c

a(w) and ¥ (w) also completely determine the Rayleigh depolarization
ratios and Raman scattering cross sections. Vibrational Raman
scattering is analogously determined by the variation of the polarizability
components with internuclear distance. Thus a detailed knowledge
of the dipole polarizability of system conveys a wealth of information
on its optical properties.

The difficulty with Egs.(1) and (2) is that they assume a
complete knowledge of the excitation spectrum of thé system involved,
and the determination of all the excitation energies and oscillator

strengths is intractable, The cumbersome infinite summations
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over the whole spectrum in Egs. (1) and (2) are typical of the results
of second-~order perturbation theory. The method we employ to
circumvent these summations is to replace the true Specti‘um by
a finite number of excitation frequencies and oscillator strengths
as obtained from the equations of motion (EOM) 20-22 method. The overall
procedure is a direct sum over states method analogous to that of
Refs, 11 and 12 (and references therein), The major difference
however is the procedure for obtaining the oscillator stx;ength
distribution. A characteristic feature of our approach is that no
éonstraints are put on the basis functions used in our calculations.
Instead, ordinary Gaussian basis sets are used in the Hartree-Fock
(HF) ground state calculation, and the HF orbitals pfovide the
particle-hole basis needed for our calculation. Next we outline
the EOM theory which has been fully discussed elsewhere. 20,21

The EOM method is a many-body approach to the calculation
of excitation energies and oscillator strengths in which these quanti-
ties are calculated directly without requiring elaborate wavefunctions
for the states involved. It is specifically designed for calculation

of relative quantities rather than absolute energies and total wave-

functions. In the EOM method an operator O; is defined such that

0, [0y = A, (12)
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where |0) is the ground state and |) is some excited state. O; is

then shown to satisfy the following equation of motion
+ +7 0y
(0[[60,, H,0; ][0 = w, (0][60,,0,10) , (13)

where Wy is the transition frequency and & O-; is a variation in the

amplitudes specifying OF . The double commutator is defined as

Z[A’ B, C] = [[A, B_’AC] + [Aa [B’ C]] (14)

for any three operators A, B, and C.
b5 0'; is limited to single particle-hole components (1p - 1h),
i.e., |

oy (M) =% [Y, M) Cp (M) -2 0)C  (EM], (15)
my

where C;ry (SM) and Cm-y (SM) are spin adapted particle-hole creation

and annihilation operators. The amplitudes Y(2) and Z()) satisfy the

equation
A B\ [r® D ol (x®
= wh (16)
-B* -A* |z o D/ \z®)/ .

The form of the matrices A, B, and D can be found in Refs. 20
and 21, If the Hartree-Fock approximation is used for the ground state,

D becomes the unit matrix and the RPA equations follow

Vd

>
oy

Y(2) x®)
= w (17)

B -ar gz M lzw) .
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Higher order solutions of the EOM equations can be derived
and have been used to calculate the spectra of several molecular
systems with excellent agreement with experiment as weyll as with
other theoretical results. 22 In this work however all the results
are computed to the RPA level only, |

In the context of the present work, the RPA has the important
property of satisfying the Thomas-Reiche-Kuhn sum rule, This has
been formally shown to be the case to the extent of completeness
of the basis used in the calculaﬁoﬁ. 23 Actual computations have
shown that reasonably sized baseé provide accurate values of the
S (0) sum rule (see below). As a consequence of this fact, no special
sum rule constraints have to be put on the basis functions. We have
also found that the other sum rules are approximately satisfied. The
solution of the RPA equations in a discrete basis leads to a discrete
set of oscillator strengths which are used directly to estimate a(w),
Eq. (1). »\Siome of these fno's and wno's represent approximations to
actual excited states of the system but the discrete virtual states do

not correspond to actual transitions. Our expression for the polarizability

is thus
M £
aw)= ) ——— (18)
n=1 wnoz - wz

where M is the number of states considered (the number of excitations),
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The fact that there is no need to go to higher-order approximation
beyond the RPA to obtain good results for a(w) and related properties,
and tbat the equations can be solved without using any continuum-like
funcﬁons, makes the present approach extremely applicable to larger

molecular systems and other properties.
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10, RESULTS AND DISCUSSION

Helium was calculated in three different contracted Gaussian
basis sets: (115/5p), (125/8P) and (10S/13P) with exponents sucgested
by Huzinaga24 and additional diffuse S fﬁnctions and valence-like P
functions. 25 Additional details of the basis sets used will be fouﬁd
in Appendix II, We compare the resulis in the three bases and show
that while there is a considerable change going from (11S/5P) to
(12s5/8P) little is gained in going to the larger basis. In these calcu-
lations five, eight,afmdktwelve poles of p-symmetry are obtained, The
corresponding oscillator strengths and transition energies are found in
Appendix I1I.

For molecular hydrogen we used an uncontracted (8S/5P)
Gaussian basis set with exponents suggested by Huzinaga. 24 See
Appendix II for further basis set information. From this calculation
we have obtained 7 poles of IHu symmetry and 14 poles of ‘Z: symmetry.
The resulting excitation spectrum is listed in Appendix III, The
calculation was done at a fixed internuclear distance of R= 1.4 a.u.
No vibrational averaging is done. Further comments on the effect

of this averaging on the calculated properties will be given below.
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I, 1, Dynamic dipole propertics

A. Helium

In Table I we compare our resulis for the frequency-dependent
polarizability with the exact numerical solution of the tirﬁe—dependeht
Hartree-Fock equatidn.st(.’crc)f{‘x}hi’c;ﬁ the RPA is equivalent) given by
Alexander and Gordon. 26 Agreement is excellent, The importance
of this comparison is that we are able to obtain essentially exact
solutions of the RPA gquatiOns ,ufgng_ only ordinary Gaussian basis
sets, This is partieularly 1mportant 11_1 the present case since we
are computing a quanti-ty. sﬁéh as the dipole polarizability which
formally involves the continuum (through the Kramers-Heisenberg
formula) but using only square-integrable functions, This is a highly
desirable feature of a method that is to be extended to molecular

calculations,

" In Table II we show the results we obtained in the three different
basis sets used. «@(w) was calculated at frequencies for which the exact
numerical results cited above are available. The P-basis used in the
(12S/8P) calculation is fairly ""complete" in the sense that it provides
values of a(w) which do not change appreciably in going to the larger
13P basis. For this reason the results of the larger basis are not
shown in the table. Table III shows the (12S/8P) results together with

the experimental values (calculated from refractivity measurements

through the Lorenz-Lorentz
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formula), and the moment theory bounds results of Ref, 6, Agreement
of our values with experiment is good, the difference being less than
5% in all cases., Moreover this difference is reasonably constant over
the range of frequencies for which experimental data are available.

This suggests that if our results are scaled so that our static value
agrees with the statié polarizability extrapolated from the experiments,
¢lose agreement can be obtained for all other frequencies. This situation
is exactly analogous to what was found by Hurst et al. 217

Figure 1 shows the dispersion curve of o (w) of helium from
zero frequency out to the second pole, The poles are marked on the
axis by small triangles, The values given by this curve agree with
those of Alexander and Gord‘on26 even for frequencies above the first
pole. Figure 2 shows a smaller section (in an expanded scale) of
the dispersion curve in the region for which experiments and other
calculated results are available, Our curve parallels closely the
experimental points. From this it is reasonable to expect accurate
values for the frequency derivative,da(w)/dw, required to predict
Verdet constants. Here we use the Becquerel formula [Eq. (10)]
which is believed to hold for atoms with reasonable accuracy. The
modified Becquerel formula which is more widely used contains a
empirical (frequency-independent) factor.

Table IV shows the values we obtain for the Verdet constant

in the different basis sets, Again it is clear that the intermediate
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size basis was enough to describe properly the property at hand,
Table V shows a comparison of our (12S/8P) results with experi-
mental and semi-empirical data as well as with other theyoreﬁcal
calculations. Agreement of our values with both experimental and
semi-empirical data is very good, especially since Ingersol and
Liebenberg28 found that helium conforms to the Becquerel formula
to Wiﬁlin 4% only (i.e., they find 0, 96 for the average value of the
constant involved in the modified‘Becquerel formula), Our values
are also in excellent agreement with a previous time-dependent
coupled Hartree-Fock calculation (KCH in Table V). Even at the
Lyman alpha line (1215,7 A) our results are still in reasonably
good agreement with the semi-empirical estimates, Figure 3
shows a plot of our results (solid curve), the measured Verdet
coefficients and the moment theory bound results of Ref. 6.

We also compute the Rayleigh scattering cross sections
for helium using Eq, (11). These are listed in Table VI for the
different basis sets used, It is clear thaf the (125/8P) was complete
enough to describe the property. In the case of the Rayleigh |
scattering cross section there are no direct experimental measure-
ments, For this reason we compute the cross sections from the |
experimental refractivity data and compare them with our values in Table VIL
Agreement is good over a wide range of frequencies, being better

at lower values, We also compare with other theoretical estimates
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available, Agreement is also good, For A < 2500 A,the values

listed in the last column of the table come from a time~dependent
Hartree-Fock calculation, Our results agree very closely
with these as they should. Figure 4 shows a plot of our results

and "experimental" (in the sense explained above) data.
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B. Molecular hydrogen

In Table VIII we list the results for the frequency-dependent

with
polarizability of H, and compare them/ the experimental values

and /Witt}}:e values derived from a semi-empirical spectrum by
Dalgarno and Victor.~10 One must be careful in comparing these
results with experimental or semi-empirical results because they
pertain to a fixed internuclear distance (R = 1.4 a.u. in the present

11,12 4ot vibrational and

case of H,) and it has been shown recently
rotational averaging can have a significant effect on the calculated
properties (in some case of the order of 42%). The anisotropy for
instance is particularly sensitive to the averaging mainly at higher
frequencies, Except for the results of Ford and Browne, 12 no other
theoretical work has included vibrational and rotational averaging
effects, The values quoted from Ford and Browne's work in the

table do not include averaging, Agreement with both the experimental
“and semi-empirical data is in general very good even at higher w
values wﬁere the averaging effects should be greater. Our agreement
with other theories is excellent (including the accurate Ford and
Browne results), Figure 5 shows our dispersion curve for the total
polarizability out to the second pole. Figure 6 shows a more

detailed view (expanded scale) of this curve together with experimental

points.
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Table IX shows our computed anisotropies., In this case
there are practically no measurements at all (except at §328 A--
see table) so the semi-empirical spectrum of Dalga;no and Victor10
is used as a reliable comparison guide, The difference betweeﬁ ;)ur
values of the anisotropy at higher frequencies and those from the
model spectrum are within the possible averaging effects found by
Ford and Browne. 12 In fact our result agrees very well with their
unaveraged result,

Table X compares our calcuilated Verdet constants with
experimental and semi-empirical data as well as with other theoretical
results, Here the limitation of the Becquerel formula (on which
our results are based) and the lack of rotational and vibrational
averaging should again be kept in mind, Our results are in good
agreement with the experimental values (< 5% in most cases).

At much higher frequencies, for which experiments are unavailable,
our resuits compare well with the semi-empirical estimates (~10%).
Figure T shows a plot of our results and the experimental Verdet |
data, We have also computed Rayleigh scattering cross sections
using our «a (w) and ¥ (w) data in Eq. (11). The results :;tre shown

in Table XI‘. Since no direct measurements are available we compafe
with the model spectrum as before. The same remarks about the

averaging made before apply here again, At lower frequencies
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our results are within about 10% of the semi-empirical estimates

deviating more strongly at higher frequencies, This is due mainly
to the lack of averaging in our anisotropy value, A plot of our results

and the semi-empirical values is given in Figure 8.
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I, 2, Sum rules and van der Waals coefficients

The Thomas-Reiche-Kuhn sum-rule (which the exact RPA
results satisfies identically) is just one of a set of genera]ized
energy weighted sum-rules S(k) defined by:

Sw=Y £ (B -E)=)f of . (19)
n n .

For diatomic molecules this is usually broken up into two
components S” (k) and st (k) involving transitions polarized either

parallel or perpendicular to the molecular axis. With these definitions

we have
k
s” (k) =3 %‘fﬂ) © (20)
st (k) =g—§ f;owﬁo , (21)
- and
| S(k) = - [2 st + sl @ . (22)

Thus the Thomas-Reiche~-Kuhn sum-rule S(0) can be written

for diatomic molecules as

sllo)- st -s0)-¥, (23)

N being the number of electrons in the system,
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We have used our oscillator strength distributions for He
and H, to compute several of these sums and have collected them
in Table XII where they are compared ﬁth previous estimates.

Good agreement is found for a large number of these sum-rules,
This explains in part the success of RPA theory in predicting
second-order optical properties.

We have also calculated several dipole interaction coefficients
through direct use of Eq. (2) and a direct sum over our discrete
spectrum, These results in Table XII agree well with the best
previous estimates from Padé approximants and Gaussian quadra-

-ture procedures. 8
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1V. CONCLUSIONS

A sum-over-states procedure using a spectrum (excitation
energies and oscillatdr strengths) from the random phase approxi-
mation in a completely square-integrable (Gaussian) basis is shown
to be accurate and practical for the calculation of dipole dynamic
polarizabilities and anisotropies. Applications are made to helium
and molecular hydrogen. It is shown that essentially exact solutions
of the RPA equations (even beyond the first polé) can be obtained
using only bound-ﬁke (gaussian) basis functions on which no special
constraints are imposed (e.g., sum-rule constraints), This is
important since second-order optical properties formally involve
the continuum,

Our dynamic polarizability results for helium are in good
agreement with the exact numerical solution provided by Alexander
and Gordon, 26 The results for molecular hydrogen also agree well
with the best calculations available.

The RPA satisfies the Thomas-Reiche-Kuhn sum-rule exactly
and we have found that it also satisfies approximately a large number
of other related energy weighted sﬁm-—rules.

The accuracy of the results and the practicality and applicability
of the procedure to larger molecular systems (CO, N,, CO,, H,0,
C.H; etc. )22 shows that the proposed method can be of wide use in

the study bf second-order properties and dispersion force coefficients,
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Appendix I

Table AI - Long Range Dispersion Force Coefficients®

Used in Eq. (2).

Interaction c (a, b)
A-A 3/2
A-M(@+i) 3/2
A-M(») 3/4
A-M(@Q) 3/8

M (1) - m (f) 9/4

M () - M @) 9/8
M) -M(@Q) 9/16

2 A stands for atom and M for molecule, 1 for the perpendicular
component and || for the parallel component of the molecular

polarizability.
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Appendix 11

Basis Sets used in Calculations

Helium was calculated in three Gaussian bases: (11S/5P),

(125/8P) and (10S/13P). The (11S/5P) basis is as follows:

S Functions

Exponent Coefficient
3293. 694000 0. 0046146
488. 894100 0. 0365754
108. 772300 0.1978343
30. 179900 0. 8270723
9. 789053 1.
3. 522261 1.
1.352436 1.
0. 552610 1.
0. 240920 1.
- 0.107951 1.
0. 048370 1.
0. 021674 1.
0. 009712 1.
0. 003000 1.
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P Functions

Exponent Coefficient
1.553506 0. 0710316
0. 368859 -1.037338
0.119213 1.0

0. 044914 1.0
0.018133 1.0

0. 0073207 1.0

The (12S/8P) basis has the same S functions as the (115/5P)
‘above except for an additional diffuse one with exponent 0.001. The
P part of the basis consists of 8 P-functions with exponents 4.5,

1.45337, 0.34627, 0.11191, 0.04216, 0.01702, 0.01127 and 0.0051.

The (10S/13P) basis has the same S components as the
(118/5P) but with the function with exponent of 0. 003 deleted. The
exponents for the P functions are 121.5, 40,55, 13.5, 4.5, 1.458369,
1.00, 0.34627, 0.111912, 0.042163, 0.0170230, 0.0112650, 0.0051045

and 0. 0017.

Molecular hydrogen was calculated in an uncontracted (8S/5P)
basis taken mostly from Huzinaga's basis. 24 Only another diffuse S
function was added to the (7S/5P) basis of Huzinaga. 24 Atsoa d,
dzx and‘dZy function each with exponent 0. 35 was placed on each
hydrogen atom. On the center of the molecule an additional S
function (exponent 0.0065) and a P function (exponent 0. 0065) were

included. The (8S/5P) part of the basis is:
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S Functions

Exponent Coefﬁcient
213.5134 1.0
31.93095 1.0
7.15706 1.0
1.97352 1.0
0.62879 1.0
0.22444 1.0
0.087463 - 1.0
0.038484 1.0

P Functions

Exponent Coefficient
2.10005 1.0
0. 498629 1.0
0.161153 1.0
0. 060715 1.0

0. 024513 1.0
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Appendix III

RPA Excitation Spectra

Excitation Energies, @ and Oscillator

on’
Strengths, fon’ used in the Calculations

Helium (11S/5P)

W (eV) i?_n_

21.69318 0. 2466

23.50479 0.0711

24, 71259 0.1362

29.21289 0.4380

46. 7849 0. 7269
zf  =1.6188

Helium (12S/8P)

on (eV) f on
21. 68579 0.2520
23. 49869 0. 0705
'24. 24010 0. 0528
25. 49229 0.1338
29, 55789 0.3938
45.19099 0. 7080
114.65388 0. 3696
373. 37329 0.0210

51, = 2.0015
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Helium (10S/13P)
“on (eV) fon
21.68559 0.2520
23.49860 0.0705
24.14690 0.0288
24.51109 0.0372
25.65469 0.1290
29. 63460 0.3834
44.30089 0.6525
88. 73340 0.3372
188. 7334 0.0873
443.1355 0. 0207
1217.095 -0.0018
3672.933 0.0006
Efon = 2,001
Molecular Hydrogen
H, 1llu States
: a
won (eV) fon
13.08204 0. 329600
14.75701 0.082748
16.40558 0. 259426
23.26047 0. 423587
45.29939 0. 089050
47.73329 0.128098
160. 01324 0. 021847

I:'fon = 2.0017
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H, 12; States

W, (eV) £ °
12. 66065 0.293237
114.59307 0. 062034
15.67013 0. 076577
17. 54407 0. 042900
20.07199 0. 085979
25.11337 0. 066522
33.91255 0. 026622
50. 64389 0. 002734
55. 53005 0. 003803
94, 04312 6.33256 x 107*
152, 07542 ' 4,43154 % 10°°
218, 02448 3.50420 x 1072
482.13574 1.14551 x 107°
1913, 02540 2.87545 x 107°
Zi, = 1.994
2 See Eq. (3)

P see Eq. (4)
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Table I. Frequency dependent polarizability

for helium.

« (2.u.)4 This_work® AG*
0. 000 1.322 1.32219
0. 100 1.336 1.33622
0. 200 1.380 1. 38056
0. 300 1.462 1. 46291
0. 400 1. 600 1.60071
0.500 1.834 1.83418
0. 600 2. 275 2. 27585
0. 700 13.435 3. 43453
0. 750 5,487 5. 48586
0.24 7° 5. 832 5. 83165
0. 790 25,23 25. 238
0.252 7© 32.45 32. 459
0. 800 -49.57 -49,532
0. 805 -16. 85 ~16. 842

2 See Ref. 26 of text.
D .24 7 ~0.7540.
€0.2527 ~ 0.7917.
d To convert from a.w.to A use A(A) = 455.6/w (a.u.).

© (125/8P) basis. See text for details.
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Table II. Frequency dependent polarizability for

‘helium o («)(a.u.) ~ RPA - results in

different bases. a
o (2.u.)° (11S/5P) (125/8P) AGES
0. 000 1.274 1.322 1.32219
0.100 1.288 1.336 1.33622
0. 200 1.331 1.380 1.38056
0.300 1.411 1.462 1. 46291
0. 400 1.546 1.600 1.60071
0.500 1.773 1.834 1.83418
0. 600 2.204 2.275 2.27585
0. 700 3.333 3,435 3. 43453
0. 750 5. 323 5. 487 5. 48586
0.247 ¢ 5. 656 5. 832 5. 83165
0. 790 23. 74 25.23 25. 238
0.252 7 ¢ 30. 15 32.45 32. 459
0. 800 -54,18 -49.57 -49. 532
0. 805 -17.26 -16. 85 ~16. 842

2 See text for description of basis set.
P 16 convert from a.u. to A, use X(R) e~ 455,6/w(a.u.).
€ Reference 26.

do.247 ~ 0.7540.

€ 0.2527 ~ 0.7917.
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Table III. Frequency dependent polarizability of

helium. Comparison with other results

A (R) Experimental® This work® _13@?
20587. 0 1.3868 1.3225 -
15300. 0 1.3873 1.3228 -
14756. 0 1.3876 1.3229 -
10142.0 1.3892 1.3244 -

92217.0 1.3899 1.3249 1.388
1 8266. 8 1.3908 1.3258 1.389

7247, 2 1.3923 1.3271 1.390

5462. 2 1.3971 1.3313 1.395

4801. 3 1. 4004 1.3342 1.398

4359.0 1.4009 1.3369 1.401

4047.0 1.4037 1.3394 1.404

3907.0 1.4052 11.3407 -

3664. 0 1.4082 1.3434 1.408

3342.0 1.4133 1.3479 -

3132.0 1.4175 1.3517 1.417

3022. 0 1. 4200 1.3540 -

3968. 0 1.4215 1.3552 -

2926, 0 1.4226 1.3562 -

2894. 0 1.4236 1.3570 -

2753. 0 1.4279 1.3609 1.423
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Table III (continued)

a Experimental refractivity data from: C. R. Mansfield and
E. R. Peck, J. Opt. Soc. Am. 59, 199 (1969); C. Cuthbertson
and M. Cuthbertson, Proc. Roy. Soc. (London) 135, 40 (1932).

b See Ref. 6 of text.

C (12s/8P) basis. See text for details.
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Table IV. Verdet constant for helium - RPA.

Comparison of different bases.

v(e)? Vi)t
AR) (115/5P)° (125/8P)P
9875. 0.1459 0.1497
9000. 0.11759 0.1804
8500. - 0.1974 0.2025
8000. 0. 2230 0.2288
7500. 0.2540 0. 2606
7000. 0. 2920 0.2995
6500. 0. 3392 0.3480
6000. 0. 3990 0. 4093
5780. 0. 4304 0.4415
5500. 0. 4761 0.4884
5460. 0. 4833 0. 4957
5000. 0.5782 0.5932
4500, 0. 7174 0. 7359
4360. 0. 7655 0. 17853
4000. 0.9143 0.9379
3635. 1.115 1.144
2500. 2. 467 2.530
1215, 7¢ 14,25 14.61

1000. 26. 56 27.24
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Table IV (continued)

2 In units of microminutes. Oersted™! em™ (at 0°C and 1 atm).

b See Text for description of basis sets. The results for the

(10S/13P) basis are identical to the (12S/8P) to 4 significant
figures.

¢ Lyman alpha radiation.



Table V. Verdet constants for helium - RPA.

Experi- Semi ems

~37~-

Comparison with other work,

A (R) mental® pirical KCH®

9875. - 0.161  0.1499
9000. 0.205  0.194  0.1807
8500. 0.221  0.218  0.2027
8000. 0.246  0.246  0.2290
7500. 0.283  0.281  0.2609
7000. 0.325  0.323  0.2999
6500. 0.376 ~ 0.375  0.3484
6000. 0.441  0.441  0.4098
5780.  0.474  0.476  0.4421
5500. 0.523  0.526  0.4890
5460. 0.531  0.534  0.4963
5000. 0.638  0.639  0.5939
4500. 0.800  0.793  0.7368
4360. 0.854  0.846  0.7862
4000. 1.011  1.01 0. 9390
3635. 1.249  1.23 1.145

2500. - 2.173 2.533

1215.7% - 15.5 14.28

1000. - 27.5 25. 28

This f
work

N = O O O O © O O © O oo © O o o ©

RN
3 b

. 1497
. 1804
. 2025
.2288
. 2606
. 2995
. 3480
. 4093
. 4415
.4884
. 4957
. 5931
. 7359
. 71853
. 9379
. 144
. 530
.61
.24

PWL

0.224
0.253
0.288
0.332
0.385
0.453

0.540

0.657
0. 815

1.039
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Table V (continued)

a See Ref, 29 of text.

bA. Dalgarno and A. E. Kingston, Proc. Roy. Soc. (London)
A259, 424 (1960).

¢ See Ref. 27 of text.

d See Ref. 6 of text.

€ Lyman « radiation.

{ Units of microminutes. Oe™. cm™ (at 0°C and 1 atm).
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Table VI. Rayleigh scattering cross sections for

helium - RPA. Comparison of different bases.

7 (@)* v @)
AR (115/5P)° (85/13P)°
o 0.0 0.0
20586.0 0. 002593 © 0.002789
15300.0 0. 008507 0. 009151
 14756.0 0. 009833 0.01058
10142.0 0.04416 0. 04750
9227.0 0.06453 0. 06941
8266. 8 0.1003 0.1079
7247, 2 0.1701 0.1830
5462. 2 0.5305 0.5706
4801.3 0.8926 0. 9600
4359.0 1.319 1.419
4047.0 1.1782 1.917
3907. 0 2. 056 2,211
3664. 0 2. 669 2. 870
3342. 0 3.882 4,174
3132.0 5. 061 5. 442
3022.0 5. 859 6. 300
2968. 0 6.309 6. 783
2926. 0 6.689 7.192
2894. 0 6.998 7.524
2753.0 8.595 9, 240
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Table VI (continued)

a In units of 1028 cmz.

P see text for description of basis sets. The (10S/13P) results
are identical to the (12S/8P) values to 4 significant digits.

C Wavelengths at which experimental refractivity data are available.
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Table VII. Rayleigh scattering cross sections for

helium ~ RPA. Comparison with other work.

o («)? o (w)? o (w)?
A(A) Experimental® This work®  Other theories
20587.0 0. 003069 0. 002789 -
15300.0 0. 01006 0. 009151 -
14756.0 0.01164 0.01058 -
10142.0 0. 05226 0. 04750 -
9227.0 0. 07638 0. 06941 0. 0761°
8266. 8 0.1187 0.1079 0.118
7247.2 0.2014 0.1830 0.201
5462. 2 0. 6284 0. 5706 0. 626°
4801.3 1.058 0. 9600 1. 054°
4359.0 1.558 1.419 1.558P
4047.0 2.105 1.917 2.104P
3907.0 2.429 2.211 -
3664.0 3.153 2. 870 3.153P
3342.0 4.589 4.174 -
3132.0 5. 985 5. 442 5. 980°
3022.0 6. 929 6. 300 -
2968.0 7. 462 6.783 -
2926.0 7.913 7.192 -
2894.0 8. 280 7.524 -
2753.0 10. 17 9. 240 10.17°
2500. 0 - 13. 76 13. 748 (15.)f

2000.0 - 35. 03 34.98° (138, )f



Table VII (continued)

o (w)? 7 («)?
AA) Experimental®  This workd
1500. - 121.7
1216. - 318.3
1000. - 841.7
800. - 3099.
700. - 8654.

2 In units of 10728 cm”.

P see Ref. 6 of text.

o w)?
Other Theories

121,58 (133.)f

317. 98 (353. )f

840. 7° (951.)f
3096. € (3590.)f
8650. € (10700. )f

€ Ccalculated from experimental refractivity data (which provides the

necessary polarizability values).

d (128/8P) basis see text for details.

° M. J. Jamieson, in Quantum Mechaxiics, the First Fifty Years,

W. C. Price, S. S. Chissick and T. Ravensdale, editors

(John Wiley, 1973).
; .

(1965).

Y. M. Chan and A. Dalgarno, Proc. Roy. Soc. (London) 85, 227
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Table VIII. Frequency dependent polarizability for H, (R = 1.4 a.u.),

Comparison with experimental and other theories. Full

polarizability o (w) in a.u.

Experi- Model This

A (A) mental? spectrumP  work FB® pwLY

= 5.437 5.450 5.235 5.18 5.437
6328.0 5.554 5.554 5. 331 5.28 -
5462. 3 5.582 5.591 5. 365 5.31 5.588
4556.0 - 5.655° 5. 424 - -
4359.6 5.667 5.675 5. 443 5.39 5.668
4079.0 5.1701 5.708 5. 474 - 5,704
3342.4 5. 840 5. 845 5. 600 - 5. 832
3037.3 - 5.937° 5.685 - -
2968. 1 5. 960 5.963 5.1708 5.65 5.948
2753, 6 6. 055 6.056 5. 794 - 6.036
2379. 1 6.303 6.299 6.017 - -
2302. 9 6.384  6.368 6.079 - 6.01 6.332
2278.0 - 6.392°¢ 6.101 - -
1935. 8 6. 868 6. 865 6.530 - 6.799
1854.6 7.035 7.035 6.683 6.59 6.959
1822. 4 - 7.112° 6. 752 - -
1700.0 - 7.4171 7.071 - -
1600.0 - 7.872 7.424  T.31 -
1500.0 - 8. 431 7.908 - -
1400.0 - 9.262 8.610 8. 44 -
1300.0 - 10. 62 9. 714 - -
1215.7  12.8 12.76 11.29 11.02 -
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Table VIII (continued)

2 prom refractivity data: (1) J. Kock, Arkiv. Math. Astron. Fysik.
8, 20 (1912) and M. Kirn, An. Physik 64, 566 (1912); (2) A = A,
H. Schuler and K. L. Wolf, Z. Physik 34, 343 (1925); (3) A = 6328 A,
N. J. Bridge and A. D. Buckingham, J. Chem. Phys. 40, 2733 (1964).
Proc. Roy. Soc. (London)A295, 334 (1966); (4) A = 1215.7 A (Lyman
a), P. Gill and D. W. O. Heddle, J. Opt. Soc. Am. 53, 848 (1963).

b Model semi-empirical spectrum of H, constructed by G. A. Victor

and A. Dalgarno, J. Chem. Phys. 50, 2535 (1969).

C Direct sum-over-states calculation of Ref. 12 of text.

A Padé approximants calculation of P. W. Langhoff and M. Karplus,

Ref. 7.

€ Calculated from the model spectrum of G. A. Victor and A. Dalgarno,

J. Chem. Phys. 50, 2535 (1969).
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Table IX. Frequency dependent anisotropy for H, (R=1.4 a.u.).

Comparison with other theories. (y (w) given in a.u.)

Model This
A(R) spectrum®  work FB" pwLC
w0 2.029 1. 865 1.84 1.826
6328. 0 2. 092 1.919 1.90 -
5462. 3 2.115 1.938 1.92 -
4556.0 ~  2.155 1,972 - 1.930
4359. 6 2.168 1,982 1.96 .
4079. 0 2.188 2. 000 - -
3342, 4 2.274 2. 073 - -
3037.3 2.333 2.122 - 2.074
2968, 1 2,350 2.136 2.11 -
2753. 6 2.410 2.186 - -
2379. 1 2.569 2.319 - -
2302. 9 2.615 2.357 2. 32 -
2278. 0 2. 631 2.370 - 2.311
1935. 8 2,958 2. 637 - -
1854.6 3.080 2. 734 2.69 -
1822. 4 3.136 2.779 - 2,703
1700. 0 3.401 2,988 - -
1600. 0 3.710 3.226 3.16 -
1500. 0 4.159 3.564 - -
1400. 0 4.871 4,077 3.95 -
1300. 0 6.158 4,939 - -
1215.7 8.495 6 |

. 285 6.12 -
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Table IX (continued)

2 Model semi-empirical spectrum of H, constructed by G. A.

Victor and A. Dalgarno, J. Chem. Phys. 50, 2535 (1969).

b Direct sum-over-states calculation of Ref. 12 of text. Unaveraged

results shown for comparison. See text.

¢ Moment theory bounds results of Ref. 6 of text.
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Table X. Verdet constants V (w)a of H,(R=1.4a.u.)

Exper%) Model

A (A) ment P spectrum® '
w - 0.
9875. 2,11 2.15
9000. 2.53 2.59
8500. 2. 83 2.91
8000. 3.18 3.30
7500. 3.59 3.77
7000 4.14 4.35
6500 4.88 - 5.07
6000. 5. 81 5.99
5893 6. 03 6.22
5780. 6.27 6.48
5500. 6.94 7.20
5460 7.06 7.31
5000 8. 55 8. 82
4500. 10.7 11.1
4360 11.4 11.9
4000. 13.8 14.3
3635. 17.2 17.8
3342.4 - 21.6
2500. - 44.3
2000. - 84.1

This
work

0.
1.99
2.41

DO

.1
.07
.50
.04
.11
.56
LT
.01
.68
.18

90@030)0101)#»#0000

N S
w = O

ey
Qo
L]

> -
S 2
O W b W O N

-3
@

pwid

(3 1 B - - B =)

13.

.81
.18
.64
.19
. 89
.78

.93

.49
10.

65

78
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Table X (continued)

2 In units of microminutes. Oersted™ cm™ (at 0°C and 1 atm).

P pef. 29.

¢ Model semi-empirical spectrum of H, constructed by G. A.
Victor and A. Dalgarno, J. Chem. Phys. 50, 2535 (1969). With the
; exception of the points at X = A and A = 3342.4 A the values were

calculated from their spectrum.

d Moment theory bounds results of Ref, 6.
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Table XI. Rayleigh scattering cross sections for H,, (R =1.4a.u.)

cr(w)al

AQA) Model Spectrumb This work PW LS

% 0. 0. -
6328. 0 0. 0569 0.0523 -
5462, 3 0.104 0. 0953 0.1
4359. 6 0. 264 0. 242 0.264
4079.0 0.348 0.319 0.348
3342. 4 0.811 0. 742 0.809
2968. 1 1.36 1.24 1.35
2753. 6 1. 89 1.73 1.88
2379. 1 3.68 3.35 -
2302. 9 4.29 3.89 4,24
1935. 8 10.0 9. 02 . 9.82
1854. 6 12.5 11.2 12.2
1700. 0 20.0 17.8 -
1600. 0 28. 4 25.1 -
1500. 0 42. 4 37.0 -
1400.0 68. 0 58.1 -
1300. 0 122, - 100. -
1215.7 235. 179. -

2 1n units of 10-% cm”.

b Model semi-empirical spectrum of H, constructed by G. A.
Victor and A. Dalgarno, J. Chem. Phys. 50, 2535 (1969).

¢ Moment theory bounds results of Ref. 6.
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Table XII (c ontmued)

f R. Kamikawai, T. Watanabe and A. Amemiya, Phys. Rev. 184,

303 (1969).

€ G. A. Victor and A. Dalgarno, J. Chem. Phys. 50, 2535 (1969).

h pef. 12.
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FIGURE CAPTIONS

Figure 1. Dispersion of the dipole polarizability of He for frequencies up
to the second pole.
Figure 2. Frequency-dependent polarizability of He. Comparison of this
work with experiment (small x's )/and results from Ref. 6
(small circles).
Figure 3. Verdet constants of He (in units of microminutes. O€ . em*
at 0°C and 1 atm.). Comparison of this work with experiment
(small x's ) and results of Ref. 6 (small circles).
Figure 4. Rayleigh scattering cross sections of He (in units of 107% cmz).
: Comparison of this work with experiment and results of Ref. 6.
Figure 5. Dispersion of a(w) for H, (R=1.4a.u.).
Figure 6. Frequency-dependent polarizability of H, (R =1.4 a.u.). Com-
parison of this work with experiment (x in the figure) and results
of Ref. 6 (marked o).
Figure 7. Verdet constants of 'Hz (R=1.4a.u.). Comparison of this work
with experiment ( x in the figure) and results of Ref. 6 ('0').
(Units are microminutes. O¢ . cm > at 0°C and 1 atm.)
Figure 8. Rayleigh scattering cross sections for H, (R =1.4a.u.). Com-
parison of this work with semi-empirical estimates and results
of Ref. 6 ( x and o, respectively, in the figure). Units are

10”% em®.
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Part II - Photoionization Cross Sections for H2 in the
Random Phase Approximation with a Square-

Integrable Basis
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1. Introduction

Although experimental photoionization cross sections have been measured
for many molecules [1], there have been very few accurate calculations of these
cross sections. The major difﬁcultiesﬁ?xrfhe calculation of accurate molecular
continuum wavefunctions and in the sensitivity of these cross sections to the
approximations used in calculating the wavefunctions [2,3]. In particular,
electron correlation has been known to have a significant effect on the calcu-
lated photoionization cross sections. |

Unlike the previous calculations of molecular photoionization cross sec-
tions we completely obviate the need for continuum functions, thus resolving
the major difficulty in such calculations. The central idea is to obtain a dis-
crete representation of the frequency-dependent polarizability which, although
not physical at energies in the continuum, often provides an adequate represent-
ation of the polarizability for complex values of the energy. Numerical analytic
conﬁinuation can then be used to return to the real energy axis where the physical
information is desired. The application of this L? method to the calculation of
photoionization cross sections was suggested by Broad and Reinhardt [4] who
applied it to atomic hydrogen. Rescigno, McCurdy, and McKoy [5] have
recently used the same method to obtain cross sections for He. The calculated
cross sections agreed well with experiment. There [5] a discrete represent-
ation of the frequency-dependent polarizability in the random phase approxima-
tion (RPA) was used. In this paper we apply the same procedure to molecular
hydrogen. The method is applicable to larger molecules since L2-RPA calcu-

' lations can be routinely carried out for these systems, e.g., H,CO, C,H,, CO,,

and C,H, [6].
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In the following section we briefly review the continuation method and the

RPA. In Section 3 we discuss our results and their comparison with experiment.

2. Theorx

The frequency-dependent polarizability of an atom or molecule is given

{ e}
€)de
o(z) = ) —B 4 [ Hede

n#o won-z €I € -z

’ (1)

where Won? f on’ and g(e€) are the transition frequencies and the bound and con-

tinuum oscillator strengths, respectively, and € is the first ionization threshold

of the system. In the limit z — w+in, eq.(1) yields

a(w) = Z fon _ wa gle)de  iwg(w) (2)
€ 2

2 2 Zw
#Z0 WS ~w € -w
n=o on I

and thus we have the relation between the photoionization cross section and the

imaginary part of a(w)

o(w) =n1i_1310 410“" Im[a(w+in)] . (3)

To use eq.(3), a(z) is first approximated by a finite sum

f
oz) ~ ), __?9[1_2_ . (4)
n W -z

To continue a(z) of eq.(4) analytically on to the real axis, we construct a low-
order rational-fraction re'presentation of a(z) by fitting it to the approximate
a(z) of eq.(4) at a number of points in the complex plane. We use the algorithm
given by Schlessinger et al.[6] to perform this point-wise fitting. We thus

" obtain a smooth representation of @(z) and can now evaluate a(w), and hence

o(w), at real energies where the original discrete approximation is unphysical.
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In the present work the finite set of oscillator strengths and transition
frequencies needed to obtain the discrete representation of @(z), eq.(4), is
generated by solving the equations of motion in the low-order single particle-
hole (1p-1h) pair approximation, the usual random phase aﬁproximation. The
equations of motion method has been discussed previously [7]. It can be shown
that if the state ln) is single particle~hole excited relative to the ground state
Io) the equation of motion for the excitation energy Won and elements of the
transition density Y(n) and Z(n) become
A B Y(n) D o Y(n)

- w | (5)
-B* -Ax* Z(n) o D Z(n)

The matrices A, B, and D are ground state expectation values of second-
quantized operators [7]. If |o) is taken to be the Hartree-Fock ground state,
D becomes the unit matrix and the familiar RPA equations result [7]. The
oscillator strengths f on 2T€ obtained directly from the W, n's and the { Y(n)}
and { Z(n)} vectors. |

The RPA is a particularly convenient method for constructing the discrete
representation of the frequency-dependeptvpolarizability. " The dipole length
and velocity expressions for the oscillator strength are equivalent in this

approximation and the f-sum rule is satisfied [8].
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3. Results

The RPA equations for H, were solved in a discrete Gaussian basis. The
+ _, 1
g

X ‘zg*‘ - ux transitions. Hence the parallel and perpendicular components

of a(z), eq.(4), contain fourteen and seven poles, respectively. The calcula-

resulting spectrum consists of fourteen X 12 Z; transitions and seven

tions were done at the ground state equilibrium geometry of R = 1.4 a.u. The
_ results of these calculations have been reported elsewhere [9, 10] where they
were used to calculate the second-order optical properties and van der Waals
coefficients in good agreement with experimental data as well as with other
theoretical estimates. Of particular importance for the present purposes is
that the resulting oscillator strength distribution satisfied the Thomas-Reiche-
Kuhn sum rule exactly and several other energy-weighted sum rules approxi-
mately [9,10]. Moreover, the transition moments for the X 12; — B 12; and
X IE; —C ‘nu transitions agree very well with those of the extensive calcula-
tions of Wolniewicz [11].

By analytical continuation of the parallel and perpendicular components
of a(z) we can obtain the photoionization cross sections for the 12; and 'TI u
channels separately. Since there is no a priori rule for determining the fitting
points for determining the rational-fraction representation of eq.(4), we obtained
the photoionization cross sections for several choices of fitting points. These
points were chosen with a real part between each pair of frequencies and the
imaginary parts were varied over a wide region of the complex plane. Fig-
ures 1 and 2 show the o (E:rl) and o (II u) photoionization cross sections obtained
by continuation of rational fractions with three different choices of fitting points.
At photon frequencies near threshold, i.e., the vertical ionization potential of’

16.4 eV for H,, the calculated cross sections are within 5-10% of one another

for the different choices of the fitting points. At frequencies away from threshold,
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the calculated cross sections are insensitive to the choice of fitting points for
the analytic continuation.

In Table I and fig. 3 we compare the total calculated photoionization
cross sections for H, with the experimental results of Cook and Metzger [12],
Samson and Cairns [13], and Rebbert and Ausloos [14]. The calculated cross
sections are those for the vertical photoionization of H, and hence the threshold
.isat16.4 eV. Thev’=0, v”= 0 ionization threshold for H, is about 15.5 eV.
Our calculated cross sections should be compared with the experimental ones
only at frequencies above __those for which the sum of all Franck-Condon factors
for the open vibrational channels of H: are close to unity. From the Franck-
Condon factors for the H, - H; system, this begins at photon energies around
18 eV. In a future publication [15] we plan to include these Franck-Condon
factors and the effect of the variation of internuclear distance on the electronic
polarizability.

From Table I and fig. 3 we see that our calculated cross sections agree
well with the measured cross sections. These cross sections are closer to the
éxperimental cross sections than those of Kelly [16] who used molecular con-

tinuum eigenfunctions and neglected electron correlation.
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4, Conclusions

These results for the photoionization cross sections of H, again indicate
that it is not necessary to employ continuum basis functions in molecular
photoionization calculations. Moreover, the calculations on larger molecules
by this method require only modest additional computational effort. Calcula-
tions on the photoionization cross sections of N,, H,CO, CO,, and C.H, are
underway. Finally, since we obtain the photoionization cross sections into
separate symmetry channels we can obtain angular distribution for H, since

phase shifts are available or can be calculated.

5. Acknowledgements

The authors thank Dr. G. R. Cook for kindly supplying detailed informa-
tion on his experimental photoionization cross sections. One of us (VM) thanks
Dr. Carl Moser of CECAM (Paris) for his hospitality and support during his
recent visit there. PHSM thanks the Conselho Nacional de Pesquisas (Brasil)
for financial support and the Universidade Federal do Rio de Janeiro for a
leave of absence. He (PHSM) is also grateful to Anna Martin for help in the

preparation of the manuscript.



=71-
Tabie 1

Comparison of calculated photoionization cross sections with the observed

cross sections at selected wavelengths.

Wavelength Photon Energy  Calculated A cross :Experimen.tal
(A) (eV) sections (Mb) cro?lswg?ctlons
741 16.7 10. 74 9.18°

10. 48°
713 17.4 9.95 10. 159
685 18.1 9.25 9.85
675 18. 4 - 9.03 9.63
661 18.8 8.69 9.00
646 19.2 8. 36 8.63
620 20.0 7.82 7.70
600 20.17 7.36 6.95
584 21.2 6.98 6.88°
452 27.4 3.50 3.378
428 29.0 2.94 2.88
374 33.1 1.86 2.04
359 34.6 1.61 1.75
335 37.0 1.27 1.36
315 39.4 1.02 1.12
298 41.6 0. 84 0.95
266 46.6 0.57 0.64
247 50. 2 0.45 0.49
234 52.9 0.37 0. 40
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Table 1 (continued)

-18
21In megabarns or 107" ¢m?®,

P Reference 12.

€ Reference 14. This is the cross- section in the 736-T44A range.
d

€ Reference 14.
f

The following values are taken from ref. 12.

The following values are taken from ref. 13.
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Photoionization cross section of H, for the XIZ); - IE:
channel. The curves show the results fof three different
choices of fitting points used for constructing the rational

fraction. Cross sections are in units of megabarns.

Photoionization cross section of H, for the X 12; - u
channel. The curves show the results for three different
choices of fitting points used for constructing the rational

fraction. Cross sections are in units of megabarns.

Comparison of calculated total photoionization cross sections
with experimental data. The points are taken from refer-

ences 12 and 13. See footnotes in Table 1.
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1

Part III - Oscillator Strengths for the X Z+-A]H System

4n CH® from the Equations of Motion Method
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1. INTRODUCTION

With the recent expansion of the field of astrochemistry and studies
of the formation and evolution of interstellar clouds, the need has arisen
for accurate and reliable molecular data1 on species not previously investi-
gated in any detail either experimentally or theoretically. A thorough dis-
cussion of current astrophysical and astrochemical problems related to
molecule formation in interstellar space can be found in Ref. 2.

A typical exa.m:ple of a situation where the lack of reliable molecular
data has seriously affected the development of models for the formation of
interstellar molecules is that of the relative abundances of CH and CH" and
their formation through radiative association processes from atoms and

8 In particular, the rate of association of C and H* to form CH"

depends on the oscillator strength of the x'z* - AMI transition in CHY. 3-5

ions.

CH is charged and a highly reactive species, which makes spectroscopic
studies in the laboratory difficult. Under these circumstances, detailed

60f

theoretical calculations become appealing. One of the early theories
the formation of CH' was initially discarded because the assumed f-values
lead to low rates of radiative association. However, the work of Solomon
and Klemperer3 revived the interest in this radiative association mechanism
by reevaluating the rates by using better f-values.

In addition to these direct processes Julienne and Krauss4

have dis~
cussed an alternative mechanism, namely, indirect radiative association
(inverse predissociation) leading to the formation of other species as well,

such as NO, CH, CO, C,, etc. Inthese studies a reliable source of
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intensities is necessary if we are to reduce the uncertainties in models of
the interstellar medium.

For these reasons, considerable effort has been‘put into the ab
initio quantum mechanical calculation of thé potential energy curves7 and
oscillator strengths8 of CH. Similar work has been done on CH®,

In this paper we present the oscillator strength of the X'zt - Al
transition of CH" as computed by the Equations of Motion Method. 10 Our
result is in good agreement with the extensive CI calculations of Green

7 and Yoshimine et al. 8 The results presented are important

et al.,
because they constitute an independent confirmation of the results of Green
et al., and Yoshimine et.al., using a different approach. Moreover,
computationally the method is simple and relatively inexpensive. This is
an important feature since the rapidly expanding fields of astrophysics and
astrochemistry of the interstellar medium require reliable estimates of
molecular parameters such as excitation energies and transition moments
at various geometries. Since it is not always possible to study thé systems

of interest experimentally, we must resort to theoretical calculations that,

while still reliable, do not represent a major computational effort.
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2. THEORY AND RESULTS

The Equations of Motion (EOM) Method for calculating excitation

energies and transition moments has been thoroughly described elsewhere10

and here we only outline some of the central ideas.

In this approach we define an excitation operator such that
0y oy = v (1)

where Ix) is some excited state and |0) is the ground state. It then can

be shown that O; satisfies an equation of motion11 given by
+ +
©|[60,,H,0;1|0) = w, O|[60,,0;] |0) (2)
where the double commutator is defined by
Z[A’B,C] =[[A7B]’C] +[A9[B9C]] (3)

w, 1s the excitation frequency and 50;\'~ represents a variation of the
amplitudes specifying O;. If O; is assumed to be composed of single

particle~hole pairs (1p-1h) the equations of motion become

™)
()

A BT [xe D O

= W 4)
A o ,I?

?
N )

-B*  -A*| | Z()

The elements of the matrices A, B, and D, are given in Ref. 10. Y and
Z are the amplitudes we wish to calculate. Higher order approximations
(inclusion of 2p-2h components) to the exact Eq. 2 can also be easily
constructed. In the above approach we obtain spectroscopic quantities of

interest e, g. transition intensities directly, and avoid the calculation of



-83-

of highly accurate and elaborate total wavefunctions and absolute energies
for the different electronic states separately.
In this paper we report calculations on cu* using two different

gaussian basis sets: a [3S2P/2S] contracted from a (985P/4S)1za

primitive basis and a more recent version of the [ 38 2p/28] contractionIZb
to which we added polarization functions. The final basis was then
[3s2p1D/2S1P].

In Table I we summarize the results we obtain with the two bases

7,8 We have per-

and compare them wiih the best CI calculations to date.
formed the calculation only at one internuclear distance, namely 1.12 A,
which is the ground state equilibrium geometry. The ﬁr§t column in the
table, labeled RPA (Random Phase Approximation) is derived from lowest
order single particle~hole pair (1p~1h) solutions to the equations of motion.
(See Ref. 10). The column labeled EOM, contains results that were not

10 Continuing the iterations may have improved the excitation

fully iterated.
energy somewhat within the rather small basis set being used. The basis
was chosen to provide good results for the X 's* - A'l transition moment,
since this is the one transition that bears the most astrophysical interest.
The values we have computed are compared with those obtained
by interpolating from the data in references 7 and 8. Overall agreement
is good. We want to point out that the size of the problem (computational
effort) is determined by the number of 1p-1h excitationé included in Eq. 4.
In our larger basis ([ 352P1D/2S1P]) - this amounts only to 12, which

means that at most only 12 x 12 matrices must be diagonalized for states

of Il gymmetry. Another feature of EOM calculations that makes them
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particularly practical is that an SCF run is needed only once and on the
ground state exclusively. From a single calculation we obtain most of
the low~lying states (all of the symmetries allowed by the basis set being
used). As in any basis set expansion technique the qua}ity of the final
results depends on the nature and the size of the basis used. However, we
have found in general that valence basis sets of relatively poor quality
still give very good transition moments and excitation energies to states
with small diffuse components.

In conclusion, the EOM scheme can provide reliable molecular
spectral data such as excitation energies and oscillator strengths in a
computationally simple fashion. Applications to other molecules of

interest in astrophysics are underway.
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Table 1.

Vertical Excitation Energy and Oscillator Strength for the X'z -A'll

Transition in cut

Property [3S2P/2S] RPA |[352P1D/2S1P] EOM |CI of Refs.7, 8
Excitation
2.3 2.50 3.322
Energy(eV)
Transition
0.34 0.31 0.30%
Moment(au)
Oscillator a
0.014 0.011 0.0147
Strength

2 Values interpolated from the data in references 7 and 8.
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