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General Abstract 

Recent observations of shock-induced radiation from oxides, silicates and 

metals of geophysical interest constrain the shock-compressed temperature of 

these materials. In these experiments, a projectile impacts a target consisting of 

a metal driver plate, metal film or foil layer, and transparent window. We 

investigate the relationships between the temperature inf erred from the 

observed radiation and the temperature of the shock-compressed film or foil 

and/or window. Changes of the temperature field in each target component 

away from that of their respective shock-compressed states occur because of: 1) 

shock-impedance mismatch between target components, 2) thermal mismatch 

between target components, 3) surface roughness at target interfaces, and 4) 

conduction within and between target components. In particular, conduction 

may affect the temperature of the film/foil-window interface on the time scale 

of the experiments, and so control the intensity and history of the dominant 

thermal radiation sources in the target. We use this type of model to interpret 

the radiation emitted by a variety of shock-compressed materials and interfaces. 

In a series of experiments on films ( ,...._. 1 µm thick) and foils ( ,...._. 10-100 µm 

thick) of Fe in contact with Al20 3 and LiF windows, Fe at Fe-Al20 3 interfaces 

releases from experimental shock-compressed states between 245 and 300 GPa 

to interface states at pressures between 190 and 230 GPa, respectively, and tem

peratures between 4000 and 8000 K, respectively. These temperatures are ~ 

200-1500 K above model calculations for Fe experiencing no reshock at ideal 

(smooth) Fe-AI20 3 interfaces. We attribute this discrepancy to localized dissi

pation at the Fe-Al20 3 interface, producing higher interface temperatures than 

uniform compression and energy transfer. This behavior is observed for both Fe 

foils and films. Both 190 GPa, localized heating due to gaps or interface-surface 

roughness does not apparently affect the temperature of Fe-Al20 3 interfaces. In 

contrast, from the same range of shock states, Fe at Fe-LiF interfaces releases 
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to states between 130 and 160 GPa (because it has a lower shock impedance 

than Al20 3); both the data and model imply that Fe-LiF interfaces respond 

ideally to shock-compression up to 140 GPa (where the data end). Both the 

Fe-Al20 3 data and the model suggest that the degree of reshock and localized 

heating is strongly pressure-dependent above the solid Fe-liquid Fe phase boun

dary. LiF appears to be a more ideal window than Al20 3 also because it is a 

poorer thermal inertia (i.e., kpc;,, where k is the thermal conductivities, p is the 

mass density, and c;. is the specific heat at constant pressure) match to Fe than 

is Al20 3• 

In the absence of energy sources and significant energy flux from other parts 

of the target, the rate of change of the film/window or foil/window, interface 

temperature, dT~t)/dt, is proportional to -µexp(-µ 2
), where µ = 8FW /2,;;;;f,, 

~ is the thickness of the high-temperature (reshocked) zone in the film/foil 

layer at the film/foil-window interface, "'F is the thermal diffusivity of the 

film/foil material, and O<t<texp (texp is the time scale of the experiment, 200-

400 ns). On this basis, the temperature of a thin (8FW<<2v'~texp) reshocked 

layer relaxes much faster than that of a thick (~>>2J~texp) layer. We esti

mate J"'Ftexp.........,10 µm for Fe under the conditions of Fe-Al20 3 and Fe-LiF inter

faces at high pressure. In this case, a 100-µm-thick reshocked Fe layer would 

relax very little, remaining near T~O) on the time scale of the experiment, 

while a 1-µm-thick reshocked Fe layer would relax on a time scale of;::;, 10 nsec, 

which is much less than texp' to a temperature just above T~oo), i.e., the tem

perature of the ideal (smooth) interface. 

Grey body model fits to radiation from an Fe film-Al20 3 interface resolve a 

gradually increasing effective greybody emissivity, €gb(t), and a gradually 

decreasing grey body temperature, Tgb(t ). This behavior is characteristic of most 

Fe-Al20 3 interface experiments. The decrease of Tgb(t) can be explained in 

terms of the reshock model for the film/foil-window interface temperature, 
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TINT(t ). For this experiment, the model implies that the thickness of the 

reshocked film layer, ~ is approximately equal to the conduction length scale 

in the film, ../~texp (,__,lQ µm for Fe). Further, assuming 1) Tgb(t) = Tn-Jt), 2) 

the thermal inertia of the film is an order of magnitude less than the window, 

and ~::;;,,2.J ~texp' the grey body constrains the temperature rise due to localized 

heating through reshock, .6. TFW' to ::;;,,2000K. A slight decrease of the Al20 3 

absorption coefficient upon shock compression can explain the slight increase of 

€gb(t) with time; this may be consistent with the low-pressure observation that 

the refractive index of Al20 3 seems to decrease with pressure. 

In contrast to the Fe-Al20 3 results, greybody fits to radiation from an Fe 

foil-LiF interfa~e show a relatively constant greybody temperature, and a 

decreasing greybody emissivity. The constant greybody temperature implies a 

constant interface temperature, as expected for an interface experiencing 

minimal reshock, while the decaying €gb(t) is consistent with a shock-induced 

increase in the absorption coefficient of LiF. Setting Tu-JO) = Tgb(O), we fit a 

simplified version of the full radiation model to these data and obtain an esti

mate of the absorption coefficient ( ,__, 100 m-1) of LiF shock-compressed to 122 

GP a. 

Shock-compressed MgO radiates thermally at temperatures between 2900 

and 3700 K in the 170-200 GPa pressure range. A simple energy-transport 

model of the shocked-MgO-targets allows us to distinguish between different 

shock-induced radiation sources in these targets and to estimate spectral 

absorption-coefficients, ~' for shocked MgO (e.g., at 203 GP a, 3™co,__,6300, 

7500, 4200 and 3800 m-1, at 450, 600, 750 and 900 nm, respectively). The 

experimentally inferred temperatures of the shock-compressed states of MgO are 

consistent with temperatures calculated for MgO, assuming that 1) it deforms as 

an elastic fluid, 2) it has a Dulong-Petit value for specific heat at constant 

volume in its shocked-state, 3) it undergoes no phase transformation below 200 
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GPa, and 4) the product of the equilibrium thermodynamic Gruneisen's parame

ter, /, and the mass density, p, is a constant and equal to 4729.6 kg/m3• 

Optical radiation from shock-compressed crystal CaMgSi20 6 ( diopside) con

strains crystal CaMgSi20 6 Hugoniot temperatures of 3500-4800 Kin the 150-170 

GPa pressure range, while glass CaMgSi20 6 , with a density 87% of that of crys

tal CaMgSi20 6 , achieves Hugoniot temperatures of 3600-3800 K in the 105-107 

GPa pressure range. The radiation history of each of these materials implies 

that the shock-compressed states of each are highly absorptive, with effective 

absorption coefficients of .<,500-1000 m-1• Calculated Hugoniot states for these 

materials, when compared to the experimental results, imply that crystal 

CaMgSi20 6 Hugoniot states in the 150-170 GPa range represent a high-pressure 

phase (HPP) solid (or possibly liquid) phase with an STP density of ~4100±200 

kg/m3 , STP Gruneisen's parameter of ~1.5±0.5 and STP HPP-LPP specific 

internal energy difference, !::,.e/3~, of 0.9±0.5MJ /kg. These results are con

sistent with a CaSi03-MgSi03 perovskite high-pressure phase assemblage. For 

glass CaMgSi20 6, we have the same range of HPP properties, except that !::,.e/~0 

is 2.3±0.5 MJ /kg, a strong indication that the glass CaMgSi20 6 Hugoniot states 

occupy the liquid phase in the system CaMgSi20 3 • Comparison of the 

pressure-temperature Hugoniot of crystal CaMgSi20 6 with the Hugoniots of its 

constituent oxides (i.e., Si02, CaO and MgO) demonstrates the primary 

influence of the HPP STP density of these materials on the magnitude of the 

temperature in their shock-compressed states. The crystal Di pressure

temperature Hugoniot constrained by the experimental results lies at 2500-3000 

K between 110 and 135 GPa, within the plausible range of temperature profiles 

in the mantle near the core-mantle boundary. 

In the context of the above model considerations, we constrain the Hugoniot 

temperature of Fe shock-compressed to 300 GPa via thermal radiation from the 

Fe film/foil-window interfaces discussed above. The temperature of the 
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film/foil-window interface is obtained from measurements of the spectral radi

ance of the interface, for the duration of the shock transit through the window, 

using a 4-wavelength optical radiometer. The model indicates that the experi

mental observations constrain the interface temperature, rather than the the 

temperature of the Al20 3 or LiF windows. Our results further imply that Al20 3 

remains at least partially transparent to at least 230 GPa and l"'.J 9,000 K. 

Without correcting the Hugoniot temperatures inferred from the interface tem

peratures for the effects of reshock, we infer a melting temperature of Fe along 

its Hugoniot of 6700±400 K at 243 GPa. Combining these estimates with the 

lower-pressure ( < 100 GP a) static Fe melting data of Williams and Jeanloz 

(1986), we infer a melting temperature for Fe of approximately 7800±500 K at 

the pressure of the Earth's outer-inner boundary. Assuming that Fe or an Fe

light element alloy is forming the inner core from an Fe-light element mixture in 

the liquid outer core, this temperature also represents an upper bound to the 

temperature at the outer-inner core boundary. 

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO 

provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO 

systems in the pressure range corresponding to the earth's outer core. The 

liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986) 

places constraints on the temperature and other properties along the liquidus 

above the range of their data. The temperature along the best-fit Fe liquidus is 

5000 Kat 136 GPa and 7250 Kat 330 GPa, which is somewhat lower than that 

implied by the Hugoniot results ( l"'.J 7800 K). This discrepancy may be due to 

the reshock effect discussed above, or some inaccuracy in the extrapolation, 

presuming the Hugoniot results represent the equilibrium melting behavior of 

Fe. Constraints on the solidi of FeS and FeO from the comparison of data and 

solid-state model calculations imply that FeS and FeO melt at approximately 

4610 K and 5900 K, respectively, at 136 GPa, and approximately 6150 K and 
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8950 K, respectively, at 330 GPa. Calculations for the equilibrium thermo

dynamic properties of solid and liquid Fe along the coincident solidus and 

liquidus imply that the entropy of melting for Fe is approximately independent 

of pressure at a value of approximately R (where R is Ryberg's constant), while 

the change in the molar heat capacity across the transition increases with pres

sure from approximately 0.5 R to 4R between standard pressure and 330 GPa. 

We use these constraints to construct ideal-mixing phase diagrams for Fe-FeS 

and Fe-FeO systems at outer core pressures, assuming that Fe and FeS, or Fe 

and FeO, respectively, are the solid phases in equilibrium with the liquid Fe-FeS 

or Fe-FeO mixtures, respectively. 

The composition of the Fe-X (X=O or S) liquid mixture relative to the 

eutectic composition of the Fe-FeX system determines whether Fe or FeX will 

solidfy at the liquidus. For these ideal mixing calculations, the eutectic compo

sition is controlled by the ratio of the end-member (i.e., Fe and FeX) melting 

temperatures at a given pressure. If Fe and FeX have the same melting tem

perature, for example, the eutectic composition is 25 mole % X; if the melting 

temperature of FeX is greater or less than Fe, the eutectic composition will be 

displaced to more Fe or FeX rich compositions, respectively. Since, as quoted 

above, the melting temperature of FeO is about 1500 K greater than that of Fe 

at 330 GPa, which is in turn about 1000 K greater than that of FeS at this 

pressure, we note that calculated Fe-FeO eutectic compositions at 330 GPa (15-

20 mole % 0) are less than 25 mole % 0, while calculated Fe-FeS eutectic com

positions at 330 GPa (23-30 mole % S) are generally greater than 25 mole % S. 

The mass density of the Earth's outer core just above the inner core boundary 

is approximately 12160 kg/m3 , and we note that this is also the density of an 

ideal mixture of 93 mole % Fe and 7 mole % S (i.e., 14 mole % FeS), and a 

similar mixture of approximately 72 mole % Fe and 28 mole % 0 (56 mole % 

FeO ). Consequently, these calculations and considerations imply that an 0-rich 
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outer core is more likely to lie on the FeO-rich side of the Fe-FeX eutectic, 

while an S-rich outer core is more likely to lie on the Fe-rich side of the Fe-FeX 

eutectic. 

The temperature of the Fe-FeS eutectic is lower than the Fe-FeO eutectic, 

being approximately 5000 K at 330 GPa. Note that the eutectic temperature 

represents a lower bound to temperatures at the outer-inner core boundary 

under the hypothesis that this boundary represents the liquidus in an Fe-X mix

ture. Eutectic and end-member melting temperatures in both the Fe-FeS and 

Fe-FeO systems imply, in the context of the outer-inner core boundary-phase 

boundary hypothesis, that previous widely-accepted temperature profiles for the 

outer core, ranging from ~3000 K at the 136 GPa, the core-mantle boundary, 

to ~4200 Kat 330 GPa, the outer-inner core boundary, are about 1000-1500 K 

too low. This possibility implies that at least one boundary layer of 1000-1500 

K exists in the mantle, possibly at its base in the D
11 

region. 
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Introduction: 

Outline of the Continuum Mechanics of Shock Compression 

The work presented in this thesis represents an attempt to explore and elu

cidate certain aspects of the thermomechanical response of selected silicates, 

oxides and metals of geophysical interest to shock compression, via observations 

of shock-induced optical radiation from these materials. Although microscopic 

processes lie at the heart of each phenomenon, the experimental foundation of 

our work requires an interpretive, conceptual framework much more abstract 

and general than any particular microscopic physical theory can provide. This 

framework is provided by continuum mechanics, which enfolds and abstracts 

the "physics" of countless microscopic models and viewpoints, via their 

appropriate macroscopic (e.g., thermodynamic) limit. With this framework, we 

have a representation of the phenomena partial to no particular "microphysics," 

and so accessible to all. The purpose of this introduction is to outline and 

detail the continuum framework we use to represent and interpret experimental 

results on shock-compressed materials. 

In our experiments, a projectile impacts a target at velocities between 4.5 

and 6.5 km/s, generating a shock wave in the target. This target is usually 

composed of two or three different materials sandwiched together in a plane

layer-style geometry (see Figure 2.1, Chapter I). From the physical viewpoint, 

the shock wave is a three-dimensional region with some thickness fJ (typically 

;:;,10-8 m in the materials of interest here: Kormer, 1968), and propagates 

through the material with a velocity of propagation u (typically I u I ,...._,103-104 

m/s ). Shock compression produces large (factor of 2 to orders of magnitude) 

changes in any given local thermomechanical (TM) field, i.e., TM field density, 
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'ljJ (e.g., mass density, p; note that 'ljJ may be a scalar, vector or higher-order ten

sor in what follows), over 8 and on a very short time scale (i.e., 

8/ I u I ,...._,10-11-10-12 seconds), resulting in large gradients (,...._, I 'ljJ I /8) in these 

TM fields across the shock-front region. We assume that these length and time 

scales are sufficiently short so that, from the macroscopic viewpoint, they may 

be idealized as infinitesimal and instantaneous, respectively. In this case, we 

may idealize the shock front macroscopically as a moving surface, which we 

designate as E=E(t). 

Representing the material as a continuum body, B=B(t), occupying the spa

tial volume V = V (t) in Euclidean three-space, with spatial boundary 

8V=8V(t), this moving surface divides B(t) into spatial regions "ahead" (+ 

region, Figure I.la) and "behind" (- region, Figure I.la) the shock front. This 

surface representation for the shock front is defined by the limit 8-o, and we 

note that, in this limit, the gradients of 'l/J across the shock front (mathemati

cally) become infinite. Consequently, 'ljJ loses a continuous representation in V, 

being (mathematically) discontinuous across E in this representation. In this 

case, the surface E is referred to as singular (Truesdell & Toupin, 1960, § 173) 

with respect to 'I/;, such that 

[I.1] 

where [l'l/;I] is the "jump" of 'I/; across E, and 'I/;+ and 'I/;- are the limiting values 

of 'ljJ "just" ahead and behind E, respectively. Note that E is oriented such 

that the inner vector product of u and fl (the unit normal vector to E: Figure 

I.la) is greater than zero, i.e., u·ii>O. This concept of a singular surface forms 

the basis for the continuum mechanical description of shock compression. For 

our purposes, we need only assume that E possesses no fields or properties other 

than a motion i.e., u) independent of the material on either side of it in B(t ). It 

can be much more complicated than this (e.g., Moeckel, 1974). 
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Since ,,P usually changes with time during the experiment, we need to formu

late relations for how ,,P changes with time in V, and across av and E, i.e., we 

need to formulate a balance relation for ,,P. We are particularly interested in a 

balance relation for ,,P across E when E is a shock front, but for now E 

represents any singular surf ace for ,,P. Now, from the macroscopic-experimental 

viewpoint, we can formulate a balance relation only for the total "amount" of ,,P 

in V, i.e., 

\JI = w(t) = f ,,Pdv 
v 

[I.2]. 

Following the classic approach, we let B~ V deform and keep track of the 

instantaneous value of w. In particular, we assume \JI may change with time 

via 1 ), production of ,,P in V, i.e., 

Pc"'i=Pc"'l(t) = J Pc.,>dv 
v 

and 2), the net total transport of ,,pout of v through av' i.e., 

F<"'>=Fc"'>(t) = J fc.,i·nda 
av 

[I.3]' 

[I.4]. 

In [I.3], Pc"'> is the total production and/or supply rate, Pc.,> is the production

supply rate density of ,,Pin V, which is assumed continuous in V. Also, in [I.4], 

F<"'l is the net amount of ,,P transported out of V, f<.,> is the net efflux of ,,P, or 

flux of ,,p out of, v' n is the unit outward normal vector to av' da is an 

infinitesimal area element on av' and r("1) is assumed continuous on av. With 

these, the instantaneous rate of change of \JI in B is represented by the global 

balance, i.e., 

[I.5], 

or 
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[I.6]. 

Assuming that 'l/J and its first partial derivatives are continuous in V, the Rey

nolds' transport theorem (e.g., Truesdell & Toupin, 1960, §81) implies that the 

change in the total amount of 'l/J with time is also given by 

: J 'lf;dv = J [ot'l/J + V·(,,PY)]dv 
t v v 

[I.7]. 

In [I.7], V is the spatial gradient operator, and v is the displacement velocity of 

the material since V and av instantaneously coincide with B and DB, by 

definition. In this sense (i.e., instantaneous), V is a fixed material volume, and 

av a fixed material boundary. If we further assume that 'l/J and v are continu

ous on oV, and that av encloses V, Gauss' divergence theorem (e.g., Truesdell 

& Toupin, 1960, §130) implies that 

JV·( ,,PY) = J 1/Yv·nda [I.8]. 
v av 

Using [I.6]-[I.8], then, we may write 

J ot'l/Jdv = J Pc,;idv - J (1/Yv+fc.,i)·nda [I.9]' 
v v av 

or 

J at'lj;dv = J Pc,;idv - JV·( 1/Yv+f<,;i)dv [I.10], 
v v v 

assuming that r<.,> and its divergence are continuous in V. We note that [I.9] 

and [I.10] are valid only only when B does not contain E, since if B does contain 

E, 'l/J, v and Pc,;i are then in general not continuous in V. Also, in this case, r<.,> 

and v are generally not continuous on oV, and since E splits oV, it no longer 

encloses V, and Gauss' divergence theorem is no longer valid. Consequently, 
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when B contains E, we cannot use the transport and divergence theorems as 

done in [I.6]-[I.8] to instantaneously balance 'I/; in V as a whole. However, since 

the discontinuities in 'I/;, etc., are restricted (i.e., localized and isolated) to the 

shock front, we are free to assume that 'I/;, etc., are continuous in part or all of 

v+ and v- . In this context, consider an arbitrary subregion of V, designated 

v =v (t) (Figure I.lb), that encompasses part of E, designated CJ, such that v is 

naturally divided into regions v+ and v- ahead and behind CJ, respectively. 

We assume 'I/;, etc., are continuous in each of these regions, and suffer at most a 

jump discontinuity of the form [I.1] across CJ. The extent of this subregion rela

tive to V is controlled only by the continuity assumptions imposed on 'I/;, etc., 

and their first partial derivatives. Noting that the shock front forms part of the 

boundary of each of these regions, let CJ+ represent this boundary for v + , and 

CJ- that for v- (Figure I.lb). Then we may draw an entire (i.e., closed) boun

dary around v+, i.e., av+ U CJ+, and around v-, i.e., av- U CJ-, where U 

represents the operation of union in the set theoretic sense. Since av+ and 

av- are, by assumption, instantaneously material boundaries, they move with 

the material displacement velocity, v; however, CJ+ and CJ- move with the dis

placement velocity, u, of the surface, CJ. Defining a general displacement velo

city w such that 

w = {v on av± 
u on CJ± 

[I.11]' 

and letting n.+ and n.- be the outward-facing unit normal vectors to av+ U a+ 

and av- U CJ-, respectively, we may write a transport relation for 'I/; in each of 

these subregions, i.e., 

diw+ = :t J 7/Jdv = J[at'lj;+ V·(7/Jw)]dv 
v+ v+ 

= J at'lj;dv + J 7/Jv·n + da + J 7/J+u.fi. + da [I.12], 
v+ av+ O'+ 
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and 

di'11- = :t J 'lf;dv = j[at'lf; + '\7·(1/Jw)]dv 
v- v-

= J ot'l/Jdv + J ,,PY-ii-da + J ,,p-u·ii-da [I.13]. 
v av- q+ 

Note that we have 'lj.J-+1/J+ on O'+ and 'lf;~'l/J- on O'-, by their definition above, in 

the integrals over the singular surface. Now in Figure I.lb, we see that ii and v 
are oriented in opposite directions on a+ but in the same directions on a-. In 

this case, ii+ =-v on O'+, but n.-=v on O'-. Putting these into [I.12] and [I.13], 

we have 

~w+ = f at11xlv + f ,,PY·ii+da -f -w+u·.Vda fI.14], 
v+ av+ q+ 

[I.15], 

and 

di w- = J ot'l/Jdv + J 'l/;v·ii-da + J ,,p-u·vda [I.16], 
fl av- 17+ 

= f p('1)dv - f r('1)·n-da [I.17], 
v av-

where [I.15] and [I.17] come from the general balance, [I.5J, applied to the 

regions v + U av+ U O'+ and v- U av - U O'-, respectively. If we add [I.14) and 

[I.16) together, we obtain 

di{'11+ + w-} =I Ot'Wdv +I Ot'l/Jdv 
v+ v-

+ J 'l/;v·n+da + J 'l/;v-ii-da + f fl-iti]Ju·vda fl.18]. 
av+ av- O" 
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From [I.15] and [I.17], we also have 

c\{w+ + w-} = f Pc.:.>dv + f Pc.:.>dv - f fc.:.(fi+da - f fc.:.(fi-da [I.19]. 
v+ v av+ av-

Since, by assumption, w is additive in v, we have 

[I.20]. 

Further, we note that 

f= J =f +f [I.21], 
v v+u v- v+ v 

[I.22], 

and 

[I.23]. 

Also, note that n + =n- on av • With these, we may write [I.18] as 

<\'11 = J 8t'l/Jdv + J 'l/lv·nda + J [l'l/;l]u·flda [I.24], 
v av q 

which is the form of Reynolds' transport relation appropriate for balancing 'I/; in 

an arbitrary region of V where 'I/; possesses at most a surface (i.e., isolated) 

discontinuity. Combining [I.19] and [I.24], then, we obtain the instantaneous 

balance relation for 'I/; in v ( t) containing a part of the singular surf ace a( t ), i.e., 

J at'l/;dv + J 'l/lv·n+da + J 'l/lv·n-da + J [l'l/Jl]u·vda 
v av+ av- q 

= J Pc.:.>dv - J r<.,>·n+da - J "">·n-da 
v av+ av-

or 
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f at'l/;dv + f ('l/;v+fcfl>)·nda + f [l'l/;l]u·vda = f Pcflldv [I.25]. 
v av O' v 

Note that, if there is no singular surface in v, [l'l/;1]=0 and [I.25] reduces to the 

classic instantaneous balance relation for W, i.e., 

J at'l/;dv + J 'l/;v·nda = J Pc">dv - J f<fl>·nda [I.26]. 
v av v av 

To obtain an instantaneous balance relation for W on a, we assume that the 

functions at,,p and Pcfll are bounded in v, and that v and f<fll are defined and con

tinuous on both v+ U av+ U a+ and v- U av- U a- such that v+ and f<fl>+ are 

the limiting values of v and f<fl>' respectively, as av+ -+a+, while v- and f<fll- are 

similar limits for v and f<fll' respectively, as av- -+a-. With these assumptions, 

the volume integrals in [I.25] vanish in the limit av -+a. In this case, [I.24] 

becomes 

f r,,p+v+ + r(fl)+]-n+da + f ['l/J_v_ + r(fl)-J·n-da + f fl'l/JIJu·vda = 0 [I.27], 
a+ a- a 

As noted above to obtain [I.14] and [I.16], n+ =-ii and n-=ii on a. Putting 

these into [I.25], we have 

f fl'l/J(u-v) - r<"ill·vda = o [I.28], 

which is the balance relation for w on a. 

In an appropriate coordinate system, the component forms of [I.26] and 

[I.28] may be written 

f at'lj;dv + f (1/Nk + fc:i)nk da + f [l'l/Jl]uk ilk da = f Pcflldv [I.29], 
v av O' v 

and 

J [l'l/J(uk -vk) - fc:ilJvk da = O [I.30], 
O' 
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respectively. If the fields 'If;, uk vk, vk vk, and fc:iv.t are homogeneous on E(t ), 

then a(t) and da are arbitrary, and [I.30] takes the local form 

[I.31]' 

and this is similar to the results of Truesdell & Toupin (1960, §193). Alterna

tively, if there is no singular surface propagating through V, and all relevant 

fields are homogeneous in vuav' v and dv are arbitrary, and (I.26] reduces to 

its local form: 

[I.32]. 

Since [I.31]-[I.32] are based solely on so-called "kinematic" considerations, they 

have no concrete physical meaning at this point. To give them such meaning, 

we identify 'l/J with the TM fields that are balanced, or conserved, during the 

deformation of B(t). These are summarized in the following table: 

Table 1.1 

Mass p 0 0 

Momentum pvk -tkm pbk 

Energy p(e+ ! V.t vk) qk -Vm tkm pvk bk +pr 

Entropy ps T-Iqk p(s) 

In this table, tkm is the Cauchy stress tensor, bk is the body force, e is the 

specific internal energy, qk is the heat flux vector, r is the specific internal 

energy supply, s is the specific entropy and T is the absolute temperature. 
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The relations (I.30] and (I.31] are valid for any singular surf ace in the con

text of the assumptions used to obtain them. Since we are interested in a par

ticular kind of singular surface, i.e., the shock front, we may further reduce 

[I.31], using Table 1.1, to the relations used for interpretation of experimental 

results, as follows. Defining Uk ±=uk - vk ± as the velocity of propagation of a, 

we may substitute the different manifestations of 'l/J from Table I.1 into [I.31] to 

obtain 

[I.33], 

the balance of mass, 

[I.34], 

the balance of momentum, 

[I.35], 

the balance of energy, and 

[I.36], 

the balance of entropy, where the last is an inequality via the requirement of a 

nonnegative entropy production on the shock front. In these relations, 

U(c-)=Uk vk is the component of the propagation velocity normal to 

a, tk :::tkm Vm is the Cauchy stress vector, and <l(c->=qk flk is the component of 

the heat flux normal to a. The mass balance, [I.33], is the first of the relations 

we use to interpret experimental results (see Chapter I, Equation [A.24]). Using 

[I.33], we may simplify [I.34], [I.35] and [I.36] to 

and 

p±Uctf [lvk IJ + [ltk I] = 0 

p±Uctf[l(e+ ~vk vk )IJ + [lvm tm - <l(c-ilJ = 0 

[I.37], 

[I.38], 
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[I.39}, 

respectively. Note that [I.37]-[I.39] represent 5 equations in 24 unknowns: 

± U ± k ± tk ± ± ± ± d T± p , (P) , v , , e , Clct-> , s an . 

From the physical viewpoint, shock compression produces a "sudden" 

change in the velocity of the material in a direction normal to the the shock 

front. In the context of the singular surf ace representation of the shock front, 

we idealize this change as a discontinuity in the component of the material velo

city normal to a, i.e., 

[I.40], 

Also, note that [luk IJ=O. To substitute [I.40] into [I.37]-

[I.39], we must cast these relations into normal and tangential forms. To do 

this, we definer; (a=l,2) as vectors tangent to a such that 

Ak (T1XT2)k 
lJ =----

1 T1XT2 I 
[I.41], 

i.e., v, T 1 and T2 form a right-handed system. In [I.41], X represents the outer 

vector product operator. With these, we may resolve any vector into com

ponents normal and tangent to I:. In this case, we may write 

vk Ak 
=vcvF + a k V(r)Ta [I.42], 

and 

tk t Ak = (v)IJ + tc:fr~ [l.43]. 

Noting that 

A A k 
=1 vk r; = 0 lJk lJ ' [I.44], 

and, assuming a is planar, that 

[I.45] 
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we may put [I.46] and [I.47] into [I.37]-[I.39] and obtain 

p±Ucif [lv(v)ll + [lt(v)IJ = 0 [I.46], 

p±Uc~llvcglJ + [ltcglJ = 0 [I.47], 

p±U<~[le + ~ (vc~+v(r)av(g)I] + [lv(v)t(v)+v(r)atcg-<l(v)IJ = 0 [I.48], 

and 

[l.49]. 

At this point, we make the mechanical constitutive assumption that the 

material on either side of the shock front is an elastic (also known as barotropic 

or ideal) fluid, i.e., 

With this, we have 

via [I.44], and 

from [I.45]. Putting [I.51] and [I.52] into [I.46]-[I.49], we obtain 

[IPIJ = p±U<~[lv(v)IJ 

p±U<~ [lvcg I] = 0 

p±U<~[le + ~ vciilJ + [lvcvhv>-<I<i-ill = 0 

and 

[I.50]. 

[I.52], 

[I.53], 

[I.54], 

[I.55], 

[I.56], 

where we have used [I.54] in [I.48] to obtain [I.55]. Relation [I.53] is the second 

of the relations used to interpret experimental results (see Chapter I, Equation 
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[A.25]). Using the momentum balance, [l.46], we may write 

Putting this into the energy relation, [l.55], we obtain 

p±Uc~[lel] = ! (vcPitct-vcttcPi) - ! [lv<"lt(t,ll] + U<Icvll] 

= -! [lv("ll](tc;j +tc;;J) + [l<Icvll] 

From the mass balance, we have 

Putting this into [I.58], we obtain 

[I.58]. 

[I.60]. 

where we have used the elastic fluid constitutive assumption represented by 

[I.50]. Finally, if we make the nonmechanical constitutive assumption that the 

shock front is adiabatic, i.e., [l<Icv>l]=O, [I.60] reduces to 

[I.61], 

which is the third relation used to interpret experimental shock-compression 

data (Chapter I, Equation [4.1]). Relation [I.61] is known as the Rankine

Hugoniot relation (e.g., Rice et al., 1958). With the assumption of adiabaticity, 

[l.56] reduces to 

[I.62]. 

If we further assume there is no heat flow throughout VU BV such that ~if=O, 
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[I.62] reduces to 

[I.63], 

implying that the specific entropy must increase across an adiabatic shock front 

separating two non-heat-conducting, elastic fluids, as previously established by 

other means (e.g., Bethe, 1942). Relations [I.33], [I.53] and [I.61] represent the 

balances of mass, momentum and energy, respectively, used in the following 

chapters to interpret experimental shock-compression results, and for various 

related calculations of Hugoniot, or shock-compressed, states. Along with [I.63], 

they constitute a thermodynamic description for the "experimental" shock 

front. 

The shock front represents a kind of boundary in the target, across which 

we may use, given the necessary experimental or other information, [I.33], [I.53] 

and [I.61] to calculate the change in density, material velocity, pressure, specific 

internal energy, etc., during shock compression. As stated above, however, 

different materials make up the target, introducing a further "discontinuity" 

into the field description of the target as a whole. Consequently, we must also 

find the balance of mass, momentum, energy and entropy across the boundaries 

between target layers. Since we assume that, as each target layer is compressed 

and the shock front passes on into the next target layer during the experiment, 

the layers do not separate or blow apart at their interface, this boundary may 

be regarded as a material surf ace, such that ~"> = vctf, or U<tf = 0. This states 

that, at a material surface or interface, the surface moves with the displacement 

velocity of the material on either side of it. Consequently, at such an interface, 

[lv(vJl]=O, and the balance of momentum becomes 

[I.64], 

from [I.46] and [I.47], respectively. Similarly, the balance of energy, [I.48], 

reduces to 
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[I.65], 

where we have used [I.64] in [l.48] as well. Under these circumstances, the 

entropy inequality, [I.49], simplifies to 

[I.66]. 

Note that if we require [lv(r)Q I] and/ or tcg± to be zero (i.e., no shear at the inter

face), then from [I.65] we see that the heat flow will be continuous across the 

interface, i.e., [l<l<"ilJ=O. Substituting the mechanical constitutive assumption, 

[I.50], into [I.64], the balance of momentum at a material interface in the target 

takes the form 

[IPIJ = 0 [I.67]. 

Note that [l.66] is unaffected by this assumption. If we further assume that 

heat flux and temperature are continuous across the boundary between each 

layer, as we do in all energy-transport models presented in this thesis (see 

Chapter I, Appendix C), [I.65] and [I.66] reduce to 

[I.68], 

and 

[ITI] = o [I.69], 

respectively. Note that [I.69] implies no entropy production on the boundaries 

between the target components. Relations [I.67], [I.68], and [I.69] then represent 

boundary conditions appropriate for the assumed constitutive nature of each 

target component, and consequently are consistent with the analogous shock

front relations given above. 

The balance of momentum at the boundary between adjacent target com

ponents, [lv<c->l]=O, [I.67], combined with the balance of momentum across the 

shock front, [I.53], forms the basis for the impedance match technique (e.g., 
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Rice et al., 1958), which is used to calculate the density, pressure, etc., of the 

high-pressure, shock-compressed states of each target component throughout 

this thesis. To develope the impedance match relations in a concrete and 

relevant fashion, we adopt the planar geometry of the actual target assembly 

(e.g., Figure 2.1, Chapter I), and consider the impedance match between any 

two adjacent layers, which we label A and B, at their common boundary, or 

interface, in the target. We orient these layers by having the shock wave pro

pagate from A into B. The basis of the impedance match is found in the idea 

that the shock wave propagating from A into B accelerates, but does not shock, 

A material next to (i.e., within approximately a shock front's thickness of the 

interface) the interface to "impact" with the B material adjacent to the inter

face. The compression of the interface then shocks A material next to the inter

face, and sends a shock wave propagating into B material. Imagining this 

compression takes place from zero pressure, the impact of A against B occurs at 

a velocity twice that of the material velocity of A, vw... In the process, A 

material next to the interface achieves the pressure, PHB, and normal material 

velocity, vHB, of B in order to maintain a material interface. This requires a net 

change of 2vw..-vHB in the material velocity of A interface material; this change is 

then the material velocity imparted to A material next to the interface by the 

shock wave. Again, we emphasize that A interface material is not shocked by 

the shock wave propagating through A; rather, it is shocked as it "impacts" B. 

Hence, the material in A adjacent to B at the interface between these layers 

experiences a different shock compression history than the material in the inte-

r1or. 

Since we do not measure the shock wave velocity in our radiation experi

ments, the basic .aim of the impedance match for our purposes is to calculate 

the normal component of the shock-induced material velocity in B as a function 

of 1), that in A, and 2), certain material properties of each layer, as the shock 
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wave propagates from A to B. As emphasized above, in this impedance match, 

we are dealing with the A layer material "right" at the interface, which is not 

shocked by the shock wave propagating through the A layer, and its analog in 

B. To begin, we have from [I.53], the pressure generated in A interface material 

and B material as a result of shock compression, i.e., 

[I.70], 

and 

[I.71]. 

Again, we emphasize that [I.70] represents the shock compressed state of A 

interface material after it has impacted B interface material; this state is in gen

eral different than the shock compressed state of A material in back of the 

interface. To proceed further, we make the constitutive assumptions: 

uA-vlA = 3tA + blA(vHA-vlA) + clA(vHA-vlA.)2 

~ = 3m + bmVHB + CmViii 

[I.72], 

[I.73], 

(e.g., Pastine and Piacesi, 1966; see Appendix A of Chapter I for a discussion). 

In [I.73], we have used the fact that v18=0 in our experiments. Now, from 

above, we have vHA-vlA-2vHA.-vHB, or vlA 2(vHA.-vHB) when we require vw.:-vHB for 

a material interface. Putting this along with [I.72] into [I.70], and assuming 

PIA-O=P18, we obtain 

PHA. = P1A3tA.(2vHA.-vHB) + plA.blA(2vHA.-vHB)2 + plA.clA(2vHA.-vHB)3 

Likewise, substituting [I.73] into [I.71], we have 

PHB = Pm<lmVHB + Pmbmviii + Pmemv! 

[I.7 4]. 

[I.75]. 

And since PHA PHB for a material interface, these last two expressions combine 

to give 
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Rearranging this into a polynomial in vHB, we obtain 

with 

and 

vJi + av.ii + bvHB + c=O 

a = (pIAbIA-plBblB) - 6pIACIAVHA 
PIA CIA-PrnCIB 

b = 12pIA~viZ_ - (PIA~+4PtAbIAvHA+Prnarn) 
PIACIA-PIBCIB 

c = 2pIA(~+2bIAvHA+4cIAviZ_)vHA 
PIA CIA-PIBCIB 

[l.76]. 

[I.77], 

We may solve [I.77] for vHB by first substituting vHB=w-! a into [I.77] to get 

with 

p = ..!.(a2-3b) , g 

w3-3pw-2q=O , 

and 

Next, we set w=2ypcos0 and use the trigonometric identity 

4cos30-3cos0=cos30 to obtain 

and so 

cos30 = .~ , 
pvp 

0 = ..!.cos-1 {-q-} . 
3 · PvP 

Since 30, 30+21r, and 30+47r all have the same cosine value, we have 

{ 

cos[O] l 
w = 2yp cos[0+27r/3] , 

cos[0+47r/3] 
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i.e., three roots for w. Consequently, we obtain 

{ 

cos[B] l 
vHB = 2Vp cos[B+27r /3] - ~ a 

cos[B+47r /3] 
[I.78], 

representing three roots, i.e., possible values, for vHB. Little of a general nature 

may be said regarding this solution. The only general guideline we have to 

choose the appropriate root is the physical requirement that vHB be nonnegative 

real, just as the coefficients a, b, and c are real. Beyond that, we must use phy

sical plausibility to make this choice. 

For the particular purpose of the experiments, life is a bit easier, since we 

are usually justified in assuming plAclA-;:::;;:,PmCm and/or clA O=cm. In this case, 

[I.76] reduces to 

with 

and 

with solutions 

a== 
(PIA~ +4p1Ab1A vHA + Pmam) 

(PIA~-pmbm) 

b == 2plA(3iA.+2blAvHA)vHA 
(plA~-pmbm) 

Vmi, = - ~ {a ± V a2-4b} 

[I.79], 

[l.80]. 

Since a and b are, in general, real, we require a2 >4b in order that vHB be nonne

gative real. In addition, we require vHB--+O as vHA--+O, which gives us vHB = vHB-, 

i.e., 

[I.81], 
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since b-+O as vHA-+0. 

Using [I.81], we may now write the impedance match for the particular type 

of targets used in the experimental studies presented in this thesis. These con

sist of 1), a metal driver plate and 2), one or more "sample" layers (e.g., the 

film/foil and window layers in Figure 2.1, Chapter I). The driver plate is usu

ally impacted by a metal flyer plate traveling at a velocity vimp· Letting the 

flyer plate be layer A, and the driver plate be layer B, we have, from [I.81], 

where now 

and 

vHD = - ~ {a - V a2-4b} 

a= 
(PIF3.iF+2pIFbIFvimp + pruam) 

(Pwhw-PIDbID) 

[I.82], 

and we have identified 2vHF=vimp· In these expressions, the subscripts "F", 

"D", and "S" stand for the flyer plate, driver plate and sample layers, respec

tively. For any two layers in the target, such as between the driver plate and 

sample layer, we have 

with 

and 

vH> = - ~ { a-Va2-4b} 

b = 2pID( ~+2bIDvHD)vHD 
(pIDbID-Pisbis) 

[I.83], 
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for the normal material velocity in the sample layer. The impedance match 

between any remaining layers has this form, in the linear U-v approximation. 

So, given the impact velocity, vimp' of any experiment, and the appropriate 

material parameters of each layer, we may calculate the material velocity 

achieved in each layer due to shock compression as constrained by the require

ment of material interfaces between layers. From these velocities follow the 

shock wave velocity via the constitutive assumption of a shock velocity, 

material velocity relation (e.g., [I.72]), and pressure via [I.53], of the first shock 

state achieved in each target layer. 
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Abstract 

Recent observations of shock-induced radiation from oxides, silicates and 

metals of geophysical interest constrain the shock-compressed temperature of 

these materials. In these experiments, a projectile impacts a target consisting of 

a metal driver plate, a metal film or foil layer, and a transparent window. We 

investigate the relationships between the temperature inf erred from the 

observed radiation and the temperature of the shock-compressed film or foil 

and/or window. Changes of the temperature field in each target component 

away from that of their respective shock-compressed states occur because of 1), 

shock-impedance mismatch between target components, 2), thermal mismatch 

between target components, 3), surface roughness at target interfaces, and 4), 

conduction within and between target components. In particular, conduction 

may affect the temperature of the film/foil-window interface on the time scale 

of the experiments, and so control the intensity and history of the dominant 

thermal radiation sources in the target. Comparing this model to experimental 

data from Fe-Fe-Al20 3 and Fe-Fe-LiF targets, we note that: 

1. Fe at Fe-Al20 3 interfaces releases from experimental shock-compressed 

states between 245 and 300 GP a to interface states between 190 and 230 

GPa, respectively, with temperatures ::=:::::: 200-1500 K above model calcula

tions for Fe experiencing no reshock at smooth Fe-Al20 3 interfaces. This is 

so for both Fe foils and films. Below 190 GPa, reshock heating does not 

apparently affect the temperature of Fe-Al20 3 interfaces. In contrast, from 

the same range of shock states, Fe at Fe-LiF interfaces releases to states 

between 130 and 160 GPa (because it has a lower shock impedance than 

Al20 3). The data and model imply that Fe experiences little or no reshock 

at Fe-LiF up to 140 GPa (where the data end), suggesting 1), that LiF 

forms a more ideal interface with Fe than does Al20 3, or 2), that the Fe-LiF 

interfaces experience less shock heating than Fe-Al20 3 interfaces because 
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Fe-LiF interfaces reshock to lower pressures. Both the Fe-Al20 3 data and 

the model suggest that the degree of reshock is strongly pressure-dependent 

above the solid Fe-liquid Fe phase boundary. LiF appears to be a more 

ideal window than Al20 3 also because it is a poorer thermal inertia match to 

Fe than is Al20 3. 

2. In the absence of energy sources and significant energy flux from other parts 

of the target, the rate of change of the film (.........,1 µm thick)/window (3-4 mm 

thick), or foil(........., 10-100 µm thick)/window, interface temperature, T~t), is 

proportional to -µexp(-µ 2), where µ = ~ /2v;;;f,, ~ is the thickness of 

the reshocked zone in the film/foil layer at the film/foil-window interface, ~ 

is the thermal diffusivity of the film/foil material, and o< t < texp (texp is the 

time scale of the experiment, 200-400 ns). On this basis, the temperature of 

a thin (~<<2v~texp) reshocked layer relaxes much faster than that of a 

thick (~>>2../~texp) layer. We estimate J~texp.........,10 µm for Fe under the 

conditions of Fe-Al20 3 and Fe-LiF interfaces at high pressure. In this case, 

a 100-µm-thick reshocked Fe layer would relax very little, remaining near 

Tim{O) on the time scale of the experiment, while a 1-µm-thick reshocked Fe 

layer would relax almost instantaneously (i.e., on a time scale much less 

than texp) to a temperature just above TINI'(oo). 

3. Greybody fits to an Fe-Fe film-Al20 3 experiment produce a gradually 

increasing effective greybody emissivity, £>.gb(t), and a gradually decreasing 

greybody temperature, Tgb(t). This behavior is characteristic of most Fe

Fe-Al203 experiments. The decrease of Tgb(t) can be explained in terms of 

the model for the film/foil-window interface temperature, TINI'(t ). For this 

experiment, the model implies that the thickness of the reshocked film layer, 

~ is approximately equal to the conduction length scale in the film, J ~texp 
(.........,10 µm for Fe). Further, assuming Tgb(t) = T~t), the greybody fit con

strains the amount of reshock, ~ TFW' to ~2500K with aWF.........,0.1 and 
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~::;;,_2J ~texp· A slight decrease of the Al20 3 absorption coefficient upon 

shock compression can explain the slight increase of €>.gb(t) with time; this 

may be consistent with the observation that the refractive index of Al20 3 

seems to decrease with pressure. 

4. In contrast to the Fe-Fe-Al20 3 results, greybody fits to data from an Fe-Fe 

foil-LiF target show a relatively constant greybody temperature, and a 

decreasing greybody emissivity. The constant greybody temperature implies 

a constant interface temperature, as expected for an interface experiencing 

minimal reshock, while the decaying €>.gb(t) is consistent with a shock

induced mcrease m the absorption coefficient of LiF. Setting 

Txm{O) = Tgb(O), we fit a simplified version of the full radiation model to 

these data and obtain an estimate of the absorption coefficient ( ,...._.100 m-1) 

of LiF shock-compressed to 122 GPa. 

§1. Introduction 

Traditional studies of the behavior of shock-compressed materials assess the 

mechanical response of these materials to shock compression (e.g., the change of 

density with pressure). Since this approach cannot directly constrain the tem

perature of the high-pressure state, other means are needed to provide a com

plete equilibrium thermodynamic description (i.e., pressure-density-temperature) 

for these materials. To this end, recent studies record shock-induced radiation 

from initially transparent materials (e.g., alkali halides, summarized by Kormer, 

1968; Al20 3, Urtiew, 1974; Si02 and Mg2Si04, Lyzenga and Ahrens, 1980) and 

from opaque materials at interfaces viewed through transparent or semitran

sparent windows (e.g., Mg, Urtiew and Grover, 1977; Ag, Lyzenga, 1980; Fe, 

Bass et al., 1987). These recent observations constrain some temperature in the 

target. In this paper we explore relationships between the experimentally con

strained temperature and the temperatures of different high-pressure states 
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achieved in the target components and at their interfaces during the experi

ment. We attempt this in the context of a simple model of energy transfer and 

transport in the targets. To give the model considerations some weight, we 

compare model details and results to the recent observations of Bass et al. 

(1987) on shock-induced radiation from Fe films and foils. 

§2. Model Considerations 

Consider the target depicted in Figure 2.1, representative of that used in the 

experiments of Lyzenga {1980) and Bass et al. (1987). This generic target con

sists of 1 ), a 1.5-mm-thick, metallic "driver" plate (DP), 2), a metallic film (1 to 

10-µm-thick) or foil (10 to 100- µm thick) layer (FL) and 3), a dielectric, trans

parent window (TW, 3 to 4-mm-thick). The target is constructed so that the 

shock impedance (i.e., the product of the initial density and shock wave veloc

ity) of the DP is greater than or equal to that of the FL, which in turn has a 

shock impedance greater than or equal to that of the TW. An edge mask (Fig

ure 2.1) prevents the detectors from recording radiation from the edge of the 

target assembly. Radiation emitted from the center of the assembly, where 

uniaxial compression takes place, reflects from the mirror into the detectors. 

The experiment begins when a projectile impacts the DP (Figure 2.1), gen

erating a shock wave that propagates through the DP to the DP-FL interface. 

Since this interface is formed by mechanical juxtaposition of the metallic DP 

and FL surfaces, it is "rough" on a .......... 1 µm-scale (Urtiew and Grover, 1974). 

The shock front thickness is ~0.01 µm in the materials and at the pressures of 

interest (e.g., Kormer, 1968). With respect to the shock wave, then, the DP 

and FL surfaces are, prior to compression, partially free. Consequently, the 

shock wave accelerates the DP material at the DP-FL interface across the gap, 

and simultaneously reflects from the DP surface at the DP-FL interface as a 

release wave propagating back into the DP and releasing the DP to near-zero 
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pressure. This moving DP surface then impacts the FL surface, generating 

shock waves of approximately equal magnitude that propagate backward into 

the just released DP, and forward into the unshocked FL. The former shock 

wave compresses the just released DP material from its low-pressure, high

temperature release state to one with approximately the same pressure as its 

previous shock-compressed state; wave reverberations quickly bring this DP 

state to a state with a pressure equal to that of the shock-compressed FL and a 

temperature well above that of the previous (i.e., first) DP shock-compressed 

state. If the backward-propagating shock wave overtakes the release wave at 

some distance behind the DP-FL interface, this distance defines the thickness of 

a reshocked DP material layer at the DP-FL interface. However, if the release 

wave is faster than the reshock wave, the entire DP may experience low pres

sure release and reshock. In either case, subsequent wave reverberations quickly 

bring the DP to a state with the same normal (to the interface) material veloc

ity and stress fields as the shocked FL. 

Since the DP material accelerating across the DP-FL interface impacts a 

rough FL surf ace, a thin (on the scale of the surf ace roughness) layer of film or 

foil material compresses, much like a porous material (Urtiew and Grover, 

1974), to a much higher temperature than achieved by the shock-compressed FL 

material beyond this zone. As with the DP material at the DP-FL interface, the 

shock front traversing the FL reflects from a partially free surface at the FL

TW interface as a low pressure release wave and accelerates the FL material 

across the interface to impact with the TW material. Since the TW surf ace at 

this interface is smooth relative to the shock front thickness, and is much more 

incompressible than either the DP or FL, the impacting FL material should not 

heat a thin layer of TW material, but rather only shock the TW up to high 

pressure and its Hugoniot temperature. Closure of the FL-TW interface gen

erates backward and forward traveling shock waves, and the former wave 
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compresses the low pressure, high temperature, released FL material to a state 

with approximately the same pressure as the first FL shock-compressed state; 

wave reverberations quickly bring this FL state to a state with a pressure equal 

to that of the shock-compressed transparent window (shocked window: SW) 

and a temperature much-higher than the first FL shock-compressed state. If 

the backward-propagating shock wave overtakes the release wave, it cuts off the 

zone of release/reshock in the FL material. In this case, the combined wave 

releases the remaining FL material, and then the DP, to a state with approxi

mately the same normal velocity and stress as the SW. Alternatively, if the 

shock wave does not overtake the low pressure release wave, the entire FL 

and/or DP is release and reshocked. In either case, subsequent wave reverbera

tions should quickly bring both the DP and FL to states possessing normal 

stress and material velocity fields equal to those of the SW. 

Since the reshocked layers at each interface are significantly hotter than the 

surrounding material (see Urtiew and Grover, 1974, and discussion below), the 

temperature and radiation histories of targets with smooth versus rough inter

faces should be quite different. This difference should be sufficiently distinct to 

be experimentally resolvable, as we show below. We investigate the dependence 

of the radiation history on the nature of the interface by use of both mechani

cally formed foil-TW interfaces and vacuum-coated film-TW interfaces. In par

ticular, we expect the vacuum-coated film-TW interface to be much smoother 

than the mechanically formed foil-TW interface. However, this assumption 

turns out to be somewhat naive, as shown below. Since the TW surface at the 

FL-TW interface is smooth (defined above), we presume that any roughness of 

this interface is due to roughness of the FL surface there. 

As the FL material at the FL-TW interface is compressed, released, and pos

sibly reshocked, it heats up and begins to radiate. Consequently, the observed 

radiation intensity rises sharply (Figure 2.2, part A). As the shock wave travels 
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forward into the TW, the thickness of the SW increases (Figure 2.2, part B); 

consequently, so does its contribution to the total observed radiation (note 

increase with time in Figure 2.2, part C). If the TW is highly absorbing and/or 

scattering, or shock-compressed to such a state (as is apparent in many experi

ments: Boslough, 1985), the radiation intensity from the interface will decay 

with time (Figure 2.2, part C, dash-dot curve labeled fast decay); if not, the 

interface source will dominate the observed radiation history (Figure 2.2, part 

C, continuous curve labeled slow decay) when the FL at the FL-SW interface is 

at a higher temperature than the SW. The recorded radiation is the sum of 

either the interface slow-decay or fast-decay contribution, and the SW contribu

tion. Given these possibilities, we must account for the the degree of geometric 

(interface roughness) and material (shock-impedance) mismatch at each inter

face, especially at the FL-SW interface, in attempting to constrain the condi

tions of the FL Hugoniot state from observed radiation. 

Even if each interface has little or no roughness, the DP, FL, and TW may 

shock-compress to such different temperatures that the resulting temperature 

gradients between the layers drive significant relaxation of the FL-SW interface 

temperature on the time scale of the experiment. Dynamic phase changes or 

other energy sources and/or sinks present in the FL, FL at the interface, and/or 

SW on the time scale of the experiment may also introduce time dependence 

into the temperature and effective emissivity inferred from the radiation obser

vations (Grover and Urtiew, 1974). Consequently, we must examine whether or 

not the temperature profile of the compressed/released/reshocked target system 

relaxes via conductive and/or radiative transport on the time scale of the exper

iments, leading to time-dependent (thermal) radiation sources. We must also 

account for the effects through the SW, shock-front, unshocked window (USW), 

and the TW free surface on the FL-SW interface and SW source radiation of 

propagation (Boslough, 1984). We focus on processes at the FL-TW interface as 
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Figure 2.2. Dynamic model geometry. Shock front reaches film/foil layer 
(FL )-transparent window (TW) interface (x=O) at time tINr' 
when radiation is first detected. Interface radiation (ilNI') dom
inates the early radiation history (A). If 1) the interface tem
perature decays slowly, and 2) the FL-TW interface, shocked 
window and shock front remain relatively transparent, ilNI' will 
dominate the observed radiation history during the experiment 
("~+slow decay" curve). However, if the FL-TW interface 
and/or shock front develop significant reflectivity, and/or the 
SW develops significant opacity, ilNI' will decay quickly (dash-dot 
curve), and may fall below the radiation intensity of the SW, 
~ on the time scale of the experiment. The total intensity is 
then represented by the "~+fast decay" curve. 
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represented in the observed radiation. 

§3. Model Assumptions 

We assume all sources contributing to the observed radiation intensity are 

thermal and in local thermodynamic equilibrium. We can then relate the source 

intensity to the wavelength, >., and absolute temperature, T, through the 

Planck function, IAPI(>., T), given by 

201 
IM>1(>., T) = c I 

).S(e 2 >-.T _ 1) [3.1]' 

where C1=5.9544Xl0-17 W·m2/sr and C2=1.4388X10-2 m·K are constants. 

Comparison of the observed radiation wavelength dependence with that of a 

blackbody source, as represented by IAPI(>., T), implies that materials shock 

compressed to high pressures are dominantly thermal radiators (:.<::, 70 GP a: 

Lyzenga et al., 1983; Boslough, 1984). At lower pressures, however, most 

materials apparently radiate both thermally and nonthermally (Si02: Kondo 

and Ahrens, 1983; Brannon et al., 1984; Schmitt et al., 1986). Several of these 

materials are initially dielectrics (e.g., Si02: Lyzenga et al., 1983). The 

processes responsible for this radiation (defect electronic transitions?) are 

presently unidentified, but are suggested by spectrometric observations (Kondo 

and Ahrens, 1983). 

In principle, energy transport in the target occurs by both radiation and 

conduction; our task is much more difficult if both radiation and conduction 

contribute equally to this process. In simple terms, we can understand the 

likely relative contribution of radiation and conduction to energy transport 

within layers and across interfaces via dimensional analysis. The relevant non

dimensional number is known as the Stark number (Siegel and Howell, 1981), 

S~, referenced to some state R, and given by (Equation [C.18]) 
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This number represents the ratio of conductive to radiative flux, whether across 

a layer or within an "infinite" medium. It is composed of the material proper

ties I<a, ~ and ~' i.e., the thermal conductivity, radiation absorption coefficient, 

and refractive index, respectively. The remaining parameters, which may be 

material, include xR, ~' TR and ~TR, the governing length scale, time scale, a 

reference temperature and temperature range, respectively. Also, 

asa = 5.6696X10-8W /m2·K4 is the Stefan-Boltzmann constant. For the layered 

geometry of the target, we may associate xR with the layer thickness, ~ with the 

time scale of the experiment, TR with the shock-compressed or released tempera

ture of the layer, and ~TR with the change in temperature across a given layer 

in the target such that ~ TJxR reflects the magnitude of the average tempera

ture gradient across the layer. From this parameter we see that radiative trans

port dominates conductive transport in 1), an optically-thick (~--+oo), 2), a 

poorly conducting (kR--+0) and/or 3), a high-temperature medium, all other 

parameters being finite. Applying this parameter to the balance of energy in a 

target consisting of a metallic DP and FL (e.g., Fe), and dielectric TW (e.g., 

Al20 3), we find (Appendix C) that SkR,.__, 10 and ,.__, 103 for the TW and DP or 

FL, respectively. In addition, viewing each layer as an infinite medium implies 

that conduction affects the balance of energy in both the FL and TW over a 

length scale of ~v'~texp,.__,10-6 m, where~ is a characteristic thermal diffusivity 

and texp,.__,10-7 sec (the experimental time scale). This confines the influence of 

this process on energy transport in the target to the immediate vicinity of the 

interface. In addition, the radiative component of the energy flux is negligible 

to the balance of energy, compared to the conductive flux, in the FL, across the 

interface, and in the shocked TW, if ~ ~ 107 m-1 (Appendix C). This condi

tion is almost certainly satisfied for the SW (LiF: Wise and and Chhabildas, 
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1986; Al20 3: Bass et al., 1987, but see Urtiew, 1974), and probably satisfied for 

the FL and across the FL-TW interface (Appendix C). Note that this condition 

is analogous to that for the validity of the "diffusion approximation" to the 

classic radiative transport relation (Siegel and Howell, 1981 ), where this approxi

mation becomes reasonable above the bound of ~ stated. With these estimates 

in mind, we may decouple radiative transport from the energy balance in the 

target components and across their interfaces, and treat radiation separately. 

We emphasize that this analysis is limited by our ability to estimate the values 

of many key properties (e.g., thermal conductivity) of the appropriate high

pressure states of the DP and TW. 

We assume that a given shock-compressed or -released state of any com

ponent of the target contributing to the observed radiation is one of constant 

and uniform density, stress, and material velocity. Consequently, our model is 

not directly applicable to the low-pressure regime (;:::;_70 GPa), where many 

shock-compressed materials deform heterogeneously (Grady, 1980; Kondo and 

Ahrens, 1983; Schmitt et al., 1986; Svendsen and Ahrens, 1986). Such behavior 

would require us to consider source distributions, spatially averaged effective 

emissivities and time-dependent thermomechanical processes, all beyond the 

scope of the simple equilibrium thermodynamic framework used here. 

§4. Initial Conditions 

Within the model assumption shock compression, release, and reshock affect 

the temperature field on a much shorter time scale than conduction, these 

former processes establish the initial temperature distribution in the target 

which thermal conduction may then change or "relax" over the time scale of 

the experiment. Consequently, we begin our modeling efforts by estimating the 

temperature changes in each target component due to shock compression, isen

tropic release, phase transformations and/or reshocking. 
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4.1 Shock-Compressed State 

The model is referenced to the first shock-compressed (Hugoniot) state of 

each material in the target. Although this state is reached via a nonequilib

rium, irreversible process (shock compression), we assume that thermodynamic 

equilibrium is achieved in the Hugoniot state itself. This requires the shock-

compressed state to be one of constant, uniform density, material velocity, 

stress and energy. In this context, we may connect the initial and shock

compressed states (i.e., two different equilibrium states) via a classical thermo

dynamic path (i.e., a path connecting a series of states in equilibrium) 

representing a change in specific internal energy equal to that judged by the 

general balance of energy across a shock-front. 

We assume that the material 1), initially occupies a state with temperature 

Ti, and pressure ~' 2), shock compresses adiabatically and 3), shock compresses 

as a fluid. Under these assumptions, the general balance of energy across the 

shock front is represented by the Rankine-Hugoniot relation (e.g., Rice et al., 

1958) 

[4.1], 

with 

[4.2]. 

In this relation, e(si,PJ is the specific internal energy of the initial state with 

mass density Pi=p(Ti,~) and specific entropy si=s(Ti,~), while e(~pJ is the 

specific internal energy of the shock-compressed state with mass density 

pH= p(TwPJ and specific entropy 8ii = s(TwPJ. The subscripts "i" and "H" 

stand for the initial and shock-compressed (Hugoniot) states, respectively. The 

initial state is usually standard temperature and pressure (STP), of course, but 

the following considerations apply to any initial state. Since [4.1] is valid 



Chapter I 38 Initial Conditions 

whether or not shock compression induces a phase transformation in the 

material, we may also write it in the form 

e(st_,p~) = e(sf,pf) + 
2
1

a1hr[PH + Fi] ' 
Pi 

appropriate for the change in specific internal energy resulting from a shock

induced transformation of some phase a, stable at Ti and Fi, to some other 

phase /3, stable at the pressure and temperature of the shock-compressed state. 

The equilibrium thermodynamic path energetically equivalent to [4.1] may be 

constructed as follows (McQueen et al., 1Q67; Ahrens, et al., 1969). The 

difference in specific internal energy between a and /3 at Ti and Fi may be writ

ten 

[4.3]. 

Unless otherwise designated, all the following relations in this section apply to a 

single phase (/3), so we drop the phase superscripts except when necessary for 

clarity. Having connected a and /3 energetically at Ti and Fi via (4.1), we 

compress /3 isentropically from its density at Ti and fi, Pi, to its shock

compressed density, Pw resulting in a change in its specific internal energy given 

by 

[4.4], 

where P81(p) = P( si,P) is the pressure as a function of density along the /3-

isentrope centered at si. Note that the the subscript "s" denotes constant 

specific entropy. Since this last state and the Hugoniot state are at the same 

density, Pw we may connect them by an equilibrium thermodynamic path at at 

constant density. With s = s(T,p) and so Tds = CydT at constant density, 

where Cy= Cv(T,p) is the specific heat at constant volume (density), we have 
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[4.5]. 

In [4.5], Ts,.(PJ = T(si,pJ, the temperature of the ,8-state at a density pH along 

the ,8-isentrope centered at si, is given by the solution of 

( 
&lnT ) -- - '"Y 
&lnp s 

[4.6], 

where '"Y is the equilibrium thermodynamic Griineisen's parameter. Also in [4.5], 

TH is the temperature of the ,8 state with specific internal energy equal to [4.1]. 

If, as is commonly done (e.g., Boehler and Ramakrishnan, 1980; Anderson, 

1986), we assume '"Y is a function of density alone, then the relation 

P'"Y(~) = 1 
BP P 

[4.7], 

yields 

[4.8], 

and from [4.6], we have 

[4.9]. 

Combining [4.1], [4.4], and [4.5], we obtain 

[4.10], 

a relation for the equilibrium thermodynamic temperature of a state of ,8 with 

specific internal energy equal to that of its Hugoniot state. We may also com

bine [4.1], [4.4] and [4.8] to obtain 
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(e.g., Jeanloz and Ahrens, 1980). Both [4.10] and [4.11] represent the balance of 

energy across the shock front, assuming that the shock-compression process con

nects states in thermodynamic equilibrium. However, since (4.11] further 

depends upon the assumption that 1=1(p ), while (4.10] does not, these two rela

tions are not completely equivalent. We use (4.10] to find TH as a function of PH 

or Pw once we have relations for 'T1w tJ..ef[-a, tJ..e51, Cy and T51. 

We calculate r/H as a function of either vw the material velocity of shock

compressed material, phase /3, or Pw from the balance relations for mass and 

momentum across the shock front (e.g., Rice et al., 1958; Appendix A), 

[4.12], 

and 

[4.13], 

by making the constitutive assumption that Ui=u-vi, the speed of propagation 

of the shock front with respect to the material velocity of the initial state, vi, is 

a function of the change or "jump" in material velocity across the shock front, 

vH-vi. Note that Uir-u-vH is the speed of propagation with respect to the 

shocked material, and u is the speed of displacement (i.e., the "intrinsic" veloc

ity) of the shock front. For experimental U-v data, of course, Ui=u and 

[lvl]=vw i.e., vi=O; also, ~=0.1 MPa and Ti=298 K. Such data for Fe (Brown 

and McQueen, 1986) and many other materials (e.g., Marsh, 1980) are reason

ably Well-fit by a linear relation between Uj and (vH-Vi), i.e., 

[4.14]. 

In (4.14], ai and bi are, respectively, the intercept and slope of the U-v relation 

centered at Pf. Eliminating ui and VH-vi from [4.12]-[4.14], we obtain 
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[4.15] 

(McQueen et al., 1967), the so-called shock wave equation-of-state. We may 

rearrange this to obtain 17ii=11JPJ, i.e., 

with 

1hI = ..!...{µ - [µ2 - 1]1h} 
b· I 

P!la.2 
I I µ=1+----

2b·[P. - P] I H I 

[4.16], 

[4.17]. 

The value of either [4.15] or [4.16] is limited by the validity of the linear U-v 

relation, [4.14], and the fact that (PH-fi)-+oo as bifhr-+l (Prieto and Renero, 

1970; Appendix A). As stated, the U-v relation, (4.14], is referenced to pf, the 

initial density of the low-pressure phase, a. 

The change in specific internal energy along the isentrope of /3 referenced to 

(Ti,IU upon shock-compression, .6.e51(pJ, is generally calculated from some 

"equation-of-state" (e.g., spatial finite strain: Stacey et al., 1981), P(si,p), for /3 

referenced to (Ti,fi). However, for shock-compressed materials, the energy bal

ance, [4.11], already contains such an equation-of-state, as we now show. Recall 

that, to obtain [4.11], we shock-compressed the material from a density pf to Pw 

incurring a phase transformation in the process. Imagine now that we can 

shock-compress the /3-phase of the material from its "initial" density, 

Pi=P.8(Ti,fi), to Pir The energy balance for this "metastable" shock-compression 

locus is given by [4.11] when we replace pf with Pi and set .6.ef-a=O, i.e., 

[4.18], 

with ~ = 1-pJ Pir Noting that 

[4.19], 
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[4.18] may be written 

which is an ordinary differential equation for Di.e51(pJ. We solve this numeri

cally, subject to the initial (pH= Pi) conditions 1 ), that Di.e51(pi)=O (by definition, 

i.e., [4.4]), and 2), that 

[4.21] 

from [4.19]. We also have P51(Pi)=PJpi) via [4.18] in the limit PH-+Pi· Since Pi is 

the density of f3 at Ti and fi, it appears logical to require P51(pi)=P JPi)=Fi as 

well; however, from PJpJ as given by [4.15], we have (with T/i=l-pf /Pi) 

[4.22], 

which is not equal to fi unless Pi=Pf, usually not the case. As stated above, 

[4.14]-[4.16] do represent the Pw pH states of the high-pressure phase, {3, but in 

terms of the density of the low-pressure (initial) phase, pf, and ai and bi, which 

are referenced to Pf and the initial state, (Ti,fi). So, instead of [4.15], what we 

need is a relation for PH referenced to Pi, rather than pf. To obtain this relation, 

which is equivalent to the "metastable" Hugoniot of McQueen et al. (1967), we 

first define a metastable U-v relation for f3 Hugoniot states, i.e., 

U.* = ~-· + b~(v*-v*) I 1 I H I [4.23], 

which is referenced to Pi· Then we use [4.14]-[4.16], which provide PH as a func

tion of pH (or vice-versa), pf, ai and bi, for {3, to write 8t* and b~ as functions of 

Pf, ai, bi and Pi· Doing this in Appendix A, we obtain 

[4.24], 
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and 

[4.25], 

which are [A.55] and [A.56], respectively. Note that, from these relations, ~·-ai 

and bi-+-bi as Pi-+-pf, i.e., as 11i-+-O. With 3i* and bi so constrained, we have, 

analogous to [4.15], the relation 

[4.26], 

where we have set Pt=PJpi), as given by [4.22]. Relation [4.26] is the form of 

PH needed to solve [4.20] for 6.e51(pJ. Once we have 6.e51(pJ via solution of 

[4.20], [4.18] provides the equation-of-state, i.e., 

(4.27]. 

With pf known a priori, and ai and bi constrained from experimental U-v data, 

then, we need only pf to obtain 3i* and bi from this method. As discussed in 

Appendix A, if we know this density sufficiently well, then we also gain esti

mates of ~ and ~, the isentropic bulk modulus and its first pressure deriva

tive, referenced to the initial state (Ti,fi), since 

[4.28], 

when we assume that ~· is equal to the bulk elastic wave velocity, and 

~ = 4bi-1 [4.29] 

(Ruoff, 1967), assuming only that (3 shock-compresses as an elastic (or barotro

pic) fluid (see the introduction to this thesis). 

In Figure 4.:ia, we compare 6.e51[pH(PJ] for E-Fe as given by [4.20], based on 

[4.26], with 6.e51 for E-Fe as given by 1), third-order spatial finite strain (Stacey 

et al., 1981), 2), the third-order Ullman-Pan'kov equation-of-state (Ullman and 
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Figure 4.la. Comparison of different estimates for the change in specific 
internal energy (SIE) along the isentrope anchored to (Ti,Pi), 
.6.e51, of €-Fe as a function of pressure and based on the parame
ters for E-Fe given in Table 4.1. 
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Figure 4.lb. Comparison of different estimates for pressure along the isen
trope, P51, of E-Fe referenced to Ti and Pi, based on the parame

ters for E-Fe given in Table 4.1. 
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Table 4.1. Standard Temperature and Pressure (STP) Parameters. 

Symbol E-Fe liquid-Fe AL~O~ LiF Units 

p 8352 4 79526 3986c 2650d kg/m3 

a 4487e 4038e 8908/ 5050d m/sec 
b 1.57e 1.58e 0.91/ 1.32d 

~ 
168g 1301 254h 681 GP a 

5.28i 5.31i 4.32h 4.28i 

Cp 445i 775c 1615d J/kg·K 
a 4.3k 1.6' 10.31 X10-5K-1 

I 1.95m 1.32m l.78m 
q i.on i.on 1.0" 
00 385; 125oh 580d K 
TM 1809c 2345c 845° K 
k 80" 46" 3P W/m·K 
Pe 50q 0 0 nO·m 

4 Jephcoat et al. (1986). 
6 Calculated from p(T) = 8136.(1 - 7.608X10-5T): Drotning (1981 ). 

c Robie et al. (1978). 

dVan Thiel (1977). 

e Estimated from U=3955+1.58v (Brown and McQueen, 1986). 

f Fit to data in Marsh (1980). 

g Calculated assuming Kg = pa2• 

h Anderson et al. (1968). 

i Calculated with J<'s = 4b-1 (Ruoff, 1967). 

i Andrews (1973). 

k Assumed the same as a-Fe (Touloukian et al., 1975). 
1 Touloukian et al. (1975). 

m Calculated from / = aKJ pep. 

n 1(p) = 1(pJ[pJ p]q assumed in all calculations. 
0 Weast (1979), p. D-187. 

"assumed the same as a-Fe in Touloukian et al. (1970). 

q Inferred from Keeler (1971). 
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Pan'kov, 1976), and 3), Murnaghan's equation-of-state (e.g., Stacey et al., 1981), 

all three of which have the form Ae81=Ae81(pi'~'~ ,pJ. The parameters used 

for this calculation are given in Table 4.1. For compatibility and a fair com

parison, of course, we constrain~ and~ by (4.28] and (4.2g), respectively. As 

noted by Somerville and Ahrens (1980), the third-order Ullman-Pan'kov relation 

is compatible with the linear U-v relation, (4.14], since both make similar pred

ictions for higher-order derivatives of ~ (see Appendix A). The calculations 

presented in Figure 4.la demonstrate that the value of Ae
81
(pJ predicted by 

each of these relations (except that of Murnaghan) is essentially the same. Note 

that the Murnaghan isentrope is off-scale in Figure 4.la. For the derivatives of 

Ae
51
(pJ, of course, the minor differences between the difference expressions for 

Ae
51
(pJ are magnified, as shown in Figure 4.lb, where we plot P

51
(pJPJ] as given 

by (4.27], and compare it with the values for P1(pJPJ] given by the equivalent 

finite strain and Murnaghan relations. In particular, note that the energy bal

ance equation-of-state, (4.27), is a bit "stiffer" than either of the finite strain 

equations-of-state. 

Energetically speaking, the difference between (4.11] and (4.18] is Aef-". So, 

if we subtract (4.18] from [4.11] and let pH-+pi, we obtain an estimate of Aef", 

i.e., 

Aef-" = -
1
-n-[P·*-P:) 

I 2pf 'II I I 
[4.30). 

From a purely equilibrium thermodynamic viewpoint, Aefa is given by 

[4.31], 

where Ag~a, As~" and Ap~a are the difference in specific free enthalpy, specific 

entropy and mass density, respectively, between a and /3 at Ti and fi. For the 

particular case of melting, we assume 
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[4.32], 

where ~hM is the enthalpy of melting, and ~Cp is the effective jump of the 

specific heat at constant pressure across the liquid-solid transition at the melting 

temperature, TM' and standard pressure, fl. 

Since both dielectric and metallic solids initially compose our target, we 

must consider thermodynamic properties that reflect the influence of both ionic 

and electronic processes. To estimate the harmonic lattice contribution to these 

properties, we use the De bye model (e.g., Alt'shuler et al. 1962; Andrews, 1973). 

In particular, Andrews (1973) used this model as part of a parameterization of 

the equilibrium thermodynamic properties of a- and i:-Fe. Jamieson et al. 

(1978), Brown and McQueen (1982, 1986), and Boness et al. (1986), have all 

assessed the influence of electronic processes on the material properties of metals 

at high pressure and temperature. They assume the conduction electrons con

tribute to the equilibrium thermodynamic properties of a metal as a Sommerfeld 

free-electron gas (e.g., Wallace, 1972, Sect. 24 ). This is reasonable for T < < TF, 

where TF is the Fermi temperature. Since the value of TF for Fe is f"'J 105 K, 

assuming TH<<TF is quite reasonable for the calculations presented below. So, 

assuming that lattice-electron and band-structure contributions are negligible, 

the molar Helmholtz free energy (HFE), F(T ,p ), of a cubic or isotropic De bye 

solid material, subject to an isotropic state of stress, is given by (Wallace, 1972, 

Sect. 5) 

F(T ,p) = 4?(p) + 3vR { ~ €0 + ln[l - e-&>] - .!. Er,( €0 )} T - .!. O(p) T2 
8 3 2 

[4.33]. 

In [4.33], <P(p) represents the zero-temperature lattice contribution to the molar 

HFE, 

[4.34], 
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is the Debye similarity parameter, 

[4.35], 

-.!..f (p )T2 is the low-temperature (T < < TF) electronic contribution to F, 
2 

A2(p )T2 is the high-temperature anharmonic contribution to F, vis the number 

of atoms in the chemical formula, and Eo( e) is the De bye internal-energy func

tion (e.g., Gopal, 1966), i.e., 

[4.36]. 

In this approximation, the Debye temperature 0 0 is related to a lattice 

Griineisen's parameter, ry0 , by (Wallace, 1972) 

'"Yo= ( dln00 ) 

dlnp 
[4.37). 

If we assume 

[4.38], 

then 0 0 is given by 

[4.39]. 

For simplicity, we do not separate ry0 into longitudinal and transverse com

ponents; in this case, '"Yo represents a weighted average of these components. 

The quantity f(p) is related to the electronic Gruneisen's parameter, "le, through 

(e.g., Wallace, 1972) 

"le = - [ 
dlnf ) 
dlnp 

[4.40]. 

Assuming "le is constant, we have 
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[4.41 ]. 

Noting that the high-temperature (T>00 ) anharmonic contribution to the free 

energy, A2(p)T2, has the same temperature dependence as the electronic contri

bution to F, we observe that these will have equivalent effects on F. By analogy 

with [4.41 ], we assume, for simplicity, that 

[ Pi) w 
O(p) = O(pD P [4.42]. 

For the example calculations involving Fe-targets presented below, we constrain 

the values of O(pi) and w empirically. Boness et al. (1986) calculated f(p) for 

the E and "'{-phases of iron using the Sommerfeld free-electron-gas theory. In 

addition, these authors suggest that the electronic density-of-states in liquid 

iron at high pressure may be approximated by that of the closed-packed E and 

"'{-phases at high pressure, where the liquid should be "close-packed." We make 

the same assumption. 

Relation [4.33) allows us to write expressions for the approximate density

and temperature-dependence of a number of solid-state properties (Appendix A). 

In particular, the equilibrium thermodynamic Griineisen's parameter, '"Y, based 

on [4.33), is given by 

[4.43] 

(Equation [A.11]). From this, we note that '"Y is only weakly temperature

dependent, since w'::::::.'"'f0 in the pressure range of interest. Hence, the thermo

dynamic model based on [4.33] is approximately consistent with the assumption 

above that '"Y is a function of density alone, upon which [4.8] above is based. 

Consequently, we assume '"'f'::::::.'"'f0 (p), where '"Y0 (p) is given by [4.38], the power-law 

form (Bassett et al., 1966). In this case, from [4.6] and [4.38], we also have 
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[4.44], 

for the change in temperature in the material due to isentropic compression or 

expansion from a starting density p1 to a second density p2 along the isentrope 

of the material centered at si. 

With respect to Tw we are particularly interested in the specific heat at con

stant volume, cv(T ,p ), given by 

,.. fT ) = -T ( fJ
2
f ) = 3vR {4E (t:) _ 3€o } + O(p) T [ ] 

"v\ ,p fJT2 P M o 1,.o e{o - 1 M 4.45 ' 

where Mis the molecular weight. Substituting this into [4.10], we obtain 

[4.46], 

with Ow-O(pJ and 

[4.47], 

being the difference in specific internal energy between the Hugoniot and princi

pal isentrope of f3 at density pH' Note that ~ey 0 when TH=T
51
, TH<T

51 
when 

~e.,<O, and TH>T81 when ~e.,>0. In [4.46]-[4.47], we use 

eD=0oo/T8i, Em-0oo/TH and em-eo(pJ. Equation [4.46] is an implicit relation 

for Tw which we evaluate numerically. Since the majority of our calculations 

are at high temperature (T>00 ), and the Hugoniot temperature changes much 

more drastically With pressure than 0 0 , We may expand Eo( e~ into its high

temperature ( EIH-+O) form: 

3 f~{ 1 1 Eo( c -+O) ,..._, x2 1 - -x + -x2 + 
00 (E~3 0 2 12 

.. · }dx 

=1-!.1: +_!_1:2+0[1:3]. 
8 'oo 20 'oo 'oo 
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Substituting this into [4.46] and rearranging, we obtain 

..!.o T3 + 3vR T2 - A T + 3vR e 2 = 0 
2 ~ "H H M H ..1."H H 20M m [4.48], 

with 1\f=A(pJ and 

Relation [4.48] has the solution 

c { 1 _1 ( q ) } 2vR TH= 2vp cos -cos -- - --
3 PVP ~ 

[4.50], 

with 

and 

2 

q := _ vR { 2M ~ + _!_ 0 2 + 2 ( 2vR ) } . 
~~ 20IH ~ 

If we set n equal to zero in [4.46], we have 

[4.51]. 

which is appropriate for a dielectric material with negligible anharmonic contri

butions to F. Doing this in [4.50], we obtain 

2 ¥.! 
TJO=O) = 6~R A~ { 1 + { 1 - ! ( 3:~m) } } [4.52], 

with 

for a dielectric material at high (T>00 ) temperature with A2T~<~T~<<L 
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Alternatively, if we assume the classic limit for the harmonic contribution to Cy 

at high temperature, i.e. 3vR/M, [4.46] reduces to 

Vi 
T fl: =O) = 3vR { { 1 + ~ MOH A * } _ 1 } 

ffi<,,m OH g (vR)2 H 
[4.53), 

with 

Finally, if we set both 0 and €m equal to zero in [4.46], we have 

[4.54]. 

If we further assume Eo(€0i)~l in [4.54], we obtain the relation most commonly 

used (e.g., Jeanloz and Ahrens, 1980) to calculate TH" 

To demonstrate the effect of these different approximations to Cy on Tw we 

plot Ta as a function of pressure for Fe shock-compressed from a-Fe to E-Fe in 

Figure 4.2, using the parameter set for Fe given in Table 4.1. Below, we con

strain 0 from the intersection of Fe-Hugoniot and melting curve, but for this 

comparison we assume A2 = 0 and use the results of Boness et al. (1986) for 

f(p) (Table 4.1). On the basis of these results, we may conclude that the elec

tronic contribution to Cy of E-Fe dominates its temperature along the Hugoniot 

of Fe at high pressure. Also for E-Fe, and perhaps not suprisingly, the 

difference between TH calculated with the full Debye relation for Cy ([4.461) and 

that calculated by assuming the harmonic part of Cy= 3vR/M ([4.52]) is very 

small (about 200 K at 240 GPa). In fact, even for Al20 3, which possesses a 

much higher Debye temperature than E-Fe (Table 4.1), Hugoniot temperatures 

calculated with [4.52] are only about 300 K above those calculated with [4.54] at 

200 GPa. Note that the curves in Figure 4.2 converge at low pressure because 

TH approaches T51 "faster" than the various approximations to Cy can affect TH 
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Figure 4.2. Comparison of the effect of different models for the specific heat at 
constant volume, Cv (T ,p ), on the temperature of the i:-Fe 
Hugoniot states. 
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as P---+O. 

From the impedance match and U-v relations of each material, we may 

obtain the pressure and density of the first shocked-state of each target com

ponent. Using this along with an estimate of Aeta and the assumed form for / 

above allows us to estimate, using [4.20) and [4.44), the changes in specific inter

nal energy and temperature along the appropriate isentrope of the high-pressure 

phase of each target component. These estimates, along with the model for 

cv(T,p), allow us to calculate TH for any phase as a function of PH" The next step 

is to estimate the effect of release on the shock-compressed state (Tw PH and pJ. 

,f 2. Release and Reshock States 

As discussed above, the targets are constructed so that the DP has a higher 

shock impedance, pfU, than the FL, which in turn has a higher impedance than 

the TW. In this case, both the DP and FL are shock-compressed, released and 

possibly reshocked. Assuming that a given release state of the DP or FL is in 

thermodynamic equilibrium, we may again employ the concept of an equivalent 

equilibrium thermodynamic path to connect respective compressed and released 

states of each target component. However, since we have no expression for the 

change in specific internal energy of the material during release that is indepen

dent of the details of phase transition (note that [4.1) is such a relation for 

shock compression), we cannot utilize the same kind of equilibrium thermo

dynamic path as that constructed above for shock compression. Instead, we 

must assume something about the release process, and any potential phase 

change during release, to construct an equilibrium thermodynamic path between 

the compressed and released states. The only constraint we have a priori is 

that the release process takes the shock-compressed material at an interface, via 

the release path, to a state with approximately the same normal components of 

material velocity and stress as the shock-compressed state of the lower shock-
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impedance material on the other side of the interface. Subsequent wave

reverberations establish the continuity of normal stress and material velocity, as 

required for the existence of a material interface. 

To proceed further, we assume that heat transport in or out of the target is 

insignificant on the time scale of the release process; i.e., this process is adia

batic (8q=O). Considering each compressed target component as an equilibrium 

thermodynamic system, we further assume that any mechanical work by the 

system during release is entirely reversible. In the case of a single-phase system, 

the release path is then both isentropic and adiabatic. The change in tempera

ture with density along this path is related to /, as given by [4.6] above. Since 

the impedance match provides us with the pressure of the release state, Pa, we 

may calculate the temperature, Ta, and density, Pa, along an isentropic path 

that has not crossed a phase boundary through simultaneous solution of [4.6] 

and 

[4.55], 

where Ta = T(SwPJ is the temperature, Pa = p(Ta,P J the density of the release 

state, and p(THR,P J is the density along the Hugoniot of the same phase at a 

temperature THR and the pressure of the release state, Pa. The coefficient of 

thermal expansion, a(T,p), in [4.56] comes from an equilibrium thermodynamic 

model for the appropriate phase (Appendix A for solid-state; Chapter V, for 

liquid-state). For example, in the case of solid-state release, a follows from the 

equilibrium thermodynamic model for F(T,p), i.e., 

( a2F ) 
a= p 8T8p p,T - P/Cy 

-2P-( 8-F ]-+ P-2 (-82-F -) = ~ 
op T op2 T 

[4.56] 
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(Appendix A), where Kr = Kr(T ,p) is the isothermal bulk modulus, and it is 

referenced to the isentrope or Hugoniot as discussed in Appendix A. 

To bound the nature of the release process as initiated at an interface, we 

focus on the extremes: 1) complete contact (~ shock-front thickness) at the 

interface, or 2) no contact, in which case each material has a free surface at the 

interface. We refer to the former interface as the "smooth" interface, and to 

the latter as the "rough" interface. To illustrate the different paths these 

"end-member" interfaces should take, consider the two examples discussed 

below and depicted in Figure 4.3. If we shock-compress the DP(FL) to some 

point A along its Hugoniot below the Hugoniot-melting curve intersection, it 

will release to a state having, after one or two wave reverberations, the normal 

stress and material velocity of the shock-compressed FL(TW). If these rever

berations are isentropic, the resulting temperature will equal that calculated by 

direct release to the pressure of the shock-compressed FL(TW). The DP(FL) 

material at the smooth interface then releases directly to this state, represented 

by point B in the Figure 4.3. However, the surface of the DP(FL) at the rough 

interface is partially free; hence, the DP(FL) material at this interface releases 

to near-zero pressure. If we assume the release path is isentropic, its slope will 

be less steep than that of the melting curve. In this case, the melting curve and 

release path will intersect (see point C, Figure 4.3). If the phase transition is 

slow relative to the rate of decompression, the DP(FL) material will follow the 

ABCG (metastable) path to low pressure (even though this path is not neces

sarily isentropic, as discussed below). However, if the transition is uninhibited, 

the release path will turn along the phase boundary at the intersection point 

(point C, Figure 4.3), and the mixed-phase material will decompress along the 

boundary until the transition is complete, or the mixture reaches low pressure. 

Assuming the transition completes above zero pressure at point D in Figure 4.3, 

the now liquid DP(FL) leaves the phase boundary and continues to decompress 
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along DE to zero pressure. As the DP(FL) material closes the interface, it 

impacts the FL(TW) material and is reshocked and reverberated along a series 

of paths, collectively symbolized in Figure 4.3 as the paths lying between EF 

and GH, up to the smooth-interface, release-state pressure, which is that of the 

shocked FL(TW). Note that the temperature achieved by this set of shock 

paths is bounded above by the temperature estimated from a single shock 

compression back up to the Hugoniot pressure of the DP(FL); we use this bound 

below, along with isentropic release, since it follows directly from the results of 

the last section. Because the initial state of the reshocked material is at a 

higher temperature than the unshocked material, the reshocked material attains 

a higher temperature (~TRS higher in Figure 4.3) than the release state of the 

DP(FL) material at a smooth interface. If the unshocked DP(FL) material is 

shocked to a higher pressure state than A that is still below the melting curve, a 

smooth interface may release to a state pinned to the melting curve, or be 

above the melting curve, as for release from A in Figure 4.3, in the liquid 

state. The rough interface released from A would follow A
1 

B
1 c' and be 

reshocked along c' D
1 

to D
1 

• Note that the effect of reshock is much more 

pronounced as the initial shocked-state pressure increases, regardless of the 

phase transition. 

When the release path encounters a phase boundary, such as the melting 

boundary shown in Figure 4.3, [4.6] is no longer valid. If we believe the release 

path remains isentropic through this region, then we must require that, in addi

tion to releasing adiabatically and doing or experiencing only reversible work, 

the material also change phase in thermodynamic equilibrium (Appendix B). 

Under these conditions, the isentropic two-phase path for a congruent phase

transition from phase /3 to phase 7r is described by the relation 
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Figure 4.3. Possible range of T-P paths taken by DP and FL materials near 
the DP-FL and FL-TW interfaces, respectively, during an experi
ment. 
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[4.57], 

where P is the pressure along the phase boundary, TPB(P), x is the mass fraction 

of 7r, <;. is the specific heat at constant pressure, a is the coefficient of thermal 

expansion, v is the specific volume, and 

is the jump of any quantity 'tjJ across the phase transition. Since 1) all end

member quantities in [4.57] may be viewed as functions of pressure and tem

perature, and 2) temperature and pressure are not independent along the 

equilibrium phase boundary, these quantities are actually function only of pres

sure or temperature along the boundary. In this case, choosing P as indepen

dent, we may solve [4.57] for x = x(P) (Appendix B) to obtain 

x(P) = t ) L p µ(P*) [TPB(P*)a.Bv .B 6.s - C:6. v ] dP* 
Asµ P Av ~ PB 

[4.58], 

with 

[4.59]. 

In [4.58], P~ is the pressure at which the release path of f3 intersects the 7r-{3 

phase boundary, i.e., where x = 0. We may evaluate [4.58] numerically along 

the phase boundary, TPB(P), with x(P) increasing above zero, until 1) x = 1 

(complete transformation) or 2) TPB = TPB(PR) (partial transformation). In the 

former case, the new phase then releases to PR along a path beginning at the 

pressure and temperature on the phase boundary where x = 1. 

Relation [4.58] is valid along any isentropic path through a first-order 

mixed-phase region of a single-component system, (i.e., solid-solid, liquid-solid), 

but now we focus on the solid-liquid phase boundary as discussed above. To 
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utilize [4.58], we need to estimate solid- and liquid-state properties along the 

solid-liquid boundary TJP). We do this by way of semi-empirical models for 

the solid-state (e.g., Andrews, 1973; Appendix A), and the liquid-state (e.g., 

Stevenson, 1980; Chapter V), respectively. For the solid state, we use a param

eterization of the solidus, TJ(pJ), based on Lindemann's law: 

{ 
dTJ) _ 

dpJ Lindemann 
[4.60], 

where 

[4.61] 

for the solid-two phase boundary (solidus). The quantity /p:.._ is the solid phonon 

Gruneisen's parameter at the melting point, equal to 10 (pJ) in the Debye 

approximation we use here. Using [4.61] in [4.60], we may calculate T.J(AJ) once 

we know the density of the solid along the phase boundary, and the dependence 

of >...J on the solidus density. For the solid phase, we have already assumed 

/p = 10 (p), with lo given by the power-law [4.38] above. Putting [4.38] into 

[4.61] and the resulting combination into [4.60], we obtain an expression for the 

solidus, i.e., 

[4.62], 

where p:.; = p(TMi,ft) is the density of the solid at the melting temperature at 

standard pressure. To use [4.62] to find TJ(pJ), we need to calculate the change 

in density along the solidus with pressure. Noting that, in general, the equilib

rium thermodynamic properties as developed from [4.33] are functions of tem

perature and density, we may calculate the variation of any of these properties, 

'l/J{T ,p ), with temperature at constant pressure from the relation 
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Figure 4.4. Comparison of e-Fe Lindemann solidi calculated from the 
compression along Hugoniot (dotted curve) with that estimated 
from the compression along the Hugoniot adjusted to the solidus 
temperature (dashed curve), as discussed in the text. 
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[4.63], 

where 

[4.64], 

and~ and Tr are some pressure and temperature at which we know 1/J. In par

ticular, putting 1/J=p into [4.62], as we did to obtain [4.55] above, we may 

anchor the solidus TJ to the solid Hugoniot of the relevant solid phase by solv

ing [4.63] (numerically) simultaneously with 

fT' p(TJ,P) = p(TwP) exp{- .lrH Ma[T,p(T,P)] dT} [4.65], 

where Ai= p(TJ,P) and p(TwP) is the Hugoniot density of the solid phase at 

the same pressure, with a as given above. In Figure 4.4, we compare this calcu

lation with one in which we assume p(TJ,P)=p(TwP). The greatest effect is at 

low pressure; this is also where the correction is most uncertain. 

For the DP-FL and FL-TW interfaces with no contact, the DP and FL 

release to near-zero pressure, and consequently we cannot use the Hugoniot as a 

reference state. So instead of [4.55], we solve [4.6] simultaneously with 

[4.66], 

where Tr is some reference temperature (e.g., 298 Kor TJ, depending on the 

relevant phase. With the density of the release state, pR, we may estimate the 

free surface velocity of the DP and FL surfaces at the DP-FL and FL-TW inter

faces, respectively, due to isentropic release, via the Riemann integral method 

(e.g., Fowler and Williams, 1970). We assume, as required by the constraint of 

isentropic release, that the material velocity is continuous across the phase 
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boundary (i.e., the same for both phases) when calculating the free surf ace 

velocity. We then take this free surface velocity as the "projectile" velocity of 

the DP or FL surface impacting the FL or TW surface, respectively, and use an 

impedance match to calculate the pressure and density of the reshocked state. 

To calculate the temperature of the reshock state, we use the appropriate form 

of (4.46], but referenced to the temperature and density of the complete release 

state rather than to Ti and pf (Appendix B). 

4. 8. Application to Fe Targets 

To exemplify these considerations, we calculate release and reshock states 

for Fe-Fe-AI20 3 and Fe-Fe-LiF targets, as shown in Figures 4.5a-b. The solid 

and liquid Hugoniot states result from (4.46) and (4.52) (with A2=0 and €Dll=0), 

respectively, as based on the parameter set given in Table 4.1. Solid-state pro

perties along the release path and melting curve are referenced to the €

Hugoniot via (4.6], (4.46] and (4.52], while the analogous liquid-state properties 

are referenced to the experimentally constrained Fe melting curve of Williams 

and Jeanloz (1986) via a liquid-state model for Fe (Chapter V). The Fe 

melting-curve data of Williams and Jeanloz (1986), which extend to 100 GPa, 

are fit to a Lindemann parameterization, referenced to the €-Fe Hugoniot 

(metastably above 245 GPa) using (4.62) and (4.65) (Chapter V), and then extra

polated to 330 GPa. In calculating these release paths, we ignore all other solid 

phases of Fe, save €-Fe, which is the stable solid phase of Fe along its Hugoniot 

between 13 (Barker and Hollenback, 1974) and ~ 200 GPa, where the sound

speed measurements of Brown and McQueen (1982, 1986) along the Fe Hugoniot 

suggest that €-Fe transforms to 1-Fe (?) or possibly a new solid phase ( 0: 

Boehler, 1986). Consequently, 1-Fe and/or another solid-phase is in equilibrium 

with liquid-Fe above about 5 GPa to perhaps 280 GP a (e.g., Anderson, 1986). 

In this case, we neglect any effects of an €--+/ or E--+0 transition in referencing 
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Figure 4.5a. Release/reshock calculations for Fe film/foil-Al20 3 interfaces 
and initial greybody temperatures inferred from Fe-Fe 
film/foil-Al20 3 radiation data of Bass et al. (1987). "Release 
conduction" and "reshock-conduction" symbols represent ini
tial effect of thermal inertia mismatch across the Fe film/foil
Al203 interface on the indicated states. 
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Figure 4.Sb. Release/reshock calculations for Fe film/foil-LiF interfaces and 
initial greybody temperatures from Fe-Fe film/foil-LiF radia
tion data. The larger shock-impedance mismatch between Fe 
and LiF results in a lower release-state pressure at Fe-LiF 
interfaces than at Fe-A120 3 interfaces, when both release from 
the same Hugoniot pressure. 
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compression along the Fe-melting curve to the t:-Fe Hugoniot. As stated above, 

in calculating the t:-Fe Hugoniot states shown in Figures 4.5a-b, we have con

strained O(pJ, with w = 1.34, which is the value of /e for t:-Fe given by Boness 

et al. (1986), by requiring the parameterized Fe-melting curve and t:-Hugoniot to 

intersect at 245 GPa. On the basis of the parameter set given in Table 4.1, this 

fit constrains O(Pi) to be 0.046 J/kg·K2• Boness et al. (1986) calculated a value 

of 0.090 J/kg·K2 for r(pJ (adjusted to STP density for t:-Fe given in Table 4.1). 

If we set O(pJ = 0.090, the t:-Hugoniot based on the parameter set in Table 4.1 

intersects the melting curve at :=::::: 280 GPa. We note that Boness et al. (1986) 

constrained r(pJ=0.09 J/kg·K2 and /e=l.27 for 1-Fe, while Bukowinski (1977) 

constrained f(pJ=0.08 and J /kg·K2 and /e=l.5 for this phase. With these 

values for f(pJ, the value of O(pJ constrained above for t:-Fe implies some com

petition between anharmonic and electronic contributions to the specific heat of 

t:-Fe at high pressure. 

Brown and McQueen (1986) fit a linear U-v relation to the available Fe

Hugoniot data between 13 and 400 GPa. Since their sound-speed measurements 

also suggest that Fe melts along the Hugoniot above about 245 GPa, their U-v 

relation should describe the liquid-solid mixture and pure liquid phase, as well 

as the solid. On this basis, we use their U-v relation to calculate both the t:-Fe 

Hugoniot and a metastable liquid-Fe Hugoniot referenced to the extrapolated 

density of liquid-Fe at STP (Table 4.1 ). With this U-v relation, [4.53] above for 

TH (A2 = 0 and €05 = 0) and r as constrained by Boness et al. (1986), we calcu

late the metastable Hugoniot of liquid Fe. Using t::.ef-a = 0.14 MJ/kg for Fe 

(as compared to the enthalpy of melting at standard pressure, 0.25 MJ/kg, from 

Desai, 1986), the metastable liquid Fe Hugoniot intersects the melting curve at 

about 305 GP a. This agrees reasonably well with the results of of Young and 

Grover (1984), who also ignored all other phases of Fe, save t: and liquid, in 

their parameterization of the Fe melting curve. We combine this metastable 
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Hugoniot along with the €-Fe Hugoniot in an ideal mix (e.g., Watt and Ahrens, 

1984) to construct the shock-compressed, mixed-phase region shown in Figures 

4.5a-b. 

For comparison with the calculations, we have plotted the initial interface 

temperature results from the Fe film/foil experiments of Bass et al. (1987) in 

Figures 4.5a-b. Note that the Fe-Al20 3 interface data shown in Figure 4.5a run 

almost parallel to the reshock locus, thereby exemplifying the strong pressure 

dependence of the reshock process (Urtiew and Grover, 1974). Comparing the 

data with the smooth-interface release states, shown as squares in Figure 4.5a, 

implies that Fe at both film-Al20 3 and foil-Al20 3 interfaces experiences up to """' 

2500 K of reshock heating between 190 and 230 GPa. As stated above, we 

naively expected that the film-TW interface would experience consistently less 

reshocking than the foil-TW interface. The present results contradict this 

expectation. There appears to be no guarantee that film interfaces will con

sistently experience any less reshock than the foil interfaces, especially at high 

pressure. In this case, a well-polished foil surface may actually experience less 

reshock than a slightly porous film interface. 

Figure 4.5b displays the results of the calculation for Fe-LiF interfaces. 

Because of the larger impedance mismatch between Fe and LiF, the Fe-LiF 

interface reaches a lower release-state pressure than the Fe-Al20 3 interface when 

both release from the same Hugoniot pressure. The data and calculation imply 

that lower release-state pressure results in less extreme reshocking. Note that 

the Fe-LiF and low-pressure Fe-Al20 3 data fall right on the corresponding 

smooth-release locus. The points labeled "release conduction" and "reshock 

conduction" refer to the effect of the contrast or mismatch in "thermal inertia" 

across the Fe-TW interface on the release and reshock temperatures, and as dis

cussed in the following section. 
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§5. Conductive Transport in the Target 

We assume that the temperature profile created by shock compression, 

release and/or reshock is established on a time scale short enough to represent 

the initial conditions for energy transport in the target. Urtiew and Grover 

(rn74) considered the problem of energy transfer at material interfaces and 

demonstrated that a rough (~1 µm) interface experiences a higher degree of 

shock heating than a smooth (;:;1 µm) interface, much like a porous material 

experiences relative to its crystalline counterpart. Since the TW surf ace at the 

interface is much less rough (;:;10-8 m) than the DP surface at the interface, it 

should experience little, if any, direct reshock heating. However, the DP and 

FL surfaces at the DP-FL interface, as well as the FL surface at the FL-TW 

interface, may experience significant reshock heating, as discussed above. 

Following Grover and Urtiew (1974), we assume that 1) energy transport is 

parallel to the direction of shock propagation (i.e., one-dimensional), 2) both 

temperature and heat flux are continuous across each interface in the target, 

and 3) there are no sources or sinks of energy in any layer or at the interfaces 

between them. Under these conditions, we may solve the one-dimensional con

duction relation: 

BT 82T 
pc;,-=k-

Bt ax2 [5.1] 

(e.g., Carslaw and Jaeger, 1959), for the temperature profile, T=T(x,t), in each 

target component as a function of position along the direction of shock propaga

tion, x, and time, t. The time t=O corresponds to coincidence of the shock 

front and FL-TW interface. In [5.1], p is the density, c;. is the specific heat at 

constant pressure, and k is the thermal conductivity. Since the temperature 

profile in the FL, and particularly the temporal variations of temperature at the 

FL-TW interface, control the intensity of thermal radiation sources at the FL

TW interface, we emphasize these in what follows. 
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We expect a layer of the DP material at the DP-FL interface and a layer of 

the FL material at the FL-TW interface to experience some degree of reshock

ing. Also, the rough FL surface at the DP-FL interface should compress into a 

thin layer with a much higher temperature than the shock-compressed solid FL 

material. With this structure, the initial (t=O) temperature profile of the DP

FL-TW system is of the form 

TD -oo<x<-(d+80 ) 

T0 +AT0 -(d+80 )<x<-d 

T(x,O) = TF+ATFD -d < X < -( d-8ro) 

TF -( d-6FD) < X < -6FW [5.2] 

TF+ATFW -<\.w<x<O 

Tw O<x<oo 

(Figure 5.1 ). Here, d is the FL thickness, and T0 and TF are the temperatures 

achieved in DP and FL, respectively, by direct release to the pressure of the 

shock-compressed TW, which has a temperature Tw Also, T0 +AT
0 

is the tem

perature of the reshocked layer with thickness 80 in the DP at the DP-FL inter

face, while TF+ATFW is the temperature of the reshocked layer with thickness 

8FW in the FL at the FL-TW interface. If the surface of the FL at the DP-FL 

interface is also rough on some scale, it will compress like a porous material. 

Consequently, we assume that a layer with a thickness 8ro and temperature 

TF+ATFD forms in the FL at the DP-FL interface. Since the surface of the TW 

is much smoother than the DP or FL surfaces, we assume that there is no 

reshock heating of the TW material at the FL-TW interface. Note that the DP 

and TW are idealized as thermal half-spaces, a consequence of our assumption 

about the rates of shock compression and release relative to conduction. Again, 

we emphasize that all material properties of each target component are assumed 

homogeneous, time-independent, and are referenced to their respective states at 

the pressure of the FL-TW interface. 



Chapter I 78 Figure 5.1 

Figure 5.1. Initial conditions for thermal conduction in target. TD and TF 
represent temperatures achieved in the DP and FL, respectively, 
upon direct release to a state with the pressure of the shock
compressed TW, having a temperature Tw- Variable degrees of 
reshocking are shown for DP (~TD) and FL (~ TFD) at the DP-FL 
interface, and for FL ( ~ TFW) at the FL-TW interface; these 
involve some thickness ( 4,, <\.o, and l\w) of each target component 
adjacent to the interface. 
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The governing relation [5.1] for each layer, combined with the boundary 

conditions of continuity of heat flux and temperature, and the initial conditions 

[5.2], specify an initial-boundary value problem for T(E,r) in the target, where 

E = x/d and T = t/texp· We are particularly interested in this profile for the 

FL layer, and the temporal variation of T(O,r), for the FL, which represents the 

FL-TW interface temperature. Solving this initial-boundary value problem in 

Appendix D, we obtain expressions for T0 (E,r), TF(E,r), and TJE,r). In particu

lar, we have, for TF(E,r), -1 <E<O, r>O, the expression 

TF(E,r) = TF + A(E,r) ~T0 + B(E,r) (T0 - TF) 

+ C(E,r) ~ TFD + D(€,r) ~ TFW + E(€,r)(Tw - TF) [5.3] 

(Equation [D.25]), with 

_ {g;(E,r,-1,€) + g:(E,r,€,-1+6~), E < -1 + 6~, 
C(€,r) = _( .c*) * gF E,r,-1,-l+uFD , E > -1 + 6ro, 

{ 
g:( €,r,-6~0) , € < -6:W, 

D(€,r) = -(t: .c• t:) +(t: c ) * gF i,,,T,-uFW'i,, + gF 1.,,,T,1.,,,0 , E > -6FW, 

and 

The functions g!(€,r,a,b) are defined in Appendix D (Equation (D.26]). In these 

expressions, "-ro = J "-Ff Ko is the square root of the ratio of the FL thermal 
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diffusivity to the DP thermal diffusivity, with"' = k/ PCp, c = x/d is the nondi

mensional distance, d is the thickness of the FL, % = ../P~/4r, r = t/texp is 

the nondimensional time scale, P~ = d2 
/ ~texp is the Peclet number, texp is the 

time scale of experiment, and 8i * = 8J d, where i=DP, FL or TW. Also, we 

have 

¥i 
= ( koPDCpJ) ) [5.4], ar:P -

~PFCp.F 

and 

¥i 
( lvwCP.w) [5.5], 

<JWF = ~PFCp.F 

which are the thermal inertia "mismatches" (Carslaw and Jaeger, 1959, p. 321) 

between DP and FL, and TW and FL, at the pressure of the FL-TW interface. 

Also, we have 

[5.6], 

and 

[5.7]. 

In [5.4] and [5.5], k, p and Cp are the thermal conductivity, density and specific 

heat at constant pressure, respectively, of the designated material for the state 

of each material at the pressure of shock-compressed TW. To estimate the 

values of aIF and aWF at high pressure, we need the appropriate values of k, p 

and Cp· Density follows from the impedance match and release calculations, 

while the specific heat at constant pressure results from the classical thermo

dynamic models discussed above. Assuming that the thermal conductivity, k, 

may be written in terms of lattice, kP, and electronic, ke, components, i.e. 

k = kp + ke, we assume that k~ke for metallic target components. In this 
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case, we calculate ko and ~ as a function of temperature from the Wiedemann

Franz-Lorenz (WFL) relation 

pk 
_!_!. = 2.45X10-8 W·O/K2 

T 
[5.8] 

(e.g., Berman, 1976), where Pe is the electrical resistivity, to estimate ke from 

electrical resistance data on shocked metals, respectively. Assuming the thermal 

conductivity of the TW material is controlled by lattice processes, we may use 

the thermal conductivity model of Roufosse and Klemens (1974) to estimate kw 
As compared to ko or ~' kw predicted from this model increases much more 

slowly with pressure, partially accounting for the development of a significant 

thermal inertia mismatch across the FL-TW target interface. Based on the 

release/reshock calculations presented above, we calculate aWF for the Fe-Al20 3 

and Fe-LiF interfaces using the value of electrical conductivity for E-Fe given in 

Table 4.1. This value comes from Keeler (1971), who summarized electrical 

conductivity data on E-Fe between 20 and 140 GPa, and it represents an extra

polation of the trend in the E-Fe data down to standard pressure. We list 

results of this calculation in Table 5.1. As evident, Fe is more closely matched 

to Al20 3 than LiF; since Trnr(r) is proportional to aWF/(l+aWF) (see [5.9]), there is 

a greater adjustment of Trnr(r) at the Fe-Al20 3 interface, as is shown below. 

We now focus on the FL-TW interface temperature, 

Trm{r) = TF(O,r) = Tw(O,r), since it is responsible for controlling the interface 

source radiation intensity. Specializing the relation for Trnr(r) to the case where 

the DP and FL are the same material (e.g., Fe), we have TD = TF, aIF = 1, and 

so vrF = 0 via [5.7]; we also assume that A. TD= ATro for simplicity. In this 

context, the same equilibrium thermodynamic state exists on either side of the 

DP-FL interface, and Trnr{r) is given by 
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Table 5.1. STP and High-Pressure Thermal-Inertia Mismatch Estimates. 

STP 100 GPa 200 GPa 

Ideal interface 

Fe-Al20 3 0.56 0.25 0.15 
Fe-LiF 0.20 0.11 0.05 

Reshocked interface 

Fe-Al20 3 0.56 0.15 0.07 
Fe-LiF 0.20 0.08 0.01 
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with 

and 

D(r) = ( 
1 

) erf{8~F}. 
l+O"WF 

Noting that erfc(x) increases, while erf(x) decreases, as x increases, we see that 

D(r) will decay with time, while G(r) can either grow or decay. Most radiation 

observations constrain a decreasing temperature with time (see discussion 

below); however, there may be some suggestion of the influence of A T0 on 

T~r) in the data on the Fe-LiF interfaces discussed below. 

If we assume AT0 = 0 = ATFD and/or 8; = 0 = ~' [5.9] reduces to 

(5.10], 

which is the reshock model considered by Grover and Urtiew (1974). Further, if 

we let 8.:W-+O, we have, from [5.10), 

[5.11] 

relating the temperature of the smooth FL-TW interface, Tw to the tempera

ture of the direct-release state, TF. Note that T1d approaches TF as aWF-+O, and 

Tw as aWF-+oo. Also, note that that T~r), as given by [5.11], will be time

dependent only if the FL-TW interface is reshocked. We use [5.10] with the 

reshock-state temperature in the FL at the FL-TW interface (TF+ATFW), the 

shock-compressed temperature of the TW (Tw), arB and aWF, to calculate T~O), 

which is labeled "reshock conduction" in Figures 4.4a-b. Similarly, we use 

[5.12] to calculate the "release conduction" temperatures from TF, Twi and aWF. 

As stated above, the Fe-LiF thermal mismatch is greater (i.e., aWF is much 

smaller: see Table 5.1) than that of the Fe-Al20 3 interface, mainly because LiF 
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is more compressible and less conductive (thermally: see Table 4.1) than Al20 3• 

In this case, the Fe-LiF interface temperature remains closer to the temperature 

of Fe at the interface than does the Fe-Al20 3 interface temperature. Further, 

the greater compressibility of LiF gives it a much higher shock-compressed tem

perature than Al20 3• For example, TH for LiF (from [4.52])) at 160 GPa is ~ 

4200 K (ignoring the possibility of melting), while TH for Al20 3 (also from [4.52]) 

at 230 GPa is ~ 2750 K. The temperature mismatch is much less across the 

Fe-LiF interface, and the effect of thermal inertia mismatch on TINT is less 

extreme. 

In Figures 5.2, 5.3, 5.4 and 5.5, we present calculations for TF(€,r) and 

Tw(€,r) from [5.3] and [D.25], respectively, and the associated Tim{r) = TF(O,r), 

with AT0 = ATFD, etc., as assumed to write [5.9], for Fe-Fe-TW targets. To 

construct these figures, we calculate the compressed/released and 

reshocked/released states achieved in an Fe-Fe-Al20 3 target impacted by a Ta 

projectile at a velocity of 5.67 km/s; we assume the calculated reshock tempera

tures at the DP-FL and FL-TW interfaces are the initial values. This impact 

velocity is that of one of the experiments (Fe-Fe film-Al20 3) discussed below. 

The basic result here is the dependence of the rate of change of Tim{ r) on P~ 

and tJ:W. From [5.9], the change in Tim{ r) with time is given by 

with 

and 

p 1/2 
D'(r) = -2 (_2-) ~e-[6~]2. 

(l+aWF) 4rrr1 

[5.12], 
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Figure 5.2. Variation of the temperature near a reshocked Fe film/foil-Al20 3 
interface. Part (a) displays the variation of temperature in the 
FL, TF( €,r), and SW, Tw( €,r), as a function of nondimensional 
(ND) position, €, with respect to the FL-TW interface 
(€=x/d=0) at four different times during a 300 ns experiment. 
The nondimensional range of -1 to 1 corresponds to -d to d, 
where d is the thickness of the FL layer. "Reshocked layer" 
refers to the nondimensional thickness of the reshocked layer, o~ 
Part (b) depicts the corresponding variation of the interface tem
perature, T~t ). 
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Figure 5.3. Variation of temperature near a reshocked Fe film/foil-Al20 3 
interface. The reshocked layer depicted in part (a) is thicker 
than that of Figure 5.2, and relative to the conduction length 
scale (as represented by the Peclet number), causing the tempera
ture of the reshocked layer, and so that of the FL-SW interface, 
to decay more slowly. In part (b ), the "t=O" curve corresponds 
to T~O), while that labeled "t=infinity" corresponds to 
T~oo). The magnitude of these asymptotic values of T~t) is 
governed by that of the FL-SW thermal-interia mismatch, aWF. 
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Figure 5.4. Variation of temperature near a reshocked Fe film/foil-Al20 3 
interface. In this figure and Figure 5.5, we hold the reshocked 
layer thickness constant and vary the Peclet number, or conduc
tion length scale, y ~texp' of the FL. Since the Peclet number is 
inversely proportional to the conduction length scale, a relatively 
small Peclet number (0.1) results in a fast decay of Trnr(t ), as 
shown in part (b ). 
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Figure 5.5. Variation of temperature near a reshocked Fe film/foil-Al20 3 
interface. With a Peclet number of 10, the conduction length 
scale of the FL is small relative to the thickness of the FL, and 
the interface temperature decays very little over the time scale of 
the experiment. 
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For the particular case we have plotted, and as noted above, unless 

c5~1, c5;.:<,1, and/or AT0 >>ATFW, the ATFW term dominates Tn-Jr). Since 

the coefficient of the dominating term, D
1
( r), is always negative, the rate of 

change of Tim(r) will be negative, and Tim(r) will consequently decrease with 

time. Further, when the D
1

(r) term in [5.12] is dominant, dTINr/dr is propor

tional to -µexp(-µ 2), with µ = c5:WJPf7/4r = c5FW /2..r;;;i. In other words, over 

the time scale of the experiment, t=texp' µ represents the ratio of the layer 

thickness to the conductive length scale, .../ ~texp· Note that µexp(-µ 2) achieves 

a maximum value near w-·-'l and is much smaller (.-....o) for µ much greater or 

less than unity. 

In Figures 5.2 and 5.3, we hold Pf7 constant (i.e., the conductive length 

scale, .../ ~texp) and vary the layer thickness, ~ As shown in Figure 5.2, with 

Pf7=l, Tim(r) for a thin reshocked layer (~0.1) relaxes very quickly (i.e., 

faster than can be resolved experimentally) to near Tim{ oo ), while in Figure 5.3, 

we see that a thicker reshocked layer ( c5~0.5) will relax much more slowly, 

and on a resolvable time scale. A similar set of events holds if we fix the layer 

thickness and vary the conductive length scale of the FL, as we show in Figures 

5.3a-b. For a conductive length scale large compared to the reshocked-layer 

thickness (Figure 5.4, Pf7=0.1 and c5~0.5), Tim(r) relaxes relatively quickly, 

whereas if the conductive length scale is small relative to the layer thickness 

(Figure 5.5, P~=lO and 8~0.5), there is little or no resolvable relaxation of 

Tim{r) away from Tim(O). Obviously, 8FW and y'"-Ftexp trade off in their effects 

on Tim( r), introducing some ambiguity; only their ratio has a distinct effect on 

Tim(r). In any event, for Pf7.-....l and intermediate (c5.:W.-....0.3-0.7) reshock-layer 

thicknesses, Tim(t) is time-dependent on an experimentally resolvable time scale, 

and its variation with time produces a corresponding radiation source time 

dependence, as we show in the next section. 
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§6. Radiative Transport in the Target 

With a model of the initial temperature profile of the target components 

and interfaces, we now establish a connection between the radiation intensity of 

sources at these temperatures and the radiation intensity emerging from the free 

surf ace of the TW during the experiment. The target is represented as a series 

of plane-parallel layers (Figure 2.2) with Fresnel boundaries (Boslough, 1985; 

Appendix E). We assume that: 1) source radiation is collimated by the target 

geometry; 2) all radiation sources are thermal, and so their intensity is given by 

the Planck function; 3) sources are located only at the FL-SW and/or uniformly 

throughout the SW, particularly along the direction of shock propagation; and 

4) all optical properties are independent of wavelength. The model spectral 

intensity of radiation emerging from the free surface of the USW ( unshocked 

window), I>.mod = I>.mod(A,t), as a function of wavelength, A, and time after the 

shock-front has passed the FL-SW interface, t, is given by 

[6.1]. 

The Hugoniot temperature of the SW, Twi is homogeneous, uniform, and con

stant since we assume a uniform distribution of radiation sources in the SW. 

The interface temperature, TINr' is a function of time, or constant, in the con

text of the conduction model discussed above. The "A" subscript denotes a 

spectral quantity. In [6.1], we identify 

[6.2], 

and 

[6.3], 

as the effective normal spectral emissivities of the SW and FL-SW interface, 

respectively. As evident from [6.1], €>.sw and €A!Nr are the properties connecting 

the intensities of the sources within the target and the intensity emerging from 
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the target. The function '1>'>-.(t) is defined by 

[6.4], 

and represents the effect on source radiation of propagation through the FS, 

USW, and SF. In Equations [6.2]-[6.4], r>.Fs, r>-.SF and r>-.INr are the effective normal 

spectral reflectivities of the FS, SF, and FL-SW interface, respectively. Further, 

ft) = -a>h:;w (1 - t/texp) 
T>-.U>W\ - e [6.5], 

and 

[6.6], 

are the effective normal spectral transmissivities of SW and USW layers, respec

tively. The quantities a;usw and a;sw are nondimensional forms of the effective 

normal spectral absorption coefficients in the USW and SW, respectively, and 

they are given by 

[6.7], 

and 

[6.8], 

respectively, where aA.sw and a>-.usw are the dimensional counterparts of a;sw and 

a;usw, respectively. Also, xFS is the thickness of the TW, and so the position of 

the FS with respect to the FL-TW interface (Figure 2.2). Note that a;sw and 

a;usw mediate the explicit time dependence of €>-.sw and €AINI'" In writing [6.7] and 

[6.8], we have also assumed steady shock propagation such that the position of 

the shock front in the TW (Figure 2.2) may be written ~(t) = (U-v)t. 

From Equations [6.7] and [6.8], a;sw and a;usw will be of order unity when 

[6.9], 

which are both ,..___, 103 m-1, since the thickness of the TW is generally ,..___, 10-3 m. 
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So for values of a>.sw and/or aAusw much larger or smaller than these "geometric" 

values, source radiation intensity is resolvable or not affected by propagation 

through the SW and USW, respectively. The USW is usually transparent, so 

aAusw,....._,O; if the SW is transparent as well, then a>.sw,....._,O and, from [6.2] and [6.3], 

we have 

[6.10], 

and €Asw = 0. In this case, IAmod is governed entirely by sources at the FL-SW 

interface, and any time dependence of the observed radiation history is due 

solely to TWI" Note that the bound on €>.INr in [6.10] is also the initial value of 

€>.INr (i.e., it can only decrease with time). However, if the TW becomes opaque 

upon shock compression, we have aAsw-+oo. Again, with aAusw,....._,O, we have 

€>.INr-+O and 

[6.11]. 

In this case, observable sources are confined to the shock front (this is the "ideal 

case" of Boslough, 1985). The impact of these and other model parameters on 

IAmod(.> .. ,t) is more explicitly depicted by writing the partial derivatives of 

IAmoiA,t) with respect to A and t. From Equations [6.1], [6.2], and [6.3], these 

are 

[6.12], 

and 
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[6.13], 

with 

Relation [6.12] exemplifies the fact that the wavelength dependence of I>..mod is 

due solely to that of the Planck function, since we have assumed that the opti

cal properties are independent of wavelength. We make this assumption 

because its not clear at this point that existing data can resolve wavelength

dependent optical properties (Chapter II). 

Again, for most TW's, we have a>..usw,...._,O. If, in addition, T~t) is approxi

mately constant with time, which may occur in a thick (PtT> > 1) or thin 

(PtT<<l) FL with a thick (6~d) or thin (6~<<d) reshocked layer of FL 

material, or at the smooth interface, as discussed above, [6.13] reduces to 

This will be positive if 

[6.15], 

but otherwise negative, since a:sw is always positive. Consequently, with a 

finite value of a:sw and a time-independent interface temperature, I>..mod will 

grow or decay with time on the basis of the sign of [6.14]. If the TW is initially 

transparent and remains relatively transparent upon shock-compression, we 

have a:usw ,...._,Q and a:sw ,...._,Q. Putting these into (6.13], we have 

[6.16], 

and any variation of I>..mod with time should reflect that of TINI' through the 
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Planck function. In particular, I>.mod will increase or decrease as TINI' increases or 

decreases at a given wavelength. 

§7. Models and Data 

We compare models and data in the context of the standard x2 statistic 

(e.g., Bevington, 1969; Press et al., 1986). In our case, it given by 

2 

x2(a) = .E .E :~ { I>.exp(Ai,tj) - I>.mod(Ai,tj;a) } 
l=l J=l IJ 

(7.1]. 

In this relation, I>.exp(Ai,tj), I>.mod(Ai,tj;a), aij = a(\,tj) are the experimental and 

model spectral radiances and the experimental uncertainties, all at a particular 

wavelength, Ai, and time, tj. Also, N>-. and Nt are the number of wavelengths 

and times sampled, respectively, in the experiment. The five-component "vec

tor" a is the model parameter vector, with components ak, in our case given by 

[7.2]. 

Since the radiation model is nonlinear with respect to ~~, ~ , Tsw and 

Tim-( t ), (7 .1] is not strictly a maxim um likelihood measure, even if the data 

errors are normally distributed. However, if the best-fit values of the ak (i.e., 

ak(min)) have uncertainties sufficiently small such that the value of I>.mod can be 

well approximated by the first two terms of its Taylor series representation 

about I>.mod(A,t;ak(min)), x2(a) will be very close to the maximum likelihood esti

mate (Press et al., 1986). 

We note that r>.FS and ~~ are not included in [7.1], since they may be cal

culated or determined from index-of-refraction and absorption data for the TW. 

From the conduction model, we have explicit expressions (e.g., [5.9]) for the 

time dependence· of TINI" which allow us, in principle, to constrain aWF, etc., 

given fitted values of TINI'" Similarly, the fitted reflectivities allow us to con

strain changes in the indices of refraction across boundaries (e.g., the shock 
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front). Note that, in general, the optical properties constrained from [7 .1] can

not be >..-dependent unless we give them, a priori, an explicit >..-dependence, 

with constants whose values are chosen by the fit (i.e., by the data). Since we 

have no reasonable expectation for this >..-dependence, we cannot truly constrain 

it. It is for this reason, plus the limited resolving power of the data itself 

(Boslough, 1984; Chapter II), that we assume ~, a,.USW' etc., are independent 

of ).. in the previous section. However, we may determine an apparent >..

dependence of the optical properties if we specialize [7 .1] and fit at each 

wavelength over time, i.e., 

[7.3]. 

In Chapter II we constrain ak(min) in this manner for radiation data from Ta-Ag

MgO targets. We use a very simple version of this approach below with the 

data of Bass et al. (1987) to constrain ~. First, however, it is instructive to 

consider fits to data using simpler models than that represented by (7.1] and 

[7.3]. Most earlier workers (e.g., Kormer, 1968; Urtiew, 1974; Lyzenga, 1980; 

Lyzenga et al., 1983) constrained model parameters via the greybody relation 

(7.4]. 

The associated x2 statistic is given by 

Since the summation in (7 .5] averages Egb over all observed wavelengths, it 

represents a wavelength-averaged effective (i.e., total) emissivity. Given that 

the only >..-dependence in the greybody model is contained in the Planck func

tion, Im(>..,T), the more closely the data follow the blackbody wavelength distri

bution at a given temperature, the better the fit (i.e., the lower the value of 

Xgi(tj)). Since both the data and model depend explicitly on :>.., the fit proceeds 
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over all observed wavelengths at a given time during the radiation history. As 

a result, Egb and Tgb are functions of time. 

Since lxgb depends nonlinearly on T8b, we must find the best fit values of Egb 

and Ixgb iteratively with the· minimization constraints on Xgb2
• To obtain start

ing values of Egb and T
8
b for the nonlinear fit, and for comparison, we may use 

Wien's approximation to IAP!(>.,T) in xi(tj), which follows from Ixpt(:A,T) in the 

limit exp(C2/>.T)>>l, i.e., 

2C 
I (" " T ) = " I (" T ) - " _ 1 -C2/>.. Twgb 
)..wgb A,Ewgb' wgb - Ewgb AWi "' wgb - Ewgb )..5 e [7.6). 

The relative error incurred in approximating I>.p1 by Ix'M. is equal to exp(-C2/>. T); 

this approximation is accurate to within 1% for >.T<3Xl0-3 m·K (Siegel and 

Howell, 1981 ). Since we can fit Wien's relation to the data in a linear least

squares sense, we can solve for Ewgb and Twgb directly (i.e., without iteration). 

With these values, we may safely apply an iterative technique to [7.5] to con

strain Egb and Tgb and be assured of a nondivergent fit. We use the Golden 

Search (GS) and Levenberg-Marquardt (LM) iterative techniques (Press et al., 

1986) to obtain three different fits: 1) GS with Egb variable, 2) GS with €
8
b=l, 

and 3) LM with Egb variable. 

We present a greybody fit to the radiation observations from two experi

ments of Bass et al. (1987) in Figures 7.1 and 7.2. Figure 7.1 displays a fit to 

data from an experiment on an Fe-Fe film-Al20 3 target impacted by a Ta pro

jectile traveling at 5.67 km/s. The trend in x8;(t) suggests that the fit gets 

better with time. Strictly speaking, x2'"'-'v±2vv as the number of data get very 

large, where v is the number of degrees of freedom in the fit (i.e., the number of 

data minus the number of parameters; 2 in this case); we might hope that 

Xs;""2 represents a reasonable fit for the greybody model. All of the fits show 

T
8
b(t) decreasing with time, and for the variable emissivity fits, €80(t) increases 

slightly with time. This behavior is characteristic of most Fe-Fe-Al20 3 
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Figures 7 .la&b. Observed radiation history and x2 statistic of grey body 
model (Egb,Tgb) to radiation data from Fe-Fe film-Al20 3 tar
get impacted by a tantalum projectile at 5.67 km/s, result
ing in an Fe Hugoniot pressure of 244 GPa and an Al20 3 

Hugoniot pressure of 190 GPa, which is also the Fe-Al20 3 

interface pressure (Bass et al., 1987). Part a) of this figure 
displays the radiation intensity (spectral radiance) data, col
lected at four wavelengths: 450, 600, 750 and 900 nm. Part 
b) displays the "goodness" of the grey body fit, as indicated 
by Chi2=x2

• 
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Figures 7 .lc&d. Greybody model parameters constrained by data displayed 
in Figure 7.la. Part c) displays the best fit normal greybody 
effective emissivity, £gb(t), while part d) shows the 
corresponding greybody temperature, Tgb(t ). Fits using 
Wien's law, Golden Search (GS), GS with the effective emis
sivity set to 1 (GSel ), and the Levenburg-Marquardt algo
rithm (LM) are indicated. 



Chapter I 105 Figures 7.1c&d 

~ 
..-l 

Wien 
GS 
LM 

~ 
~ 
·~ > .. 
·~ 
rt.l 
rt.l ·a 0 
~ 

..-l 
Q) 

> 
·~ .... 
~ ...... 
C) 
Q) ...... ...... 
~ 

co . 
0 

40 120 200 280 
Time (ns) 

0 
0 
co 

Wien co 
GS 
GSel 

,,,.-... LM 
~ -Q) 
s... 
~ 0 ~ 
~ 0 
s... 0 
Q) co s -. -Q) ..... 

E--t .... .... .... 
..... ..... 

'·-· ..... 0 
0 
C\2 
LC 40 1 0 00 0 

Time (ns) 



Chapter I 106 Figures 7. 2a8b 

Figures 7.2a&b. Observed radiation history (part a), and x2 statistic (part b) 
for an Fe-Fe foil-LiF target impacted by a tantalum projec
tile traveling at 5.41 km/s, resulting in an Fe foil Hugoniot 
pressure of 227 GPa and an LiF Hugoniot pressure of 122 
GP a. 
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Figures 7.2c&d. Grey body effective emissivity (part c) and temperature (part 
d) constrained by radiation data shown in Figure 7.2a. 
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experiments of Bass et al. (1987). For all the Fe experiments, we note that 

Tsw<<Tn-rr(t), and that Egb(t) is inconsistent with ~ ---+oo (Boslough, 1985). In 

this case, from [6.1], we have 

[7.7], 

and the decrease of Tgb(t) with time (Figure 7.ld) can be explained in terms of 

Tn-rr(t ), as detailed above. Also, the slight increase of Egb(t) with time (Figure 

7 .le) can be explained most simply by a slight decrease of the Al 20 3 absorption 

coefficient upon shock compression. This may be consistent with the observa

tion that the refractive index of Al20 3 seems to decrease with pressure 

(.......,-0.001/GPa between 0.1 and 1 GPa: Davis and Vedam, 1967). Since 

~usw.......,O for Al20 3, this observation implies that ~ .......,o as well. In this case, 

[7.7] implies that 

for the Fe-Fe-Al20 3 experiments. 

In contrast with this last fit, the experimental and greybody fit results 

displayed in Figures 7.2a-d, for an Fe-Fe-LiF target impacted by a Ta projectile 

traveling at 5.41 km/s, exhibit a relatively constant greybody temperature (Fig

ure 7.2d) with time and a systematically decaying greybody effective emissivity 

with time (Figure 7.2c). In this case, Tgb(t) implies a relatively constant Tn-rr(t), 

as we expect for a smooth interface (Grover and Urtiew, 1974; [5.11] above) or a 

reshocked interface with <\w>>2v' ~texp (Figure 5.3d) or <\w<<2v' ~Ftexp (Figure 

5.2b). The reshocked interface with <\w>>2v'~Ftexp is less likely than the latter 

possibility, as implied by the the data-model comparison in Figure 4.5b. The 

behavior of Egb(t)~2~t) reflects a shock-induced increase in the absorption 

coefficient (i.e., a>.sw >~usw) of of LiF via [6.6], [6.7] and [6.14]. Wise and Chha

bildas (1986) found, via laser interferometry, that LiF remains essentially trans

parent up to 160 GPa. The fluctuations in the fit after about 160 ns may be 
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due to wave reverberations or other dynamic effects, which are beyond the scope 

of our model, and/or possibly to the influence of reshock at the Fe-Fe foil inter

face, as mentioned above. 

In judging the value of any fit, the resolving power of the data is an issue. 

In particular, the ability of the data to constrain model parameters may be 

judged through confidence limits (e.g., Press et al., 1986). We display these for 

Fe-Fe-Al20 3 and Fe-Fe-LiF experiments in Figures 7.3 and 7.4, respectively. 

Parts a) and b) represent confidence limits for Xg;(50 ns) and Xg;(250 ns ), 

respectively. The darkest shaded (central) region in each diagram represents 

that part of model-parameter space which explains 68.3% of the data. Simi

larly, the 95.4% and 99.99% regions explain corresponding percentages of the 

four-wavelength data. Note that these limits are consistent with the trends in 

Xgb2( t) (Figures 7 .1 b and 7 .2b ). The basic information conveyed by these 

diagrams is a measure of the uncertainty of the fits; for example, from Figure 

7.3, the fitted value of Tgb(50 ns) has an uncertainty of about ±400 K at the 

68.3% level, and about ±600 K at the 95.4% level. 

As stated above, the interface contribution to the observed intensity dom

inates the SW contribution (Bass et al., 1987). On the basis of this observation, 

we may reasonably fit a simplified version of the full radiation model to the 

data via [7.5]. We do this for the Fe-LiF data fit to the greybody model in Fig

ure 7.5. First, we note that, at t=O, I>-.mod is, from [6.1], 

[7.9]. 

So the magnitude of I>-.mod(>,,O) is controlled by the refiectivities, a\IBW' and the 

initial value of TINT, which is dependent on the values of TF, ~ Ti;wi Tw and aWF 

through [5.12] in the simplest case. The greybody fits in Figure 7.2 suggest 

that, for this experiment at least, T~t) is approximately constant. Assuming 
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Figure 7 .3. Confidence limits for the LM fit displayed in Figures 7 .lc&d near 
the beginning (50 ns) and end (250 ns) of that part of the radia
tion histories fit by the model. The designations 68.3%, 95.4% 
and 99.99% refer to that fraction of the data (which total 4) 
satisfied by the range of model values (Egb' Tgb) encompassed 
within the appropriate regions and contours, subject to the 
assumption that the experimental errors are normally distributed. 



Chapter I 

C\2 
0 

I 

C\2 
0 

I 

3900 

3600 

113 

50 ns 

5600 7300 
Temperature 

250 ns 

4500 5400 
Temperature 

Figure 7.3 

E2] 68.33 

D 95.43 

D 99.99% 

9000 

0 68.3% 

El 95.43 

D 99.99% 

300 



Chapter I 114 Figure 7.4 

Figure 7 .4. Confidence limits for the LM fit displayed in Figures 7.2c&d near 
the beginning (50 ns) and end (250 ns) of radiation histories fit 
by greybody model. 



Chapter I 

C\1 
0 

I 

co 
0 

C\1 
0 

I 

3000 

3300 

115 

50 ns 

3800 4600 
Temperature 

250 ns 

4300 5300 
Temperature 

Figure 7.,.j 

n 'I 68.33 

G 95.43 

D 99.993 

5400 

[] 68.33 

D 95.43 

D 99.993 

300 



Chapter I 116 Models and Data 

this and a>..usw = 0, we approximate [6.1) as 

I>.moi>-,t) = E>..rnr{t) I},p([>.,Trnr{O)] 

= [1 - r>.FS][l - r~][l - r>.INr]e-a~t/texp IAPl(>.,TINr(O)] [7.10). 

In this case, the time dependence of I>.mod is due solely to the SW transmissivity. 

Using [7.10] in [7.3], along with T~O) = Tgb(O), we may fit the Fe-LiF data for 

a;sw- We present the results of this fit in Figure 7.5. The data are cut off at 

160 ns to reduce the influence of possible dynamics or Fe-Fe interface reshock 

on the fit. The parameter values resulting from this fit are given in Table 7 .1. 

We eliminate r>.FS from the fit since it is equal to 0.08 for LiF, as estimated from 

n=l.3g, the index-of-refraction of LiF at STP (CRC Handbook). Since the 

index-of-refraction of LiF seems to increase with pressure (......,0.002/GPa: Burn

stein and Smith, 1948), we expect r>-SF~r>.FS for LiF. Clearly, LiF has lost some 

transparency upon shock compression. The trend in a>..sw toward lower values at 

longer wavelengths is unresolved but consistent with the Bouguer's law expecta

tion that a>.. = 47rwe/>-, if we, the electromagnetic extinction coefficient (Siegel 

and Howell, 1g81, p. 427), is constant or varies inversely with >.. As suggested 

above, similar fits for Fe-Al20 3 imply that a>..usw> a>.swi an intriguing possibility 

which we do not yet understand. 

Lastly, we take the results of the greybody fit shown in Figure 7.ld for the 

Fe-Fe-Al20 3 experiment, assume Tgb(t) = Trnr{t), and use [5.10) to write 

_ (1 + <1vw) [ ( ) 
ATFW - erfc{ ~/2./ KFtexp} Tgb 0 - Tgb(texp)] [7.11). 

With Tgb(O) - Tgb(texp) = 1200 K from the fit displayed in Figure 7.ld, we may 

calculate the trade-off between the FL-TW interface temperature due to 

reshock, ATFW' and the ratio of the reshocked-layer thickness, ~ to the FL 

conduction length scale, V KFtexp' for different values of the FL-TW interface 

mismatch, aWF. These calculations, displayed in Figure 7 .6, imply that the 
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Table 7 .1. Simplified Radiation Model Parameters. a 

Wavelength (1-r >..sF')(l-r >-INI') ~ 
(nm) (m-1) 

450 0.76 137 
600 0.56 134 
750 0.68 125 
900 0.67 122 

a For this fit, Xirs=4.15 mm, texp=390 ns, TINI' = 4200 K and rAEF = 0.08 at all 
wavelengths in fit. 
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Figure 7.5. Time-dependent spectral radiance fits to the data displayed in 
Figure 7.3a for the Fe-Fe foil-LiF target. We fit [7.9] to the first 
half of the Fe-LiF data displayed in Figure 7.3a via [7.2]. The 
slope of each continuous curve, representing the fit for the 
corresponding wavelength, constrains the effective normal absorp
tion coefficient of the shocked LiF, while the intercept constrains 
the Fe-LiF interface and shock-front effective normal 
reflectivities. 
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Figure 7 .6. Magnitude of temperature at FL-TW interface due to reshock, 
t::i.. TFW' versus the ratio of the reshocked layer thickness, <\w , to 
the conduction length scale, -J KFtexp· This trade-off is con
strained by the magnitude of Tgb(O) - Tgb(texp) from from the 
grey body fit for the Fe-Fe-Al20 3 data displayed in Figure 7 .2a. 
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larger the reshocked-layer thickness relative to the FL conduction length scale, 

the higher the reshock temperature at a given thermal mismatch. For this par

ticular experiment, we expect aWF~0.1 from calculations discussed above; we 

also expect A TFW~2000 K from the calculations presented in Figure 4.5a. In 

this case, Figure 7 .6 and model calculations imply that ~~2J ~texp,...._.10-5m. 

Since this is a film experiment, with d ........... 10-0m, we tentatively conclude that all 

of the film layer experienced reshock in this experiment. 

§8. Summary 

We consider the effects of release/reshock, phase transitions, and conduction 

on the shock-compressed temperatures of the target components and their inter

faces. Comparison of the model with the results of experiments on Fe-Fe-LiF 

and Fe-Fe-A120 3 targets suggests the following: 

1. Release/reshock calculations for Fe-Fe-A120 3 targets, in comparison with 

the experimental results of Bass et al. (1987), suggest that Fe experiences 

approximately 200-1500 K of reshock heating at both Fe foil-Al20 3 and Fe 

film-A120 3 interfaces when released from ~ 245-300 GPa to interface pres

sures of 190-230 GPa. Below 190 GPa, reshock for Fe-A120 3 interfaces 

appears to be minimal. Both the data and calculations suggest that the 

degree of reshock is strongly pressure-dependent, which is consistent with 

the results of Urtiew and Grover (1974). In contrast, Fe released from the 

same range of Hugoniot pressures to Fe-LiF interface pressures between ~ 

130 and 160 GPa experiences little or no reshock. This more ideal nature of 

Fe-LiF interfaces is enhanced by the fact that, besides being a poorer 

shock-impedance match to Fe than A120 3, it is also a poorer thermal match, 

resulting in less change in the interface temperature away from the Fe

release state temperature. Comparison of data and calculations for both of 

these windows suggest that, while attention to the initial conditions of the 
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interface is essential to minimize reshock, a more important factor may be 

the choice of window. 

2. In the absence of energy sources and significant energy flux from other parts 

of the target, the rate of change of the interface temperature, Tn-rr(t ), is pro

portional to -µexp(-µ 2), where µ = ~ /2.[j;'j,. For Fe at FL-TW inter

faces, v'~texp.........,10 µm; consequently, a 100 µm reshocked-Fe layer would 

relax very little, remaining near Tn-rr(O) on the time scale of the experiment. 

However, if ~........,1 µm, Tn-rr(t) relaxes almost instantaneously to its value 

Tn-rr( oo ). Tn-rr(t) is resolvably time-dependent for ~........,2J ~texp· 

3. Greybody fits to an Fe film-Al20 3 experiment of Bass et al. (1987) show the 

greybody effective emissivity, Egb(t ), to increase slightly with time, while the 

greybody temperature, Tgb(t), decreases with time. This behavior is charac

teristic of most Fe-Al20 3 experiments. The decrease of Tgb(t) can be 

explained in terms of the model for Tn-rr( t ), and it implies that ~........,2J ~texp 

for this experiment. Further, assuming Tgb(t) = Tzr,rr(t ), the greybody fit 

constrains the amount of reshock, ~ TFW, to be ;:::;,2000 K with aWF.........,0.1 and 

~;:::;,2v' ~texp· A slight decrease of the Al20 3 absorption coefficient upon 

shock compression can explain the slight increase of Egb(t) with time. This 

may be consistent with the observation that the refractive index of Al20 3 

seems to decrease with pressure. In contrast, greybody fits to data from an 

Fe-Fe foil-LiF target show a relatively constant greybody temperature and 

decreasing greybody emissivity. The constant greybody temperature implies 

a constant interface temperature, as we expect for an interface experiencing 

minimal reshock, while the decaying €gb(t) is consistent with a shock-induced 

increase in the absorption coefficient of LiF. Setting Tzr,n{O) = Tsb(O), we fit 

a simplified version of the full radiation model to these data to find 

a>.sw.........,100 m-1 (Table 7.1) for LiF, shocked to 122 GPa in this experiment. 
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4. Finally, we note that the equilibrium thermodynamic Hugoniot temperature 

of Fe is strongly influenced by electronic and/or anharmonic contributions 

to Cy at high pressure, as evidenced by both 1), the results of Boness et al. 

(1986) when used in Equation [4.50], [4.53] or [4.54], and 2), by requiring the 

solid Fe Hugoniot and an extrapolation of the experimentally constrained Fe 

melting curve (Williams and Jeanloz, 1986) referenced to this Hugoniot, to 

intersect at 245 GPa (Brown and McQueen, 1982). This last constraint pro

vides a value of O(pJ = 0.046 J/kg·K2, as compared to 

f(pi) = 0.090 J/kg·K2 from the work of Boness et al. (1986), suggesting 

some anharmonic contribution to Cy of E-Fe. These results substantiate the 

arguments of Brown and McQueen (1982, 1986) for the importance of 

including electronic contributions to Cy when calculating TH of shock 

compressed metals. 
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§9. Appendix A: Thermodynamics and Shock Compression 

The calculations discussed in the text for Fe-Fe-Al20 3 and Fe-Fe-LiF targets 

are based on equilibrium thermodynamic models for the Helmholtz free energy, 

F(T ,p ), of the solid- and liquid-states of Fe. As discussed in the text, this model 

is based on 1), a Debye model for the harmonic contribution and 2) the low 

temperature (T< <TF, the Fermi temperature) electronic contribution and 3) 

high temperature (T>00 , the Debye temperature) anharmonic contribution, 

which we combine for simplicity, since they are of the same order in T. The 

liquid-state model is presented elsewhere (Chapter V). In the last two parts of 

this appendix, we detail certain relationships between isentropic and Hugoniot 

states using this model, and a method to recenter experimental U-v relations to 

the STP density of high pressure phase, both of which are used in the calcula-

tions. 

A.1. Solid-State Equilibrium Thermodynamic Model 

For a cubic or isotropic solid material subject to an isotropic state of stress, 

the combination of the Debye model for the harmonic contribution along with 

the high-temperature anharmonic and low-temperature electronic contributions 

provides an expression for the Helmholtz free energy, F(T ,p ), i.e. (e.g., Wallace, 

1972, Sects. 5, 19 & 24; [4.25] in the text) 

F(T,p)= {<P(p)+ ~vR80(p)} 

Note that F has units of J/mol. For simplicity, we neglect possible band

structure and electron-phonon interaction contributions to F in writing [A.1]. 

Relation [A.1] is correct to O(T-3) in the anharmonic contribution to F, and to 

all orders for the harmonic contribution in the context of the Debye 
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approximation. This slight inconsistency is due to the unavailability of a tract

able anharmonic model, analogous to the Debye model, for the materials of 

interest. Also, for Fe, we are guided by the results of Andrews (1973), who was 

able to fit various data on the thermostatic properties of the a and €-phases 

with a De bye model for the harmonic contribution to F, ignoring anharmonicity 

altogether (although anharmonicity may be reflected in the value of his f). As 

discussed in the text, the anharmonic coefficient A 2(p) is dependent on the par

ticular model chosen for the pressure and temperature dependence of the anhar

monic phonon-frequency spectrum. Since we do not have such a model for the 

materials of interest here, we simply combine it with the electronic contribution 

to form O(p ), as given in the text. 

On this basis, [A.1] provides the means to a rational parameterization of the 

approximate density- and temperature-dependence of a number of solid-state 

properties, such as the pressure, i.e., 

( 
BF ) 1 P(T,p) = p Blnp T = P(O,p) + 3vRp1oE0(x0 )T + 2 pwOT2 [A.2], 

with 

P(O,p) = P ( d~=p ) + : vRp00 / 0 [A.3], 

where 10 is the lattice Griineisen's parameter in the Debye approximation, as 

defined in the text. From [A.1], the molar entropy is given by 

The isothermal bulk modulus is given by 

JYT,p) = p [ ~~ J T = K(O,p) 
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[A.5], 

[A.6], 

which is assumed constant. The molar heat capacity at constant volume (den

sity) is 

( o
2
F ) { 3Xo } CJT ,p) = -T -
2 

= 3vR 4E0 (x0 ) - + OT oT v eXo _ 1 
[A.7]. 

The change in pressure with temperature at constant density given by, from 

[A.3], 

[A.8]. 

From [A.7] and [A.8], we have 

'fCv = 'loCv + [w - 'f0 ]0T [A.9], 

and so 

[A.10], 

which is very weakly temperature-dependent above 0 0 since W'::::::,'fo and 0~3vR. 

Other properties given by a ratio of the derivatives of F(T ,p) include the 
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coefficient of thermal expansion, 

the isentropic bulk modulus 

a(T,p) = p/Cy 
Kr 

:Kg(T ,p) = Kr + p/Cv 1T 

and the heat capacity at constant pressure, 

These are the solid-state model properties used in the text. 

A.2. Connection of Isentrope and Hugoniot 

[A.11], 

[A.12], 

[A.13], 

To use the model as detailed above, we need to calculate the change of cer

tain model properties, such as P, with density at zero temperature. So, we 

relate the zero temperature model properties to the known change in density 

along an appropriate isentrope or the Hugoniot, as follows. From [A.3], we have 

with Xni = 0 0 /Ts,: P(T51,p) is given by [4.27] in the text, i.e., 

P(T51,pJ = F1 + PHIH tl.e51(pJ + :~ {1 - [1+ ! 1J11:}[PH - f1] 

[A.14], 

[A.15], 

and fl.e
51 

is calculated numerically, as discussed in the text. In a similar fashion, 

we have, from [A.5] and [A.12], 

Kr(O,p) = Ks(T,p) - p/cvT - 3vRp10 (l - q0 - 310 )E0 (x0 )T 

- 9vRp/
0 

/oXo T - !.p(l - w)wOT2 
eXo _ l 2 

[A.16]. 

To get an expression for :Kg(T ,p) along the Hugoniot, we follow McQueen et al. 

(1967) in equating an infinitesimal change in specific internal energy (SIE) along 

the Hugoniot with one along an equilibrium thermodynamic path, as follows. 
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From the first law of equilibrium thermodynamics, we may write, at a given 

density Pri the relation 

e(s,pr) = e(sriPr) + J 5T(s*,pr)ds* 
Sr 

[A.17], 

where e( s,p) is the SIE and s is the specific entropy. Since we have assumed the 

shock-compressed state is one of thermodynamic equilibrium, we may set 

Pr=Pw Sr=Sir, and write 

de(s,pJ = de(SwPJ + d\[
5

T(s*,pJds*} 
8ii 

[A.18], 

giving us an expression relating an infinitesimal change in SIE along the 

Hugoniot, de(swpJ, in terms of one at the same density but at another specific 

entropy. From [4.1] in the text, we have another expression for de(SwPJ, i.e., 

[A.19]. 

Substituting this into [A.18], we have 

Now assuming s=s(P,p) (i.e., e=e(P,p)), we have 

Tds = ..l_dP - ~dp 
Pl p2

/ 
[A.21]. 

Putting this into [A.20] and rearranging, we obtain 

[A.22], 
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where '"Ya= '"'fJ..swpJ. Letting P-+Pa and s-+sw we obtain the desired expression 

[A.23]. 

In the text, we further assume '"Ya = '"'frHJ i.e., that / is a function of density 

alone. 

A.3. Relations Between Isentropic and Hugoniot Properties 

The purpose of this part of Appendix A is to detail some relations used in 

the text to relate Hugoniot information to the isentropic properties of low- and 

high-pressure phases referenced to the same initial state (i.e., Ti and fi in the 

text). Among other things, we derive an isentropic equation of state for high

pressure phase of the material based solely on the U-v relation for this phase, as 

mentioned in the text. First, we outline a number of established relations based 

on the balance relations for mass and momentum across the shock front, and a 

relationship between the shock-wave propagation velocity and material velocity 

(i.e., U-v) relation, and then we show how to use these to find various isentropic 

properties of high-pressure phases described by the U-v relation. 

Assuming the material responds adiabatically as a fluid in hydrostatic equili

brium to shock compression, the balance relations for mass and momentum 

across a shock front separating a material into two adiabatic, homogeneous 

fluids in hydrostatic equilibrium are, respectively (see the Introduction to this 

thesis, [I.30] and [I.50]), 

[A.24], 

and 

[A.25], 

where [IPIJ=Pa-Fi is the jump in pressure, and [lvj]=vH-vi the jump in material 

velocity, across the shock front; Fi and vi are then the pressure in and the 
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velocity of the material ahead of the shock front. Also, Ua-u-v H is the speed of 

propagation of the shock front with respect to the shocked material, Ui=u-vi is 

that with respect to the unshocked material, and u is the speed of displacement 

of the shock front (i.e., the "intrinsic" velocity of the shock front). Equations 

[A.24) and [A.25) relate 3 unknown, i.e. u, Vw PH and Pw assuming the initial 

conditions vi,~ and pf are known. However, since UH= Ui-[lvl), we can reduce 

this number to 3 (Ui, PH and pJ by making the constitutive assumption that Ui 

may be written as a function of [lvl] in a Taylor's series about vi. To second 

order, this is 

[A.26), 

with 

[A.27), 

[A.28), 

and 

1 { d
2
U } 

ci = 2u!l~o d[lvl]
12 [A.29], 

giving us 3 equations, [A.24], [A.25] and [A.26], relating 3 unknowns, [lvl], pH 

and Pw Note that ai and bi are usually positive, while ci is usually negative. 

Using the relative compression, 'f/H=l-pf / Pw as defined in the text, we may 

write [A.24) as 

[A.30). 

Putting this into [A.25], we have either 

[A.31), 
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[A.32], 

depending on whether or not we eliminate [lvl] or Ui, respectively. From [A.25] 

and [A.30], we obtain a relation for Ui in terms of ai, bi, ci and 17ID i.e., 

c·2n4 U·4 - {[1-b·n 12 - 2a·c·n2} U 2 + a·2 = 0 I 'IH I 1•1HJ I J'IH I I [A.33]. 

As shown by Prieto and Renero (1970), for bi?JH<< 1, [A.33] has the solution 

[A.34]. 

Putting this into [A.31], we obtain 

[A.35], 

which we may rearrange for 17J[IPI]), i.e., 

bi - I 2 11H = 
2 

[µ-y µ -1+2aicd 
(b· -2a·c·) I I I 

[A.36], 

where µ is given by [4.17] in the text. Note that ci, when resolvable by experi

mental data, is usually negative (e.g., Pastine and Piacesi, 1966; Ruoff, 1967; 

Prieto and Renero, 1970; Brown and McQueen, 1982). In this case, we see that 

PJci=O)--+-oo as bi17H--+-l, but PJci<O)--+-piai2bJci in this same limit (Prieto and 

Renero, 1970). Clearly, ci cannot equal zero for physically-reasonable asymp

totic behavior. However, if I ci I <<b? /4ai (Prieto and Renero, 1970), setting 

ci=O for bi?JH<< 1 is at least mathematically valid. If we do this, [A.35] reduces 

to the so-called shock-wave "equation-of-state" (McQueen et al., 1967). For E 

and/or other high-pressure phases of Fe, for example, I ci I should be less than 

1.6X10-4 s/m (using the appropriate parameters in Table 4.1) by implication of 

the apparent accuracy of the linear fit to the U-v data (Brown and McQueen, 
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1986). 

Following Pastine and Piacesi (1966), we may substitute [A.31] into [A.26] 

and obtain 

a· - lim {_.!._~}Yi 
1 

- [ivlJ-.o Pr "'H 
[A.37]. 

Since the limits pH-+pr, rJH-+O and [IPl]-+0 are formally and physically 

equivalent to [lvl]-+O, [A.33] becomes 

0 
a·=-

1 0 [A.38], 

an indeterminate form. However, since both [IPI] and 'T/H are analytic functions 

of 'T/H or pH via [A.35] and by definition, respectively, we may use L'Hopital's rule 

to evaluate [A.37], i.e., 

ai = lim { ( p: ) 2 ( d[IPI] ) l 
PH-'"Pf' Pi dpH 

or 

with 

In a similar fashion, we find an expression for bi, i.e., 

with 

K~ 

bi = .!_ lim { 1 + K~ } 
4 PH-'"Pf' 

Yi 

[A.39], 

[A.40], 

[A.41]. 

[A.42], 

[A.43]. 
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Lastly, for ci, we obtain 

[A.44], 

with 

[A.45], 

and 

[A.46]. 

Since the initial ([lvl]-+O) slope and curvature of the shock-compression locus 

are equal to those of the isentrope referenced to the same initial state (Bethe, 

1942), we have 

lim {KJ = K 0 

PK"""+PP ~ 
[A.47], 

and 

[A.48]. 

Using [4.10] in the text, we may relate K~' to K~
11 

, i.e., 

[A.49]. 

In these relations, Ksi0 , K~' and K51°11 
are the isentropic bulk modulus, and its 

first and second pressure derivatives at constant entropy, si=s(Ti,fi), of the 

low-pressure phase, a. 

Experimental U-v relations applicable to high-pressure phases of a material 

are usually centered at the initial density of the low-pressure phase, pf. To 

recenter this U-v relation to the appropriate phase, /3, and obtain estimates of 

certain properties of /3 referenced to P(~Pf, we calculate new values of ai, bi and 
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ci (which represent the experimentally constrained U-v relation for the ,8-phase, 

centered at pf), £.e., at, bi* and ct. These values of the U-v coefficients, cen

tered at Pi, then represent a so-called "metastable" U-v relation equivalent to 

that obtained by McQueen et al. (1967). To calculate at, ht and ct from 

pf, ai, bi, ci and Pi, we first note that the pressure and density of the ,B-shock 

state are related by [A.26) if ai, bi and ci in [A.26) result from a fit to data from 

that part of the U-v plane representing (3. Instead of [A.28) and [A.29), we now 

have, for the metastable U-v relation 

[A.50), 

and 

* 
[lv*IJ2 = TJH [IPIJ 

Pi 
[A.51), 

where [IPI] is still given by [A.26]. With these, the procedure to find expressions 

for at, ht and ci• is exactly analogous to that just followed in obtaining [A.30), 

[A.32] and [A.34] for ai, bi and ci, respectively. All we do is replace ui with ut, 

[lvlJ with [Iv* I], pf with Pi, ai with at, bi with ht, and ci with ct, except in 

[A.26], because it gives [IPI] and pH for /3, referenced to pf, as stated above. 

Consequently, 

K 1/2 K 1/i 
at = ( p: } PJF~ = [ p~ ) [A.52], 

* 1 [ I } l 1 I bi = 4 1 + {KH fJH=PI = 4[1 + K51 l [A.53], 

and 

ci• = -
1
-{2bt[2 - ht]+ {KH K~' },,.-=p} 

12a·* rtt I 
I 

= 121a·* { 2bt[2-bt +/(Pi)] + K51 ~' } 
I 

[A.54]. 
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From this, we see that if ci~o, then 

11 [ I K51 K51 ~ K51 -7-4'"Y(PJ] [A.55], 

and this is the case for most materials from the experimental-resolution point

of-view. Assuming that ci=O, [A.35], [A.41], [A.49] and [A.51] provide 

* { Pf [1 + bi17i] }1/i 
ai = (l-17i) [1 - bi11d3 ai [A.56], 

and from [A.35], [A.43], [A.50], [A.51] and [A.53], 

b 
* 1 { {4[1 - 17i]bi + [2 - 17i]bi

2
17i - 1} } 

. = - 1 + ------------
• 4 [1 - bi11d[l + bi17i] 

[A.57), 

where 11i=l-pflpi. Note that, from these relations, at-+ai and bt-+bi as 

pH-+pf, i.e., as 1Ji-+0. In principle, [A.40], [A.42] and [A.44] may be used as con

sistency relations between Hugoniot data and other types of compression data 

for appropriate materials. Note that we need Pi=Pf to obtain at and ht from 

this method. If we know this density sufficiently well, we also gain estimates of 

K 51 and ~ of the high-pressure phase, as well as at and ht. In this paper, for 

example, we use [A.45]-[A.46] to estimate the isentropic properties of liquid-Fe 

referenced to STP given in Table 4.1. 

§10. Appendix B: Isentropic Release and Reshock 

Considering the shock-compressed material as a thermodynamic "system," 

and the "lab" as its "surroundings," a balance of energy implies that any 

infinitesimal change in the specific internal energy of the system, de( 8q,8w ), is 

due to the difference between the net amount of heat transported into the sys

tem from the surroundings, 8q, and the net amount of work done by the system 

on its surroundings, ow. If we assume the material to be internally in thermo

dynamic equilibrium, then de = Tds - Pdv and any infinitesimal change in 
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specific entropy of the system is given by 

1 1 
ds = - 8q- -(8w-Pdv] T T 

Appendix B 

(B.1]. 

Adopting the idea that heat transport in or out of the target is insignificant on 

the time scale of release, we assume that the release path is adiabatic (8q=0). 

Further, we assume that the mechanical work done by the system during release 

is entirely reversible (8w = Pdv ). In this case, the release path is both 

isentropic and adiabatic. 

B.1. Phase Transition during Release 

If a phase transition occurs during release, the constraint of isentropic 

release in turn places constraints on the phase transition. Consider a first-order 

transition from the shock-compressed phase /3 to a release phase rr. In this case, 

the total specific internal energy, e, total specific entropy, s, and total specific 

volume, v, of the two-phase system may be written in the form 

</> = (1 - x)</>f3 + x</>7r [B.2], 

where x is the mass fraction of 'Tr, and </> = { e,s,v }. As with a single-component 

system, an infinitesimal change in specific internal energy of the two-phase sys

tem, de, is balanced by the net heat flow into the system from the surroundings, 

8q, minus the net work done by the system on its surroundings, 8w. Assuming 

that each phase is internally in thermodynamic equilibrium (i.e., temperature, 

pressure and composition are homogeneous within the phase), an infinitesimal 

change in total specific entropy of the two-phase, single-component system is, 

from [B.1] and [B.2], 

Tf3 ds = 8q + x(Tf3 - T 11
") ds11" + {[gf3 - g11"] + s1r(Tf3 - T11")} dx - 8wir [B.3], 

where 

8wir = fJw - pf3 d[(l - x)v .B] - p1r d[xv 1 
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is the nonrecoverable work done by the system on the surroundings, and g is 

the specific Gibbs free energy. The second term on the right-hand side of [B.3] 

is the entropy produced by heat fl.ow between phases, while the third term is 

that produced by mass exchange between phases. A sufficient, but not neces

sary, set of conditions for isentropic ( ds=O) release through the mixed-phase 

region is then, on the basis of [B.3], 1), adiabatic release (8q=O), 2), mechanical 

equilibrium (P.8=P'1") in the system plus reversible (Pdv) work on the surround

ings (P=P.B=P'lr), 3), internal thermal (TP=T11") and 4), chemical (g.B=g'/(") equili

brium. Conversely, if these conditions prevail, release through the mixed-phase 

region will be isentropic. Clearly, even if release is isentropic through the 

mixed-phase region, it is no guarantee that the phase transition will occur in 

thermodynamic (i.e., thermal, mechanical and chemical) equilibrium. 

We choose to satisfy the constraint of isentropic release by assuming the 

conditions discussed above consistent with this, i.e., 1), release is adiabatic, 2), 

all work is recoverable and 3), the phase transition occurs in thermodynamic 

equilibrium. On this basis, we need an expression for the change in pressure 

and temperature across an isentropic phase transition. With s=s(P ,T) for each 

phase, an infinitesimal change of s in the mixed-phase region is, from [B.2] with 

</>=s, 

ds = [cC + x~cp] dlnT - [alv.B + x~(av )] dP + ~s dx [B.4], 

where cP is the specific heat at constant pressure, v is the specific volume, a is 

the thermal expansion, and ~</> = </>'](" - ¢>P is the jump of any quantity </> across 

the mixed-phase region. For an isentrope through the mixed-phase region, 

ds = 0. Putting this condition into [B.4], and noting that pressure and tem

perature do not vary independently along the equilibrium phase boundary, i.e., 

~v dP = ~s dTPB, we have 
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+As TPB(P) As dx = O [B.5]. 

Now we show that this relation for an isentropic path through the mixed-phase 

region is separable, and so an exact differential. Let 

II(P,x) = [cC + xAcp]Av - TPB[a:.Bv.B + xA(a:v )]As [B.6], 

and 

X(P) = As TPB As [B.7]. 

Then [B.5] becomes 

II(P,x) dP + X(P) dx = 0 

From [B.6] and [B.7], we have 

[B.8], 

and 

[B.9]. 

Note that both of these partial derivatives are functions only of pressure along 

the phase boundary. Since at any point along the phase boundary, p.B =PK, 

we have 

( 
dAs) AcP Av -- =---A(a:v) 
dP PB TPB As 

[B.10]. 

Putting this into [B.9], we have 

[B.11]. 

The condition for [B.5] to be an exact differential is XP = IIx. Since, from [B.8] 
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and [B.11], this is clearly not true, [B.5] is not an exact differential equation, in 

its current form. However, we may attempt to put it into such a form by solv

ing 

µTI(P ,x) dP + µX(P) dx = 0 [B.12], 

where µ is the integrating factor. Putting these into the exactness criterion, we 

require 

[B.13]. 

Since we already have Il(P,x) and X(P), we solve [B.12] forµ, i.e., 

[B.14]. 

Note that (TIX - ~) is a function of P only. In this case, we set µx = 0 and 

solve 

[B.15], 

to obtain the integrating factor 

µ(P) = exp{JP -
1 

{A( av)- Av {1 + AcP}} dP*l 
As Tm(P*) As 

[B.16]. 

With µ(P), [B.5) in the form [B.12) is now exact. On this basis, we may solve 

[B.5] as follows. We define 

wp(P,x) = µ(P) II(P,x) [B.17), 

and 

wx(P,x) = µ(P) X(P) [B.18). 

Integrating [B.17f with respect to pressure at constant composition, we obtain 

w(P,x) =JP µ(P*) II(P*,x) dP* + g(x) [B.19], 
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where g(x) is at most an arbitrary function of composition. Putting this into 

[B.18], we have 

[B.20]. 

Solving this for gx(x), we find 

[B.21]. 

Even though it appears that g(x) is a function of pressure, it cannot be, by its 

definition, [B.20]. Further, since 

[B.22], 

is actually not a function of x, we have 

[B.23), 

and so 

w(P ,x) = x µ(P) X(P) +JP µ(P*) [ll(P*,x) - x 11/P*)] dP* [B.24), 

with 

11 - llx = cC Av - Tm af3vf3 As 

Putting [B.25) into [B.24), we obtain 

[B.25]. 

w(P,x) = X µ(P) X(P) +JP µ(P*) [cC Av - Tra(P*) af3vf3 As) dP* [B.26). 

Note that w(P ,x) is equal to some constant since 

[B.27], 
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by definition, [B.12] above. Relation [B.26] is subject to the following boundary 

condition: 

f PJ 
'11(P~, x = 0) = µ(P*) (cC ~v - TPB(P*) af3vf3 ~s] dP* = constant (B.28]. 

Using this condition, we have the solution to (B.5] for x as a function of pres

sure along the phase boundary, i.e. 

1 tp x(P) = ( ) µ(P*) (TPB(P*)af3v f3 ~s - cC ~ v] dP* 
~s µ P ~v pg [B.29]. 

In [B.29], P~ is the pressure at which the release path of /3 intersects the 7r-/3 

phase boundary, i.e., where x = 0. In the models, we evaluate [B.29] numeri

cally along the phase boundary, TPB(P), until 1) x = 1 (complete transforma

tion) or 2) TPB = Tpa(PJ (partial transformation). In the former case, the new 

phase then releases to PR along a path beginning at the pressure and tempera

ture on the phase boundary where x = 1. 

B.2. Complete Release and Reshock 

Since the free surface of the completely released material has not been 

shocked, an impedance match between 1) the unshocked material, which 

impacts the next target material at the free-surface velocity achieved upon com

plete release (see text), and 2) the next target material provides us with the 

pressure of the DP or FL reshocked state, PRS. This reshocked state quickly 

relaxes via reverberations to a state with the same normal components of stress 

and material velocity as the shock-compressed state of the next target com

ponent. We assume that this occurs isentropically. 

The complete release process brings the material to a low-pressure state 

with a lower density and higher temperature than the density and temperature 

of the unshocked starting material. From this point of view, assuming all states 
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achieve thermodynamic equilibrium, we may use an energy balance in the 

pressure-density plane, such as that used in the obtaining the expressions for TH 

in the text (e.g., [4.46]), to connect the reshocked state with a state along the 

principal Hugoniot of the reshocked-state phase having the same density as the 

reshocked phase. Referring to Figure B.1, assume the shocked material experi

ences complete release to a pressure Pi, an absolute temperature TR, and a phase 

7r in thermodynamic equilibrium possessing a mass density p;-=p11{TR,PJ, specific 

entropy S: = s?r(TR,P), and specific internal energy e:=e(s:,p;-) (point A, Fig

ure B.1). Further, assume this material is immediately "reshocked" to a pres

sure PRS, temperature TRS, and phase 6 in thermodynamic equilibrium having a 

mass density p.Js = p6(TRS,PRS), specific entropy s.Js = s6(TRS,PRS), and specific 

internal energy e.Js=e(s.Js,p.Js) (point E, Figure B.1). Also, assume that the 

material deforms as a fluid. In this case, we may connect the complete release 

(point A, Figure B.1) and reshocked (point E, Figure B.1) states by the Rankine 

Hugoniot relation, i.e., 

e.:S- eR1r = - 1
-11RS[PRS + P.] 

2 1r I 
PR 

[B.30], 

with 1/RS = 1 - PR?r / p.Js being the relative compression of the material along the 

reshock path. In the text, we used the concept of an equivalent thermodynamic 

path to connect the initial and shock-compressed states of a material, occupying 

different phases of that material. Applying this to the present case, we may 

connect states A and E in Figure B.1 via a path A--+B--+C--+D--+E using a 

known reference Hugoniot, which ideally would be the "principal" (i.e., refer

enced to STP) Hugoniot of 6. Assume that the reference Hugoniot begins at a 

density p/ = p(Ti,Pi), represented by point B in Figure B.1. The reshock path 

between A and E is then represented by 

(A-B) 
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Figure B.1 Diagram depicting release-reshock calculation. 
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+ e(s/,p~) - e(s/,p/) 

+ e( ~,p~) - e( si 5 ,p~) 
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(B-C) 

(C-E) 

(A-E) 

[B.31], 

from [B.30]. Unless otherwise noted, all quantities apply to 6 in the rest of this 

section. Since part of the path represented by [B.31], i.e., B-+D, is the 

equivalent equilibrium thermodynamic path for shock compression of the 

material from p/ to p~, we have 

with 'T/H = 1 - pJ PRS being the relative compression, and 

from [4.15] in the text. Substituting [B.32] into [B.31], we have 

-
1

-11RS[PRS +Pi] = e(si,pJ - e(S:,PR1f") 
2pR1f" 

(B-C) 

(C-D) 

(B-D) 

[B.32], 

(A-B) 

(B-D) 

(D-E) 

[B.33]. 

Assuming, as before, that /, the equilibrium thermodynamic Griineisen's 
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parameter, is a function of density alone, (4.8] from the text allows us to write, 

for the path from D-+E, the relation 

(B.34], 

with '"'/RS = '"'f(PRS)· Substituting (B.34] into [B.33] and rearranging, we obtain 

with 

and 

</> = 1 - Pi I Pi ' 

T RS= {1-[1+ ! '"'/RS]17RS} ' 

TH= {1-[1 + ! '"YRS]17a} , 

Requiring PRS-+Pi as pRS-+PR1f' we obtain from (B.35] 

Rearranging (B.36], we have 

[B.35], 

[B.36]. 

(B.37], 

giving us an expression for the difference in energy between the complete release 

and ref ere nee states. If Pi = O, then 

With these relations, we obtain a metastable U-v relation (Appendix A), which 

allows us to calculate the density of the reshocked state from the pressure, and 
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with both of these, we calculate the temperature via the appropriate expression 

in the text. 

§11. Appendix C: Energy Transport in the Target 

In this appendix, we 1), derive conditions under which radiation and/or con

duction may be an important means of energy transport in the shock

compressed or released states of the target components, and 2), establish energy 

balance relations for the target components to be used in Appendix D and the 

text. We attempt 1) via a dimensional analysis of the local energy balance in a 

radiating, conducting target represented as a rectangular Cartesian continuum 

with material properties assumed to be isotropic and homogeneous in the ref er

ence (deformed) state. In constructing this energy balance, we assume that the 

radiant energy density and radiation stresses are negligible in comparison with 

the corresponding thermomechanical quantities. We also assume an equilibrium 

caloric constitutive relation for the specific internal energy of the relevant 

deformed state of each target component. With the deformed state as the refer

ence state, then, we may assume, for example, that the components of the heat 

flux qi are given by the classic Fourier relation in an isotropic medium 

(C.1], 

where k is the thermal conductivity. Under these circumstances, the local bal

ance of energy around the (deformed) reference state R is represented by 

(C.2]. 

In this relation, T is the absolute temperature, hi are the components of the 

radiant energy flux, and we have combined terms for the specific internal energy 

supply and mechanical dissipation rates to form r(xi ,t ). Also, pR, cP.R and kR are 

the density, specific heat at constant pressure and thermal conductivity of the 

reference state, R. Note that, in (C.2], time is judged relative to the beginning 
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of the reference state, at=a /at, and 1/J,; denotes partial differentiation of any 

field quantity 1/J(xi ,t) with respect to xi , the coordinates of the reference 

configuration R. Of the terms in [C.2], neither hi,i, the divergence of the radia

tive flux, nor r, the specific internal energy production rate, is specified. To find 

an expression for hi,i, we first need to discuss radiative transport in the target. 

All radiative transport models discussed in this paper are founded in 

geometric optics and the classical equation of transport ([C.3] below), both of 

which assume an optically isotropic propagation medium (i.e., one with a uni

form index of refraction). The form of this equation we use here presumes that 

1 ), all processes affecting the observed radiation intensity (scattering, absorp

tion, etc.) are independent of the intensity of the sources and 2), any scattering 

is elastic and isotropic. Under these conditions, the change in the quasi-static 

spectral intensity, i~ (si ), at a point p(xi) in the directions is given by (e.g., 

Siegel and Howell, 1981, Eq. 14-4) 

[C.3]. 

This is the radiant energy transport at a point p(xi) per unit time, per unit 

projected surf ace area normal to s, per unit wavelength interval d).. about a sin

gle wavelength :>.., per unit solid angle in a single directions. Note that the sub

script ).. denotes a spectral quantity. i~ is quasi-static because we assume it is 

not explicitly dependent on time, but only implicitly so through temperature, 

etc .. In [C.3], 8.i =8/osi, a>-= a>.(>..,T,P) and a>-= a>.(>..,T,P) are the spectral 

absorption and scattering coefficients, respectively, and i~e = i~e(:>..,T) is the 

spectral emission intensity, all along s. The first term on the right-hand side of 

[C.3] is the loss of intensity by absorption (including the negative contribution 

from induced emission), the second is the gain by all emission processes except 

induced emission, the third is the loss of intensity by scattering, and the last is 
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the intensity gained by scattering into the s direction from the solid angle w. 

Note that we assume, in writing [C.3], that the wavelength of the radiation is 

not changed as a result of these processes. If we integrate [C.3] over all solid 

angles and wavelengths, assuming any scattering to be isotropic, we obtain hi,i 

at a point p(xi ), i.e., 

[C.4], 

(e.g., Siegel and Howell, 1981). In this relation, the first term represents the 

rate of emission of radiation per unit volume in all directions, while the second, 

given by 

T>..(>-) = J i~ (>.,w*) dw* , 
w=411" 

is the radiation intensity scattered from all directions into p at wavelength >.. 

In principle, we could substitute [C.4] into [C.2] and try to solve the resulting 

nonlinear integrodifferential equation for the temperature field in the medium of 

interest. However, here we want only to establish the magnitude of hi,i relative 

to other terms in the energy balance, [C.2]. 

To judge the relative magnitude of the terms constituting [C.2], we render 

them nondimensional (ND) by the following transformation 

In this transformation, 8 and TR are the ND and reference (e.g., Hugoniot or 

release state) temperatures of the material, while ~TR is the difference between 

TR and some "maximum" possible temperature such that 8~0(1). For exam

ple, if TR is the release-state temperature, ~TR represents the difference between 

it and the reshocked-state temperature at the same pressure (see text). Substi

tuting [C.5] into [C.2], we obtain 
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1 1 . 
80--0·· +-h'· =D!'le 

r Pe '11 Bo ,• ""'"R 
R R 

[C.6]. 

In this expression, 

is the Pec1E1it number, "'R=k.J pRcP;R is the thermal diffusivity, 

is the Boltzmann number, and 

rRtR 
D~-----

pRcP;R!:l. TR 

is the Damkohler number, of state R. PeR, BoR and D~ are, respectively, the 

ratios of 1), free enthalpy flux to conductive flux, 2), free enthalpy flux to radia

tive flux, and 3), generalized internal energy supply rate to free enthalpy flux. 

We are particularly interested in PeR and BoR, since their respective magnitudes 

will control the relative contributions of conduction and radiation to the energy 

transfer in the interior (away from the boundaries) of any layer of the target 

model. To obtain the magnitude of BoR, we first require an expression· for hR, 

which may be obtained from [C.4]. First, we assume i~e(.A) is given by 

[C.7], 

where i>..pJ(A,T) is the Planck function and n>.. is the index of refraction of the 

medium around p. Then, defining 1), the Planck mean absorption coefficient 

(e.g., Siegel and Howell, 1981) 

<a>p1(T,P) = --------- [C.8], 
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and 2), the incident mean absorption coefficient 

<a>in(T,P) = -------- [C.9], 

where 

and noting that, if n>. is independent of >-., 

where ase=5.66g6X10-8W/m2-K4 is the Stefan-Boltzmann constant, we may 

put [C.4] in the form 

[C.10]. 

Nondimensionalizing [C.10] with the appropriate transformations in [C.5] plus 

[C.11], 

and 4>R = t::i.TJTR. Substituting hR into the Boltzmann number, we obtain 

[C.12]. 

From [C.6] and [C.12], we see that radiative transfer will be an important 
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means of energy transfer in an optically thick (BoR( 3R-+oo )-+0) and/ or high

temperature medium, but not in an optically thin (BoR(~-+0)-+oo) medium, all 

other parameters being finite. 

At a boundary between two target components, we have a slightly different 

energy balance to consider. If we assume that the boundary is material and 

does not contribute to the balance of energy across it, the local balance of 

energy across the boundary between layers I and J takes the form 

[ q: + h: ] vi = [ qj + h 1 ] vi [C.13], 

where vi is the "outward" normal unit vector to the interface. Using [C.1] and 

the definition of hR given above, this takes on the ND form 

. . 1 . µ . 
e I 0 I - h1 hi 

1,i v - µ J,i v - Sk I Vj - Sk J Vj 
I J 

[C.14], 

[C.15]. 

This parameter is a measure of conductive to radiative flux across a layer xQ 

thick with effective temperature gradient I:::. TJxQ. Estimates of the parameters 

in these relations for the high-pressure states of the metallic DP, FL and dielec

tric SW are given in Table C.1. 

Of the parameters entering into PeR, BoR, and SkR, we note that 

pR, cP.R' TR' I:::. TR' texp and nR are relatively well-known (i.e., to within a factor of 

two) through the impedance match and equilibrium thermodynamic shock 

compression/release calculations discussed in the text. Most uncertain of all 

material parameters constituting BoR and PeR, and so SkR = BoJPeR, are the 

thermal conductivity, kR, and the absorption coefficient, ~' of the high-pressure 

state of each layer. For perfect crystalline nonmetals, k ex: 1/T, while for 

metals, k ex: constant at high temperature, respectively (e.g., Berman, 1976; for 
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Table C.1. Order of Magnitude Parameters. 

Parameter metal dielectric SI units 

PR 104 103 kg/m3 

CP,R 103 103 J/kg·K 

kRt 102 101 W/m·K 

TR 104 103 K 

~TR 103 103 K 

IlR 1 1 

~t >106 10 m-1 

Xexp <10-5 10-3 m 

texp 10-7 10-1 s 

PeR <1 <106 

BoR 10 <109 

SkR 10 103 

t - STP values. 
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minerals, see Roufosse and Klemens, 1974), implying that the values of kR in 

Table C.1 are upper bounds if these dependences are relatively insensitive to 

pressure. If we assume that k for metals is dominated by its electronic com

ponent, ke, we can use the Wiedemann-Franz-Lorenz (WFL) relation ([5.8] in 

text) to estimate k from electrical resistance data, or some assumption on Pe, 

since the relevant data are relatively scarce. Bridgman (1952) investigated the 

change in electrical resistance of many statically-compressed materials, including 

iron, but only at low pressure (~10 GPa). Keeler (1971) investigated the 

change in the electrical resistance of shock-compressed copper and iron up to 

140 GPa. He found that Pe of shock-compressed Cu decreased from ::::::::: 16.7 to 

5.6 nO·m with pressure up to ::::::::: 100 GPa; a datum at 140 GPa implies that the 

resistivity of Cu reaches a minimum between 100 and 140 GPa and then 

increases to ::::::::: 0.83 nO·m at 140 GPa. As for Fe, the data imply that its electr

ical resistivity decreases from ::::::::: 2.5 to 0.47 nO·m between 13 and 140 GPa 

(above the a~€ transition). In light of [5.8], these trends imply that the ther

mal conductivities of shock-compressed Cu and Fe increase with shock pressure, 

against the high-temperature expectation expressed above. Consequently, we 

may assume with some basis that the STP value of k provides a lower bound to 

the high P,T value of the metallic target components, kR. 

The thermal conductivity of dielectric target components is dominated by 

the lattice contribution, kP, at high pressure, we may estimate k from the lattice 

thermal-conductivity model of Roufosse and Klemens (1974), who argue that 

the acoustic branches of the phonon-spectrum dominate kP. Using this assump

tion, they arrive at an expression for kp, i.e., 

k = !L{ !{ 2!.} 1/2 + .!..{ l} l 
P T 3 T 3 T1 

[C.17], 
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with 

and 

1 1 Ma vJ 
B - 21;632/37r7/3 a2nl/3 ii ' 

where n is the number of atoms in the unit cell, Ma is the atomic mass, v q, is the 

velocity of sound, ks is Boltzmann's constant, and a3 is the atomic volume, and 

Ip is the acoustic-phonon Gruneisen's parameter. This relation is consistent 

with the k ex: 1/T expectation at low pressure. However, if the effect of pressure 

is to increase k, then k may change little from its STP value. Arguments in 

favor of this are given by, e.g., Roufosse and Jeanloz (1983), who find that vari

ous two-body interatomic force models appropriate for halides predict an 

increase in kP with density and a decrease across polymorphic phase transitions 

with an increase in coordination. We use (C.16], [C.17], the solid-state thermos

tatic model presented in Appendix A, and the equilibrium shock-compression 

relations presented in the text to estimate high P ,T values of ke for metals and 

kp for dielectrics in our targets. These calculations, discussed in the text, are 

consistent with assuming the STP value of k for metals and nonmetals is a 

lower bound to the high P ,T values of k for these materials. 

As for the absorption coefficient, we expect the STP values given in Table 

C.1, like those for k, to be lower bounds, since absorption in the optical band is 

most likely to increase with pressure and temperature (e.g., Siegel and Howell, 

1981). Only a few initially transparent materials, such as Al20 3 (Bass et al., 

1987), retain their original transparency upon shock compression to high pres

sure (~ 250 GPa). 
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From the parameter values given in Table C.1, we expect BoF ~ 107 m-1/~ 

and Bow,..._, 1010 m-1/aw for the FL and SW, respectively. Since we have no 

upper bounds on ~ and aw, we cannot really say that radiation will never be 

important within the FL and SW, but it seems unlikely. What we can say is 

that if ~ ~ 107 m-1 and aw~ 1010 m-1, radiative transport should not contri

bute significantly to the energy balance within the FL and SW (shocked win

dow), respectively, on the time scale of the experiments. Note that this bound 

for ~ is probably underestimated, since we have assumed a rather large value 

for TR in the DP or FL (Table C.1). As for conduction, we have, from Table 

C.1, Pe,. ~ 1012 m-2 x; and Pew~ 1012 m-2 x.;, and this implies that conduc

tion will be significant over a length scale of ~10-6 m in the DP, FL and/or 

SW. On this basis, it is likely that conduction will contribute to the energy bal

ance in both the FL and SW on the time scale of the experiment over a length 

scale equal to the thickness of the FL, since we expect kW' and especially kF, to 

increase with pressure and temperature (i.e., during shock compression). From 

all this, we believe that the values of BoR and PeR given in Table C.1 are upper 

bounds to all relevant values of these parameters at higher pressures and tem

peratures. In order to emphasize the uncertainty of kR, ~ and the governing 

length scales, x,. and xW' of the FL and SW, respectively, we write [C.6] for the 

DP, FL and SW, and [C.13] for the interface, using the values for the better 

constrained parameters from Table C.1, in the following forms (with I~FL and 

J~sw): 

[C.18), 

a e 10-13 kw 0 + 10-10 h i D r w - -2 w ii aw w i = aw ew Xw , , 
[C.19), 

and 

0F,I. Vi = k,,.,JCF 0 . Vi + 107 ¥; hi V· - 103 Xi;JCvJ!w hi V· 
k W,I k F I k W I i;JCw F F 

[C.20]. 
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For a given layer to be, in effect, spatially infinite with respect to a given proc

ess (i.e., the boundaries have no effect on the process), its length scale must be 

at least an order-of-magnitude less than the layer thickness. The conductive 

length scale is xRron=VKRtexp' while that for radiation is x:Rnd=~-1. The STP 

values of these length scales, given in Table C.1, when compared to xR of each 

layer, imply that both the DP and SW are infinite with respect to conduction, 

but that the SW is finite, while the DP is infinite, with respect to radiation. 

This implies that any conduction in the DP and SW, and radiative transfer in 

the DP, will be quite localized on the time scale of the experiments, but radia

tion will pass essentially unhindered through the SW for ~xR-1,....._,103 m-1. In 

this case, only the interface, shock front and USW free surface will significantly 

affect the radiation intensity. We consider the effect on radiation of propaga

tion across the interface, SW, shock front, USW and its free surf ace in Appen

dix E. By the same reasoning, we conclude that any conduction effects on 

energy transport affecting the observed radiation field will be confined to a 

region near the FL-SW interface on the order of the FL thickness. On this 

length scale, heterogeneous heating at the DP-FL interface and/or phase 

changes between the DP-FL and FL-SW interfaces may also contribute to the 

temperature field in the neighborhood of the FL-SW interface. In light of all 

this, we assume that xF and Xw are given by the corresponding values of xRron for 

the DP and SW. Putting these into [C.18]-[C.19] and reducing them, we obtain 

and 

. k . 5 ~. . e · V 1 = ~ e · V 1 + 10- _'"""'F_ h I V · 
F,I k F,I k F I 

F F 

[C.21], 

[C.22], 

[C.23]. 

where we have eliminated the radiative terms for the SW in [C.22] and [C.23], 
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since 3.w would have to be on the order of 109 m-1 before radiative transfer is 

important in the shocked (or unshocked) TW and across the FL-SW interface, 

regardless of the value of xW' If a,. is much larger (e.g., 108 m-1) and kF much 

smaller (e.g., 10) than their values given in Table C.1, radiative transfer could 

influence energy transport in the DP, and across the FL-SW interface. How

ever, for lack of better information, we adopt the values in Table C.1, thereby 

assuming that the thermal conductivity of the DP, FL and SW, and the absorp

tion coefficient of the DP and FL, are effectively unaffected by 

compression/release. In this case, (C.21)-(C.22] become 

and 

(C.24], 

(C.25], 

[C.26]. 

where {PeF, Pew}"'"'l (with XF"'"'xw) and µ '"""' 10-1 
- 1. In this case, radiative 

transfer does not contribute substantially to energy transport in any part of the 

DP-TW system. So, we are left to investigate the effects of conduction at the 

interface through relations [C.24]-[C.26] in the next section, and effects of radia

tive transport through the FL-SW interface, SW, shock front, USW and and its 

free surface by way of a model based on [C.3], in Appendix E. 

§12. Appendix D: Conductive Transport Model 

The scaling arguments presented in Appendix C provide some idea of condi

tions under which conduction and/or radiation may be an important means of 

energy transport in the interior of each layer of the target, and across the boun

daries between the layers. With some basis for believing that we are in the 

range of conditions where conduction dominates radiation as a means of energy 
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transport, we decouple these processes and treat them separately. In this sec

tion, we establish a simple conduction model for our target geometry. We 

adopt the framework of Grover and Urtiew (1974), who assumed that 1) 

significant conduction takes place only along the direction of shock-propagation 

(i.e., is one-dimensional), and 2) shock-compression transfers energy to the 

material much faster than it can be conducted away. This last assumption 

allows us to treat the DP and TW as thermal half-spaces. Choosing the thick

ness of the FL, d, as the governing length scale, we have, from [C.25] and 

[C.26], the ND energy balance for the DP ( -00<€<-l), FL (-l<x<O), or TW 

(O<€<oo): 

where A is the released DP or FL, or the shocked TW. We use the Laplace 

transform (LT) technique (e.g., Carslaw and Jaeger, 1959) to solve [D.1] for each 

layer. Applying this transform to [D.1], we obtain 

OA.ee - [<IA(s)]2 BA= -</>A(€,s) [D.2], 

where 8(€,s) is the LT of 0(€,r), sis the LT variable, qA(s)=v'PeAs, and 

[D.3], 

which contains the ND initial conditions 0A(e,o). The general solution of [D] is 

given by 

[D.4], 

with 

being the particular solution of [D.2]. The boundary conditions include the 

requirements that 0o(e,r) and 00(€,r) and 0J€,r) remain bounded as e-+--oo 
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and c-++oo, respectively. Consequently, we have 

1 Jo c0 = - e'k£</>0 (<;,s) d<; , 
2qo -oo 

and 

1 Joo hw = - e-q.M</>.J..<;,s) d<;. 
2qw 0 

Using these and writing [D.4] for each layer, we have 

80 (€,s) = b0 ecioe + 80p(c,s) , -oo < c < -1 [D.5], 

(}F(c,s) = bF e<lF{ +CF e-CJF{ + (}Fp(c,s) , -1 < C < Q [D.6], 

and 

8.J..€,s) =cw e-qwe + 8Wp(c,s) , o < c < oo [D.7]. 

Now ()0p and ()Wp are given by 

1 Je 1 Jo () (€,s) = - eqJ~-e)</> (<;,s) d<; + - eQJe-~)</> (<;,s) d<; 
Op 2n_ D 2q D 

'1.D -00 D { 

[D.8], 

and 

[D.9]. 

Relations [D.5]-[D.7] contain 4 unknowns, b0 , bF and cF, and cW' requiring us to 

specify 4 more boundary conditions. We obtain these by assuming the usual 

continuity of energy flux and temperature across each interface in the target. In 

the transform domain, these are given by 

-k0 <P0 Be80 (-l,s) = -kF<PF Be8F(-1,s) [D.10], 

1 1 
-TD+ <PD ()o(-1,s) = -TF +<PF ()F(-1,s) 
s s 

[D.11], 



Chapter I 162 

and 

Putting [D.6]-[D.9) into [D.10]-[D.13], we obtain 

with 

a e-<In -e-<w e <1F 0 
OF 

e-<ID -e-<w -e <1F 0 

Q 1 -1 ()"WF 

0 1 1 -1 

1 <I> 1-l b2 = -~Tm - -2 o ecidl + ~) <Pofos) de;' 
S qD -00 

Appendix D 

[D.12], 

[D.13]. 

[D.14], 

and b~ = <I>0 b0 , b~ = <I>FbF, etc.. If the coefficient matrix is nonsingular, i.e., 

where 
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and 

(a[li'-1) 

(aIF+l) 

then the system [D.14] has a unique solution. Noting that 

1 e<m-~ 

D(s) = (1 +aIF)(l +aWF)[l-v[li'vWFe-2~] 

e<m oo -qJ ) - ------ E (v v )m e 2m+l 
(l+aIF)(l+aWF) m=O [Ii' WF 

Appendix D 

for -1 < vIFvWFe-2~ < 1, we invert the coefficient matrix in [D.14] to obtain 

b' 
D 

b' 1 00 F E (vIFvWF)m e-<h;{2m+l) I -
(1 +aIF)(l +aWF) CF m=O 

I 

Cw 

au a12 2e<ID 2a e<m WF b1 

(1-aWF) (aWF-l)aIF (l+aIF) (l+aIF)aWFe~ b2 

(1 +aWF)aIF -(l+aWF)aIF ( 1-a ll" )e-qF ( 1-a [Ii' )a WFe-~ b3 
[D.15], 

2 -2all" ~ a44 b4 

with 

and 

Expanding these out and substituting them into [D.5]-[D.7], we obtain the solu

tions in the LT domain. We then transform these back to the time domain 
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using the convolution theorem and the following inverse transform (e.g., 

Carslaw and Jaeger, 1959): 

' n=-1,0,1, ... ' 

with Re{z}>O. In this relation, inerfc(z) is the complementary error function of 

order n, with 

i0erfc(z)=erfc(z), and 

2n inerfc(z) = in-2erfc(z) - 2z in-1erfc(z) . 

Consequently, the temperature field for -00<€<-l, r>O, i.e., the DP, is given 

by 

J-1 rr 
T(E,r) = T0 + <P0 J_ G0(c;,~,r-µ) </>0(~,µ) dµ d~ 

-00 0 

2aWFATWF oo m 
+ ( )( ) E (vLFvWF) erfc{[(2m+l)-Krn(l+E)]wF} 

1 +aLF 1 +aWF m=O 
[D.16]. 

In this relation, we have defined Km = ./ KF/ K~, wF = JP eF/ 4r, 
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e-{[2m+KFI{ e-~)]WJ-}2 + Vr:F e-{[2m-KFI{ e+~+2)]WJ-}2 

- v e-{[2(m+l)-1tid:e+~+2)]WJ-}2 - v v e-{[2(m+1)+1tid:e-~)]WJ-}2 < < t: WF r:FWF '-00 ~ 1,;, 

e-{[2m+11:id:~-e)]WJ-}2 + vrF e-{[2m-1tFI{~+e+2)]WJ-}2 

- v e-{[2(m+l}-11:id:~+e+2)]WJ-}2 - v v e-{[2(m+1)+1tid:~-€)]WJ-}2 t:< < 1 
WF I:FWF 'I,,~ - ' 

• { e-{[(2m+1)+~-1tFI{i+e)]WJ-}2_vWF e-{[(2m+1}-~-1tid:l+€)]WJ-}2 } , 

Wo(E,~,s) = q,w ( 1 )lfi f; (vI:FvWF)m e-{[(2m+1)+1tm-1tdl+€)]WJ-}2' 
(l+arF) rrPewT m=O 

and "'FW = VK'-F/"-w- The temperature field for -1 <E<O, r>O, i.e., the FL, is 

given by 

f
-1 fT 

T(E,r) = TF + J_ DF(E,~,r-µ) ¢>0(~,µ) dµ d~ 
-00 0 
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[D.17], 

with 

e-{[ 2m+({-))]~}2 - v e-{[ 2m-{{+~)]~}2 
WF 

- vIFe-{[ 2(m+l)+(e+~)]~}2 + vIFvWFe-{I 2(m+1)-{{-))]~}2 ' -1 <~< E' 

e-{[ 2m+(~-e)J~}2_v e-{[ 2m-{~+e)J~}2 

WF 
- v e-{[ 2(m+l)+(~+e)]~}2 + v v e-{[ 2(m+1)-{~-{)]~}2 c<t"<O 

IF IFWF ,i,. ~ ' 

O'WF<PW ( 1 ) 1li 00 
WF(E,~,r) = ( ) ~ (v~vWF)m 

l+aWF 7rPewr m~O ..... 

• { e-{[2m-Hi<:m]~}2 _ vIFe-{[2(m+l)+{+i<:F"MJ~}2 } • 

Lastly, for O<E<oo, r>O, i.e., the TW, we have 

T(E,r) = Tw + J-1J" DJE,~,r-µ) </>0(~,µ) dµ d~ 
-00 0 
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[D.18], 

with 

00 . E (vIFvWF)m e-{[(2m+l)+ic:irwe-11:Fr{l+s-)]Wp-}2 

m=O 

e-{[2m+ic~{-s-)]~}2 + VWF e-{[2m+ic~e+~)]~}2 

_ v e-{[2(m+l)+ic~e+~)]Wp-}2 _ v v e-{[2(m+l)+ic~{-~)]Wp-}2 O< < c 
IF IFWF ' ~ i,,., 

e-{[2m+ic~~-€)]~}2 +vWF e-{[2m+ic~~+€)]~}2 

_ v e-{[2(m+l)+ic~~+€)]~}2 _ v v e-{[2(m+l)+ic~~-€)]Wp-}2 c< < IF IFWF 'I,, ~ 00, 

Each of the source terms now has the form 

[D.19], 

where 8( r) is the Dirac delta-function. 
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As discussed in the text, we assume that compression/release processes in 

the target establish an initial (t=O) temperature profile in the DP-FL-TW sys

tem of the form 

T(x,O) = 

TD 
TD+ATD 
TF+ATFD 

TF 
TF+ATFW 

Tw 

-oo<x<-(8D+d) 
-(8D+d)<x<-d 
-d<x<-(d-8FD) 

-( d-8FD) < X < -DFW [D.20]. 

-f>FW<x<O 
O<x<oo 

In this relation, d is the FL thickness, TD and TF are the temperatures of the DP 

and FL, respectively, established by direct release from the shock-compressed 

state to the pressure of the shock-compressed TW, and ~D' ATFD and ATFW are 

the temperatures reflecting some degree of reshock heating in layers of thickness 

f>D, f>FD and 8FW' respectively, in the DP and FL at the DP-FL interface, and in 

the FL at the FL-TW interface, respectively. Substituting these into the source 

terms, </>A' we have 

[D.21], 

[D.22], 

and 

</>J... e, r) = Pe~aw eJ... e, r) [D.23], 

where h(x) is the unit-step function, and 8i=8Jd. Using [D.21], the tempera

ture in the DP (-oo<e<-1, r>O) is given by (with eD(€,r)=O) 

T(E,r) =TD+ [g~(E,r,-(1+8;),€) + g:(E,r,e,-1)] ATD + au(E,r) (TD-TF) 
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where 

and 

gi5=(E,r,a,b) = ± .!. f (vCT!vWF)m erfc{[2m±Km(a-E)]wF} 
2m=0 
1 00 

=F- - E (vCT!vWF)m erfc{[2m±Km(b-E)]wF} 
2m=0 
1 00 - - E (vr:FvWF)m vrR' erfc{[2m-Km(2+€+a)]wF} 
2m=O 
1 00 

+ - E (vr:FvWF)m vr:R' erfc{[2m-x:m(2+E+b )]wF} 
2m=O 
1 00 

+ - E (vCT!vWF)m vWF erfc{[2(m+l}-x:m(2+E+a)]wF} 
2m=O 
1 00 - - E (vr:FvWF)m vWF erfc{[2(m+l}-x:m(2+E+b)]wF} 
2m=O 
1 00 

± 2 E (vCT!vWF)m+l erfc{[2(m+ l)±x:m(a-€)]wF} 
m=O 

1 00 

=F- - E (vr:FvWF)m+l erfc{[2(m+l)±x:ro(b-E)]wF} , 
2m=O 

1 00 

3.o( e,r) = ( ) E (vCT!vWF)m erfc{[2m-x:m(l+E)]wF} 
1 + ar:F m=O 

1 00 . 

+ ( ) E (v~WF)m vWF erfc{[2(m+l)-x:m(l+E)]wF}, 
1 + ar:F m=O 

1 00 

f0 (E,r,a,b) = ( ) E (vr:FvWF)m erfc{[(2m+l)+a-x:m(1+€)]wF} 
1 + ar:F m=O 

1 00 - ( ) E (vrFvWF)m erfc{[(2m+l)+b-x:m(l+E)]wF} 
1 + arF m=O 

1 00 

+ ( ) E (vil'.vWF)m vWF erfc{[(2m+l}-a-x:ro(1+€)]wF} 
1 + arF m=O 

1 00 - ( ) E (vr:FvWF)m vWF erfc{[(2m+l)-b-x:FD(l+E)]wF} , 
1 + aCT! m=O 
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The function g5°( €,r,a,b) comes from the integration of the second term on the 

right-hand side of [D.16] using the source term from [D.21]; a and b are the 

lower and upper limits of the spatial integration, respectively. We get gt from 

g5= by using the upper signs in each term having both + and - signs, while g;; is 

given by the lower signs in each term. 

The temperature in the FL (-1 <e<o, r>O), using [D.22], becomes (with 

eF(€,r)=O) 

with 

~(€,r) = 

T(€,r) = TF + dF(€,r,-(1+8~),-1) ~T0 + ~(€,r) (T0-TF) 

[D.25], 

a oo 
- ( IF ) E (v~'M')m v'M' erfc{[(2m+l)-€-KFD(l+b)]wF} 

1 + aCF m=O 

+ ( aIF ) E (vr.1..v\W)m v'M' erfc{[(2m+l)-€-KFD(l+a)]wF} , 
1 + ar:. m=O 

( arF ) E (vCFv'M')m {erfc{[(2m+1)+€]wF} - v'M' erfc{[(2m+l)-€]wF}} , 
1 + aIF m=O 

'l/JF(€,T) = { g;(e,T,-1~€) + g:(e,r,e:-1+8~), e < -1 + 8~, 
gF(€,T,-1,-1+8FD) , e > -1 + 8~, 

{ g:(e,r,-8~,0) ' e < -8~' 
7rF(€,r) = g;(e,r,-8~,e) + g:(e,r,e,o) , e > -8~, 

gi=(€,r,a,b) = ± .!. E (vlFv'M')m erfc{[2m±(a-€)]wF} 
2m=O 
1 00 

=t- - E (vIFvvw)m erfc{[2m±(b-€)]wF} 
2m=O 
1 00 

+ - E (vu..Vvw)m Vvw erfc{[2m-(€+a)]wF} 
2 m=O 
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1 00 - - E (vrFvWF)m vWF erfc{[2m-(E+b)]wF} 
2m=O 
1 00 - - E (vrFvWF)m vrF erfc{[2(m+1)+(€+a)]wF} 
2 m=O 

Appendix D 

1 00 

+ - E (vrFvWF)m vr:F erfc{[2(m+1)+(€+h)]wF} 
2 m=O 
1 00 

=F - E (vr:FvWF)m+l erfc{[2(m+l]f(a-€)]wF} 
2 m=O 
1 00 

± - E (vr:FvWF)m+l erfc{[2(m+l]f(b-€)]wF} 
2m=O 

[D.26], 

Lastly, the temperature in the TW (O<E<oo, r>O), using [D.22], is given by 

(with eJE,r)=O) 

T(€,r) = Tw + dw(€,r,-(1+c5~),-l)AT0 + aw(E,r)AT[F + fw(€,r,-1,-l+c5~)ATro 

+ fw(e,r,-6~,0)ATFW + bJe,r)ATFW [D.27), 

with 

and 



Chapter I 172 

1 E erfc{[2m+K~-a]wF} 
(l+o-WF) m=O 

+ 
1 E vrF erfc{[2(m+l)+K~+b]wF} 

(l+o-WF) m=O 

1 00 

- ( ) E vrF erfc{[2(m+l)+K~+a]wF} . 
l+o-WF m=O 

Appendix E 

Relations [D.24], [D.25], and [D.27], along with their associated functions, are 

those used in the text for the temperature of DP, FL, and TW as a function of 

distance away from the FL-TW interface and time. 

§13. Appendix E: Radiative Transport Model 

As discussed briefly in the text, radiation from sources at the interface 

and/or the shocked TW may be affected by radiative transfer through the 

shocked TW, shock front, unshocked TW and its free surface. In general, radia

tion sources include 1), the FL at the interface, 2), gas or other trapped material 

at the interface and/or 3), the shocked TW. The FL is generally a metal (i.e., 

an opaque material), while the TW is generally an oxide, halide or silicate. 

Many of these latter materials are of natural origin, possessing color and con

taining inclusions of various sizes, some of which are potential scatterers (e.g., 

apparent Rayleigh scattering in CaO: Boslough et al., 1984). These possibilities 

motivate us to formulate a model from [C.3] and the geometry of the target of 

sufficient generality to deal with emission, absorption and/ or isotropic scattering 

in the shocked and/or unshocked TW. Note that in writing [C.3], we have 

already assumed isotropic scattering. For tractability, we must accept this as a 

limitation of the model. We have no a priori reason, of course, to expect this to 

be true in shocked or unshocked TW containing scatterers. 

Since our experiments are calibrated, we need worry only about the 

differences between calibration and experimental configurations, which include 

radiation sources, and the effects of the 1) shocked TW, 2) shock front, 3) 
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unshocked TW and 4) TW free surface on the on the source radiation. In what 

follows, the subscripts "INT," "SF," "USW" and "FS" will stand for the inter

face, shock front, unshocked TW and its free surface, respectively. For simplic

ity, we assume the target may be approximated optically as a set of parallel 

plane layers. In this representation, the temperature and material properties of 

the FL, shock and unshocked TW are assumed to vary at most only along the 

direction of shock propagation, x; i.e., the layers are of infinite extent in y and 

z. Further, we assume that i~ is axisymmetric abouts; in this case, i~ depends 

only on s= Is I and the angle betweens and x, which we designate </>, so that 

i~ =i~ (s,</>). Introducing the extinction coefficient, K>..=a>.. +a>.., the differential 

opacity, dK>..=K>..(s)ds, and the albedo for scattering, 0>..0 =a>../K>.., into [C.3], 

with dr=dx/ cos</>, the radiation intensity in all directions forward (' -+ +) in a 

plane layer is given by the solution of (e.g., Siegel and Howell, 1981) 

[E.1], 

and 

[E.2]. 

In these relations, 8 "'"-=8 /OK>.., µ= I cos</> I , 
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[E.3], 

is now a function of x, KAd=KA(d), and d is the layer thickness. Radiative 

transport in each layer of our target is then governed by [E.1] and [E.2l. Given 

a target geometry like that of Figures 2.1 and 2.2, we assume that observed 

radiation will be dominated by radiation from the target of nearly normal 

incidence (i.e., µ=1). This is the fundamental simplifying assumption of the 

radiative transport model used in our work. Mathematically we express it in 

the form 

[E.4], 

where 8(x) is Dirac's delta-function. In effect, this assumption imposes a very 

special averaging on the optical properties of the model, i.e., that model proper

ties are dominated by radiation incident perpendicular to the layering of the 

target. Putting [E.4l into [E.ll and [E.2l, we obtain 

d·+ n 
lA . + (l n ) . t ( ) AO [" + . -1 -d + lA = -uA0 lAe KA + -- lA + lA 
KA 2 

[E.5l, 

and 

d"- n 
lA . _ (l n ) . / ( ) AO [" + . -1 - -d + lA = -uA0 lAe KA + -- lA + lA 
KA 2 

[E.6l, 

respectively. Now we define 

Substituting IA+ and IA- into [E.5] and [E.6], adding and subtracting them, we 

obtain 

[E.7], 
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and 

[E.8], 

with .BA=.J(1-0A0 ). Eliminating IA- from these expressions, we obtain a 

differential equation for IA+' i.e., 

For OA0~{l,f(KA)}, which is the case if we assume that 1) aA~O and 2) aA and 

O\~f(KA) in each layer of our model, the general solution of [E.9] is given by 

Then from [E.8], we have 

[E.11]. 

From [E.10], [E.11] and the definitions of IA±' we then obtain 

iA±(KA) = ~[IA+ ± IA_] 

= ~ [l=F.BA]ce.B>.IC>. + ~ [1±.BA]De-.B>.IC>. + iA:lp(KA) [E.12], 

with 

From [E.12], we have the following conditions at the boundaries of the layer for 
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backward and forward propagating radiation: 

i;(o) = ~ [1+!3>-.JC + ~ [1-f3>-.JD , 

· -( ) 1 [1 {3 JC /3'>./f,).d 
1 [1 {3 JD -/3'>./f,).d • - ( ) 1).. K)..d = 2 + A e + 2 - A e + l)..p K)..d ' 

and 

. +( ) 1 [ {3 JC /3'>./f,>.d 1 [ {3 JD -f3'>.K,'>.d • +( ) 1).. K)..d = 2 1- A e + 2 1+ A e + l)..p K)..d . 

We need only two of these to find C and D; for reasons apparent later, we 

choose the second and third relations. Solving these for C and D, and substitut

ing the resulting expressions for C and D into the first and fourth relations, we 

obtain 

[E.13J, 

and 

[E.14J. 

With f3>-. =f3>-.sw and K>-.d=KASF' these relations apply to the shocked TW; with 

f3>-.=f3>-.U5Wl K>-.d=KAFS-KASF and i>-.t,(K>-.d)=O (no sources), they apply to the 

unshocked TW. 

Next, we assume that 1) the opacity of the FL is sufficiently large so that 

any radiation observed from it originates near the interface (the diffusion limit 

for radiative transport), and 2) all boundaries are optically smooth, so that radi

ation incident on these boundaries is refracted and reflected according Fresnel's 
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laws (e.g., Siegel and Howell, 1981). Basically, by doing this, we neglect any 

scattering properties these boundaries may have. Using [E.13]-[E.14], and 

assigning each boundary of our target an intrinsic normal spectral reflectivity, 

r>.., given by (e.g., Siegel and Howell, 1981) 

for normal incidence on the boundary between layers A and B possessing com

plex indices of refraction nM.+i wM. and n>..a+i W>..a (where W>..cx:a>..), respectively, 

we may construct the boundary and layer conditions for the model. At the 

interface (x=K>..=0), radiation traveling forward into the shocked TW, i>..~ (0), 

is composed of radiation emerging at the shocked-TW-side of the interface from 

the FL and/or gas, S>..~o), plus that component of the backward-traveling 

radiation (i;sw(o)) reflected off the interface back into the forward direction, i.e., 

[E.15]. 

This is the boundary condition at the interface. From [E.13] and [E.14], we 

have conditions for backward and forward propagating radiation in the shocked 

TW (O<x<xSF', O<K>.. <K>..SF'=K>..(xSF')), i.e., 

[E.16], 

and 

[E.17], 

respectively. At the shock front (x=x5r, K>..SF=K>..(x5r)), radiation is transmitted 

and reflected in both directions. Consequently, 

[E.18], 

and 

[E.19]. 
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Again using [E.13] and [E.14], the conditions in the unshocked window 

(xSF<x<xFS, "')...SF<"')... <"'AFS="')...(xFS)) are given by 

[E.20], 

and 

[E.21 ], 

where we have assumed i~eswC"')...)=O, i.e., no emission from the unshocked win

dow. Lastly, at the unshocked window free surface (x=Xt8 , "'AFS="')...(xt5)), radia

tion traveling back into the unshocked window, i;u;w("'AFS), is equal to that com

ponent of the forward-traveling radiation incident at the free surface, i)...t,J"'AFS), 

(x=Xt8 , "'AFS="')...(xr5)) reflected into the window, i.e., 

The coefficients and source terms in these relations are given by 

and 

where 

and 

2[1-,B~swl sinh{,8)...sw"')...SF} 

AASW 

2[1-,BAU3W2] sinh{,B)...u;w(l\,AFS-1\,ASF)} 

AAU3W 

[E.22]. 
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Relations [E.15]-[E.22] constitute 8 equations in 8 unknowns. We are particu

larly interested in calculating i:>.."tsJ K:>..FS), since the radiation escaping the target 

destined for detection is then given by 

[E.23]. 

The system [E.15]-[E.22] may be cast into the following matrix form 

-rAINr 1 0 0 0 0 0 0 i;sJo) 

0 0 0 0 0 i:>..Uo) 
S:>..~(O) 

1 -Ci -C2 

0 1 0 0 0 0 i}..-sweKASF) 
s}..-sweK:>..SF) 

-C2 -Ci 

0 0 1 -rASF -C4 0 0 0 i:>..UK:>..SF) 
S:>..UK:>..SF) 

0 0 0 1 0 0 i}..-~KASF) 
- 0 

-C3 -rASF 
0 

0 0 0 0 1 -C5 -C5 0 i:>..t,JK:>..SF) 0 
0 0 0 0 0 -C5 -C5 1 

i;~KAFS) 0 
0 0 0 0 0 0 1 -rAFS 

i}..~KAFS) 
0 

[E.24]. 

In matrix notation, this is [A]{i}={ d}, where [A] is a reflectivity-transmissivity 

matrix, {i} is a vector of the forward and backward traveling radiation intensi

ties at the boundaries, and { d} is a radiation source vector. Decomposing [A] 

into upper and lower bidiagonal matrices, [Au] and [ALJ, respectively, we find 

the solution of [AL]{v}={d} and use this to solve {i}=[AuJ-1{v}. Solving this 

system gives us an expression for i:>..tsJK:>..F.S), which we substitute into [E.22] to 

obtain 

[E.25]. 

In this relation, W:>.. is the effective transmissivity of the shocked TW, shock 

front, unshocked TW and its free surface, given by 
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with 

B.A = {[1-r.AINrc1][1-c1r.ASF] - r.AINrc2
2r.ASF} {[1-r.A::Fc5][1-c5r.AFS] - r.A::Fc 6

2r.AFS} 

- {[l-rAINI'cl]c1 + rAINI'C22} [1-rASF]2 {[l-c5rAFS]c5 + C52rAFS} ' 

S.Asw is the intensity of sources in the shocked TW along "'"A' i.e., 

where 

A.A("'.ASF,e) = l.,a.Asw{[l-r.AINrc1Jll+.B"Aswl - [c1+(c22-c12)r>-.INr][l-,8>-.sw]} ef3xsvlJ.-~>.sF) 
2 

- ~ .8.Asw{[l-r.AINrc1][l-.8>-.sw] - [c1+(c22-ci2)r>-.INr][l+,B>-.sw]} e-/3';.sv/.._e-~'>SF) ' 

and S>-.n-rr{O) is the combined effective intensity of all interface sources: 

Relation [E.25] is the principal result of this appendix, and constitutes the sim

plest model incorporating scattering, absorption and multiple reflections that we 

can derive for radiative transport in the target. As it stands, [E.25] is 

sufficiently general for comparison with observations from a number of different 

radiation experiments. At this point, however, our main interest is in the inter

face experiments discussed in the text, so we now specialize [E.25] to this pur-

pose. 

For cases where there is apparently no scattering in the shocked TW, and 

none in the unshocked TW, we may set .B>-.sw = ,B'Ausw = 1 in [E.25]; in this case, 

c1 = c5 = 0 and 

[E.26], 
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[E.27], 

and 

[E.28]. 

From [E.27], we note that, in general, neglect of multiple reflections when 

{ r>.., r>..}-+ 1 is clearly incorrect and can lead to underestimate of the source 

intensity by the model. However, for the experiments of interest here, we do 

have r>.. ,...._,Q. In this case, 

[E.29], 

and multiple reflections are, to first order, negligible. Now if we assume each 

region of the dynamic target optical geometry possesses a distinct extinction 

coefficient, and that, in each layer of the target, optical properties are homer 

geneous, we have 

{ 

K>..swC>-), O<x<x~, 

K>..(x) = K>..SF(>.) , x~<x<x: , 
K>..usJ>.), xJ<x<d, 

[E.30], 

where x~ is the position of the shock-front in the SW, xJ its position in the 

USW, and xJ-x~ is the shock-front thickness. Putting this into [E.10], we have 

[E.31], 

and 

[E.32]. 

For steady shock-wave propagation (i.e., constant U), x and t are not indepen

dent, and we may write 

[E.33], 

and 
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xJ(t) = (u-v+) t [E.34], 

where u is the speed of displacement of the shock front, and v- and v+ are the 

material velocities behind and in front of the shock front (see the introduction 

to this thesis). Putting these in, we have 

Defining 

and 

K;sJ>.) = K>-.sJ>.) (u-v-) texp 

K;SF(>.) = KASF(>.) (v--v+) texp 

as nondimensional extinction coefficients, and setting v+=o, we have 

[E.36], 

[E.37], 

[E.38], 

If we treat the shock front as a 2-D boundary, rather than a thin layer, KASF---+O. 

In this case, we have 

[E.40], 

and 

[E.41]. 

Relations [E.40] and [E.41] are the expression we use in [E.26] and the text. 

Lastly, if we assume that sources in the SW are distributed uniformly, i~esJe) is 

independent of x, i.e., spatially uniform, and from [E.22], this implies 

[E.42], 
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assuming that i~esw is given by the Planck function. Putting these results into 

[E.25], we obtain, with 5A ......... 1 

[E.43], 

where 

and 

€Awx(t) = WA7\sw[l-rAINr] , 

are the effective normal spectral emissivities of the SW and FL at the FL-SW 

interface, and WA = [1-rAJrAu;;w(l-rAsrl with BA ......... 1. Relation [E.43] is the 

expression we use in the text. The Hugoniot temperature SW, Tswi is homo

geneous, uniform, and constant since we assume a uniform distribution of SW 

sources. The interface temperature, T~t), however, is a function of time, or 

constant, in the context of the conduction model discussed in Appendix D. 
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Chapter II Introduction 

Abstract 

Shock-compressed MgO radiates thermally at temperatures between 2900 

and 3700 K in the 170-200 GPa pressure range. A simple energy-transport 

model of the shocked-MgO targets allows us to distinguish between different 

shock-induced radiation sources in these targets and estimate spectral 

absorption-coefficients, ~' for shocked MgO (e.g., at 203 GPa, ~,-.....,6300, 

7500, 4200 and 3800 m-1, at 450, 600, 750 and 900 nm, respectively). The 

experimentally inferred temperatures of the shock-compressed states of MgO are 

consistent with temperatures calculated for MgO assuming that 1 ), it deforms as 

an elastic fluid, 2), it has a Dulong-Petit value for specific heat at constant 

volume in its shocked state, 3), it undergoes no phase transformation below 200 

GPa, and 4), the product of the equilibrium thermodynamic Gruneisen's param

eter,/, and the mass density, p, is constant and equal to 4729.6 kg/m3. 

§1. Introduction 

The mechanical response of materials to high pressure has traditionally been 

investigated by shock-wave or static-compression experiments that constrain, 

among other things, the pressure-density "equation-of-state" behavior of these 

materials. As first demonstrated by Soviet workers (summarized by Kormer, 

1968), optical radiation from the shock-compressed state of certain transparent 

materials has the potential to constrain the temperature of their compressed 

state. The emission of radiation from shock-compressed transparent materials is 

rather remarkable from the point of view that these materials are, at least ini

tially, dielectrics. Shock compression apparently transforms ionic materials 

(e.g., NaCl) into semiconductors (Kormer et al., 1966) with electrical conduc

tivity up to 1010-times that of the uncompressed material. Among initially

covalent materials, Ahrens (1966) inferred a ........, 102 increase in the electrical con

ductivity of MgO shock-compressed above 92 GPa, and Knittle and Jeanloz 
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(1986) inferred a similar increase in the electrical conductivity of FeO statically 

compressed above 70 GPa. For MgO, at least, this change in electrical conduc

tivity at high pressure is thought likely due to extrinsic (e.g., defect) processes, 

rather than to band-gap closure (e.g., Liberman, 1978; Chang and Cohen, 1984 ), 

as discussed below. 

Oxides accepted as predominant chemical end-members of the material con

stituting the earth's mantle include MgO, FeO, Al20 3, CaO and Si02• Of these, 

(Mg,Fe)O may be an actual constituent of the earth's mantle below 670 km 

(e.g., Jeanloz & Thompson, 1983). Hence the complete (P, T, p) equation-of

state of MgO is relevant to studies of the earth's mantle. Among the mantle 

oxides, radiation emitted from Si02 (Lyzenga et al., 1983) and CaO (Boslough et 

al., 1984) shock-compressed above 60 and 140 GPa, respectively, has been stud

ied using optical pyrometry (Kormer, 1968; Lyzenga, 1980). Optical radiation 

from MgO, Al20 3 and Si02, all shock-compressed to pressures below 75 GPa, 

has also been studied spectroscopically (Schmitt & Ahrens, 1984; Schmitt et al., 

1986). If the wavelength-dependence of this radiation is consistent with a grey

body source, it may be interpreted in terms of the temperature and effective 

emissivity of the shock-compressed material. In the pressure range investigated, 

shock-induced radiation from both initially amorphous Si02 (10 to 110 GPa) 

and initially crystalline (Bl) CaO (140 to 180 GPa) is consistent with this type 

of source. Radiation from a-Si02, however, is clearly consistent with a grey

body source only above 60 GPa (Lyzenga et al., 1983; Schmitt et al., 1986). 

Note that shock-compressed Si02 transforms to stishovite above 16 GPa and 

melts above 70 GPa (Lyzenga et al., 1983), while shock-compressed CaO 

transforms from a Bl to a B2 structure (Jeanloz et al., 1979), and FeO to an 

unidentified phase (e.g., Jeanloz & Ahrens, 1980a; Jackson & Ringwood, 1981 ), 

both above 70 GPa. Both MgO and Al20 3 apparently do not change phase dur

ing shock compression. Considering the sensitivity of optical radiation to 
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energy processes, as well as the complexity of interpretation introduced by 

dynamic phase transformations (e.g., Si02: Lyzenga et al., 1983), we studied 

the thermomechanical response of shock-compressed MgO as a material 

apparently uncomplicated by phase transitions, at least below 200 GPa. Since 

the experimental results we present below are consistent with a simple thermos

tatic model of MgO, which includes the assumption of no phase transition, we 

conducted only four experiments. 

§2. Experimental 

We conducted the experiments on a two-stage, light-gas gun (e.g., Jeanloz & 

Ahrens, 1980a; Figure 2.1). In these, a lexan-encased tantalum (Ta) flyer-plate, 

moving at 5.7 to 6.4 km/sec (see Table 4.1 below), impacted a 1.5 mm-thick Ta 

driver-plate in contact with the (100) face of a 3 mm-thick synthetic single

crystal of magnesium oxide (MgO: similar to those used by V assiliou & Ahrens, 

1981). We covered the free surface of the MgO crystal with an aluminum mask 

to avoid observing radiation from the target's edge. Radiation from the target 

reflects off a mirror, propagates though an objective lens, and is directed by a 

( dichroic) pellicle beam splitter and two half-silvered beam splitters into four 

detectors filtered at nominal wavelengths of 450, 600, 750 and 900 nm. We 

recorded the signal from each detector on a Tektronix 485 single-sweep oscillo

scope and a LeCroy (model 8081) 100-MHz transient recorder. 

Wanting to observe radiation from MgO, we attempted to minimize the 

radiation intensity of the Ta-MgO interface by vapor-depositing 500-1000 nm of 

silver (Ag) on MgO, and then placing the Ag "film" in mechanical contact with 

the Ta driver-plate to form the target. Requiring a material that would not 

maintain a high temperature during the experiment, we chose Ag for its high 

thermal conductivity at standard temperature and pressure (STP: 298 K and 

0.1 MPa) and ease of deposition. We expected this Ag film to absorb any 
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Figure 2.1. Geometry of the light-gas gun radiation experiment after 
Boslough (1984). The projectile, shot through the barrel, 
impacts the sample at velocities between 5.7 and 6.4 km/sec. 
Radiation from the sample is bent 90 • by the mirror, travels 
through the objective lens, and is divided up by the three
beam-splitter arrangement among the 4 channels of the pyrome
ter. The resulting signals from the photodiode in each channel 
are monitored by oscilloscopes and LeCroy transient digital 
recorders. 
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radiation from the Ta-Ag interface, heat up much less than a mechanical Ta

MgO interface (Urtiew & Grover, 1974), and contain no trapped gas that could 

also contribute to interface radiation (Boslough, 1985). 

§3. Model Calculations and Data Analysis 

Our experiment begins when the projectile, containing the Ta flyer plate, 

impacts the Ta driver plate. This process generates two shock waves at the 

flyer driver interface, one traveling forward into the driver plate and the other 

back into the projectile. When the shock wave propagating through the driver 

plate reaches the driver plate-film (Ta-Ag) interface, a lower-amplitude shock 

continues into the lower shock-impedance Ag-film, and a release wave is 

reflected into the driver plate. Once the interface is compressed, the balance of 

mass and momentum require that the component of the material velocity and 

stress fields, respectively, in the driver plate and film normal to the interface be 

continuous across it. Consequently, the compressed state of the driver plate 

releases to a state having nearly the magnitude of the normal stress and 

material velocity of the shocked-Ag film. An analogous process occurs at the 

Ag-MgO interface, releasing the shock-compressed Ag to a state with essentially 

the same normal material velocity and stress as the shock-compressed MgO. 

Since the film is so thin, the driver plate releases (a second time) shortly after 

this to a similar state. Wave reverberations quickly bring the driver plate and 

film to states with the normal stress and material velocity of the shocked-MgO. 

All of this occurs on a time scale less than 1 nanosecond (ns), and is not detect

able by the pyrometer. 

The basic data are in the form of radiation intensities at the four 

wavelengths mentioned above, and these are measured as a function of time. 

Clearly, the time-resolution of the data is much better than the wavelength

resolution. We present an example of these data in Figure 3.1, an oscilloscope 
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record at 750 nm for shot 146 (Table 4.1 below). Using the known radiation 

intensity of a standard lamp (Boslough, 1984) at the observed wavelengths, we 

transform these raw data into experimental spectral radiation intensities (in the 

form of spectral radiance) as a function of time. The result of this procedure 

for shot 146 data is displayed in Figure 3.2. 

We interpret the temporal and wavelength variations of data in the context 

of the following model, a slight modification of Boslough's (1985) model (see also 

Boslough et al., 1986; Chapter I, §6. and Appendix E). We assume that the 

shock-compressed/released Ag-film at the Ag-MgO interface, and shock

compressed MgO, are the only sources contributing to the observed radiation. 

Further, assume that the shocked-MgO layer radiates uniformly along the direc

tion of shock propagation over the time scale of the observations. Then the 

total radiation intensity, I>..mod(>.,t ), a function of wavelength (>. ), and time after 

the onset of radiation from the target, t, is the sum of that fraction of each 

source intensity that emerges from the front of the target, i.e., 

where the ")." subscript indicates a spectral quantity. In [3.1], TM&O is the 

shock-compressed (Hugoniot) temperature of MgO (assumed homogeneous, uni

form and constant), and Trm:{t) is the temperature of Ag at the Ag-MgO inter

face. Further, 

and 

[3.3], 

are the effective normal spectral emissivities of the shocked-MgO and Ag at the 

Ag-MgO interface, respectively, while r>.FS, r>.sF and r>..JNT are the effective normal 

spectral reflectivities of the MgO free-surface, shock front and Ag-MgO 
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Figure 3.1. Oscilloscope record of radiation intensity history at 750 nm for 
shot 146. The radiation intensity rises sharply off-scale at t=O 
as the shock wave compresses the Ag-MgO interface to high 
temperature (see Table 2). Decay of the interface temperature 
and/or absorption or interface radiation in the growing 
shocked-MgO layer (see text) causes the observed intensity to 
decrease sharply with time to about 170 ns into the experiment, 
at which point the radiation intensity becomes approximately 
time-independent. After about 240 ns (t5), the shock wave 
reaches the free surface of the MgO, and the experiment is over. 
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Spectral radiance data for shot 146 at 450, 600, 750 and goo 
nm. Note that t=O this figure has the same meaning as in 
Figure 3.1. 
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interface, respectively. Also, 

[3.4], 

and 

[3.5], 

are the effective normal spectral transmissivities of unshocked and shocked-MgO 

layers, respectively. In [3.4] and [3.5], ~0and ~are nondimensional forms 

of the effective normal spectral coefficients of absorption in unshocked and 

shocked-MgO, respectively, given by 

[3.6], 

and 

[3.7]. 

Note that texp=d/U is the experimental time scale, U is the shock wave velocity 

in MgO, d is the initial thickness of the MgO layer in the target, and vM&O is the 

material velocity of the shock-compressed state of MgO. Lastly, we have 

C1 
l>-p1(A,T) = c />-T 

As (e 2 
- 1) 

(with C1 = 1.19088X10-16W·m2 and C2 = 1.4388Xl0-2m·K) as the Planck 

function. 

Assuming the optical boundaries (e.g., Ag-MgO interface) are smooth (i.e., 

surface roughness much less than radiation wavelength), the effective normal 

spectral reflectivity of the boundary between any two of these layers is a func

tion of the change in the (complex) index of refraction across the boundary 

(e.g., Siegel & Howell, 1981; see below). The effective emissivities [3.2] and [3.3] 

are correct to first order in r>.FS, rXSF and r>.wri we assume second- and higher-order 

reflections are negligible (Boslough, 1985; Chapter I, Appendix E). Because of 
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this approximation, [3.2] and [3.3] are, strictly speaking, lower bounds to €>.M&O(t) 

and €>.im(t), respectively. Boslough (1985) also implicitly assumes r>.INr = 0 in 

[3.2]. Although the absorption coefficients and reflectivities are written without 

an explicit dependence on >., they may be wavelength-dependent, as discussed 

below. 

Of all parameters influencing I>..mod(>.,t), only Tim(t) is assumed to be poten

tially time-dependent. This clearly complicates the time-dependence of the 

observed radiation. In addition, through the Planck function, Tim(t) can 

influence the wavelength-dependence of I>..mod(>..,t) with time. A number of 

models for Tim(t) are considered by Grover & Urtiew (1974; see also Chapter I, 

§5. and Appendix D). For completeness, and as a basis for assumption, we out

line one of these models, presumed appropriate to the MgO experiments dis

cussed in this work. Assume that 1 ), energy transport is predominantly parallel 

to the direction of shock propagation (i.e., one-dimensional), 2), conduction is 

the only energy transport process that substantially affects the temperature in 

any part of the target on the time scale of the experiment, and 3), shock 

compression/release processes in the target establish an initial (t=O) tempera

ture profile in the Ta-Ag-MgO system of the form 

{ 

Tn, -oo<x<- ,f> 
T(x,O) = TAg, -f><x<O , 

TM&O, O<x<oo , 
[3.8], 

where f> is the film thickness. Note that we assume the driver plate (Ta) and 

MgO are thermal half-spaces. This last assumption presumes that shock 

compression/release is much faster than conduction in any part of the target. 

Tn and TAI are the temperatures of the partially released Ta and Ag, both at 

the pressure of the Ag-MgO interface (i.e., pressure of the shock-compressed 

MgO ). In the context of this model, all material properties of each target 



Chapter II 204 Model Calculations ... 

component are constants, and referenced to their respective states at the pres

sure of the Ag-MgO interface. 

The temperature of a singly shock-compressed material, TH, may be 

estimated from a classical thermodynamic energy balance (e.g., Ahrens et al., 

1969; Jeanloz & Ahrens, 1980b; see Chapter I, §4. and Appendix A) in which we 

assume the material compresses as an elastic fluid. It is possible that Ta (above 

.......... 295 GPa: Brown & Shaner, 1984) and/or Ag (~185 GPa: Lyzenga, 1980) 

melts in the range of pressures and temperatures achieved in our experiments. 

The data of Carter et al. (1971), Vassiliou & Ahrens (1981; and our results 

below) show no clearly resolvable phase transition in MgO below 200 GP a. For 

simplicity, we assume that Ta and Ag do not change phase in our experiments. 

If this is wrong, the values of TH we estimate for Ta and Ag are upper bounds 

to the true shock-compressed temperature (everything else being equal), since 

shock-induced phase transformations use energy otherwise available for heating 

the material. In the absence of phase changes, then, our estimate of TH is given 

by 

T = ( T - _!_-6.e ) + -1 
{ _!_ - _!_} P H s Cy s 2ey Pi PH H [3.9), 

assuming that Cy, the specific heat at constant volume of the shock-compressed 

state, is independent of temperature. The subscripts "i," "H," "S," and "V" 

designate initial (STP), shock-compressed, constant entropy and constant 

volume states of the material, respectively. In [3.9], .6.e5 is the change in specific 

internal energy of the material compressed isentropically (at specific entropy si) 

from its density at STP, Pi, to a density pH (that of the shock-compressed state), 

while T5 is the temperature of the material along the isentrope referenced to si 

and Pi· Also, PH is the pressure of the shock-compressed state. 
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We estimate pH from the balance of mass and momentum across 1), the 

shock front in each target material, and 2), the material boundaries between the 

target materials (impedance match: Rice et al., 1958), by making the constitu

tive assumption that the component of the shock-wave velocity normal to the 

shock front, U, is a function of the change in the normal component of the 

material velocity, v, across the shock front. On the basis of the U-v data for 

Ta, Ag and MgO, we assume that U is a linear function of v (see Table 3.1 

below). The change in temperature along the compression isentrope, Ts, may be 

estimated from the classical thermodynamic Gruneisen's parameter, /, via the 

relation 

[ 
&lnT ) 

I= &lnp s [3.10). 

Since we assume /P is constant in all model calculations, this relation integrates 

to 

Relations [3.9] and [3.10] imply that TH is dependent on / only indirectly, 

through Ts. We estimate Does from a third-order spatial finite-strain parameteri

zation (e.g., Davies, 1973). Consequently, D.es=D-es(PJPwl_\,K~), where J.\ and 

i<i are the (STP) isentropic bulk modulus and its first pressure derivative, 

respectively, of the material. Values of these and other parameters used in sub

sequent calculations are listed in Table 3.1. 

As stated above, TT& and T....., are the temperatures of Ta and Ag at the pres

sure of shock-compressed MgO. We estimate the change in temperature due to 

release of Ta and Ag from their respective shock-compressed states, to their 

respective released states, by assuming that release occurs isentropically. This 

allows us to use [3.10], assuming no phase transitions occur during release. 
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Table 3.1. Standard Temperature and Pressure (STP) Parameters. 

Property Symbol Ta Ag MgO Units 

Density p 16.676" 10.501" 3.583" Mg/m3 

Intercept of U-v relationt a 3.2936 3.27c 6.61 d km/sec 
(±0.049)t (±0.060) 

Slope of U-v relation b 1.3076 1.55c 1.36d 

(±0.025) (±0.020) 
Bulk modulus ~ 180.8e 109.6e 162.7/ GP a 

(±0.2) 
(8~/8P1 ~ 4.23' 5.201 4.27d 

(±0.24) 
Specific heat c;, 140.2" 235.5" 937.4" J/kg·K 

Thermal expansion a 1.8" 5.7" 2.7" x10-5 K-1 

Melting temperature TM 3287 11 1234" 3125" K 

Griineisen's parameter '"'! 1.4i 2.5i 1.3i 

Thermal conductivity k 57.5; 427.i 60i W/m·K 

Elastic Debye temperature (}D 263.8i 226.4k 9421 K 

t Uncertainties as quoted in source. 

:I: i.e., U=a+hv. 

I Jackson and Neisler (1982). 
1 Calculated assuming 1<==4b-l. 
1 Touloukian et al. (1975). • Robie et al. (1978). 

• Mitchell and Nellis (1981 ). 
c Marsh (1980). 

' Vassiliou and Ahrens (1981). 
c Calculated assuming l<g==pa2

. 

i Calculated from 1=aKJ pep. 
; Touloukian et al. (1970a). 
k Alers (1965). 
1 Kieffer (1979). 
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Also, we assume that each interface is smooth (Urtiew & Grover, 197 4; see 

Chapter I) in the sense that the shock front is thicker than the interface "gap" 

(Urtiew and Grover, 1974) due to roughness of the surfaces forming the inter

face. This is consistent with the expectation that the Ag-MgO interface should 

be smooth, as discussed above. At this idealized interface, Ta releases directly 

to the pressure of shock-compressed Ag, and then both Ta and Ag release to the 

pressure of shock-compressed MgO. 

To calculate the release temperature, we need the density of Ag and Ta in 

their respective release states. We estimate this using the variational method of 

Lyzenga & Ahrens (1978) to obtain a lower bound on the density of the chosen 

release state. This gives us, in turn, a lower bound on the temperature of that 

state through [3.10]. As with the calculations of Tw we neglect the effects of 

phase transitions driven by release and/or recompression on the resulting inter

face temperature. 

As boundary conditions, we assume that the temperature and energy flux 

are continuous across the Ta-Ag and Ag-MgO interfaces, and use [3.8] to solve 

for the Ag-MgO interface temperature, T~t), i.e., 

Tim(t) = TAg + 2aT&JAg(TT& - TAg) </>(t) - aMgOJAg(TAg - TMgO) 'IP(t) [3.11]. 
(1 +aMg0

1
Ag)(l +aT& 1Ac) (1 +aM&0

1
Ac) 

In [3.11], we have 

and 

00 

1/{t) = 1 - vT&IAcerfc{Ev'texp/t} + .E (vM&OIAc vT&IAc)m Om(t) , 
m=l 

with 
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[3.12], 

and 

[3.13], 

are the thermal-inertia "mismatches" (Carslaw & Jaeger, 1959, p. 321) between 

Ta and Ag, and between MgO and Ag, respectively, at the pressure of the Ag

MgO interface. The parameters vMg0 1Ag and vT&IAg represent combinations of 

a.Mg0 1Ag and aTa.IAg' respectively, i.e., 

and 

In [3.12] and [3.13], k, p and <;. are the thermal conductivity, density and 

specific heat at constant pressure, respectively, of the designated material and 

appropriate state of each material at the pressure of shock-compressed MgO. 

To estimate the values of aTa.IAg and O'M&OIAI at high pressure, we need the 

appropriate values of k, p and c;,. The densities result from the impedance 

match and/or isentropic release calculations, while the high-pressure specific 

heats at constant pressure come from the relation 

cP = 3nR(l + a1T)/M [3.14], 

where n is the number of atoms in the formula unit, M is the molecular weight, 

R is the gas constant, and a is the thermal expansion (assumed independent of 

pressure and temperature). Note that we assume the high temperature limit for 

Cy (i.e., 3nR/M). In the context of the De bye model, this presumes that all 
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target components are well above their Debye temperatures (STP values are 

given in Table 3.1 ). In addition, this assumes that the electronic contributions 

to Cv are small relative to 3nR/M. Since the lowest-order electronic contribu

tion to Cv scales with temperature, Cy would be larger than assumed here if these 

contributions are significant. If this is true, our estimates of both Cy and <;, will 

be too low, while the temperatures will be too high, at a given pressure. 

Assuming that kn. and k.Ag are dominated by their electronic contributions, 

we assume the relevance of the Wiedemann-Franz-Lorenz (\VFL) relation 

Pek = 2.45X 10-8 W·O/K2 

T 
[3.15], 

(e.g., Berman, 1976), where Pe is the electrical resistivity, to estimate kn, and k.AI 

from electrical resistance data on shocked-Ta and Ag, respectively. To our 

knowledge, shock data exist for Ag (Dick & Styris, 1975) up to 12 GPa, but not 

for Ta. Bridgman (1952) investigated the change in electrical resistance of 

many statically compressed materials, including Ta and Ag, but again only at 

low pressure (~10 GPa). Keeler (1971) investigated the change in the electrical 

resistance of shock-compressed copper and iron up to 140 GPa. He found that 

the resistivity of shock-compressed Cu decreased from :::::::: 1.67 to 0.56 µO·cm 

with pressure up to :::::::: 100 GPa; a datum at 140 GPa implies that the resis

tivity of Cu reaches a minimum between 100 and 140 GPa and then increases to 

:::::::: 0.83 µO·cm at 140 GPa. As for Fe, the data imply that its electrical resis

tivity decreases from :::::::: 2.5 to 0.47 µO·cm between 13 and 140 GPa (above the 

a-+€ transition). In light of [3.15], these trends imply that the thermal conduc

tivities of shock-compressed Cu and Fe increase with shock pressure. On the 

basis of the behavior of Cu, we naively assume that the electrical conductivity 

of Ta and Ag generally increases with shock pressure. Then, from [3.15], we see 

that a calculation of kn, and k.AI using the STP electrical resistivities 

(Pe:ra = 12.45 µO·cm and Pe.Ag= 1.59 µO·cm: Weast, 1979), along with the 
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appropriate release-state temperatures of Ta and Ag, respectively, will give us a 

lower bound on these thermal conductivities. As for kM&O, we assume it is dom

inated by its lattice component at high pressure, and use the lattice thermal

conductivity model of Roufosse & Klemens (1Q74) to estimate it. This assump

tion is supported by band-gap calculations for MgO (e.g., Liberman, 1978), and, 

in view of [3.15], by the results of Ahrens (1966), which suggest that the electri

cal resistivity of MgO is ,....._,109 µO·cm above 92±7 GPa. 

Having established the means, we calculate selected model parameters at 

high pressure from the STP parameters given in Table 3.1 and list the results 

for each experiment in Table 3.2. From the impedance match and partial

release calculations, we obtain the density of Ta, Ag and MgO at the pressure 

of shock-compressed MgO, and from these, through [3.8] and [3.9], we obtain 

TT&, TAI and TM&O for each experiment. Using these with [3.14], [3.15] and the 

model of Roufosse & Klemens (1974), we estimate aM&OIAI and aTa.IAI for each 

experiment and compare them with their STP values in Table 3.3. Also, we 

have calculated aM&OIAI and aTa.IAI as a function of Ag-MgO interface conditions 

(pressure) and displayed them in Figure 3.3. Again, the values of k for each 

materials, especially the metals, are probably the most uncertain aspect of these 

estimates. On this basis, we see that aT&IAI is approximately independent of 

pressure and temperature. However, aM&OIAI decreases steadily from approxi

mately 0.44 at STP to 0.03 at 200 GPa, mainly because of the large increase in 

k.A& (Tables 3.1 and 3.2). 

From [3.11], the initial value of T~t) is given by 

r ) aM&OIAl(TAI - TM&O) T INr\ O = T Ag - -----"------_;;.-

( 1 +aM&O I Al) 
[3.16]. 

This is also the value of Twr(t) with E=oo. For t=oo or E=O, Twr(t) is given 

by 
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Table 3.2. Model Parameter Estimates for MgO Experiments. 

Shock-compressed state Ag-MgO interface state 
Shot Material p T p T p k c;, 

(GPa) (K) (Mg/m3) (K) (Mg/m3) (W/m·K) (J/kg·K) 

166 Ta 336.6 14430 28.130 11860 22.750 2336. 165 
Ag 277.7 13560 17.190 11400 15.440 17600. 487 

MgO 174.0 2913 5.345 2913 5.345 32.6 1324 

147 Ta 349.1 15320 28.350 12600 22.90 2477. 167 
Ag 288.2 14330 17.290 12060 15.53 18570. 500 

MgO 181.1 3032 5.426 3028 5.43 32.1 1326 

145 Ta 364.3 16420 28.600 13470 23.010 2651. 169 
Ag 300.9 15270 17.410 12810 15.590 19760. 516 

MgO 187.9 3257 5.442 3257 5.442 31.5 1332 

146 Ta 395.0 18730 29.130 15320 23.280 3014. 173 
Ag 326.7 17240 17.640 14420 15.750 22230. 548 

MgO 203.1 3667 5.536 3667 5.536 30.5 1342 

Table 3.3. Thermal Inertia Mismatch Estimates at STP and High Pressure. 

Conditions 

STP 0.36 0.44 
Shot 166 0.26 0.04 
Shot 147 0.26 0.04 
Shot 145 0.25 0.04 
Shot 146 0.25 0.03 
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Figure 3.3. Estimates of aTt.IAI and aMsOIAI as a function of the Ag-MgO 
interface pressure. The decrease of aMsOIAI with pressure is due 
to the temperature-dependence of the the Wiedemann-Franz
Lorenz thermal-conductivity parameterization for Ta and Ag 
given in the text, causing ~ and k.Ag to increase with pressure. 
These curves are lower bounds to aTt.IAI and aMsOIAI if ~ and k.Ag 
become independent of temperature at high pressure (see text). 
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[3.17]. 

For shot 146 conditions, Tn-rr{0)=14070 K and Tn-rr(oo)=13910 K. Note that 

Tn-rr(t) is bounded below by T~oo) in this case. The time-dependence of 

Tn-rr(t), embodied in ¢>(t) and 1/J(t), can more easily be seen in the following 

approximations to T~t). For €--+O, ¢>(t) and Om(t) are given by 

and [3.18], 

with 

¥i 
Om(t),......, (1-vT&IAg)- 2vT&IAge{ t:P) { me-m2ft;exp/t _ vT&IAg(m+l)e-{m+1)2ft;exp/t} . 

And for e-oo, we have 

and [3.19], 

with 

From the parameters in Table 3.2, we have J~"'texp,......,10-5 m for shot 146 
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conditions; consequently, with 8~10-6m, we have a (conductively) thin film 

(c~0.1). Using these estimates for shot 146 conditions, we display Trnr(t), cal

culated for 3 different values of c (1.0, 0.1 and 0.01), and aTa.IAg and aM&OIAg for 

the conditions of this shot (Table 3.3), in Figure 3.4. We also plot the two 

approximations (c-o, [3.18], and E-oo, [3.19]) in this figure. Clearly, over the 

entire range of c, Trnr(t) lies within about 200 K of Trnr(O). In particular, with 

c~0.1, Trnr(t) is essentially independent of time and approximately equal to 

Trnr(oo). We note that Trnr(t) will approach TM&O only if aM&0 1Ag>>l 

(kAg-o or ~-oo) and c<<l. So, assuming our estimate of aMgOIAg is reason

able, we have some justification for assuming that Trnr(t) is essentially constant, 

and approximately equal to Trnr(oo), during the experiment. 

With these considerations in mind, we display an example fit to the data for 

shot 146 in Figure 3.5, assuming that Trnr(t) is time-independent. Assuming 

that our measurement errors are independently random, and normally

distributed around the model that actually fits the data, the "best fit" to the 

data is achieved through minimization of the functional x2(>..), given by 

[3.20], 

(e.g., Press et al., 1986), where a(>..) is the uncertainty of the data at wavelength 

>... Using a golden section (GS) search technique (e.g., Press et al., 1986), we fit 

I>..mod(>..,t) to I>..exp(>..,t) by fixing r>.FS, ~.o to known values (Table 3.4), and TM&O 

to its value as given by [9] and the parameters in Table 3.4. Fixing TM&O to this 

value is justified by agreement with the results of greybody fits discussed below. 

In addition, the fit results are not sensitive to TM&O in this case (Chapter I, §6. 

and §7.). In this case, we vary r>.sF, ~' r:..INT and TINT to minimize x2(>..). Even 

though the fit using [3.20] will produce >..-dependent optical parameters as the 
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Figure 3.4. Model Ag-MgO interface temperature, T~t), as a function of 
time for different nondimensional Ag-film thicknesses, 
E = 6/ V K11gtexp' where 6 is the Ag-film thickness and "'Ai its 
thermal conductivity at the Ag-MgO interface pressure. This 
calculation is for shot 146 conditions, with an

1
.Ag=0.25, 

aM&0
1
.Ag=0.03, Tn.=15320 K, T....,=14420 K, and TM&0=3667 K 

(Table 3.2). From these, we have T~t=0)=14070 K and 
Tn-rr(t=oo )=13910 K, as defined in the text. The circles 
represent e = 0.01 and e ~ 0 (the latter from [3.18] in text, 
respectively, while the diamonds and dots are for E = 1.0 and 
c ~ oo ([3.19] in text), respectively. 
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Figure 3.5. 

218 Figure 3.5 

Spectral radiance data and model fit at 600 nm (part a) and 750 
nm (part b) for shot 146. Parameters for the fits are given in 
Table 3.4. The fit implies that the data are largely consistent 
with a high, time-independent interface temperature 
(TINI' 20000 K for 146), strongly absorbing shocked MgO 
(Table 3.4), and the estimated values for TMgO (Table 3.2) used 
in the fits. It also implies that the contribution from the 
shocked MgO dominates that from Ag at the interface after ,...._, 
100 ns. 
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data allows, we really cannot quantitatively assess 1), the ability of the data to 

resolve the wavelength-dependence of these parameters, 2), whether we have too 

many or few free parameters (even though they are all physically well

established ), and 3), whether we have over- or under-estimated measurement 

uncertainties, all because the data lack sufficient wavelength-resolution (i.e., we 

have 4 wavelength-dependent parameters and data at 4 wavelengths). In fact, 

all we can really resolve is the wavelength-averaged magnitude of the model 

parameters that are potentially wavelength-dependent. If we had sufficient 

wavelength-resolution, we could let all free parameters vary as allowed physi

cally in >-.,t space, and invert for their best values. However, the resolution of 

the data with respect to the wavelength-dependence of r>.sF, ~' r>mr is, at best, 

poor. 

Keeping all this in mind, we display the results of this fit for shot 146 data 

in Table 3.4. Beyond the data resolution problem, we note that the potential 

wavelength-dependence of the parameters allowed to vary in the fit, (especially 

3™.o) is also dependent on our assumption of constant T~t ). From [3.2] and 

[3.3], we see that Trnr(t), ~o and ~control the slope and magnitude, while 

the effective reflectivities and TM&O influence only the magnitude, of I>..mod(>-.,t ). 

With a fixed 3™ao.o' and Tmr>> TM&O, then, the fit is most sensitive to Tmr and 

3™.oi these should be best resolved. The results of this fit, given in Table 3.4, 

suggest that shocked MgO at 200 GPa is ,......,, 50-100 times more absorptive than 

at STP. Further, along with r>mr (Table 3.4), ~o may be wavelength

dependent. Also, we note that the fits favor a much larger Tmr (,......,,20000 K: 

Table 3.4) than T~O) calculated above for shot 146. This large value of Tmr 
' 

implies that the Ag film is 1), is slightly porous (,......,,8-10%) and/or 2), reshocked 

at the Ag-MgO interface (Urtiew and Grover, 1974). Trapped gas at Ag-MgO 

interface as a radiation source (Boslough, 1985) seems unlikely since the inter

face was formed in a vacuum. However, we cannot rule out the influence of 
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Table 3.4. Radiation Model Parameterst for Shot 146. 

Wavelength 

(nm) 

450 
600 
750 
900 

68 
82 
97 

128 

rXSF 

0.1 

0.3 

0.1 

0.1 

6300 
7500 

4200 
3800 

Table 3.4 

f>..INT 

0.9 
0.2 
0.6 
0.5 

t TINT = 20000 K, T M&O = 3667 K, and r>..FS = 0.08 at all wavelengths in fit. r>..FS 
was calculated from n>..Mg0,0 = 1.736 (Weast, 1979) and formula for effective nor
mal spectral reflectivity given in text. 

calculated from data of Touloukian et al. (1970c) and d=2.562 mm for shot 146 
(Table 4.1). 
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processes (e.g., reshocking) at the Ta-Ag interface on TINr" The decay of radia

tion intensity for shot 146 is progressively faster going toward shorter 

wavelengths (i.e., from 900 to 450 nm: Figure 3.2). This can happen if Tim(t) 

decays very strongly over time, and/or the effective spectral absorption

coefficient increases toward shorter wavelengths. We do not see a cross over of 

the radiation intensities at shorter wavelengths, however, implying that a strong 

decay of Tim(t) to near TM&O does not dominate the time-dependence of Tim(t). 

If Tim(t) does decay strongly, the magnitude of ~ would be less and its 

wavelength-dependence different. In this sense, our assumption of constant TINr 

has given us an upper bound on the magnitude of~· 

In the context of our model, the effective normal spectral reflectivity of the 

boundary between any two (dynamic) target components i and j is given by 

(e.g., Siegel & Howell, 1981) 

In this relation, n>-. and w>-. are the real and imaginary parts of the complex 

index of refraction of the material, and, as with all the other optical parameters, 

they are both potentially >..-dependent. W>-. is also known as the electromagnetic 

extinction coefficient. The values of r>.sF from the fit imply that the refractive 

index of MgO changes very little upon shock compression up to 200 GPa. This 

is consistent with the low-pressure data of Vedam & Schmidt (1966), which 

imply that the refractive index of MgO actually decreases very slightly 

( ,...._.1.5X10-3 /GP a) because of the decrease in electronic polarizability, which 

dominates the intrinsic inaease in refractive index with pressure. The slightly 

higher value of r>.sF at 600 nm is clearly warranted by the data (see below), and 

may represent a dependence of n>.MgO on wavelength. Noting that 

~ = 47rw>.MgO/>.. (e.g., Siegel & Howell, 1981), where wM&O is the extinction 
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coefficient of shocked MgO, our results imply that wM&0 ........... 10-3, also consistent 

with a small value for r>.sF. The values of r>JNr in Table 3.4 may be compared 

with r~600 nm)= 0.9 at STP, calculated with nv,g = 0.18, Wv,g = 3.64 at 600 

nm (Svet, 1965) and n>.MgO = 1.736 (Table 3.4). Since w>.MgO appears to be too 

small to affect r>.Im' significantly, the decrease of r>.mr at high pressure implied by 

the fit may represent a change mainly in nMi and/or w>.Ag with pressure. 

The strongest result of this fit is that MgO is significantly more opaque at 

high pressure. This is consistent with the results of Gaffney & Ahrens (1973), 

who observed a wavelength-independent increase in opacity at 46.5 GPa in 

MgO. This change in opacity may be due to shock-induced defect structures, 

since MgO did not recover its transparency during release. With the possible 

exception of Al20 3 (Bass et al., 1987; but see Urtiew, 1974), all initially tran

sparent materials studied so far (e.g., LiF: Ko rm er, 1968; CaAl2Si20 8: 

Boslough et al., 1986) lose some transparency during shock compression. We 

note that a similar fit to shot 145 data is qualitatively consistent with that for 

shot 146 data. 

To get more precise estimates of the optical parameters, we need further 

constraints on €~t) and T~t). One possible means to this is the use of two 

recording systems during the experiment, one set to record the initial intensity 

of the interface radiation, and the other set to record the expected intensity of 

the sample radiation. In this way the early history of the radiation intensity 

should constrain the early time-dependence of €~t) and T~t), before the 

optical properties of shocked MgO can significantly affect the observed radiation 

intensity. 

Having some understanding of the time- and wavelength-dependence of the 

observed radiation intensity, we can, with some justification, fit the greybody 

relation 
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Figure 3.6. Greybody fits to uncorrected shot-145 data (part a) and shot-
146 data (part b) as a function of wavelength for fexp(tr) and 
T exp( tr). The size of the data rectangles represent experimental 
uncertainty. Note the deviation (i.e., outside experimental 
uncertainty) at 600 nm of the spectral radiance below the vari
ous fits. This observation is substantiated as a larger value of 
r>-FS(600 nm) (Table 3.4) in the fit of Figure 6b at 600 nm. 
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Table 3.5. Greybody Fits to Radiation Data at tr. 

Uncorrected Corrected 

Shot Parameter Wien GS LM GS Wien GS LM 
(tr) (Efit=l) 

166 fexp 1.02 1.00 1.23 1.18 
(750,900)§ (285 ns) (0.22) (0.22)t (0.22) (0.22) 

Texp 3046 3056 3054 3062 
(285 ns) (120) (120) (115) (120) 

x2 0.001 0.0005 0.02 0.001 

147 Texp 2981 
(600) (210 ns) (120) 

145 fexp 0.41 1.02 0.64 0.50 1.02 0.75 
(all) (210 ns) (0.80) (0.80) (0.18):j: (0.80) (0.80) (0.21) 

Texp 3739 3174 3352 3186 3756 3281 3372 
(210 ns) (480) (355) (200) (355) (485) (375) 

x2 9.68 7.29 8.70 7.33 9.69 7.58 8.77 
I 

146 Eexp 0.88 1.04 1.17 1.07 1.21 1.42 
(all) (200 ns) (0.69) (0.69) (0.17) (0.69) (0.69) (0.20) 

Texp 3735 3615 3530 3639 3757 3663 3549 
(200 ns) (410) (385) (80) (390) (415) (395) (100) 

x2 1.64 1.41 1.35 1.45 1.64 1.46 1.36 

t - Experimental uncertainties propagated through GS fit. 
:j: - Standard deviation of LM fit. 
§ - Wavelengths used in fit. 

GS 
(Efit=l) 

3081 
(120) 

0.0005 

3071 
(130) 

3292 
(220) 
7.62 

3784 
(420) 
1.70 
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[3.21], 

at a given time, which we designate tr, to the end of the observed radiation his

tories and find the effective emissivity and temperature of shocked MgO. The 

choice of tr is motivated by the calculated shock-wave transit time through the 

MgO, but is not critically dependent on this choice, as we show below. 

To fit IAgb(>.,t) to the data, we again use the x2 measure. In this case, it is 

given by 

(3.22]. 

Unlike [3.20], the sum is now over all wavelengths observed in the experiment. 

On this basis, Eexp(tr) and Texp(tr) represent the values of Efit(tr) and Tfit(tr) that 

minimize x2(tr)· Since the fit is with respect to wavelength, the value of Eexp(tr) 

represents a wavelength-average of €>.M&O(>.,tr)· Since x2(tr) is a nonlinear func

tional of temperature, we find its minimum numerically using 1 ), GS search, as 

above, and 2), the method of Levenberg as formulated by Marquardt (LM). 

See, for example, Press et al. (1986), for details on both of these methods. To 

obtain starting values of Efit(t) and Tfit(t) for the nonlinear fit, we use Wien's 

approximation to l>..pl(>.,T) in x2(tr), which follows from IApI(A, T) in the limit 

exp(C2/>. T)>> 1, i.e., 

[3.23]. 

The relative error incurred in approximating I>..pl by IAwi is equal to 

exp(-C2/>.T); this approximation is accurate to within 1% for >.T<3X10-3m·K 

(Siegel & Howell, 1981 ). Since we can fit Wien 's relation to the data via linear 

least squares, we can solve for Efit(tr) and Tfit(tr) directly (i.e., without iteration). 
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We argue above that the radiation intensity at the end of the record likely 

represents only that of shocked MgO. In this case, from relations [3.1) and [3.2), 

we also see that, with E~1m(>..,t=tr~texp)~O<< €>.M&O(:>..,tr), 

[3.24), 

with 

[3.25). 

Recalling that r>.FS is independently established (Table 3.4), and taking the 

values of r>.sF, ~and r~ established by the model fit, we may "correct" the 

radiation data and fit for Eexp(tr) and Texp(tr) as above. This is a somewhat 

crude way of correcting for apparent :>..-dependence of €>.M&O from the fit using 

[3.20] discussed above. In principle, this should allow us to fit for Texp(tr) alone, 

but we allow Eexp(tr) to vary because we already set Eexp(tr) = 1 in one of the 

GS fits (i.e., out of curiosity). 

Unlike the previous fit, we have 4 data and 2 parameters (at least for shots 

145 and 146) in the greybody fit. However, we are still confined to wavelength

average values for Eexp(tr)· We present the results of both the corrected (using 

[3.24]-[3.25]) and uncorrected fits in Table 3.5, and plot the uncorrected fit for 

shots 145 and 146 in Figures 3.6a and 3.6b, respectively. The results for shot 

166 (Table 3.5) do not include a LM fit because the method requires at least 

three data points for a fit to two parameters. The uncertainties associated with 

the GS fits represent measurement uncertainties mapped into uncertainties for 

Eexp(tr) and Texp(tr) through use of [3.26}-[3.29] given below. However, the 

uncertainty associated with each LM fit is the standard deviation of that fit. 

Roughly speaking, the values of x2(tr) given in Table 3.5 can be compared to 

the number of data minus the number of parameters in the fit to judge its 

"goodness." On this basis, the fit for shot 145 is not as "good" as that for 166, 

and especially 146. The experimental uncertainties for shots 166 and 147 are 
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much lower, of course, mainly because they are based on only two wavelengths 

and a single wavelength, respectively. For shots 145 and 146, within the fit 

uncertainty, the LM and GS results agree (Table 3.5). Also, there is, within 

uncertainty, no difference between the corrected and uncorrected results (the 

corrected-data results are slightly closer to the calculated values of TM&O as listed 

in Table 3.2). Except for the shot-145 LM results, the effective emissivities of 

the LM and GS fits are > 1, an unphysical result. However, the associated data 

and fit uncertainties easily allow the effective emissivities to be less than unity. 

Also, as noted by Boslough et al. (1986), Efit is much more sensitive to data 

scatter (in ).. and/or t), whether due to uncorrected wavelength-dependences in 

the data, or experimental measurement errors. This results from the functional 

form of IA.gb' as can be seen from the following relations: 

and 

where 

and 

8Tfit 
--~ [ 

8lnTfit ) 81>..gb 

8lnl>..gb €11t,>.. IA.gb Tfit 

[ 
8ln€fit ) fil>..gb 

Blnl>..gb Tiu,>.. l>..gb 

[ 
8lnT fit ) µ < 1 
Blnl>..gb !nt,A. = (l+µ)ln(l+µ) ' µ>O 

[ 
8ln€fit ) 

Olnl>..gb T11t,A. = 1 

2C1€fit 
µ=---

).. sl>..gb 

[3.26], 

[3.27], 

[3.28], 

[3.29], 

(note that ).. and Efit are fixed in this last relation). From these relations we see 
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Figure 3.7. 

230 Figure 3. 7 

Greybody effective emissivity, Eexp(t) (part a), and temperature, 
T exp( t) (part b ), as a function of time near the end of the radia
tion history for shot 146. The fits are essentially time
independent in this time window centered on tr 
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that a given variation of I>..exp' and hence I>..gb in the fit, will have a larger 

impact on Efit than T, i.e., 8Tfit/Tfit< 8€fit/Efit for all 81>..gb/I>..gb· Consequently, it 

is not surprising that Eexp(tr) could be greater than unity with any significant 

scatter, if not constrained to be less than or equal to unity in the fit. 

The fits displayed in Figures 3.6a-b for shots 145 and 146, respectively, both 

show that the 600-nm data lie significantly below the fits. This is also sug

gested by the model results displayed in Figure 3.5 for shot 146, where 

r>.sF(600 nm)=0.3. This deviation probably does not represent systematic error, 

since we have never seen anything like it in the data from other experiments of 

this nature. That it reflects a property of shock-compressed MgO is supported 

by the radiation spectrum of shock-compressed MgO at 60 GPa (Schmitt & 

Ahrens, 1984), which is nonthermal and displays a sharp drop in intensity below 

,...._.550 nm, possibly due to A-dependent absorption and/or reflectivity. This 

possibility is consistent with the results of the fit displayed in Table 3.4. This 

apparent nonblackbody trend in the MgO data is one possible cause of "data 

scatter" leading to nonphysical values of Efit, as discussed above. 

That our choice of tf' within a given window of time, is not essential to our 

results can be shown by fitting a window of time around tr and displaying the 

consequences. We do this for shot 146 uncorrected data and display the results 

in Figure 3.7. As evident, the fit is essentially time-independent 10 ns on either 

side of tr- This is true for the fits to shots 166 and 145 as well. 

§4. Discussion 

In Table 4.1, we list the greybody fit and uncertainties, along with the cal

culated shock-wave velocities, shock-transit times, pressure and temperature, for 

each experiment. The uncertainties of calculated quantities are based on a 

propagation of the parameter uncertainties listed in Table 3.1 through the cal

culation of each quantity. The values of Eexp(tr) and Texp(tr) in Table 4.1 are 
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Table 4.1. Experimental Results and Model Estimates. 

Experimental Results Model estimates 

Shot p d Vi mp 
(Mg/m3

) (mm) (km/s) 

166 3.562 3.468 5.73 
(0.002)t (0.005) (0.04) 

147 3.595 2.513 5.87 
(0.002) (0.002) (0.03) 

145 3.577 2.621 6.04 
(0.002) (0.003) (0.03) 

146 3.587 2.562 6.36 
(0.002) (0.004) (0.03) 

t - measurement uncertainty. 
p - STP bulk density. 
d - Sample thickness. 
vimp - Impact velocity. 
U - Calculated shock wave velocity. 

Eexp Texp tr 
(K) (ns) 

1.18 3081 285 
(0.22) (120) (10) 

1.00 3071 205 
(0.33) (130) (10) 

1.03 3281 210 
(0.79) (375) (10) 

1.19 3663 200 
(0.69) (395) (10) 

t 5t - Calculated transit time of shock wave through MgO. 

u 
(km/s) 

12.10 
(0.14) 

12.22 
(0.14) 

12.38 
(0.15) 

12.68 
(0.15) 

PMgO - Calculated pressure of shock-compressed state of MgO. 
TMgO - Calculated temperature of shock-compressed state of MgO. 

tst PMgO 
(ns) (GP a) 

286.6 174.0 
(3.4) (2.6) 

205.7 181.1 
(2.4) (2.3) 

211.7 187.9 
(2.5) (2.6) 

202.0 203.1 
(2.5) (2.8) 

TMgO 
(K) 

2913 
(415) 

3028 
(430) 

3257 
(445) 

3667 
(495) 
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those for the GS fit with Efit and T fit variable, which we choose as representative 

of the other estimates, within experimental uncertainties. The average uncer

tainty of TM&O is somewhat higher than, but relatively close to, the average 

experimental uncertainty of Texp(tr)· Note that the calculated shock-wave tran

sit times through MgO are, on average, about 40 ns less than the duration of 

each experiment, as defined by a break in the radiation history about 240 ns 

after the rise in radiation intensity (see Figures 3.2 and 3.3, and compare with 

t 5t for shot 146 in Table 4.1) due to release of MgO. This seems to be a real 

discrepancy; experimental times should be resolvable to within ±5 ns. We have 

no explanation at this point. 

The good agreement between the temperatures inferred from the radiation 

data and calculation using [3.9] implies a posteriori that the assumptions that 

1), MgO compresses as an elastic fluid, 2), MgO does not change phase during 

shock compression, and 3), Cy 3nR/M for MgO, are valid for the range of pres

sures covered by our experiments. The first assumption implies that the tem

peratures achieved by MgO during shock compression in the pressure range 

covered are governed by its bulk elastic properties and lattice specific heat. At 

much lower pressures (~60 GPa), MgO radiates nonthermally (Schmitt & 

Ahrens, 1984), which is also consistent with these calculations; TM&O in this pres

sure range is ~500 K. 

No variation of Cy and/or "f is reflected in the uncertainties for TM&O listed in 

Table 4.1. Any variation of these parameters would, of course, only increase 

the uncertainty of TM&O, which already encompasses that of Texp(tr)· In other 

words, unless we "assume" that we can actually calculate TM&O much better 

than indicated by its uncertainties listed in Table 4.1, Texp(tr) cannot place 

bounds on a possible variation of Cy or .,, because the uncertainty of TM&O is 

larger than that of Texp(tr)· With this in mind, we can alter the values of Cy 

and "/ given in Table 3.1 and obtain other values for TM&O than those given in 
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Tables 3.2 and 4.1. As discussed above, TM&O is much more sensitive to varia

tions in ey than '"'I· For example, using the conditions of shot 146, if we first 

vary 10 , and then ey=3nR/M, of MgO (Table 3.1) by ±10%, we get a ±20 and 

± 350 K variation in TM&O, respectively. 

We display the experimental results in Figure 4.1 along with temperatures 

inferred from radiation data for Si02 (Lyzenga et al., 1983) and Mg2Si04 

(Lyzenga & Ahrens, 1980). The continuous curve is the calculated locus of 

shock-compressed states for MgO, and the dot-dashed curve is a Lindemann 

estimate of the melting curve of MgO, calculated from the parameters listed in 

Table 3.1 by assuming the compression of solid-MgO along the melting curve is 

equal to that along the MgO shock-compression curve at the same pressure 

(Chapter I, §4.). Also displayed are the mantle temperature profiles of Brown & 

Shankland (1980) and Stacey (1977), which are together representative of the 

range of models currently considered plausible. From the agreement of data 

and calculations, and in light of the Lindemann estimate, we conclude that 

MgO does not change phase below 200 GPa. Not shown in Figure 4.1 is the 

intersection of the model shock-compression and Lindemann curves for MgO at 

265 GPa. On the basis of the "ideal" behavior exhibited by MgO up to this 

point, we speculate that it won't melt below :=::::::: 265 GPa. Also, if MgO has an 

effective emissivity near unity between 170 and 200 GPa, as our results suggest, 

then the observations of Kondo & Ahrens (1983) and Schmitt & Ahrens (1984), 

as well as the models of Svendsen & Ahrens (1986), imply that MgO probably 

does not localize thermal energy below this pressure. Any localization should 

catalyze melting or other energetically favored transitions at higher pressures. 

Shock-induced deformation in MgO is localized (Chen et al., 1975) in the form 

of microfracturing up to 60 GPa, but apparently this has no impact on the tem

perature field, in contrast to other oxides such as Si02 (Schmitt & Ahrens, 

1984). Apparently the energy dissipated in localized deformation in shocked-
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Figure 4.1. Experimental and model pressure-temperature shock compres
sion results for MgO. The Lindemann melting and shock 
compression curves for MgO are calculated from the parameters 
for MgO in Table 3.1. The MgO experimental results are 
represented by rectangles. Also shown are the mantle tempera
ture profiles of Stacey (1977) and Brown and Shankland (1980), 
as well as the experimental results of Lyzenga et al. (1983) for 
Si02 and Lyzenga and Ahrens (1980) for Mg2Si04• The vertical 
line at 136 GPa represents the pressure of Earth's core-mantle 
boundary. Note that the MgO experimental results are quite 
consistent with the model curve and well-below the Lindemann 
estimate. 
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MgO is efficiently transported away before an energy density sufficient to effect 

melting or solid-solid transformation is attained (Svendsen & Ahrens, 1986). 

What are the processes responsible for the transition of MgO from predom

inantly a nonthermal to a thermal radiator (with €-+1) between 60 and 170 

GPa? The apparent change in electrical resistivity of shocked-MgO from ~103 

to ,..._,10 O·m above 92 GPa (Ahrens, 1966) is consistent with either 1), closure of 

the valence-conduction electron band-gap, or 2), proliferation of initially present 

or shock-induced (Gager et al., 1964) defects possessing free electrons. However, 

since the MgO band-gap appears to increase in the pressure range of our experi

ments (Liberman, 1978; Bukowinski, 1980; Chang and Cohen, 1984), we specu

late that, at high pressures above ,..._,100 GPa, defects in thermal equilibrium 

with MgO are responsible for the observed radiation from MgO. 

§5. Summary 

We use a model of conductive and radiative transport among the target 

components of our experiments to interpret the radiation history of the target 

in terms of its optical and thermal properties, and infer the shock-compressed 

temperature of MgO. On this basis, we have the following results: 

1. The model for conduction between the Ta driver, Ag film and MgO implies 

that the Ag-MgO interface temperature, Trnr(t), will be approximately con

stant on the time scale of the radiation observations (,..._,200 ns) for values of 

the nondimensional interface thickness € less than 0.1 (Ag-film thickness 8~ 

1000 nm) or greater than 1.0 ( 8> 10 µm ). Estimates of this thickness for 

the Ag film of each experiment imply that E<0.1 for all experiments. The 

model implies that Trnr(t) cannot decrease by more than about 200 Kin any 

of the experiments (regardless of the value of €) because of the large 

thermal-inertia mismatch between Ag and MgO. 
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2. Assuming Tu-rr(t) is independent of time, a fit of the radiative-transport 

model to MgO radiation-history data implies that shocked MgO is ........,,100 

times more absorbing (~ ,......_, 6300, 7500, 4200 and 3800 m-1 at 450, 600, 

750 and 900 nm, respectively, at 203 GPa) than unshocked MgO in the pres

sure range covered by the experiments. The coefficient of absorption for 

shocked MgO and the effective normal spectral reflectivity of the shock

front and Ag-MgO interface are wavelength-dependent in this fit (Table 

3.4). Also, TINr from this fit is much higher (,......_, 20000 K) than estimated 

from ideal-release calculations for solid Ag-film, implying that the Ag film 

may be slightly porous (~10 %) and/or reshocked. Independent constraints 

on Tu-rr(t) and €~t) through modification of the experiment to record both 

interface and sample radiation intensities are needed to pin down these pos

sibilities. 

3. The radiative transport model fits imply that greybody fits to the end of the 

radiation histories for each experiment constrain the effective normal 

(wavelength-averaged) emissivity and absolute temperature of MgO. Using 

two different fitting techniques, we establish, within experimental uncer

tainty, the robustness of our fits. The greybody fits agree well with model 

temperature calculations, implying that, between 170 and 200 GPa, MgO 

compresses as an elastic fluid with a Dulong-Petit specific-heat value. The 

agreement between T exp( tr) and TMgO, the latter calculated assuming no 

phase transformations, as well as the values of Eexp(tr) ( ,....._,0.1-1, Table 3.5), 

together imply that MgO does not change phase below 200 GPa. In addi

tion, since the calculated shock-compression curve and Lindemann melting 

curve of MgO intersect at 265 GPa, we speculate that it will not melt below 

this pressure. 

4. Comparison of the experimental results for MgO with those of Si02 and 

Mg2Si04 shows that the shock-compressed temperatures of Mg2Si04 lie 
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between those of Si02 (below) and MgO (above), analogous to the density

pressure relations between these materials, and emphasizing the role of the 

bulk elastic properties of these materials in controlling the first-order magni

tude of their respective shock-compressed temperatures. Comparison of the 

extrapolated MgO shock-compression curve with a range of possible mantle 

temperature profiles implies that shocked MgO is colder than the lower 

mantle by,....,,, 1000-1500 Kat the same pressure. 
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Abstract 

Optical radiation from CaMgSi20 6 crystal ( diopside) shock compressed to 

150-170 GPa constrains CaMgSi20 6 crystal Hugoniot temperatures of 3500-4800 

K, while that from CaMgSi20 6 glass (with a density 87% that of crystal 

CaMgSi20 6), shock compressed to 105-107 GPa constrains glass CaMgSi20 6 

Hugoniot temperatures of 3600-3800 K. The radiation history of each of these 

materials implies that the shock compressed states of each are highly absorp

tive, with effective absorption coefficients of ~500-1000 m-1• Calculated shock 

compressed states for these materials, when compared to the experimental 

results, imply that CaMgSi20 6 crystal Hugoniot states in in the 150-170 GPa 

range represent a high-pressure solid (or possibly liquid) phase with an STP 

density of ~ 4100±200 kg/m3, STP Griineisen's parameter of ~ 1.5±0.5 and 

STP HPP-LPP specific internal energy difference, lle/3- 0
, of 0.9±0.5 MJ /kg. 

These values are consistent with a CaSi03+MgSi03 perovskite assemblage for 

CaMgSi20 6 at high pressure. For CaMgSi20 6 glass, we have the same range of 

high pressure phase properties, except that lle/~0 is 2.3±0.5 MJ/kg, a strong 

indication that the CaMgSi20 6 glass Hugoniot states occupy the liquid-phase in 

the CaMgSi20 6 system. Comparison of the pressure-temperature Hugoniot of 

CaMgSi20 6 crystal with the Hugoniots of its constituent oxides (i.e., Si02, CaO, 

and MgO) demonstrates the primary influence of the high pressure phase STP 

density of these materials on the magnitude of the temperature in their shock

compressed states. The CaMgSi20 6 crystal pressure-temperature Hugoniot con

strained by the experimental results lies at 2500-3000 K between 110 and 135 

GPa, within the plausible range of lowermost-mantle temperature profiles. 
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§1. Introduction 

Mg-Fe oxides and/or silicates are currently believed to dominate the compo

sition of the earth's mantle. CaMgSi20 6 (abbreviated by "Di" in what follows), 

which in mineral form is known as diopside, represents one of several pyroxene 

compositions believed relevant to the composition of the earth's mantle. It is 

the only natural pyroxene to form large, transparent single crystals suitable for 

shock temperature investigation. The possibility that the earth accreted inho

mogeneously (e.g., Turekian and Clark, 1969), or strongly differentiated during 

core formation implies that certain regions of the mantle, such as D", may be 

composed of more refractory (Ca, Al) materials. This material may have been 

composed partly of Di, a likely high temperature, low pressure condensate in the 

early solar nebula (Grossman and Larimer, 1974). A number of previous static 

and dynamic experimental efforts (e.g., Liu, 1978, 1979a; Svendsen and Ahrens, 

1983; Boslough et al., 1984; Boslough et al., 1986) and modeling efforts (e.g., 

Ruff and Anderson, 1980) have directly or indirectly addressed this issue. In 

this paper, we use shock-induced radiation from Di to constrain the temperature 

of its shock compressed (or Hugoniot) states. Combining these constraints with 

previous work on the mechanical response of Di to shock compression, we place 

constraints on the pressure-density-temperature equation of state of the high

pressure phase (HPP), or phases, of Di. 

§2. Experimental 

We conducted the experiments on a two-stage, light-gas gun (e.g., Jeanloz 

and Ahrens, 1980a; Figure 2.1). In these, a lexan-encased tantalum (Ta) flyer 

plate, accelerated to velocities between 4.7 and 6.1 km/sec (see Table 5.1 

below), impacted a 1.5 mm-thick Ta driver plate in contact with either 1), an 

approximately 2 mm-thick, (100)-oriented, transparent Di crystal sample, or 2), 

an approximately 4mm-thick, transparent Di glass sample (Table 5.1). We 
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Figure 2.1. Geometry of the light-gas gun radiation experiment after 
Boslough (1984). The projectile, shot through the barrel, 
impacts the sample at velocities between 5.7 and 6.4 km/sec. 
Radiation from the sample is bent 90 ° by the mirror, travels 
through the objective lens, and is divided up by the three beam 
splitter arrangement among the 4 channels of the pyrometer. 
The resulting signals from the photodiode in each channel are 
monitored by oscilloscopes and LeCroy transient digital record
ers. 
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Table 2.1. Microprobe Analyses of Starting Materials. 

Shot 140,141 t 169,170:j: 

N~O 0.38* 0.48 
MgO 17.40 17.63 
Al20 3 0.36 0.22 
Si02 55.74 55.32 

Cao 25.15 24.78 
Ti02 0.02 0.11 

Cr20 3 0.07 0.48 
MnO 0.08 0.04 
FeO 0.82 0.96 

Total 99.97 99.68 

En 48.4 49.0 
Wo 50.3 49.5 
Fs 1.4 1.5 

t - DeKalb, NY, S. Huebner, USGS, Reston, VA. 
:j: - Russian diopside, Gem Obsessions, San Diego, CA. 
§ - Diopside glass, G. Miller and G. Fine, Caltech. 
*weight.% 

Table 2.1 

196,197§ 

0.01 

15.75 
0.03 

58.48 

26.07 
0.00 

0.00 

0.01 
0.00 

100.37 

49.0 
51.0 
0.0 
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covered the free surface of the samples with an aluminum mask having a hole in 

the in the center to avoid observing radiation from the target's edge. Radiation 

from the target reflects off a mirror, propagates though an objective lens, and is 

directed by a ( dichroic) pellicle beam splitter and two half-silvered beam 

splitters into 4 detectors filtered at nominal wavelengths of 450, 600, 750, and 

900 nm. We recorded the signal from each detector with a Tektronix 485 

single-sweep oscilloscope and a LeCroy (model 8081) 100-MHz transient 

recorder. 

The densities of Di crystal samples (given in Table 5.1 below) agree well 

with the "ideal" value of 3277 kg/m3 (Robie et al., 1978). This is consistent 

with the microprobe analyses of our sample materials as shown in Table 2.1, 

which indicate that the samples have almost ideal compositions. The Di glass 

samples are about 13.6% less dense than the crystal samples; this is consistent 

with previous measurements of Di glass (Binsted et al., 1985). 

As in previous studies (e.g., Lyzenga, 1980; Boslough et al. 1984), we vapor

deposited 500-1000 nm of silver (Ag) on the sample, and then placed the Ag film 

in contact with the Ta driver plate to minimize radiation from an otherwise 

rough driver plate-sample interface. We expected this Ag film to absorb any 

radiation from the Ta-Ag interface, heat up much less than a mechanical Ta

CaMgSi206 interface (Urtiew and Grover, 1974), and contain no trapped gas 

that could also contribute to interface radiation (Boslough, 1984). 

§3. Data Analysis 

Our data set consists of six experiments: four on diopside single crystals 

(140, 141, 169 and 170), and two on Di glass (196 and 197). We record the radi

ation intensity from the target as a function of time at the wavelengths stated 

above. In Figures 3.1 and 3.2, we display examples of these data at 750 nm. 

The data shown in Figure 3.1 are from crystal Di (shot 141), while those shown 
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254 Figure 3.1 

Radiation intensity versus time record for shot 197 on diopside 
glass at 750 nm. The time t=O marks the arrival of the shock
front at the Ag-Di interface, while ts marks the point in the 
radiation history (with intensity Vs) used to determine spectral 
radiance of glass Di at this wavelength. 
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Figure 3.2. Radiation intensity at 750 nm versus time record for shot 141 
on diopside single-crystal. Duration of sample radiation inten
sity is much shorter than that of glass experiment shown in Fig
ure 3.1 because crystal sample is thinner (Table 5.1 ). 
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in Figure 3.2 are from glass diopside (shot 197). These radiation histories are 

representative of those at all other observed wavelengths and in all other experi

ments. With the known radiation intensity of a standard lamp (Boslough, 1984) 

at the observed wavelengths, we transform these raw data into experimental 

spectral radiation intensities (in the form of spectral radiance) as a function of 

time. The radiation data presented in Table 3.1 for all experiments is in this 

reduced form. 

Both the data interpretation and quantitative results that follow depend on 

the following model for radiative transport in the experimental targets 

(Boslough, 1985; see Chapter I, §6). Assuming that the target may be 

represented optically as a set of plane parallel layers in contact at optically 

smooth interfaces, we interpret the observed radiation intensity, l.>..exp(:>..,t ), in 

the context of a model intensity, I.>..mod(:>..,t), as a function of wavelength(:>..), and 

time after the onset of radiation from the target, t, i.e., 

[3.1]. 

In [3.1], T5 is the shock-compressed (Hugoniot) sample (S) temperature assumed 

homogeneous, uniform and constant, and T 1(t) is the temperature of Ag at the 

Ag-sample interface (I), which may be time-dependent (Grover and Urtiew, 

1974), as indicated. Further, 

[3.2], 

and 

[3.3], 

are the effective normal spectral emissivities of the Ag at the Ag-sample inter

face and shocked sample, respectively, while rM<S, r>.sF and r>J:NT are the effective 

normal spectral reflectivities of the unshocked sample (US) free-surface, shock 

front and Ag-sample interface, respectively. Also, 
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T>.us(t) = exp{-a:U, (1-t/texp)} [3.4], 

and 

r>.s(t) = exp{-ats t/texp} [3.5], 

are the effective normal spectral transmissivities of unshocked sample and 

shocked sample layers, respectively. In [3.4] and [3.5], a:U, and at; are nondi

mensional forms of the effective normal spectral coefficients of absorption in the 

unshocked and shocked samples, respectively, defined by 

[3.6], 

and 

[3.7], 

respectively. Note that texp=d/U is the experimental time scale, U is the shock 

wave velocity in the sample, d is the initial thickness of the sample layer in the 

target, and v is the material (or "particle") velocity of the sample shock state, 

vH' relative to the material velocity of the initial state, vi, i.e., v=vH-vi. In our 

experiments, we have vi=O. Lastly, in [3.1], I>.pI().,T), the Planck function, is 

given by 

C1 
l>.pI().,T) = />.T , 

).5 (eC2 _ l) 

where C1 = 1.19088X10-16W·m2 and C2 = 1.4388Xl0-2m·K. 

As stated above, the target consists of a Ta driver-plate, Ag film layer and 

sample layer. Radiation from the target is first observed when the shock wave 

compresses the Ag film at the Ag-sample interface (t0 , Figure 3.1 or 3.2). As 

shown most clearly in Figure 3.2, the radiation intensity in all experiments rises 

sharply to a peak value, and then as the shock wave propagates into the sam

ple, the intensity decays almost as quickly to a time-independent magnitude 

reflecting that of the shocked sample. This occurs over 100-110 ns (Figure 3.1) 
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to the radiation intensity from Di glass targets, and over 20-30 ns (Figure 3.2) 

to the radiation intensity from Di crystal targets. From the model relations 

[3.1]-[3.3], we see that 'Ji(t), r>.s(t), and r>.u:>(t) are, in general, time dependent. Of 

these, only Ti(t) and/or r>.s(t) can effect a decrease in I).mod(>.,t) with time; r>.u;(t) 

should increase with time (for a:u:> >O), as can be seen from [3.4]. Although the 

time dependence of I).exp(>.,t) may be explained by T1(t ), as shown by thermal 

conduction models (Grover and Urtiew, 1974; see Chapter I, §5) for the experi

mental targets, conduction model calculations lead us to believe that the tem

peratures inferred from I).exp(>.,t) below are implausibly low to represent TJt). In 

other words, the Ag film is almost certainly much hotter than the sample over 

the time scale of the experiment (Boslough, 1984; Chapter II). Consequently, 

the strong decay of the initial radiation intensity is most likely due to shock

induced opacity of the shocked sample (Boslough, 1985). With the possible 

exception of Al20 3 (Bass et al., Hl87), all initially transparent materials studied 

so far (e.g., LiF: Kormer, 1968; CaA12Si20 8: Boslough et al., 1986) lose some 

transparency during shock compression. In the present case, the thermal radia

tion from Ag at the Ag-sample interface is apparently strongly absorbed by the 

shocked sample such that observed radiation intensity is quickly dominated by 

the sample intensity (Boslough, 1985). Hence, we observe a fast decay of the 

initial high intensity and a subsequent time-independent radiation intensity 

displayed in Figures 3.1 and 3.2. 

For the shocked sample to be strongly absorptive, we must have at; .<:,1, or 

a>.s.<:,1/( d-vtexp) from [3.6]. Under this condition, [3.5] implies r>.s(t }-.... o, and 

with this, we have €>.i(t }-.. ,.,0 from [3.2] and 

€>.s(t) = [1-r>.FS] r,.u;(t) [1-r>-sF] 

from [3.3]. From absorbance analyses of the Di glass and Di crystal samples, we 

also conclude that a>.u:>,...._,o, which implies that r>.u:>(t}-.... 1 via [3.4]. Putting this 
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into the last expression, we obtain 

€>.s(t)--+ Exs = [1-r>.FS] [1-r~J [3.8], 

which is also an upper bound to €>.s(t) in the context of the current model. 

Under these circumstances, then, E}.S is is approximately independent of time. 

Putting all these approximations into [3.1], we have 

which represents a constant radiation intensity at a given wavelength, as 

observed in the data (Figures 3.1 and 3.2). The minimum values of a>.s required 

by the condition a>.s:<:,1/( d-vtexp) may be calculated from the experimental 

parameters listed in Table 3.1. We list the results of this calculation in Table 

3.1, where we see that, for Di crystal, a}.S:<:,700-1100 m-1, while for Di glass, we 

have a~420 m-1• 

As the shock wave reaches the free surface of the unshocked sample (t5 in 

Figure 3.1 or 3.2), the radiation radiation intensity again becomes transient, and 

the experiment is over. Since we want to infer the shock-compressed tempera

ture of the sample from the shock-induced sample radiation, and since [3.9] is 

most likely valid for t~texp' we use the magnitude of the radiation intensity at 

texp (Table 3.1, just prior to t 5 , Figure 3.1 or 3.2) and each wavelength to con

strain the temperature of the shocked sample. Assuming the spectral 

reflectivities r>.FS and r~ are independent of wavelength, [3.9] is analogous to the 

grey body relation, i.e., 

[3.10]. 

Comparing [3.9] and [3.10], we see that Efit(texp) should constrain the value of 

(1-r>.FS)(l-r~). The value of texp reflects the calculated shock-wave transit time 

through the sample, but is not critically dependent on this choice (Chapter II) 

as long as the optical parameters of the unshocked material (e.g., a>.u:;) are not 
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strongly wavelength-dependent. At texp' then we measure the spectral radiance 

at 4 wavelengths (450, 600, 750, and 900 nm), and we may fit I>.gb(A,texp) to 

these data via the x2 statistic (e.g., Press et al., 1986). In this case, it is given 

by 

[3.11], 

where a(An) are the experimental uncertainties at each wavelength. On this 

basis, Eexp(texp) and Texp(texp) represent the values of Efit(texp) and Tfit(texp) that 

minimize x2(texp)· Via [3.8] and [3.9], we also identify Eexp with €>..s, and Texp 

with T 5• Since the fit via [3.11] is an average over A, the value of Eexp represents 

a A-average of €>..s. Since x2 is a nonlinear functional of temperature, we find its 

minimum numerically using 1) Golden section (GS) search, and 2) the method 

of Levenberg as formulated by Marquardt (LM). See, for example, Press et al. 

(1986), for details on both of these methods. We use two different numerical 

methods because we are working with a nonlinear fit. In addition, the use of 

two independent methods provides some assurance that our results are not 

dependent on the numerical technique used to obtain them. To obtain starting 

values of Efit( t) and T fit( t) for the nonlinear fit, we use Wien's approximation to 

I>..pJ(A,T) in x2(texp) which follows from I>..pl(A,T) in the limit exp(C2/A T)>> 1, 

i.e., 

[3.12], 

allowing us to fit the data via linear least-squares, and solve for Efit(texp) and 

Tfit(texp) explicitly. 

We present the results of the greybody fit for the six experiments in Table 

3.1, and we plot the data and fits for shots 140, 169 and 197 in Figures 3.3a, 
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Table 3.1. Radiation Data and Fits. 

Spectral Radiance 
(kW /m2·sr·nm) 

Fits 

Shot 450 600 750 900 Parameter( tr) Wien GSt LM:j: 
(nm) (nm) (nm) (nm) 

140 3.15 3.09 2.87 €exp(140 ns) 0.65 0.59 0.56 
(0.59) (0.45) (0.81) (0.37) (0.37) (0.23) 

Texp(140 ns) 4152 4215 4270 

x2 
(351) (364) (356) 
0.14 0.06 0.06 

141 6.14 5.38 6.06 5.71 fexp(145 ns) 0.71 0.65 0.75 
(1.21) (LOO) (0.77) (0.93) (0.34) (0.34) (0.11) 

Texp(145 ns) 4737 4782 4643 

x2 
(346) (356) (153) 
3.44 3.13 3.05 

169 5.11 6.58 6.53 5.49 fexp(198 ns) 0.91 0.86 0.86 
(0.18) (0.31) (0.33) (0.31) (0.27) (0.27) (0.18) 

Texp(198 ns) 4522 4552 4555 

x2 
(263) (268) (178) 
0.30 0.21 0.21 

170 0.82 1.56 2.34 2.29 fexp(l 70 ns) 1.01 1.04 1.06 
(0.13) (0.17) (0.26) (0.26) (0.25) (0.25) (0.17) 

Texp(170 ns) 3539 3508 3498 

x2 
(143) (141) (90) 
1.61 1.43 1.42 

196 1.35 2.14 2.96 3.24 fexp(485 ns) 1.09 1.23 1.63 
(0.48) (0.33) (0.42) (0.51) (0.44) (0.44) (0.26) 

T exp( 485 ns) 3695 3585 3422 
{243) {231) {100) 

x2 1.99 1.20 1.03 

197 1.37 3.18 3.46 3.74 fexp( 475 ns) 1.51 1.51 1.38 
(0.41) (0.39) (0.50) (0.56) (0.39) (0.39) (0.22) 

Texp(475 ns) 3610 3610 3663 

y2 
(208) {208) {96) 
0.50 0.50 0.46 

t - Experimental uncertainties propagated through unweighted GS fit. 
:j: - Standard deviation of weighted LM fit. 

Table 3.1 

GS (€fit=l) 

3803 
(293) 
0.05 

4372 
(297) 
3.55 

4428 
(251) 
0.48 

3539 
(143) 
1.52 

3711 
{247) 
1.72 

3866 
{239) 
1.23 
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264 Figure 3.3 

Spectral radiance versus wavelength data and greybody fits con
straining Eexp(texp) and Tex~(texp) from shots 140 (part a), 169 
(part b ), and 197 (part c )· The size of the data rectangles 
represents the experimental uncertainty. 
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3.3b, and 3.3c, respectively. Note that, with 3 or 4 data points and 2 parame

ters in each of these fits, a x2 value of ........,2 is crudely representative of a "good" 

fit. This value is very sensitive to measurement uncertainties, as can be seen 

from [3.10]. In this case, the values of x2 in Table 3.1 imply that we may have 

overestimated measurement uncertainties, since they appear to be a bit too 

good. In Table 3.1, the uncertainties quoted with the GS fits represent meas

urement uncertainties mapped into uncertainties for Eexp(texp) and Texp(texp) 

(Boslough et al., 1986). However, the uncertainty quoted with each LM fit is 

the standard deviation of that fit. Note that the GS and LM fits for shot 196, 

and the Wien, GS and LM fits for shot 197, give Eexp well above unity, which is 

an unphysical result. As noted by Boslough et al. (1986), however, Etit is much 

more sensitive to data scatter, whether due to uncorrected >.-dependences in the 

data, or experimental measurement errors. Given the functional form of l)..gb' 

we expect Efit to be very sensitive to data scatter away from the Planck 

wavelength dependence (see Chapter II). As can be seen from the corresponding 

GS fits where Efit is set equal to one, the variable Efit fits for shots 196 and 197 

may then underestimate the value of Texp by ........,200 K. Also note that the value 

of Eexp for all experiments and all fits is .<,0.1, which implies that we are observ

ing relatively homogeneous radiation from the sample, as opposed to localized, 

"shear-band" radiation seen in many shock-compressed oxides and silicates at 

lower(~ 70 GPa) pressure (e.g., Kondo and Ahrens, 1983; Schmitt et al., 1986). 

Although the constraint is very poor, we note that, from the identification 

(1-r>.FS)(l-r>.sF)~Eexp' as discussed above, r>.sF........,0.2-0.3, with r>.FS........,0.1, for shots 

140 and 141, at least. 
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§4. Hugoniot Calculations and Comparison with Data 

We calculate the density, Pw and pressure, Pw of the shock-compressed Di 

states, from an impedance match (Rice et al., 1958; see the introduction to this 

thesis) between the target components assuming a linear shock velocity, U, 

material velocity, v w relation, i.e., 

For Ta, we use Pi0 =16675 kg/m3, 8.j=3290 m/s and bi=l.31 (Mitchell and 

Nellis, 1981), while for Ag, we use Pi0 =10501kg/m3, ai=3270 m/s and bi=l.55 

(Marsh, 1980). We assume that the U-v relation for Di crystal, which is experi

mentally constrained to 100 GPa (Svendsen and Ahrens, 1983) is valid to 170 

GP a (Table 4.1 ). Since, to our knowledge, there are no available Di glass U-v 

data, we must find a different way to constrain the U-v coefficients for Di glass, 

8ig and big· We now show that this is possible using the experimentally con

strained Di crystal U-v coefficients, aic and bic• With aig and big' we may calcu

late the impedance match for Di glass targets, and so estimate the experimental 

Di glass Hugoniot states. Since the U-v relation represents a Taylor's series 

expansion of U(v) about the initial state {~,'Ji,pi0,vJ, i.e., v=O, ai and bi are 

defined by 

ai = lim{u} 
V-->0 

[4.1], 

and 

bi= nm{ dU} 
V-->0 dv 

[4.2], 

respectively. Note that Pia is the density of the low pressure phase (i.e.,, the 

starting material), which we designate with the superscript "a", at a tempera

ture 'Ji and pressure ~- Using the mass and momentum conservation relations 
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Table 4.1. Standard Temperature and Pressure (STP) Parameters. 

Property Symbol 

Density 

Intercept, U-v relationt 

Slope, U-v relation 

Bulk modulus 

(aKJaP)s 

Thermal expansion 

Specific heat 

Griineisen's parameter 

Melting temperature 

Elastic Debye temperature 

11 Robie et al. (1978). 
6 Mitchell and Nellis (1981). 
c Marsh (1980). 
"Svendsen and Ahrens (1983). 
e Calculated assuming K8=pa2

. 

I Calculated with ~=4b-l. 

p 

a 

b 

Kg 

~ 

a 

Cp 

'"Y 

TM 

OD 

Ta 

16676 11 

32906 

1.3076 

180.8e 

4.23/ 

1.8' 

140.211 

l.4i 

3287 11 

263.8; 

Ag Units 

10501 • 3277 11 kg/m3 

3270c 5620" m/s 

l.55c 1.27" 

109.611 103.5e GP a 

5.20' 4.o8' 

5.71 3.2,. x10-5 K-1 

235_5• 769.0 11 J/kg·K 

2.5i l.3i 

1234 11 166411 K 

226.4; 654t K 

'Touloukian et al. (1975). 
h Stebbins et al. (1983). 
i Calculated from '"'f=aKJ pep. 
; Alers (1965). 
t Kieffer (1979). 
ti.e., U=a+bv 
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across the shock front ([I.32} and [I.52], respectively, in the thesis introduction), 

we may connect U and v to PH via the relations 

u2 = _l_[P. -P] 
() H I 

Pi ,,,H 
[4.3], 

and 

v2 = .!bs.. [P. - P] 
() H I 

Pi 
[4.4], 

where 11~1-pi0 /pH is the relative compression. If we put [4.3] and [4.4] into [4.1] 

and [4.2], and realize that the limit pH-+pi0 is equivalent to v-+O, we obtain 

.. = lim [ dPH (' 
/>fr+Pla dpH 

[4.5], 

and 

. - - 1 + Im b _ 1 { r ( dlnBH } } 
I 4 f>H:-+Pt dlnpH 

[4.6], 

with 

BH= PH(::] [4.7]. 

All of these relations apply to the shock compression of either Di crystal or Di 

glass. 

Using the combination of 1 ), an energy balance across an adiabatic shock 

front separating two elastic, or barotropic, fluids (i.e., the Rankine-Hugoniot 

relation), and 2), equilibrium thermodynamic paths equivalent to this energy 

balance, we obtain the following relation between Di crystal and glass Hugoniot 

states at the same shock compressed density, occupying the same HPP: 
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Relation (4.8) depends on the assumption that /, the equilibrium thermo

dynamic Gruneisen's parameter, is a function of density alone. In [4.8), 

- 1 a/ . ,,,di = - Pig PH lS the relative compression of the glass, 

f'/cH = 1 - Pi~/ pH is the relative compression of the crystal, </> = 1 - Pi~/ Pi~ is the 

" • " d A c-g - ( a a) ( a a) • th d"ff • "fi • t porosity, an ~ei = e Pie ,sic - e Pig ,sig is e t erence m spec1 c m er-

nal energy between the glass and crystal in the low pressure phase at 'Ji and ~· 

Further, P gH is the pressure of the glass Hugoniot state, P cH is the pressure of the 

crystal Hugoniot state, Pi~ and si~ are the initial glass density and specific 

entropy, and Pi~ and si~ are the initial crystal density and specific entropy. 

Since relations [4.1)-[4.7] are valid for any "hydrodynamic" starting material, we 

have 

[4.9) 

big= .!..{ 1 + lim a{ ( dlnBg!f) } } 
4 PJ:r-+P1g dlnpH 

[4.10) 

and 

[4.11) 

for Di glass. Now, the connection between P gH and P cH represented by [4.8] 

allows us to calculate the density derivatives of PIH present in [4.9] and [4.10] in 

terms of those of P c:ID in turn, these derivatives of P cH may be related to Pi~, aie' 

and hie via 

(McQueen et al.,· 1967), the so-called shock wave equation-of-state. So, via 

[4.8)-[4.12], we may calculate aig and big as functions of Pi~' Pi~' aie and hie· 

These then allow us to calculate an impedance match for targets containing Di 
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glass as the sample material, and obtain an estimate of the Di glass Pw pH state. 

We also use (4.8] to estimate the pJP~ and so TJP~ via [4.13] below. 

With an energy balance-equilibrium thermodynamic path relation analogous 

to that used to obtain (4.8], we may estimate the temperature, Tw of a material 

shock compressed from some initial state, {'Ji,fi,p{:k}, and phase, a, to a high 

pressure state, {TwPwpJ, and phase, /3, via 

[4.13] 

(e.g., McQueen et al., 1967; Ahrens et al., 1969; Jeanloz and Ahrens, 1980b; 

Chapter I, §4). Relation [4.13] is valid under the further assumption that cvi the 

specific heat at constant volume of the shock-compressed state, is independent 

of temperature, which is not inconsistent with our results below. The subscripts 

"i", "H", "S" and "V" designate initial, shock-compressed, constant entropy 

and constant volume states of the material, respectively. Note that all quanti

ties in [4.13], and the expressions to follow, apply to the high-pressure phase, /3, 

unless otherwise designated. In [4.13], 6.e/~0 is the difference in specific internal 

energy between the two phases at 'Ji and fl, 6.e81 is the change in specific inter

nal of f3 compressed isentropically (at specific entropy si) from its density at 

STP, pi, to a density pH (that of the shock-compressed state), while T5 is the 

temperature of the material along the isentrope referenced to si and Pi· We esti

mate 6.e
81 

by combining 1), a different form of the energy balance-equivalent 

equilibrium thermodynamic path used to obtain (4.13] with 2), [4.12], the shock 

wave equation of state; this allows us to solve for 6.e
81 

directly (see Chapter I, 

§4). The temperature, T51, along the compression isentrope may be estimated 

from / via the relation 

[4.14], 
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since we assume IP is constant in all model calculations. 

Since we usually have measured values for Pi~, Pi~, aic and hie' and we can 

estimate 3ig and big as discussed above, we use these to calculate impedance 

matches for targets containing Di crystal and glass. The impedance match gives 

us pcWPcH and piH'PgH" With these, we have TctAPcJ and TJP~ from [4.13], given 

estimates of ri, / and Cy for (3, as well as Ae/-a (Ae/-a+Aeic-g for the glass). 

Requiring P llH---+-Fi as PH---* Pi~, we have Ae{-g from [4.8], i.e., 

with "lcg=l-pi~ /Pi~ and /ig = 1(Pi~). In this case, TH for Di glass and crystal 

starting materials depends on the basic unknowns pi, / and cv for the high

pressure phase, (3, as well as Ae/~a. From [4.13], we see that the slope of TJPJ 

is controlled by the magnitude of c"' while the initial value of TH is governed by 

Ae/~a. Further, from [4.13] and [4.14], we see that / influences TH via the 

isentropic properties T51 and Ae81• In addition, / influences the Hugoniot tem

perature of Di glass through [4.8]. The density of f3 at 1i and fi, pi, influences TH 

indirectly, but significantly, through [4.13], [4.14], and 1(p ). 

In Figures 4.la, 4.1 b, and 4.lc, we display calculated Hugoniots for Di crys

tal and glass that "fit" the shock temperatures constrained by the data dis

cussed above. These calculations are based on the parameter values given in 

Table 4.2. We present a range of these Hugoniots based on a range of values 

for 1), Pi (3900-4300 kg/m3
, Figure 4.la), 2), /i = 1(pJ (1-2, Figure 4.lb), and 

3), Ae/--0 (0.4-1.4 MJ/kg for Di crystal, and 1.8-2.8 MJ/kg for Di glass, Figure 

4.lc) to demonstrate the relative sensitivity of TH to these unknowns. In all 

these calculations, we assume that cJpJ is given by its classic lattice value, 

3vR/M (Table 4.1), where v is the number of atomic components in the chemi

cal formula (10 for Di), R is Ryberg's constant, and M is the molecular weight 
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Table 4.2. CaMgSi20 6 STP Parameters. 

Property Symbol Crystal Glass Units 

U-v Relationt 

Density p 3277" 28286 kg/m3 

Intercept a 5620C 4775d m/s 

Slope b 1.27c 1.28d 

High-Pressure Phase 

Density p 4100c 41Q0C kg/m3 

Intercept a 7826e 7826e m/s 

Slope b l.22e l.22e 

Bulk modulus Ks 251/ 251/ GP a 

(8Kg/8P)s ~ 3.90' 3.901 

Griineisen's parameter:j: I 1.5,\ 1.5,\ 

Specific heat§ Cy 1151.8 1151.8 J/kg·K 

HPP-LPP energy difference ~e-~a 
I 0.9" 2.3" MJ/kg 

t - i.e., U=a+bv. These relations are valid for v>2000 m/s. 
:j: - p/=constant assumed in all calculations. 
§ - Dulong-Petit value, used for Cy in all calculations. 
11 Robie et al. (1978). 
6 Table IV. 
c Svendsen & Ahrens (1983). 
4 from method in text. 

e HPP U-v relation (Chapter I, §4). 
I assuming Ks = pa2. 
1 (8Kg/8P)5 = 4b-1 (Ruoff, 1967). 
1 from model calculations in text. 



Chapter III 

Figure 4.1. 

276 Figure ,j.1 

Shock temperature versus pressure for crystal and glass Di, and 
model Hugoniots for a range of values of 1 ), the STP density of 
the high-pressure phase (HPP), Pi (part a), 2), the equilibrium 
thermodynamic Gruneisen's parameter, "Yi (part b ), and 3), the 
difference in specific internal energy between phases at STP, 
t:i..e/-0 (part c ). 



Chapter III 277 Figure 4.1a 

0 0 0 
0 .--.. 0 0 0 

~ 0) ...... C') s C') • • ClJ 
.............. 'l""""I 

b.O 
~ ...._., ,,,....-.... 
~ (1j 

........ ~ 
........ ' c..? 

........ ' ...._..,,, 
........ ' ........ ' 0 (J.) ....... ' ........ ' N ~ 

' ~ ' 'l""""I 

' rn 
' rn 
' (J.) ' ' ~ 

' ~ ' . . ~ ' 

0 
c.o 

0 0 0 
0 0 0 

s::: 0) ...... C') 

,ll ell 
C') • • - .... 11) 

~ fll fll fll ell Cl> = -i:l t::t: (..) 

D llU Em 

0 

0009 009-V 0008 0091 0 

(>I) a..In're..Iadwa1 



Chapter III 

....... 
....... 

....... 

0 ~ 
.0 = - -«I - .... rn «I rn rn :x:: rn «I Q) = -i:::i Ct:: ~ 

D El tmJ 

0009 009-t 

278 

0 
C\i 

C! 
N 

0008 0091 

Figure 4.1b 

0 
aJ 
~ 

0 
C\l 
~ 

0 
CD 

0 

0 

,,--.... 
ro 
~ 
CJ ...._.,,, 

<J) 
~ 
;::) 
rn 
rn 
<J) 
~ 

~ 



0 
0 
0 
co 

D DeKalb 

81 
I Russian . 

,,..-..... 9 Glass 
~ L() 
'--"' 'tji - - - 1.8-MJ/kg 

Q) 
H 2.3-MJ/kg 
;$ 

-+-' 0 ...... 2.8-MJ/kg 
(1j 0 glass H 0 
Q) <:') 

~ s 
01 Q) 

~ 0 
L() 
,...-1 I 

0 
0 60 

,, .. / . . . . 

. . 

120 
Pressure (GPa) 

/ 
/ 

.· 

fl.e./3-a 
I 

0.4-MJ/kg 

0.9-MJ/kg 

1.4-MJ/kg 

crystal 

180 240 

0 
::r 
~ 

"O 
~ 
CD 
'1 

""""' =::I 

l-.:> 
'I 
co 

~ .... 
<c::i 
.: 
""I 
Cb 

~ 
'-
("') 



Chapter III 280 Hugoniot Calculations ... 

(0.216553 kg/mole for Di). Values for all fixed parameters are given in Table 

4.1. A comparison of the trend in the Di crystal experimental results with the 

slope of the Di crystal Hugoniots calculated in this fashion (Figures 4.la-c) sug

gests that the experimental trend may be slightly steeper than for 

c.J..p.J = 3vR/M. In other words, there are are not enough data to completely 

rule out a pressure-temperature dependent cv(p.J (e.g., Lyzenga et al., Hl83; 

Boslough et al., 1986) for Di. From previous work on the pressure-density 

Hugoniot of Di (Ahrens et al., Hl66; Svendsen and Ahrens, Hl83), the range of 

possible Pi values shown in Figure 4.la for HPP Di are based on mixed-oxide 

and perovskite models for HPP Di. Comparing the results in these figures, we 

see that TH for Di crystal is most sensitive to Pi, followed by Ae/3-a and then /i· 

For Di glass, TH may be slightly more sensitive to /i than Ae/-a, but not really 

knowing a plausible range of values for these parameters, we find it hard to say. 

From the curves in Figures 4.la and 4.lc, we note that the glass data would 

also be satisfied by the combination of a lower initial density (3900 kg/m3) and 

lower value of Ae/-a (1.8 MJ /kg); this is also consistent with the Di glass states 

representing liquid. Even if Pi ~ 4100 kg/m3 for Di glass, melting is favored, 

considering the magnitude of Ae/3-a (2.3 MJ/kg) needed to "fit" these data. 

The magnitude of Ae/3--0 for the "best-fit" Di crystal Hugoniot (0.8 MJ/kg, 

Table 4.2) is of the same order as those estimated for some silicate and oxide 

dynamic solid-solid phase transformations (e.g., 0.82 MJ/kg, 

a-SiOr-+stishovite, Lyzenga et al., 1983). If the glass data represent a solid

solid plus melting transition, this implies a value for Ae/-a of ~ 1.5 MJ /kg for 

melting of HPP Di. This compares, for example, with 1.6 MJ /kg estimated by 

Lyzenga et al. (1983) for the stishovite~liquid Si02 transition, and 

AhM = 0.36 MJ /kg for the change in Di enthalpy upon melting at standard 

pressure and 1665 K (Robie et al., 1978). This line of thought also leads us to 

believe that the Di glass data represent liquid Di, while the Di crystal data 
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represent a mixture of high-pressure oxide (B2-Ca0, MgO plus stishovite) 

and/or perovskite (CaSi03 plus MgSi03, or CaSi03 - MgSi03 solid solution) 

phases. 

§5. Discussion 

In Table 5.1, we list the greybody fit and uncertainties, along with the cal

culated shock-wave velocities, shock-transit times, pressure and temperature, for 

each experiment. The values of Eexp(texp) and Texp(texp) in Table 5.1 for shots 

140, 141, 169 and 170 are those for the GS fit with €fit and Tfit variable, which 

we choose as representative of the other estimates, within experimental uncer

tainties. As discussed above, since €exp(texp) for shots 196 and 197 are 

significantly greater than unity, we choose the GS fit with €fit set to one as the 

"experimental results" for these shots as listed in Table 5.1. 

We display the "best fit" Hugoniot to the present experimental results (con

tinuous curve) in Figure 5.1 along with other experimental results inferred from 

radiation data for Si02 (Lyzenga et al., 1983), CaO (Boslough et al., 1986), and 

MgO (Chapter II). Also shown are the mantle temperature profiles of Brown & 

Shankland (1980) and Stacey (1977). These two models represent the range of 

models currently considered plausible. The HPP Di results fall between the 

CaO and MgO results, and well below those for stishovite and liquid-Si02• To 

first order, this is due to the differences in the STP densities of each material. 

MgO, which apparently does not undergo any phase transformation below 200 

GPa (Vassiliou and Ahrens, 1981; Chapter II) has an STP density of 3583 

kg/m3, B2-Ca0 has an initial density of :::::::: 3800-4000 kg/m3 (Jeanloz and 

Ahrens, 1980a; Boslough et al., 1984), HPP solid Di is likely to have a slightly 

larger Pi (:=::::: 4100 kg/m3, Table 4.3) than B2-Ca0, as discussed above, and 

stishovite has an STP density of :::::::: 4300 kg/ m3 • This is also true because the 

values of D..e/-0 for each material are approximately the same. Since B2-Ca0 
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Figure 5.1. Experimental and model pressure-temperature Hugoniot results 
for HPP Di, along with results for B2-Ca0 (Boslough et al., 
1984), MgO (Svendsen and Ahrens, 1987), and Si02 stishovite 
and liquid (Lyzenga et al., rn83). Also shown are the mantle 
temperature profiles of Stacey (1977) and Brown and Shankland 
(rnso). The vertical line marks the pressure of the mantle-core 
boundary {135.7 GPa). 
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Table 5.1. Experimental Results and Model Estimates. 

Experimental Results Calculated Results 
Shot p d vim fexp Texp u v ~ tst 

kg m 3 mm ms K m-1 

140 3282 1.868 5983 0.57 4215 11210 4403 880 167 
(6)t (0.010) (60) (0.23) (364) 

141 3283 1.566 6143 0.90 4782 11360 4518 1061 140 
(6) (0.010) (50) (0.20) (356) 

169 3290 2.424 6048 0.97 4555 
(5) (0.004) (40) (0.24) (268) 

170 3289 1.970 5593 0.85 3508 
(7) (0.010) (50) (0.14) (141) 

196 2829 4.008 4673 1.00 3711 
(1) (0.004) (30) (0.44) (231) 

197 2827 3.966 4729 1.00 3866 
(1) (0.001) (30) (0.39) (208) 

t - measurement uncertainty. 
p - STP bulk density. 
d - Sample thickness. 
Vim - Impact velocity. 

11300 4448 

10850 4121 

9678 3884 

9733 3885 

fexp - Experimentally-constrained greybody effective emissivity. 
T exp - Experimentally-constrained grey body absolute temperature. 

681 192 

818 182 

417 414 

420 408 

PH 
GP a 

162 

169 

165 

147 

105 

107 

tr - Time during radiation history when lexp used to constrain T exp and fexp was read. 
U - Calculated shock wave velocity through sample. 
v - Calculated material velocity of shocked sample sample. 
~ - lower bound to absorption coefficient of shocked sample. 
tst - Calculated shock wave transit time through sample. 
PH - Calculated shock-compressed pressure of sample. 
TH - Calculated shock-compressed temperature of sample. 

TH 
K 

4190 

4524 

4313 

3590 

3660 

3795 
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and HPP Di apparently have very similar pi, other factors, such as compressibil

ity (B2-Ca0 has a lower bulk modulus than HPP Di: Jeanloz and Ahrens, 

1980a; Boslough et al., 1984; Svendsen and Ahrens, 1983), become important. 

B2-Ca0 is more compressible than HPP Di, and so its Hugoniot temperature 

rises more quickly than HPP Di. 

Low-pressure static studies of Di (e.g., Liu, 1979b) imply that CaMgSi20 6 

may disproportionate into CaSi03 perovskite and MgSi03 perovskite above ~ 

20 GPa and 1000 C. Our results are not inconsistent with this, and yet we 

really cannot distinguish between perovskite and mixed-oxide (or some combina

tion) assemblage. The model we favor (Table 4.3) is more likely representative 

of the perovskite mixture for CaMgSi20 6 (Svendsen and Ahrens, 1983). 

In comparison with the mantle temperature profiles displayed in Figure 5.1, 

we note that both B2-Ca0 and HPP Di Hugoniot may be at about the same 

temperature at the pressures of the lowermost mantle. We note that some of 

the compositional models for the lowermost mantle (e.g., Ruff and Anderson, 

1980), known as the D" region, contain significant amounts of more refractory 

oxides and/or silicates (i.e., CaO, Al20 3, CaSi03, etc .. ). 

§6. Summary 

Mg-Fe oxides and/or silicates are currently believed to dominate the compo

sition of Earth's mantle. CaMgSi20 6 (Di), which in mineral form is known as 

diopside, represents one of several pyroxene compositions relevant to investiga

tions concerned with the composition of the mantle, and is the only natural 

pyroxene to form relatively large, transparent single crystals suitable for shock 

temperature investigations. We performed four experiments on diopside single 

crystals (140, 141, 169, and 170: Table 5.1), and two on Di glass (196 and 197: 

Table 5.1) having a density 87% that of Di crystal (Table 5.1). The targets 

consist of a Ta driver plate, Ag film layer, and sample layer. We record the 
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intensity of radiation from the target as a function of time at 450, 600, 750, and 

900 nm wavelengths. This radiation is first observed when the shock wave 

compresses the Ag film at the Ag-sample interface (t0 : Figure 3.1 or 3.2). In all 

experiments, the radiation intensity rises to a peak value, and then, as the 

shock wave propagates into the sample, decays almost as quickly to an approxi

mately time independent value. This occurs over 100-110 ns (Figure 3.1) to the 

radiation emitted by Di glass targets, and over 20-30 ns (Figure 3.2) to that 

emitted by Di crystal targets; this difference is partially due to the different 

thicknesses of the sample layers. We conclude that the strong decay of the ini

tial radiation intensity is controlled by r>.s(t ), and reflects an increase in the opti

cal absorption coefficient of Di upon shock compression 

(a>.s > 500-1000 m-1 >> a>.us)· 

Greybody fits to the radiation intensity of shock compressed Di crystal 

(diopside) constrain shock induced temperatures for this starting material of 

3500-4800 K in the 150-170 GPa range. Similar fits to the radiation intensity of 

the shock compressed Di glass imply that Di glass achieves shock induced tem

peratures of 3600-3800 Kin the 105-107 GPa range. 

Using linear U-v relations for Ta, Ag, and Di crystal and glass, we calculate 

Hugoniot states of Di crystal and glass, and compare them, for a range of 

parameter values, to the experimental results. Having no experimentally con

strained U-v relation for Di glass, we estimate one via aig(Pi~,Pi~,aic,bic) and 

big(Pi~ ,pig,~c,bic), as obtained from [4.8]-[4.12]. These calculations show that Tw 

the temperature of the shock compressed state, for Di crystal is most sensitive 

to pi, followed by deiba, and then /i· On the other hand, TH for Di glass 

appears to be slightly more sensitive to /i than ll.e/~a. Comparison of the 

pressure-temperature shock compression locus of Di crystal with those of its 

constituent oxides (i.e., Si02, CaO, and MgO) demonstrates the primary 

influence of the STP density of these materials on the temperature of their 
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shock compressed states. The HPP Di T-P Hugoniot falls between those of 

CaO and MgO, and well-below those for stishovite and liquid-Si02• 

Calculated shock compressed states for these materials, when compared to 

the experimental results, imply that Di crystal high pressure states in the 150-

170 GPa range represent a HPP solid (or possibly liquid) phase with 1), a STP 

density of ~ 4100±200 kg/m3, 2), a STP Griineisen's parameter of ~ 1.5±0.5, 

and 3), a STP HPP-initial phase specific internal energy difference of ~ 0.9±0.5 

MJ /kg. These results are consistent with either a Ca0-Mg0-Si02 mixed oxide, 

or CaSi03-MgSi03 perovskite, HPP assemblage. Di glass has a similar range of 

HPP properties, except with a larger !::t.e/3- 0
: ~ 2.3±0.5 MJ/kg, implying that 

Di glass shock compressed states are partly or completely melted. 

The experimentally constrained crystal Di Hugoniot falls within the plausi

ble range (2500-3000 K) of mantle temperature profiles in the range of pressures 

(110-135 GPa) corresponding to the lowermost mantle. 
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Abstract 

Measurements of the temperature of Fe under shock compression have been 

performed to Hugoniot pressures of 300 GPa. The samples consist of thin Fe 

films, 0.5 to 9.5 µm in thickness, or Fe foils in contact with a transparent anvil 

of either single-crystal Al20 3 or LiF. Temperatures at the sample/anvil inter

face are obtained by measuring the spectral radiance of the interface, for the 

duration of the shock transit through the anvil, using a 4-color optical radiome

ter. On the basis of our experimental data we conclude that a measure of the 

sample Hugoniot temperature, as opposed to the temperature of the Al20 3 

anvil, can thus be obtained. Our results further indicate that the Al20 3 remains 

at least partially transparent to pressures of at least 230 GPa and temperatures 

of over 9,000 K. We obtain a melting temperature of Fe along the Hugoniot of 

6700 ± 400 K at 243 GPa. Taken together with recent determinations of melt

ing temperatures to 100 GPa (Williams et al., Hl87), our results place an upper 

bound on the temperature at the inner core-outer boundary of 7800 ± 500 K. 

§1. Introduction 

The properties of matter at exceedingly high degrees of compression may be 

investigated using shock wave techniques. In a typical equation-of-state experi

ment it is usual to determine the shock velocity (U), material or particle velo

city (v), and the differences in pressure (P), specific volume ( v ), and internal 

energy (E) between the initial state and the shock-compressed state. The tech

niques used to perform such experiments are relatively well developed and have 

been described in many articles published over the past two decades. However, 

the above mentioned parameters do not by themselves give a unique thermo

dynamic description of a material in the shock-compressed, or Hugoniot state. 

In particular, the temperature along the Hugoniot, or locus of shock-compressed 

states, is generally undefined. Using modern shock wave techniques, pressures on 
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Figure 1.1. Schematic diagram illustrating the effect of a phase boundary 
with positive Clayperon slope, dP /dT, upon the equilibrium 
Hugoniot temperatures. 
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the order of several hundred GPa, corresponding to those of the Earth's lower 

mantle and core, are easily attained in solid samples. The concomitant tempera

tures reached in these experiments are generally many thousands of Kelvins. In 

order to apply the results of shock wave experiments to states off the Hugoniot, 

for example adiabats or isotherms, it is necessary to either measure or calculate 

Hugoniot temperatures achieved during shock loading. Although Hugoniot tem

peratures may be calculated, this procedure is subject to large uncertainties 

because of imperfect knowledge of thermal properties such as Gruneisen's 

parameter and the specific heat. 

An additional motivation for performing shock-temperature measurements is 

to identify the existence of phase transitions along the shock compression curve. 

It has been found that many phase transitions, especially those involving only a 

small density change, are not obvious in terms of Hugoniot parameters, and are 

manifest only as subtle changes of slope in the U-v or P-v Hugoniot relationship 

of a given material. However, such phase transitions may have a more prcr 

nounced signature in the T-P plane. When the Hugoniot intersects a phase 

boundary there will be, in principle, a substantial offset, or discontinuity in the 

Hugoniot T-P curve (Kormer, 1968). As shown in Figure 1.1, the Hugoniot will 

coincide with a phase boundary over some pressure interval, which is deter

mined by the amount of energy needed to drive the transition to completion. 

Such behavior has been inferred from shock-induced radiation data on NaCl 

(Kormer et al., 1965; Ahrens et al., 1982). 

In this paper we present the results of our initial attempts to measure the 

temperature of Fe under shock loading, using a 4-channel optical radiometric 

technique. Although similar measurements have been made on a variety of 

transparent materials in recent years, the extension of this methods to opaque 

materials has a number of serious experimental difficulties, which will be dis

cussed below. To the best of our knowledge, the results summarized in this 
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paper represent the most extensive data set obtained to date on the tempera

ture of a shock-compressed opaque material. We have chosen Fe for our initial 

experiments because of its geophysical importance as a probable major constit

uent of the earth's core. 

§2. Experimental Method 

All of our experiments were performed using a two-stage light-gas gun 

(Jones et al., 1966; Jeanloz and Ahrens, 1977), in which lexan projectiles bearing 

Ta flyer plates were accelerated to velocities of up to 6.5 km/s. Impact veloci

ties were measured by taking two flash X-radiographs of the projectile in flight, 

and are known to better than 0.5% accuracy. Pressures in each part of the sam

ple assembly, which will be described in detail below, were calculated using the 

impedance matching method (Rice et al., 1958). Necessary equation-of-state 

parameters are given by Mitchell and Nellis (1981, Ta), Brown and McQueen 

(1986, Fe), Carter (1973, LiF), and the 19 highest pressure data points listed by 

Marsh (1980) for Al20 3• 

The basis of the experimental method used in our study is to record the 

spectral radiance emitted by the sample when it is shock-compressed to high 

pressure and temperature. Assuming that the sample emits light as a greybody, 

data obtained at several discreet wavelength bands may be fit to the function 

[2.1], 

where L, the spectral radiance, is the observed quantity in the experiment. In 

each experiment, data are obtained at the four wavelengths 450, 600, 750 and 

900 nm, and using [2.1], values for the temperature and emissivity are obtained 

by a least-squares regression. This technique was initially developed by Kormer 

et al. (1965), who used a two-color pyrometer to determine the Hugoniot tem

perature of transparent samples. Later versions of this instrument employing six 
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or four channels in the visible portion of the spectrum were designed by 

Lyzenga and Ahrens (1979) and Boslough (1984), respectively. 

In our experiments we have used the optical recording apparatus designed 

by Boslough (1984), a schematic diagram of which is shown in Figure 2.1. Light 

emitted by the sample is directed to a collimating lens by an expendable front 

surface mirror. The lens is positioned at one focal distance (50 cm) from the 

sample. The collected light is then separated into four parts by way of three 

beamsplitters, is demagnified and focused onto four photodiodes. The image of 

the sample is far smaller than the active area of the photodiodes, so that the 

photodiodes do not have to be positioned with a high degree of precision. An 

interference filter is situated in front of each photodiode to pass only a limited 

band (~40 nm FWHM) about each desired central wavelength. The output 

voltage of each photodiode is amplified and recorded on an oscilloscope and a 

high-speed digital recorder, thus providing redundancy in each measurement 

and a backup of each channel. Further details of the system are given by 

Boslough (1984). 

For shock temperature experiments on opaque materials, the construction of 

the target assembly is of critical importance. As shown in Figure 2.2, the main 

components of the assembly are a 0.5 mm thick Fe driver plate, either a film 

( < 10 µm thick) or foil (30 µm thick) of Fe, which is the actual sample, and a 

16 X 3mm thick disc of single-crystal sapphire or LiF. The sapphire serves both 

as an anvil, to maintain the Fe sample at high pressure after the shock front 

traverses the Fe-Al20 3 interface, and as a window through which thermal radia

tion must be transmitted during an experiment. Therefore, the criteria that are 

important in choosing an anvil/window material are that it have a shock 

impedance as close as possible to that of the metallic sample, thereby minimiz

ing release or reshocking of the sample upon arrival of the shock at the inter

face, and that the anvil remain transparent when shocked to high pressures. 
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One general conclusion from optical studies on shocked materials in this and 

several other laboratories is that initially transparent materials seem to radiate 

as blackbodies, or greybodies with emissivities close to 1, when shocked above 

phase transition pressures. This implies that the occurrence of phase transitions 

along the Hugoniot tends to yield an opaque material. Therefore, we have f al

lowed the strategy of Lyzenga and Ahrens (1979), and Urtiew and Grover (1977) 

and chosen A120 3 as our primary anvil material because it does not undergo any 

known phase transitions along the Hugoniot. We note, moreover, that Al20 3 

has been observed to remain transparent to static pressures in excess of 500 

GPa (Xu et al., 1986) and under dynamic loading to at least 100 GPa (Urtiew, 

1974). A120 3 also provides the optimal impedance match to Fe out of all poten

tial window materials. 

Urtiew and Grover (1974) have performed a theoretical analysis of the heat 

generated at the interface between a sample and a window upon passage of a 

shock wave through the interface. These authors considered the effects of two 

types of interface imperfections: a small uniform space or gap between the two 

materials, and roughness, or topography on the surface of the opaque sample. 

In the first case the metal sample has a free surface at which, upon arrival of 

the shock front, the material is released to atmospheric pressure and some 

elevated temperature in a near adiabatic fashion. The hot, released material at 

the surface subsequently impacts the anvil surface, thus reshocking the sample 

to high pressure and a temperature that is greater than would be attained along 

the principal Hugoniot of the sample. The case of surface roughness was treated 

as a layer of porous sample material adjacent to the anvil, again leading to tem

peratures at the interface that are higher than the Hugoniot temperatures of 

either the anvil or a perfectly dense sample. 

From the above studies it is clear that in order to measure an interface tem

perature that is directly related to the Hugoniot temperature, the sample must 
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Figure 2.1. Diagram of the main components of the shock temperature 
measurement system. The path of light radiated by the sample 
is indicated by the dashed lines. Each of the four channels 
(CH#) in the radiometer consists of an interference filter, a lens 
for demagnifying the image, a photodiode, and an amplifier. 
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Figure 2.2. The target used in shock temperature experiments on opaque 
samples. A foil may be used as a sample in place of the film. A 
schematic diagram of the temperature profile in various parts of 
the assembly is shown at the bottom of the figure. 
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be in near perfect contact with the window. This was experimentally verified by 

Lyzenga and Ahrens (rn79), who performed shock temperature measurements 

on Ag using three different target configurations. They found that the direct 

impact of an Ag projectile onto a Al20 3 window, and the use of a Ag foil wrung 

onto the anvil, led to transients in the spectral radiance versus time data. A 

sample of vapor-deposited Ag on an Al20 3 substrate gave a much more stable 

signal. Base upon the experience of Lyzenga and Ahrens with Ag, we decided to 

prepare samples with vapor deposition using a Varian electron beam evapora

tive coating system. This technique maximizes the chances of obtaining a 

:flawless contact between the sample and window on an atomic scale, thus obvi

ating any thermal signal due to an interfacial gap. However, as discussed later, 

our data indicated that ideal interface conditions were attained in only a frac

tion of the samples. Fe was deposited under a total vapor pressure of 3X10-7 

torr at a rate of approximately 25 angstroms per second. Films with 

thicknesses of 0.5 µm ( in the first successful run) to 9.5 µm were produced. A 

calibrated crystal oscillator with a characteristic frequency that changes as a 

film is deposited upon it, was positioned near the substrate to monitor the depo

sition rate and final film thickness. Our experience has been that Fe adheres 

poorly to Al20 3, and a majority of the films would peel off of the substrate 

either during, or a short time after, coating. This problem became more severe 

as we tried to increase the film thickness, but was somewhat alleviated by 

extremely thorough cleaning of the substrate prior to coating. 

The thickness of the sample film is an important consideration in this exper

iment. Because the interface between the driver and film sample cannot be per

fect, there is a possibility of significant heat production for the reasons discussed 

above. If a film is too thin, this heat could diffuse to the sample/anvil interface 

on the time scale of the experiment, thus yielding an erroneously high tempera

ture that increases with time. It was not possible to determine a priori what a 
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safe minimum film thickness would be, since we have little or no information on 

the appropriate thermal properties at elevated temperatures and pressures. 

Therefore, we simply tried to obtain as thick a film as possible and found 9µm 

to be the approximate upper limit of our techniques. Our experimental data 

indicate that this thickness is satisfactory, because the shot records show no 

consistent evidence for heat diffusion to the sample-anvil interface. In fact, most 

of our records showed a light decrease in the intensity of light as the shock 

front progressed through the window. This is most easily interpreted as a 

change in the optical properties of the window material under shock loading. 

As a source of Fe for the films and driver plates we used a low carbon steel 

("Cor gg", Corey Steel Co., Chicago, IL), with a total impurity content of less 

than 0.12% (analysis supplied by the manufacturer). The density was measured 

by the Archimedian method to be 7 .84±0.02 gm/ cm3, just slightly lower than 

the x-ray value of 7.874gm/cm3 (Berry, 1967). In the last film experiment, a 

commercial Fe powder of nominal 99.9% purity was used. The Fe film from one 

sample was peeled off the substrate and examined by X-ray powder 

diffractometry. A well-defined peak corresponding to the most intense (110) 

diffraction maximum of a-Fe was found, indicating that the films are highly 

crystalline rather than in an amorphous state. 

The vapor deposition method is an extremely time-consuming method of 

preparing samples. As an alternative, we investigated the possibility of using 

thin Fe foils as samples in five experiments. Fe foils of 0.03 mm thickness and 

nominal 99.99% purity were obtained by Alfa Products and used as samples in 

this series of shots. 
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Oscillographic record of voltage as a function of time for one of 
the shock temperature experiments. The amplitude of the vol
tage above the baseline seen in the initial ~ 400 ns of the 
record, is proportional to the spectral radiance at the 
sample/anvil interface. 
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Figure 3.2. The data from Figure 3.1, and additional data from digital 
recorders, plotted in terms of spectral radiance versus 
wavelength. The solid curve is obtained from least-square 
regression for both temperature and emissivity using Planck's 
Law; the dashed curve is the least-squares solution for tempera
ture alone with the emissivity fixed at unity. 
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§3. Results 

Figure 3.1 shows the raw oscillographic data from one of the shock tempera

ture experiments. A noteworthy feature of these record is that there is no evi

dence of a "spike," or strong transient in light intensity when the shock reaches 

the interface, or the thermal relaxation of a thin Fe layer, which is extremely 

hot due to porosity. It is also important to note that the voltage, or intensity of 

light, is nearly constant in time, indicating that thermal diffusion from the 

driver/film interface to the film/anvil interface is probably not significant. All of 

the voltage records from the experiments at higher pressures showed a modest 

to a rapid decrease in light intensity with time, although no spikes were 

observed. One interpretation of the decrease in light intensity is that the sap

phire anvil is appreciably absorbing in the optical range above pressures of 

about 225 GP a. Only experiment #167 (Table 4.1) at 196 GP a exhibited a mod

est increase of light intensity with time, and the reason for this behavior is as 

yet unresolved. 

The spectral radiance values obtained from the voltage data of Figure 3.1 

are plotted in Figure 3.2. Because the spectral radiance is never precisely con

stant as a function of time, it is important to consider that part of the voltage

time record is appropriate to use for obtaining a Hugoniot temperature. We 

have chosen to read the initial part of each record, just after the sharp increase 

in voltage which corresponds to arrival of the shock at the interface. In this 

way we obtain a measure of the thermal radiance of the sample viewed through 

unshocked, transparent anvil material. This choice should minimize potential 

problems due to light absorption by the anvil, diffusion of heat from the 

driver/sample interface to the sample/anvil interface, and contributions to the 

signal by the shocked anvil. 

For the purpose of transforming the observed voltages to a temperature, it 

is necessary to calibrate the pyrometer with a standard light source. As 
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described by Boslough (1984), we use the chopped signal from a tungsten lamp 

of known spectral irradiance (Optronics Laboratories, Orlando, Florida). The 

resulting experimental values of spectral radiance may then be fitted to a radia

tion function, such as Planck's Law, to obtain the temperature and emissivity of 

the sample-anvil interface. In Figure 3.2 we show least squares fits to the data 

using the emissivity obtained by regression, and also a value of unity as 

appropriate for a black body. It is clear that the data are described far better 

by using a greybody (emissivity~!) rather than a blackbody function; this is 

quantitatively expressed by emissivity values that are statistically different from 

one (Table 4.1 ). The errors shown in Figure 3.2, and listed in Table 4.1 for the 

interface temperature, take into account the estimated uncertainties in reading 

the baseline and signal voltages on the oscillograms (or transient recorder plots), 

the calibration voltages, the spectral irradiance of the calibration lamp, and 

diameter of the mask aperture. 

The data from our experiments yield temperature values for the sample 

material at the interface with the anvil. In order to obtain the Hugoniot tem

perature of the sample, it is necessary to correct the interface temperatures for 

two effects: the influence of the relatively cold anvil, and partial release of the 

Fe due to the impedance mismatch of the sample and anvil materials. In the 

ideal situation where the sample has no porosity and is in perfect contact with 

the anvil, it has been shown (Grover and Urtiew, 1974) that the interface tem

perature Ti, is independent of time and is related to the temperature of the 

released sample, Tri by 

(T - T) 
T=T + a r 

i r (l+a) [3.1]. 

Here, Ta is the Hugoniot temperature of the anvil, and a is given by 

a= [ 5-) [ Da J l/
2 

= [ "'rPrCr l l/2 

"'a Dr "'aPaCa 
[3.2], 
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where K and D are thermal conductivity and diffusivity, respectively, p is den

sity, c is the specific heat at constant pressure, and the subscripts r and a refer 

to released Fe, and Hugoniot state of the anvil, respectively. 

The thermal properties needed to evaluate a in [3.2] have not been meas

ured under the extreme P and T conditions of our experiments, and a must 

therefore be estimated from available data and theory. For the anvil materials, 

we first evaluate the effect of temperature on the lattice contribution to the 

thermal conductivity, Ka.(P ,T). Low-pressure conductivity data were fit to 

expressions of the form K(0,T)=A1+Bi/T yielding coefficients of 

A1=2.599 W/m·K, B1=1.176X104 W/m for Al20 3 (Kingery et al., 1954), and 

A1=-0.2023, B1=3.671X103 for LiF (Men' et al., 1974). These equations 

allowed for calculation of Ka.(O,T) at the anvil Hugoniot temperature. The effect 

of pressure on the anvil conductivity was then calculated using the Debye

Gruneisen approximation 8K / K-;::::;;:,7 f;p / p, presented by Rouf osse and Jeanloz 

(1983). In order to evaluate this last expression, the anvil density at 0.1 MPa 

and the appropriate Hugoniot temperature is obtained from the thermal expan

sivity in the form dlnp/dT=A2+B2T. Values of A2(298K)=9.8Xl0-5K-1 and 

B2=1.2X10-7K-2 were used for LiF (Pathak and Vasavada, 1972; Rapp and 

Merchant, 1973), and A2=1.62X 10-5K-1, B2=1.1X10-sK-2 for Al20 3 

(Touloukian et al., 1975). Finally, the heat capacity of the anvils was approxi

mated by the high-temperature Dulong-Petit limit, whereas the Hugoniot den

sity was determined from the Rankine-Hugoniot relations. 

The thermal properties of Fe needed in [3.2] refer to a partially released 

state if the shock impedance of the anvil is lower than that of Fe, as is true for 

Al20 3 and LiF. The released density was calculated using the method of 

Lyzenga and Ahrens (1978), while the heat capacity was assumed to be the 

Dulong-Petit value plus an electronic contribution as given by Brown and 

McQueen (1986). The incorporation of an electronic contribution to cv, the 



Chapter IV 313 Results 

specific heat at constant volume, does not affect the corrected Hugoniot tem

peratures {Figure 4.1) by more than approximately 50 K. In order to obtain the 

thermal conductivity of Fe we chose a different approach than that used for the 

anvil material. Experimental data have been obtained for the electrical conduc

tivity, a, of Fe under shock conditions by Keeler {1971). Electrical conductivity 

can, in turn, be related to the thermal conductivity of metals via the 

Wiedemann-Franz relation 

~=LaT [3.3], 

where L, the Lorentz number, has a relatively constant value of about 

2.45X10-8W·f1/K2 for most metals. A linear least-squares regression of a versus 

compression, p0 / p, yielded an excellent fit with a correlation coefficient of 

-0.992. The data used for this curve-fitting were taken from Matassov {1977, fig. 

7.4). Knowing the compression of Fe in the release state, we obtain ~r for Fe by 

assuming that the temperature of the released Fe, needed in the Wiedemann

Franz relation, is given by the observed interface temperature Ti. A value of a 

is calculated using [3.2], thereby allowing an initial value for the released tem

perature, Tr, to be determined by [3.1]. The entire procedure was repeated itera

tively, using Tr in [3.3] to obtain an improved value of ~ri and then recalculat

ing Tri until Tr converged to a stable value. 

At this point in the data reduction we have the temperature of Fe in a par

tially released state of lower pressure than the Hugoniot. To obtain the 

Hugoniot temperature, it is necessary to correct for the effects of partial release, 

which we do by using the relation 

where "'I is the Griineisen parameter of Fe. We assume a constant value of 
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"fp=16.7 gm/cm3 (Brown and McQueen, 1986) and obtain the released volume, 

vr, using the method of Lyzenga and Ahrens (1978). Further details of these cal

culations, as well as theoretical Hugoniot temperature calculations, are given in 

Chapter I, §4. 

§4. Discussion 

A complete summary of our results is given in Table 4.1. Perhaps the most 

important point to be made is that we have obtained a wide range of inf erred 

Hugoniot temperatures of between~ 6,000 to over 11,000 K. Because the calcu

lated Hugoniot temperatures of Al20 3 are lower by several thousand degrees 

(Table 4.1 and Chapter I, §4), these data represent compelling evidence that the 

temperature of the opaque sample, as opposed to that of the anvil material, is 

measured using the technique employed in this study. Although anomalously 

high temperatures have previously been measured for insulators under shock 

compression (e.g., Schmitt and Ahrens, 1984), this appears to be a relatively 

low-pressure phenomenon related to localized "shear band" deformation of the 

sample, which is not operative at high (~100 GPa) pressures. Moreover, the 

high "shear band" temperatures are usually typified by emissivities at least one 

order of magnitude smaller than those measured in the present study. We con

clude, therefore, that we are in fact able to record the temperature of Fe in a 

shock-induced, high-pressure state. This also implies that the Al20 3 anvil 

remains at least partially transparent under P and T conditions defined by the 

Hugoniot pressure in the anvil and the interface temperature (~230 GPa and 

7000-9000 K). 

It is apparent from Table 4.1 that the range of inferred Hugoniot tempera

tures are larger than would be expected from the precision of the data. More

over, it is equally clear that most of the obvious possible sample defects, such as 

an imperfect sample-anvil interface or sample porosity, would yield anomalously 
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Table 4.1. Results of Shock Temperature Measurements on Fe 

Shot Sample Anvil Ph (GPa) Pa (GPa) 
No. Type Fe Anvil 

167 Film Al20 3 rn6 157 

189 Foil Al20 3 202 161 

173 Film Al20 3 226 178 

190 Foil LiF 227 122 

188 Foil Al20 3 241 188 

191 Film Al20 3 244 190 

183 Foil Al20 3 245 191 

157 Film Al20 3 251 195 

159 Film LiF 263 140 

192 Film Al20 3 263 203 

174 Film Al20 3 268 207 

181 Foil Al20 3 276 212 

168 Film Al20 3 300 228 

tunweighted fit. 
t€ = effective emissivity. 

Ti (K)* 
Interface 

4750 
±420 
4010 
±420 
6240 
±170 
4660 
±420 
5390 
±740 
6990 
±350 
6970 
±280 
6380 
±300 
5270 
±280 
9220 
±800 
7580 
±420 
9300 
±550 
6990 
±330 

Ta (K) Th (K) 
Anvil Fe 

1340 6110 

1380 5200 

1550 7910 

2790 6180 

1660 6870 

1680 8950 

1690 8920 

1730 8200 

3410 7240 

1820 11610 

1860 9670 

1920 11730 

2090 8930 

0.29 
±.14 
0.29 
±.14 
0.33 
±.05 
0.39 
±.19 
0.10 
±.6 
0.47 
±.15 
0.34 
±.07 
0.70 
±.12 
0.96 
±.22 
0.29 
±.30 
0.46 
±.13 
0.32 
±.14 
0.86 
±.16 
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Figure 4.1. 

316 Figure .,/.1 

Hugoniot temperatures, deduced from our experimental data, as 
a function of pressure. The heavy solid line and filled symbols 
are from the present study. The dashed curves are calculated 
Hugoniot temperatures that differ mainly in the assumptions 
made about the specific heat of Fe: McQueen et al. (1970) 
assume Cv =3R, whereas Brown and McQueen (1986) incor
porate an additional electronic term. The melting curve is con
sistent with our shock temperature measurements as well as the 
melting. Data of Williams et al. (1987) obtained in the diamond 
anvil cell at pressure up to 100 GPa. Pressures at the core
mantle (CMB) and inner core-outer core (ICB) boundaries are 
indicted. 
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high temperatures. Thus, the lowest observed temperatures should most closely 

approximate the true Hugoniot temperatures. In Figure 4.1 we have plotted our 

interpretation of the Fe Hugoniot temperatures based upon the data obtained 

thus far. Also shown in Figure 4.1 are the calculated Hugoniot temperatures of 

Brown and McQueen (1986), which take into account possible electronic contri

butions to the specific heat of Fe, and the Hugoniot temperature calculations of 

McQueen et al. (1970), which do not include these effects. Electronic contribu

tions increase cv and thus lower the Hugoniot temperature at any given pres

sure (see Brown and McQueen, 1986). The fact that our lowest temperature 

datum define a P-T trend intermediate between these two theoretical bounds 

strongly suggests that these data represent the true Hugoniot temperatures of 

Fe. 

Brown and McQueen (1986) have, on the basis of sound velocity measure

ments, identified two phase transitions along the Hugoniot of Fe at pressures of 

200 and 243 GPa; these are inferred to represent E-""f and ')'-melt transitions, 

respectively. The lowest pressure data in Figure 4.1 exceed 200 GPa and we 

therefore cannot tell whether or not the f. to ')' transition has any resolvable 

effect on the P-T trajectory. However, there is a suggestion of an offset in the 

Hugoniot temperatures above 241 GPa (Figure 4.1) that is analogous to the 

effect shown schematically in Figure 4.1. Thus, our data are consistent with the 

interpretation of the Hugoniot intersecting a melting curve of positive slope at 

242 GPa, as suggested by Brown and McQueen (1986) and shown in Figure 4.1. 

This interpretation of our data indicates a thermal offset of the Hugoniot of 

approximately 450 K, in very good agreement with the estimate of 350 K by 

Brown and McQueen (1986). 

We are currently unsure as to why some of the experimental data yield 

anomalously high temperatures (Table 4.1). Although great care was taken to 

produce suitable sample assemblies in a consistent manner, we can only 
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conclude that many of the samples were defective in some way. As discussed in 

a previous section, the obvious possibilities are an interfacial gap between the 

foil sample and the anvil, and porosity of the films. We have calculated the 

temperatures that would be expected in Fe for the case of an uniform interfacial 

gap and obtain values that far exceed our observed range of inferred Hugoniot 

temperatures. For example, at 250 GPa, the temperature of Fe which has been 

released to atmospheric pressure from the Hugoniot state and reshocked upon 

impact with a Al20 3 anvil is calculated to be 16,700 K. This value is much 

larger than the values of 8,200-11,700 that were experimentally observed at 

similar pressures. Therefore, we conclude that none of our foils were separated 

from the anvils by a uniform gap, although imperfect contact over a fraction of 

the sample area could have produced the high temperatures observed in some 

of our foil shots. 

It is also possible that heat generated at the driver plate-sample interface 

was able to diffuse through the sample on the time scale of the experiment. 

We tested this hypothesis by performing two experiments (#191 and #192) 

with thin film samples. These samples were sufficiently thin to transmit visible 

light and assured us of detecting a portion of the light generated at the driver

sample interface, which should be at a much higher temperature than the 

Hugoniot state of Fe (see Figure 2.2). These experiments yielded much higher 

temperatures (Table 4.1) than those shown in Figure 4.1. Coupled with the 

observation that the shot records (Figure 3.1) did not show and increase of volt

age with time, indicating no heat diffusion toward the sample-anvil interface, we 

rejected this as an explanation of the high temperatures observed in many of 

the shots. 

Because of the small mass and delicate nature of the film samples, we have 

not yet been able to measure the porosity of the films. Therefore, we cannot 

rule out the possibility of a variable amount of porosity from one sample to 



Chapter IV 320 Discussion 

another to explain the discrepancies between the results in Figure 4.1, and the 

higher temperature data listed in Table 4.1. Nonetheless, we maintain that the 

interpretation shown in Figure 4.1, the set of lowest shock temperatures 

representing the Hugoniot temperatures of Fe, is reasonable and the most logi

cal conclusion to be drawn based on available data. It is noteworthy that the 

data shown in Figure 4.1 consist of several types of sample assemblies: both foils 

and films on both AI20 3 and LiF substrates. As discussed above, each of these 

sample configurations has a different experimental problem associated with the 

construction of a suitable target: the foils are most likely to be plagued by inter

face gaps, while the films are observed to be in perfect contact but may be 

slightly porous. However, it is significant that the data in Figure 4.1 tightly 

define a Hugoniot P-T trajectory that is within the range of previously calcu

lated theoretical bounds, and is also wholly consistent with the presence of a 

melting transition that has been identified by an independent experimental 

technique. It is highly unlikely that experiments using different types sample 

assemblies would be in error by the same amount. Such a situation would 

require that the excess temperature produced by interfacial gaps in the foil 

shots be equal to the excess temperature produced by porosity in the film shots. 

We prefer the simpler explanation that the data shown in Figure 4.1 are the 

Hugoniot temperatures of Fe. This is further supported by the agreement of the 

shock-temperature data with independent measurements of the melting tem

perature of Fe under static conditions in a diamond anvil cell (Williams et al., 

1987). 

Our shock-temperature data constrain the melting point of Fe along the 

Hugoniot to be 6700±400 Kat a pressure of 243 GPa. This value is significantly 

higher than the recent estimate of 5000-5700 K by Brown and Mc Queen (1986), 

and suggests that electronic contributions to the specific heat of Fe may not be 

as significant as assumed in their calculations (see also Boness et al., 1986). 
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When combined with the melting experiments under static pressures to 100 GPa 

by Williams et al. (1987), we obtain a melting curve for Fe as shown in Figure 

4.1. This curve indicates that Fe melts at temperatures of 4800±200 K at 136 

GPa, the pressure at the core-mantle boundary, and 7800±500 K at 330 GPa, 

the inner-outer core boundary pressure. 
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Abstract 

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO 

provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO 

systems in the pressure range corresponding to the earth's outer core. The 

liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986) 

places constraints on the temperature and other properties of Fe along the 

liquidus above the range of their data. The temperature along the best-fit Fe 

liquidus is 5000 Kat 136 GPa and 7250 Kat 330 GPa, which is somewhat lower 

than that implied by the Hugoniot results ( ,...._, 7800 K). This discrepancy may 

be due to a reshock effect in experimental targets, or some inaccuracy in the 

extrapolation, presuming the Hugoniot results represent the equilibrium melting 

behavior of Fe. Constraints on the solidi of FeS and FeO from the comparison 

of data and solid-state model calculations imply that FeS and FeO melt at 

approximately 4610 K and 5900 K, respectively, at 136 GPa, and approximately 

6150 Kand 8950 K, respectively, at 330 GPa. 

Calculations for the equilibrium thermodynamic properties of solid and 

liquid Fe along the coincident solidus and liquidus imply that the entropy of 

melting for Fe is approximately independent of pressure at a value of approxi

mately R (where R is Ryberg's constant), while the change in the molar heat 

capacity across the transition increases with pressure from approximately 0.5 R 

to 4R between standard pressure and 330 GPa. We use these constraints to 

construct ideal-mixing phase diagrams for Fe-FeS and Fe-FeO systems at outer 

core pressures, assuming that Fe and FeS, or Fe and FeO, respectively, are the 

solid phases in equilibrium with the liquid Fe-FeS or Fe-FeO mixtures, respec

tively. Calculated Fe-FeO eutectic compositions at 330 GPa (15-20 mole % 0) 

are less than 25 mole % 0, while calculated Fe-FeS eutectic compositions at 330 

GPa (23-30 mole % S) are generally greater than 25 mole % S. Combined with 

density considerations, these calculations imply that an 0-rich outer core is 
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more likely to lie on the FeO-rich side of the Fe-FeX eutectic, while an S-rich 

outer core is more likely to lie on the Fe-rich side of the Fe-FeX eutectic. In 

addition, eutectic temperatures in both systems are are ~ 5000 K at 330 GPa. 

Widely accepted temperature profiles for the outer core, ranging from ~3000 K 

at the 136 GPa, the core-mantle boundary, to ~4200 Kat 330 GPa, the outer

inner core boundary, are about 1000-1500 K below this value. In the context of 

the outer-inner core boundary-phase boundary hypothesis, this discrepancy 

implies that at least one boundary layer of 1000-1500 K exists in the mantle, 

possibly at its base in the D
11 

region. 

§1. Introduction 

Temperature is perhaps the most influential and elusive of all thermo

dynamic fields defining the physical state of terrestrial planetary interiors. 

Being fundamental to the thermomechanical behavior and evolution of these 

interiors (e.g., O'Connell and Hager, 1980; Janle and Meissner, 1986), it has 

been a central part of innumerable modeling efforts (e.g., Stacey and Loper, 

1984). Unsupported by independent means, however, the value of this modeling 

is somewhat ambiguous. High-pressure and temperature experimental work on 

cosmochemically or physically plausible constituent materials, such as Fe and its 

alloys (e.g., FeS and FeO), has the potential to constrain the complete equilib

rium thermodynamic "equation-of-state" of these materials and provide such 

independent constraints. In this paper, we discuss some implications of recent 

static (Fe and Fe0_9S, Williams and Jeanloz, 1986; FeO, Knittle and Jeanloz, 

1987) and dynamic (Fe, Bass et al., 1987; Fe0_9S, Anderson et al., 1987) experi

ments, and their potential impact on the question of the temperature profile in 

the earth's outer core (OC), and the temperature of the inner-core boundary 

(ICB). 
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Birch (1952) first noted that his uncompressed density profile of the core 

was........, 10-15% less than that of pure Fe (or Fe-Ni: McQueen and Marsh, 1966) 

along its Hugoniot at corresponding pressures. Knopoff and MacDonald (1959) 

suggested that Birch's observation implied that Fe must be combined with one 

or more elements, Xi (e.g., H, He, C, N, Si, 0 and/or S), of significantly smaller 

atomic number, in the core. This possibility has since accreted a vast literature 

(see Jacobs, 1975; Ringwood, 1979; Stevenson, 1981) concerned with candidate 

Xi and their potential role in core formation, dynamics and evolution through 

phase relations in the Fe-Xi system. The relevance of high-pressure, high

temperature experiments toward constraint of the temperature profile in the OC 

rests on the hypothesis (Verhoogen, 1961) that the inner core (IC) is growing at 

the expense of the OC, the ICB then being a phase boundary in the Fe-Xi sys

tem. From this perspective, if the OC mixture Fe-Xi is a eutectic system, and if 

its composition lies on the Fe-rich side of the eutectic, pure Fe or Fe containing 

"small" amounts of some or all of the of the Xi may crystallize out at the ICB 

to form the IC, leaving the coexisting liquid more highly concentrated in the Xi. 

In this case, the ICB will be a compositional and a phase boundary, and the 

temperature of the ICB should then be bounded above by the melting tempera

ture of pure Fe, and below by the eutectic temperature of the system at the 

ICB. 

To explore possible high-pressure phase relations of Fe-X systems, we use 

the recent experimental results on the solid-liquid phase boundaries of Fe 

(Brown and McQueen, 1986; Williams et al., 1987), FeS (FexS: Brown et al., 

1Q84; Williams and Jeanloz, 1986; Anderson et al., 1987a) and FeO (FexO: 

Anderson et al., 1987a; Knittle and Jeanloz, 1987) to constrain models for Fe, 

FeO and FeS solidi via a parameterization using Lindemann's law and the 

Hugoniot states of these materials. In addition, we use the Fe melting data of 

Williams and Jeanloz (1986), as given in Williams et al. (1987), to constrain an 
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Fe liquidus and the equilibrium thermodynamic properties of liquid Fe in the 

context of a liquid-state perturbation model (e.g., Stevenson, 1980) for Fe. 

With these models, we may rationally extrapolate the experimental results for 

these materials to OC pressures, and use these extrapolations to explore possible 

equilibrium phase relations of Fe-S and Fe-0 systems, in a similar fashion to the 

work of Stevenson (1981) and Anderson et al. (1987b) on Fe-S systems. 

§2. High-Pressure Liquid-State Model for Fe 

At high pressure and/or temperature, the dominance of repulsive intera

tomic or intermolecular forces on the structure and properties of most liquids 

suggests a high-pressure, temperature model for these liquids in which the con

stituents interact only repulsively. A logical extreme of this idea is represented 

by the "hard-sphere" model of a liquid (e.g., Hansen and MacDonald, 1975; 

Barker and Henderson, 1976), which assumes the liquid is composed of perfectly 

spherical "particles," each having a diameter d, which interact in a pairwise 

fashion via a potential, 'l/Jm(r), of the form 

{
00' 

'l/Jm(r) = 0 ' 
r<d 
r>d [2.1], 

where r is the (radial) distance from the center of either sphere involved in the 

interaction. The collective interactions between the liquid constituents are, to 

some degree, correlated (i.e., nonrandom) and give the liquid an effective (short 

range) structure. For a liquid of N constituents, occupying a volume V, which 

interact in a spherically symmetric fashion, this structure is described by the 

radial pair distribution function, g(r), defined such that 47rpN r2g(r) is the 

number of spheres r to r+dr away from the center of a given sphere in the 

liquid, where pN = N/V is the number density of spheres. In particular, note 

that gm(r), the hard-sphere radial distribution function, is zero for r< d, since 

g(r) is proportional to exp{-,B'l/;(r)}, where ,B = 1/kaT, T is the absolute 
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temperature, and k8 is Boltzmann's constant. X-ray diffraction and other tech

niques have found that the effective radial distribution function of many liquids, 

including liquid Fe at standard pressure (e.g., Waseda and Ohtani, 1974; Gopal 

Rao and Sen, 1976; Vorob'ev et al., 1977), is quite similar to gHS(r), suggesting 

that the constituents of these liquids interact in a "hard-sphere-like," radially 

symmetric fashion. This observation, combined with the fact that, via statisti

cal mechanics and numerical simulations, the equilibrium thermodynamic pro

perties of hard-sphere liquids are well established (e.g., Barker and Henderson, 

1976), suggests that the corresponding properties of these liquids can be related, 

or referenced, to those of a hard-sphere liquid (Zwanzig, 1954). Via the relation 

between the interaction potential, canonical partition function, and Helmholtz 

free energy, this idea leads to a relationship between the Helmholtz free energy 

of the liquid, Fuq(T ,pN), and that of the equivalent hard-sphere system, F HS(T ,pN), 

of the form 

Fliq < Fmod = FHS +FINI' [2.2] 

(e.g., Mansoori and Canfield, 1Q69). In [2.2], FINI' is the total pair-interaction 

contribution to F mod' i.e., 

[2.3], 

where 'lf;(r) is the effective pair-interaction potential of the liquid constituents. 

To use [2.2], we need expressions for gm(r), Fm, and 'lf;(r). There exists no exact 

solution for gHS(r), r>d; among the approximate solutions, that formulated by 

Percus and Yevick (1959; PY), which assumes that any two liquid constituents 

are essentially uncorrelated at distances greater than r=d, and is most con

sistent with com.puter simulations (e.g., Alder and Wainwright, 1957). This 

agreement has motivated a wealth of analytic results for the thermodynamic 

properties of a PY hard-sphere fluid (including F HS), making it the most useful 
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and logical choice as a reference system. 

Because we cover a wide range of pressures and temperatures, including low 

pressures, we choose a pair potential representing both repulsive (high P ,T) and 

attractive (low P ,T) interactions. In particular, we assume the so-called 

"Double-Yukawa" potential (e.g., Foiles and Ashcroft, 1981) 

[2.4]. 

In [2.4], a represents the distance away from the center of each sphere where 

the potential is equal to zero, i.e., 'lf;(a) = 0, while >..-1 is the characteristic 

length scale of repulsive interaction, and w-1 that for attraction interactions. 

Also, E is related to the potential energy of interaction at equilibrium separa

tion. Physically, we expect A.>w, since repulsion and attraction are dominantly 

short and long-range interactions, respectively. In this case, note that 'l/J(r)>O 

for r<a, and 'lf;(r)<O for r>a .. We use the Yukawa potential because 1), it is 

fairly general, and 2), a number of analytic results exist for thermodynamic sys

tems based on this potential via statistical mechanics, as we relate below and in 

Appendix A. 

For a liquid metal such as Fe, electronic processes may contribute to F; con

sequently, we need to add a term Fe! to Fmod such that Fmod = FHS + FINr + Fei· 

As discussed by Stevenson (1980), for example, electronic contributions to Fliq 

may significantly influence the cohesive energy, incompressibility and heat capa

city of the liquid. We represent Fe! by its low temperature (T much less than 

the Fermi temperature) Sommerfeld expansion (e.g., Wallace, 1972), i.e., 

F 1 2 
I =--rT 

e 2 [2.5]. 

In [2.5], r is the density of electron states at zero temperature, related to the 

electronic Gruneisen's parameter, /e, via the relation (e.g., Wallace, 1972) 
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[ 
dlnr ) 

le= dlnpN [2.6]. 

Hence, r is a function of density alone. Assuming le is constant, [2.6] implies 

f(pN) = f(p,.) [ :: ] '' [2.7], 

where pNr is some reference density at which f is known. The values of r and le 

of the E and 1 phases of Fe have recently been calculated by Boness et al. 

(1986). They argue that the values of r and le so constrained should work for 

liquid-Fe at high pressures as well. We adopt their assertion in the calculations 

presented below. 

From these ingredients, we can develop relations for the equilibrium thermo

dynamic properties of a homogeneous liquid, which we do in Appendix A. Here, 

we are particularly interested in relating pressure and temperature to model 

parameters, since we want to constrain a liquid-state model for Fe from the 

melting data of Williams and Jeanloz (1986; see also Williams et al., 1987), 

which are in the form of temperatures in the solid and liquid approximately 

adjacent to the phase boundary at a series of pressures. From Appendix A, we 

have the following relations for temperature and pressure in the liquid as a 

function of the mass density of the liquid, p, and model parameters, i.e., 

T = E T*(p,i]; >.*,w*,~) [2.8], 

and 

[2.9] 

([A.65] and [A.66]), respectively. In [2.8] and [2.9], we define A *=>.a as the non

dimensional repulsive length scale, w*=wa as the nondimensional attractive 

length scale, iJ=!!...pNd3 as the equilibrium packing fraction of liquid consti-
6 
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tuents, and 

where NA is Avogadro's number, and E=E/k8 • Also, R is Ryberg's constant, M 

is the atomic weight, and Pr, rr and le are a reference mass density, density of 

electronic states at zero temperature, and electronic Griineisen's parameter, 

respectively. These last 3 quantities are constrained independently, and so held 

constant during the fit. In particular, for Fe, we use Pr = 8352 kg/m3, 

rr = 5 mJ/mol·K2 and le= 1.34. These are, respectively, the measured STP 

density (Jephcoat et al., 1986), the calculated electronic density of states at zero 

temperature and the temperature and electronic Griineisen's parameter (Boness 

et al., 1986), of E-Fe. Since r is a function of density only, we may recenter it 

to the standard pressure, melting temperature density of liquid Fe, 7015 kg/m3 

(Drotning, 1981). In this case, we have r(7015) = 6.31 mJ/mol·K2, which is 

reasonably consistent with r(7015) = 6.42 mJ/mol·K2 for liquid Fe from the 

work of Yokoyama et al. (1983). With these 3 parameters fixed, [2.8] and [2.9] 

relate 4 variables (T,P,p and f,) and 4 constant unknowns, or parameters 

(E,A *,w* and ~). We may eliminate either p or r, between [2.8] and [2.9] to 

obtain 

T = T(P ,r,; E,A * ,w* ,~) , or T = T(P ,p; E,A * ,w* ,s-) [2.10], 

respectively. Since we have no other relation(s) among the variables, [2.10] 

implies that we must choose either p or fJ as a parameter of the fit. This choice 

is not difficult, since p must change with pressure and temperature along the 

liquidus. Assuming that fJ is constant along the liquidus is not unfounded; com

puter simulations imply that f]~0.45 along the liquidus (Alder and Wainwright, 

1957), regardless of the density. Assuming this would tie the variation of the 

hard-sphere diameter, d, directly to that of the density along the liquidus, since 
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by definition of the packing fraction, d then varies inversely with the cube root 

of the density. So, with r, as parameter of the fit, we have 

TM= T(P; >.*,w*,i/,s-,E) [2.11], 

giving us five parameters to constrain from the fit: E, r,, A*, w* and S"· 

We compare models and data in the context of the standard Poisson statis

tic (e.g., Bevington, 1969; Press et al., 1986), x2. In our case, it is given by 

N 1 }2 
X2(a) = kEI { a.r(Pk) [TMda.t(Pk) - TM!miPk;a)] [2.12]. 

In this relation, TM<W(Pk), TMnDd(Pk;a) and a.r(Pk) are the experimental and model 

melting temperatures, and the experimental uncertainties, respectively, all at a 

particular pressure, Pk. Also, N is the number of data points. TMlmd is given by 

[2.11]. The "vector" a is the model parameter vector, with components 31>' in 

our case given by 

3p = {>.*, w*, i/, S", E} [2.13]. 

We minimize x2(a) using a combination of 1), multidimensional Golden Section 

(GS) search to explore the x2(a) hypersurface for the distribution of local 

minima, and 2), the Levenburg-Marquardt (LM) algorithm (e.g., Press et al., 

1986) to solve [2.12] locally and iteratively to find the "best fit" values of the 

ap, 3p(min)' defined by 

ax2
(a) = 0 . 

Ba 

This algorithm searches down successive independent (i.e., conjugate) gradients, 

and terminates the iterative process when either a preset value of x2 (56, which 

is twice the "best" theoretically-expectable value; see below) and/or x2 does not 

decrease by some chosen amount (1 %) between successive iterations. We 

present examples of "best fits" in Figure 2.la, along with the Fe melting data of 
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Williams and Jeanloz (1986), as given in Williams et al. (1987), and compare 

these fits with the Fe shock temperature results of Bass et al. (1987). In their 

diamond cell experiments, Williams and Jeanloz were able to directly observe Fe 

melting; the "Fe-solid" points correspond to the highest temperature at which 

Fe was entirely solid, while those labeled "Fe-liquid" correspond to the lowest 

temperatures at which Fe was entirely liquid. We use all these points (28) as 

given, along with their associated uncertainties, in the fit. This allows the LM 

algorithm to find the "best" compromise among them, each datum influencing 

the fit according to how "well" or "poorly" they are determined, as indicated 

by their associated uncertainties and implemented in the x2 statistic. The first 

fit, shown by the dashed line, represents an entirely unconstrained fit, i.e., all 

parameters are allowed to vary during the fit. This fit has a x2 of 150, with 

parameter values ).. *=8.50, w*=0.361, fJ=0.451, ~0.0808 m/kg¥a, and 

E=203 K. The value of x2 for a "good" fit is roughly given by the difference 

between the number of data and fit parameters; in our case, then, we might 

expect x2........,23 at best. That our best fit is six times this value is not completely 

unexpected, considering the amount of "scatter" in the data. With this model 

fit, we calculate a number of liquid-Fe properties using the relations detailed in 

Appendix A and discussed below. Of particular importance is the density of Fe 

along the liquidus, p~, given by, from [2.9], 

[2.14], 

which we plotted in Figure 2.lb versus pressure, along with perhaps the best 

constraint we have on Fe at high-pressure: density along the Fe Hugoniot. We 

have also plotted the density of solid Fe at the liquidus temperature, using the 

Hugoniot density as reference via the method discussed below; these points are 

labeled "Fe-solidus" in Figure 2.lb. With the expectations that the density of 

liquid Fe should 1 ), be less than that of solid Fe at the same pressure and 
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Figure 2.1. Liquid state model fits to the Fe melting data of Williams and 
Jeanloz (1986). Part (a) depicts the temperature fits versus 
pressure. The dashed curve represents the best unconstrained 
fit to the data, while the continuous curve represents the best fit 
with the liquidus density constrained to be less than or equal to 
that of the solidus, as referenced to the Hugoniot, as shown in 
part (b ). Each solidus or hugoniot point (rectangle) represents 
±20 kg/m3 and ±2 GPa. Vertical lines represent pressure at 
core-mantle boundary (136 GPa) and outer-inner core boundary 
(330 GPa). 
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temperature (for a positive Claperyon slope), and 2), approach the density of 

solid-Fe along the phase boundary at high pressure, this fit that looks reason

able in T-P space appears highly unlikely in P-p space. This fit is characteristic 

of all local minima on the x2 hypersurface investigated in a completely uncon

strained fashion. 

Given the unacceptable liquidus density prediction from the completely 

unconstrained fits, we are compelled to constrain the density of liquid-Fe along 

the liquidus to be less than or equal to that estimated for solid-Fe at (approxi

mately) the same temperature during the fit. Among the model fits satisfying 

this constraint, the one represented by the continuous curve in Figures 2.la and 

2.lb is "most" consistent with other information on liquid Fe, as we discuss 

below. This fit has a x2 of 250 and fit parameters A *=8.02, w*=0.872, "7=0.49, 

r0.0605 m/kgl/a and E=2190 K. Note that this is a significantly worse fit than 

the first, on the basis of x2 alone. Note that this fit predicts significantly higher 

temperatures along the Fe liquidus than the first, a reasonable result in order to 

have a smaller liquidus density at the same pressure. This fit also predicts a 

much higher (200-1000 K) melting temperature for Fe between 136 and 330 

GPa than most previous predictions (e.g., Brown and McQueen, 1986; Ander

son, 1982; but see Abelson, 1981; Bass et al., 1987; Williams et al., 1987). Both 

of the fits imply that liquid Fe "ion-ion" interactions are strongly repulsive; this 

is consistent with the observation that liquid-Fe is a "good" hard-sphere fluid. 

These results imply that the variation of density along the phase boundary may 

provide a more sensitive measure of model parameters than the coincident vari

ation of temperature. 

If we extrapolate the properties of liquid Fe predicted by this last model fit 

to standard pressure (SP, 0.1 MPa), we may compare them with data constrain

ing these properties or other calculations, as appropriate. The results of this are 

presented in Table 2.1. Recall that we have used only the high-pressure data of 
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Figure 2.2. 

340 Figure 2.2 

Temperature fits (part a) versus pressure for different values of 
the equilibrium packing fraction, r,, around the best fit value. 
The corresponding liquid density along these curves is shown in 
part (b ). 
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Table 2.1. Standard Pressure (0.1 :MPa) Liquid Fe Properties. 

Property Symbol Experimental Models SI Units 

Melting temperature TM 1809a 1910t K 
Mass Density p 7015b 6857 kg/m3 

Molar Entropy s 99.7c 91.6 J/mol·K 
Packing Fractiont 1J 0.45d 0.49 
Heat capacity, constant V Cv 33.3e 37.1 d 39.0 J/mol·K 
Isothermal Bulk Modulus Kr 89d 87 GP a 
Griineisen's parameter I 2.44e 1.67/ 1.62 
Isentropic Bulk Modulus I<s 110g 1361 111 GP a 
Thermal expansion a 88b 122e 83d 89 µK-1 
Heat capacity, constant P cp 46.6i 49.8 J/mol·K 
Bulk Velocity vefJ 393oi 4400k 4017 m/s 
Electrical Resistivity Pe 1.4' µO·m 
Shear Viscosity µ 2.1 e 4.8-7.om 2.5 mPa·s 
Thermal Conductivity k 32e 34 W/m·K 
Self-Diffusion D 4996 nm2/s 

tUnless otherwise indicated, all model values are from present work. 
tFit parameter. 

a Robie et al. (1978). 
6 Drotning (1981). 

c Hultgren et al. (1973). 

dYokoyama et al. (1983). 

e given in Stevenson (1981). 

I calculated from ~ = aK5 / pep. 

1 calculated from Ks = pv j using v rt> from ; . 

" calculated from Ks = pv j using v ¢> from i . 

i Desai (1986). 

; Kurz and Lux (1969). 

i Filipov et al. (1966). 
1Busch and Giintherodt (1974). 
m given in Gans (1972). 
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Williams and Jeanloz (1986) to constrain the best fit, i.e., no other SP liquid Fe 

properties besides le and r(PNr) constrain it. Notable discrepancies between 

experimental and model fit values include the first five quantities listed in Table 

2.1, i.e., the melting temperature, liquid density, the molar entropy, the equilib

rium packing fraction, and the molar heat capacity at constant volume. The 

fact that the molar entropy falls below the experimental value is partially due 

to the relatively high value of r, favored by the fit, since the entropy of the 

hard-sphere reference system decreases with increasing r, (via [A.43], Appendix 

A). Attempted fits with r, fixed at 0.45, the valued favored by liquid-state 

numerical simulations (Alder and and Wainwright, 1957), predicted higher 

liquidus temperatures (>8200 K at 330 GPa: see liquidus variation with r, in 

Figure 2.2a) at high pressure. Note that temperature along the liquidus is much 

more sensitive to r, than density, as shown in Figures 2.2a and 2.2b. Since we 

have held f(pNr) and le constant in the fits, it is possible to "improve" the 

agreement between some of the fitted and experimental properties by adjusting 

these parameters away from their independently established values. Another 

reason we should have some discrepancies between the model fit and liquid Fe 

properties is that we have not included an explicit contribution to the 

Helmholtz free energy at zero temperature from the Fe valence electrons (D. J. 

Stevenson, personal communication). This would introduce further parameters 

for the fit to constrain, and given the data scatter and relative insensitivity of 

the model parameters to the temperature along the phase boundary, we refrain 

from doing this. 

§3. Hugoniot and Solid-State Calculations 

We estimate the high pressure and temperature states of solid Fe, FeS and 

FeO from an equilibrium thermodynamic model referenced to the experimen

tally constrained shock-compressed (Hugoniot) states of these materials. Since 
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we are interested in the high pressure, temperature states of initially semicon-

ducting or metallic solids that are all likely to be metallic at high pressure, we 

construct a model Helmholtz free-energy (HFE), F(T,p), from contributions 

reflecting the influence of both lattice and electronic processes. We assume the 

Debye model to represent the harmonic lattice free energy, the low temperature 

(T much less than the Fermi temperature) approximation to the electronic free 

energy, -.!.r(p)T2 (as above for liquid Fe), and the high-temperature (T greater 
2 

than the Debye temperature, 0 0) approximation to the anharmonic free energy, 

A2(p)T2, where A 2(p) is related to the temperature dependence of the phonon

frequency spectrum at constant pressure and high temperature (Wallace, 1972). 

Neglecting potential lattice-electron and band-structure contributions to the 

molar Helmholtz free energy, F(T ,p ), we have 

[3.1]. 

In [3.1 ], 4>(p) is the zero-temperature lattice potential energy function, 9 0(p) is 

the Debye temperature, Xo = x0(T,p) is the ratio of the Debye temperature to 

the absolute temperature, v is the number of atoms in the chemical formula, 

and Eo(€) is the Debye internal-energy function (e.g., Gopal, 1966), given by 

[3.2]. 

eo is related to a lattice Griineisen's parameter, lo, by (Wallace, 1972) 

= [ dln00 J 10 dlnp 
[3.3]. 

If we assume 
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[3.4], 

then we may write 

[3.5]. 

The high-temperature (T>80 ) anharmonic contribution to the free energy, 

A 2(p )T2 (Wallace, 1972), has the same temperature-dependence as the electronic 

contribution to F, as given by [2.5] in the last section. In this sense, at least, 

the high-temperature anharmonic and low-temperature electronic contributions 

are indistinguishable. By analogy with [2.5], we assume, for simplicity, that 

w 

O(p) = f(p) - 2A2(p) = O(pJ [-;) [3.6]. 

In the calculations presented below, we constrain the values of O(pi) and w 

empirically by requiring the high-pressure-phase (/3) Hugoniot and melting curve 

of Fe, FeS and FeO to intersect at an "appropriate" pressure. As discussed in 

the previous section, we have a further constraint on f(p) for Fe from the work 

of Boness et al. (1986). 

Since we are working at high temperatures, i.e. T>00 , we may use the 

high-temperature approximation (x0 =80 (p.J/T-+O) of the harmonic contribu

tion to F(T ,p ). Detailing this approximation in Appendix B, we obtain from it 

expressions for 1), the high-temperature molar entropy: 

S = 3vR{ i. - ln{x0 } + _!_x;} + OT 
3 40 

[3.7], 

2), the high-temperature molar heat capacity at constant volume: 

[3.8], 
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and 3), the high-temperature isothermal bulk modulus: 

with 

From these expressions, we have 

[3.10], 

where Cy= Cv/M is the specific heat at constant volume. From [3.8] and [3.10], 

we have the high-temperature equilibrium thermodynamic Gruneisen parameter 

""Y = .:::fSL = "Yo + [w-')'o] ~ T 
Cy v 

[3.11]. 

Note that "'f, as given by [3.11], is very weakly temperature-dependent, since 

W~"'fo (at least for Fe) in the range of pressures and temperatures of interest. 

On this basis, we assume in what follows that "'fa function of density alone, and 

equal to "Yo in the solids of interest. From [3.9] and [3.10], we have the 

coefficient of thermal expansion 

[3.12]. 

Lastly, [3.8], [3.11], and [3.12], combined with 

Ks cp 
- = - = (1 + cqT) 
Ki. Cv 

[3.13], 

provide the isentropic bulk modulus, Ks, and molar heat capacity at constant 

pressure, Cp. We use these expressions, particularly S, a and Cp, in what fol

lows. 
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Assuming that Fe, FeS, and FeO shock compress as adiabatic, elastic fluids, 

we calculate the pressure, P w and density, Pw of a given Hugoniot state on the 

basis of the experimentally constrained shock velocity, U, material velocity, v, 

relation, i.e., U=31+biv, via the shock-wave "equation of state" 

[3.14], 

(for bi1Jii< 1) with 

/!'312 
µ = µ(P J = 1 + 2b.(~ _ p) 

I H I 

(e.g., McQueen et al., 1967). In this relation, p~ is the uncompressed density of 

the material occupying the low-pressure-phase, a, and 'f/H = 1-p~ /pH is the rela

tive compression, PH is the Hugoniot pressure, Pi is the initial pressure, and the 

subscripts "i" and "H" stand for the initial (Ti, PJ and Hugoniot states, respec

tively. With the assumption that the Hugoniot state is one of thermodynamic 

equilibrium, we construct an internal energy balance in the pressure-density 

plane to calculate the temperature of the Hugoniot state, TH (e.g., McQueen et 

al., 1967; Ahrens et al., 1969), of a high-pressure phase, (3, of the material. This 

is represented by the relation 

[3.15], 

where 

[3.16], 

is the difference in specific internal energy between the Hugoniot and principal 

isentrope of f3 at constant volume (density, pJ. Note that all quantities dis

cussed in this section refer to the ,8-phase, unless otherwise designated. In 

[3.16], t::..el(-a = e(~,tf) - e(qa,pf) is the difference in specific internal energy 
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between a and /3 at Ti and Pi, and .6.e51 = e(8i,PJ - e(8i,PJ is the change in 

specific internal energy along an isentrope of /3 with specific entropy 8i' refer

enced to a density Pi· Also, T(8i,PJ represents the temperature along this isen

trope at a density Pw the Hugoniot-state density of /3, and Xn. = 0 0 /T
81

• 

Assuming TH> 0 0 , we may substitute [3.9] into [3.15] to obtain a cubic equation 

for TH with solution 

c { 1 -1{ q } } 2vR TH= 2vp cos 3 cos PVP - O(pJ [3.17) 

(Chapter I, §4), with 

( 
2vR ) 

2 
2M 

p = O(pH) + 30(pJ A(pJ ' 

2 

q = - ~~J { ;(~J A(pJ + 2
3
0 [00 (pJ)

2 + 2 ( ~(~) } , 

and 

We calculate .6.e81(pJ=.6.e81(pi,:Kg1,~ ,pJ using third-order spatial finite-strain 

theory. We estimate :Kg
1 

and :Kg'
1 

, the STP isentropic bulk modulus and its first 

pressure derivative, respectively, of the high-pressure phase, from the meta

stable U-v relation of the high-pressure phase (McQueen et al., 1967; Chapter I, 

§4), which in turn is constrained from pr, 8i and bi. Also, we calculate T(si,pJ 

from the relation 

( 
OlnT ) 
Olnp s =I [3.18], 

assuming/= 10 (p). In this case, the relation for T(8i,PJ is of the same form as 

that for 0 0 (p) given by [3.15] above. With Ti=298 K, Pi=0.1 MPa ( £. e., STP), 
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and pf, 3i and bi constrained from pressure-density shock-experiments, we see 

from [3.17] that TH depends on fl.eta and 6 STP properties of the high-pressure 

phase, /3, i.e., 

[3.19]. 

Of these, TH is most sensitive to pi, !:l.ef-a and O(pi) (Chapter I, §4). To reduce 

the number of free parameters, we assume CJo=l for Fe, FeS and FeO, w=l for 

FeS and FeO, and w=l.34 for Fe. The parameter w for Fe is chosen in order to 

facilitate comparison of the O(pJ values for Fe obtained below with the values 

of f(pJ and "le calculated by Boness et al. (1986) for c::-Fe and 1-Fe. Since Pi for 

FeS, FeO and Fe is constrained by previous work, we fix it as well. We con

strain !:l.ef-a from the energy balance used to obtain TH in the limit pH-+pi 

assuming I is a function of volume only (Chapter I, §4). We have 0 0 for c::-Fe 

from Andrews (1973), and we estimate it for the the high-pressure phases of FeS 

and FeO from the relation 

by assuming the mean sound velocity of the high-pressure phase, vm, is equal to 

the bulk velocity of the high pressure phase, v </J' where v <P = ~· This 

estimate is an upper bound to the actual value of 0 0 , since it ignores the contri

bution of transverse vibrations to vm. All of these parameter values are given in 

Table 3.1, leaving us with 2 "degrees of freedom", i.e., / 0 (pi) and O(pi), when 

calculating TH" 

Following many workers (e.g., Stacey, 1977), we use Lindemann's law, i.e., 

{ 
dTM} T 1 - = 2-2!.(18 - - ) 
dp~ Lindemann p:.r_ pM 3 

[3.20], 

to parameterize the solid-two phase boundary (i.e., solidus). In [3.20], /p~ is 
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Table 3.1. High-Pressure Solid State STP Parameters for Fe, FeS and FeO. 

Property Symbol Fe FeS FeO SI Units 

olecular weight M 0.055847a 0.087907a 0.071846 8 kg/mol 

Impedance match 

ass density Pia 78506 4613c 555411 kg/m3 

ntercept, U-v relation a; 39556 3865c 4070e m/s 
Slope, U-v relation bi 1.5806 1.351 c l.503e 

High-Pressure solid phase 

ass density Pi 8352/ 5600g 6050' kg/m3 

PP-LPP smt difference D,,.e.f3-a 1011 80011 1451 kJ/kg I 

ntercept, U-v relation * 4517 11 5327 11 482311 m/s a; 
Slope, U-v relation b·* 1.5711 1.3211 1.4911 

I 

sentropic Bulk Modulus :: 170i 159i 141 i GP a 
(8K,,/8P)s 5.28; 4.28; 4_95i 

ebye temperature eD 385.t 6741 6701 K 
E§ exponent w l.34m l.On i.on 

Hugoniot-Solid us 

elting Temperature 
E coefficient 
hermal Expansion 
ebye I 

tspecific internal energy. 
•Robie et al. (1978). 

TM 1809 
n 3.35 
a 45 
JD 1.93 

6 Brown and McQueen (1986). 
c Brown et al. (1984). 
tl Jeanloz and Ahrens (1980). 
e Fit to U-v data in 11 • 

I Jephcoat et al. (1986). 
9 Pichulo et al. (1976). 

1468 
11.43 

155 
1.50 

1652 
7.54 

100 
1.90 

§Anharmonic-electronic. 

K 
mJ/mol·K2 

µK-1 

11 from Pi and U-v relation (see text). 
i assuming Ks=pat 
i from~ =4bt-1 (Ruoff, 1967). 
.t Andrews (1973). 
1 from Pi and ai* (see text). 
m le oft-Fe (Boness et al., 1986) assumed. 
n assumed. 
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the lattice Griineisen's parameter at the melting point, given by "f0(p~) in the 

context of the Debye approximation used in this work, p~ is the density of the 

solid along the phase boundary, and TM is the melting temperature. Since we 

assume above that "fo(P) is given by usual power-law relation ([3.4] above), [3.20] 

may be integrated to give 

{ P4 }% { 2'r, (tJ4) { ( P4 ) Cb} } TJp~) = TJtJ4) p:_. exp ~ 1 - p:_. [3.21], 

where tJ4 = p8 (T:Mi,Pi) is the density of the solid at the melting temperature 

TJtJ4)=TM(PJ. Since the equilibrium thermodynamic properties as developed 

from [3.1] and its high-temperature approximation (Appendix B) are functions 

of temperature and density, we may calculate the variation of any of these pro

perties, '!/J(T ,p ), with temperature at constant pressure from the relation 

[3.22], 

where 

[3.23], 

and Pref and Tref are a pressure and temperature at which we know '!/J. In par

ticular, with 'l/J=p8
, the density of the solid along the solidus, p~, may be 

estimated from the density determined experimentally along the Hugoniot, Pro 

via a simultaneous solution of [3.21] and 

LTM 
p~(P) = pJP) exp{- a:[T,p(T,P)] dT} 

TH 
[3.24], 

for TJp~) = TJP) and p:_.(TJ = p~(P). We evaluate [3.24] numerically during 

the simultaneous solution, using [3.12] for o:(T,p) and [3.17] for Tw This 
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solution is subject to the initial conditions 

[3.25], 

and 

[3.26], 

where TMi = TJPJ is the standard pressure melting temperature of the 

material, and ~ = a(Ti,Pi) the STP coefficient of thermal expansion. By com

bining the solidus and Hugoniot temperatures and densities via [3.17], [3.21] and 

[3.24]-[3.26], we have a simultaneous calculation for TJP), p~(P) and TJP) 

dependent on 4 "free" parameters: / 0 (Pi), O(pi), ~ and TMi. To fit the solidus 

calculated in this fashion to the melting data, we again employ the x2 statistic, 

as given in [3.1], with TMm>d=TMlrnd(P;a) now given by [3.19], to fit a Lindemann 

solidus to the Fe melting data of Williams and Jeanloz (1986), and compare this 

fit to the Fe shock temperature results of Bass et al. (1987). For the FeS and 

FeO solidi, however, we use [3.19] to calculate, rather than fit, these solidi 

because there is only one high-pressure datum for each of these materials 

currently available to the public. We display the results of the Fe fit, and the 

FeS and FeO calculations in Figure 3.1. The FeS melting point at 50 GPa is 

from the work of Williams and Jeanloz (1986; 3000 K), and this is consistent 

with the results of Anderson et al. (1987a), while that for FeO is from the work 

of Knittle and Jeanloz (1987), who state that " ... at approximately 100 GP a the 

melting temperature of FeO exceeds 5000 K ... " On this "factual" basis, we 

assume 5100 K. The best fit Fe-solidus shown in Figure 3.1 has a x2 of 70; 

parameters for these curves are given in Table 3.1. This x2 is substantially 

lower than that of the best fit Fe-liquidus partly because the fit via [3.17], [3.19] 

and [3.22] is numerically stable (and physically reasonable) only above 20 GPa, 

and so we fit the 19 data above this pressure. In addition, the largest 
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Figure 3.1. Solidus fit to Fe melting data, and calculated FeO and FeS 
solidi constrained by corresponding data. The FeO datum at 
100 GPa is from the work of Knittel and Jeanloz (1987), while 
that for FeS at 50 GPa is from Williams and Jeanloz (1987). 
The FeS curve is also consistent with the lower pressure con
straints on FeS melting from the shock-wave experiments of 
Anderson et al. (1987). 
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differences between the solidus and Hugoniot densities (temperatures) occur at 

low pressure; consequently, the corrections are largest at low pressure, and 

hence most suspect. Notice that the solidi (Figure 3.1) curve down too much to 

asymptote out at the SP melting temperature without a seemingly unphysical 

change in curvature and slope. The use of a linear relation between density and 

temperature at SP, [3.20], also contributes to this behavior. A quadratic or 

other higher-order relation would give more reasonable asymptotic behavior, but 

of course at the expense of yet more parameters to constrain. 

Comparing the density-constrained Fe liquidus in Figure 2.1 and the best-fit 

solidus, we see that the best-fit liquidus lies at a higher temperature than the 

corresponding solidus. If we fit the "best" Fe-liquidus model with a Lindemann 

solidus, we obtain ')'0 (pJ=l.90, O(pJ=2.6 mJ/mol·K2, 

q = 58.4 µK- 1,TMi = 1810 K and x2 = 125. However, if we require 

O(pJ=5 mJ/mol·K2, the value of f(pJ calculated theoretically by Boness et al. 

(1986) for t:-Fe (here adjusted to the density of t:-Fe from Jephcoat et al., 1986), 

in a fit to the data of Williams and Jeanloz (1986), we obtain ')'0 (pJ=l.79, 

ai = 54.5 µK- 1, and TMi=1809 K, with x2=75. These last two fits are 

displayed in Figure 3.2, along with the associated Hugoniots. Since pH and p:.i: 

are connected via a, which is initially small, and decreases with pressure (see 

below), it turns out that the solidi are not very sensitive to O(pi). Experimental 

constraints on the pressure at which liquid-solid phase boundary and high

pressure phase Hugoniot of Fe (245 GPa: Brown and McQueen, 1982) and FeS 

(125-150 GPa: Brown et al., 1984) intersect provide a stronger constraint on the 

value of O(pi), which controls the slope of TJP), as implied by [3.17]. This 

intersection is shown for the two Fe-solidi displayed in Figure 3.2. We apply 

this as an additional constraint in the Fe solidus fits, and the FeS solidus calcu

lation. To our knowledge, there exists no experimentally motivated range of 

pressures over which the FeO Hugoniot and melting curve are likely to 
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intersect, but it is almost certainly above 70 GPa (Jeanloz and Ahrens, 1980; 

Knittle and Jeanloz, 1987), and probably above 245 GPa, where the Fe 

Hugoniot and solidus apparently intersect, since the solidus extrapolated from 

the datum of Knittle and Jeanloz (1987) is ;GlOOO K above the solidus at a 

given pressure above 100 GPa. 

With parameters values established by the fit, the solid-state model provides 

us with specific values for the equilibrium thermodynamic properties as func

tions of temperature and density. However, since we can calculate p=p(T,P) 

via 

p(T,P) = p(TwP) exp{-LT a[T,p(T,P)] dT} , 
TH 

[3.27], 

at high pressure and temperature, referenced to the Hugoniot state {TwPH,pH}, 

the model functions then depend on pressure and temperature. On this basis, 

we use the Fe solidus fit (Figure 3.2, dash curve) to the constrained-density Fe 

liquidus obtained in the last section to calculate the equilibrium thermodynamic 

properties of solid Fe at the melting temperature as a function of pressure and 

compare them to the corresponding liquid-Fe properties in Table 3.2. We note 

that E-Fe is probably not the solid phase in equilibrium with liquid-Fe; above 5 

GPa, 1-Fe is most likely the solid phase of Fe coexisting with liquid Fe (e.g., 

Anderson, 1982). We have tacitly assumed that this is of no consequence at 

high pressure; even if it were, 1-Fe is not sufficiently well characterized at high 

pressure for us to distinguish it from E-Fe at high pressure. 

For the phase relations discussed below, we are particularly interested in S, 

the molar entropy, and CP, the molar heat capacity, of the liquid and solid. 

From Table 3.2, we have 

~~~-s = ~-Si.!= 8.3 J/mol·K (0.99 R), 
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Figure 3.2. 

358 Figure 3.2 

Intersection of two Fe Hugoniots and melting curve at 245 GPa. 
"OM" represents value of 0 in units of J/mol·K2• 
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Table 3.2. High-Pressure Solid & Liquid Fe Model Properties. 

P=136 GPa P=330 GPa 

(CMB) (ICB) 

Hugoniot Solidus Liquid us Hugoniott Solidus Liquid us SI Units 

T 3063 5007 4937 9275 7219 7296 K 
p 11250 10880 10720 12900 13060 13220 kg/m3 

s 78.l 96.l 104.7 109.2 101.1 108.9 J/mol-K 

Cy 30.2 34.8 41.3 38.2 36.8 42.1 J/mol-K 

Kr 677 584 630 1386 1495 1324 GP a 

I 1.40 1.43 2.41 1.27 1.26 2.54 

Ks 713 654 857 1518 1593 1792 GP a 
Cl:' 12.6 16.8 30.3 8.1 7.2 19.1 µK-1 

Cp 31.8 39.1 56.2 41.9 39.2 56.9 J/mol-K 
v ¢> 7958 7702 8943 10850 11040 11640 m/s 
µ 9 14 mPa·s 
k 89 133 W/m·K 
D 6645 8488 nm2/s 

t - Metastable € Hugoniot. 
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and 

at 136 GPa, while 

As~-8 = 7.8 J/mol·K (0.94 R) , 

and 

ACj;F~s = 17.7 J/mol·K (2.13 R) 

at 330 GPa. These compare with 

ASje-s = 7.7 J/mol·K (0.93 R) , 

(Desai, 1986) and 

ACj;F~8 = 4.2 J/mol·K (0.51 R) 

(Hultgren et al., 1973), at SP. A number of theoretical and experimental studies 

(see, for example, Stishov, 1975) on elemental compounds suggest that 1 ), the 

value of the entropy of melting, AS1-s , varies little among these substances, 

and approaches R at high temperature, 2), As1- 8 varies with the volume 

change upon melting, Av 1- 8
, such that As1-s-+ 0.693 (i.e., ln2) R as 

Av 1- 8 -+O. In the context of a simple cell order-disorder model (Stishov, 1975), 

we note that Asl-s ,......_,R for complete disorder (i.e., one "atom" per cell, no 

short-range order) among the liquid constituents, while Asl-s ,......_,0.693R for pair 

ordering (i.e., up to two atoms per cell, randomly occupied cells, short-range 

order). In addition, Gschneider (1964) has found, for a number of close-packed 

monatomic solids, that Asl-s ,...._,1.1523·R. Our results are somewhat contrary to 

this, since we calculate high-pressure values for A~-8 of the same magnitude as 

the SP value. As for the large increase in ACj;ie8 with pressure calculated here, 

we have no theoretical explanation at this point, but it is at least partly because 

I increases with pressure in the liquid (Tables 2.1 and 3.2) but decreases with 
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pressure m the solid. This behavior for / is not unexpected (Knopoff and 

Shapiro, 1970). Also, the thermal expansion of the liquid is about twice that of 

the solid along the phase boundary. With these results, we may now address 

phase relations in Fe-S and Fe-0 systems. 

§4. Fe-FeX Phase Diagrams and Implications for the Core 

The results of the solidus and liquidus models given in the previous section 

for Fe, FeS and FeO may be used to calculate ideal phase relations between 

liquid and solid Fe-X mixtures, in the context of the following model. We 

assume that these mixtures coexist in thermodynamic equilibrium, i.e., 

T1 = T = T8 

pl = p = ps 
. l 8 
µi = µi 

[4.1], 

where the superscript l denotes a property of the liquid, and superscript s a 

property of the solid. The equilibrium chemical potential for component i in 

phase a (i.e., solid or liquid) is defined by 

[4.2] 

(e.g., Prigogine and Defay, 1954). In this relation, µ/k(T,P,1) is the chemical 

potential of pure i in phase a, a/l'.(T,P ,x{') is the activity of i in the phase-a 

mixture, defined by 

[4.3], 

where )..{' is the activity coefficient, and x;a the mole fraction, of component i in 

phase a. 

Following Stevenson (1981), we assume that both the liquid and solid Fe-X 

mixtures are fully associated, i.e., FeX t;. Fe + X in both phases. This implies 

that FeX is a distinct, energetically favored species, along with Fe and X, in 
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both phases. In this context, Prigogine and Defay (1954) have shown that the 

chemical potentials of the species Fe and X are equal to those of components Fe 

and X, implying that, 

~T,P,x0 ) = ~(T,P,x0) + ttx0 (T,P,x0
) [4.4], 

[4.5], 

where µ:ix is the chemical potential of FeX in phase a, and we have defined x0 

as the mole fraction of X in phase a; then 1-x0 is the mole fraction of Fe in a. 

Substituting [4.2] into [4.4] for Fe and X, we obtain, from [4.4] and [4.5] 

where B=l/RT, and we have defined 

DoJLF~x(T,P) = µ~T,P,x0= ! ) -~(T,P,x0=0) - ttx0 (T,P,x0 =1) [4.7]. 

Now, by definition, ~~ must be unity when x0 = ! . Putting this "boundary 

condition" into [4.6], we have 

[4.8]. 

With this, ~becomes 

[4.9], 

and this is the expression we require to use [4.5] for µi:x_. Now we turn to phase 

equilibria in the Fe-FeX subsystem. 

The equilibrium liquid-solid phase boundaries in the Fe-FeX subsystem are 

defined by (from [4.l]J) 

JLF~(T ,P ,x1 
) = JLF~(T ,P ,x8 

) [4.10], 

and 
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JiF~T,P,x1 ) = JiFUT,P,x8
) 

Substituting [4.2], with i =Fe, and [4.5] into these, we obtain 

>.ie(l-xl) = >.~(1-xs) e-BAµ~;· 

and 

where 

Liµie-8(T,P) = µie(T,P,O) - µ~(T,P,O) 

and 

[4.11]. 

[4.12], 

[4.13], 

[4.14], 

[4.15]. 

Note that Liµie-8(TM.F0,P)==LiµF~8 (TM.FeXlP)==O by [4.l]s. Following Stevenson 

(1981), we expand Liµie-8(T,P) and Li~8 (T,P) at constant pressure about the 

states {T==TM.Fe, P, x1 ==x8 ==O} and {T==TM.FeXl P, x1 ==x8 == ! }, respectively, to 

second order in (T-TJ, i.e., 

[4.16], 

and 

Liµj.;cs (T,P) ,__, T(eFeX-1) 

[4.17], 

where LiS/-8==LiS/-8(P,TM,i ,x1 ==x 8
) and LiC~,-8 ==LiCp~;-8 (P,TM,i ,x' ==x8

) are 

the contrasts in entropy and specific heat at constant pressure of component i 

between liquid and solid phases at the indicated reference conditions. Also, we 

have defined CFe == TM;Fe/T and eFeX == TM,FdT. 



Chapter V 365 Fe-FeX Phase Diagrams ... 

Following Stevenson (1981), we now apply [4.14] and [4.15] to the case 

where Fe and FeX mix ideally in the liquid state. In this case, we have 

A~= A~= 1 for all x'. Putting these into [4.12] and [4.13], we have 

[4.18] 

and 

[4.19]. 

Further, we assume that Fe and FeX are completely immiscible in the solid 

state. In this case, xs = 0 on the Fe-rich side of the phase diagram, as given 

by [4.18], while xs = .!.. on the FeX-rich side, as given by [4.19]; consequently, 
2 

[4.18] and [4.19] reduce to 

l -BAµ I-• 
X=l-e Fe [4.20], 

for the Fe-rich side of the phase diagram (>.F~(xs =0) = 1 ), and 

l - 1 { 1 Vl -BAµ~ } x - - - -e 
2 

[4.21], 

for the FeX-rich side, respectively. Elimination of either x' or T from [4.20] 

and [4.21] provides us with implicit expressions for the eutectic temperature, 

Teu' or composition, Xeu' respectively, of the system, i.e., 

and 

[(; "S l-s "C 1-s "Q l-B "C l-s] 
Xeu = Xeu "-M'u Fe ,u P,Fe ,uuyeX ,u P,FeX ' 

where EM= TM.F~TM.Fe is the ratio of end-member melting temperatures. In 

Figure 4.1, we display Xeu as a function of EM for different values of ~gl-s, 

assuming ~sl-s =~s~-s=~Sy!x-8 and ~Cj.F--;s=O=~Cj,F~· As evident, the 
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Figure 4.1. Eutectic composition versus the ratio of end member melting 
temperatures, showing the dominant influence of this property 
on the eutectic composition. "Ds" represents .6.S1 - 8 in units of 
R, and .6.C~ -8=0 for this calculation. 
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Figure 4.2. 

368 Figure 4.2 

Eutectic temperature versus ratio of end member melting tem
peratures referenced to TM.Fe=7250 at P=330 GPa. "Ds" has 
same meaning as in Figure 4.1. 
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eutectic composition will be more X-rich as the melting temperature of FeX 

decreases below that of Fe, the more drastically as .6.81- 8 increases. Assuming 

TM.Fe=7250 K from above, the variation of T eu with EM displayed in Figure 4.2 

shows that the eutectic temperature increases with EM for a given value of 

.6.81- 8 and decreases with .6.81- 8 at a given value of EM" Consequently, Teu will 

take on a minimum value for minimum values EM and .6.81- 8
, and .6.cj-8=0. 

Having established values for TM.F•' TM.FeX' .6.~-8 and .6.CJ$e8 above, we now 

assume that .6.~8 for X=O,S are given by their SP values, i.e., 

.6.~~8 = 22.0 J/mol·K (Robie et al., 1978) and .6.~~8 = 13.4 J/mol·K (Robie 

et al., 1978), respectively, and that either .6.Cj~~.6.Cj$e8 or .6.Cj~0=.6.cj$e8, 

in order to calculate ideal-mixing liquidi for Fe-FeX via [4.20] and [4.21]. We 

display the results of this in Figures 4.3a-b for P=136 GPa, the pressure at the 

core-mantle boundary (CMB), and in Figures 4.4a-b for P=330 GPa, the pres

sure of the outer-inner core boundary (ICB). As evident, the value of .6.Cj-s 

affects mainly the curvature of the liquidus, while .6.81- 8 affects its slope. As 

implied from Figure 4.2, we obtain the minimum value of Teu for the minimum 

value of .6.S1- 8 and .6.Cj-8=0 in Figures 4.3a-b and 4.4a-b. Via the results of 

Figure 4.1, we also see that, because TM.FeS/TM.Fe < 1 while TM.FttjTM.Fe> 1, the Fe

FeS eutectic composition shifts toward the FeS rich side of the system, whereas 

the Fe-FeO eutectic composition falls toward the Fe-rich side, both at 136 GPa 

and 330 GPa. The significantly higher melting temperature of FeO as com

pared to Fe or FeS (Figure 3.1) at a given pressure suggests that this compound 

is relatively stable at high pressures and temperatures, and probably remains 

largely associated during melting. In this case, it is reasonable to assume that 

the liquidus and solidus coincide in the Fe-0 system at the composition FeO, as 

done above. For these very same reasons, of course, this assumption is suspect 

for the Fe-S system, i.e., FeS is less stable as a solid than either Fe or FeO, 

hence more likely to melt incongruently that FeO; further, since the effective 
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radii of Fe and (metallized) S atoms at high pressure are apparently almost 

identical (Boness et al., 1986). 

As pointed out by numerous workers (e.g., Stevenson, 1981), the OC is most 

likely a mixture of Fe, Ni and a number of other elements Xi whose presence is 

required to lower the melting point of the OC below its temperature. Besides 

the usual cosmochemical considerations, the idea that these elements must have 

a mean atomic weight significantly less than Fe or Ni rests principally on the 

observation that the seismically constrained density profile of the OC is ,..._,10% 

lower than that of shock-compressed Fe at the same pressure. More recently, 

Brown and McQueen (1982) compared their experimental results for elastic

wave velocities in shock-compressed Fe with the outer core seismic velocity 

profiles. The value of either of of these comparisons (again, at the same pres

sure) rests strongly on a knowledge of 1), the temperature difference between 

shock-compressed Fe and the OC and 2), the effect of mixing other elements 

with Fe under core conditions (e.g., Birch, 1952; Jeanloz, 1979). Considering 

that seismic density profiles depend on velocity profiles and models, the velocity 

comparison should be more decisive than that for density, at least from the 

seismic viewpoint. As noted by Stacey et al. (1981 ), uncertainties in the tem

perature profile of the OC, combined with uncertainties in the seismically con

strained density profile, may admit, from the density viewpoint alone, the possi

bility of no light component. Since the OC density profile is inherently less well 

constrained than the velocity profile, the observation that the OC does not sup

port shear in the seismic frequency band in concert with the idea that TM.Fe> Toe 

together constitute perhaps the the most compelling evidence for the OC to be 

a liquid Fe,Ni-Xi mixture. 

With this caveat about the seismically constrained densities in mind, we 

note that the mass density of the earth's outer core just above the inner core 

boundary is approximately 12160 kg/m3, and we note that this is also the 
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Figure 4.3. Model temperature versus mole %X in the Fe-FeO (part a) and 
Fe-FeS (part b) systems at the pressure of the core-mantle 
boundary (CMB), 135 GPa. "Ds" and "Dcp" stand for .6.sl-s 
and .6.cj-s of the indicated end-member. Parts (c) and (d) are 
the same as (a) and (b), respectively, except calculated at the 
pressure of the inner core boundary (ICB), 330 GPa. 
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density of an ideal mixture of 93 mole % Fe and 7 mole % S (i.e., 14 mole % 

FeS), and a similar mixture of approximately 72 mole % Fe and 28 mole % 0 

(56 mole % FeO ). As discussed above, since the melting temperature of FeO is 

about 1500 K above that of Fe at 330 GPa, calculated Fe-FeO eutectic composi

tions at 330 GPa (15-20 mole % 0) are less than 25 mole % 0. On the other 

hand, since the melting temperature of Fe is about 1000 K above that of FeS at 

330 GPa, Fe-FeS eutectic compositions at 330 GPa (23-30 mole % S) are gen

erally greater than 25 mole % S. These calculations and considerations imply 

that an 0-rich outer core is more likely to lie on the FeO-rich side of the Fe

FeX eutectic, while an S-rich outer core is more likely to lie on the Fe-rich side 

of the Fe-FeX eutectic. 

Comparing the Fe-FeO eutectic compositions in Figure 4.3a and 4.3c, and 

the Fe-FeS eutectic compositions in Figures 4.3b and 4.3d, we see that the 

eutectic compositions in both of these systems are relatively insensitive to pres

sure. This is largely due to the fact that EM, which controls Xeu as shown in Fig

ure 4.1, is insensitive to pressure for both Fe-FeS and Fe-FeO. The eutectic 

temperatures, however, vary between about 4000 and 6000 K between 136 and 

330 GPa. Assuming .6..sl-s .......,ln2 R is a reasonable lower-bound to .6..S1-s, then, 

the temperature of the outer core must be above this value to remain a liquid 

Fe-X mixture. As can be seen in Figure 4.4, this idea implies that current esti

mates of the temperature profile of the outer core, bounded below by that of 

Brown and Shankland (1980), and above by that of Stacey (1977), are 1000-1500 

K too low, and should be above approximately 4000 Kat 136 GPa and 5000 K 

at 330 GPa. Also, with a temperature of ~3000K at the top of the D" region, 

for example, this implies a thermal boundary layer .<,1000-1500 K somewhere in 

the mantle, possibly also supporting the need of multiple boundary layers in the 

mantle ( e.g, Jeanloz and Richter, 1979; Spiliopoulos and Stacey, 1984), a larger 

contribution from primordial heat to the current heat flux out of the Earth, and 



Chapter V 378 Figure 4.4 

Figure 4.4. Temperature versus pressure along the model Fe, FeS and FeO 
melting curves, as well as those along the minimum temperature 
(~sl-s =Rlog2, ~cj-8=0) Fe-FeS and Fe-FeO eutectics com
pared to outer-core temperature profiles of Stacey (1977; trian
gles) and Brown and Shankland (1980; diamonds). Along the 
Fe-FeS eutectic, the mole % X ranges from 25% at the CMB to 
27% at the ICB, while along the Fe-FeO eutectic it ranges from 
13% at the CMB to 12% at the ICB. 
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a larger initial energy bugdet for the Earth. 

§5. Summary 

Liquid-state and solid-state model fits to melting data for Fe, FeS and FeO 

provide constraints for calculating ideal phase relations in Fe-FeS and Fe-FeO 

systems in the pressure range corresponding to the earth's outer core. The 

liquid-state model fit to the Fe melting data of Williams and Jeanloz (1986) 

places constraints on the temperature and other properties along the liquidus 

above the range of their data. The temperature along the best-fit Fe liquidus is 

5000 Kat 136 GPa and 7250 Kat 330 GPa, which is somewhat lower than that 

implied by the Hugoniot results ("""" 7800 K). This discrepancy may be due to 

the reshock effect in the experimental targets, or some inaccuracy in the extra

polation, presuming the Hugoniot results represent the equilibrium melting 

behavior of Fe. Constraints on the solidi of FeS and FeO from the comparison 

of data and solid-state model calculations imply that FeS and FeO melt at 4610 

K and 5100 K, respectively, at 136 GPa, and 6150 K and 8950 K, respectively, 

at 330 GPa. Calculations for the equilibrium thermodynamic properties of solid 

and liquid Fe along the coincident solidus and liquidus imply that the entropy 

of melting for Fe is approximately independent of pressure at a value of approx

imately R (where R is Ryberg's constant), while the change in the molar heat 

capacity across the transition increases with pressure from approximately 0.5 R 

to 4R between standard pressure and 330 GPa. We use these constraints to 

construct ideal-mixing phase diagrams for Fe-FeS and Fe-FeO systems at outer 

core pressures, assuming that Fe and FeS, or Fe and FeO, respectively, are the 

solid phases in equilibrium with the liquid Fe-FeS or Fe-FeO mixtures, respec

tively. The composition of the Fe-X (X=O or S) liquid mixture relative to the 

eutectic composition of the Fe-FeX system determines whether Fe or FeX will 

solidify at the liquidus. For these ideal mixing calculations, the eutectic 
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composition is controlled by the ratio of the end-member (i.e., Fe and FeX) 

melting temperatures at a given pressure. If Fe and FeX have the same melting 

temperature, for example, the eutectic composition is 25 mole % X; if the melt

ing temperature of FeX is greater or less than Fe, the eutectic composition will 

be displaced to more Fe or FeX rich compositions, respectively. Since, as 

quoted above, the melting temperature of FeO is about 1500 K greater than 

that of Fe at 330 GPa, which is in turn about lOOQ K greater than that of FeS 

at this pressure, we note that calculated Fe-FeO eutectic compositions at 330 

GPa (15-20 mole % 0) are less than 25 mole % 0, while calculated Fe-FeS 

eutectic compositions at 330 GPa (23-30 mole % S) are generally greater than 

25 mole % S. The mass density of the Earth's outer core just above the inner 

core boundary is approximately 12160 kg/m3, and we note that this is also the 

density of an ideal mixture of 93 mole % Fe and 7 mole % S (i.e., 14 mole % 

FeS), and a similar mixture of approximately 72 mole % Fe and 28 mole % 0 

(56 mole % FeO). The clear implication of these possibilities is that an 0-rich 

outer core is more likely to lie on the FeO-rich side of the Fe-FeX eutectic, 

while an S-rich outer core is more likely to lie on the Fe-rich side of the Fe-FeX 

eutectic. 

The temperature of the Fe-FeS eutectic are lower than the Fe-FeO eutectic, 

being approximately 5000 K at 330 GPa. Note that the eutectic temperature 

represents a lower bound to temperatures at the outer-inner core boundary 

under the hypothesis that this boundary represents the liquidus in an Fe-X mix

ture. Eutectic and end-member melting temperatures in both the Fe-FeS and 

Fe-FeO systems imply, in the context of the outer-inner core boundary-phase 

boundary hypothesis, that previous widely-accepted temperature profiles for the 

outer core, ranging from ~3000 K at the 136 GPa, the core-mantle boundary, 

to ~4200 Kat 330 GPa, the outer-inner core boundary, are about 1000-1500 K 

too low. This possibility implies that at least one boundary layer of 1000-1500 
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K exists in the mantle, possibly at its base in the D
1

' region. 
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§6. Appendix A: Equilibrium Thermodynamic Model for a Liquid 

The equilibrium thermodynamic properties of liquid-Fe discussed in the text 

are referenced to those of a hard-sphere liquid via the Gibbs-Bogolyubov (GB) 

inequality (e.g., Isihara, 1968; Hansen and McDonald, 1975). This inequality 

states that the equilibrium thermodynamic Helmholtz free energy (HFE) of the 

liquid, Fliq(T ,p ), is bounded above by the HFE of an "equivalent" system of 

hard spheres which interact with each other (to first order) as do the actual 

"ions" or "particles" of the liquid. For a liquid metal, the GB inequality takes 

the form 

Fliq < Fmod = Fffi + FINT +Fe) [A.1]. 

Note that this HFE has units of Joules. In this expression, F H> is the HFE of 

the hard-sphere reference system, F INr is the "ion-ion" interaction contribution 

to F, and Fe1 is the electronic contribution to F. FR> may be obtained from the 

compressibility equation-of-state (Carnaghan and Starling, 1969) or the virial 

expansion (e.g., Hansen and McDonald, 1975). As discussed by Foiles and Ash

croft (1981 ), the virial form of F H> may provide a better approximation to F H> 

and the liquid pressure than the compressibility form, since· the virial form 

directly represents the pressure, and is one derivative less removed from F H> 

than the compressibility form. Since we are interested in the pressure and tem

perature, as discussed below, we use the virial form of F H>" For a single-
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component liquid of N particles, occupying a volume V, this is 

[A.2], 

respectively, where 17 = rrpNd3 /6 is the hard-sphere packing fraction, equal to 

the product of the volume of a single sphere rrd3 /6, and the number density of 

spheres, pN = N/V. Note that d is the diameter of a given sphere. In [A.2], Fig 

is the HFE of a single-component ideal gas, i.e., 

[A.3]. 

In [A.3], A= h/v'2rrmkaT, his Planck's constant, mis the mass of a single par

ticle (sphere), and ka is Boltzmann's constant. 

The total pair-interaction contribution to F, F INT' is given to first order by 

the relation 

[A.4] 

(e.g., Mansoori and Canfield, 1969). In [A.4], -iP(r) describes the interaction of 

two liquid particles at a distance r away from the center of a given particle, 

gHS(r) is the hard-sphere radial distribution function, defined such that 

4rrpNr2gHS(r)dr represents the average number of hard-sphere at a distance r to 

r+dr away from a given sphere. Also, -iPHS(r) describes the interaction of two 

hard-spheres, i.e., 

r<d 
r>d [A.5]. 

Since gHS(r) is proportional to exp{-,8-iPHS(r)}, with ,8 = 1/k8T, we see that, from 

[A.5], gHS(r) = 0 for r<d. In this case, the product -iPHS(r) gffi(r) is always zero. 

Consequently, [A.4] may be written 
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[A.6], 

since the integral from 0 to d is zero via the definition of '1/Jm(r) in [A.5]. This 

expresses the physical idea that ions are unlikely to interact at distances closer 

than their "hard-sphere" diameters. As such, interaction closer than r=d con

tribute little to F, and this is idealized to nothing in the model. To evaluate 

[A.6] further, we must assume forms for '1/J(r) and gHS(r). We assume '1/J(r) has the 

Yukawa form 

(J ->-'1/J(r) = - e r 
r 

[A.7]. 

Then we may put [A.6] into the form 

[A.8]. 

In [A.8], L is the Laplace transform operator. This form is advantageous 

because L{rgm(r)} is known analytically for the Percus-Yevick approximation 

to gm(r) (Wertheim, 1963). Note that [A.7] represents only repulsive pair 

interactions. To assess the possibility of attractive interactions in liquid-Fe, 

which may be important at lower pressures, we add an attractive term to [A.5] 

and obtain the so-called "double Yukawa" potential, i.e., 

[A.9]. 

In [A.9], a represents the distance away from the center of each sphere where 

attractive and repulsive interactions balance, i.e. '1/J( a) = 0 (equilibrium), while 

>..-1 is the characteristic length scale of repulsive interaction, and w-1 that for 

attraction interactions. Physically, we expect >..>w, since repulsion and 
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attraction are dominantly short- and long-range interactions, respectively. In 

this case, note that ~(r)>O for r<o, and ~(r)<O for r>o. 

If we substitute [A.9] into [A.6], we obtain 

[A.10]. 

Nondimensionalizing r by d, the hard sphere diameter, in [A.10], we have 

with € = r/d, .>..* = .>..o, w* = wo and c = d/o. From Wertheim (1963), we 

have 

L{xg (x)}(x) - xL(x) 
m - 1211[L(x) + S(x)eX] 

[A.12], 

with 

L(x) = 1211[(1+211) + (1+ ! 11)x] 

[A.13], 

when gm(r) is approximated by the Percus-Yevick relation (Percus and Yevick, 

1959). Putting [A.12] into [A.11], we obtain 

FINT = (N-l)E[H(c,17;.>..*)- H(c,17;w*)] [A.14], 

where 

H( c,17;µ) = µeµ L(µc,17) 
[L(µc,17) + S(µc,17)eµc] 

[A.15]. 

In the text, we represent Fe1 by its low temperature (T much less than the 

Fermi temperature) Sommerfeld expansion 

[A.16]. 
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In [A.16], f(p) is the density of electron energy states at the Fermi energy (sur

face); it is commonly given the form (e.g., Wallace, 1972) 

where /e is the electronic thermostatic Griineisen's parameter of the liquid in 

this case. 

We now nondimensionalize F by the product of the number of particles in 

the system, N, and k8T, such that f== (3F JN= F /N~T. Also, we define a non

dimensional temperature, T* = k0 T / E, and a nondimensional number density, 

p~ = p~3• With these, we rewrite [A.1] as 

with 

and 

f~ir(T*,p~,17) == fig(T*,p~) + (l~~) + 2ln(l-17) 

fig(T*,p~) == ln(p~) - !1n(T*) + 3ln(A*) - 1 
2 

fINI' = -1
-[H(c,17;>.*)- H(c,17;w*)] = -1-~H(c,17;>.*,w*) 

T* T* 

f == _lr*( *)T* = _ _!__E_r( *)T* 
el 2 PN 2 Nk2 PN 

B 

[A.17], 

[A.18], 

[A.19], 

[A.20], 

[A.21], 

where A* == h/av2rrmE, and (N-l)~N for a "macroscopic" liquid. In [A.17] and 

[A.18]-[A.21], A* and w* are constants, as is a from the Yukawa potential. So 

now we have fmod = fmod(T* ,p~,17,c) explicitly. In this case, the total differential 

of fmod is 

dfmod = [~]· dT* + [~) dp~ 
BT* p;,,ri,c a PN T*,ri,c 

+ [~) d + (~) d 
817 T*,p;,,c 17 fJc T*,p;,,T/ c 

[A.22]. 
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Since 17 = .!!:..p:ic3 , however, [A.22] may be written 
6 

df = [~) dT* + [~) d * + [~] d mod 8 * 8 * PN 8 c 
T ~,c PN T*,c C T*,~ 

with 

( ~) -[~) +[~) [.E::L) 
8p~ T*,c op~ T*,c,17 [)17 T*,c,~ 8p~ c 

( ~) - [~) + {~) {a,,,) 
8c T*,~ oc T*,~,11 817 T*,~,c OC ~ 

and 

[ 817* ) = !Lrf f(p;) ' [ 817 ] = _317 
8pN C p; 8c ~ C 

[A.23], 

[A.24], 

[A.25], 

[A.26]. 

Now, in equilibrium, f1iq = f1iq(T* ,p~) for the single-component system we have 

here. Consequently, 

df. = [~] dT* + [~) d * 
hq BT* a * PN 

pJ PN T* 
[A.27]. 

From [A.27], at constant T* and p;, we have df1iq = 0, while from [A.23], we 

have, at constant T* and p; 

dfmod) T*,~ = [ ~1 de 
8c T*,~ 

therefore, to have dfmod) T*,~ = 0 for arbitrary de, we require 

( ~) =O 
8c T*,pJ 

[A.28] 

for fmod to be an equilibrium thermodynamic state function. More explicitly, 

[A.28] states, using [A.18]-[A.21], that 
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I 0lc'' J T'.PN - I 0~7' J T'.i;: .• + I 8~~" J T'.i;:,, I ~~ J T'.i;: 

= _1 [ a~H) + {-1 [ a~H) + f~1)} 3n = 0 
T* Bc T*,hi,YJ T* 817 T*,hi,c c 

[A.29], 

where 

We may rewrite [A.29] as an implicit function for the equilibrium value of c, i.e. 

I1(T*,c,n) = 3n f~1) + ~ { [ a~H ) + [ a~H ) ~} = o 
c T Bc T*,P.:,,YJ Bn T*,P.:,,c c 

[A.30], 

and we may solve this simultaneously with 

[A.31]. 

for c or r/ as a function of T* and p~. Relation [A.31] comes from the definition 

of the packing fraction; together with [A.30], it gives us two equations among 4 

unknowns (c,n,T* and p~). Mathematically, any two of these may be con

sidered, via [A.30] and [A.31], as independent; T* and p~ are the logical choice 

from the equilibrium thermodynamic perspective. On this basis, we designate 

the values of c and r/ given implicitly by [A.30]-[A.31] as c = c(T*,p~) and 

r, = fJ(T*,p~), the equilibrium values of c and r/, respectively, for a given equili

brium state (T* ,p~). In practice, any two of the 4 variables may be considered 

independent. For [A.28] to constrain a minimum value of fmod' and so a least

upper-bound to f1iq(T*,p~) via the GB inequality, we also require 

[ 
a2f mod ) > 0 [ l A.32. 

ac2 
T*,P.:, 

Consequently, with fm0a(T*,p~,c,n) satisfying [A.28] and [A.32], and c and r, 
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constrained from [A.30]-[A.31], we may write 

= fig(T* ,p~) + fm[fJ(T* ,p~)] + -1-~H[c(T* ,p~),i](T* ,p~)] + fe1(T* ,p~) 
T* 

[A.33], 

as the basic model relation for the equilibrium HFE of the liquid. In this case, 

we may derive all equilibrium thermodynamic properties from [A.33]. For 

example, the pressure is then 

p = -( ~) = -( o(F /N) ) = f]l PNP~ ( ~) 
av T,N o(V /N) T,N op~ T* 

[A.34]. 

Defining a nondimensional pressure, p = f3P / Pw and substituting [A.18]-[A.21] 

into [A.33], we have 

+ --\-{ ( a ~AH ) p~ ( Be* ) + ( a ~AH ) p~ ( a~ ) l 
T Be ~ a PN T* OTJ c a PN T* 

+ .!_l"\I f*T* 
2 ie 

Now, from the definition of the packing fraction, we may write 

Substituting this into [A.35], we obtain 

= 1 + A { f ( 1) + ....!.._ ( a ~H ) } 
P TJ m T* oi} c 

+ {-1 ( a~H) + {-1 [ a~H) + r,(1)} 3fJ} * (.Ei_) 
T * !JA T* !JA H5 A PN !J * 

uC ~ urJ c C u PN T* 

[A.35]. 

[A.36]. 
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+ .!.."""r*T* 
2 ie [A.37]. 

By [A.29] the third term on the right-hand side of [A.37] is zero. Therefore, 

Now, the entropy is defined by 

S = -(~) = -Nk {f + T*(~] } BT B mod BT* 
~N ~ 

and S has units of J/mole·K. A natural nondimensional entropy is then 

s = -8
- = -[f d + T* ( ~) ] Nk mo BT* 

B ~ 

= ~ _ f, _ £ _ { £ ( 1) + _1 ( B ~H ) } T* ( ..E!1_ ) 
2 1g IE IE T* ar, c BT* ~ 

- - 1 ( o~H) T* ( _Ei_) + r*T* 
T* Be ,, BT* ~ 

Now, from the definition of the packing fraction, we have 

T* ( ..E!1_ ) = 
3fJ T* ( _Ei_ ) . 

BT* ~ c BT* ~ 

Putting this into [A.40], we obtain 

3 s=--f, -£ 2 lg H3 

_ {-1 ( 8~H l + {-1 [ 8~H) + r,(t)] 3f/} }T* [~) 
T* f)A T* f) A H3 A BT* c ,, 1] c c ~ 

+ r*T* 

From [A.29], the fourth term on the right hand side is zero. Therefore, 

[A.38]. 

[A.39], 

[A.40]. 

[A.41]. 

[A.42]. 
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s = ~ - r - r + r*T* = s- - r + r*T* 2 1g ffi 1g ffi [A.43]. 

From [A.39], we have the nondimensional specific heat at constant volume, i.e., 

= Cy = T* { ~) = ~ - f (l)T* { Br, ) + r*T* 
Cy Nka BT* p;. 2 ffi BT* p;. 

[A.44], 

where Cy has units of J/mole·K. Other properties include the change in pres

sure with temperature at constant volume and number of particles, i.e., 

Therefore, 

From [A.38], we have 

/Cy= P + T* ( ~) 
BT* p;. 

T* [ ~) = { (-2iL.) - .!L_} ~H 
BT* p;. BT* p;. T* .~ 

+ .!.,...,, r*T* 
2 ie 

The isothermal bulk modulus is given by 

[A.45]. 

[A.46]. 

[A.47]. 

[A.48]. 
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The nondimensional form of this is then 

[A.49]. 

We note that the macroscopic structure factor of the liquid, a(O), is equal to 

1/ls_.. From [A.38], we have 

p~[ Bp) = r,{rJ,1) + __!_~H. + fJ[fJ,2) + -1-~H .. J} 
ap* T* ,T/ T* ,rm 

N T* 

[A.50]. 

The second term on the right-hand side of this last expression may be written 

A~} { 3f] [f(l) + _!_~H .] + _l_~H.} ,,, aA A m T* ,T/ T* ,c 
"I T*,c c 

By [A.29] and the fact that 

we see that this second term is actually zero. Consequently, 

P* ( Bp ) = r,{ [f (1) + f,f (2)] + -1-[~H, + f,~H "]} - ..!:._/'. 2f*T* 
N Bp* HS m T* ,T/ ,rm 2 e 

N T* 
[A.51]. 

With [A.33]-[A.51], we may calculate equilibrium thermodynamic properties that 

are defined by ratios of the derivatives of fmod· For example, the equilibrium 

thermodynamic Griineisen's parameter is given by 

/Cy 
1=-

Cy 
[A.52], 

while the coefficient of thermal expansion is 

P/Cy kB /Cy 
Cl:'.=--=---

Kr E T*Js, 
[A.53]. 
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From this, a natural nondimensional form of a is 

* E "'/Cy a =-a=--
ka Is.T* 

[A.54] 

The nondimensional specific heat at constant pressure is then 

[A.55]. 

And the nondimensional isentropic bulk modulus is given by 

[A.56]. 

Lastly, the velocity of sound in the liquid is given by 

[A.57], 

where NA is Avogadro's number and M is the molar mass of the liquid. The 

nondimensional form of v <P is then 

[A.58]. 

To calculate the above expressions for the equilibrium properties of the liquid, 

we require an expression for (8fJ/8T*)h,. From [A.30], [A.31] and the implicit 

function theorem, we have c = c(T*,p~) and fJ = f,(T*,p~) in equilibrium. In 

many of the above expressions, we have used the relation, from [A.31] 

[ 
812 ) -- -0 
8T* h, 

[A.59]. 

From [A.30], we have 

{ ~) = {~[_jj]__) - 31] r~1 }[f(l) + _1 ~H,] 
8T* c BT* h. c 8T* h. HS T* ,YJ 

+ 3f/ { [f (z) + _1_~H ,,] ( Br, ) + _!__~H AA [ Be ) __ 1_~H,} c IB T* ,YJY/ BT* h. T* ,YJC BT* ~ T*2 
,YJ 
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+-AH .• -- +AH .. -- --AH.=0 1 { [ ar, ) [ ac ) } 1 
T* ,cri BT* ~ ,cc BT* ~ T*2 

,c 
[A.59]. 

Therefore, from [A.58] and [A.59], we have 

[ 
Olni/ ) 

OlnT* ~ 

[A.60], 

the desired expression for the change in the equilibrium packing fraction with 

nondimensional temperature at constant nondimensional number density. 

To fit this model to the experimental Fe melting data of Williams and Jean

loz (1986), given as TJP)±ATJAP), we require an expression for the tempera

ture as a function of pressure in the liquid at the conditions along the phase 

boundary. Rearranging [A.30], we obtain 

T = ET*(c,1,;)..* ,w*) = -~i) { cAH 6 + 31/AH.} 
31/fm ' ,T/ 

[A.61], 

for temperature in the liquid, with E = E/kB. From [A.38], we have a relation 

for pressure in the liquid, i.e., 

p R C')..* *) = M EPP* C,TJ; ,w ,E 

[A.62], 

where f(p) is assumed to be a known function of mass density, p, and so not a 

"free" parameter. Now, using the definition of the packing fraction, we may 

write c as a function of mass density, p, and packing fraction, fj, i.e., 

c = .!. [ 6f} ) h 
~ rrp 

[A.63], 
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where we have introduced~= p~/ p, which is related to a, i.e., 

[A.64]. 

With these, we have 

T = ET*(p,iJ;>.. * ,w*,~) [A.65], 

and 

p = ~ Ep P*(p,iJ;)...*,w*,E,~) [A.66], 

giving us 2 equations relating 4 variables, i.e., P, T, p and r,, and 4 parameters, 

i. e, E, )... *, w*, ~· These are the expressions we use in the text. 

With the hard-sphere model for Fnq(T ,p ), we may also estimate near

equilibrium transport properties for Fe from the theory of Longuet-Higgens and 

Pople (1956) for a dense fluid of hard spheres. They derive the following rela

tionships for the shear viscosity, µ, bulk viscosity, ""' and coefficient of self

diffusion, D, assuming gHS(r) is independent of the rate of strain, and for the 

thermal conductivity, k, assuming ga,Jr) is independent of the temperature gra-

dient: 

¥2 
24 [ ill€ ) v'T* A [ l] [A.67], µ = -- -- 17 p-

57rd2 1T' 

5 
[A.68], I\,=-µ 

3 

k=~kBµ 
2m 

[A.69], 

and 

D- d ['"]Jii \f'T* - 2 ~ [p-1] [A.70], 

respectively. As discussed by Longuet-Higgins and Pople, the absolute values of 
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these expressions do not reflect the influence of attractive interparticle forces. 

They suggest that this may be remedied by replacing the pressure, P, with the 

"kinetic pressure," T( 8P / 8T)v, to account for the idea that attractive forces 

reduce the effective pressure in a real fluid below P, the external pressure, 

because they result in a decrease of internal ("cohesive") energy with density. 

The pressure and kinetic pressure are related by the identity 

( 8E ) = T ( ~) _ p 
av T BT v 

[A.71], 

where E=F+TS is the internal energy. From this, we see that their suggestion 

implies that (BE/ BV)i.~O; this is strictly true for a fluid of hard spheres, since 

F+TS=3~T=E for such a fluid. Since the liquid-state model used in this work 

is based on a potential that includes attractive interparticle interactions, we 

incorporate this suggestion into our calculations by replacing p with /Cy in 

[A.67]-[A.70], where /Cy is given by [A.46] above. 

§7. Appendix B: High-Temperature Solid-State Model Expressions 

In this appendix we document the relation between the exact solid-state 

model relations based on [3.1] and the high-temperature approximation (equa

tions [3.7]-[3.10]) used in the text. From the expression for F(T,p), [3.1], we 

have 1 ), the pressure: 

with 

2), The molar entropy: 

P(O,p) = p{~} + 
8

9 
vRpeD,D, 

dlnp 

[B.1], 
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S(T,p) = - ( ~~) = 3vR{: Eo(x0 ) - ln{l - e-Xo}} +OT [B.2], 
v 

3), The isothermal bulk modulus: 

KJT,p) = p ( ~:) T = K(O,p) 

with 

+ -
1
-pw(l - w)OT2 

2M 

4), The molar heat capacity at constant volume: 

( 
a2F ) { 3co } Cv(T,p) = -T -2 = 3vR 4Eo(co)- c +OT 
oT p e D - 1 

[B.3], 

[B.4], 

and 5), the change in pressure with temperature at constant volume (density), 

i.e., 

[B.5]. 

The high-temperature approximations (E0 =80 (p)/T<<l) to P, S, Cv and Kr 

may be obtained from [B.2]-[B.5] by expanding E0 ( E0 ) and the other Co functions 

into their high-temperature forms, i.e., as c0 ---+0, 

Bo(~)= _3_ reox2{ 1 - .!.x + ..!...x2 + ... } dx 
o ( Co)3 J 0 2 12 

= 1 _ ~c + _!_c2 + o(c3) 8 <,,o 20 <,,o <,,o [B.6], 
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and 

ln{l - e-€o} = ln{E0 } + ln{l - ~ €0 + · · ·} 

= ln{E0 } - ~ €0 + 
2
1
4 f.-rl + O[Eo3] 

Eo = 1 - 21 Eo + 112 Eo2 + O[Eo3] 
e€o- 1 

Putting these into [3.1] in the text, we obtain, to 0( €0
3): 

Appendix B 

[B.7], 

[B.8]. 

F(T,p) = <I>(p) + 3vR{ln{E0 } -1 + ....!_Eo2}T- .!.oT2 [B.9], 
40 2 

with 

P(O,p) = p ( d~:P ) , 
S = 3vR{ .! - ln{E0 } + -

1 
Eo2} +OT 

3 40 

Kr= K(O,p) 

where Kr(O,p) now given by 

and 

Cv = 3vR[l - -
1 €0

2] + OT 
20 

[B.11], 

[B.12], 

[B.14]. 
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These are the basic solid-state model relations used in the text. 
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