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Chapter 4 Bayes’ theorem and linear

discriminant analysis applied to seismic

early warning

The development of Virtual Seismologist (VS) method for seismic early warning is

the topic of this chapter. Each of Chapters 5 through 8 is a case study of the VS

method applied to the data set of a real Southern California earthquake.

The Virtual Seismologist method is a Bayesian approach to seismic early warning

inspired by the relative speed and accuracy with which expert seismologists can esti-

mate magnitude and distance by combining their “background” knowledge of earth-

quake activity with quick visual analysis of available waveform data. From the shape

and relative frequency content of incoming data, expert seismologists are typically

able to estimate quickly the magnitude and location of earthquakes. Part of this can

be attributed to the experience that (presumably) an expert seismologist would have

in analyzing waveform data. However, experience in analyzing waveform data is not

the only factor that contributes to the speed and relative accuracy of human seismol-

ogists in estimating earthquake source parameters. That is, estimating earthquake

source parameters from limited data is not merely a pattern recognition problem

(though it may largely be one). A “background” knowledge regarding relative earth-

quake probabilities is an essential component of how human seismologists process

information. Knowledge of fault locations, relative frequency of earthquake magni-

tudes (Gutenberg-Richter law), spatial and temporal changes in observed seismicity,

on-going earthquake sequences, and the state of health of the seismic network moni-

toring the earthquake activity are some of the disparate types of information relevant

to the source estimation problem. The Virtual Seismologist method for seismic early

warning uses Bayes’ theorem to combine pattern recognition-type approaches on the
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incoming waveform data with relevant“background” knowledge to estimate quickly

the magnitude and location of an on-going earthquake from whatever data are avail-

able. (Within the context of this thesis, the term “source estimation problem” means

the problem of estimating magnitude and distance or location given the available

waveform data, which may be sparse.)

Standard location methods

It is necessary to locate an earthquake before its magnitude can be determined. Lo-

cating an earthquake requires determining its hypocentral coordinates and its origin

time. Standard location methods require arrivals from at least 3 stations; additional

arrivals allow error estimates to be calculated. Given a set of observed arrival times,

a location is obtained by minimizing the residual between observed and predicted

arrivals. This is a nonlinear problem that is usually solved iteratively (i.e., assume a

location and origin time, predict the arrivals at stations with observed arrivals, cal-

culate the residual between observed and predicted arrivals, repeat the process until

a minimum in the residuals is found).

Once a location estimate is available, the earthquake magnitude can be deter-

mined. Magnitude is usually defined based on peak amplitude of a particular phase

(P-wave for body wave magnitude, mb, Rayleigh wave for surface wave magnitude,

Ms, and S-wave for local magnitude, ML) of ground motion; the exception is the mo-

ment magnitude Mw, which is obtained by fitting long period waveforms. In general,

the standard approach for locating an earthquake and determining its magnitude

is relatively slow for seismic early warning, because it requires arrivals at multiple

stations and peak amplitudes, which are typically associated with slower traveling

phases. A different approach is necessary for seismic early warning.

When time is of the essence: seismic early warning

In seismic early warning, time is of the essence. The goal in seismic early warning is to

provide short-term warning (on the order of seconds to tens of seconds) of imminent

strong ground motion from large earthquakes (Heaton, 1985). Once the earthquake
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rupture triggers stations within the epicentral region, the idea is to quickly (and

reliably) estimate magnitude and location, and use these estimates to predict the

expected levels of shaking in areas further from the epicentral region. One possible

measure of an early warning system’s success would be if the warning information

reaches the subscribers to the system before the arrival of the damaging seismic

energy (typically the S-wave) at their sites, that is, if the available warning time,

Twarn, is greater than zero.

Twarn = TS − Test − Ttransit (4.1)

where Twarn is warning time in seconds, TS is the S-wave arrival time at the target

warning area, Test is the time necessary before estimates of magnitude and location

or distance can be obtained, and Ttransit is the time required for information to travel

from the station to the central processing facility, and from the central processing

facility to users receiving the warnings. Since information travels much faster than

seismic waves through the earth, it is assumed that Ttransit is small relative to the

other quantities in Eqn. 4.1. (Ttransit might be significant in comparing different

methods for seismic early warning, depending on which data stream output from the

seismic stations is utilized in the estimation process.) Therefore, to maximize Twarn, it

is necessary minimize to Test. Test is a function not only of how long the calculations

take, but more importantly, how much information from the earthquake rupture

is necessary before magnitude and location can be estimated. Standard location

methods have relatively large Test, since they require arrivals at multiple stations and

peak amplitudes, which are typically measured from slower-traveling phases.

P-wave as information carrier

Estimating magnitude from P-waves provides gains in the available warning time.

The first use of P-wave waveforms to estimate magnitude and location is typically

credited to Nakamura (1988), who developed UrEDAS (Urgent Earthquake Detection

and Alarm System), the early warning system deployed to mitigate earthquake-related
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damage to the Japanese railway system. In Southern California, Allen and Kanamori

(2003) developed the ElarmS (Earthquake Alarm System) for proof of concept on

the Southern California Seismic Network (SCSN). The scientific basis for estimating

earthquake size from P-wave amplitudes is described by in a paper by Kanamori

(2004). The underlying concept (in Kanamori’s terminology) is that P-waves are car-

riers of information, and S-waves carriers of energy. Information regarding the size

of the earthquake can be obtained from P-wave frequency content; small earthquakes

involve small patches of slip and radiate relatively high-frequency energy compared to

larger magnitude events, whose finite rupture dimensions contribute to large energy

in the lower frequencies (Allen and Kanamori, 2003). Allen and Kanamori (2003)

use the predominant period of the P-wave to estimate magnitude. A new method for

magnitude estimation method using ratios of ground motion will be presented in this

Chapter; this ratio-based method shares with Allen and Kanamori (2003) and Naka-

mura (1988) the concept of using relative frequencies of the P-wave to determine

magnitude.

4.1 Introduction to Bayes’ theorem

The Virtual Seismologist (VS) method is a Bayesian approach to seismic early warn-

ing. Prior to a discussion of the advantages of being Bayesian, Bayes’ theorem will

be reviewed in the context of seismic early warning. The following Section parallels

the presentation of introductory Bayesian concepts in “Data Analysis: A Bayesian

Tutorial”, by Sivia (1996).

From Sivia, the usual rules of probability theory are

prob(X|I) + prob(X̄|I) = 1 (4.2)

prob(X, Y |I) = prob(X|Y, I)× prob(Y |I) (4.3)

where X and Y are two propositions, X̄ denotes “not X”, the vertical bar “|”
denotes “given” or “conditioned upon”, and a comma is read as the conjunction
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“and”. Eqn. 4.2 is known as the sum rule. The sum rule states that if we specify

our degree of belief in the truth of a proposition X, prob(X|I), we are implicitly

specifying how much we belief it is false, prob(X̄|I). Eqn. 4.3 is known as the product

rule. The product rule states that if we specify our belief in the truth of Y, prob(Y |I),

and specify our belief in the truth of X given Y, prob(X|Y, I), then we are in fact

specifying how much we believe both X and Y are true, prob(X, Y |I). There are no

absolute probabilities; everything is conditioned on “I”, which can be thought of as

“background” information.

Bayes’ theorem follows from the product rule. Eqn. 4.3 gives the probability that

both X and Y are true. Eqn. 4.4 is equivalent to Eqn. 4.3. The order of X and Y in

the left hand side term is switched and the product rule applied.

prob(Y,X|I) = prob(Y |X, I)× prob(X|I) (4.4)

Setting the right-hand sides of Eqn. 4.3 and 4.4 equal gives

prob(X|Y, I)× prob(Y |I) = prob(Y |X, I)× prob(X|I) (4.5)

or, after rearranging,

prob(X|Y, I) =
prob(Y |X, I)× prob(X|I)

prob(Y |I)
(4.6)

Eqn. 4.6 is known as Bayes’ theorem. Its usefulness becomes evident when X is re-

placed with “hypothesis” and Y with “observed data”. In seismic early warning, the

primary question of interest is: what magnitude and location (or epicentral distance)

estimates are most probable given the limited available observations from the on-going

earthquake? (For now, the discussion will be phrased in terms of epicentral distance,

R. Similar arguments holds for epicentral location (latitude, longitude) instead of epi-

central distance.) In terms of the quantities in Bayes’ theorem, the hypothesis is “M is

the magnitude of the earthquake, and R is the epicentral distance”. The observed data

are the (initially limited set of) available observations. The most probable estimates
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of magnitude and location (or distance) are the M, R for which the probability density

function prob(’M is the magnitude of the earthquake’, ’R is the epicentral distance (or

location)’| ’limited available observations’) (or prob(hypothesis|data)) is a maximum.

It is not clear how to assign such probabilities directly. Conveniently, Bayes’ theorem

states that prob(hypothesis|data) is a function of prob(data|hypothesis). The prob-

ability density function prob(data|hypothesis) is easier to define. In fact, in seismic

early warning, all that is required to define prob(data|hypothesis) is a ground motion

model that relates the observed quantities (the available ground motion data) to the

parameters of interest (magnitude and epicentral distance). If the observations being

considered are envelopes of ground motion, then the envelope attenuation relation-

ships discussed in the previous Chapters are precisely what are need to define the

probability density function prob(data|hypothesis). This is the power of Bayes’ the-

orem. It allows us to define the quantity of interest, prob(hypothesis|data), which is

hard to define, as a function a quantities which can be defined, prob(data|hypothesis).

All that is necessary is a model relating the observations to their causative parameters.

Rewriting Bayes’ theorem in terms of “data” and “hypothesis” gives

prob(hypothesis|data) =
prob(data|hypothesis)× prob(hypothesis)

prob(data)
(4.7)

Following Sivia (1996), the conditioning on background information “I” is dropped

in notation, but not in concept. Sivia cautions against forgetting these initial assump-

tions on background information, citing such lapses as the likely cause of debates

regarding interpretation of end results of data analysis.

Each of the terms in Eqn. 4.7 is strictly a probability density function. Recall

that, given a probability density function, say prob(X), the probability of X taking

on a value between x1 and x2 is given by

Pr(x1 ≤ X < x2) =

∫ x2

x1

prob(X) dX (4.8)

From here on, “Pr” is used to denote actual probabilities, and “prob” to de-

note probability densities. Each of the probability densities in Eqn 4.7 has a for-
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mal name. prob(hypothesis) is called the Bayesian prior. It represents the state of

knowledge or beliefs regarding the phenomena being studied before considering the

current data. The data modify these prior beliefs by means of the likelihood function,

prob(data|hypothesis). Defining the likelihood function, requires a model (or models)

relating the hypothesis to the observations. The likelihood function quantifies how

well the observed data fit predictions of the ground motion model given certain hy-

potheses. Finally, the quantity of primary interest, prob(hypothesis|data), is called

the Bayesian posterior. The posterior represents the state of knowledge regarding

the phenomena being studied accounting for both prior beliefs and the observations.

If the observations are consistent with the prior beliefs, then the posterior should

reflect a stronger degree of belief in the prior hypothesis. On the other hand, if the

observations are inconsistent with the prior, then the posterior will reflect a lesser

degree of belief in the prior hypothesis. The influence of the prior decreases with in-

creasing number of observations. Maximizing the posterior yields the hypothesis that

is most consistent with the data. Finally, the denominator in Eqn. 4.7, prob(data),

is known as the evidence. It plays an important role in model class selection (Beck

and Yuen, 2004). However, in this thesis, Bayes’ theorem is used primarily in param-

eter estimation, or finding the ’best’ hypothesis given the observations. In parameter

estimation applications, the evidence is treated as a normalizing constant, since it is

not an explicit function of the hypothesis.

4.2 Bayes’ theorem in seismic early warning

Thus far, the discussions regarding “hypotheses” and “observations” have been some-

what vague. In seismic early warning, the question of interest is: given the available

observations from an on-going earthquake rupture, what are the most likely or most

probable estimates of magnitude and distance (or location) of the earthquake, and how

do these estimates evolve as more data become available? In seismic early warning,

the “observations” are ground motion amplitudes recorded from the seismic network

and the “hypothesis” is “M and R (or latitude, longitude) are the magnitude and
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location of the earthquake causing the observed ground motion amplitudes”. In terms

of the quantities involved in seismic early warning, Bayes’ theorem is

prob(M, R|A) =
prob(A|M, R)× prob(M, R)

prob(A)
(4.9)

∝ prob(A|M, R)× prob(M, R) (4.10)

where A is a vector of the available observed ground motion amplitudes. The likeli-

hood, prob(A|M, R), is defined in terms of ground motion models relating magnitude

and distance to observed ground motion amplitudes, i.e.,the envelope attenuation re-

lationships developed and discussed in the Chapters 2 and 3. Eqn. 4.9 and 4.10 say

that the most likely magnitude and location estimates consistent with the available

observed ground motion amplitudes are a function of the expected ground motions

given by the ground motion models and the prior beliefs. Bayes’ theorem in the form

of Eqn. 4.10 can be used since this is a parameter estimation problem, and the evi-

dence, prob(A) is not a function of M and R. In the statement of the seismic early

warning problem, the prior, prob(M, R) represents beliefs regarding relative earth-

quake probabilities in terms of size and location. The degree of complexity that can

be incorporated into the prior is very flexible. Little knowledge (via a uniform prior)

can be assumed for simplicity. More complex models describing earthquake occur-

rence can also be included. For example, in seismic early warning, the prior could

be uniform over magnitude and distance. While this simplifies calculations, it is an

overly conservative representation of the state of knowledge regarding earthquake oc-

currence. A uniform prior in M and R implies that earthquakes of all magnitudes

and at all distance (or locations) are equally likely. This is certainly not the case. It

has long been accepted that magnitude-frequency relationships of earthquakes follow

the Gutenberg-Richter law. Earthquakes occur on faults, and they often cluster in

time and space. Thus, knowledge regarding previously observed seismicity can be ex-

tremely relevant prior information. The potential use of prior information afforded by

the Bayesian framework is perhaps the single most important distinction between the

Virtual Seismologist method and other proposed paradigms for seismic early warn-
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ing. The types of information that can be useful priors will be discussed later in this

chapter.

The following Sections discuss how to define the various terms in the Bayesian

statement of the seismic early warning problem (Eqn. 4.10).

4.3 Defining the likelihood, prob(A|M, R)

The goal in seismic early warning is to find estimates of magnitude and location

M, R that are consistent with the observed ground motion amplitudes A. Consider

the situation where only P-wave data from a single station is available. Using the

standard earthquake location methods discussed previously, this problem is under-

determined.

To focus attention on the likelihood function prob(A|M, R), assume for now a

uniform prior, or prob(M, R) = constant. Eqn. 4.10 then becomes

prob(M, R|A) ∝ prob(A|M, R) (4.11)

(Note: Since the attenuation relationships are defined in terms of YA = log10 A, prob-

ability density functions involving the observations A should be rewritten in terms of

the log of the observations YA. A and YA should be interchangeably be understood

as the available observed data.) Eqn. 4.11 states that the posterior, prob(M, R|A),

which contains the information about the source estimates of M, R, is directly pro-

portional to the likelihood, prob(A|M, R). The likelihood expresses the probability

of observing the data, A, given that M is indeed the “true” magnitude and that

R is indeed the source-to-station distance. How to formulate the likelihood, which

describes how plausible the various ground motion amplitudes are, given the earth-

quake magnitude and epicentral distance to the station, makes use of the envelope

attenuation relationships developed in Chapters 2 and 3.

Given the envelope amplitude attenuation relationships (Eqn. 2.3), which express

ground motion amplitudes A as a function of magnitudeM , distance R, and site, and
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letting Y = log10(A), the Bayes likelihood function can be expressed as

prob(Y |M, R) =
1

σ̂
√

2π
exp

(
−(Y − Ȳ (M, R))2

2σ̂2

)
(4.12)

Ȳ = aM − b(R + C(M))− d log10(R + C(M)) + e (4.13)

where (a, b, c1, c2, d, e) are the regression coefficients appropriate for the body wave

phase (P- or S-wave), direction (vertical or horizontal), component (acceleration, ve-

locity, or displacement) and site (rock or soil), and σ̂ is the appropriate standard

error of regression (σ̂2 is the best estimate of the variance σ2 of the errors). In pa-

rameter estimation for seismic early warning, the available observations Y = log10(A)

are given, regression coefficients (a, b, c1, c2, d, e) and σ̂ are known, and the source

estimates M, R are unknowns. Eqn. 4.12 states that the observed data Y = log10(A)

are being modeled as a normal random variables with µ given by the envelope at-

tenuation relationship Eqn 2.3 and variance σ2 = σ̂2. This holds because the errors

ε in Eqn. 2.3 are additive and normally distributed, and linear functions of normal

variables are themselves normal.

Best estimates M̂ , R̂ given a single observed amplitude

Given the observed ground motion amplitude Y = log10(A), the best estimates for

the magnitude of the causative earthquake and the source-to-station distance, M, R,

are given by the M̂ and R̂ (with ̂ denoting “estimate”) that maximize the posterior

density function. From 4.10 (assuming a uniform prior prob(M, R) = constant)

prob(M, R|Y ) ∝ prob(Y |M, R) (4.14)

=
1

σ̂
√

2π
exp

(
−(Y − Ȳ (M, R))2

2σ̂2

)
(4.15)

To determine the M̂, R̂ that maximize the posterior, it is simpler to work directly

with the log-likelihood, L = loge prob(M, R|Y )
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L = loge prob(M, R|Y ) (4.16)

= loge

(
1

σ̂
√

2π

)
− (Y − ¯Y (M, R))2

2σ̂2
(4.17)

= constant− (Y − Ȳ (M, R))2

2σ̂2
(4.18)

Maximizing the posterior prob(M, R|Y ) therefore involves minimizing (Y−Ȳ (M, R))2.

Clearly, the maximum or minimum of L is identified by (Y − Ȳ (M, R)) = 0, which

describes a curve in (M, R) space. This gives one equation in two unknowns, and the

source estimation problem is under-determined. There are infinite pairs of (M, R)

coordinates that satisfy (Y − Ȳ (M, R)) = 0; trade-offs between (M, R) cannot be

resolved by a single observed P-wave amplitude.

Fortunately, we are never in the situation just described, with only a single ampli-

tude observation on a single channel available. Digital seismic stations typically have

the capability to perform real-time recursive filtering on-site; if the instrument output

is proportional to either acceleration or velocity (as is common for strong motion and

broadband sensors, respectively) then recursive filters can be designed to integrate

and/or differentiate the output data stream such that ground motion acceleration,

velocity, and displacement are available.

Best estimates of M̂, R̂ given P-wave acceleration, velocity, and displace-

ment amplitudes

The problem with using attenuation relationships to define the likelihood function is

that trade-offs between magnitude and distance cannot be resolved when data is only

available from a single station. One possible approach is to find a way to estimate

either magnitude or distance independent of the attenuation relationships. Given

either a magnitude or distance estimate, the constraints provided by the attenuation

relationships, (Y −Ŷ (M, R)) = 0, can be used to find or constrain the other unknown.

So, the question becomes, how can magnitude be estimated from observed P-wave
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amplitudes? Nakamura (1988) was the first to advocate use of the P-wave predomi-

nant period to estimate magnitude in seismic early warning applications. The central

idea is that small and large earthquakes differ in the amount of low frequency energy

they radiate; small earthquakes, which are like point sources, radiate relatively more

high frequency energy than large events, which have more low frequency energy due

to the finiteness of the rupture dimensions. Allen and Kanamori (2003) also use this

idea of predominant period in estimating magnitude in their proposed early warning

system for Southern California. In this thesis, a new method to estimate magnitude

from ratios of ground motion envelope amplitudes is presented. Ratios of ground mo-

tion are also indicative of frequency content. In the frequency domain, displacement

and acceleration are X(ω) and ω2X(ω), respectively. The ratio of acceleration to

displacement is
Ẍ(ω)

X(ω)
=

ω2X(ω)

X(ω)
= ω2 (4.19)

I use linear discriminant analysis to find the relationship that optimally relates ground

motions ratios to magnitude.

A short note on linear discriminant analysis

The following is a brief discussion of linear discriminant analysis, based on lectures

from a course entitled “Methods in Applied Statistics and Data Analysis” taught by

Emmanuel Candes and Tapio Schneider at Caltech.

Consider an n×m data matrix X, where n corresponds to the number of earth-

quake records in the database, and m corresponds to the number of different types of

observations, for instance m = 3, for log of acceleration, velocity, and displacement.

(This is if we consider a single channel, say the vertical channel. This method is

extendible to multi-channel analysis, for example, considering the vertical and both

horizontal channels. ) In linear discriminant analysis, the goal is to find a linear com-

bination X · u for which the separation between predefined groups is maximized. In

the single-channel case (take the vertical channel), then u is an unknown 3× 1 vector

that is determined by maximizing the ratio of among-group variance to within-group
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variance. That is, we seek u that maximally separates the data of different groups

while minimizing the spread within a given group. (In the seismic early warning

application, the groups will be defined in terms of magnitude. The question being

addressed is: what linear combination of the data X ·u best separates small and large

earthquakes? An in-depth analysis of the seismic early warning application follows

the presentation of the theory.)

Suppose there are g groups Gi, i = 1 . . . g with ni observations in each group. Let

n =
∑
i
ni be the total number of observations. Let g(j) indicate the group to which

the jth observation belongs.

The group means, µi, are the means of the different types of observations within

a group. They are defined as

µi =
1

ni

∑
j∈Gi

Xj: (4.20)

The notation j : is used to denote the jth row. So, Xj: is a row vector corresponding

to the jth row of X. For each i, µi is a 1×m row vector corresponding to row mean

of the observations within the ith group.

The within group covariance matrix, S(i), is defined as

S(i) =
1

ni − 1

∑
j∈Gi

(Xj: − µi)
T (Xj: − µi) (4.21)

The pooled within group covariance matrix, Sw, is a weighted sum of within group

covariance matrices, and is defined as

Sw =
1

n− g

∑
i

(ni − 1)S(i) (4.22)
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The among group covariance matrix, Sa, is defined as

Sa =
1

g − 1

g∑
i=1

ni (µi − µ)T (µi − µ)

with the grand mean, µ defined as

µ =
1

n

n∑
j=1

Xj: =
1

n

∑
i

niµi (4.23)

(Note: the grand mean is the mean of the different types of observations. Like

the group means, it is also a 1×m row vector.)

The goal in linear discriminant analysis is to find a linear combination X · u of

the data such that the different groups are maximally separated, while observations

within a group are maximally clustered. That is, we want to find the vector u that

maximizes a separability measure, λ, which is the ratio of among group over within

group variance.

λ =
uTSau

uTSwu
=

among group variance

within group variance
(4.24)

The maximum of λ satisfies the condition ∂λ
∂u = 0

∂λ

∂u
=

uTSau · uTSw

(uTSwu)2 − uTSwu · uTSa

(uTSwu)2 = 0

= λ · uTSw

uTSwu
− uTSa

uTSwu
= 0

⇒ λ · uTSw − uTSa = 0 (4.25)

taking the transpose of Eqn. 4.25

and using the symmetry of covariance matrices Sa and Sw

λ · Swu− Sau = 0

⇒ Sau = λ · Swu

assuming Sw is invertible

⇒ S−1
w · Sau = λ · u (4.26)

Eqn. 4.26 is an eigenvalue problem. The weight vector u is an eigenvector of
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S−1
w · Sa; the separability measure λ is the eigenvalue of u.

Applying linear discriminant analysis to P-wave amplitudes

Linear discriminant analysis can be used to constrain magnitude estimates from avail-

able P-wave observations. (This is part of the effort to define the Bayesian likelihood

function, prob(Y |M, R).) The various quantities in linear discriminant analysis will

be defined in terms of the quantities involved in seismic early warning. In particu-

lar, we are interested in estimating magnitude from ratios of different components of

ground motion. Therefore, the columns of the data matrix X should correspond to

the different components of ground motion. Since we want to maximize the avail-

able warning time, we want our estimates to be based on the P-wave signal rather

than the S-wave. Thus, the columns of the data matrix X are defined to be the log

of the P-wave envelope amplitudes fit to the envelope histories in the database. In

this particular example, the columns correspond to log acceleration, log velocity, and

log displacement of the vertical channel. The vertical channel is used since P-waves

usually have larger amplitudes in the vertical direction. There are a total of 3373

vertical records in the envelope database. Thus n, the total number of observations,

is 3373. X is thus a 3373× 3 matrix. (If we are interested in including the horizontal

channels, extra columns corresponding to the additional channels can be appended to

the data matrix X. Thus, if we wish to include the root mean square of the horizontal

channels, X will be a 3373 × 6 matrix. If we want to include the North-South and

East-West channels separately, X will be a 3373× 9 matrix.)

Since we are interested in estimating magnitude, the groups are defined according

to magnitude: M < 3, 3 ≤M < 4, 4 ≤M < 5, 5 ≤M < 6, and M ≥ 6.

With these group definitions and the above definition of the data or observation

matrix X, the procedure prescribed by Eqns. 4.20 through 4.26 is followed. The
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Group number Magnitude Number of records
Gi range ni

1 M < 3 72
2 3 ≤M < 4 1094
3 4 ≤M < 5 1439
4 5 ≤M < 6 623
5 M ≥ 6 145

Table 4.1: Group definitions for linear discriminant analysis of vertical P-wave am-
plitudes as magnitude indicators.

eigenvalues and eigenvectors of S−1
w · Sa are:

λ1 = 2674.2 , uT
1 =

[
−0.23 −0.2 0.95

]
λ2 = 46.2 , uT

2 =
[
−0.88 0.23 0.41

]
(4.27)

λ3 = 9.9 , uT
3 =

[
−0.41 0.82 −0.4

]
Figure 4.1 shows the eigenvectors of S−1

w · Sa. Since λ1 = 2674.2 is by far the

largest eigenvalue, the first eigenvector uT
1 =

[
−0.23 −0.2 0.95

]
gives the linear

combination of the vertical ground motion amplitudes that is optimally indicative

of magnitude. Figure 4.2 shows the linear combinations of the data Z1 = X · u1

and Z2 = X · u2 corresponding to the first two eigenvectors of S−1
w · Sa. From this

Figure, Z1 = X · u1 gives a better separation of the various magnitude groups. There

is less overlap of the different groups in the Z1 axis than along the Z2 axis. From

this application of linear discriminant analysis, the linear combination Z1 = X · u1 =

−0.23 log(acc) − 0.2 log(vel) + 0.95 log(disp) is that which maximizes the ratio of

among group to within group variances, or which optimally separates the different

magnitude groups while minimizing the spread within each group. (Recall that the

columns of X correspond to log(acc), log(vel), log(disp).)

Figure 4.3 summarizes the linear discriminant analysis of P-wave amplitudes as

indicators of magnitude using log(acc), log(vel), log(disp). (These results use accel-

eration, velocity, and displacement; shortly, results using just the acceleration and
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Figure 4.1: Eigenvectors of S−1
w · Sa. The y-axis corresponds to

log(acc), log(vel), log(disp); the x-axis are the coefficients obtained via the lin-
ear discriminant analysis. Since λ1 = 2674.3 is by far the largest eigenvalue, its
eigenvector u1 provides the linear combination Xu1 that best separates the different
magnitude groups while maximizing the clustering within each magnitude group.
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Figure 4.2: Linear combinations of the data X corresponding to the first and second
eigenvectors of S−1

w · Sa. Z1 = X · u1 has better separation of the various magnitude
groups than Z2 = X · u2.
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displacement observations will be presented.) On the x-axis is the optimal linear

combination, Z1 = X ·u1 = −0.23 log(acc)−0.2 log(vel)+0.95 log(disp); “true” mag-

nitude (known from SCSN catalogue) is on the y-axis. The Normal curves at the

bottom of the plot are the best-fit normal curves to the projection of the observations

in each group onto the eigenvector u1. The dashed lines are called decision boundaries.

They are located at the midpoint between the means of the projections onto u1 of two

adjacent groups. The decision boundaries from this analysis are Z1−2 = −3.19 be-

tween groups 1 and 2, Z2−3 = −2.79 between groups 2 and 3, Z3−4 = −2.24 between

groups 3 and 4, and Z4−5 = −1.54 between groups 4 and 5. Decision boundaries are

useful in classifying new observations. New observations are classified according to

which group mean (after projecting onto u1) they are closest to. For example, let

Xnew be a vector of new observations (log acceleration, velocity, and displacement),

and Znew = Xnew · u1 be the projection of these new observations onto u1. Based on

Znew, the new event is in group 1 (M < 3) if Znew < Z1−2; it is in group 2 (3 ≤M < 4)

if Z1−2 ≤ Znew < Z2−3, in group 3 (4 ≤M < 5) if Z2−3 ≤ Znew < Z3−4, etc.

Table 4.2 is the confusion matrix for the linear discriminant analysis of P-wave am-

plitudes as indicators of magnitude. The rows denote the actual group; the columns

denote the group into which the data would be classified based on the LDA results.

Each cell has two numbers. The top number is the percentage of the time that a

particular classification is made for data in a given group. The bottom number in

parentheses are the number of observations classified in a particular group (denoted

by the column number). The values on the diagonal denote how often the correct

classification is made. The off-diagonal entries describe the misclassification error.

For example, for events in the magnitude range 4 ≤ M < 5 (group 3), the decision

boundaries from the LDA analysis yield the correct classification 68% of the time.

There is a 15% and 16% chance of misclassifying an event in this magnitude range as

either a group 2 (3 ≤M < 4) or a group 4 (5 ≤M < 6) event, respectively. There is

about a 1% chance that it will be classified as M ≤ 3 or M ≥ 6. The last column is

the number of observations in each group.

If a strict interpretation of linear discriminant analysis results is followed, given
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Confusion matrix for LDA of P-wave amplitudes as magnitude indicators
using acceleration, velocity, and displacement

Row: actual group; column: classification based on LDA
Group 1 Group 2 Group 3 Group 4 Group 5 Total obs.

Group 1 70% 24% 7% 0% 0%
(50) (17) (5) (0) (0) =72

Group 2 33% 51% 16% < 1% 0
(356) (559) (175) (4) (0) =1094

Group 3 1% 15% 68% 16% < 1%
(13) (218) (978) (229) (1) =1439

Group 4 0% 0% 15% 78% 7%
(0) (0) (94) (488) (41) =623

Group 5 0% 0% 0% 3% 97%
(0) (0) (0) (5) (140) =145

Table 4.2: Confusion matrix for linear discriminant analysis of vertical P-wave ampli-
tudes as magnitude indicators (using acceleration, velocity, and displacement). The
confusion matrix provides an idea of how often the decision boundaries from the linear
discriminant analysis correctly classify (or misclassify) the data. Recall that group 1
is M < 3, group 2 is 3 ≤ M < 4, group 3 is 4 ≤ M < 5, group 4 is 5 ≤ M < 6, and
group 5 is M ≥ 6.
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a new set of observations, only the group to which an event most likely belongs can

be determined. For example, it can be said that a new event has magnitude between

5 ≤M < 6, or that M > 6, based on where on the Z1 axis the new observations fall.

However, from Figure 4.3, there is a strong correlation between Z1 = X · u1 on

the x-axis and magnitude on the y-axis. A best fit linear relationship between Z1,

the optimal linear combination of ground motion amplitudes, and M can be found.

This is the solid black line going through the data points in Figure 4.3. It is given by

M̂LDA3 = 1.77Z1 + 8.86

= 1.77 (−0.23 log(acc)− 0.2 log(vel) + 0.95 log(disp)) + 7.98

= −0.41 log(acc)− 0.35 log(vel) + 1.68 log(disp) + 8.86 (4.28)

The advantage of using Eqn. 4.28 is that given the available ground motion am-

plitudes after a station has triggered (which are presumably P-waves), a magnitude

estimate, M̂LDA3 , can immediately be obtained. (With a strict interpretation of LDA

results, we can only make statements about which magnitude group the new event

is most likely to belong to.) The standard error of the regression is given by σ̂LDA3 ,

where

σ̂2
LDA3

=

n∑
j=1

(
Mi − M̂LDA3,i

)2

ndof
(4.29)

ndof is n − 2 = 3373 − 2 = 3371, since we are solving for a slope (coefficient on

Z1) and an intercept. σ̂LDA3 is 0.45 magnitude units. The residuals are defined as

Mi − M̂LDA3,i.

Figure 4.4 shows some regression diagnostics for Eqn. 4.28. In Figure 4.4(a),

the magnitudes reported by SCSN for the earthquakes in the database are plotted

against those predicted by Eqn. 4.28. Recall that Eqn. 4.28 related magnitude to

P-wave acceleration, velocity, and displacement. The solid black line is the true

regression line. It has a slope of 1. If Eqn. 4.28 predicted magnitudes exactly, then

all the blue circles would fall on the solid black line. Thus, deviations of the blue

circles from the true regression line are indicative of the prediction errors of Eqn. 4.28.
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Figure 4.4: Regression diagnostics for Eqn. 4.28, which relates magnitude to P-wave
acceleration, velocity, and displacement. In subplot (a), the observed or “true” mag-
nitudes are plotted against those predicted by Eqn. 4.28. The straight line is the
true regression line. In subplot (b), the residuals (Mi − M̂LDA3,i between the “true”
SCSN magnitudes and those predicted by Eqn. 4.28 are shown; they are normally
distributed. The mean is practically 0, the variance is 0.45.
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Figure 4.4(b) shows histograms of the residuals Mi−M̂LDA3,i and the best-fit Normal

curve to the residuals. From this plot, the residuals are normally distributed. We

can thus speak of confidence intervals. The 95% confidence interval of Eqn. 4.28 is

M̂LDA3 ±2σ̂LDA3 . That is, given observations of vertical P-wave acceleration, velocity,

and displacement and the method described above, the interval M̂LDA3 ± 2σ̂LDA3 or

M̂LDA3 ± 0.9 contains the correct magnitude of the earthquake 95% of the time. This

uncertainty is quite large, nearly 1 magnitude unit. However, recall that this is from

just P-wave observations at a single station. As more data becomes available, either

additional P-wave data at the given station, the S-wave arrival, or arrivals at other

stations, the uncertainty on the magnitude and location estimates will improve. How

additional data enters the estimation process and reduces the uncertainties on the

source estimates is an important issue that will be addressed shortly.

An alternative approach: simple linear regression

In Eqn. 4.28, we performed a regression for the optimal linear combination of the data

matrix, Z1 = Xu1 on magnitude, and found a relationship that relates magnitude to

the log of P-wave acceleration, velocity, and displacement. Alternatively, a model can

be postulated relating magnitude directly to log of P-wave amplitudes, such as

Mj = α log(accj) + β log(velj) + γ log(dispj) + δ + εj (4.30)

where α, β, γ, δ are regression coefficients that can be determined via simple linear

regression, and ε is statistical or prediction error, which we assume to be normally

distributed with mean 0 and constant variance σ. (This is a standard assumption on

the statistical errors in regression problems. This assumption was used extensively

in the regressions in Chapter 2.) The subscript j is used to be consistent with the

notation used in the linear discriminant analysis.
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In matrix notation, Eqn. 4.30 is

M1

...

Mj

...

Mn


=



log(acc1) log(vel1) log(disp1) 1
...

...
... 1

log(accj) log(velj) log(dispj) 1
...

...
... 1

log(accn) log(veln) log(dispn) 1


·


α

β

γ

δ

 +



εi

...

εj

...

εn


(4.31)

or

M = X1 · α + ε = M̂ + ε (4.32)

where αT =
[
α β γ δ

]
. Note that the matrix X1 is simply the matrix X in

the linear discriminant analysis with a column of 1’s appended. The least squares

estimates of α are given by

α̂ =
(
XT

1 · X1

)−1 · XT
1 · M (4.33)

The covariance matrix of α̂ is given by

cov(α̂) = σ̂2
(
X1

T · X1

)−1
(4.34)

where σ̂2 =
RSS

degrees of freedom
=

RSS

n− p

and RSS =
n∑

j=1

(
M̂j −Mj

)
p = number of unknown coefficients = 4

n = total observations in database = 3373

The variances of the unknowns, σ̂2
α =

[
σ̂2

α σ̂2
β σ̂2

γ σ̂2
δ

]T

, correspond to the di-

agonal entries of the covariance matrix cov(α̂). The standard errors (or standard

deviations) are the square roots of the variances.

Table 4.3 shows the least squares estimates of αT =
[
α β γ δ

]
, the standard

errors (square root of variance) on each of the coefficients, the lower and upper bounds

of the approximate 95% confidence intervals, and the P-values. The 95% confidence
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interval is an interval that contains the true value of the parameter being estimated

95% of the time. For normally distributed data, this is typically given by ±2σ. The

P-value expresses the probability that, due to random errors, a given coefficient takes

a non-zero value when it is in fact 0. In statistics terminology, it is the probability

of rejecting the null hypothesis when the null hypothesis is in fact true. P-values

close to 0 indicate that a given predictor is statistically significant. Larger P-values

mean that there is a relatively larger probability that a given parameter is equal to

zero even though the regression analysis yields a non-zero value. Table 4.3 shows

that only β̂ (the coefficient for log(vel)) has a non-zero P-value. This means that

the most significant predictors of magnitude are log(acc), log(disp), and a constant

term. There is a 3% chance of our regression analysis showing that the coefficient for

magnitude dependence on log(vel) is β̂ = −0.16 when in fact β may be zero. Despite

the log(vel) term having a non-zero P-value, all predictors in Eqn. 4.32 are significant

at the 5% level.

Least squares estimates for simple linear regression
of magnitude on log(acc), log(vel), and log(disp)

estimate standard error lower bound upper bound P-value
α̂ -0.42 0.04 -0.5 -0.34 0
β̂ -0.16 0.08 -0.36 0 0.03
γ̂ 1.32 0.04 1.24 1.40 0
δ̂ 8.05 0.05 7.95 8.15 0

Table 4.3: Least squares estimates for unknowns in Eqn. 4.33, which postulates a
linear relationship between P-wave log amplitudes and magnitude.

Thus, direct regression of magnitude onto the P-wave log amplitudes (acceleration,

velocity, and displacement) yields

M̂SLR,3 = −0.42 log(acc)− 0.16 log(vel) + 1.32 log(disp) + 8.05 (4.35)

with SLR denoting “simple linear regression”. The relationship obtained via linear
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discriminant analysis is given by Eqn. 4.28, repeated here

M̂LDA = −0.41 log(acc)− 0.35 log(vel) + 1.68 log(disp) + 8.86

From Table 4.3, there is log acceleration and log velocity coefficients from linear

discriminant analysis (Eqn. 4.28) are within the 95% confidence intervals of those from

the simple regression. There are discrepancies in the log displacement coefficient and

constant. Residual diagnostics for the simple linear regression results are shown in

Figure ??. The linear regression relationship (Eqn. 4.35) consistently underpredicts

M > 6 events. For this reason, the relationship based on linear discriminant analysis

(Eqn. 4.28) is preferred.

Best estimates of M̂, R̂ given P-wave acceleration and displacement

A similar type of analysis is performed using just P-wave acceleration and displace-

ment, since from Table 4.3, these are the most statistically significant terms. In this

case, the data matrix X2 is a 3373× 2 matrix, with log(acc) and log(disp) as its two

columns. The linear combination of P-wave log(acc) and log(disp) that is optimally

indicative of magnitude is given by the eigenvector u corresponding to the largest

eigenvalue γ of Eqn. 4.26

S−1
w · Sau = λ · u

With X2 being a 3373× 2 matrix, it has 2 eigenvectors.

λ1 = 2663.1 , uT
1 =

[
0.36 −0.93

]
(4.36)

λ2 = 46 , uT
2 =

[
−0.83 0.56

]
The confusion matrix for the linear discriminant analysis using only log(acc) and

log(disp) is fairly similar to the confusion matrix for the analysis considering accel-

eration, velocity, and displacement.

The linear combination of log(acc) and log(disp) that is optimally indicative of

magnitude is Z = X2 · u1 = 0.36 log(acc) − 0.93 log(disp) = acc0.36/disp0.93. A
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Figure 4.5: Regression diagnostics for Eqn. 4.35, which regresses magnitude directly
onto P-wave acceleration, velocity, and displacement. In subplot (a), the observed
or “true” magnitudes are plotted against those predicted by Eqn. 4.35. Systematic
deviations from the true regression line (solid like with slope=1) give an idea of
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Confusion matrix for LDA of P-wave amplitudes as magnitude indicators
using acceleration and displacement

Row: actual group; column: classification based on LDA
Group 1 Group 2 Group 3 Group 4 Group 5 Total obs.

Group 1 71% 24% 6% 0% 0%
(51) (17) (4) (0) (0) =72

Group 2 32% 53% 16% < 1% 0
(345) (575) (170) (4) (0) =1094

Group 3 1% 15% 68% 16% < 1%
(12) (215) (985) (226) (1) =1439

Group 4 0% 0% 15% 79% 6%
(0) (0) (93) (492) (38) =623

Group 5 0% 0% 0% 6% 94%
(0) (0) (0) (8) (137) =145

Table 4.4: Confusion matrix for linear discriminant analysis of vertical P-wave
log(acc) and log(disp) as magnitude indicators. Recall that group 1 is M < 3, group
2 is 3 ≤M < 4, group 3 is 4 ≤M < 5, group 4 is 5 ≤M < 6, and group 5 is M ≥ 6.

relationship between magnitude and Z = acc0.36/disp0.93 can be obtained:

M̂LDA2 = −1.627Z + 8.94

= −1.627(0.36 log(acc)− 0.93 log(disp)) + 8.95

= −0.59 log(acc) + 1.51 log(disp) + 8.94 (4.37)

The standard error of regression on Eqn. 4.37 is σLDA2 = 0.45.

Least squares estimates for simple linear regression
of magnitude on log(acc) and log(disp)

estimate standard error lower bound upper bound P-value
α̂ -0.50 0.02 -0.54 -0.46 0
γ̂ 1.24 0.02 1.20 1.28 0
δ̂ 8.09 0.04 8.01 8.17 0

Table 4.5: Confusion matrix for linear discriminant analysis of vertical P-wave
log(acc) and log(disp) as magnitude indicators. Recall that group 1 is M < 3, group
2 is 3 ≤M < 4, group 3 is 4 ≤M < 5, group 4 is 5 ≤M < 6, and group 5 is M ≥ 6.
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This linear discriminant analysis (LDA) and regression methods presented in this

Section are based on P-wave amplitudes. The relationships obtained here are appli-

cable to P-waves. The results will be in error if the input amplitudes are actually

S-wave amplitudes. Similar analyses were performed on S-wave amplitudes. The

details are in Appendix F. Interestingly, the S-wave ground motion ratio that is opti-

mally indicative of magnitude is identical to the P-wave ground motion ratio. Thus,

the ratio Zad = 0.36log(acc)− 0.93log(disp) = acc0.36/disp0.93 is optimally indicative

of magnitude, whether the amplitudes are from P- or S-waves. However, there are

differences in the relationships that relate the ground motion ratio Zad to magnitude,

depending on whether the amplitudes are from P- or S-waves.

M̂P = −1.627Zad + 8.94, σMP = 0.45 for P-wave amplitudes, (4.38)

M̂S = −1.459Zad + 8.05, σMS = 0.41 for S-wave amplitudes, (4.39)

where Zad = 0.36log(acc)− 0.93log(disp)

= acc0.36/disp0.93

It is therefore important to be able to distinguish between P- and S-waves. A method

(also based on linear discriminant analysis) developed to distinguish between P- and

S-waves is presented in Appendix E.

Comment 1: A robust magnitude estimation approach would be to assume that

the amplitudes are always from S-waves. Using the S-wave relationships on P-wave

amplitudes will initially underestimate the magnitude. However, this is corrected

once the S-wave arrives. The magnitude estimates will consistently approach the

actual magnitude from below. It is possible that such an approach will decrease the

occurrence of false alarms.

Comment 2: In retrospect, the ratio of peak vertical acceleration to peak hor-

izontal displacement may perhaps be a better ratio to use than just the vertical

acceleration to displacement. Using the combined vertical and horizontal ratio might

perform better that that using just the vertical channel once the S-wave arrives. This

approach does not require distinguishing between P- and S-waves.
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Thus far, two ways to use the initially observed waveform data to estimate mag-

nitude and distance have been presented. In this Section, the use of 1) envelope

attenuation relationships to quantify the trade-offs between magnitude and location

and 2) linear discriminant analysis and simple linear regression to estimate magnitude

from available amplitudes were discussed. These analyses used only the vertical chan-

nel. Extension of the analysis to include the horizontal channels is straightforward.

Initial form of the likelihood function, prob(Y |M, R)

The likelihood function, prob(Y |M, R), given the first available observations of ac-

celeration, velocity, and displacement from a given channel will be defined using the

envelope attenuation relationships and the linear discriminant analysis methods. The

following assumptions are required: 1) ground motion amplitudes are log-normally

distributed; 2) acceleration, velocity, and displacement envelope amplitudes are in-

dependent quantities; 3) amplitudes observed at time t1 are independent of those

observed at a later time tj; 4) amplitudes observed at station A are independent of

those at station B. The first assumption is valid, as was shown by the regression diag-

nostics for the envelope amplitude attenuation relationships in Chapter 2. The other

assumptions are on more tenuous ground. It can be argued that while the observed

envelope amplitudes for different channels, times, and stations are not causatively

independent (since they are caused by the same earthquake), they can be considered

stochastically independent (Beck, J. personal communication). That is, knowing the

peak acceleration at a given time does not exactly determine peak velocity or dis-

placement. Knowledge of one quantity does not imply knowledge of the others. (On

the other hand, if an event has large peak accelerations, the other amplitudes are

likely to be large as well.) These assumptions are necessary to proceed.

Let Y T
A,t1 =

[
Ya Yv Yd

]
be the initial set of log P-wave acceleration, velocity,

and displacement observed at time t1 at station A. The envelope attenuation rela-

tionships and linear discriminant analysis magnitude estimators will be used to find

the magnitudes and locations most consistent with these observations YA,t1 . Recall
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that Bayes’ theorem states that

prob(M, R|YA,t1) ∝ prob(YA,t1 |M, R)× prob(M, R) (4.40)

To focus attention on the likelihood function, prob(YA,t1|M, R), assume for now a

uniform prior density function over the range of possible magnitudes and distances

(or locations), or prob(M, R) = constant. The most probable estimates of M, R given

the available observations YA,t1 are those that maximize the posterior density function,

prob(M, R|YA,t1). (The t1 subscript will be dropped for the moment.) Given a uniform

prior, these M, R are those that maximize the likelihood function, prob(YA|M, R).

Eqn. 4.40 becomes

prob(M, R|YA) ∝ prob(YA|M, R)

= prob(Ya, Yv, Yd|M, R)

= prob(Ya|M, R) · prob(Yv|M, R) · prob(Yd|M, R) (4.41)

Since linear discriminant analysis (LDA) showed that acceleration and displace-

ment ratios are best indicative of magnitude, the acceleration and displacement am-

plitudes, Ya, Yd will be included into the likelihood function via the LDA magnitude

estimators and the velocity amplitude Yv via the envelope attenuation relationships

for velocity.

The likelihood of observing a P-wave velocity amplitude Yv is given by

prob(Yv|M, R) =
1√

2πσ̂v

exp

(
−(Yv − Ȳv(M, R))2

2σ̂2
v

)
(4.42)

where Yv is the observed P-wave velocity, and Ȳv(M, R) is the P-wave amplitude

envelope attenuation relationship (similar to Eqn. 2.3, with the P-wave velocity coef-

ficients). Acceleration and displacement amplitudes Ya, Yd are included via the linear
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discriminant analysis relationships.

prob(Ya, Yd|M, R) ∝ prob(Zad|M) (4.43)

∝ 1√
2πσ̂LDA2

exp

(
−(Zad − Ẑad(M))2

2σ̂2
LDA2

)
(4.44)

Eqn. 4.44 holds because the groups in the linear discriminant analysis were defined

solely in terms of magnitude. The LDA, as set up, does not yield any information

about location, though ground motion ratios have a statistically significant distance

dependence. Eqn. 4.44 uses a rearranged form of the LDA relationships; it models

the ground motion ratios as normally distributed. Figure 4.8 shows that the residuals

M̂LDA2 −MSCSN are normally distributed with 0 mean and constant variance.

Therefore, the likelihood of observing Y T
A,t1 =

[
Ya Yv Yd

]
is given by

prob(YA|M, R) = prob(Ya, Yv, Yd|M, R)

∝ prob(Ya, Yd|M, R) · prob(Yv|M, R)

∝ 1

2πσ̂LDA2σ̂v
exp

(
−2σ̂2

LDA2(Yv − Ȳv(M, R))2 + 2σ̂2
v(M − M̂LDA2)2

4σ̂2
LDA2σ̂

2
v

)
(4.45)

∝ prob(M, R|YA) (4.46)

Taking no prior information into account, the M, R that maximize prob(YA|M, R) are

also those that maximize the posterior density function, prob(M, R|YA), and therefore

are the most probable source estimates M, R given the initially available observed P-

wave data from station A, Y T
A,t1 =

[
Ya Yv Yd

]
. Thus, the problem of estimating

M, R from the initial observations Y T
A,t1 =

[
Ya Yv Yd

]
from a single station reduces

to a problem of minimizing the term

2σ̂2
LDA2(Yv − Ȳv(M, R))2 + 2σ̂2

v(M − M̂LDA2)
2 (4.47)
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Inclusion of additional data

Thus far, we have discussed how to estimate magnitude and epicentral distance from

a set of peak P-wave acceleration, velocity, and displacement amplitudes from a single

channel (vertical) on a single station. In particular, the M, R that maximize the right

hand side of Eqn. 4.45 (or minimize Eqn. 4.47) are the most probable source estimates

given the first available envelope data at time t1 from station A, Y T
A,t1 =

[
Ya Yv Yd

]
.

In Eqn. 4.45, the observed velocity amplitude Yv and the P-wave velocity attenuation

relationship are used to quantify the trade-offs between magnitude and distance.

Using just the attenuation relationships leave these trade-offs unresolved, since the

constraint (Yv − Ȳv(M, R)) = 0 is satisfied by an infinite set of M, R pairs. However,

the linear discriminant analysis for magnitude (or magnitude-based group) limits the

magnitude range that is consistent with the observed ground motion ratio, Zad =

acc0.36/disp0.93.

Incorporating additional information will now be addressed. As time elapses, more

waveform data will become available as 1) the slower-traveling phases arrive at the first

triggered station and as 2) ground motions propagate to and trigger stations further

from the source region. This additional data contains the information necessary to

resolve the magnitude-distance trade-offs. For example, as the S-wave arrives at the

first triggered station, a distance estimate from the waveform data can be obtained

from the S-P time. In the beginning of the estimation process, the available waveform

data alone may not be able to resolve the trade-offs between magnitude and location.

It is in this situation (when the set of available waveform data is sparsely populated)

that prior information is most useful. The role of prior information and the different

types of prior information relevant to seismic early warning will be discussed in the

following Section. Including later arriving data will help resolve the trade-offs in the

initial source estimates, and increase the reliability (or reduce the variances) on these

estimates. The following questions will be addressed: 1) how to use all available

envelope data, not just the peak amplitudes, 2) how to include data from other

stations, and 3) how to relate the estimates from the data available at time t1 to the
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estimates from the data available at some later time, t2?

Including all available envelope data

Let YA,t1:tn be a n × 1 vector representing all the envelope data of a given channel

(say, vertical acceleration) available at station A, in the time interval t1 ≤ t ≤ tn,

(assuming that the sampling rate is 1 sample per second). Bayes’ theorem states that

prob(M, R|YA,t1:tn) ∝ prob(YA,t1:tn|M, R)× prob(M, R) (4.48)

If we are to use Eqn. 4.48, we need to make a slight modification to our ground

motion model from Chapter 2, Eqn. 2.1. Let us explicitly account for the statistical

(or prediction error) and say that

Eobserved(t) = E(t,M,R) + ε (4.49)

where

E(t,M,R) =
√

E2
P (t) + E2

S(t) + E2
ambient (4.50)

Let YA,t1:tn =
[
YA,t1 · · · YA,tn

]
= Eobserved(t). Assume that the statistical errors ε in

Eqn. 4.49 are normally and independently distributed with zero mean and constant

variance σ2
E, and that the set of ground motion amplitudes observed at a given time

ti are independent from those at some different time tk. prob(YA,t1:tn|M, R) an be

written as

prob(YA,t1:tn|M, R) ∝
n∏

k=1

prob(YA,tk)|M, R) (4.51)

∝ 1

(
√

2π)nσ̂n
E

exp

(
−

n∑
k=1

(
(YA,tk − E(tk, M, R))2

2σ̂2
E

))
(4.52)

Assuming a uniform prior, the M, R pair that is most probable given the available

observed envelope data for a given channel at station A in the time interval t1 ≤ t ≤ tn,
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YA,t1:tn is the pair that minimizes the quantity

n∑
k=1

(YA,tk − E(tk, M, R))2 (4.53)

It may be of interest to find the M, R pair that is most probable given the observed

envelope data from all available channels. Assuming that the different channels are

independent (again, one of the tenuous assumptions), the only modification required

to Eqn. 4.53 is the addition of another index (let us use j) corresponding to summing

over all available channels:

m∑
j=1

(
n∑

k=1

(YA,tk − E(tk, M, R))2

)
j

(4.54)

where m is the number of available channels.

How useful is this? The initial estimates from maximizing Eqn. 4.45 (or minimiz-

ing Eqn. 4.47) given the first available P-wave data at station A are available, the

envelopes of later-arriving phases on the various channels can be predicted. Once

these slower phases arrive at station A, the initial estimates can be adjusted by min-

imizing either Eqn. 4.53 or 4.54, depending on the number of channels included.

This method can be easily extended to include waveform data from stations further

from the source region. These relationships provide the basis for real-time Kikuchi-

Kanamori type inversions using envelopes of ground motion.

Including data from additional stations

If the source estimation problem is phrased in terms of magnitude and epicentral

distances, having data from p stations means there are p + 1 unknowns to solve for:

the magnitude estimate M̂ , and p epicentral distances of the earthquake source to each

of p stations, R1, · · · , Rp. When there are more than two stations, it is beneficial to

reparameterize the estimation problem in terms of magnitude, latitude, and longitude
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of the earthquake. Any occurrence of epicentral distance terms Rp are replaced with

Rp = K

√
(latp − late)2 + [(lonp − lone) cos

lonp + lone

2
]2 (4.55)

where K = 111.13 km/degree, latp, lonp are latitude and longitude in degrees of

the pth station, late, lone are the estimated latitude and longitude of the earthquake.

Assuming that the data from the various stations are independent, data from other

stations can be included by appending multiplicative terms to Eqn. 4.51. This is

equivalent to adding an additional index corresponding to summing over the available

stations to Eqn. 4.53. The M, late, lone that minimize

m∑
j=1

n∑
k=1

p∑
l=1

(Yl,tk − El(tk, M, late, lone))
2
j (4.56)

where n is the number of seconds since the P-wave arrival at the first triggered station,

m is the number of available channels (i.e., vertical and/or horizontal acceleration,

velocity, and displacement), and p is the number of stations included in the estimation

process. The M, late, lone that minimize Eqn. 4.56 are those those that maximize

the likelihood function. With a uniform prior, these source estimates M, late, lone

also maximize the posterior density function, and are thus the most probable source

estimates given all the available data.

The advantages of using a geographic coordinate system are 1) there are 3 un-

knowns no matter how many stations are included in the estimation process (as

opposed to p + 1 unknowns involved in keeping track of epicentral distance estimates

for p stations) and 2) the prior information relevant to seismic early warning is most

efficiently dealt with in a geographic coordinate system.

Updating estimates as additional data becomes available

The third question raised at the beginning of this section was: how are estimates

updated as additional data becomes available? One way to proceed would be to

minimize Eqn. 4.56 at each time a new estimate is desired, with the index k going
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from 1 (corresponding to the time of the P-wave trigger at the first station) to n

(corresponding to the time at which the current estimate would be made). How-

ever, this procedure can become unwieldy as the amount of data available increases.

Bayes’ theorem provides a more efficient approach to updating estimates because its

calculations are sequential (Sivia, 1996).

For the case of an observation available at station A at time t1, YA,t1 , Bayes’

theorem states that

prob(M, R|YA,t1) ∝ prob(YA,t1 |M, R)× prob(M, R) (4.57)

Assuming a uniform prior over the magnitude and distance range in question,

prob(M, R|YA,t1) ∝ prob(YA,t1|M, R) (4.58)

When a new observation is available at time t2 > t1, the posterior pdf taking into

account the observations at t1 and t2 is

prob(M, R|YA,t1 , YA,t2) ∝ prob(YA,t1 , YA,t2|M, R) (4.59)

Assuming that the observations at t1 and t2 are independent (tenuous), then

prob(YA,t1 , YA,t2|M, R) ∝ prob(YA,t2|M, R)× prob(YA,t1|M, R) (4.60)

Eqn. 4.59 then becomes

prob(M, R|YA,t1 , YA,t2) ∝ prob(YA,t1 , YA,t2|M, R)

∝ prob(YA,t2|M, R)× prob(YA,t1 |M, R)

using Eqn. 4.58

∝ prob(YA,t2|M, R)× prob(M, R|YA,t1) (4.61)

Eqn. 4.61 is in the form posterior ∝ likelihood × prior, with prob(M, R|YA,t1)
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as the prior pdf. However, prob(M, R|YA,t1) is also the posterior pdf accounting for

only the observation at time t1. Thus, the posterior pdf taking into account the

observations at times t1 and t2 is given by the likelihood of the observation at t2

times the posterior taking into account only the observation at t1. This is important

with regards to the question of updating estimates. This means that if we desire a

new estimate at time tn+k, where we have k seconds worth of data since the previous

estimate at time tn, rather than having to minimize Eqn. 4.54 with the time index

going from 1 to n+k, to update the estimate, we need only to minimize over the time

index n+1 to n+k and use the estimate at tn as the prior. This is more efficient, since

it takes advantage of the previously performed calculations. It is a nice characteristic

of Bayesian calculations that sequential processing of the incoming data provides the

same answer as a simultaneous analysis of all the data (Sivia, 1996).

4.3.1 A summary of the likelihood function, prob(Y |M, R)

In the subsequent Chapters, the likelihood will be defined in terms of the ratio be-

tween vertical acceleration and displacement amplitudes and the envelope attenuation

relationships for vertical acceleration and horizontal acceleration, velocity, and dis-

placement. Maximizing the likelihood function will be equivalent to minimizing the
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term L(M, lat, lon):

L(M, lat, lon) =
n∑

i=1

P,S∑
j=1

L(M, lat, lon)ij (4.62)

L(M, lat, lon)ij =
(Zadij − Z̄j(M))2

2σ2
Zadij

+
4∑

k=1

(
(Yobsijk

− Ȳijk(M, lat, lon))2

2σ2
ijk

)
(4.63)

i = 1 . . . n, where n is the number of stations with P detections

j = 1, 2 ,for body wave phases ( P- and S-waves )

k = 1, . . . 4, for peak amplitudes of vertical velocity, and

horizontal acceleration, velocity, and displacement

Zadij = 0.36 log(PZAij)− 0.93 log(PZDij)

PZAij = log10 of peak vertical acceleration for phase j at station i

PZDij = log10 of peak vertical displacement for phase j phase at station i

Yobsijk
= log10 of peak observed amplitude

of k channels and phase j at station i

Z̄j(M) = αjM + βj (4.64)

R2
i = epicentral distance between an earthquake located at lon, lat

and station i

R1i =
√

(R2
i + 9)

C(M)jk = c1jk
(arctan(M − 5) + 1.4)× exp c2jk

(M − 5)

Ȳijk(M, R) = ajkM − bjk(R1i + C(M)jk)− djk log10(R1i + C(M)jk) + eijk(4.65)

The assumptions regarding independence were necessary to equate maximizing the

likelihood function with minimizing Eqn. 4.62. Eqn. 4.62 holds for multiple stations.

A single station estimate involves setting n = 1, and replacing epicentral location

lat, lon with a single epicentral distance, R. A minimum of 3 seconds of data since

the P arrival and 2 seconds of data since the S arrival at a given station is required

before that station contributes P- and S-wave amplitudes to the source estimation

process. It is assumed that P-waves can be detected via short-term over long-term
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average methods. The best source estimates M, lat, lon at any given time are those

most probable given the peak P- and S-wave amplitudes available at that time. P-

and S-waves can be distinguished via the P/S discriminants described in Appendix

F.

When sufficient amplitude observations are available, the likelihood function has a

global maximum. The M, lat, lon that maximize the likelihood function (or minimize

Eqn. 4.62) are those which the ground motion models (LDA magnitude estimators

and envelope attenuation relationships) indicate are consistent with the available am-

plitude observations. These M, lat, lon are comparable to Kanamori (1993)’s strong

motion centroid. The location estimate is an amplitude-based location. As discussed

by Kanamori (1993), such amplitude-based locations are more robust than arrival-

based locations and are an efficient means to convey the spatial distribution of ground

motion for post-earthquake response. When the set of available observations is sparse

(for instance, 3 seconds after the initial P detection at the first triggered station), the

likelihood function may not have a global maximum; there may be trade-offs between

the source estimates that are unresolved by the available observations. It is such

situations that the Bayes prior is useful.

4.4 Defining the prior, prob(M, R)

Different types of information can be included in the Bayes prior, prob(M, R). In the

seismic early warning problem, the prior is information related to relative earthquake

probabilities that may aid in the source estimation problem. It is a statement regard-

ing our best knowledge (in this case, of earthquake occurrence) about the problem

before examining the waveform data from the on-going rupture.

Seismological considerations

A uniform prior implies that earthquakes of all magnitudes are equally likely at all

distances or locations. While a uniform prior simplifies the calculations involved, it

is not an accurate statement about relative earthquake probabilities.



167

• Many earthquakes occur on known faults (though new faults are still being

discovered).

• Earthquakes cluster in time and space. For example, large earthquakes are typ-

ically followed by aftershocks in the source region, with Omori’s law governing

the decay of number of aftershocks as a function of time since the mainshock.

Omori’s law is an empirical relationship that states

n =
C

(K + t)P
(4.66)

where n is frequency of aftershocks at time t after the mainshock. K, C, P are

constants determined for a particular mainshock (Lay and Wallace, 1995).

• The Gutenberg-Richter law generally governs the magnitude-frequency distri-

bution of earthquakes.

log N(M) = A− bM (4.67)

N = 10A × 10−bM

where N(M) is the number of earthquakes with magnitudes in the interval

(M, M+∆M), A is the activity and is related to the maximum magnitude possi-

ble, and the b is the b-value, which is typically around 1. The Gutenberg-Richter

relationship states that there are 10 times more earthquakes of magnitude M

than earthquakes of magnitude M + 1.

Reasenberg and Jones (1989) combine Omori’s law and the Gutenberg-Richter

relationship to express the probability of one or more events within the magni-

tude range (M1 ≤ M < M2) and within the time range (S ≤ t < T ) after the
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mainshock as

P = 1− exp

[
−

∫ M2

M1

∫ T

S

λ(t,M) dt dM

]
(4.68)

where λ(t,M) = 10a+b(Mn−M)(t + c)−p

(4.69)

where λ(t,M) is the rate of aftershocks with magnitude M or greater at time t

after a mainshock of magnitude Mn.

• Many large earthquake have foreshocks. In a study of 59 M ≥ 5 earth-

quakes, Abercrombie and Mori (1996) found that 44% of the earthquakes in

their California dataset had foreshocks; they also found that foreshock occur-

rence is a function of mainshock rake and depth, but not of mainshock mag-

nitude. The findings of Abercrombie and Mori are consistent with those of

an earlier study by Jones (1984). Jones studied 20 mainshocks in the San An-

dreas system and found that 35% were preceded by foreshocks in the immediate

spatial and temporal vicinity (within 1 day, 5 km of the mainshock).

In addition to these factors, geometric considerations and the state of health of

the seismic network monitoring the earthquake activity can provide useful constraints

to the seismic early warning problem.

Geometric considerations

Some simple geometric considerations can be used to constrain the location estimates

in seismic early warning. Assuming that earthquakes are equally likely to occur at

all locations implies that they are more likely to be far away than in close. The

probability of an event occurring at distance R is proportional to area of a ring or

annulus with radius R and finite thickness dR, a reasonable approximation of which

is the circumference of the circle times the thickness dR. From this consideration,
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the probability of a given epicentral distance is thus a linear function of distance.

Pr(R) = R (4.70)

R

dR

Ashade ∝ 2πR dR

Figure 4.9: The probability of an earthquake (or any event) occurring at radius R is
proportional to the circumference of the circle times a finite thickness dR.

The state of health of the seismic network also provides a geometric constraint

to the location of an earthquake. In particular, Voronoi cells (Sambridge, 1999a) or

nearest neighbor regions of the operating stations can be calculated. The Voronoi

cell of a given station is the set of all location coordinates that are closer to that

given station than any other station in the network. Figure 4.10 shows a set of

30 randomly generated points and their Voronoi cells. How are such Voronoi cells

useful in seismic early warning? Voronoi cells should be calculated for the stations

operating on any given day, and updated to reflect the current status of the various

stations. Once an earthquake triggers a station, assuming that the Voronoi cells are

an accurate snapshot of the operating stations within the network and P-waves can be

detected accurately, the location is immediately constrained to be within the Voronoi

cell of the first triggered station. The denser the seismic network, the smaller the
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area of the average Voronoi cell, and the stronger the constraint on location. The

time elapsed between the first and subsequent arrivals at adjacent stations is also a

useful constraint. If the ground motions trigger two stations simultaneously, then the

earthquake location can be constrained to a line, the common edge shared by the

Voronoi cells of the two stations. The longer the time elapsed between the P-wave

arrival at the first station and the subsequent triggers at surrounding stations, the

closer into the interior of the Voronoi cell of the first triggered station the earthquake

must be located.

The use of not-yet-arrived data, as described by Rydelek and Pujol (2004) and Ho-

riuchi et al. (2004), can be built upon to describe the evolution of the region of likely

location with time after the first P detection. In this thesis, the region of likely

location is the region consistent with the observed arrivals. It is independent of

the location estimate obtained from maximizing the likelihood function; that loca-

tion estimate is amplitude-based. From Rydelek and Pujol (2004), the locations

consistent with the first two P arrivals (let us call them t1, t2) satisfy the equation

d2−d1 = V (t2−t1), where d1, d2 are the epicentral distances of the event to stations 1

and 2, and where V is an average P-wave velocity. The equation d2− d1 = V (t2− t1)

describes a hyperbola.

Consider the case where there is a P detection at station 1, and test, ∆t seconds

after the first P detection, there are still no P detections at the adjacent stations.

Assume that the coordinates of operating stations are known, and that there are n

stations sharing a Voronoi edge with station 1. For i = 1, . . . , n, each of these n

stations provides the constraint that

di − d1 > V (test − t1) = V (∆t) (4.71)

The region of likely location is the intersection of the Voronoi cell of the first

triggered station, and the areas consistent with n inequality constraints described

by Eqn. 4.71. When ∆t = 0 (the first P detection), this region corresponds to the

Voronoi cell of the first triggered station. When ∆t > 0 and there are no P-arrivals at



171

the adjacent stations, the region of likely location is an area within the first station’s

Voronoi cell. How much smaller this area is than the original Voronoi cell is a measure

of the power of constraints on location by ∆t, and is thus a function of ∆t. Once

the P-wave arrives at the second station, this area collapses to Rydelek’s (2004)

hyperbola. A third arrival locates an epicenter.

Rydelek and Pujol (2004) and Horiuchi et al. (2004) use not-arrived data after the

first two P arrivals. Given the Voronoi cells of the seismic network, not-yet-arrived

data can be used to provide continuously evolving constraints on the region of likely

location immediately after the first P detection. This is advantageous in regions with

low station density, where the time between the first and second P arrivals may be

relatively long. This will be illustrated more concretely in the subsequent Chapters.

The Voronoi cells involve prior information since they are based on station lo-

cations, which are known beforehand. The not-yet-arrived data is not strictly prior

information, since the time ∆t since the first P detection without subsequent arrivals

is an observed quantity. However, it is not included in the likelihood since it does not

involve observed amplitudes.

The use of these different types of prior information, seismological and geometric,

and the not-yet-arrived data, will be illustrated in the examples in the following

Chapters.

A balance between the prior and likelihood

Bayes’ theorem is analogous to the human learning process. Before beginning an

experiment, we may have certain beliefs or expectations. In Bayesian terms, these

beliefs can be quantified by the Bayesian prior. Observations from the phenomena

under study continually adjust these prior beliefs. If the incoming data is consistent

with the prior beliefs, then it increases our degree of belief in our prior notions. How-

ever, if the incoming data exhibits inconsistencies with the prior beliefs, we make

modifications to what we currently believe given the available data. As additional

observations become available, our current beliefs are increasingly determined by the

data, less so by the prior. This allows for the possibility that what is being observed
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Figure 4.10: Voronoi cells of 30 randomly generated points.
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is something new and unexpected. When all data has been gathered and analyzed,

either of the two conclusions will be made: 1) the process in study behaved in ac-

cordance to expectations before the experiment, or 2) the results were not expected,

and something new was learned.

This type of framework is well-suited to real-time applications, such as seismic

early warning. Seismic early warning has somewhat contrasting objectives: reliable

source estimates are desired as quickly as possible. To maximize the available warn-

ing time, it is necessary to make estimates from a very sparse set of observations (for

example, from the first available P-wave amplitudes from the first triggered station).

Given a sparse set of observations, there will be trade-offs among the source parame-

ters that cannot be resolved by the observations alone. It is more rational to resolve

these trade-offs to be consistent with the types of prior information relevant to seismic

early warning, namely: previously observed seismicity, foreshock/aftershock statistics

(or Gutenberg-Richter / Omori’s law type relationships), and the state of health of

the seismic network, than to not specify the prior. Not explicitly specifying a prior,

or basing the estimation process on the likelihood function (or observed data) alone,

is equivalent to stating that we believe that earthquakes of all magnitudes occur at

all locations with equal probability, which is an inaccurate description of the general

state of knowledge.

As more observations become available, the influence of the prior decreases and

the estimates become more reliable. (This does not mean that using prior informa-

tion makes estimates less reliable.) Once the observations are able to resolve the

magnitude-location trade-off on their own (for example, with an S-wave arrival, or

with triggers at multiple stations), the initial form of the prior becomes irrelevant.

Thus far, reliabilities have only been discussed in a qualitative manner. The

ensuing (quantitative) discussion of reliabilities of the best estimates M̂, R̂ is based

on Sivia (1996).
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4.5 Reliabilities of best estimates M̂ , R̂

Let us now address the question of variances on the estimates M̂ and R̂.

Sivia (1996) recommends working with L = loge(prob(M, R|Y )). L is often called

the “log-likelihood”. Recall that the best estimates M̂, R̂ maximize prob(M, R|Y ) (as

well as L = loge(prob(M, R|Y ))), and satisfy Eqn. 4.72

∂L

∂M

∣∣∣∣
M̂,R̂

= 0 (4.72)

∂L

∂R

∣∣∣∣
M̂,R̂

= 0

As described by Sivia (1996), to examine the shape or spread of the posterior

about the maxima, we take a Taylor series expansion of L = loge(prob(M, R|Y ))

about the maxima (M̂, R̂).

L = L(M̂, R̂) +
1

2

[
∂2L

∂M2

∣∣∣∣
M̂,R̂

(M − M̂)2 +
∂2L

∂R2

∣∣∣∣
M̂,R̂

(R− R̂)2

+ 2
∂2L

∂M∂R

∣∣∣∣
M̂,R̂

(M − M̂)(R− R̂)

]
+ . . . (4.73)

The quadratic terms enclosed by the brackets in Eqn. 4.73 are those that tell us

about the spread of the posterior, and hence the variances on the estimates M̂, R̂.

These quadratic terms can be written in matrix notation. Let Q be the quadratic

term in Eqn. 4.73

Q =
(
M − M̂ R− R̂

) A C

C B

 M − M̂

R− R̂

 (4.74)

where A =
∂2L

∂M2

∣∣∣∣
M̂,R̂

B =
∂2L

∂R2

∣∣∣∣
M̂,R̂

C =
∂2L

∂M∂R

∣∣∣∣
M̂,R̂

(4.75)

Contours of constant Q are ellipses in M-R space centered at (M̂, R̂). The orien-

tation of this error ellipse is determined by the eigenvectors e1 and e2 of the matrix
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( A C
C B ). The components (m, r) of eigenvectors e1 and e2 satisfy the following equation

A C

C B

 m

r

 = λ

m

r

 (4.76)

λ
k

2

e1

e2

λ
k

1X

M

R

M

R

Q=k (constant)

Figure 4.11: Error ellipse for estimates of M, R given available observations, from Sivia
(1996).

The eigenvalues, λ1,2, of the matrix H = ( A C
C D ) of the second derivatives of L, are

given by

λ1,2 =
(A + B) ± √

(A + B)2 − 4(AB − C2)

2
(4.77)

where A, B, C are as in Eqn. 4.75.

The eigenvectors of e1,2 of H are given by

e1,2 =

A−B±
√

(A+B)2−4(AB−C2)

2C

1

 (4.78)

The Taylor series expansion of L about the maxima (M̂, R̂) is dominated by the

quadratic term Q. Q, which is a function of the second derivatives of L with respect
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to M, R, gives information regarding the variances on the estimates. The variance on

the estimate M̂ is

σ2
M̂

= E[(M − M̂)2] =

∫ ∫
(M − M̂)2prob(M, R|YA)dMdR (4.79)

where ’E[ ]’ denotes expectation. In terms of the coefficients of the Taylor series

expansion, σ2
M is

σ2
M =

B

C2 − AB
(4.80)

Similarly, σ2
R is

σ2
R =

A

C2 − AB
(4.81)

The covariance of M, R, denoted σ2
M,R is given by

σ2
M,R =

∫ ∫
(M − M̂)(R− R̂)prob(M, R|YA)dMdR =

C

AB − C2
(4.82)

Thus, the second derivative terms of L completely define the variance and covari-

ances of the parameters we are interested in estimating (M, R).

 σ2
M σ2

M,R

σ2
M,R σ2

R

 =
1

AB − C2

−B C

C −A

 = −
A C

C B

−1

= −H−1 (4.83)

To summarize, Eqn. 4.72 gives the conditions which must be satisfied to obtain

the best estimates of M̂, R̂ given a single observed amplitude. Eqn. 4.83 gives the

covariance matrix for the estimates (M̂, R̂). The validity of Eqn. 4.83 depends on the

validity of the Taylor series expansion about the maxima identified by Eqn. 4.72.

This holds for the bivariate case, where there are two unknowns, M, R. The

method above can easily be extended to the multivariate case, for example, if the

estimation problem is phrased in terms of M, late, lone. Let X0 =
[
M̂ late lone

]
denote the best magnitude and location estimates, and let X =

[
M lat lon

]
denote

the vector of unknowns. The maxima of the posterior density function (or its loge)



177

satisfy
∂L

∂Xi

∣∣∣∣
X0

= 0 (4.84)

where i = 1 · · · 3. From (Sivia, 1996), the multivariate Taylor series expansion takes

the form

L = L(X0) +
1

2

3∑
i=1

3∑
j=1

∂2L

∂Xi∂Xj

∣∣∣∣
X0

(Xi −X0i)(Xj −X0j) + · · · (4.85)

As with the bivariate case, the second derivatives of L determine the spread of the

posterior, prob(M, lat, lon|Y ), and thus the variances of the estimates. The covariance

matrix is given by


σ2

M σ2
M,lat σ2

M,lon

σ2
M,lat σ2

lat σ2
lat,lon

σ2
M,lon σ2

lat,lon σ2
lon

 = −


∂2L
∂M2

∂2L
∂M∂lat

∂2L
∂M∂lon

∂2L
∂M∂lat

∂2L
∂2lat

∂2L
∂lat∂lon

∂2L
∂M∂lon

∂2L
∂lat∂lon

∂2L
∂lon2


−1

(4.86)

In real-time applications, the derivatives in Eqn. 4.86 can be approximated using

finite-difference methods.

Note: Beck and Katafygiotis (1998) have an assymptotic formulation very similar

to the discussion of uncertainties in Sivia (1996).

4.6 Summary

In this chapter, I presented a Bayesian approach to the seismic early warning prob-

lem. Among the advantages of a Bayesian approach are the use of prior information

and the sequential nature of calculations. The Bayes likelihood function is defined

in terms of envelope attenuation relationships and linear discriminant analysis mag-

nitude estimators. The types of information that will be used to define the Bayes

prior in the following chapters include: Gutenberg-Richter magnitude-frequency rela-

tionship, fault locations, previously observed seismicity, and the state of health of the

seismic network and the implied geometric constraints. Whether or not to include the
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Gutenberg-Richter relationship in the Bayes prior affects the initial source estimates.

In the examples that follow, 2 types of source estimates will be tracked: with and

without the Gutenberg-Richter in the Bayes prior. How these two estimates might

be optimally used by subscribers to early warning alerts is discussed in Chapter 9.

In the sequential analysis of incoming data, the Bayes prior is also the posterior

given the available data at the time of the previous estimate. Real-time applications

such as seismic early warning can benefit from the sequential nature of Bayesian

calculations. At the time of each estimate, it is only necessary to maximize the

likelihood of the observations since the previous estimate, and use the posterior from

the previous estimate as the prior. This is efficient in terms of necessary calculations,

and keeps the minimization problem from growing as a function of time. It is most

efficient to formulate the estimation problem in terms of epicentral location (latitude,

longitude) rather than epicentral distance. This means there are at most 3 unknowns

(not counting the origin time), no matter how many stations or channels are included.

It is also more consistent with the form of relevant prior information, such as locations

of previously observed seismicity and the Voronoi cells of currently operating stations.

Finally, a Taylor series expansion is used to approximate the variances on the source

estimates.


