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Appendix D Maximizing the log

likelihood analytically

Consider the case of attempting to find the best estimates M̂, R̂ of the magnitude

and source-to-station distance of an earthquake given a single amplitude observation

at a single channel. As given in Chapter 4, this requires maximizing the posterior

density function, prob(M, R|YA), which in turn, is equivalent to maximizing the log

likelihood. The log likelihood, L, is given by

L = constant− (YA − Ȳ (M, R))2

2σ̂2
(D.1)

where Ȳ (M, R) is our envelope amplitude attenuation relationship given by Eqn. 2.3,

which is repeated here

log10 Ai = aiM − bi(R1i + Ci(M))− di log10(R1i + Ci(M)) + ei + εi

Ai = ground motion envelope amplitude

M = CISN magnitude (Mw for M > 5.0)

R = epicentral distance in km for M < 5

closest distance to fault for M > 5.0 (when available)

R1 =
√

(R2 + 9)

Ci(M) = (arctan(M − 5) + 1.4)(c1i exp(c2i(M − 5)))

e = constant + station corrections

ε = statistical (or prediction) error, ∼ NID(0, σ2)

i = P-wave amplitude, S-wave amplitude
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Thus, L is a function of M, R. The M, R that maximize L need to satisfy the

following conditions (Eqn. 4.72 in Chapter 4)

∂ L

∂M

∣∣∣∣
M̂,R̂

= 0 (D.2)

∂ L

∂R

∣∣∣∣
M̂,R̂

= 0 (D.3)

The partial derivatives make Eqn. D.2 a fairly complicated system of equations

to solve in terms of M, R.

∂L

∂M
= − 1

σ2

(
YA − Ȳ (M, R)

) (
−a−K

(
b + d

log10(e)

R + C(M)

))
= 0 (D.4)

∂L

∂R
= − 1

σ2

(
YA − Ȳ (M, R)

) (
b + d

log10(e)

R + C(M)

)
= 0 (D.5)

where K = c1
exp(c2(M − 5))

1 + (M − 5)2
+ c1 c2(arctan(M − 5) + 1.4)(exp(c2(M − 5)))

= c1
exp(c2(M − 5))

1 + (M − 5)2
+ c2C(M) (D.6)

It is quite difficult to solve Eqns. D.4 and D.5 analytically. An analytic solution

to this system of equations is perhaps not the appropriate approach for a real-time

application such as seismic early warning. As described in Chapter 4, I chose to find

the M, R that maximize L via a brute force, direct-search approach. This involves

evaluating L for numerous pairs of M, R and directly trying to find the M, R that

maximize L.

In Chapter 4, I discuss how the second derivatives of L define the variance and

covariances of the estimates of M, R. That is,

 σ2
M σ2

M,R

σ2
M,R σ2

R

 =
1

AB − C2

−B C

C −A

 = −
A C

C B

−1

= −H−1 (D.7)
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where

A =
∂2L

∂M2

∣∣∣∣
M̂,R̂

B =
∂2L

∂R2

∣∣∣∣
M̂,R̂

C =
∂2L

∂M∂R

∣∣∣∣
M̂,R̂

(D.8)

As can be expected from Eqns. D.4 and D.5, the expressions for A, B, C in terms

of M, R are quite cumbersome.

∂2L

∂M2
= − 1

σ2

((
Yobs − Ȳ (M, R)

) ∂

∂M

(
−a−K

(
b + d

log10(e)

R + C(M)

)))
− 1

σ2

(
−a−K

(
b + d

log10(e)

R + C(M)

))2

(D.9)

where K is given by Eqn. D.6.

∂2L

∂R2
= − 1

σ2

(
−d

log10(e)(Yobs − Ȳ (M, R))

(R + C(M))2
+

(
b + d

log10(e)

R + C(M)

)2
)

(D.10)

∂2L

∂M∂R
=

1

σ2

(
d
log10(e)(Yobs − Ȳ )

(R + C(M))2

(
c1

ec2(M−5)

1 + (M − 5)2
+ c2C(M)

))
(D.11)

+
1

σ2
(1− a−K)

(
b + d

log10(e)

R + C(M)

)
(D.12)

The second derivatives of L relative to M, R evaluated at M̂, R̂ give information

regarding the variances and covariances of the best estimates of magnitude and dis-

tance. If we could find M, R that maximize L, then we could do a Taylor series

expansion about this maxima (M̂, R̂) to get an idea of the spread of the posterior

density function, and hence the variances and covariances of the estimates. However,

we can expect to run into difficulties with the analytical approach, since L is not a

simple function of M and R, and hence, the partial derivatives are complicated. While

conceptually simple, it is difficult to solve Eqn. D.2 analytically for the (M̂, R̂) that

maximize the posterior. We thus choose to approach the problem of maximizing L

using a brute force, direct-search method.


