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Abstract

This thesis presents the design and implementation of SCALE, a tool for systematic software testing

multi-threaded C applications that use the pthread library. SCALE exhaustively explores the non

determinism introduced by thread schedulings and tries to find violations of safety properties. We

have designed SCALE to be flexible so that it is easy to add and combine different exploration and

state space reduction algorithms. In this thesis we describe the currently implemented reduction

algorithms, of which the most important ones are local execution cycle detection and super step

partial order reduction. To exemplify how SCALE can be used, we have applied it to a few multi-

threaded applications, measured its performance and compared the results to those obtained by

other tools. While checking the implementation of a non-blocking queuing algorithm, we were able

to find a previously unknown bug that appears only in some unexpected thread inter-leavings.
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Chapter 1

Introduction

Error free multi-threaded applications are hard to write. Concurrency related errors, might be

revealed only in unexpected and improbable thread inter-leavings. Even if run for a large amount

of time, traditional testing might still miss such errors because it cannot control how the operating

system schedules the threads. When an error is found, it cannot be analyzed because there is no

way to reliably reproduce it. Model checking [6] is one way to address these problems.

A model checker takes as input a finite state model of a system and a specification, and by

exhaustively exploring the state space of the model, it verifies whether it meets the specification or

not. As all states are visited, an error state cannot be missed. If the specification can be violated

then the model checker generates a counter example that reveals the error. By replaying the counter

example, the bug can be reproduced and analyzed.

The size of an application’s state space grows rapidly with the number and the size of its con-

current components. This is commonly known as the state space explosion problem. Without some

form of state space reduction, even for relatively small systems, model checking is infeasible. Par-

tial order reduction [24, 9, 21] is a technique that was successfully used to reduce the number of

states explored. Also, by abstracting the system, its state space can be further reduced. Usually

the abstracted system and the original will not have exactly the same properties, but some errors

might show up in both. When an error not present in the original system is found in the abstracted

system, the abstraction can be refined [2] to account for the difference. Yet another approach [4] is

to implicitly represent the state graph as a boolean formula in propositional logic.

Unlike testing, model checkers usually work on a finite state abstract model of the application,

and can verify both safety and liveness properties. The abstract model can hide some of the bugs,

and it can introduce false positives, errors that can happen in the abstract model but cannot happen

in the actual application. Also, every time the application’s source code changes, the abstracted

model has to be updated.

Systematic software testing is a hybrid approach which, like testing, checks the actual application,

but also, like model checking, exhaustively explores the non determinism introduced by thread
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schedulings. Much like model checking, systematic software testing suffers from the state space

explosion problem: the number of different thread schedulings that have to be tried increases very

rapidly with the number and the size of the concurrent components. One drawback of this approach

is that it usually does not check liveness properties, it only checks for common safety violations like

absence of deadlock, race conditions, and assertion violations.

In this thesis we describe the design of the SCALE (Source Code Analyzer for Locating Errors),

a tool for systematic software testing multi-threaded Unix/Linux applications written in C using

the pthread library. By exhaustively exploring the non determinism introduced by thread inter-

leavings, it tries to find and report common concurrency errors such as deadlocks, and assertion

failures. SCALE can also be used to check safety properties specified as invariants on the global

state of the application. We address the state space explosion problem by chaining various state

space reduction algorithms. This thesis describes in detail two of the algorithms: local execution

cycle detection and super step partial order reduction.

As SCALE checks the actual application, not an abstracted model of the application, it ensures

that no spurious violations are reported. All errors that are found are real errors that can manifest

when the application is run. When SCALE detects a property violation, it generates a counter

example that can later be replayed to reproduce the bug.

We have successfully applied SCALE to a few multi-threaded applications, and we were able

to find concurrency related errors. For example we have found a bug in a non-blocking queuing

algorithm. Also, by applying our tool to correct systems, we were able to measure the amount of

reduction achieved using the local execution cycle detection and super step partial order reduction

algorithms. We compare our results to those obtained by other tools and we show that, in some

cases, SCALE requires fewer runs than other tools to verify the same applications.

This thesis is organized as follows: In Chapter 2 we briefly present related work in software model

checking and systematic software testing. Chapter 3 introduces the multi-threaded model assumed

by SCALE. In Chapter 4 we present the state space exploration and state space reduction algorithms

implemented in our tool. Chapter 5 presents the design and the implementation of SCALE. Chapter

6 shows some preliminary results obtained by applying our tool to some multi-threaded applications.

Finally, in Chapter 7 we conclude and present possible future directions.
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Chapter 2

Related Work

A wide variety of model checking and systematic software testing tools that work on C programs

have been implemented. Usually, model checkers can verify a larger class of properties specified in

temporal logics. Systematic software testing tools only check for safety properties like absence of

deadlock, race conditions, and assertion failures.

Another difference between the various tools is how they represent the explored state space.

Some tools explicitly store application states. Others store the state space implicitly as a set of

constraints. There are even tools that do not store states at all.

Berkeley Lazy Abstraction Software Verification Tool (BLAST)[2] is a model checker

for C programs that does counterexample driven automatic abstraction refinement. It constructs an

abstract model of the program, which is then model checked for safety properties. If spurious errors

are detected, the abstract model is refined and checked again.

CHESS[19] is the first tool to introduce context switch bounding. It verifies multi-threaded

C, C++ and .NET code written as test cases. A state is encoded as the happens-before graph of

the partial order equivalent executions that lead to that state, thus achieving some partial order

reduction. Backtracking to a previous visited state is done by cleaning up the resources used by the

test case, restarting it and following a path that leads to the desired state. CHESS checks safety

properties like deadlock and data races, and can also find some non progress cycles. CHESS has been

successfully used to verify Windows device drivers and also the kernel of a new operating system.

C Model Checker (CMC)[16] has been successfully used to verify protocol code written in C.

CMC stores states explicitly and uses heuristics to prioritize the state space search. It is also able

to save and restore previously visited states. CMC can check for memory leaks, assertion failures,

and global invariants.

Inspect[25] is a systematic software testing tool for checking multi-threaded programs written

in C or C++ using the pthread library. It performs a static analysis to identify shared data and

then it instruments the program to enable the verification. During state space exploration, Inspect

doesn’t store application states, but it uses dynamic partial order reduction [7] to reduce the number
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of application runs it has to try. Inspect can find common errors like deadlocks, data races and

assertion violations.

pan_cam[27] is an explicit state model checker that verifies C programs compiled down to

LLVM bytecode [15]. It uses SPIN as a backend to drive the state space exploration. pan_cam

uses super step partial order reduction and context switch bounding to reduce the number of states

explored. Taking advantage of the SPIN backend, pan_cam can verify both safety and liveness

properties expressed as Promela never claims or LTL[22] formulas.

SPIN[11] is an explicit state model checker generator which can be used to verify models written

in Promela (Process Meta Language). Since version 4.0 it allows C code to be embedded in the

Promela model. Spin can be used to verify both safety and liveness properties. The properties are

specified using never claims which represent Buchi automata. Spin can also convert an LTL formula

to the corresponding never claim. A wide range of techniques are used to reduce the state space and

the memory occupied by the states: partial order reduction, state compression and bitstate hashing.

VeriSoft[10] is a systematic software testing tool that verifies C code. It performs a stateless

search and uses partial order reduction to reduce the number of times it has to run the application.

VeriSoft can be used to check for assertion violations and coordination problems like deadlocks.
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Chapter 3

Multi-Threaded Applications

3.1 Dynamic Semantics

A Multi-Threaded Application is a finite set P of threads. We define the state space of the multi-

threaded application using a dynamic semantics similar to the ones introduced in [10, 7].

Each thread executes a sequence of statements described by a deterministic sequential piece of C

code. The code is deterministic in the sense that presented with the same data, it will execute the

same sequence of statements.

Initially, the application has only one active thread, called the main thread. The main thread

executes the sequence of statements found in the main function of the application’s C source code.

For another thread to become active, it must first be created by executing a "create" statement from

an already active thread. A newly created thread p executes the sequence of statements found in

the start routine that was specified in the statement that created p.

An active thread that has ended and has no more statements to execute becomes a dead thread.

Dead threads cannot be created again, and cannot become active ever again. P , the set of all

threads, is finite and ensures that only a finite number of threads are ever created.

Only active threads can execute statements.

Threads communicate with each other by accessing, in their statements, a finite set of commu-

nication variables. Each access to a communication variable is atomic. We distinguish two classes

of communication variables: (a) data variables such as global variables and the heap memory, and

(b) synchronization variables such as threads, mutexes, and condition variables.

A statement that accesses a communication variable or is an assertion is called a global statement.

Any other statement is called a local statement.

At any time the multi-threaded application is said to be in a state called the current state.

The execution of a statement in the current state is said to block if it cannot currently be

completed. The execution of a local statement is not allowed to block.

The application is in a global state if for every active thread, the next statement to be executed
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is a global statement. A thread exit is considered to be a global statement, and this ensures that

each active thread has at least one global statement. We assume that there are no infinite sequences

of local statements, so each thread, after becoming active, eventually reaches a global statement.

The initial global state is the state reached when the main thread reaches the first global state-

ment. The creation of a new thread is a global statement, so the main thread is the only active

thread in the initial global state. Since the code for the main thread is deterministic and no global

statements have been executed before the initial global state is reached, the initial global state is

unique and from now on we refer to it as s0.

A thread transition t moves the application from one global state s to another global state s′ by

executing statements from a single thread: a global statement followed by a finite sequence of local

statements up to (but not including) the next global statement. Formally, we write s t−→ s′. Let T

be the set of all transitions.

A transition is disabled in a global state s if the execution of its global statement in s would

block. A transition that is not disabled in a global state s is said to be enabled in s. Note that

the execution of an enabled transition always terminates since the global statement won’t block, the

number of local statements is finite, and each local statement can’t block.

A global state s′ is said to be reachable from a global state s if there exists a finite sequence of

transitions w which, taken in order, lead the multi-threaded application from s to s′. Formally, we

write s w⇒ s′.

A multi-threaded application is a closed system evolving from its initial global state s0 by exe-

cuting enabled transitions from T . The environment, if any, is either included in the application,

or it doesn’t store any state. The execution terminates when it reaches a global state in which

no transitions are enabled. If the execution terminates in a state s in which there are still active

threads, then s is considered to be a deadlock state.

The above observations impose the following restrictions on the types of C programs that can

be verified by SCALE:

• each thread runs a deterministic sequence of C statements;

• there are no infinite loops that contain only local statements;

• there are no other blocking statements besides the pthread operations;

• if during execution, the application reaches a state s, with the environment being in a state e,

then any execution that leads to state s also ensures that the environment is in state e.

SCALE assumes that the application satisfies the above restrictions and has no mechanism to check

or enforce them.
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Definition 1. A multi-threaded application is represented by a transition system AG = (S,→, s0)

where:

• S is the set of reachable global states of the multi-threaded application;

• →∈ S × S is the transition relation, (s, s′) ∈→ if and only if ∃t ∈ T.s t−→ s′;

• s0 is the initial global state of the multi-threaded application.

Let us fix a multi-threaded application AG for the rest of this chapter.

Definition 2. A safety property is considered to be one of the following:

• absence of deadlock, which is violated when the multi-threaded application reaches a deadlock

state;

• assertion, which is violated when the assertion fails;

• global invariant, which is a boolean function on the communication variables, and it is violated

when the function evaluates to false.

Theorem 1. If there exists a reachable state of the multi-threaded application that violates a safety

property, then there exists a global state in AG where the same safety property is violated.

Proof. Let s be a reachable state where a safety property is violated.

If s is a deadlock state, then for each thread, the next statement is a global statement because

only global statements can block. So s must be a global state in AG.

If s is an assertion violation, then let pi be the active thread whose next statement is the assertion.

Assertions are global statements, so pi’s next statement is a global statement. If for every other

active thread pj , j 6= i, we execute all the statements up to its next global statement, then we end

up in a global state s′ in AG. Note that such a global statement must exist for every active thread

because the last statement of a thread must be a thread exit which is a global statement. The

assertion violation in thread pi is not affected by the execution of local statements in other threads

so the assertion is still violated in s′.

If s is a state in which an invariant is violated, then by executing the local statements in every

thread up to the next global statement we end up in a global state s′ in AG. Local statements

cannot change communication variables, and invariants only refer to communication variables, so

the invariant is still violated in s′.

Considering the above result, from now on, when we use the term state we mean a global state

in AG.
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3.2 State Representation

Definition 3. States are elements from the set State where:

State = SharedState× LocalStates, and

LocalStates = P → LocalState?, where LocalState? = LocalState ∪ {⊥}.

For a state s = (g, ls)

g ∈ SharedState contains the values for all communication variables.

ls ∈ LocalStates is a function that takes a thread as an argument and returns its local state. If p is

an active thread then ls(p) contains the values for all the local variables of p, and also, the values of

all the arguments passed to the functions that are currently on p’s call stack. If p is not an active

thread (either it was not created, or it is dead) then ls(p) = ⊥.

Definition 4. A transition from a thread p in a local state l is a function:

tp,l : SharedState→ LocalState? × SharedState× (P × LocalState)?.

If in a state s = (g, ls) we have an enabled transition tp,l, with tp,l(g) = (l′, g′, n), then the state

s′ = (g′, ls′) reached by taking the transition tp,l in s is obtained as follows:

• g′ is the shared state returned by the transition.

• If l′ = ⊥, then thread p has just exited and now ls′(p) = ⊥. In this situation we must have

n = ⊥ and g′ must contain, in the corresponding communication variable, the fact that thread

p has ended.

• If l′ 6= ⊥ and n = ⊥, then ls′(p) = l′. The local state of thread p has changed.

• If l′ 6= ⊥ and n = (p′, l′′), then ls′(p) = l′, ls′(p′) = l′′ and g′ must contain, in the corresponding

communication variable, the fact that thread p′ was created.

• If n = ⊥, then for every thread i ∈ P, i 6= p we have ls′(i) = ls(i).

• If n = (p′, l′′), then for every thread i ∈ P , i 6= p ∧ i 6= p′, we have ls′(i) = ls(i). A transition

from one thread cannot affect the local states of other threads, except the local state of a newly

created thread.

To represent a state s = (g, ls) we would like to store the values of all communication variables

and also the values of all local variables of each thread. We consider that such an approach is not

feasible because it uses too much much memory per stored state. Instead we have opted for a state

representation similar to the one introduced in [18, 19].

Definition 5. Two transitions t1 and t2, in a state s, are independent if:

1. they are both enabled and executing one cannot disable the other one,
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2. both the execution of the sequence t1; t2, and the execution of the sequence t2; t1 from s lead

the multi-threaded application to the same state s′, and

3. neither t1 nor t2 are assertions or change the truth value of any global invariant.

Two transitions that are not independent are dependent. Let D ⊆ T ×T be the dependency relation

between transitions.

A similar definition of independence was originally introduced in [13].

Definition 6. Two sequences of transitions are partial order equivalent with respect to an inde-

pendence relation, if they can be obtained from each other by successively exchanging adjacent

independent transitions.

Lemma 1. Let w be a finite sequence of transitions, and let w′ be another sequence of transitions

obtained from w by exchanging two adjacent independent transitions. If s w⇒ s′, then s w′⇒ s′.

Proof. Let w = t1t2...titi+1...tn, and let w′ = t1t2...ti+1ti...tn be obtained by swapping the adjacent

independent transitions ti and ti+1.

We split w in the following three parts: w1 = t1...ti−1, w2 = titi+1 and w3 = ti+2...tn.

We also split w′ in the following three parts: w′1 = t1...ti−1, w′2 = ti+1ti and w′3 = ti+2...tn.

Note that w1 = w′1 and w3 = w′3.

Let s w1⇒ s′′, we also have s
w′1⇒ s′′.

ti and ti+1 are independent so we must have s′′ w2⇒ s′′′ and s′′
w′2⇒ s′′′.

We know that s w⇒ s′ and we have s w1⇒ s′′
w2⇒ s′′′ so we must have s′′′ w3⇒ s′.

Because w3 = w′3 we also have s′′′
w′3⇒ s′.

Combining the parts we have: s
w′1⇒ s′′

w′2⇒ s′′′
w′3⇒ s′, so s w′⇒ s′.

Lemma 2. If w and w′ are two partial order equivalent sequences of transitions and s w⇒ s′, then

s
w′⇒ s′.

Proof. From the definition of partial order equivalence we know there exists a finite sequence of

sequences of transitions: <w = w1, w2, ..., wn = w′ > such that for each 0 < i < n, wi+1 is obtained

from wi by exchanging two independent transitions.

We repeatedly apply Lemma 1 for each pair (wi, wi+1), starting with (w1, w2), and at the end

we get that s w′⇒ s′.

Definition 7. A happens-before graph[14], corresponding to a finite sequence of transitions w =

t1t2...tn, starting from s0, and a dependency relation D ⊆ T ×T , is a graph HB(w) = (A,H) where:

• A = {ti | 0 < i ≤ n} is the set of nodes, one node per each transition in w. If it happens

that the same transition appears twice in w, then we have two nodes for it, and we distinguish

between them considering the order in which they appear.
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• H = {(ti, tj) | 0 < i < j ≤ n ∧ (ti, tj) ∈ D+}, the set of edges, is the transitive closure of the

dependency relation D on the set A.

Lemma 3. Two sequences of transitions w1 and w2, starting from s0, are partial order equivalent

if and only if HB(w1) = HB(w2).

Proof. Let HB(w1) = (A1, H1) and HB(w2) = (A2, H2). If w1 is partial order equivalent to w2,

then they must contain the same transitions so we must have A1 = A2.

For any two independent transitions ti and ti+1 from w1, we have that (ti, ti+1) /∈ H1. If we

swap them and form a new sequence w′1, with HB(w′1) = (A′1, H
′
1), then H ′1 = H1.

w1 and w2 are partial order equivalent, so there exists a sequence of sequences of transitions

<w1 = v1, v2, ..., vn = w2 > such that for each 0 < i < n, vi+1 is obtained from vi by exchanging two

independent transitions. Repeatedly applying the previous argument for adjacent pairs (vi, vi+1),

0 < i < n, we get that H1 = H2.

So we must have HB(w1) = HB(w2).

We prove by induction on the length of w1 that if HB(w1) = HB(w2) then w1 is partial order

equivalent to w2.

If HB(w1) = HB(w2), then A1 = A2, and so w1 and w2 contain the same transitions, maybe in

a different order.

For a w1 of length 0, w2 must also have length 0 and so they are partial order equivalent.

For a w1 = t1 of length 1, we must also have w2 = t1 since they have the same transitions.

Assuming that for any w′1 and w′2, of length n − 1, n > 0, if HB(w′1) = HB(w′2), then w′1

and w′2 are partial order equivalent, we proceed to prove that for any w1 and w2 of length n, if

HB(w1) = HB(w2) then w1 and w2 are partial order equivalent.

We have two cases:

(a) w1 = t1...tn and w2 = t′1...t
′
n with tn = t′n. We can remove the node that corresponds to tn

from both of HB(w1) and HB(w2) and we are left with the happens before graphs for t1...tn−1 and

t′1...t
′
n−1. These graphs must be identical (because we’ve removed the same node from both) and so

we can apply the induction hypothesis and get that t1...tn−1 is partial order equivalent to t′1...t′n−1.

Since tn = t′n we can conclude that w1 and w2 are partial order equivalent.

(b) w1 = t1...tn and w2 = t′1...t
′
n with tn 6= t′n.

Because w1 and w2 have the same transitions, there exists a transition t′i = tn. tn is the last

transition in w1, meaning that it cannot have outgoing edges in H1. Since H1 = H2, for any t′j , j > i

we have (t′i, t
′
j) /∈ H2 ∧ (t′j , t

′
i) /∈ H2. In other words, t′i is independent with all the transitions that

occur in w2 from its place up to the end of w2. We can repeatedly swap t′i with these transitions

until t′i becomes the last transition.

We have constructed a new sequence, w′2, which is partial order equivalent to w2. Using the first
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part of this proof, we know that HB(w′2) = HB(w2), so HB(w′2) = HB(w1), and moreover, w′2 and

w1 have the same last transition. We can use case (a) to prove that w1 and w′2 are partial order

equivalent, so w1 and w2 are partial order equivalent.

Definition 8. For a state s and a finite sequence of transitions w such that s0
w⇒ s, we say that

HB(w) is a representation of s.

Note that only reachable states can be represented. Also, there might be more than one repre-

sentation for a single state, corresponding to different transition sequences that lead to it.

Theorem 2. Let’s consider a state s1 that has a representation (A1, H1) and a state s2 that has a

representation (A2, H2). If (A1, H1) = (A2, H2), then s1 = s2.

Proof. s1 has a representation implies that there exists a sequence of transitions w1 such that s0
w1⇒ s1

and (A1, H1) = HB(w1).

s2 has a representation implies that there exists a sequence of transitions w2 such that s0
w2⇒ s2

and (A2, H2) = HB(w2).

We have HB(w1) = HB(w2) which implies, using Lemma 3, that w1 and w2 are partial order

equivalent.

From Lemma 2 we know that two partial order equivalent sequences of transitions, if executed

from the same state s0, lead to the same state s, so we must have s1 = s2.

Theorem 3. Each state s from AG has at least one representation.

Proof. s is in AG, and AG contains only the reachable states, so there must exist a w such that

s0
w⇒ s.

Then HB(w) is a representation of s.

Theorem 4. If AG is acyclic, then each state s from AG has only a finite number of representations.

Proof. From Graph Theory we know that if a graph is acyclic then it contains only a finite number

of different paths.

For our case, there are a finite number of paths from s0 to s, so there are a finite number of

transition sequences w such that s0
w⇒ s. Each such transition sequence w can generate at most one

different representation HB(w) for s.

So s can only have a finite number of representations.

In all the previous arguments we’ve assumed that we know the transitions and that we can store

them. For a C program this would not be feasible. For example, a transition might involve some

library calls, and it would be complicated to come up with a function that represents what the call

does and compose it with all the other statements in the same transition.
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Luckily, if we take a closer look at our arguments, the only thing that we have assumed is that

we can identify which thread takes each transition, which transitions are enabled in the current

state, and which transitions are dependent. Our definition of the state space AG requires us to also

be able to apply a transition t to a state s and get the new state s′. We can do that by running

the actual application. Assuming that the application is in the state s, we can schedule the thread

that corresponds to transition t and let it run up to the next global statement. The application is

guaranteed now to be in state s′ because we have assumed that all transitions are deterministic.

Whenever we want to get to a certain state s, reachable through a sequence of transitions w,

we can restart the application from its initial state s0 and schedule, in order, the threads that

correspond to the transitions in w. Because all the transitions are deterministic, we are guaranteed

to end up in s. So what we only need in order to recreate s, is the sequence of threads that have to

be scheduled from s0. The same sequence of threads will always lead, when scheduled from s0, to

the same state s.

We also have to identify which transitions create new threads, and which transitions exit active

threads.

We can over-approximate the dependency relation as follows.

Definition 9. Two transitions are dependent if any of the following is true:

• they access the same communication variable, and at least one of the transitions writes to the

variable;

• at least one of the transitions is an assertion;

• at least one of the transitions accesses a communication variable used to calculate the value of

at least one global invariant.

Any access to a synchronization variable is considered to be a write access.

We abstract all the information we need to know about a transition in an action.

Definition 10. For a transition t, the corresponding action is a triple (p, op, vl) where:

• p is the thread taking the transition t;

• op is the operation performed in the transition t. For example, it can be a read, a write, a

thread_create, a thread_exit, mutex_lock, etc.;

• vl is a list of communication variables accessed by the transition t. For example, if the transition

creates a new thread, then the variable list specifies which thread is created, if the transition

reads a variable, then the variable list specifies which variable is read, etc.
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An action a, which abstracts a transition t, is enabled in a state s if t is enabled in s. An action

that is not enabled is disabled.

We can extend the dependency relation and the partial order equivalence, Definitions 9 and 6,

from transitions to actions.

If we have s0
w⇒ s, then we can use a scheduling mechanism and the sequence of actions that

corresponds to w to recreate s. Also, every time we schedule the same sequence of actions from s0,

we are guaranteed to reach the same state state s.

From what we have said before, we know that we could use a sequence of threads, or a sequence

of actions, to represent a state s that is reachable from s0. But, by doing so, we would get different

representations of s even for executions that are partial order equivalent. As it was the case with

transitions, we can use a happens-before graph to create a single representation for all partial order

equivalent executions.

Definition 11. A happens-before graph for actions, corresponding to a finite sequence of actions

q = a1a2...an, is a graph HBA(q) = (A,H) where:

• A = {ai | 0 < i ≤ n} is the set of nodes, one node for each action. If the same action appears

multiple times in the sequence we create a new node for each time it appears and we distinguish

between them considering their order in the sequence.

• H = {(ai, aj) | 0 < i < j ≤ n ∧ (ai, aj) ∈ D+}, where D+ is the transitive closure of the

dependency relation D for actions from Definition 9.

Definition 11 is similar to Definition 7, but it uses actions instead of transitions.

From now on, to represent a state s, reachable from s0 by scheduling a sequence q of actions, we

will use the happens-before graph for actions HBA(q).

Lemmas 1, 2, 3, and Theorems 2, 3, 4 also hold for sequences of actions and happens-before

graphs for actions. The reason why this is true is that using actions and a scheduling mechanism,

we can reconstruct both the effect of transitions and the dependency relation between transitions,

assuming that transitions are deterministic.

Before we can present the state space exploration algorithms, we have to make some assump-

tions about the scheduling mechanism. In Chapter 5 we will show how such a mechanism can be

implemented.

Remember that a state s was a tuple (g, ls) where g is the shared state and ls is the local

state for each thread. We assume that g is a tuple (dv, sv) where dv holds the values for all the

data variables (global variables and the heap), and sv holds the values for all the synchronization

variables. Considering the memory layout of an application, presented in Figure 3.1, we can identify

the components of the state. For each thread, the local state is stored in the thread’s stack. The
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Figure 3.1: The memory layout of an application

data variables are stored in the global variables and the heap. The synchronization variables are

stored in the OS kernel.

We assume that the scheduling mechanism gives us read access to the stacks of each thread and

also to the data variables that correspond to the current state of the application. The scheduling

mechanism also allows us to evaluate invariants in the current state.

We assume that the scheduling mechanism allows us to get the application to its initial state s0,

and from that state, allows us to schedule one thread at a time. For each thread scheduling p, the

mechanism atomically executes the transition t that corresponds to thread p, and the current state

of the application becomes s′, assuming that we had s t→ s′.

We assume that the scheduling mechanism allows us to get what is the configuration correspond-

ing to the current state.

Definition 12. A configuration that corresponds to a state s is a set of tuples (a, enabled, new),

one tuple for each active thread p, where:

• a is the next action of thread p in state s;

• enabled is true if a is enabled in s, and false otherwise.

• new is true if a is from a thread p that was just created, and false otherwise. Only one tuple

can have new = true.

Definition 13. We make the following notations for a configuration config:

• actions(config) is the set of all available next actions including both the enabled and the

disabled ones;

• enabled_actions(config) is the set of enabled next actions;

• enabled_threads(config) is the set of threads that have an enabled next action;
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• new_action(config) is ⊥ if no new thread was created, or the next action that corresponds

to the new thread;

• new_thread(config) is ⊥ if no new thread was created, or the new thread if one was created.

Definition 14. For a happens-before graph (A,H) that represents a state s, and an action a′

enabled in s, extend((A,H), a′) is a happens-before graph (A′, H ′) with:

• A′ = A ∪ {a′}. Add a new node for the action a′;

• H ′ = H ∪ {(a, a′) | a ∈ A ∧ (a, a′) ∈ D+}, is the transitive closure of the dependency relation

D on A′.

Lemma 4. If (A,H) is a representation of s, a′ is an action enabled in s that abstracts a transition

t′, and s t′−→ s′, then extend((A,H), a′) is a representation of s′.

Proof. Let extend((A,H), a′) = (A′, H ′).

(A,H) is a representation of s implies that there exists a sequence of actions q = a1...an that

abstracts a sequence of transitions w = t1...tn such that s0
w⇒ s.

We construct a new sequence of transitions w′ = t1...tntn+1, with tn+1 = t′, and from s
t−→ s′ we

have that s0
w′⇒ s′. Let q′ = a1...anan+1, with an+1 = a′, the sequence of actions that abstracts w′.

HBA(q′) = (A′′, H ′′) is a representation for s′.

What is left to show is that (A′′, H ′′) = (A′, H ′).

From Definition 11 we have A′′ = {ai|0 < i ≤ n+ 1} = {ai|0 < i ≤ n} ∪ {a′} = A ∪ {a′} which

is the same as A′ in Definition 14. So A′′ = A′.

Also, from Definition 11 we have H ′′ = {(ai, aj) | 0 < i < j ≤ n+ 1 ∧ (ai, aj) ∈ D+} = {(ai, aj)

| 0 < i < j ≤ n ∧ (ai, aj) ∈ D+} ∪ {(ai, an+1) | 0 < i ≤ n ∧ (ai, an+1 ∈ D+} = H ∪ {(a, a′) |

a ∈ A ∧ (a, a′) ∈ D+} which is the same as H ′. So H ′′ = H ′.

We have extend((A,H), a′) = (A′′, H ′′), so extend((a,H), a′) is a representation of s′.

Definition 15. The depth of a happens before graph for actions (A,H) is defined as the number

of nodes of the graph: depth((A,H)) = |A|.

Lemma 5. Given a happens before graph (A,H) and an action a, depth(extend((A,H), a)) =

depth((A,H)) + 1

Proof. Let (A′, H ′) = extend((A,H), a). From Definition 14 we get that |A′| = |A| + 1, so

depth(extend((A,H), a)) = depth((A,H)) + 1.
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Chapter 4

State Space Exploration

4.1 Exploration Algorithms

Definition 16. For a state representation n that corresponds to a state s, a call of replay(n) ensures

that the current state of the application becomes s, and also, the call returns the configuration that

corresponds to s.

Definition 17. A state s is considered to be explored if, during the exploration, s was at least once

the implicit current state of the application.

Lemma 6. A state s is explored by an exploration algorithm, if the algorithm calls replay at least

once with a representation (A,H) of s as an argument.

Proof. Calling replay with a representation of s as an argument ensures that the current state of

the application becomes s. Using Definition 17 we can conclude that s is explored.

If replay is the only way the current state can be changed, then the implication is actually an

equivalence.

Definition 18. Assuming that AG = (S,→, s0) is acyclic, AR = (VR, ER, u0) is a graph of repre-

sentations in which:

• VR = {HBA(q) | ∃s∃w.s0
w⇒ s ∧ q = abstract(w)}. Any representation of a state from AG is

a node in AR.

• ER = {(HBA(q), HBA(q; a)) | ∃s∃w∃t∃s′.s0
w⇒ s∧s t−→ s′∧q = abstract(w)∧a = abstract(t)}.

If there exists a transition between two states s and s′ in AG, then there exists an edge between

any representation of s and any representation of s′ that extends the representation of s.

HBA(q; a) = extend(HBA(q), a).

• uo = HBA(ε) is a node that corresponds to the initial state.
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Lemma 7. If AG is acyclic, then the corresponding AR has a finite number of nodes (AR is well

defined).

Proof. AG has a finite number of states.

AG is acyclic, and using Theorem 4 we know that each state has only a finite number of repre-

sentations.

The nodes of AR are all the representations for all the states, we have a finite number of repre-

sentations for each state, and a finite number of states, so AR has a finite number of nodes.

Lemma 8. AR is a acyclic.

Proof. Let’s assume that AR = (VR, ER, u0) contains a cycle: (v0, v1, ..., vn), with (∀i.0 ≤ i ≤ n.vi ∈

VR) ∧ (v0 = vn) ∧ (∀i, 0 ≤ i < n.(vi, vi+1) ∈ ER). From Definition 18 we know that for any i,

0 ≤ i < n, there exists an action ai+1 such that vi+1 = extend(vi, ai+1). From Lemma 5 we have

that depth(vi+1) = depth(vi)+1, so depth(vi) < depth(vi+1). Repeatedly applying this observation,

we can conclude that depth(v0) < depth(vn), but v0 = vn and we should have depth(v0) = depth(vn).

We have reached a contradiction, so our assumption that AR is not acyclic is wrong.

Algorithm 1 Basic stateless exploration algorithm.

1: Frontier = {HBA(ε)}
2: while Frontier 6= ∅ do
3: n = pick(Frontier)
4: Frontier = Frontier \ {n}
5: config = replay(n)
6: Successors = ∅
7: for all a ∈ enabled_actions(config) do
8: Successors = Successors ∪ {extend(n, a)}
9: end for

10: Frontier = Frontier ∪ Successors
11: end while

Lemma 9. If AG is acyclic, and AR is the graph of representations that corresponds to AG, then

Algorithm 1 terminates and every node in AR is eventually picked in line 3 of the algorithm.

Proof. First we prove that Frontier holds only nodes from AR. This is an invariant for the while

loop.

The invariant holds at the beginning of the loop:

After the execution of line 1, right before the while loop, Frontier contains u0 which is a node

from AR.

The invariant is maintained by the loop body:

In line 3 of the algorithm we know that Frontier is not empty (from the guard), and assuming

the invariant holds at the beginning of the loop, Frontier only contains nodes from AR.



18

At the end of line 3, n is an element from Frontier so it is a node from AR, a representation of

a state s in AG.

In line 4, we remove n from Frontier, so it still contains only nodes from AR, or it is empty.

n is a representation of some state s from AG, and by calling replay on n we ensure that, after line

5 is executed, the implicit current state of the application becomes s and config is the configuration

that corresponds to s.

In line 7, enabled_actions(config) is a set that contains all actions that are enabled in the

current state s (Definition 13).

In line 8, n is a representation of s and a is enabled. Using Lemma 4 we get that extend(n, a)

is a representation of a state s′ that is a successor of s in AG. From Definition 18 we know that

extend(n, a) is a successor of n in AR. So after line 9, Successors is the set of all successors of n in

AR.

In line 10, Frontier is extended with the set Successors, which contains only nodes in AR. So

at the end of line 10, Frontier contains only nodes from AR.

So far we have proved that Frontier only holds nodes from AR, n is a node from AR, and at the

end of line 9, Successors contains all the successors of n.

We can now regard Algorithm 1 as a generic graph traversal algorithm that visits nodes from

AR without storing them.

From Graph Theory we know that if AR is acyclic, then such a traversal terminates and visits

all the nodes.

From Lemma 8 we know that AR is acyclic, so Algorithm 1 will visit every node of AR, meaning

that every node is eventually picked in line 3.

Lemma 10. If for every node n in AR, an exploration algorithm calls replay(n) at least once, then

it necessarily explores all states in AG.

Proof. From Theorem 3 we know that every state from AG has a representation. Definition 18

ensures that AR contains all the representations for all the states in AG. So for any state s from

AG, AR contains at least one node n that is a representation of s. The exploration algorithm calls

replay(n), and using Lemma 6 we get that s is explored.

Theorem 5. If AG is acyclic, then Algorithm 1 terminates and explores all the states in AG.

Proof. By applying Lemma 9 we get that Algorithm 1 terminates.

Lemma 9 ensures that Algorithm 1 calls replay(n) for every node n in AR. Using Lemma 10

we get that all the states in AG are explored.

Lemma 11. If Filters = ∅, then Algorithm 2 behaves exactly like Algorithm 1.
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Algorithm 2 Exploration algorithm with state filtering.

1: Frontier = {HBA(ε)}
2: while Frontier 6= ∅ do
3: n = pick(Frontier)
4: Frontier = Frontier \ {n}
5: config = replay(n)
6: Successors = ∅
7: for all a ∈ enabled_actions(config) do
8: Successors = Successors ∪ {extend(n, a)}
9: end for

10: for all f ∈ Filters do
11: Successors = f(Successors)
12: end for
13: Frontier = Frontier ∪ Successors
14: end while

Proof. If Filters = ∅, then line 11 of Algorithm 2 will never be executed and the set Successors,

at the end of line 12 will be the same as at the end of line 9. The algorithm has the same effect as

if lines 10 - 12 were removed. Removing lines 10 - 12 leaves us with the code for Algorithm 1.

4.2 State Filters

Figure 4.1: Exploration using state filters

Each state filter can tag extra information to each state representation. The extra information

can be retrieved in a later call of the filter function. Also, a state filter can add some global
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information about all the state representations seen so far.

4.2.1 The NotSeenBefore Filter

Algorithm 3 NotSeenBeforeF ilter(Successors)

1: H = H ∪ {n}
2: for all n′ ∈ Successors do
3: if n′ ∈ H then
4: Successors = Successors \ {n′}
5: end if
6: end for
7: return Successors

The extra information used by the NotSeenBeforeF ilter in Algorithm 3 is a set (a cache) of

already visited state representations.

Theorem 6. If AG is a directed acyclic graph and the set Filters in Algorithm 2 contains only the

function presented in Algorithm 3, then Algorithm 2 terminates and explores all the states in AG.

Proof. Algorithm 3 is called for each iteration of the while loop in Algorithm 2. In each iteration,

Algorithm 3 can only remove elements from the set Successors (line 4).

Line 1 of Algorithm 3 gets called for each visited state representation n, so the set H stores the

representations visited so far.

The combination of the two algorithms is a restricted traversal of the graph AR in which previ-

ously visited nodes are not revisited. From Graph Theory we know that such a traversal terminates

and visits all the nodes in AR. So for any node n in AR, Algorithm 2 calls, in line 5, replay(n).

Using Lemma 10 we get that all the states in AG are explored.

The main difference between Algorithm 1 and Algorithm 2 with the NotSeenBefore filter is

that the first one doesn’t store any state representations, while the second one stores all the states

representations. It is a trade-off between memory consumption and doing the same work multiple

times. The two algorithms are at the extremes of this trade-off. Algorithm 1 uses little memory, but

cannot avoid doing extra work when it encounters a node that was previously visited. Algorithm 2

with theNotSeenBefore filter avoids exploring nodes more than once, but it uses a lot more memory

because it has to store all visited nodes. By modifying H in Algorithm 3 from a set that stores all

the nodes, to a cache that can store only a limited number of nodes, we could control the trade-off

between memory consumption and duplicate work.

4.2.2 The DepthBounding Filter

Lemma 12. If AG contains at least one cycle, and if we construct AR according to Definition 18,

then AR has an infinite number of nodes.
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Proof. Let’s pick a cycle from AG: s1
t1−→ s2

t2−→ s3...
tn−1−−−→ sn, with n > 1 ∧ s1 = sn.

Let ai be the action that abstracts transition ti for all 0 < i < n.

Let n be a representation of s1, and let us extend n with a1, the resulting state with a2, and so

on, until we have extended n with the sequence a1...an−1 and we reach a representation n(1) that is

also a representation of s1 (we have executed the cycle once). depth(n(1)) = depth(n) + n − 1, the

depth is increase by the size of the cycle.

We can now repeat the argument and extend n(1) to get n(2), another representation for s1 that

has depth(n(2)) = depth(n) + 2(n− 1). In fact for any natural number k, we can extend n with the

actions in the cycle k times and we get depth(n(k)) = depth(n) + k(n− 1).

We have an infinite number of representations for s1, so AR has an infinite number of nodes.

Note that any state from the cycle has an infinite number of representations, not just s1.

Considering the result presented in Lemma 12, the exploration algorithms presented so far (Al-

gorithm 1 and Algorithm 2 with the NotSeenBefore filter), do not terminate if they are run for a

multi-threaded application AG that has a cycle.

The common solution for such a problem is to use a technique called depth bounding[5], the model

checker verifies finite executions that are not longer than a certain bound. The usual approach is

to set a large depth bound, and whenever this bound is reached, declare that a live-lock was found

[10, 19]. Algorithm 4 shows how depth bounding is implemented in SCALE as a state filter.

Algorithm 4 DepthBoundingF ilter(Successors)

1: for all n′ ∈ Successors do
2: if depth(n′) > DEPTH_BOUND then
3: Successors = Successors \ {n′}
4: end if
5: end for
6: return Successors

Theorem 7. If Algorithm 2 has in the Filters list Algorithms 3 and 4, then it explores all the states

from AG that are reachable through a sequence of transitions of length at most DEPTH_BOUND.

Proof. Let A′R = (V ′R, E
′
R) be a sub-graph of AR = (VR, ER) such that:

• V ′R = {v ∈ VR | depth(v) <= DEPTH_BOUND}, the nodes that do not exceed the depth

bound;

• E′R = {(u, v) ∈ ER | u ∈ V ′R ∧ v ∈ V ′R}, the restriction of ER to the nodes in V ′R.

From the definition of AR (Definition 18), and the definition of depth (Definition 15), we know

that if (u, v) ∈ ER then depth(v) = depth(u) + 1. So for any two nodes u, v ∈ VR with depth(v) <

depth(u) we have that (u, v) /∈ ER. AR does not contain edges from representations with a higher
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depth to representations with a lower depth. So there is no edge in ER from a node that is in VR \V ′R
to a node that is in V ′R.

The DepthBounding filter limits the traversal of AR to that of A′R. Applying a similar argument

to the one used in Theorem 6, we get that the exploration algorithm visits all the nodes in A′R.

For any state s from AG that is reachable through a sequence of transitions w that has a length of

at most DEPTH_BOUND, there exists a representation n in A′R that corresponds to the sequence

of actions q that abstracts w. n is visited by the exploration algorithm, so the corresponding state

s is explored (because replay(n) is called in line 5 of Algorithm 2).

4.2.3 The LocalCycleDetection Filter

From now on we assume that the implementation of extend and the way a happens-before graph for

actions is stored allows us to recover, for any state representation, the parent state representation

and the action used to extend the parent representation.

Definition 19. For a state representation n′ = extend(n, a) we define:

• parent(n′) = n, the parent state representation from which n′ was extended;

• last_action(n′) = a, the action used to extend the parent state representation to get the new

state representation n′;

• last_thread(n′) = p, if a = (p, op, vl). p is the thread that executed the last action;

For u0, the representation of s0 we define:

• parent(u0) = ⊥, u0 was not obtained by extending an already existent state representation;

• last_action(u0) = ⊥;

• last_thread(u0) = m, where m is the main thread.

In Chapter 5 we will present how we can efficiently store and extend happens-before graphs,

and at the same time preserve the parent and last_action information.We will also show how

we can efficiently hash state representations. Storing the hash of a representation instead of the

representation can reduce the memory used by the NotSeenBefore filter, and also decrease the

time required to test the equality of two representations. There is a drawback to using hashing: we

no longer have a guarantee that all state representations will be explored.

Definition 20. A local execution cycle from AG is a cycle s1
t1−→ s2

t2−→ s3...
tn−1−−−→ sn, with s1 = sn

in which all the transitions ti, 0 < i < n are taken by the same thread t and none of them change a

communication variable.
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Algorithm 5 LocalCycleDetection(Successors)

1: A = ∅
2: t = last_thread(n)
3: LocalState(n) = get_stack(t)
4: a = last_action(n)
5: p = parent(n)
6: progress = false
7: while p 6= ⊥ ∧ ¬progress ∧ Successors 6= ∅ do
8: assert a 6= ⊥
9: if MadeProgress(a, t) ∨ conflicts(a,A, t) then

10: progress = true
11: else
12: if last_thread(p) = t ∧ LocalState(p) = LocalState(n) then
13: Successors = ∅
14: else
15: A = A ∪ {a}
16: a = last_action(p)
17: p = parent(p)
18: end if
19: end if
20: end while
21: return Successors

Definition 21. For each visited state representation n ∈ AR, Algorithm 5 tags LocalState(n) as

extra information.

Definition 22. In Algorithm 5, get_stack(t) returns the local state associated with thread t.

Definition 23. In Algorithm 5, for an action a and a thread t:

• MadeProgress(a, t) is true if an only if thread(a) = t, and the operation corresponding to a

changes a communication variable;

• for a set of actions A, conflicts(a,A, t) is true if and only if there exists an action a′ ∈ A such

that (a, a′) ∈ D ∧ ((thread(a) = t ∧ thread(a′) 6= t) ∨ (thread(a) 6= t ∧ thread(a′) = t)), where

D is the dependency relation form Definition 9.

Definition 24. A sequence of state representations from AR, q = u1
a1−→ u2...

ak−→ uk+1 is said to

exhibit a local execution from AG if and only if there exists a sequence q′ = u′1
a′1−→ ...

a′k−→ u′k+1 that

is partial order equivalent to q such that:

• a′k = ak,

• there exists i, 0 < i ≤ k, such that last_thread(u′i) = last_thread(uk+1),

• for all l, 0 < l ≤ i, u′l = ul,

• for all l, 0 < l < i, a′l = al,
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• there exists j, i ≤ j ≤ k, such that

– for all l, j ≤ l ≤ k, thread(u′l) = thread(uk+1),

– for all l, i < l < j, thread(u′l) 6= thread(uk+1),

– for all l, i < l < j, and for all m, j ≤ m ≤ k, (al, am) /∈ D,

– u′j
a′j−→ ...

a′k−→ u′k+1 corresponds to a local execution cycle in AG.

Lemma 13. For any node n ∈ AR which was obtained by extending the initial node u0 with a

sequence of actions q = a1a2...ak, k ≥ 0, and for any set Successors, Algorithm 5 terminates.

Moreover, if q exhibits a local execution cycle starting from u0 then, at the end of the algorithm,

Successors becomes ∅, otherwise Successors is not changed.

Proof. In each iteration of the loop, either depth(p) is decreased by 1 or p becomes ⊥ (line 17), or

progress is set to true (line 10), or Successors is set to ∅ (line 13). If progress is set to true or

Successors is set to ∅, then the loop is exited because of the loop guard. Also, depth(p) cannot

decrease forever because it has a lower bound of 0 reached when p = u0. parent(u0) = ⊥. So

eventually the loop is exited, and Algorithm 5 terminates.

Let us define the property Cycle to be true if and only if q = a1...ak exhibits a local execution

cycle (Definition 24).

Let Successors0 be the value of Successors at the beginning of Algorithm 5.

What we have to prove is that at the end of Algorithm 5:

(Cycle⇒ Successors = ∅) ∧ (¬Cycle⇒ Successors = Successors0)

Let’s call this property Post. We have:

Post

≡ {definition of Post}

(Cycle⇒ Successors = ∅) ∧ (¬Cycle⇒ Successors = Successors0)

≡ {(P ⇒ Q) ≡ (¬P ∨Q)}

(¬Cycle ∨ Successors = ∅) ∧ (Cycle ∨ Successors = Successors0)

≡ {distributivity of ∧ over ∨}

(¬Cycle ∧ Cycle) ∨ (¬Cycle ∧ Successors = Successors0)

∨((Cycle ∨ Successors = Successors0) ∧ Successors = ∅)

≡ { P ∧ ¬P ≡ false ; false ∨ P ≡ P}

(¬Cycle ∧ Successors = Successors0) ∨ ((Cycle ∨ Successors = Successors0) ∧ Successors = ∅)

Assuming that J ≡ J1 ∧ J2 is a loop invariant, with:

J1 ≡ progress⇒ (¬Cycle ∧ Successors = Successors0), which is the same as

J1 ≡ ¬progress ∨ (¬Cycle ∧ Successors = Successors0),

and
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J2 ≡ Successors = ∅ ⇒ (Cycle ∨ Successors = Successors0), which is the same as

J2 ≡ Successors 6= ∅ ∨ Cycle ∨ Successors = Successors0,

we can prove that Pre is satisfied at the end of the while loop.

Let G ≡ ¬progress ∧ p 6= ⊥ ∧ Successors 6= ∅ be a notation for the while loop guard.

At the end of the while loop we have ¬G ∧ J and we have to prove that (¬G ∧ J)⇒ Post.

(¬G ∧ J)⇒ Post

≡ {definitions of G and J , properties of ¬ }

((progress ∨ p = ⊥ ∨ Successors = ∅) ∧ J1 ∧ J2)⇒ Post

≡ { distributivity of ∧ over ∨; definitions of J1 and J2}

((progress ∧ (¬progress ∨ (¬Cycle ∧ Successors = Successors0)) ∧ J2) ∨ (p = ⊥ ∧ J1 ∧ J2) ∨

((Successors = ∅) ∧ J1 ∧ (Successors 6= ∅ ∨ Cycle ∨ Successors = Successors0)))⇒ Post

≡ {P ∧ ¬P ≡ false; definition of Post}

((progress ∧ (¬Cycle ∧ Successors = Successors0) ∧ J2) ∨ ((Successors = ∅) ∧ J1 ∧ (Cycle ∨

Successors = Successors0)) ∨ (p = ⊥ ∧ J1 ∧ J2))⇒

(¬Cycle ∧ Successors = Successors0) ∨ ((Cycle ∨ Successors = Successors0) ∧ Successors = ∅)

≡ {((A ∧B) ∨ (C ∧D) ∨ E)⇒ (A ∨ C)}

true

What it is left to prove is that invariants J1 and J2 hold at the beginning of the while loop, and

that they are preserved by the loop.

At the beginning of the loop (between line 6 and line 7) we have:

J1

≡ { definition of J1}

¬progress ∨ (¬Cycle ∧ Successors = Successors0)

≡ {¬progress because progress was set to false in line 7}

true

We also have:

J2

≡ {definition of J2}

Successors 6= ∅ ∨ Cycle ∨ Successors = Successors0

≡ {Successors = Successors0 because Successors was never changed}

true

So both J1 and J2 hold at the beginning of the while loop, and we are left to prove that they

are maintained by the loop body.

First, we notice that lines 8, 15, 16, and 17 from the loop body cannot change the values of J1

and J2, if they hold before executing those lines they have to hold after executing those lines. We

only have to look at lines 10 and 13.
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Let’s assume that right before line 10 P1 holds, with P1 ≡ ¬Cycle ∧ Successors = Successors0.

We know that progress = true cannot change the value of P1, so P1 is also true after executing line

10. We know that P1 ⇒ J1 ∧ J2, so line 10 preserves J1 and J2.

Let’s assume that right before line 13 P2 holds, with P2 = ¬progress ∧ Cycle. Executing line

13, does not change P2. We know that P2 ⇒ J1 ∧ J2, so line 13 preserves J1 and J2.

We are left to prove that P1 holds right before line 10 and that P2 holds right before line 13.

Let’s define J3 ≡ Successors = Successors0 ∨ Successors = ∅. J3 holds before the while loop

because the variable Successors is not changed. J3 is maintained by the loop body because the only

line that changes Successors, changes it to ∅, keeping J3 true. So J3 is also a loop invariant.

Right before line 10 we know that the loop guard holds and also J3 holds. We prove that

G ∧ J3 ⇒ Successors = Successors0.

G ∧ J3 ⇒ Successors = Successors0

≡ {definitions of G and J3}

(¬progress ∧ p 6= ⊥ ∧ Successors 6= ∅ ∧ (Successors = Successors0 ∨ Successors = ∅)) ⇒

Successors = Successors0

≡ {distributivity of ∧ over ∨; P ∧ ¬P ≡ false}

(¬progress ∧ p 6= ⊥ ∧ Successors 6= ∅ ∧ Successors = Successors0)⇒ Successors = Successors0

≡ {P ∧Q⇒ P}

true

Right before line 13 we know that the loop guard holds, and so we have ¬progress.

We are left to prove that right before line 10 we have ¬Cycle, and that right before line 13 we

have Cycle.

n was obtained by extending u0 with the sequence q = a1a2...ak. Let q[i : j] = ai...aj if

0 < i ≤ j ≤ k, and q[i : j] = ε otherwise. Let ai be the current action a in the loop body. Initially

ai = ak.

We define a new invariant J4 stating that q[i + 1 : k] does not exhibit a local execution cycle

(Definition 24).

J4 trivially holds at the beginning of the while loop since q[k + 1 : k] = ε.

To prove that J4 is maintained by the loop body, we only have to look at line 16, since it is the only

line that changes the current action a.

Right before line 16 we have (from the conditions in the if statements):

¬MadeProgress(a, t)∧¬conflicts(a,A, t)∧ (last_thread(p) 6= t∨LocalState(p) 6= LocalState(n))

Assuming that q[i+1 : k] does not exhibit a local execution cycle, we prove that q[i : k] does not

exhibit a local execution cycle either.

To exhibit a local execution cycle, p would have to correspond to ui in Definition 24, otherwise

q[i+ 1 : k] would have exhibited a local execution cycle.
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If last_thread(p) 6= last_thread(n), then p cannot correspond to ui in Definition 24 and q[i : k]

does not exhibit a local execution cycle.

If last_thread(p) = last_thread(n)∧LocalState(p) 6= LocalState(n), then we try to repeatedly

swap, according to the dependency relation, actions from other threads so they end up before ai. If

the swapping fails for at least one action, we are done since we cannot form a local execution cycle.

Let’s assume that the swapping succeeds for all the actions from the other threads. We are left

with a tail that starts at a state representation u with ai the next action and contains only actions

from last_thread(n).

Because all the actions between p and u are from other threads than last_thread(n) we know

that the local state for this thread has not changed between p and u. We have LocalState(p) 6=

LocalState(n), so there cannot be a local execution cycle in AG between states corresponding to

u and n. If there were such a local execution cycle then we would have had LocalState(p) =

LocalState(n).

We have established that J4 is maintained by the loop body.

We need another invariant: J5 ≡ ∀aj ∈ A.¬MadeProgress(a, t) ∧ ¬conflicts(aj , A, t).

J5 trivially holds at the beginning of the loop since A = ∅.

A is changed only in line 15, by adding a new action a. From the guards of the if statements,

right before line 15, we have:

¬MadeProgress(a, t)∧¬conflicts(a,A, t) holds. From Definition 23 we get that ¬conflicts(a,A∪

{a}, t), so the invariant J5 is maintained by the loop body.

We need another invariant: J6 ≡ ∀j.i < j ≤ k.aj ∈ A.

J6 trivially holds at the beginning of the loop since i = k.

A is changed only in line 15, by adding the new action a = ai. We get that ∀j.i−1 < j ≤ k.aj ∈ A.

Right after line 16, i has decreased by 1 (we have moved up one action), but J6 still holds since

we have added a to A one line above.

We are now ready to prove that right before line 10 ¬Cycle holds.

Right before line 10, from the guard of the if statement we have:

MadeProgress(a, t) ∨ conflicts(a,A, t).

If MadeProgress(a, t) is true then action a is from thread t and has changed a global variable.

No local execution cycle can include action a and so now we can declare that ¬Cycle holds.

If conflicts(a,A, t) is true and thread(a) = t, then there exists a′ ∈ A, thread(a′) 6= t, such that

(a, a′) ∈ D. From invariant J4 we know that if there exists a local execution cycle, then a has to be

part of it. To exhibit this local execution cycle, we should be able to swap a with any action that

follows it and is from another thread. From invariant J6 we know that A contains all the actions

that follow a, so a′ follows a, but we cannot swap them because (a, a′) ∈ D. So in this case ¬Cycle

holds.
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If conflicts(a,A, t) is true and thread(a) 6= t, then there exists a′ ∈ A, thread(a′) = t such that

(a, a′) ∈ D. From invariant J6 we know that A contains all the actions that follow a, so a′ follows

a. Any local execution cycle that ends in the state represented by n would have to include a (from

invariant J4). The Definition 24 requires that (a, a′) /∈ D which in not possible in this case.

We can now prove that right before line 13 Cycle holds.

Right before line 13, from the guard of the if statements we have:

¬MadeProgress(a, t) ∧ ¬conflicts(a,A, t) ∧ last_thread(p) = t ∧ LocalState(p) = LocalState(n).

From last_thread(p) = last_thread(n) and invariants J5 and J6 we get that we can reorder the

actions from p to n in such a way that Definition 24 is satisfied except for the part with the local

execution cycle in AG.

We know there exists an uj between p and n such that all the actions between p and uj are from

other threads than t, and also all the actions between uj and n are from t. Also, we know that these

groups of actions are independent with respect to each other.

From p to uj the local state of thread t is not changed since no action is from t. From uj to n

we have actions only from thread t so the local state of the other threads cannot be changed. We

also have that between uj and n no communication variable was modified. It follows from Definition

3 that the state s ∈ AG that corresponds to uj is the same as the state s′ ∈ AG that corresponds

to n. All the actions between s and s′ are from thread t and none of them change communication

variables, so according to Definition 20 we have found a local execution cycle.

Now, using Definition 24, we get that the sequence of actions that led to n exhibits a local

execution cycle.

Theorem 8. If all the execution paths in AG are either finite(no cycles), or partial order equivalent

to some other executions that involve only local execution cycles, then Algorithm 2, with the list

Filters containing only the functions presented in Algorithms 3 and 5 (in this order), terminates

and explores all the states in AG.

Proof. Algorithm 5 does not allow the exploration of infinite paths. Any infinite path has a finite

length prefix that exhibits a local execution cycle. According to Lemma 13, such a local execution

cycle would be identified by Algorithm 5 and Successors would be set to ∅ effectively stopping the

exploration of that path at that point. Since only finite paths are explored, and AR contains no

cycles, Algorithm 2 must terminate.

For any state s ∈ AG with s0
w⇒ s, let w′ be a sequence of transitions that is partial order

equivalent to w and in which all the unrolls of a local execution cycle are grouped together and

don’t have any transitions from other threads (Definition 20). By removing from w′ each complete

unrolling of a local execution cycle we are left with a sequence w′′. We have s0
w′′⇒ s and w′′ does

not contain any local execution cycles. By taking q = abstract(w), the sequence of actions that
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leads from s0 to s in AG, we have that q does not exhibit a local cycle, and so it will not be cut by

Algorithm 5. If q is not cut by Algorithm 3, then a state n, that corresponds to u0 being extended

with q, is explored. If q is cut by Algorithm 3, then we can construct q′ partial order equivalent to

q such that q′ also leads to s (see Theorem 6).

4.2.4 The SuperStepPOR Filter

The SuperStepPOR filter implements the partial order reduction introduced in [27, 26].

Definition 25. A sub-graph AS = (VS , ES) of a state representation graph AR = (VR, ER) is called

a super step reduced graph of AR if it has the following properties:

• VS ⊆ VR is the set of nodes from AS .

• VS = VSN∪VIN , where VSN is the set of super nodes fromAS , and VIN is the set of intermediate

nodes from AS . VSN and VIN are not necessarily disjoint.

• u0 ∈ VSN , the representation of the initial state s0, is a super node.

• a super step ss is a path u1
a1−→ u2

a2−→ ...
an−1−−−→ un from AS such that u1 ∈ VSN , un ∈ VSN ,

for all ui, 1 < i < n, ui ∈ VIN , and there exists a thread t such that for all ai, 0 < i < n,

thread(ai) = t.

• for a super step ss = u1
a1−→ u2

a2−→ ...
an−1−−−→ un, we call {ai | 0 < i < n − 1} the set of

intermediate actions of the super step ss.

• for a super step ss = u1
a1−→ u2

a2−→ ...
an−1−−−→ un, we call an−1 the last action of the super step

ss.

• any super node u ∈ VSN has an associated set SuperSteps(u) that contains the outgoing super

steps from u.

• for any super node u ∈ VSN , that corresponds to a state s in AG, and for each action a ∈

enabled(s), there exists a super step ss(thread(a)) ∈ SuperSteps(u) that is taken by thread(a).

• for any super node u, and for any super step ss ∈ SuperSteps(u), all the actions of ss are

independent with all the intermediate actions of all the other super steps in SuperSteps(u).

• for any super step ss, none of its intermediate actions enables a previously disabled action

from another thread.

Lemma 14. Let AR be the graph of representations corresponding to AG, and let AS be a super step

reduced graph of AR. Assuming that AG is acyclic, for any state representation u from AR reachable

from u0 by a sequence of actions q = a1a2...an, there exists a sequence of actions q′ = a′1a
′
2...a

′
n that
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is partial order equivalent to q, and there exists an i, 0 ≤ i ≤ n, such that the following properties

hold:

• u0
a′1−→ u1

a′2−→ ...
a′i−→ ui is a path from AS and ui is a super node in AS;

• for any thread t, if bt1bt2...btk is the sequence of those actions taken by t from the sequence

a′i+1...a
′
n, then for all l, 0 < l ≤ k, the path ui

bt
1−→ ...

bt
l−→ ut

i+l does not end in a super node

from AS (ut
i+l /∈ VSN ).

Proof. We prove the lemma by induction on the depth of u, which is the same as the length of q.

For n = 1, q = ε we have q′ = ε and i = 0. The two properties are trivially satisfied since

u0 ∈ VSN .

For n = 1, q = a1 we have q′ = a1. Because u0 is a super step end, and a1 is enabled in u0, there

exists a super step starting from u0 that contains a1. We have two cases:

a) u1 is a super node, and in this case i = 1. The two properties hold since u0
a1−→ a1 is a path from

AS ending in a super node, and the suffix ai...an is empty.

b) u1 is not a super node, and in this case i = 0. The first property trivially holds since u0 is a

super node, and the second property holds because u1 is not a super node.

We have proved the base case, and now we proceed to the induction step.

Let q = a1...an−1an. From the induction step we know there exists a path a′1...a
′
n−1 and an i

such that the two properties hold for a1...an−1.

Let qt be the sequence of actions taken by thread(an) starting from ui. From the induction

hypothesis we know that qt doesn’t pass through a super node in AS . Again, we have two cases:

a) The sequence qtan leads to a super node in AS (the case depicted in Figure 4.2a). From the

induction hypothesis we know that for any thread p 6= t, qp doesn’t pass through a super node, and

so we must have that qtan is independent with all the actions in qp. If this were not true, then

considering Definition 25, either qt or qp would have to pass through a super node, thus violating

the induction hypothesis.

Because for any thread p 6= t we have that qtan is independent with qp, we can reorder q to get

a partial order equivalent sequence q′ with q′ = a′1...a
′
iq

tan...a
′′
n such that atan starts from ui and

ends in a super node uj . We now have that a′1...a′iqtan is a path from AS . We also know from the

induction hypothesis that for any two threads t1 and t2, qt1 is independent with qt2 (otherwise one

of them would have to pass through a super node starting from ui). If started from uj , any qp passes

through a super node, we can reorder the suffix such that the part of qp that forms the super step

appears right after uj . We repeat this process until the two properties hold.

b) The sequence qtan does not lead to a super node in AS (the case depicted in Figure 4.2b).

q′ = a′1...a
′
i−1an and i satisfy the two properties. Using the same argument as in case a) we have
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(a) a new super node is reached (b) no super node is reached

Figure 4.2: Extending a path with an action an

that for any two threads t1 and t2, qt1 and qt2 are independent starting from ui. an has to be

independent with all the actions from other threads, since otherwise it would imply that either qtan

or another qp passes through a super node.

Theorem 9. Let AR be the graph of representations corresponding to AG, and let AS be a super

step reduced graph of AR. Assuming that AG is acyclic, if a state s in AG, having a representation

u in AR, violates a safety property then there exists a state representation u′ in AS that corresponds

to a state s′ in AG such that s′ violates the same safety property.

Proof. By applying Lemma 14 we can construct a sequence of actions q = a1...ai...an that starting

from u0 leads to u such that a1...ai is a path in AS starting from u0 and none of the actions aj ,

i < j ≤ n is the end of a super step.

If u corresponds to a deadlock state then all the threads are disabled in u. Any action from a

thread t, that leads to a state in which t is disabled has to be the last action of a super step (we

can’t continue the super step). So u is reached by the last action of a super step, so u has to be a

super node, and in this case u′ = u.

If u corresponds to an assertion violation or a global invariant violation then none of the actions

aj , i < j ≤ n can change the value of the assertion or the value of the global invariant because

otherwise aj would conflict with all the other actions and so it would have to be the end of a super

step. So the same assertion violation or global invariant violation is present in ui reached by taking

the sequence of actions a1..ai from u0. So in this case we have u = u′i.

The SuperStepPOR filter tags to each state representation u the super step SuperStep(u). This

means that last_action(u) is part of SuperStep(u) as either an intermediate action or as the last
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Algorithm 6 SuperStepPOR(Successors)

1: ss_end = true
2: NextRep = {n′ ∈ Successors | last_thread(n′) = last_thread(n)}
3: if n 6= u0 ∧NextRep 6= ∅ then
4: ss = SuperStep(n)
5: sn = SuperNode(ss)
6: next = choose(NextRep)
7: if IndepLast(ss, sn) ∧ IndepInter(next, sn)∧

¬Enables(last_action(n), Successors \NextRep) then
8: ss_end = false
9: Intermediate(ss) = Intermediate(ss) ∪ {Last(ss)}

10: Last(ss) = last_action(next)
11: SuperStep(next) = ss
12: Successors = NextRep
13: end if
14: end if
15: if ss_end then
16: sn = new SuperNode
17: SuperSteps(sn) = ∅
18: for all n′ ∈ Successors do
19: ss = new SuperStep
20: SuperNode(ss) = sn
21: Intermediate(ss) = ∅
22: Last(ss) = last_action(n′)
23: SuperSteps(sn) = SuperSteps(sn) ∪ {ss}
24: SuperStep(n′) = ss
25: end for
26: end if
27: return Successors

action.

With each super step ss we associate its set of intermediate actions Intermediate(ss), its last

action Last(ss), and the parent super node SuperNode(ss).

A super node is represented by the set of outgoing super nodes, and when it is created, it marks

the fact that the current state representation n is in VSN .

The main idea of the SuperStepPOR filter is to create new super steps for each outgoing action

from a super node u. Initially these new super steps contain only the corresponding action that was

enabled in u. Each super step is repeatedly extended as long as it can be extended. When the super

step cannot be extended any longer, a new super node is created at the end of the super step, and

the same process is applied to the new super node.

IndepLast(ss, sn), in line 7 of the filter, tests if the last action from the super step ss is inde-

pendent with all the last actions from other sibling super steps taken from the super node sn.

IndepInter(next, sn), in line 7 of the filter, tests if last_action(next) is independent with all

the intermediate actions from super steps taken from the super node sn, except the super step that

corresponds to last_thread(next).
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Enables(last_action(n), Successors \NextRep) determines if the last taken action enabled ac-

tions from threads that were not previously enabled.

Theorem 10. Algorithm 2 with Filters holding only Algorithm 6 terminates and traverses AS, a

super step reduced graph of AR.

Proof. The filter does not contain any loops so it has to terminate. The variable Successors is

modified only on line 12 where it becomes a subset of the initial value for Successors. Algorithm 2

is a restricted graph exploration, and because AG is acyclic, it calls the SuperStepPOR filter only

a finite number of times. So Algorithm 2 terminates.

For u0, Algorithm 6 creates a new super node. The guard of the if statement in line 3 is false

when n = u0 and this ensures that the variable ss_end is true in line 15. So for n = u0, lines 16 to

25 of the algorithm are executed. These lines create a new super node that corresponds to u0 and

also create new super steps for each enabled action in u0.

Figure 4.3: The super step partial order reduction

Figure 4.3 presents the data structures used by the SuperStepPOR filter, and what are their

connections to each other.

The current state representation n is part of a super step ss = SuperStep(n) taken by a thread

i = last_thread(n) from the parent super node sn = SuperNode(ss).

The algorithmmaintains the following invariant J1: for any thread t 6= last_thread(n), Intermediate(ss)

is independent with Intermediate(sst), and also Last(ss) is independent with Intermediate(sst),

where sst is the super node taken from sn by thread t.

The algorithm also maintains the invariant J2 none of the actions in Intermediate(ss) enable

actions from other threads that were previously disabled.

Together, these two invariants ensure that the conditions presented in the super step definition

(Definition 25) are not violated during the exploration.
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The SuperStepPOR filter tries to extend ss = SuperStep(n) by adding the next action from

last_thread(n) to the super step. First, line 3, ensures that n is not u0 so there exists a last action.

Second, line 3, also ensures that there exists a next action from the same thread (NextRep 6= ∅,

there exists a successors state representation reached by taking an action from the same thread).

IndepLast(ss, sn) and IndepInter(next, sn), if true, ensure that the invariant J1 is maintained

by extending the super step with the action last_action(next).

¬Enables(last_action(n), Successors\NextRep), if true, ensures that the invariant J2 is main-

tained by extending the super step with the action last_action(next).

If the super step can be extended, then we can remove from Successors (line 12) all the successor

state representations that are not reached by taking an action from the current thread.

If it is determined that the super step cannot be extended (ss_end = true), then to maintain

the invariants J1 and J2, n has to be the end of the super step ss and become a super node. This

is exactly what happens in lines 16-25: a new super node corresponding to n is created, and also

new outgoing super steps are created for all the actions that are enabled in n (for all the successors

state representations).

The conditions presented in Definition 25 are not violated during the algorithm execution meaning

that the algorithm explores AS , a super step reduced graph of AR.

Theorem 11. If a state s in AG violates a safety property, then Algorithm 2 with Filters holding

only Algorithm 6 terminates and explores a state s′ from AG, with s′ violating the same safety

property as s.

Proof. We apply Theorem 10 and we get that Algorithm 2 terminates and explores AS , a super

step reduced graph of AR.

We apply Theorem 9 and we get that any safety violation that would be exposed by exploring

AR is also exposed by just exploring AS .
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Chapter 5

SCALE - Design and Implementation

SCALE is divided into three major components. First, a Static Analysis And Code Instrumentation

component finds, by analyzing the source code, the global statements and modifies the code around

them to allow an external scheduler to control the way threads are interleaved. Second, a Schedul-

ing component, explores the application’s state space by trying many different thread schedulings.

During exploration, when stepped, a thread atomically executes the code between two consecutive

global statements. SCALE checks if every visited state satisfies the specified properties. If a viola-

tion is found, then a trace of how to get to the error state is generated. Finally, a third Simulation

component replays error traces allowing the bugs to be reproduced and analyzed at a later time.

SCALE’s static analysis and code instrumentation is written in OCaml, has about 300 lines of

code, and was developed as a CIL [20] code transformation. The other components were developed

in C and have around 11000 lines of code, most of which is for the scheduling component. SCALE

was tested on x86, 32 bit and 64 bit, Linux platforms, and it should be easily ported to any platform

that has: a C compiler, an OCaml compiler, the pthread library, and a mechanism for turning off

Address Space Layout Randomization[8, 1, 3].

5.1 Static Analysis and Code Instrumentation

The purpose of SCALE’s static analysis and code instrumentation is to modify the verified program

such that an external Scheduler process can control how the program’s threads are interleaved.

Using CIL’s[20] points-to analysis and then a CIL transformation, we identify and replace the global

statements described in section 3 with wrapped versions. Besides having the same functionality

the original ones, the wrapped versions of the global statements, also implement the instrumented

executable’s side of the Scheduling Protocol that will be presented in Section 5.2. If finer control

is needed, the wrappers can also be inserted manually. There are wrappers for each kind of global

statement: creating a new thread, locking and unlocking a mutex, reading and writing to a variable,

etc. The wrappers are grouped together in a wrapper library so they can be easily reused. The
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whole process is presented in Figure 5.1. At the end, we get an instrumented executable that uses

the Scheduling Protocol to communicate with a Scheduler.

Figure 5.1: SCALE’s static analysis and code instrumentation process

5.2 The SCALE Scheduling Protocol

The Scheduling Protocol describes the communication between the instrumented executable and

the Scheduler. As a consequence of this communication, the Scheduler is able to control the way

the instrumented executable’s threads are interleaved and also to inspect parts of the instrumented

executable’s state.

5.2.1 Communication Channels

For each thread of the instrumented executable, there exists a set of two communication channels

between the scheduler and that thread. One channel is used to send commands from the scheduler

to the thread, and the other channel is used to send command results from the thread back to the

scheduler. The interaction between the scheduler and the instrumented executable is depicted in

Figure 5.2.

In each of the instrumented executable’s threads, each wrapped global statement contains, right

before the original statement, a loop that reads commands sent by the scheduler. During execution,

the application can be seen as a collection of threads, each blocked right before a global statement,

waiting for commands. A thread step happens when the scheduler unblocks one of the threads. The

unblocked thread exits the current loop and executes up to the next wrapped global statement where
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Figure 5.2: Scheduling protocol overview

it blocks again in a new loop. The process is repeated until the application ends or it is canceled by

the scheduler.

5.2.2 Commands and Command Results

There are two types of commands: query commands and control commands. The scheduler uses

query commands to get relevant information about the current state of the application, and control

commands to either move the application to a successor state by scheduling a thread in the current

state, or to exit the application. To allow multiple queries for the current state, commands are

received in a loop. While query commands leave the thread who receives them in the same loop,

control commands exit the current loop, and cause the execution to be either continued or aborted.

Sending a command and receiving the result is done using synchronous communication and resembles

a synchronous remote procedure call.

GetNextAction is a query command that asks a thread to report its next action (Definition 10)

in the current state. The result structure that is sent back from the thread to the scheduler contains

the following information:

• the identifier of the blocked thread;

• the operation performed by the global statement. It can be one of the following:

– program start: the main thread is created and the execution starts in the initial state;

– program exit: the program ends, and there are no more statements that can be executed;

– thread creation: a new thread is created, the scheduler must know how to communicate

with it;

– thread start: a thread starts executing its statements, it is now active in the application;

– thread exit: a thread is exited so its statements can no longer be executed;

– thread join: wait for another thread to exit before proceeding;

– read or write a global variable: access to a global variable;

– synchronization primitive call: one for each primitive, for example locking or unlocking a

mutex, waiting on a condition variable, etc.;
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– assertion: tests on the current state of the application that were specified in the source

code;

• the list of communication variables that will being accessed by the global statement if the

thread is scheduled in the current state. As described in Section 3, in SCALE, a communication

variable is one of the following: a thread identifier, the memory location of a shared variable,

a mutex handle, or a condition variable handle.

GetCurrentBackTrace is a query command that asks a thread to report its current function

call stack. The result contains the following information:

• number of stack frames: how many functions are in the call stack, and also how many control

points does the result contain;

• array of control points: one control point for each entry in the call stack. A control point is

an abstraction of a stack frame and contains the following information:

– level: the stack frame number, 0 for the top of the stack, 1 for the second one, and so on;

– address: the address of the current instruction in the function’s code;

• stack hash: a hash of the current contents of the stack.

EvaluateFunctionCall is a query command that asks a thread to call a function in its current

context and send the result back to the scheduler. The command contains the name of the function

to be evaluated. The function takes no arguments and returns an integer. The result of the function

call is sent back to the scheduler as a command reply. The Evaluate Function Call command is used

for checking whether invariants are satisfied or not in the current state.

Step is a control command that asks a thread to exit the current command loop and start

executing statements until the next global statement. The returned result is the next action cor-

responding to the newly reached global statement. The command spans between two consecutive

global statements since its result can only be sent after the new global statement is reached. SCALE

solves this problem by requiring the thread, right before entering a command loop, to send the

scheduler a reply containing its next action.

Exit is a control command used by the scheduler to abort the current execution of the application.

The receiving thread sends an acknowledgment back to the scheduler and then forcefully causes the

the whole application to exit.

5.3 The SCALE Scheduler

This section describes how SCALE’s Scheduler implements the algorithms presented in Chapter 4.

These algorithms guide the state space exploration and check if any properties are violated.
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Figure 5.3: The SCALE Scheduler

As presented in figure 5.3, the scheduler has a layered implementation. At the lowest layer it

has a component that communicates with the instrumented executable and allows the higher layers

to schedule individual threads. The higher layers keep track of what states have been visited and

decide what new states should be explored next. The following subsections describe these layers in

more detail.

5.3.1 Backend

The Backend is a thin layer that completely abstracts away the communication with the instru-

mented executable’s threads. Together with the wrapper library, it implements the scheduling pro-

tocol described in Section 5.2. The sending and the receiving of scheduling commands and results

are wrapped and presented to the layers above as API functions.

Next is a description of the Backend API.

• bk_init(): spawns a new process with the instrumented executable (which should block before

the first global statement), and returns the next action for the main thread;

• bk_exit(): causes the application to be exited;

• bk_restart(): aborts the current run of the application, restarts its execution (which should

block before the first global statement), and returns the next action for the main thread;

• bk_step_thread(t): schedules thread t, runs it up to its next global statement, and returns

the next action for thread t;

• bk_get_back_trace(t): returns the current back trace of thread t;

• bk_eval_function(t, func): evaluates the function func in thread t’s current context and

returns the function’s result.

5.3.2 Frontend

The Frontend is a layer built on top of the backend which keeps track of the current configuration

of the application (Definition 12).
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A configuration contains the following information:

• the state of each thread: keeps track of each thread’s next action, and next step number.

• the state of each communication variable: each such variable is given a unique identifier. For

every variable, the frontend keeps track of how many times it was written so far. We call this

number the current version of the variable, and it is used to differentiate accesses to the same

variable.

• the state of each synchronization primitive: for each mutex it stores the current holder thread,

and for each condition variable, it keeps track of the set of waiting threads.

• the thread that was scheduled in the last step: this is the current thread.

• the new thread that was created during the last step (if one was created): the new thread is

now active, was added to the current configuration, and from now on it can be scheduled.

Given the current configuration, the set of enabled threads and their next actions can be easily

computed.

The frontend exposes a higher level API than the backend.

• fr_init(): starts the execution of the application and returns the initial configuration;

• fr_exit(): aborts the current run of the application;

• fr_restart: aborts the current run of the application, restarts the application, and returns

the initial configuration;

• fr_step_thread(t): steps thread t up to the next global statement, updates the current

configuration accordingly, and returns the current configuration;

• fr_get_back_trace(): returns the result of the same backend API function, called for the

last scheduled thread;

• fr_check_invariant(func): takes an invariant name as argument and uses the backend’s

bk_eval_function API call to determine if the given invariant is satisfied or not in the current

thread’s context.

5.3.3 Generic Scheduler

Algorithm 7 presents how the Generic Scheduler glues together the other parts of the state space

exploration to implement the algorithms described in Chapter 4.
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Algorithm 7 The Generic Scheduler

1: config = fr_init()
2: while true do
3: if violates_properties(config) then
4: report_error()
5: break
6: end if
7: dec = strategy_decide(config)
8: if dec = Schedule(t) then
9: config = fr_step_thread(t)

10: else
11: if dec = Restart then
12: config = fr_restart()
13: else
14: break
15: end if
16: end if
17: end while
18: fr_exit()

All scheduling decisions are deferred to a scheduling strategy by calling the strategy_decide func-

tion. The strategy can decide to schedule a thread from the current state, restart the verified ap-

plication from the initial state, or end the exploration. All verifications are deferred to the property

checker by calling the violates_properties function.

At any moment, the generic scheduling algorithm stores only the current configuration and has

no mechanism for back tracking to a previously visited state.

5.3.4 Scheduling Strategy

The Scheduling Strategy is the component responsible for representing and storing visited states as

happens-before graphs for actions (Definition 11).

Similarly to [19], we represent a happens before graph as a set of actions that have been extended

with information about the edges.

Each such extended action is a tuple: < tid, step, op, al > where:

• tid: is the identifier of the thread taking the action;

• step: counts how many actions were taken by thread tid so far;

• op: the operation performed by the action;

• al: is a list of accesses to global variables. Each access is a tuple < v, at, w >, where v is the

variable identifier, at is the type of access and can be either READ or WRITE, and w is a

counter that gets incremented with each WRITE. A READ refers to the last w value.
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There is an edge from an extended action < tid1, step1, op1, al1 > to an extended action

< tid2, step2, op2, al2 > if any of the following is true:

• (tid1 = tid2) ∧ (step1 < step2);

• ∃(v1, at1, w1) ∈ al1 and ∃(w2, at2, w2) ∈ al2 such that (v1 = v2)∧(at1 = WRITE)∧(w1 ≤ w2);

• ∃(v1, at1, w1) ∈ al1 and ∃(w2, at2, w2) ∈ al2 such that v1 = v2 ∧ (at1 = READ) ∧ (w1 < w2).

An advantage of this state representation is that the state space is stored efficiently, by construct-

ing states incrementally, a child state is stored as the last action plus a link to the parent state.

Moreover, as presented in[19] we can compute a hash of a state incrementally in the same way. The

hash of a child state is the hash of the parent state xor’ed with the hash of the last action. Since

xor is commutative, the same set of actions will have the same hash no matter in which order they

are xor’ed. By comparing the hashes, we get a fast, but unsound, comparison between states. Also,

storing the states incrementally makes some reduction algorithms easier to write.

When the exploration algorithm requires to replay a state s, there are two situations:

• s is a successor of the current state reachable by executing an action a, and in this case the

strategy_decide function returns Schedule(t), where t = thread(a);

• s is not a successor of the current state, and in this case the strategy_decide function returns

Restart. Assuming that a1...an is a sequence of actions that leads from s0 to s, subsequent calls

of strategy_decide return in order Schedule(ti), where ti = thread(ai). When s is reached

the scheduling strategy resumes normal operation.

When the state space exploration is done, the strategy_decide function returns Exit.

5.3.5 Property Checker

The property checking is done by delegating the verification to specialized checkers, each looking

for one of the following classes of errors: deadlocks, assertion failures, and invariant violations.

The checkers are provided with the current configuration of the application, and are also allowed

to evaluate expressions in the current application context. By default, SCALE searches for all of

the above errors, except invariant violations. To also look for invariant violations, the user has to

provide a property file that contains the names of the functions implementing the invariant tests.

The functions should be callable from each thread, at any point and should return a boolean value,

true if the invariant holds, false otherwise. SCALE reports all errors that it finds to the user, and

also generates a trace file that contains all the scheduling decisions that were made, starting from

the initial state, up to the error state.
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5.4 Error Replay

The Simulation component runs the application and guides it on a path that is described in an input

trace file. This component is used to replay errors discovered during verification.

Figure 5.4: The SCALE Simulator

The simulator is a simple loop that reads lines, one by one, from the trace file and steps the

corresponding threads. The trace file is a list of thread identifiers, separated by white spaces. When

replaying the trace, the threads are scheduled in the order in which they appear in the file. The

simulator provides detailed information about what happened in each step: the line of code where

the step started, what operation was performed, and what variables were accessed.

Before stepping a thread some checks are done. First, the thread must be active in the application,

and second, it must be enabled in the current state. The simulator reports an error if these two

conditions are not met.
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Chapter 6

Experiments and Preliminary Results

6.1 Non-Blocking Queue Algorithm

We have implemented a C version of the non-blocking queuing algorithm presented in[23] and we

have managed to discover a previously unknown bug in it. The full source code of our implementation

is listed in Appendix A.1. We have limited the system to a producer and a consumer communicating

via a shared non-blocking queue of size N . The producer enqueues the integers from 0 up to N − 1,

and the consumer dequeues N integers.

The queue is represented as an circular array of elements. Two indexes are stored, FRONT ,

with FRONT mod N being the position from where an item should be dequeued, and REAR, with

REAR mod N being the position where an item should be enqueued. The queue is empty when

FRONT = REAR, and full when REAR = FRONT + N . With each enqueue REAR should

increase by 1, and with each dequeue, FRONT should increase by 1. Each queue element, if it is

in use then it stores a pointer to the item, and if it is not in use then stores a NULL pointer.

Since it is a queue implementation, we expect the consumer to dequeue the same numbers that

were enqueued by the producer and in the same order. We have found that this is not always

true. Using SCALE to check the correctness of the algorithm’s implementation, we have determined

scenarios in which a queue element is lost, it is enqueued by the producer, but it is skipped and

never dequeued by the consumer. For example, with a queue of size N = 2, there is an execution in

which the consumer first dequeues 1 instead of 0. The correct behavior of the consumer would be

to dequeue 0, then 1, and then terminate.

For anyN ≥ 2, SCALE finds the following counter example, or a similar one: The consumer starts

a dequeue operation on an empty queue (REAR = FRONT ), reads and stores the queue element

x at Q[FRONT mod N ]. Since the queue is empty, the element at that position contains a NULL

pointer. The consumer is preempted right before checking if REAR = FRONT . Next the consumer

enqueues two items I1 and I2. The REAR is updated and now we have REAR = FRONT +2. The

consumer is scheduled, and checks if the queue is empty (REAR ?= FRONT ) and notices that the
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queue is not empty. It then compares the item pointer in its stale version of the queue element at

REAR mod N (x) and finds that this pointer is NULL. If this is the case, the consumer considers

that there must be another consumer dequeuing that the item at that position at the same time.

REAR is incremented in an attempt to help this other (nonexistent) consumer. So the consumer

skips the item I1 and dequeues item I2 instead.

 1

 10

 100

 1000

 10000

 100000

2 3 4 5 6 7 8 9 10

queue size N

Number of runs for NBQ up to the first counterexample

SCALE SCALE(54) SCALE(29)

Figure 6.1: Number of runs up to the first counterexample for the non-blocking queue implementation

In figure 6.1 we plot how many runs were necessary to find a counter example for various queue

sizes N . To show that the exploration order affects how fast the counterexample is found, we have

used SCALE with 3 exploration algorithms:

(a) SCALE: the default DFS exploration which picks next actions in increasing order of the corre-

sponding thread identifiers.

(b) SCALE(54): a DFS exploration that randomly picks the order in which the next actions are

explored. The pseudo random number generator was seeded with the value 54.

(c) SCALE(29): same as (b), but with a seed of 29.

Note that not all runs are complete. SCALE restarts the program when it decides that running it

further would not reach any unexplored states.

We have disabled the local cycle detection filter, and we have used only depth bounding, and

we have measured the time required to restore a state as a function of the state’s depth. Figure

6.2 presents the results that were obtained on an Ubuntu 9.04 Linux system, running as a virtual

machine in Mac OS X, on an Intel Core 2 Duo 2.4GHz processor. As expected, the time required

to restore a state increases with the state’s depth. For large state depth values, the restore time

becomes too large and the exploration is unfeasible.

We have configured SCALE to ignore the assertion violations in the non-blocking queue im-

plementation, and we have measured the number of distinct state representations explored using

different combinations of state filters. The results are presented in Figure 6.3. The non-blocking

queue implementation contains busy-waiting loops, so if the local cycle detection filter is not used,
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Figure 6.2: Replay time vs. state depth for the non-blocking queue implementation
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Figure 6.3: Number of distinct state representations for the non-blocking queue implementation

then the depth bounding filter must be used to ensure that the verification terminates. In Figure

6.3, NSB stands for the not seen before filter, LCD for the local cycle detection filter, SS for the

super step partial order reduction filter, and DB for the depth bounding filter.

Figure 6.3 shows that using the super step partial order reduction filter in combination with

the local cycle detection filter achieves a significant reduction compared to just using the not seen

before filter and depth bounding.

Because he non-blocking queue implementation contains infinite executions we were unable to

use Inspect to verify it. Inspect only works on terminating programs, and although it could bound

the depth of the search, it doesn’t have this feature implemented.

CHESS bounds the depth of the search, but when the depth bound is reached it reports a livelock.

The execution that exhibits a livelock is unfair and would not be explored by a fair scheduler.
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6.2 Indexer

We have implemented the indexer example presented in [7] and compared SCALE’s results to those

of Inspect and CHESS. SCALE and Inspect use the same Linux version of the source code, while

CHESS uses the Windows version. The source code for the example(both the Linux and Windows

versions) is presented in Appendix A.2. The indexer example was introduced to show the benefits

of using Dynamic Partial Order Reduction versus other partial order reductions where the indepen-

dence relation between transitions is precomputed by a static analysis of the source code. In the

example, each thread reads and writes an element of an array. The index of the element is computed

dynamically, and depends on the thread identifier. A static analysis would fail to determine which

threads would access the same element. The example is so constructed that no conflicts occur up to

11 threads.

CHESS, Inspect and SCALE compute the independence relation between transitions dynamically

while running the program. If necessary, all three tools restart the program from the initial state to

explore additional paths.

Tool Threads Runs Time(s) Tool Threads Runs Time(s)
SCALE 1 1 0.041 SCALE 5 146 5.148
Inspect 1 1 0.182 Inspect 5 1 0.224
CHESS(2) 1 1 0.160 CHESS(2) 5 37927 88.110
SCALE* 1 1 0.078 SCALE* 5 89363 4863.917
SCALE 2 2 0.056 SCALE 6 818 37.881
Inspect 2 1 0.197 Inspect 6 1 0.207
CHESS(2) 2 73 0.156 CHESS(2) 6 257265 677.390
SCALE* 2 18 0.301 SCALE* 6 X X
SCALE 3 8 0.147 SCALE 7 8593 478.146
Inspect 3 1 0.180 Inspect 7 1 0.294
CHESS(2) 3 715 1.234 CHESS(2) 7 1885380 5663.672
SCALE* 3 309 11.229 SCALE* 7 X X
SCALE 4 32 0.728
Inspect 4 1 0.197
CHESS(2) 4 5448 10.937
SCALE* 4 5256 228.827

Table 6.1: Verification results for the indexer example

Table 6.1 presents the results obtained for different number of threads. We have measured the

number of runs performed by each tool and the time necessary to complete the search. CHESS was

run with a context switch bound of 2, so its search is not guaranteed to be complete. SCALE was

run with the not seen before and super step partial order reduction filters enabled. There are no

cycles in the example, so there is no need to use the local cycle detection filter. In SCALE* we have

also disabled the super step partial order reduction filter. Inspect and SCALE were run on 32bit

Ubuntu Linux in a virtual machine on top of Mac OS X on a MacBook Pro with an Intel Core 2 Duo

2.4GHz CPU. CHESS was run on 32bit Windows XP in a virtual machine on the same MacBook
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Figure 6.4: Verification results for the indexer example

Pro. The results are also presented graphically in Figure 6.4.

Inspect uses the algorithm presented in [7] and so it manages to infer that a single run of the

example is enough. CHESS can detect when the same state has been previously visited and so it

is able to reduce the number of explored transitions, but not the number of explored states. As a

consequence, it requires a lot more runs, even when context switch bounding is used. SCALE, using

Super Step Partial Order Reduction, is able to infer that the threads are independent and can be

considered as having just one super step, but is unable to deduce that executing any permutation

of these threads has the same effect. We are currently investigating ways to include the Dynamic

Partial Order Reduction algorithm presented in [7] in our framework and combine it with the rest

of the reductions.

SCALE uses more memory than both Inspect and CHESS. While Inspect is stateless, it only

keeps a stack of states for the current program run and does not store previously visited states, both

SCALE and CHESS keep track of previously visited states. Because SCALE uses state filters it has

to store more information for each state.

From Table 6.1 we can see that CHESS runs more tests per second than both Inspect and

SCALE. The reason is that tests in CHESS are not separate programs, they are test cases run in the

same process as the CHESS scheduler. Because consecutive runs of a test case happen in the same

address space, state might be carried from one run to the other. The user must clean up everything

at the end of the test case to ensure that any further runs have the same initial conditions. SCALE

and Inspect run the scheduler and the verified program in two different processes, and use IPC

mechanisms to communicate between them. While this approach adds communication overhead, it

has the advantage that no cleanup code is necessary. The choice of IPC mechanism influences the

performance, and for SCALE, we might get some improvement by switching from named pipes to

shared memory.
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6.3 Thread Pool

We have implemented a thread pool and verified it for absence of deadlock. The main thread

creates Size pool threads, enqueues a job and then signals the thread pool to stop. There are many

possible scenarios: the job can be run by any of the threads or it can be ignored if the pool threads

don’t get a chance to run before the main thread decides to stop them. We have implemented two

versions: a Linux one, verified with SCALE and Inspect, and a Windows one, verified with CHESS.

For the Linux implementation we used mutexes and condition variables to synchronize the threads.

Conditions variables were not available in Windows, so we used semaphores and we tried to keep the

implementation as close as possible to the Linux one. The source code of both versions is presented

in Appendix A.3.

Tool Size Runs Time(s) Tool Size Runs Time(s)
SCALE 1 6 0.077 SCALE 3 3347 28.143
Inspect 1 3 0.169 Inspect 3 4030 118.284
CHESS(2) 1 15 0.630 CHESS(2) 3 14024 26.593
SCALE* 1 6 0.077 SCALE* 3 4875 42.294
SCALE 2 124 0.980 SCALE 4 127766 1182.061
Inspect 2 102 2.788 Inspect 4 324772 10356.882
CHESS(2) 2 367 0.672 CHESS(2) 4 998381 2230.953
SCALE* 2 136 1.020 SCALE* 4 246763 2370.004

Table 6.2: Verification results for the thread pool example
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Figure 6.5: Verification results for the thread pool example

Table 6.2 presents the results obtained for different thread pool sizes. CHESS was run with a

context switch bound of 2, and so it does not guarantee the completeness of the search. SCALE has

the not seen before and super step partial order reduction filters enabled. SCALE* has only the not

seen before filter enabled. We can see that for larger thread pool sizes, 3 and 4 in the table, SCALE

needs fewer runs to complete the verification, but this comes at the price of using more memory

than both Inspect and CHESS. The same results are also presented in Figure 6.5.



50

6.4 Reusable Barrier

We have implemented a reusable barrier and verified it for various number of threads (N) and steps

(STEPS). In each step each thread blocks at the barrier and waits for the other threads to reach

the same point. When all the threads have reached the barrier, they all continue. This example

turned out to be one in which the super step partial order reduction does not help much. We have

implemented two versions of the barrier example, one for Linux and one for Windows. The Linux

version uses mutexes and condition variables, while the Windows version uses critical sections and

semaphores. The code is listed in Appendix A.4.

Tool N STEPS Runs Time(s) Tool N STEPS Runs Time(s)
SCALE 2 1 6 0.068 SCALE 2 5 39365 430.832
Inspect 2 1 3 0.107 Inspect 2 5 19683 1196.423
CHESS(2) 2 1 15 0.470 CHESS(2) 2 5 195 0.375
CHESS(5) 2 1 15 0.470 CHESS(5) 2 5 3066 9.150
SCALE* 2 1 6 0.076 SCALE* 2 5 39365 435.793
SCALE 2 2 54 0.428 SCALE 3 1 481 3.603
Inspect 2 2 27 0.857 Inspect 3 1 390 12.792
CHESS(2) 2 2 42 0.125 CHESS(2) 3 1 658 1.218
CHESS(5) 2 2 90 0.188 CHESS(5) 3 1 2685 4.656
SCALE* 2 2 54 0.432 SCALE* 3 1 481 3.663
SCALE 2 3 486 4.576 SCALE 3 2 431894 4119.880
Inspect 2 3 243 12.806 Inspect 3 2 683100 34764.863
CHESS(2) 2 3 81 0.204 CHESS(2) 3 2 12182 21.641
CHESS(5) 2 3 378 0.609 CHESS(5) 3 2 712912 1276.906
SCALE* 2 3 486 4.467 SCALE* 3 2 431904 4132.043
SCALE 2 4 4374 43.542 SCALE 4 1 143639 1245.443
Inspect 2 4 2187 85.904 Inspect 4 1 321008 9562.527
CHESS(2) 2 4 132 0.282 CHESS(2) 4 1 107307 210.641
CHESS(5) 2 4 1140 1.906 CHESS(5) 4 1 1668069 3239.891
SCALE* 2 4 4374 44.073 SCALE* 4 1 158758 1466.807

Table 6.3: Verification results for the reusable barrier example

In Table 6.3 SCALE has the not seen before and the super step partial order reduction filters

enabled, while SCALE* has only the not seen before filter enabled. To observe the reduction power

of context switch bounding, we have used CHESS with two context switch bounds: 2 and 5. From

Table 6.3, we can see that an exploration with a context switch bound of 5 needs a lot more runs

than one with a context switch bound of 2. Empirically it was observed that most bugs are found

with a low context switch bound [17], so it would be useful to add this reduction to SCALE. The

same results are also presented in Figure 6.6.

We have reasons to believe that Inspect reduces the state space too much so the search is no

longer complete. For the two threads and one iteration experiment, after creating the additional

thread, Inspect always continues to run the main thread and never tries to schedule the new thread

fist. The order in which the two threads are run is important since they have dependent transitions.
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Figure 6.6: Verification results for the reusable barrier example

In all the runs checked by Inspect, the second thread is the last one that arrives at the barrier.

6.5 Other Interesting Examples

We have run SCALE on some buggy programs that pass either Inspect’s or CHESS’s checks and

we were able to detect the errors. One such example is the producer-consumer problem in which

we assert that when the consumer tries to take an element from the buffer, the buffer is empty and

the consumer must wait for the producer to put an element in the buffer. It is easy to see that this

assertion is violated if the producer runs first and manages to put an element in the buffer before

the consumer tries to get an element from the buffer. Both CHESS and Inspect do not detect the

assertion failure when the producer puts only one element in the buffer and the consumer takes only

one element from the buffer. This only happens when the consumer is run in the main thread and

the producer is run in another thread, if run the other way, the consumer in the new thread and

the producer in the main thread, the error is detected by both CHESS and Inspect. The problem is

that the producer does not get a chance to run immediately after it is created, instead the consumer

is always scheduled first. The source code for this example (both the Linux and Windows versions)
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is presented in Appendix A.5.

We can construct even simpler examples where the other tools miss some assertion failures. In

Appendix A.6 we present such an example that has an execution leading to an assertion violation

that is found by SCALE, but missed by Inspect. The lock is used to ensure that there are no race

conditions.

The assertion failure happens when thread_b runs before thread_a. This is very likely to occur in

practice and it can be easily exposed by compiling the program and running the resulting executable

a few times.
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Chapter 7

Conclusions and Future Directions

In this thesis we have presented the design and the implementation of the SCALE systematic software

testing tool including its two major state space reduction algorithms: local execution cycle detection

and super step partial order reduction.

We have applied SCALE to a C implementation of a non-blocking queuing algorithm and we

were able to find a previously unknown bug. Using the algorithms presented in this thesis, the state

space was reduced considerably, and this allowed us to find the error faster by taking fewer steps

and exploring fewer distinct states. The local execution cycle detection allowed us to find the error

even when we didn’t bound the depth of the search.

We have also applied SCALE to other applications and compared the results to those obtained

by two other tools: CHESS and Inspect. In some cases SCALE’s algorithms prove to be useful

in reducing the number of runs necessary to verify the applications. There are also cases where

the partial order reduction is not that helpful. One way to improve SCALE’s performance is to

reorganize the way states and the information associated with the state filters are stored so that

they would take less space. One other way to improve SCALE’s performance is to use shared memory

instead of named pipes as the IPC mechanism.

For large applications, SCALE’s backtracking mechanism, restarting the program from the initial

state and following the same scheduling decisions, proves to be too expensive. Revisiting a state

that is deep down in the state space graph, requires the execution of the application again up to

that point. SCALE would benefit greatly from a check-pointing mechanism that would allow us to

restart the application, not from the initial state, but from a closer ancestor state.

SCALE’s design allows us to easily add, enable and disable various reduction algorithms. For

the future, we plan to add even more state space reductions. Preemptive context switch bounding

is a promising reduction, and it appears that it would integrate well with the already existing ones.

Dynamic partial order reduction is another algorithm that might prove to be useful. We also plan

to add support for a scripting language that would allow users to write and test their own reduction

and exploration algorithms.
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As we have presented in this thesis, SCALE decouples the reduction algorithms from the explo-

ration algorithms. So far we have been using only depth first search as our exploration algorithm,

but we plan to implement and try others too. It also seems that it would be easy to adapt SCALE

for distributed exploration and verification [12].

SCALE only deals with the non determinism introduced by thread scheduling. For the future

we plan to also handle non determinism caused by user input and system calls.

SCALE was implemented to work on Unix/Linux applications that use the pthread API, but

we see no reason why it could not be ported to other platforms, and be extended to support other

multi-threading models.
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Appendix A

A.1 Non-Blocking Queue Source Code

#include <s td i o . h>
#include <pthread . h>
#include <a s s e r t . h>

#define N 10

struct element {
int ∗ va l ;
unsigned int r e f ;

} ;

pthread_mutex_t cas_lock ;
struct element Q[N ] ;
unsigned int FRONT = 0 ;
unsigned int REAR = 0 ;

int CAS( struct element ∗ shared , struct element ∗old , struct element ∗new) {
int r e s u l t = 0 ;
pthread_mutex_lock (&cas_lock ) ;
i f ( shared−>val == old−>val && shared−>r e f == old−>r e f ) {

shared−>val = new−>val ;
shared−>r e f = new−>r e f ;
r e s u l t = 1 ;

} else {
r e s u l t = 0 ;

}
pthread_mutex_unlock (&cas_lock ) ;
return r e s u l t ;

}

int CASi (unsigned int ∗ shared , unsigned int old , unsigned int new) {
int r e s u l t = 0 ;
pthread_mutex_lock (&cas_lock ) ;
i f (∗ shared == old ) {

∗ shared = new ;
r e s u l t = 1 ;

} else {
r e s u l t = 0 ;

}
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pthread_mutex_unlock (&cas_lock ) ;
return r e s u l t ;

}

void enqueue ( int ∗ item ) {
unsigned int r ea r = 0 ;
struct element x , tmp ;

enq_try_again :
r ea r = REAR;
x . va l = Q[ r ea r % N] . va l ;
x . r e f = Q[ r ea r % N] . r e f ;
i f ( r ea r != REAR) {
goto enq_try_again ;

}
i f ( r ea r == FRONT + N) {
goto enq_try_again ;

}
i f ( x . va l == NULL) {

tmp . va l = item ;
tmp . r e f = x . r e f + 1 ;
i f (CAS (&Q[ r ea r%N] , &x , &tmp) ) {

CASi (&REAR, rear , r ea r + 1 ) ;
return ;

}
} else {

CASi(&REAR, rear , r ea r + 1 ) ;
}
goto enq_try_again ;

}

int ∗ dequeue ( ) {
unsigned int f r on t = 0 ;
struct element x , tmp ;

deq_try_again :
f r on t = FRONT;
x . va l = Q[ f r on t % N] . va l ;
x . r e f = Q[ f r on t % N] . r e f ;
i f ( f r on t != FRONT) {
goto deq_try_again ;

}
i f ( f r on t == REAR) {
goto deq_try_again ;

}
i f ( x . va l != NULL) {

tmp . va l = NULL;
tmp . r e f = x . r e f + 1 ;
i f (CAS(&Q[ f r on t%N] , &x , &tmp) ) {

CASi(&FRONT, f ront , f r on t + 1 ) ;
return x . va l ;

}
} else {

CASi(&FRONT, f ront , f r on t + 1 ) ;
}
goto deq_try_again ;
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}

void ∗ producer_main (void ∗ arg ) {
stat ic int i tems [N ] ;
int i = 0 ;
for ( i = 0 ; i < N; i++) {

items [ i ] = i ;
enqueue (&items [ i ] ) ;

}
return NULL;

}

void ∗ consumer_main (void ∗ arg ) {
int ∗ item = NULL;
int i = 0 ;
for ( i = 0 ; i < N; i++) {

item = dequeue ( ) ;
a s s e r t (∗ item == i ) ;

}
return NULL;

}

int main ( int argc , char ∗∗ argv ) {
pthread_t t i d ;
pthread_mutex_init (&cas_lock , NULL) ;
pthread_create (&t id , NULL, producer_main , NULL) ;
consumer_main (NULL) ;
pthread_join ( t id , NULL) ;
pthread_mutex_destroy (&cas_lock ) ;
return 0 ;

}

A.2 Indexer Source Code

A.2.1 Linux Version

#include <pthread . h>

#define SIZE 128
#define MAX 4
#define N 8

int t ab l e [ SIZE ] ;
pthread_mutex_t cas_mutex [ SIZE ] ;
pthread_t t i d s [N−1] ;

int cas ( int ∗ tab , int h , int val , int new_val ) {
int r e s u l t = 0 ;
pthread_mutex_lock(&cas_mutex [ h ] ) ;
i f ( tab [ h ] == val ) {

tab [ h ] = new_val ;
r e s u l t = 1 ;

}
pthread_mutex_unlock(&cas_mutex [ h ] ) ;
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return r e s u l t ;
}

void thread_rout ine ( int t i d ) {
int m = 0 , w, h ;
while (1 ){

i f ( m < MAX ) {
w = (++m) ∗ 11 + t i d ;

}
else {
break ;

}
h = (w ∗ 7) % SIZE ;
while ( cas ( tab le , h , 0 , w) == 0) {

h = (h+1) % SIZE ;
}

}
}

void ∗ thread_main (void ∗ arg ) {
thread_rout ine ( ( int ) (unsigned long ) arg ) ;
return NULL;

}

int main ( int argc , char ∗∗ argv ) {
int i ;
for ( i = 0 ; i < SIZE ; i++) {

pthread_mutex_init(&cas_mutex [ i ] , NULL) ;
}
for ( i = 0 ; i < N−1; i++) {

pthread_create(& t i d s [ i ] , NULL, thread_main ,
(void ∗ ) (unsigned long ) ( i ) ) ;

}
thread_rout ine (N−1);
for ( i = 0 ; i < N−1; i++) {

pthread_join ( t i d s [ i ] , NULL) ;
}
for ( i = 0 ; i < SIZE ; i++) {

pthread_mutex_destroy(&cas_mutex [ i ] ) ;
}
return 0 ;

}

A.2.2 Windows Version

/∗ indexer . cpp ∗/

#include <windows . h>
#include <iostream>
#include <a s s e r t . h>

#define SIZE 128
#define MAX 4
#define N 7
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int t ab l e [ SIZE ] ;
CRITICAL_SECTION cas_mutex [ SIZE ] ;
HANDLE threads [N−1] ;
DWORD t i d s [N−1] ;

int cas ( int ∗ tab , int h , int val , int new_val ) {
int r e s u l t = 0 ;
En t e rC r i t i c a l S e c t i o n (&cas_mutex [ h ] ) ;
i f ( tab [ h ] == val ) {

tab [ h ] = new_val ;
r e s u l t = 1 ;

}
LeaveCr i t i c a l S e c t i on (&cas_mutex [ h ] ) ;
return r e s u l t ;

}

void thread_rout ine ( int t i d ) {
int m = 0 , w, h ;
while (1 ) {

i f ( m < MAX ) {
w = (++m) ∗ 11 + t i d ;

}
else {
break ;

}
h = (w ∗ 7) % SIZE ;
while ( cas ( tab le , h , 0 , w) == 0) {

h = (h+1) % SIZE ;
}

}
}

DWORD WINAPI thread_main (LPVOID arg )
{

thread_rout ine ( ( int ) (unsigned long ) arg ) ;
return 0 ;

}

extern "C"
__declspec ( d l l e xpo r t ) int ChessTestRun ( ) {

int i = 0 ;
for ( i = 0 ; i < SIZE ; i++) {

tab l e [ i ] = 0 ;
I n i t i a l i z e C r i t i c a l S e c t i o n (&cas_mutex [ i ] ) ;

}
for ( i = 0 ; i < N−1; i++) {

threads [ i ] = CreateThread (NULL, 0 , thread_main ,
(LPVOID) (unsigned long ) i , 0 , &t i d s [ i ] ) ;

}
thread_rout ine (N−1);
for ( i = 0 ; i < N−1; i++) {

WaitForSingleObject ( threads [ i ] , INFINITE ) ;
CloseHandle ( threads [ i ] ) ;
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}
for ( i = 0 ; i < SIZE ; i++) {

De l e t eC r i t i c a l S e c t i o n (&cas_mutex [ i ] ) ;
}
return 0 ;

}

A.3 Thread Pool Source Code

A.3.1 Linux Version

#include <pthread . h>
#include <a s s e r t . h>
#include <s td i o . h>

#define N 4

typedef void (∗ job ) ( void ) ;

struct node {
job job ;
struct node ∗next ;

} ;

struct queue {
struct node ∗head ;
struct node ∗ t a i l ;

} ;

struct queue jobs ;
pthread_mutex_t lock ;
pthread_cond_t wakeup_cond ;
int e x i t i n g = 0 ;
int i d l e = 0 ;

job dequeue_job ( ) {
struct node ∗v = NULL;
job job ;
v = jobs . head ;
job = v−>job ;
j obs . head = v−>next ;
f r e e ( v ) ;
i f ( j obs . head == NULL) {

jobs . t a i l = NULL;
}
return job ;

}

void enqueue_job ( job job ) {
struct node ∗n = NULL;
pthread_mutex_lock (& lock ) ;
n = ( struct node ∗) mal loc ( s izeof ( struct node ) ) ;
a s s e r t (n != NULL) ;
n−>job = job ;
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n−>next = NULL;
i f ( j obs . t a i l == NULL) {

a s s e r t ( j obs . head == NULL) ;
j obs . head = n ;

}
else {

jobs . t a i l−>next = n ;
}
jobs . t a i l = n ;
i f ( i d l e > 0) {

pthread_cond_signal (&wakeup_cond ) ;
}
pthread_mutex_unlock (& lock ) ;

}

void ∗ thread_main (void ∗ arg ) {
job job ;
while (1 ) {

pthread_mutex_lock (& lock ) ;
while ( ( j obs . head == NULL) && ! e x i t i n g ) {

i d l e++;
pthread_cond_wait (&wakeup_cond , &lock ) ;
i d l e −−;

}
i f ( e x i t i n g ) {

pthread_mutex_unlock (& lock ) ;
break ;

} else {
job = dequeue_job ( ) ;
pthread_mutex_unlock (& lock ) ;
job ( ) ;

}
}
return NULL;

}

void
pr in t_he l l o ( ) {

p r i n t f ( "%s " , "He l lo ! \ n" ) ;
}

int main ( int argc , char ∗∗ argv ) {
pthread_t threads [N ] ;
int i = 0 ;
pthread_mutex_init (&lock , NULL) ;
pthread_cond_init (&wakeup_cond , NULL) ;
for ( i = 0 ; i < N; i++) {

pthread_create (&threads [ i ] , NULL, thread_main , NULL) ;
}
enqueue_job ( pr in t_he l l o ) ;
pthread_mutex_lock (& lock ) ;
e x i t i n g = 1 ;
pthread_cond_broadcast (&wakeup_cond ) ;
pthread_mutex_unlock (& lock ) ;
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for ( i = 0 ; i < N; i++) {
pthread_join ( threads [ i ] , NULL) ;

}
pthread_mutex_destroy (& lock ) ;
pthread_cond_destroy (&wakeup_cond ) ;
return 0 ;

}

A.3.2 Windows Version

#include <windows . h>
#include <iostream>
#include <s td i o . h>
#include <a s s e r t . h>

#define N 4

typedef void (∗ job ) ( void ) ;

struct node {
job job ;
struct node ∗next ;

} ;

struct queue {
struct node ∗head ;
struct node ∗ t a i l ;

} ;

struct queue jobs= {NULL, NULL} ;
CRITICAL_SECTION lock ;
HANDLE wakeup_sem ;
int e x i t i n g = 0 ;
int i d l e = 0 ;

job dequeue_job ( ) {
struct node ∗v = NULL;
job job ;
v = jobs . head ;
job = v−>job ;
j obs . head = v−>next ;
f r e e ( v ) ;
i f ( j obs . head == NULL) {

jobs . t a i l = NULL;
}
return job ;

}

void enqueue_job ( job job ) {
struct node ∗n = NULL;
En t e rC r i t i c a l S e c t i o n (& lock ) ;
n = ( struct node ∗) mal loc ( s izeof ( struct node ) ) ;
a s s e r t (n != NULL) ;
n−>job = job ;
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n−>next = NULL;
i f ( j obs . t a i l == NULL) {

a s s e r t ( j obs . head == NULL) ;
j obs . head = n ;

} else {
jobs . t a i l−>next = n ;

}
jobs . t a i l = n ;
i f ( i d l e > 0) {

ReleaseSemaphore (wakeup_sem , 1 , NULL) ;
}
LeaveCr i t i c a l S e c t i on (& lock ) ;

}

DWORD WINAPI thread_main (LPVOID param)
{

job job ;
while (1 ) {

En t e rC r i t i c a l S e c t i o n (& lock ) ;
while ( ( j obs . head == NULL) && ! e x i t i n g ) {

i d l e++;
LeaveCr i t i c a l S e c t i on (& lock ) ;
WaitForSingleObject (wakeup_sem , INFINITE ) ;
En t e rC r i t i c a l S e c t i o n (& lock ) ;
i d l e −−;

}
i f ( e x i t i n g ) {

LeaveCr i t i c a l S e c t i on (& lock ) ;
break ;

} else {
job = dequeue_job ( ) ;
L eav eCr i t i c a l S e c t i on (& lock ) ;
job ( ) ;

}
}
return 0 ;

}

void pr in t_he l l o ( ) {
p r i n t f ( "%s " , "He l lo ! \ n" ) ;

}

us ing namespace std ;

void cleanup ( ) {
node ∗v = NULL;
e x i t i n g = 0 ;
i d l e = 0 ;
while ( j obs . head != NULL) {

v = jobs . head ;
j obs . head = v−>next ;
f r e e ( v ) ;

}
jobs . head = NULL;
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jobs . t a i l = NULL;
}

extern "C"
__declspec ( d l l e xpo r t ) int ChessTestRun ( ) {
DWORD t id [N ] ;
HANDLE hThread [N ] ;
unsigned int i = 0 ;
c leanup ( ) ;
I n i t i a l i z e C r i t i c a l S e c t i o n (& lock ) ;
wakeup_sem = CreateSemaphore (NULL, 0 , N+1, NULL) ;
for ( i = 0 ; i < N; i++) {
hThread [ i ] = CreateThread (NULL, 0 , thread_main ,

(LPVOID) (unsigned long ) i , 0 , &t i d [ i ] ) ;
}
enqueue_job ( pr in t_he l l o ) ;
En t e rC r i t i c a l S e c t i o n (& lock ) ;
e x i t i n g = 1 ;
ReleaseSemaphore (wakeup_sem , i d l e , NULL) ;
Leav eCr i t i c a l S e c t i on (& lock ) ;
for ( i = 0 ; i < N; i++) {

WaitForSingleObject ( hThread [ i ] , INFINITE ) ;
CloseHandle ( hThread [ i ] ) ;

}
De l e t eC r i t i c a l S e c t i o n (& lock ) ;
CloseHandle (wakeup_sem ) ;
return 0 ;

}

A.4 Barrier Source Code

A.4.1 Linux Version

#include <pthread . h>

#define N 4
#define STEPS 1

pthread_mutex_t lock ;
pthread_cond_t cond ;
int count = 0 ;
int phase = 0 ;

void phase_0 ( ) {
pthread_mutex_lock (& lock ) ;
count++;
i f ( count == N) {

phase = 1 ;
pthread_cond_broadcast (&cond ) ;

} else {
while ( phase == 0) {

pthread_cond_wait (&cond , &lock ) ;
}

}
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pthread_mutex_unlock (& lock ) ;
}

void phase_1 ( ) {
pthread_mutex_lock (& lock ) ;
count−−;
i f ( count == 0) {

phase = 0 ;
pthread_cond_broadcast (&cond ) ;

} else {
while ( phase == 1) {

pthread_cond_wait (&cond , &lock ) ;
}

}
pthread_mutex_unlock (& lock ) ;

}

void ba r r i e r ( ) {
phase_0 ( ) ;
phase_1 ( ) ;

}

void proce s s (void ∗ arg ) {
int i = 0 ;
for ( i = 0 ; i < STEPS; i++) {

b a r r i e r ( ) ;
}

}

void ∗ thread_main (void ∗ arg ) {
proce s s ( arg ) ;
return NULL;

}

int main ( int argc , char ∗∗ argv ) {
pthread_t threads [N−1] ;
int i = 0 ;
pthread_mutex_init (&lock , NULL) ;
pthread_cond_init (&cond , NULL) ;
for ( i = 0 ; i < N−1; i++) {

pthread_create (&threads [ i ] , NULL, thread_main , NULL) ;
}
p roce s s (NULL) ;
for ( i = 0 ; i < N−1; i++) {

pthread_join ( threads [ i ] , NULL) ;
}
pthread_mutex_destroy (& lock ) ;
pthread_cond_destroy (&cond ) ;
return 0 ;

}

A.4.2 Windows Version

#include <windows . h>
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#include <iostream>
#include <a s s e r t . h>

#define N 3
#define STEPS 2

CRITICAL_SECTION lock ;
HANDLE sem1 , sem2 ;
unsigned int count = 0 ;

void phase_1 ( ) {
int s i g n a l l e r = 0 ;
En t e rC r i t i c a l S e c t i o n (& lock ) ;
count++;
i f ( count == N) {

s i g n a l l e r = 1 ;
ReleaseSemaphore ( sem1 , N−1, NULL) ;

}
LeaveCr i t i c a l S e c t i on (& lock ) ;
i f ( ! s i g n a l l e r ) {

WaitForSingleObject ( sem1 , INFINITE ) ;
}

}

void phase_2 ( ) {
int s i g n a l l e r = 0 ;
En t e rC r i t i c a l S e c t i o n (& lock ) ;
count−−;
i f ( count == 0) {

s i g n a l l e r = 1 ;
ReleaseSemaphore ( sem2 , N−1, NULL) ;

}
LeaveCr i t i c a l S e c t i on (& lock ) ;
i f ( ! s i g n a l l e r ) {

WaitForSingleObject ( sem2 , INFINITE ) ;
}

}

void ba r r i e r ( ) {
phase_1 ( ) ;
phase_2 ( ) ;

}
DWORD WINAPI thread_main (LPVOID param) {

int i = 0 ;
for ( i = 0 ; i < STEPS; i++) {

b a r r i e r ( ) ;
}
return 0 ;

}

us ing namespace std ;

extern "C"
__declspec ( d l l e xpo r t ) int ChessTestRun ( ) {
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DWORD t id [N−1] ;
HANDLE hThread [N−1] ;
unsigned int i = 0 ;
count = 0 ;
I n i t i a l i z e C r i t i c a l S e c t i o n (& lock ) ;
sem1 = CreateSemaphore (NULL, 0 , N−1, NULL) ;
sem2 = CreateSemaphore (NULL, 0 , N−1, NULL) ;
for ( i = 0 ; i < N−1; i++) {

hThread [ i ] = CreateThread (NULL, 0 , thread_main ,
(LPVOID) (unsigned long ) i , 0 , &t i d [ i ] ) ;

}
thread_main ( (LPVOID) (unsigned long ) (N−1)) ;
for ( i = 0 ; i < N−1; i++) {

WaitForSingleObject ( hThread [ i ] , INFINITE ) ;
CloseHandle ( hThread [ i ] ) ;

}
De l e t eC r i t i c a l S e c t i o n (& lock ) ;
CloseHandle ( sem1 ) ;
CloseHandle ( sem2 ) ;
return 0 ;

}

A.5 Producer-Consumer Source Code

A.5.1 Linux Version

#include <a s s e r t . h>
#include <pthread . h>

#define SIZE 2
#define N 1

struct semaphore {
pthread_mutex_t lock ;
pthread_cond_t cond ;
int value ;
int f l a g ;

} ;

void semaphore_init ( struct semaphore ∗sem , int value ) {
pthread_mutex_init (&sem−>lock , NULL) ;
pthread_cond_init (&sem−>cond , NULL) ;
sem−>value = value ;
sem−>f l a g = 0 ;

}

void semaphore_destroy ( struct semaphore ∗sem) {
pthread_mutex_destroy (&sem−>lock ) ;
pthread_cond_destroy (&sem−>cond ) ;

}

void semaphore_wait ( struct semaphore ∗sem) {
int tva lue ;
pthread_mutex_lock (&sem−>lock ) ;
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tva lue = sem−>value ;
tvalue−−;
sem−>value = tva lue ;
i f ( tva lue < 0) {
while ( sem−>f l a g == 0) {

pthread_cond_wait (&sem−>cond , &sem−>lock ) ;
}
sem−>f l a g = 0 ;

}
pthread_mutex_unlock (&sem−>lock ) ;

}

void semaphore_post ( struct semaphore ∗sem) {
int tva lue ;
pthread_mutex_lock (&sem−>lock ) ;
tva lue = sem−>value ;
tva lue++;
sem−>value = tva lue ;
i f ( tva lue <= 0) {

sem−>f l a g = 1 ;
pthread_cond_signal (&sem−>cond ) ;

}
pthread_mutex_unlock (&sem−>lock ) ;

}

pthread_mutex_t mutex ;
struct semaphore items , spaces ;
unsigned int f i l l = 0 ;
unsigned char bu f f e r [ SIZE ] ;

void ∗ producer (void ∗ arg ) {
int i ;
unsigned char item ;
for ( i = 0 ; i < N; i++) {

item = (unsigned char ) ( i %256);
semaphore_wait (&spaces ) ;
pthread_mutex_lock (&mutex ) ;
bu f f e r [ i%SIZE ] = item ;
f i l l ++;
pthread_mutex_unlock (&mutex ) ;
semaphore_post (&items ) ;

}
return NULL;

}

void ∗ consumer (void ∗ arg ) {
int i = 0 ;
unsigned char item ;
a s s e r t ( f i l l == 0 ) ;
for ( i = 0 ; i < N; i++) {

semaphore_wait (&items ) ;
pthread_mutex_lock (&mutex ) ;
item = bu f f e r [ i%SIZE ] ;
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f i l l −−;
a s s e r t ( item == (unsigned char ) ( i %256));
pthread_mutex_unlock (&mutex ) ;
semaphore_post (&spaces ) ;

}
return NULL;

}

int main ( int argc , char ∗∗ argv ) {
pthread_t t ;
pthread_mutex_init (&mutex , NULL) ;
semaphore_init (&items , 0 ) ;
semaphore_init (&spaces , SIZE ) ;
pthread_create (&t , NULL, producer , NULL) ;
consumer (NULL) ;
pthread_join ( t , NULL) ;
pthread_mutex_destroy (&mutex ) ;
semaphore_destroy (&items ) ;
semaphore_destroy (&spaces ) ;
return 0 ;

}

A.5.2 Windows Version

#include <windows . h>
#include <iostream>
#include <a s s e r t . h>

#define SIZE 2
#define N 1

CRITICAL_SECTION mutex ;
HANDLE items , spaces ;
unsigned int f i l l = 0 ;
unsigned char bu f f e r [ SIZE ] ;

DWORD WINAPI producer (LPVOID param) {
int i ;
unsigned char item ;
for ( i = 0 ; i < N; i++) {

item = (unsigned char ) ( i %256);
WaitForSingleObject ( spaces , INFINITE ) ;
En t e rC r i t i c a l S e c t i o n (&mutex ) ;
bu f f e r [ i%SIZE ] = item ;
f i l l ++;
LeaveCr i t i c a l S e c t i on (&mutex ) ;
ReleaseSemaphore ( items , 1 , NULL) ;

}
return 0 ;

}

DWORD WINAPI consumer (LPVOID param) {
int i = 0 ;
unsigned char item ;
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for ( i = 0 ; i < N; i++) {
a s s e r t ( f i l l == 0 ) ;
WaitForSingleObject ( items , INFINITE ) ;
En t e rC r i t i c a l S e c t i o n (&mutex ) ;
item = bu f f e r [ i%SIZE ] ;
f i l l −−;
a s s e r t ( item == (unsigned char ) ( i %256));
L eav eCr i t i c a l S e c t i on (&mutex ) ;
ReleaseSemaphore ( spaces , 1 , NULL) ;

}
return 0 ;

}

us ing namespace std ;

extern "C"
__declspec ( d l l e xpo r t ) int ChessTestRun ( ) {
DWORD tp ;
HANDLE prod ;
unsigned int i = 0 ;
f i l l = 0 ;
I n i t i a l i z e C r i t i c a l S e c t i o n (&mutex ) ;
i tems = CreateSemaphore (NULL, 0 , SIZE , NULL) ;
spaces = CreateSemaphore (NULL, SIZE , SIZE , NULL) ;
prod = CreateThread (NULL, 0 , producer , NULL, 0 , &tp ) ;
consumer (NULL) ;
WaitForSingleObject ( prod , INFINITE ) ;
D e l e t eC r i t i c a l S e c t i o n (&mutex ) ;
CloseHandle ( prod ) ;
CloseHandle ( i tems ) ;
CloseHandle ( spaces ) ;
return 0 ;

}

A.6 Bug Inspect

#include <pthread . h>
#include <a s s e r t . h>

int x = 2 ;
pthread_mutex_t lock ;

void ∗ thread_a (void ∗ arg ) {
int tmp ;
pthread_mutex_lock (& lock ) ;
tmp = x ;
pthread_mutex_unlock (& lock ) ;
tmp++;
pthread_mutex_lock (& lock ) ;
x = tmp ;
pthread_mutex_unlock (& lock ) ;
return NULL;

}
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void ∗ thread_b (void ∗ arg ) {
int tmp ;
pthread_mutex_lock (& lock ) ;
tmp = x ;
pthread_mutex_unlock (& lock ) ;
tmp ∗= 2 ;
pthread_mutex_lock (& lock ) ;
x = tmp ;
pthread_mutex_unlock (& lock ) ;
return NULL;

}

int main ( int argc , char ∗∗ argv ) {
pthread_t p ;
pthread_mutex_init (&lock , NULL) ;
pthread_create (&p , NULL,

thread_b , NULL) ;
thread_a (NULL) ;
pthread_join (p , NULL) ;
pthread_mutex_destroy (& lock ) ;
a s s e r t ( x != 5 ) ;
return 0 ;

}
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