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Appendix A: Dimensionless Units 

The energy of a bond in our model is not established from a physical system.  Therefore, 

we carefully define it with regard to the thermal energy.  For this work, the temperature of 

the simulation is the variable T  which is scaled by  

1rT k   (1) 

where  is the energy of a bond and k  the Boltzmann constant.  In the stochastic 

simulations we perform the internal energy u  per lattice site is compared to the thermal 

energy 1  using the definition: 

# of bonds # of bonds
2N 2N

rTu
kT T

 (2) 

Reported values of the internal energy are multiplied by 1k  as seen by: 

# of bonds # of bonds
2N 2Nru kT  (3) 

The denominator 2N reflects that each bond is shared by two sites, where there are N sites 

on the lattice. 

We calculate the residual entropy by extracting estimates heat capacity in two ways.  One 

is to estimate the slope of our data and employ the thermodynamic definition: 

# of bonds
/ 2

r
V

V r

kTU uC
T T T N T

 (4) 

In the penultimate equalityU  and T  comes from the formal definition; the estimation retains 

the factor of 1k  in our reported quantities as it refers to the definition provided in equation 
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(3).  The alternate definition comes from harnessing the measured susceptibility within our 

simulation runs: 

2 22

2 2V

U U U U
C

kT kT
 (5) 

We derive this from our simulations by calculating: 

2 2

2

22
2 2

2 2 2 2

# of bonds # of bonds1
2N 2N

# of bonds # of bonds var # of bonds
4 4

V

r

r r
V

C
Tk T

kT kTC
N T N T

(6)

Therefore to return it to the units of 1N  so that it scales properly on a per site basis, we 

multiply by an extra factor of N  with the final result: 

4

2

var # of bonds
4
r

V
kTC
N T

 (7) 

In Appendix F, we discuss the importance of averaging over only samples which are 

uncorrelated in time.  We take care insure that the observations of the samples used for our 

analysis are taken at time points much further apart than the relaxation time. 
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Appendix B: Comparison with Bond Percolation 

As we consider the connectivity of our simulation results, it is helpful to relate this to the 

bond percolation threshold.  It has been noted that percolation is a necessary, but not 

sufficient condition for structural arrest in a reversible gel.  Bond percolation is defined as a 

connected network of bonded sites which spans the lattice.  The case in which there is no 

interaction energy between bonds (the bonds are randomly placed on edges) is equivalent to 

the high temperature limit in our model.  The threshold for bond percolation is defined as the 

minimum probability that an edge is occupied required for network.   This probability pc is 

1/2 on a square lattice and approximately 1/4 on a cubic lattice145-147.  Converting to the 

number of bonds per site, the percolation threshold density would be 1 on a square and 3/4 on 

a cubic lattice.  We notice that the dynamic phenomena we observe occur well below the 

high temperature limits of our model and that the bond densities were larger than the 

percolation threshold.  It is therefore reasonable to assume (although not rigorously proven), 

that all our simulated samples are percolating networks.  This is consistent with the 

observation that the percolation threshold is above the gelation threshold for reversible 

bonding systems40.  The dynamic transitions which we measure are not a direct consequence 

of percolation. 
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Appendix C: Landau Theory Calculations in Two Dimension 

During the interpretation of our simulation results, it is useful to orient ourselves to the 

relevant values of the scaled temperature 
r

T
T  by considering the mean-field results.  

It is important to acknowledge the simple Landau theory, which expands the energy in terms 

of an order parameter has severe and well documented limitations.  However, the results 

provide insight into the order parameters in our model and a starting place for our continued 

analysis.  We note that this is a form of the mean-field approximation, as is clearly seen in 

the values of the results.  We note that in our results, there is a locally preferred structure at 

lower temperature.  This is consistent with an order/disorder transition, and reinforces the 

less obvious lack a macroscopic symmetry breaking with two of the states dominating at all 

vertices (preponderance in either the (1,3) ,  or (2,4) , ).  Indeed, in all cases there is 

little skewing, even when structure on the order of the length scale of the simulation sample 

size develops.  However it is not clear the number of order parameters needed to describe 

these results. 

In this implementation, we define two order parameters,  and , to allow for the 

possibility of two forms of order/disorder symmetry breaking in the system behavior.  Both 

indicate the same limit of stability limit 0.25T .  Thus, in our mean-field results presented 

in Chapter 1, we assert that the orientations not involved in a locally ordered structure will 

have degenerate probabilities.  Employing this assumption we recover the spinodal 

temperature, 0.25T , further validating that symmetry breaking occurs only in one 

direction (either ,  or , ). 
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We use classical Landau theory148 to identify when the random state becomes unstable 

relative to the ordered lamella state for the fully-dense lattice.  This describes a liquid to 

crystal phase transition.  It is important to note that at this value of T  (or conversely 

temperature), the system will spontaneously order into a lamella.  Other satisfied structures 

might spontaneously form at temperatures near this transition, but they are neglected in this 

estimate.  Thus, the predictions of this analysis would not be inconsistent with observation of 

a lamella state in a simulation sample at a higher temperature, or a transition to a different 

energy minima altogether.   

 At the heart of Landau theory is a functional form of the free energy as an expansion 

in powers of an order parameter.  We can then use the functional form to identify when the 

free energy minimum transitions from the zero to a finite value of that parameter.  Defining 

an order parameter to distinguish between a glassy and a polycrystalline state remains a 

fundamental challenge in this field149.  We recognize that we cannot identify order 

parameters to discuss generically this transition because of the degeneracy of the potential 

energy minimum.  However, we can identify order parameters for the specific transition from 

the disordered state to the lamella state, where all the rows (or columns) are identical in one 

direction and in the opposite direction they alternate.  If we assume periodic boundary 

conditions, we can reduce the lattice to two sites without loss of generality.  In this state two 

molecule orientations (e.g. ,  ) will dominate the lattice and the probability of the other 

two (e.g. , ) will be equal everywhere, but smaller.  This introduces the first-order 

parameter, .  A second order parameter, , is introduced when we choose either the left-

hand or right-hand site to be in state 1 (alternately the top or bottom site to be in state 2).   
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 We use these order parameters to write the free energy expansion.  Both  and 

are even functions so no linear term appears in the free energy expansion.  The transition 

occurs when the second order terms change from positive to negative (or the global free 

energy minimum changes from zero to nonzero).  The value of  required for this transition 

is 4 (or the temperature of this transition is T =0.25).  . 

Using the Hamiltonian, we find the internal energy for our model is: 

1 1 2 3 2
1 1

3 4 1 3 4

2 2 3 4 1 3

4 1 2

( , ) ( , 1) ( , 1) ( , 1) ( 1, )
2

( 1, ) ( 1, ) ( , 1) ( , 1) ( , 1)

( , ) ( 1, ) ( 1, ) ( 1, ) ( , 1) ( , 1)

( , 1) ( 1, ) (

N N

i j
H p i j p i j p i j p i j p i j

p i j p i j p i j p i j p i j

p i j p i j p i j p i j p i j p i j

p i j p i j p i 4

3 1 2 3 1 3

4 1 2 4

4 1 2 3 2 3

4 1 2

1, ) ( 1, )

( , ) ( , 1) ( , 1) ( , 1) ( , 1) ( , 1)

( , 1) ( 1, ) ( 1, ) ( 1, )

( , ) ( , 1) ( , 1) ( , 1) ( 1, ) ( 1, )

( 1, ) ( 1, ) ( 1, )

j p i j

p i j p i j p i j p i j p i j p i j

p i j p i j p i j p i j

p i j p i j p i j p i j p i j p i j

p i j p i j p i j 4

5 5 5 5 5
1 1

( 1, )

( , ) ( , 1) ( 1, ) ( , 1) ( 1, )
2

N N

i j

p i j

p i j p i j p i j p i j p i j

 (1) 

With the value of the reduced temperature given in chapter 2 .  The free energy is therefore 

given by:

4

, , , ,
1 1 1

ln
N N

k i j k i j
i j k

f u p p  (2) 

We substitute the following relations to describe the lamella state in terms of one site: 

2, , 4, ,

2, , 2, , 1 2, 1,

1, , 1, 2, 3, 1, 3, 3,

1, , 2, , 1

    

      

i j i j

i j i j i j

i j i j i j i j

i j i j

p p
p p p
p p p p
p p

 (3) 

and write the remaining terms of the ordered parameters  and :
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1

2

3

4

 ¼ (1  ) 
 ¼ (1 -  )
 ¼ (1  ) -
 ¼ (1 -  ) 

p
p
p
p

 (4) 

We then expand the free energy in terms of the ordered parameters.  This gives: 

22 4
2
1

8
4ln

8
9 JJJf

Thus the onset of instability with respect to the lamella phase is at 1 4T  and both 

ordered parameters become unstable at the same time.  This result foreshadows the general 

mean-field solution which does not specify which final state of the lattice is preferred (not 

restricted to the ordered parameter of a single energy minima- that of the lamella).  It also 

supports the results of the DMF simulations which find that even once a minima is found and 

one orientation is strongly preferred at vertex i .
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Appendix D: Mean-Field Calculation in Three Dimensions 

A natural extension of our work is to consider the model in other lattices forms, either in 

two dimensions (e.g. hexagonal) or in three dimensions (e.g. cubic).  We also can consider 

other conformations of the bonding sites or additional bonding sites.  For example, a 

molecule with 4 or 5 bonding sites would still be valence-limiting on a cubic lattice (6 edges 

at each vertex).  The complexity this adds to the mean-field calculations is dramatic if we 

explicitly consider the full Hamiltonian as we did in Chapter 1.  During our work, we found 

the mean-field diagram was a very useful guide for our understanding of the simulations.  

Others have recently shown that despite the simplicity of this approximation, it provides a 

more accurate estimate of simulation results than other more detailed calculations.  A more 

detailed discussion of this can be found in Chapter 2.

A further provocative thought is that the glass transition occurs as lack of percolation of 

mobile regions around glassy states on the potential energy landscape (PEL).  The large 

dimensionality of the PEL exceeds the upper critical dimension limiting a mean field analysis 

such the mean-field conditions are met and the approximation when used in this way 

provides the exact results142.  We have not formulated our approximation to address a 

percolation transition in accessible portions of the PEL explicitly; however the connection 

between the ideas is appealing. 

As the Hamiltonian becomes larger, we find we can simplify our perspective by 

considering there are two types of occupied orientations.  The first is one in which is part of a 

locally ordered domain and thus is energetically stabilized.  The second is a non-ordered 

liquid like phase.   
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In this Section we will consider the same T-shaped molecule, but now on a cubic lattice.  

Exploration beyond the current T-shape model in 2-dimensions into 3-dimensions or on 

alternate lattice structures is motivated by both the expectation of more physically relevant 

systems but also by the increase in accessibility of the equilibrium gel phase.  This phase 

occupies a larger range of densities on the phase diagram as the valency is lowered7.  Indeed, 

access to this phase can be shown to require anisotropic interactions7.  In colloidal gels, 

represented by potentials that have directional attractive interactions on the smaller than the 

length scale of the particle, kinetic arrest can be achieved through non-equilibrium routes 

during phase separation at lower densities (the high density phase becomes an attractive 

glass) and also via reversible paths at higher density94, 95, 133.

On the cubic model there are 12 possible orientations for each molecule.  We will refer to 

the probability that the molecule at the vertex is in a locally ordered domain as p .  Given 

the density of molecules , and recalling that the other orientations are degenerate as they 

are still in a liquid-like phase, the value of these probability of the other occupied states are:  

( )
11
pp  (1) 

When in the fully-dense region =1.  Else, we have used the random dilution approximation 

by assuming that the interaction with the solvent is neutral.  In addition to calculating the 

phase diagram, we also demonstrate that the model retains the same degeneracy of ground 

states which we believe to be fundamental to the nature of this class of materials.  First we 

will consider the fully-dense state.  At high temperature each orientation is equally probable 

so:

1/12p  (2) 
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We can calculate the random potential energy by recalling that there are 6 near-neighbors 

on a cubic lattice, with 3 possible bonds that the molecule at the vertex we are considering 

could form.  The multiplicative factor or 12 arises from the 12 possible orientations and we 

divide by 1/2 because each bond is shared by two molecules. 

36 3 12
2 4randomu p p  (3) 

Adding to this the entropy we find 

3 12 log( )
4
3 log(12)
4

random random random

random

random

f u s

f p p

f

 (4) 

Recall that we are using the same reduced units as described in the other portions of this 

work.  At lower temperatures, there will be a fraction of molecules that may adopt a locally 

oriented structure.  This results in  

1 -
 > (1/12) ;  

11
p

p p  (5) 

2
2 (1 ) (1 )3 30 183

2 11 11oriented
p pu p p  (6) 

It would be quite difficult to tally by hand the 216 possible combinations, but the use of 

locally ordered states helps considerably.  First, we consider the interactions resulting from 

the molecule of interest being in a locally preferred orientation, p .  We notice that there 

must be three bonds between the central molecule and its near-neighbors which are also in 

the locally preferred orientation by definition resulting in a factor of 23p .  Next, we consider 

the central molecule and the possible bonds it can form with near neighbor molecules which 
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are not in locally preferred orientations.  There are 12 orientations at each near neighbor, 

however, only 6 are oriented toward the center molecule, and one of these configuration must 

already represent the locally oriented structure.  There are three bonds which might form 

between the central locally oriented structure and these liquid like neighbors.  Thus there are 

15 possible bonds adding 15
11
p

p .

Now we consider the liquid like states in the from the center molecule.  There are 11 states 

remaining.  As before, along the three vertices from which locally oriented bonds are 

oriented, there are 5 remaining liquid states that can occupy one of the 3 bonds originally 

between the locally preferred direction and 5 liquid orientations at the near neighbor sites that 

meet the geometrical requirements.  Thus, a first term of 
2

75
11
p

.  There are 6 

orientations at the central molecule that could present a bond forming direction along the 

vertice that did not have a bond in the original locally oriented structure.  There are the 6 

near-neighbors that could take advantage of this.  This provides a second term of 

2
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11
p

Collecting these terms we find that  

2
2 (1 ) (1 )1 3 30 183

2 11 11

(1 )log( ) (1 ) log( )
11

oriented oriented oriented

oriented

f u s

p pf p p

pp p p

 (7) 

Extension into the solvated region involves merely replacing 1 p  with .  We then 

calculate the chemical potential from the free energy as  
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;liquid oriented
liquid oriented

f f  (8) 

This allows us to write the grand potential as w f u .  The grand free potential energy 

describes the relationship between temperature and density.  We consider several different 

coexistence cases.  First, we calculate the low density high density coexistence.  Then, as 

temperature lowers, we consider a low density solution in coexistence with a high density 

locally ordered liquid.  These relationships are shown in Figure D-1. 

Figure D-1: The three dimensional phase diagram 
The red line (—) represents the low density/high density solution coexistence curve.  It is 

superseded by a coexistence between a low density solution represented as a blue line (—)

and a high density ordered phase as shown as a green line(—).  The fully-dense bimodal is 
T=0.31 and the spinodal is at T=0.14. 
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Just as before in the two dimensional case, the quench method whether a continuous 

quench from a random state, or in a step-wise pattern between previously cooled samples, 

does not change the average energy of the simulation sample as seen in Figure D-2.  This 

indicates a path independence that further suggests the samples have achieved equilibrium. 

Figure D-2: Simulation results for different quench methods 
The Metropolis MC method was used to quench the simulation samples to low temperature 
based on the choice of path.  In the first method, simulation samples were initially in a 
random configuration and then quenched against the final temperature (o).  In the second 
method, a simulation sample was equilibrated at high temperature and then cooled in a 
successive series of steps (*).  The mean-field bimodal and spinodal are marked as reference 
temperatures. 
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We can take an preliminary look at the value of the heat capacity vC .  In our two-

dimensional work, we considered three methods of evaluating vC .  In the end, the one we 

felt was the most representative in the end was fitting the internal energy curve to an analytic 

fitting function and taking the derivative.  We have not shown that in Figure D-3.  Instead, 

we have represented the calculation of vC  using the variance method taking the information 

directly from the instantaneously quenched simulation samples.  As a reference, we also use 

the quick method of calculating the slope between two measurements with a simple 

difference method.  These results suggest that the vC  maximum is higher than the mean-field 

spinodal.  Whether this is due to the smaller sampling size, not using the preferred method of 

calculating vC  or some other reason, the impact of this observation on the fragile-to-strong 

crossover is not evaluated here. 
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Figure D-3: Heat capacity measurements in the three dimensional model 
The heat capacity is calculated by two methods.  First, we use the variance from the 
simulation data itself to calculate the heat capacity (o).  As a comparison, we employ a 
simple difference method to calculate the slope between data from the internal energy (*).
The mean-field bimodal and spinodal are once again provided as reference. 

One of the key aspects of this model is that it provides a greater than exponential number 

of ground states connected by very small barriers in energy.  Each of the follow groupings is 

a locally oriented structure that can be tiled across a simulation sample and would result in 

every bond being satisfied.  The boundaries of the tiles all are such that they are 

interchangeable so that the number of minima is greater than 4N.  There are also other tiling 

groupings that are not accounted for by combinations of these structures (not shown).  Thus, 

increasing the dimensionality retains this important characteristic. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

T

C
v

Mean Field 
Stability Limit

Mean Field 
Coexistance

Mean Field 
Stability Limit

Mean Field 
Coexistance



123

Figure D-4: Samples of possible locally oriented structures in three dimensions 
These four structures could interchangeable be used to tile a large sample.  Their boundary 
conditions match.  Each structure is a 4 x 4 x 4 cube. 
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Appendix E: Stochastic Simulation Techniques 

While increases in processor speed and new computational techniques have made 

simulations a powerful tool in analyzing many systems, they are still plagued by the diversity 

in size and time scales110, 150, 151.  Thus, despite the intuitive appeal of molecular dynamics 

(MD) simulations or off-lattice calculations as incorporating ‘more accurate physics’, the 

increased efficiency of on-lattice kMC simulations allow for a much longer time-scale to be 

evaluated.  In the following discussion, we shall parallel the description of MC simulation 

techniques outlined in Section 2.3. 

Master Equation 

We can visualize all possible states of the lattice as defining a hyper-dimensional energy 

surface (albeit discrete) in conformational space.  For the purpose of describing this space, 

the state of the lattice will be identified as a lower case roman character, while the orientation 

of a specific molecule as a Greek character with a subscript describing its location on the 

simulation.  A specific state m  is located at the conformation coordinate mx , where 

(1) (2) ( ), , ,m Nx .  The numerical subscripts define the location of the molecule  on 

the square lattice.  The energy at mx  is defined by the Hamiltonian previously described and 

motion along the surface occurs by the change in orientation of a single molecule.  The 

system is coupled to a thermal bath allowing for transfer between states.  This gives us at 

equilibrium results distributed according to the canonical ensemble; the probability ( )mP eq

that the system is located at mx , is given by
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1( ) exp

k

m m

E

k

P eq E
Z

Z e
 (1) 

where k  includes all states.   

The equilibrium probabilities are not known a priori, instead we use the master equation 

formalism such that any initial distribution explores conformation space as defined by115:

( ) ( ) ( )m
k m k m k m

k k

dP t q P t q P t
dt

 (2) 

The transition probabilities, k mq , specify the choice of motion along the landscape from kx

to mx .  At long-times, steady state should be reached, so the left hand side of (5) must go to 

zero and the probabilities ( )kP t  and ( )mP t  adopt their equilibrium value.  This results in the 

condition of detail balance with: 

exp expk m k m k mq E q E  (3) 

We notice that the choice of transition probabilities is not unique.  Our choice of 

Hamiltonian does not result in an analytically tractable master equation, so we solve for the 

dynamic and equilibrium properties using MC simulations46, 116.
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Metropolis Monte Carlo 

Two different Monte Carlo simulation methods were employed for these studies.  First, a 

simple Metropolis recipe117 was employed for equilibration of the lattices.  In this method, a 

specific molecule, ( ; )t i , is chosen at based on a random choice of lattice vertex i .  Then a 

change in orientation of the molecule from  is proposed at random.  We define the 

number of bonds that ( ; )t i  forms with its near-neighbors as ( ; )b t i .  The transition state 

between state m and state n  is defined as the difference in the energy between the two 

orientations is compared with a random number.   

(1/ )( ( 1; ) ( ; ))1 if  (attempt accepted)
otherwise 0 (attempt rejected)

T b t i b t i

m n
e uq  (4) 

If the attempt is accepted, the molecule adopts the new orientation, ( 1; )t i .  Otherwise 

the original orientation is retained, ( 1; )t i . N  attempts (where N  is the number of 

vertices on the lattice) is one MCS.  The acceptance rate for this method was sufficiently 

large to cool to very low temperatures relative to the predicted mean-field transition as shown 

in Appendix C. 
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Figure E-1: Metropolis MC acceptance ratio and bond saturation temperature
Despite the ‘bond saturation’ or the percent of possible bonds which have been formed at low 
temperature, the ‘acceptance ratio’ or number of MC attempts which result in a change to the 
number of attempts made overall, remains relatively large.  

Under the Metropolis algorithm, the probability of acceptance is a comparison of the initial 

and final states only.  Although the rate of change of breaking a single bond increases 

exponentially with decreasing temperature, all transitions to lower or degenerate energy 

states are accepted.  Thus, the method allows for a lattice to explore a large number of 

configurations quickly from a computational stance.  While in our notation we indicate an 

attempt as an increment in time, 1t , the time has no explicit connection to physical time 

and therefore the dynamics do not have a clear definition.  However, we note at equilibrium 

the distribution of states is expected to be canonical and any method which leads to the 

correct detail balance is acceptable118, 119.
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Kinetic Monte Carlo: 

As we are investigating the properties of the vitrified state, which by definition are time 

dependent, we need to choose a simulation method which allows us to investigate the 

dynamics of our system.  If the system resides for a considerable length of time within a 

stable or metastable state and then experiences a very quick (on the time scale of the 

residence time) transition between such states, the dynamics of the system may be highly 

dependent on rare transitions.  An example of such an event is the difficulty in overcoming 

high potential energy barriers requiring large activation energies110, 150. In such cases, the 

runtime for a traditional MD simulation is prohibitive; the rare events are separated by an 

impractical number of MD steps and the sampling necessary to create an accurate 

thermodynamic ensemble exceeds conventional resources150.  The wide variety of systems 

studied that include rare events, and the overall utility of the appropriate kMC simulation 

results has lead to the development of refined understanding of choice transition states and 

improved computational techniques 110, 119, 150, 152-161.

   In addition to the two conditions described by (5) and (6), extracting dynamic details via 

kMC simulations requires us to define the of the conformational surface between mx  and kx

for all states m andk 118, 119.  We then form a dynamical hierarchy of transition rates m kr

that would reflect the expected behavior of the model system both at equilibrium as well as in 

non-equilibrium case.  The transition probabilities are defined as  

max

m k
m k

rq  (5) 

where max is greater than or equal to the largest transition rate118.  A wide variety of systems 

have been studied using this technique27, 118, 119, 151, 162, 163.  Many examples such of reaction 
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rates have been directly proposed using the general properties of transition state theory or 

meet its requirements.  Transition-state theory proposes that the transition rate m kr  is 

dependent on the details of reaching the saddle point m kx  along the path in between mx  and 

nx 115, 163.  It has been noted that the specific form of the transition probabilities influences the 

non-equilibrium simulation time156, even leading to incorrect growth exponents119.   Kang 

and Weinberg point out that in most cases the energetic barrier from the initial state, mx , to 

the transition state m kx , describes the microscopic transition process119.

   In our model, we neglect any microscopic energetic details of a simulation sample in state 

m  favoring instead a common vibration frequency, .   The transition probabilities m nq

reflect of the potential energy difference between mx  and m nx

exp( ( ))m n mq E E  (6) 

where 1  becomes the fundamental time scale.  Conveniently, because each state is linked 

via the rotation of a single molecule m , we define mE E  as the number of bonds that 

specific molecule had at state m , which are broken to move to the saddle point.  With this 

choice of the transition probability, there is no impact of the final orientation of that molecule 

on the transition probability and meets the requirements of detail balance. 

We have several large separations between time scales on our lattice.  The fastest processes 

are not activated or cooperative events.  The exploration of the local minima, the fastest 

process, has already been reduced to a constant.  We accomplished this by incorporating all 

-relaxations (exploration of the local minima) into a single thermal variable, , which we 

assume to be temperature independent over the range of our simulations and the same for all 
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wells.  This establishes a reference time for our system.  The transitions between basins do 

have a significant dependence on the local topology of the PEL.  Even with our simple set of 

transition rates, at low temperatures the difference in breaking a single bond as opposed to 

three bonds is very significant.  We can see this clearly from the plateaus in Figure 2.5.2.  

Additionally, in the case of a molecule has no bonds with its neighbors there is also fast event 

taking place on a time scale distinct from the kinetically activated rotations.  This is 

discussed below and illustrated in Figure E-2 and Figure E-3. 

   By definition, any kinetic MC simulation uses the current transition rate dependent 

relationship: 

log( )

m m
m

ut
n q

 (7) 

where u  is a random number, iq  is the transition rate for each possible process, in our case 

given by equation (6).  The number of states which can change due to that process is mn , for 

our model this is ( ; )
i
b t i .  It is important to remember that while at most only one 

transition occurs between steps, the ‘clock’ of elapsed time is running for all molecules in 

parallel, so we need to include all of them in the time increment. 

Because we are investigating the low temperature properties of these simulations, using 

traditional importance methods of proposing a new state46 and then accepting or rejecting 

that move does not improve the simulation time significantly because of the large number of 

rejected moves.  Instead, a residence time or ‘n-fold’118, 120, 121 technique in which an event is 

selected with the appropriate frequency based on the transition rate and every event is 

accepted improves the time considerably.  The transition probabilities and determination of 

elapsed real time is the same as any other kMC technique. 
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This technique is requires that the set of available configuration states and their transition 

properties are know a priori, 27, 151, 164.  The most computationally intensive portion of the 

method is creating the list of possible transitions with their relevant rates.  We are favored in 

our case by the limited range of our potential, which makes updating this list reasonable. 

To enact this process for our, we evaluate the bond energy at every vertex ;b t i  and then 

grouped the same energies and weight them by the appropriate transition probability as given 

in (6).  Therefore we have the intervals: 

1 1 2 2 3

0 0 0 0 0 0 0

0 1 2 3

1

( ) ( ) ( ) ( ) ( )( ) ( )0, , , , , , ,
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(8)

We then generate a random number u  and find the corresponding interval.  A second 

random number is chosen to decide which specific monomer will change.  The rotation 

change is proposed by a third random number.  Finally the physical time is updated using 

equation (7).  This completes one step.  The values of mn  are updated for the new time step 

and the cycle repeats. 

An ‘instantaneous’ quench rate, in which we initialize a simulation sample in a random 

configuration and run the kMC simulation at the final temperature shows an extreme 

example of this behavior.  This choice was used in both the results presented in Sections 

2.5.2 and 0.  The two figures below are representations of the initial portion of the these 

simulations to demonstrate the effect of the various rates on time progression.  One 

advantage of the residence time kMC technique is that the time between steps changes with 

the configuration of the lattice.  When there are many slow processes, the time step is small.  
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However if these processes are reduced, the time step becomes larger in a dynamic fashion.  

In Figure E-2, the ‘physical time’ and is shown after 1000 MCS at a variety of temperatures.  

Notice that there is a non-monotonic relationship between the progressed time and 

temperature. 

Figure E-2: Physical time at 1000MCS for a variety of temperatures 
Despite the same number of successful attempts, the amount of physical time that has elapsed 
is dramatically different at different temperatures. 

For the same ‘snap shot’ in time above, we report the number of monomers we report the 

fastest process, which would result in the smallest progression in physical time for each 

MCS.
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Figure E-3: The number of non-bonded molecules at 1000 MCS as a function of T
Notice that the smallest number of non-bonded molecules after the same number of MC 
attempts which were successful is the smallest where the elapsed time in Figure E-2 is the 
largest.  This indicates that this fast process was selected with greater frequency.  The change 
in color of symbols indicates whether the simulation was close to its final temperature (o) or 
still had a long way to progress before it would relax fully ( ).  

The elapsed physical time in each simulation is a dynamic quantity, responding to the 

distribution of molecules in different bonding states.  Thus the accepted simulation step 

drives will be smaller when there are more fast processes, but then become larger if the 

number of these processes decreases and the accepted steps are related to the slower, 

activated events.  This is one of the advantages of this technique.  There also may be a true 

dynamic consequence to this pattern of non-bonded states, a relationship that should be 

explored further in subsequent work. 
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Appendix F: Calculation of the Heat Capacity from Monte Carlo 

SimulationsEmploying a kinetic Monte Carlo recipe, we can define the relaxation time of 

a simulation sample by noting that there is a difference of the expectation value of the error 

when subsequent observations are correlated in time.  When deriving the correlation 

function, we need to exercise great caution in specifying what assumptions are being made.  

We start our analysis of the correlation function by defining an observable tA  which may be 

a continuous value such as the energy, or a discrete value such as the state of the lattice 

sample at time t.  Properly, an ensemble average would imply averaging over configurational 

space or time, which are equivalent in an equilibrium system.  However we are going to be 

generous with our definition of ensemble average to include systems which are metastable, 

that is, are not strictly at equilibrium, but are arrested in a subset of configurational space. 

As an MC simulation reflect movement over the PEL, subsequent observations are highly 

correlated.  This provides a difficulty in using the variance, ,  to measure the heat capacity 

of a simulation because the calculation of expectation value of the variance, 2A , deviates 

from  non-trivially.  As we note in our work, the vC calculation from the derivative of an 

arbitrarily fit to the energy follows the same trend as the vC  calculated with the measured 

variance, a relationship shown in Figure F-1.  However we also note that as more 

observations are made, the two values become closer.   

How closely does the expectation value of the variance match the actual value as a function 

of the number of observations?  We shall answer that question in two parts.  Initially we will 

ignore the correlated values and see how the accuracy of expectation value of the variance to 
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the relates to the number of measurements during simple sampling.  Then we shall address 

the more complex case of how the variance is related to the correlation (or relaxation) time. 

Formally, we start with the assumption that we are measuring independent observations of 

a quantity A  which obeys a Gaussian distribution with mean A  and variance, 

22A A .  If we make a set of n observations of the distribution, iA , the unbiased 

estimator of the mean is:  

1

1 n

i
i

A A
n

 (1) 

as we have no other information about the sampling or the distribution.  Similarly, the 

deviations from the observations quantity, i iA A A , allow us to find the expectation 

value of the variance. 
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 (2) 

If we assume that there is no correlation between measurements, the order of summation of 

the set may be changed (i.e. indices i and j  may be interchanged if this violates no other rule 

of summation).  However we do have the restriction that the observations are not equally 

weighted, although we do not have further information about the value of the weights.  Thus 

this correlation, that the term i iA A  has more information than i jA A , which provides the first 

correction to the expectation value.
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The ensemble average can be moved inside the summations.  The individual values i jA A  and 
2
iA  are each replaced by the values 2A  and 2A .
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 (4) 

From the expression (4) we can conclude that improving our estimate of the susceptibility 

goes as 1
n  with uncorrelated observations.  This shows one computational limit of these 

methods. 
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Figure F-1: Specific heat per site calculated by two different methods
The first method was using the slope of u found by simple difference method (*) and using 
the susceptibility calculated from the variance in the measurements (O) 

We can now tighten again our assessment by removing the assumption that subsequent 

observation are uncorrelated.  Returning to equation our original definitions, we remember 

that the set order is now important, and we cannot interchange indices in sums because they 

carry information about the order of observation.
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Next we notice that there is no specific event that breaks the time symmetry between two 

observations.  Thus only the magnitude of k it t t  is important.  Therefore, i kAA =

0 k iA A .  Therefore, if we define 't k i  we can remove one of the summations. 
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(6)

This already has the form of a response function embedded in it.  If we proceed carefully 

through the integration we find that the integrated response function can be directly related to 

the expectation value of the response as46:

2
2 1 2 AA

n t
 (7) 
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Appendix G: Inherent Structures on the Energy Landscape 

While there is compelling evidence for the existence of spatial heterogeneity, it is not 

known if it is a universal characteristic of glassy systems or how it originates.  Sastry et al. 165

ran molecular dynamics (MD) simulations of a binary Lennard-Jones mixture.  They found 

that the exploration of the potential energy landscape by the system was distinctly different in 

the high temperature (above gT ) and low temperature (below gT ) region.  In the high 

temperature region, the average energy was insensitive to temperature; however, the 

distribution in energy of the inherent structures of the explored basins was high.  At low 

temperature the average energy again changed little with temperature, however the system 

explored only basins with low energy inherent structures.  The transition between these two 

plateaus in the average energy of the inherent structures was dramatic.165

We develop a Metropolis based scheme for exploring the configuration space of the fully-

dense lattice.  In these simulations we first equilibrate the lattice at a particular temperature.  

Then we can explore the energy landscape using zero temperature quench166 and evaluate 

relaxation time with different correlations.  Results indicate that the simulations have glassy 

dynamics, even using the Metropolis recipe. 

We perform a zero temperature quench to identify the inherent structures.  During the zero 

temperature quench, no annealing is possible; the system can never gain potential energy75.

In our model there are numerous (and often broad) saddles in our potential energy surface.  

Thus not all basins are uniquely defined.  We modified an algorithm used by Glotzer et al. 

for these non-unique minimizations166.

After we allow the lattice to equilibrate, we have the lattice continue to explore 

configuration space using the algorithm above.  Every 1000 MCS we identify the inherent 
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structure.  First we perform one MCS accepting all states with lower potential energy.  If a 

suggested change in molecule orientation has the same energy it is not accepted.  Then we 

perform a second MCS using the heat bath method46 suggested by Glotzer et al.  The heat 

bath method accepts all moves with lower potential energy, ½ of the moves with equal 

potential energy and none of the moves with higher potential energy.  These two steps are 

repeated until the energy no longer decreases between steps or a minimum of 100 times.   

Preliminary data shows that the difference in the potential energy of the inherent structures 

with temperature is very small, on the order of a tenth of a percent, see 

Figure G-1.  This is smaller than those reported elsewhere.  We do not yet have sufficient 

data to resolve a trend above the error bars.  But it is very unlikely that with more data we 

could see the types of trends shown with both a high and low temperature plateau165, 166.  This 
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suggests that our data is more consistent with the change in behavior appearing at the FSC as 

has been documented in silica72.

Figure G-1: Average inherent structure potential energy as a function of T 
Beginning with an equilibrated Metropolis MC simulation at the T  reported.  The lattice size 
is 40 by 40 with a TAM at every site.  Average potential energy of the 100 inherent 
structures is shown.  Recall that the random (infinite temperature) potential energy of this 
model is –1.125 and the potential energy of a fully satisfied structure is –1.5. 


