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2. Chapter 2: The Glass Transition:  

Comparison of the Supercooled Liquid

and the Kinetically Arrested Glass 

2.1. Introduction

Interest in valence-limited materials is growing, due to both their unique behaviors and 

their potential to form self-assembled materials with highly controlled physical properties.  

Despite length scales which differ by orders of magnitude, from atomic4, 85, 86 and molecular 

5, 72, 87 fluids to polymeric88 and colloidal systems7, these materials share common structural 

and dynamic features.  They are all characterized by intermolecular potentials in which 

anisotropic interactions prevent high density conglomerates, instead allowing for more open 

and organized network formation7.  These potentials describe unique and important 

molecular materials such as water, silica89 and silicon4.  The ‘lock and key’ specificity of 

natural motifs allows DNA3, 90 and proteins3, 91 to form anisotropic, networked structures.  

Directional anisotropic interactions can also be an emergent characteristic in systems after a 

conformational change.  Examples include polymer-grafted nanoparticles92 and low-

molecular mass gelformers93, proteins and DNA which assemble into fibers8.  Additionally, 

the phase diagrams of a subset of these systems, those that form gels3, 13, 29, 90, 94, 95, (Appendix D),

seem to be influenced primarily by the specific number of possible nearest neighbors6,

suggesting that design of novel materials can be predicted from general principles.  Our 

strikingly simple T-shaped molecular model captures the behavior of this diverse class of 

materials well1.
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The phase diagram presented in our previous work demonstrated that valence-limited 

systems can form a wide range of materials influenced not only by the equilibrium 

characteristics, but also by kinetic arrest.  The T-shaped molecular model includes simple 

liquids, gels, glasses, foams and colloidal solutions in different regions of the phase diagram 

dependent in part on the quenching conditions.  We use the term ‘molecule’ to describe our 

elementary bonding unit; however, our model could equivalently represent an abstraction of 

an atomic, molecular, polymeric or colloidal system.  As we seek to understand this class of 

materials, we must grapple with the thermodynamic and kinetic features of dynamic arrest in 

the high density region.  Particularly, we need to consider the nature of the glass transition as 

it pertains to this system.   

All materials, under the appropriate experimental conditions, can be supercooled below 

their normal melting temperature and arrested in an amorphous state on the observed 

timescale.  Many material properties change as the glass transition temperature, gT , is 

approached due to a dramatic slowing in the molecular motion and an increase in the 

relaxation time, .  One of the most interesting features of supercooled liquids is that the 

relaxation processes become non-exponential.  Near gT  the response function, t , is well 

fit by the Kohlrausch-Williams-Watts (KWW) equation: 

t
t e  (1) 

The value of the stretching exponent  generally decreases from 1, or simple exponential 

behavior, as the temperature is lowered.  This behavior is also observed in gel forming 

materials96.
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The temperature dependence of  near gT  has often been used to classify glass formers64.

‘Strong’ materials show nearly linear behavior on an Arrhenius plot of log( )  as a function 

of inverse temperature.  Conversely, ‘fragile’ materials exhibit non-linear, super-Arrhenius, 

activation energy growth as the temperature decreases67.  Usually, fragile liquids have a 

smaller value of  than strong liquids97.

At high temperatures, simple liquids are Arrhenius in nature.  As they are quenched, they 

reach a temperature, onsetT , below which there is the onset of a more fragile regime.  In a 

number of systems there is an apparent return to Arrhenius behavior at very low temperatures 

referred to as the fragile-to-strong crossover (FSC)3, 5, 72, 89, 98-102.  In addition to these 

dynamic properties, it has been shown that there is an inflection point in the configurational 

entropy, cs T , near FSCT .  If we were to extrapolate the cs T  from temperatures above the 

FSC, then we would find a finite temperature or ‘Kauzmann’ temperature, KT , at which 

0c Ks T .  Below KT , the entropy of the liquid would be less than that of a crystal resulting 

in a violation of the third law as 0T 19, commonly known as the ‘Kauzmann Paradox’38.

However, the inflection point may avoid this result, instead leading to 0cs T  for all 

temperatures89.  Valence-limited systems have also been also shown to have vC  maxima, or 

inflections in ( )cs T , at all densities in the phase diagram.  Whether this universally reflects a 

structural change is not clear7; however, there is compelling evidence that structural changes 

in colloidal systems with patchy interactions are related to the maximum in heat capacity40, 91.

We have previously identified two factors that contribute to the rich phase behavior of the 

T-shaped model: local arrangements that lead to stable structures on microscopic length 

scales and degenerate energy minima on the potential energy landscape (PEL).  Degenerate 
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ground states are a general characteristic of limited valency systems7.  Under the PEL 

paradigm103, 104, a system is described as a point moving along a hyper-dimensional surface.  

If the simulation sample is at equilibrium, the probability that the system will occupy a 

specific location on the PEL is determined only by the thermodynamics.  In both equilibrium 

and arrested systems, the transition states between minima on the surface defines the motion 

kinetics and as well as the dynamic response.  

A variety of explanations have been posed for the origin of the FSC transition.  As in the 

case of the glass transition, we can broadly group these descriptions into those with a kinetic 

basis and those which suggest an underlying thermodynamic cause.  From either perspective, 

a rough overview is coming to light.  Couched in the perspective of the PEL, near gT  the 

energy required to overcome the energetic barriers between minima becomes significant.  

Additionally, the system may be unable to explore the full landscape due to the lack of 

mobility of near-neighbors, reducing the configurational entropy.  The confluence of these 

effects leads to super-Arrhenius temperature dependence in this regime.  At the lowest 

temperatures, the system becomes energetically trapped or structurally frustrated in a single 

basin or region of basins such that configurational entropy is nearly temperature independent.

Only energetic terms contribute to the relaxation time dependence on temperature, which 

becomes Arrhenius again.  Strong glass properties such as simple exponential behavior of the 

correlation function, appear to be connected to elementary local independent process of bond 

breaking7.  Inherent in this description is a reduction in configurational entropy as the 

exploration of the surface becomes limited, and regions may become inaccessible.  

Kinetically constrained descriptions of glassformers describe facilitated motion of the 

molecule based on the mobility of the near-neighbors.  Above FSCT  hierarchical dynamics 
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dominate, requiring multiple near-neighbors to obtain certain configurations before moving. 

At lower temperatures only infrequent single, isolated activation steps lead to diffusive 

motion28.  The higher temperature dynamics are thus the result of cooperative motion, 

leading to fragile characteristics, while the lower temperature dynamics are the result of 

individual rearrangements and, thus, return to diffusive motion and strong behavior.  From 

this viewpoint, it is the kinetics of the model that lead to the thermodynamic and structural 

properties28.  It is interesting to note that this model depends on the formation of defects 

which at low temperature have a concentration proportional to the energy, matching our 

prediction for the T-shape model1.

Alternately, it has been noted that there are a vanishing number of defects at low 

temperature in network glass formers, often with a dramatic threshold or ‘cutoff’ of the 

density of states at the FSC89.  This suggests that the PEL has a large gap between higher 

temperatures, where there are many locally metastable configurations, and low temperatures 

with limited configurations that met bond requirements.  This observation may be a result of 

a buried phase transition105.  Of particular note is a speculated buried liquid-liquid 

coexistence line in systems with potentials that facilitate both a high density isotropic liquid 

phase and a low density networked liquid phase5, 36, 106.  The ‘Widom line’, which is a 

continuation of the coexistence line past the critical point and into the one phase region of the 

phase diagram, reflects the asymptotic convergence of response functions close to the critical 

point due to their common reliance on the correlation length.  A system crossing the Widom 

line upon cooling will not demonstrate the discontinuity in the measured characteristics 

associated with a phase transition, but will still exhibit a dramatic change.  The result is that 

the response function maximum, in our case vC , marks thermodynamically the FSC5, 72.  It 
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has been suggested that different classes of glass formers may be characterized by the shape 

and magnitude of vC as well as its relative location with respect to the melting temperature of 

the liquid107.

An example of a buried liquid/liquid phase transition can be found, in valence controlled 

atomic glass formers (e.g. in MD simulations of a modified Stillinger-Weber potential85 for 

tetrahedral silicon4, as well as in a germanium experimental system86) where there is a 

liquid/liquid transition such that the coexistence shifts from a single liquid metastable with 

respect to the crystal phase to two liquids, one of which is structurally similar to the crystal.  

This liquid immediately crystallizes resolving the Kauzmann paradox4.

It has been postulated that there is a phase transition in trajectory space, as opposed to 

configurational space108.  The premise is that the order parameter that should be evaluated is 

the trajectory of a system on the configuration manifold of the PEL.  As the system becomes 

increasingly correlated in motion on the PEL, a first-order phase transition takes place 

between trajectories that remain ergodic and those that are non-ergodic108, 109.  While no 

thermodynamic variables are specifically causal to this transition, there is a direct 

relationship to the features of the PEL108.  Along a similar line of thought, tree 

representations of the PEL have been helpful in evaluating pathways towards low energy 

minima110.  Wales and Bogdan created the discontinuity or tree graphs for several Lennard-

Jones (LJ) potentials to demonstrate the entropic funneling could direct the state of the 

system, as is reflected in the heat capacity calculations110.

Spatial heterogeneity with regard to dynamic phenomena has been well documented in 

both simulations and experiments of glassy systems87.  The correlation functions of glass-like 

materials are often well described by a stretched exponential fit, pointing to the likelihood of 
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a superposition of relaxation phenomena.  This leads to the assumption of different local 

environments which would accommodate this range in values.  Empirically, the Vogel-

Tammann-Fulcher (VTF) is often used to describe the temperature dependence of the 

dynamics for fragile glasses: 

o

D
T T

oe (2)

It is mathematically equivalent to the Williams-Landel-Ferry equation used in polymer 

science64, 111.  The accuracy of this fit in so many systems suggests that the presence of a 

characteristic temperature oT , at which the relaxation time would diverge, has a physical 

origin.  This result inspired an early theory by Adam and Gibbs69, which defines the glass 

transition as a loss of ergodicity due to growing cooperatively rearranging regions, described 

by the size of energy fluctuations required to allow a group of particles to collectively relax 

into their local equilibrium.  Other more recent theories and models build on this work, 

utilizing some form of spatial partitioning of the system27, 68.  There is growing experimental 

and theoretical evidence that material dynamics are very different in regions only a few 

nanometers apart at temperatures near the glass transition.  An excellent review of spatial 

heterogeneity by Ediger97 captures a variety of results from experimental and simulated 

systems, as well as potential explanations.  Of note, it is not clear whether the spatial 

heterogeneity is a result or cause of the dynamic heterogeneity.  There is no apparent 

structural cause for these cooperative regions as a liquid is supercooled.  X-ray and neutron 

scattering studies only show small changes in local packing even in samples with viscosity 

changes of 12 orders of magnitude97.  Our model gives us insight into the spatial dynamics of 

a prototypical example of valence-limited glasses, hopefully lending further information 

towards this fundamental question. 
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Within this chapter we extend our work with the T-shaped molecule model to include not 

only structural, but also dynamic information collected from simulation samples.  A paucity 

of low temperature measurements hinders attempts to understand the fragile-to-strong 

Crossover (FSC)102, 112.  Exploration of valence-limited systems have also been inhibited by 

the inability to access low temperatures113.  Our work, which captures low temperature 

supercooled equilibrium states as well as kinetically arrested states, sheds some light on these 

questions.  After defining the model in the appropriate context in Section 2, we describe the 

simulation methods used in Section 3.  We then analyze the equilibrium liquids structure and 

dynamics in Section 4, and compare these with the kinetically arrested, non-equilibrium, 

glass formers reported in Section 5.  In Section 6, evidence of structural heterogeneity in the 

equilibrium system is presented.  We end this chapter with a discussion of our results to date 

and a brief summary of our conclusions. 

2.2. Definition of T-shaped Molecule Model 

   The T-shaped molecule occupies the vertex, located at i  on a square lattice, a model we 

previously described1.  Each T-shaped molecule, , has three bonding sites which lie in a 

plane, resulting in 4 possible orientations, 1, 2,3 or 4 .  When the T-shaped molecules at 

two neighboring vertices, , 'i i , are oriented such that they each have bonding sites along 

the same edge, we define the resulting connection to be a bond which leads to a favorable 

energetic interaction.  Else, there is no interaction. 

Our simulation samples are in the fully-dense region of the phase diagram where every 

vertex is occupied by a molecule.  While the density of T-shaped molecules (1 per vertex) is 
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a conserved quantity, the density of bonds is not.  Instead, the density of bonds is strongly 

influenced by the temperature.  In the limiting case of high temperature, the bond density is 

9/8 per vertex on a square lattice114.  As the temperature goes to zero, the bond density 

approaches 3/2 per vertex.

For convenience and clarity, we restate the Hamiltonian for the fully-dense lattice: 

, '

; ; '2
i i

H t t i t i  (3) 

where

1 if both molecules have bonding
; ; '    sites along the shared edge , '

0 otherwise

t i t i i i  (4) 

the Greek subscripts indicate the orientation of the molecule( 1,2,3 or 4), t  indicates that 

the orientation may be different at different times, and the sum is over all shared edges (near-

neighbors pairs).  The temperature is expressed in reduced units 
1T .  We omit the 

asterisks in the following text for convenience.  All simulation samples studied are 128 

vertices by 128 vertices with periodic boundary conditions.  This is much larger than any 

spatial correlation found within the simulation samples themselves. 

In previous work (Section 1.4.3)1,  we reported the transition temperature under the mean-

field approximation as 1
, (3log 3)mf criticalT with the supercooled stability limit of 

, 1/ 4mf spinodalT .  In the following sections and discussion, we will identify other 

temperatures of interest.  However, these transition temperatures provide a reference point 

during our work. 
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2.3. Simulation Methods 

The glass transition is, by its very nature, controlled by the interplay of the 

thermodynamics and kinetics of the material.  One powerful description of this interrelation 

is the energy landscape paradigm.  We can visualize all possible states of the lattice as 

defining a hyper-dimensional PEL (albeit discrete) in conformational space.  A specific state 

of the system (our simulation sample) m  is located on the PEL at the conformation 

coordinate mx , where 
1 21 2, , ,

Nm Nx i i i .  The numerical subscripts specify 

individual molecules, , in orientation and location i  on the square lattice.  The energy at 

mx , mE ,is defined by the Hamiltonian and motion along the surface to a new coordinate kx

occurs by the change in orientation of a single molecule.

The energy at each state, however, only defines the intrinsic thermodynamics of the 

system.  We must also incorporate the appropriate transition probabilities k mq  between 

states such that at long-time ( t ) the probability that a simulation sample is found in 

state m , mp , reflects the canonical distribution.  (All our simulations were performed using 

the canonical ensemble with our simulation samples coupled to a thermal bath.)  In Section 

2.3.1, we will find that there are many choices of k mq which could satisfy the requirement 

and lead to the appropriate distribution.  We employ two different Monte Carlo (MC) 

simulation techniques with their associated transition probabilities in our work.

The first is a modified Metropolis MC recipe, as described in Section 2.3.2, with which we 

indentify the low temperature ‘equilibrium’ conditions.  If we wish to explore the kinetic 

properties of our model and collect dynamic information, we must also define the physically 

appropriate transition states m kx  for our model.  The choice of k mq  is now further 
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restricted to incorporate the energetic impact of these transition pathways.  Residence time 

kinetic Monte Carlo (kMC) incorporating both the use of the landscape description to find 

the transition probabilities and a technique to improve the speed of the simulation is 

described in Section 2.3.3.  Further description of these methods can be found in Appendix 

E.

2.3.1. Master Equation 

   As the equilibrium probabilities are not known a priori, we use the master equation 

formalism such that any initial distribution explores conformation space according to the 

dynamic path115:

( ) ( ) ( )m
k m k m k m

k k

dp t q p t q p t
dt

 (5) 

The transition probabilities, k mq , specify the rules of motion along the landscape from kx

to mx .  At long-times, steady state should be reached, so the left hand side of (5) must go to 

zero and the probabilities ( )kp t  and ( )mp t  adopt their equilibrium value.  This results in the 

condition of detail balance with: 

exp expk m k m k mq E q E  (6) 

We notice that the choice of transition probabilities is not unique.  As is often the case, 

even our simple model does not result in an analytically tractable master equation.  Instead, 

we find the dynamic and equilibrium properties by creating a lattice ‘sample’ and using 

Monte Carlo (MC) simulations to evolve this sample in time46, 116.
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2.3.2. Metropolis Monte Carlo Simulations 

   As mentioned above, two different MC simulation methods were employed for these 

studies.  First, a modified Metropolis recipe117 was employed for equilibration of the lattices.  

Under the modified Metropolis algorithm, the probability of acceptance is a comparison of 

the initial and final states only.  Although the rate of change of breaking a single bond 

increases exponentially with decreasing temperature, all transitions to lower or degenerate 

energy states are accepted (see Figure E-1).  The acceptance rate for this method was 

sufficiently large to cool to very low temperatures relative to the predicted mean-field 

transition.  Thus, the method allows for a simulation sample to explore a large number of 

configurations quickly from a computational stance.   

   In our implementation, we challenge an individual molecule with a random transition from 

its current orientation to a new orientation chosen at random.  The acceptance of the new 

orientation or return to its original orientation completes the move.  We define one Monte 

Carlo step (MCS) to be equal to the same number of challenges as there are vertices on the 

lattice.  However we select the molecule for the move randomly, so in one MCS not every 

vertex on the lattice may be challenged.  While the time step for each Monte Carlo attempt 

under this recipe does not have an explicit connection to real time, and therefore the 

dynamics do not have a clear definition, we note at equilibrium the distribution of states is 

expected to be canonical and the conditions of detail balance is met118, 119.   We consider the 

Metropolis results to represent the true equilibrium description of the system, an assumption 

supported by results (see Section 2.4.1). 
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2.3.3. Kinetic Monte Carlo Simulations 

   In addition to the two conditions described by (5) and (6), extracting dynamic details via 

residence time kinetic Monte Carlo (kMC) simulation- also known as the ‘n-fold method’- 

requires us to define the conformational surface between mx  and kx  for all states m and k

118.  The transition state energy, *
m kE  at m kx  describes the energy barrier to the change in 

state.  The transition probabilities m nq  reflect the potential energy difference between mx

and m kx

*exp( ( ))m k m k mq E E  (7) 

where 1  becomes the fundamental time scale which encompasses all faster relaxation 

process due to thermal vibrations within the energy well that our coarse grain model neglects.  

Conveniently, because each state is linked via the rotation of a single molecule i , we 

define *
m k mE E  as the number of bonds that specific molecule had at state m , which must 

be broken to move to the new state.  Notice that there is no impact of the final orientation of 

that molecule on the transition probability.  This choice also meets the requirements of detail 

balance.

The traditional importance method, proposing a new state and then accepting, or rejecting, 

that move based on comparison with a random number, is inadequate at low temperature 

because of the large number of rejected moves46.  Instead, we found the n-fold, or residence 

time 118, 120, 121, technique to be very effective.  In this technique, every event is accepted and 

the time between events is weighted by the total probability of moves. 
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2.4. Supercooled Liquid: Investigation of Equilibrated Samples 

Using the modified Metropolis recipe, we are able to quench to very low temperatures, 

creating simulation samples which are in an equilibrium state.  We use the term equilibrium 

to denote samples which reflect path-independent quantities, which are characterized by the 

current conditions regardless of previous temperature history.  In this section, we will present 

results that establish that the MC samples are at equilibrium, and then use these equilibrated 

samples as the initial point for both thermodynamic and kinetic calculations.   

We note that while we can calculate a first-order, mean-field liquid to solid transition 

temperature ,mf binodalT , the significance of the melting temperature and the order of the actual 

transition are not clear from the outset.  One objective is to ascertain the differences between 

the equilibrium behavior and the non-equilibrium behavior.  For the purposes of this work 

and consistency with other sources, we will refer to all simulation samples as supercooled 

liquids without regard to the implication of metastability with respect to a solid.  In a similar 

fashion, all simulation samples that deviate from equilibrium at long-time, as described in 

Section 2.5, will all be classified as glasses without specific demonstration of dynamic arrest. 

2.4.1. Equilibrium Results from Metropolis MC Method 

The simulation samples that are quenched initially via the Metropolis recipe do indeed 

appear to reflect an equilibrium state, with similar energetic and structural length scales of 

low temperature simulation samples that are quenched with the kMC method.  The 

Metropolis recipe does not provide dynamic information, but does search the PEL more 

rapidly because there is no energetic barrier for transition beyond the difference in the 

number of bonds in initial and final states.  If we are able to access a large number of 
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configurations during our simulation time, then we have the ability to meet the conditions of 

equilibrium described by equation (6).  We noted that the measured acceptance rate, the 

percent of MCS that represents motion on the PEL, remains sufficiently high even at low 

temperature implying that we are, indeed, capable of meeting this requirement. 

While we cannot formally prove that these simulations are truly the equilibrium state, 

evidence points to reproducible results that, excluding the initial decay, do not change in 

energy over long simulation periods.  For all results in this section, each simulation sample 

was created at a unique, random, initial condition equivalent to T .  They were then 

‘quenched’ by using the final temperature during all simulation moves.  The samples were 

relaxed for at least 106 MCS before any data was reported.  In previous work1 we found that 

the Metropolis MC simulation samples had a relaxation time of less than 102 MCS for 

samples as low as T=0.18 (refer to Figure 1.6.3-1).  This gives us confidence we had reached 

the low energy equilibrium state for each temperature.  Ten separate measurements of the 

internal energy density, u , were recorded at intervals of 1000 MCS, from which the average 

was then calculated.  This was repeated for a second independent simulation run with the 

same quench conditions but a different initial configuration.  Both sets of data are reported in 

Figure 2.4.2-1.  Two additional series following the same protocol were generated but 

omitted in our figure as they were not used for the fitting of u .  None of the energy values 

differed by more than 1%.

Additionally, the simulation samples’ path independence- that is, whether the states could 

be completely defined by the current conditions regardless of previous thermal history- was 

also investigated.  In the stepwise method, a sample was equilibrated at high temperature, 

then ‘quenched’ to the next cooler temperature, where it was equilibrated and the process 
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repeated (temperature steps followed those reported in Figure 2.4.4-1, so individual data 

points could be compared).  This procedure provided a set of simulation samples that is not 

distinguishable from those generated during the direct quench. 

As seen in Figure 2.4.2-1, the samples also approach the high-and-low temperature energy 

limits, as we would expect.  In Section 2.4.3, we indicate the presence of the crystalline state 

(long range enrichment in either orientation 1 and 3 or 2 and 4) as primarily a kinetic 

phenomena.  We note that in the absence of a crystal with lower free energy, any of the 

degenerate minima would be the equivalent thermodynamic equilibrium state122.  Thus, our 

calculation of the configurational entropy in Section 2.4.2, which indicates that the entropy 

remains positive as the temperature goes to zero, is consistent with the absence of a unique 

state with the lowest energy.  The structural ordering documented in Section 2.4.3, which 

occurs due to the anisotropic nature of the molecules, is not representative of a unique 

equilibrium state. 

2.4.2. Configurational Entropy 

There are several different methods to calculate the heat capacity, and thus entropy, for a 

simulation sample.  As the model is defined on a lattice and each molecule has a discrete 

number of orientations, the only entropy present in our system is the configurational entropy.  

If our system is at equilibrium, we can use the thermodynamic relationships 

, V
V T

V T

CUC s T s dT
T T

 (8) 

where vC  is the heat capacity per site and s is the entropy per site.  The entropy density at 

infinite temperature can be easily found using the Boltzmann definition, log(4)
T

s as

there are 4 orientations at each site.   
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   Alternately, we could measure the heat capacity directly from our simulation results  

because we can measure the fluctuations in the energy, via the variance of the internal 

energy, as 

2

2V

U U
C

kT
 (9) 

However, because of the statistical inefficiency of using the variance of the internal energy 

(see Appendix F), we chose to fit the data to an arbitrary function that can be differentiated 

analytically using Eq. (8).  Hyperbolic functions were chosen because the energy has both a 

high and low temperature asymptote (polynomial and simple exponential expansions cannot 

take advantage of the two known values).  We found that 

2

2

9 3 tanh 1 tanh8 8
9 3 0.375 0.2560.468 tanh 1 0.468 tanh8 8

b cu a aT T

T T

 (10) 

describes our data well, with a small number of variables (note the -9/8 and -3/8 are set by 

the asymptotes).   

   In Figure 2.4.2-1 (a), we plot the data with its fit (equation (10)).  As mentioned above, we 

use the analytic derivative of equation (10) to calculate the specific heat, shown in (a)inset.

To insure that this choice does not deviate in a systematic way, the variance of the energy 

measured directly from the simulation samples employing equation (9) is shown with black 

dots ( ).  Additional confirmation is given by the close alignment of the slope of the line 

segment connecting adjacent energy measurements marked by the red stars (*).  The entropy 

per site calculated from the integration of /VC T and knowledge of the high temperature limit 

is shown in Figure 2.4.2-1 (b).
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  The equilibrium conditions generated by this Hamiltonian require that there be a peak in 

the heat capacity at some temperature, CvT .  We draw this conclusion by considering the 

functional shape of the internal energy per site, u .  In the high temperature limit, the thermal 

energy will overwhelm any resistance from bonds and explore the entire energy landscape.   

Thus, the internal energy will be equivalent to the energy of the random state ( 9/8u ).

As this condition is asymptotic as T  and the energy decreases upon cooling, the 

function is by nature concave down above CvT .  As a sample cools (under conditions slow 

enough to maintain equilibrium) towards absolute zero, the molecules will preferentially 

align towards a bonded condition.  Therefore 3 / 2u  as 0T  and below CvT  the 

internal energy function is concave up.  We find this description to be consistent with all 

simulated conditions in this study.  The maximum heat capacity occurs at 0.21CvT  (recall 

, 0.25mf spinodalT ).
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Figure 2.4.2-1: Thermodynamic features of the 'supercooled' liquid 
 (A) u  as a function of T .  The data ( ) was fit to an arbitrary analytic function(___).  The 
inset shows VC  calculated by three methods: ( ) variance of the energy, (*) slope of the line 
segment connecting adjacent energy measurements, (___) the analytic derivative.  (B) s  (___)
calculated from the integration of /VC T  and knowledge of the high temperature limit. 
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We note that the greatest error in calculating entropy occurs in the low temperature 

measurements, when relaxation times are the longest, as one would expect.  Computational 

limitations have precluded other investigations from achieving low temperature results123; we 

are fortunate to have a simple model and technique to overcome this difficulty.  However 

within this error our calculations still suggest a positive residual entropy, a result that has also 

been found in an experimental system124.  This quantity can only be reasonably extrapolated 

from low temperature equilibrium conditions.  There is very active research into the 

applicability and definition of thermodynamics and statistical dynamic quantities in the 

immediate vicinity of 0T , which are beyond the scope of this work125, 126.

If the configurational entropy of the glass does not go to zero as temperature goes to zero, 

the extrapolated inversion of the liquid and crystal entropies is not thermodynamically 

mandated.  This provides a resolution to the ‘Kauzmann Paradox’ for our system without the 

need for a thermodynamic or dynamic event at lower temperatures.  Indeed, it questions the 

universal applicability of the assumption that one may calculate the ‘ideal glass transition’ 

based on extrapolations of the configurational entropy to 0cs .

2.4.3. Structure

Because of the system anisotropy, there is noticeable ordering as the temperature is 

lowered.  The anisotropic nature of the molecules leads to the formation of ‘back-to-back’ 

pairs so that the non-bonded sides of the molecules face each other.  Structures in the same 

direction as the long axis of the molecule are formed.  The result is local enrichments of 

molecules whose long axis is oriented in the same direction ( 1,3 or 2,4).

Measurements of simulation samples at different temperatures show a pronounced increase 

in the size of these domains at colder temperatures.  
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Figure 2.4.3-1: Representative snapshots of simulation samples 
Supercooled liquid simulation samples at (A) T=1.0 and (B) T=0.20 .  Coloring is a guide to 
the eye to distinguish orientations 1  and 3 from 2 and 4  . 

Given that there is a kinetic preference for an aligned system (described in Section 1.4.5), 

which we intuitively relate to the ordered crystalline state, why do we not observe the 
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macroscopic crystal in the MC samples?  When we used the dynamic mean-field (DMF) 

simulation to cool a sample which had a small fluctuation at a temperature very close to the 

transition temperature, we indeed did see a crystalline structure1.  The nature of the DMF 

simulation as a method of steepest decent is such that once it finds one energy minimum, it 

does not continue to explore the configuration space.  The small kinetic preference toward 

the alignment leads to formation of a long range structure when only a single disturbance is 

introduced.  In contrast, either form of the MC simulation permits the sample to explore a 

wide range of energy minima at this temperature, most of which have minimal ordering.  

(Due to the anisotropic nature, there is ordering on a small-length scale congruent with the 

need for the ‘back-to-back’ alignment for bond formation.)  Recently Ediger et al. 127 posited 

that the kinetic rate of crystallization is proportional to the rate of discovery of crystalline 

configurations on the PEL.  In our model, the overwhelming number of non-aligned minima 

would make crystallization unlikely. 

We are able to see clear regions with local enrichments of molecules whose long axis is 

oriented in the same direction ( 1,3 or 2,4).  These regions grow with decreasing 

temperature, despite their kinetic origin, due to the stabilization of the bonds within their 

boundaries.  Rotation of a molecule to a different orientation would raise the energy of the 

simulation sample by at least one bond, possibly two.   
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Figure 2.4.3-2: Distribution of domain size at different temperatures  
The anisotropic ordering is pronounced when the length of rows/columns in the enriched 
regions are measured in the direction of the long axis (inset: domain length measured in 
perpendicular direction). 

The local enrichments demonstrate the model’s tendency toward reversible self-assembly.  

Indeed, a number of other anisotropic or limited valence models and materials share this 

characteristic that local homogeneous patches stabilized by a network of intermolecular 

bonds (e.g.7, 90 and references therein).  Due to the small length scale of these regions with respect to 

the lattice spacing, measurements along the axis in a linear direction are significantly more 

revealing than the traditional radial distributions and structure factors.  We have chosen the 

expectation value of the domain size, or length scale of local enrichment of either the 1  and 
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3 or 2 and 4 orientation, as a convenient representation of the degree of orienting.  In 

Figure 2.4.3-3 we can clearly see that there is an onset of increased orientation at 

approximately 0.5structureT , but that there does not seem to be any signature of divergence in 

this length scale as 0T .  It is important to note that there are approximately an equal 

number of molecules in each orientation within a sample during the duration of the 

simulation.  The locally oriented regions do not necessarily indicate an underlying phase 

transition due to a symmetry breaking in orientation.

Figure 2.4.3-3: Expectation value of the domain size at different temperatures 
The expectation value of the linear distribution in the direction of the long axis( ) and 
perpendicular to the long axis( )
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2.4.4. Relaxation Time 

We employ the relaxation time as proxy for rheological measurements of the material’s 

viscous character.  Among many possible choices for the relaxation time, we explore the 

relaxation time for two autocorrelation functions within this work.  The bond autocorrelation 

function, ( )b ot t , comparing the bonding state of the lattice at time t  to that at the time 0t

defined as: 
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We also simultaneously evaluated the molecule-orientation autocorrelation function, 
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The structural resistance and solid-like features in our simulation samples are provided by 

the bonding structure.  As has been observed in other models3, the local structure can 

reinforce the bonding along a specific edge, , 'i i .  Thus, a bond may break and reform 

quickly, returning to the original structure and not suggesting actual progress towards 

relaxation.  Further, in our model several different orientations of the molecule at a specific 

site may result in the same local bonding characteristics.  The results for the orientation and 

bond relaxation functions were very similar.  As the bonding state defines the 
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thermodynamics and as we also use bonding to describe the structural correlation functions, 

we choose to report the bond relaxation function results here.  Later, in Section 2.6 we will 

refer to the orientation times. 

We evaluated the equilibrium relaxation time, , for the simulation samples that were 

created by quenching from an initial random state (infinite temperature) to the final 

temperature and equilibration for more than 106 MCS with the Metropolis method.  

Following equilibration, the data for the autocorrelation functions was collected using kMC 

simulations.  As described earlier, it is important that we consider the transition states to 

capture appropriate motion on the energy landscape when we are directly evaluating any 

function involving time dependence. 

There are many ways to characterize the relaxation time from the autocorrelation function 

results.  For this work, the use of the integrated relaxation time, or mean relaxation time, is 

preferred because it incorporates both the influence of the characteristic time, c , and the 

stretching exponent, .  We calculated the relaxation time by first fitting the autocorrelation 

function with the stretched exponential equation, ( ) s
t

t e .  The Euler gamma function 

then allows us to calculate the integral.  

0
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t e

e dt
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It also provides a clear connection to the relaxation time calculated by a single exponential 

relationship.  In the simple exponential relaxation function, the relaxation time remains the 
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same when integrated over the interval, ( )
t

t e  or 
0

t
e dt 38.  We found that in all 

cases the stretched exponential provided a better fit than a single exponential function.

The values of  and  are reported in Figure 2.4.4-1.  We monitored the decay of the 

correlation function and fit the data to each measurement separately to ensure that the 

simulation sample was exploring similar regions of the PEL and that we did not neglect a 

longer timescale.  As the error of the integrated relaxation time  was small (each 

measurement is reported separately and at most temperatures the symbols overlap), we have 

confidence that the reported values reflect the actual relaxation times.  On the other hand, 

there was a larger variation in  (Figure 2.4.4-1 inset).  Other authors often report  as 

nearly independent of temperature, noting that the change in the vicinity of gT  is minimal3.

It has been noted that the value of  is very sensitive to the fitting method128, 129.  We 

considered different ways to fit the data, particularly whether to include or exclude very short 

or long-time processes.  Compared to the variance in values of  or  between quenches at 

the same temperature, neither truncated data set had fitting parameters which were 

significantly different.

The value of  can be used as an indicator of the kinetic fragility as it represents the non-

exponential movement of the simulations sample on the PEL.  Indeed a dramatic change in 

 upon a return to simple exponential relaxation is given as the hallmark of the fragile-to-

strong crossover (FSC) in a spin facilitated kinetic Ising model129.  Despite the spread of our 

measurements, since we are considering the FSC, it is interesting to note that the simulation 

samples become more fragile as the temperature is lowered to : , 0.5fragility onsetT .  The value 
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of  then stabilizes until it begins to increase at : 0.26 0.24FSCT .    Again, however, the 

specific temperatures are difficult to establish. 

Figure 2.4.4-1: The integrated relaxation time of supercooled simulation samples 
The points ( ) are independent fits of relaxation runs (4 at T=0.16, 3 at T=0.18, 8 at T=0.20, 
10 for all other) which overlap closely on this scale.  The data is fit in to the (__) Arrhenius, (-
-)Vogel-Fulchur and ( ) Adams-Gibbs equations.  Inset: shows the ( ) values of the 
stretched exponent , ( ) the average value and (--) as a guide to the eye.  Note that while x-
axis is 1/T, to match the main plot for convenience to the reader, the y-axis on the inset is 
linear. 

The integrated relaxation time as a function of temperature was fit with four functions.  As 

expected from the implied cooperative relaxation, the Vogol-Tammann-Fulchur 

function(VTF):

2.85
0.0230.656o

D
T T T

oe e  (14) 
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fit the complete data set better than an Arrhenius function: 

aE 3.32T T0.368oe e  (15) 

We notice that the activation energy, AE , in the Arrhenius fit is 3.32, which is slightly 

larger than that which would be required to break three bonds.  In regions of the system 

which are fully satisfied, change in orientation of a monomer requires that three bonds be 

broken.  This represents the highest energy barrier to local relaxation.  Whereas, at higher 

temperatures samples have a smaller bond density, the largest energy barrier may be 

circumvented by longer pathways over the PEL, there will be a time penalty for this diffusive 

motion.  Therefore, while the energy scale is appropriate for both scenarios, the details of the 

relaxation mechanism remain unknown. 

With the thermodynamic calculations made before, we are able to evaluate the fit of the 

Adam-Gibbs69 (AG) equation.  This equation, and the theory on which it is based, was 

inspired in part from the excellent empirical fit of the VTF function.  If we postulated that 

there is a physical significance to oT , the singularity suggests a divergent relaxation time 

consistent with the ideal glass transition.  oT  is often then equated with Kauzmann 

temperature KT .

  The configurational entropy, calculated at each temperature as shown in Figure 2.4.2-1, is 

known, so it is not a degree of freedom in our fit for the AG equation: 

1.89
13.6c c

C
TS TS

oe e  (16) 

The fit is relatively poor.  However, if we restrict the fit to a smaller region closer to the 

expected glass transition, as is commonly done128, the fit greatly improves (not shown).  
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Recent work suggests that the AG should also fit well if extended above the activated regime, 

where the cs  has little dependence on temperature123.

  Alternative relationships are also being actively proposed as the source of the relaxation 

behavior and the nature of gT  is investigated.  Recently, Elmatad et al. proposed a quadratic 

fit, which could be used to collapse an impressive range of data from structural glass 

formers112.  We could use this functional form to fit our data, either over the entire 

temperature range, 

22 223.32 2.281 12.281.48
a

a

TJ
T T T

oe e  (17) 

or alternately over an arbitrary subset of temperatures (no fits are shown).  The physical 

rational behind this functional fit, based on the activation energy required to relax a domain 

of a particular size, limits its application to temperatures where the system movement on the 

energy landscape is dominated by activated, cooperative motions ( aT T ).  Likewise, it will 

no longer apply when the temperature is further cooled ( xT T ) returning to motion without 

correlated transitions.  The authors expected that below xT  the relaxation dynamics would 

return to an Arrhenius form.  We did not find unique choices of aT  and xT  while attempting 

to fit this function to our relaxation data.  However, our data is consistent with a transition 

into a cooperative, fragile, relaxation regime, followed by a return to Arrhenius, strong, 

behavior at even lower temperature, as demonstrated elsewhere. 
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Figure 2.4.4-2: Exponential fits of relaxation time in low and high temperature data 
Separate Arrhenius fits to the (__) lower temperature (0.16 0.2T ) and (--) higher 
temperature ( 0.5 1.0T ) data highlights the changes in relaxation time temperature 
dependence.  Some adjacent data points continue to be well fit, but there is gradual change 
indicating fragile behavior in the window between the two regions.

To highlight that there is a cooperative relaxation temperature regime flanked both at high 

and low temperature by simple, non-cooperative relaxation, we fit the high and low 

temperature data to separate Arrhenius fits.  Notice in Figure 2.4.4-2 that the activation 

energy of the two fits is different, however, both are on the order of the energy required to 

break three bonds ( low , 3.61, high , 2.92A AT E T E ).  At lower temperatures it is 

elevated, as we would expect.  There is no indication of a divergence in the relaxation time of 

the equilibrium system.   
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2.5. Supercooled Liquids: Nonequilibrium Glassy States 

As expected, the simulation samples prepared using the kMC method and Metropolis MC 

recipe produce the same results when at high temperatures.  However, at lower final 

temperatures, the simulation samples which are relaxed with kMC develop a change in their 

dynamics during quenching.  We note that if at any specified ‘observation time’ not all 

samples will have equilibrated, instead they are arrested at a ‘glassy’ state.  The structure of 

these low temperature, non-equilibrium samples is significantly different than those prepared 

with the Metropolis quench.  Because we are able to observe the simulation samples, 

evolution for very long-times, we notice that there is a change in the relaxation behavior at 

the fragile-to-strong crossover (FSC).  Further, we can continue to investigate temperatures 

beneath the FSC and find that simulation samples will, given enough time, return to 

equilibrium.   

We first establish that our system has traditional glassy behavior by performing a constant 

rate quench in Sec. 2.5.1.  The simulations are terminated when they reach T  close to zero.  

They are not allowed to relax, but presumably would age, if investigated.  Our goal is to 

demonstrate that our model behaves as a glass former and mimics experimental work.   

In Section 2.4, we use the Metropolis MC simulations to prepare equilibrium sample for 

evaluation.  We can determine the relaxation dynamics after equilibration using kMC (see 

2.4.4).  However, the Metropolis MC method does not give us any information about the 

dynamics during a quench.  Thus, we turn our attention to relaxation during quenching at a 

‘constant temperature’ where the simulation is in contact with a heat bath at the final 

temperature during all steps.  Further comparison of the equilibrium samples prepared 

initially with the Metropolis MC recipe and the simulation samples evolved with kMC, for a 
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period of time at which some samples seem to have equilibrated and others have not is found 

in Section 2.5.3.  Samples quenched with either MC method appear to have the same 

characteristics as we would expect from the condition of detail balance.  However, samples 

that have not equilibrated indeed have structural characteristics which reflect this. 

2.5.1. Constant Rate Quenches 

We can observe dynamic changes and thermodynamic changes upon cooling in 

equilibrated samples.  However, we are able to observe a clear signature of a traditional glass 

transition by inducing kinetic arrest with a rapid quench, similar to those performed in the 

laboratory.

Using the n-step kMC algorithm, we are able to cool the system at a constant rate.  The 

simulation samples are initialized at a random state as before and at 5T , which is a very 

high temperature in our system.  They are then cooled at the rate T
t  by performing a 

MCS using kMC at the current T .  The resulting elapsed time is then used to calculate the 

new T .  As the simulation sample cools, each MCS takes longer and results in a larger jump 

in temperature.  At some point, depending on the quench rate, the temperature jump results in 

the simulation sample leaving an equilibrium quench path.  At this point, the sample has 

arrested and does not find any more satisfied states.  The simulation is stopped when the new 

temperature is negative.  Results from various quench rates are shown Figure 2.5.1-1, with 

the inset providing fits for each data set and the lowest temperature truncated.  It is important 

to note that we repeated simulations with different initial random configurations at each rate.  

The discrete nature, particularly where there are large temperature drops, leads to clusters of 
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points.  To demonstrate that these are due to individual runs, not from a single sample 

becoming arrested in that area, the inset provides fits to each simulation run separately. 

Figure 2.5.1-1: Constant rate kinetic Monte Carlo simulation samples
Energy density as a function of T for 10 independent simulations: =0.01(*), 0.001( ),
0.0001( ), 0.00001( ).  Inset: To emphasize that there are multiple initial conditions 
simulated each data set is individually fit.  We omit the lowest temperature data. The fit is an 
arbitrary equation similar to Eq. (10) (see Section 2.4.2) without the expectation that the low 
temperature asympote will be -9/8, intoducing a 4th fit variable: 

23 tanh 1 tanh8
b cu d a aT T .

Such behavior is commonly seen in dynamic scanning calorimetry (DSC) measurements in 

the laboratory.  This effect is also captured in several other models27, 130.  It conforms to the 

general understanding that a slower cooling rate will prevent the system from falling out of 

equilibrium at higher temperatures and depress the measured glass transition.  Presumably, 
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an infinitely slow quench would describe the supercooled equilibrium state with the same 

results as can be found in the previous Section.  Therefore, we conclude that we do model a 

glass forming system and that our results are not the due to some unphysical characteristic of 

this Hamiltonian. 

2.5.2.  ‘Constant Temperature’ Quenches: Evolution with Time  

In the context of the energy landscape paradigm, the physical origin of kinetic arrest is 

generically represented as an inability to relax when trapped in a potential well.  Thus, the 

glassy system has a higher energy than the equilibrium system due to its large number of 

unbonded molecules.  We perform a ‘constant temperature’ quench by initializing a 

simulation sample at a random configuration and running the kMC simulation against a 

constant temperature heat bath.  Thus, the energy of the transition states are constant.  The 

exploration of the PEL by the simulation sample leads to a low energy state, which is not 

discernible from the equilibrium state (as determined by our metrics thus far) if the 

simulation is run for long enough time.  

In Figure 2.5.2-1 the evolution of the energy with time at a given temperature is plotted on 

a semi-log plot.  The range of time scales for the simulation samples to reach their final 

energy is dramatic.  In order to determine whether the low temperature patterns that we see 

are independent of the choice of initial state or highly dependent on individual quench 

pattern, additional simulation samples were quenched at 0.16,  0.14 T and 0.12   These 

temperatures were chosen as the samples evolved sufficiently to see their long-time behavior 

during the ‘observation time’ of our simulations, but would be most sensitive to their 

immediate environment on the PEL.  There were some deviations in the curves of separate 

samples quenched under the same conditions as we would expect from diffusion over 
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different regions on the PEL, but they are small; and, overall, the relaxation paths coincide as 

can be seen in the figure.   

Initially, all the samples relax quickly, as they are very far from equilibrium.  Following 

this preliminary growth in bonding, we observe a very interesting trend.  When quenched 

against moderately low temperature baths, above 0.3T , the simulation samples follow a 

single curve as approach they their long-time energy values. We note that these values are 

very similar to those which are very close to the equilibrium values found by the Metropolis 

MC, consistent with the hypothesis that these kMC simulations are also in equilibrium.  

Neglecting the initial portion of the quench, we also find that the simulation samples 

approach their final equilibrium value through a sequence of states which are also in 

equilibrium, although at a higher ‘effective’ temperature.  This result is congruent with recent 

studies of colloidal systems131, 132.
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Figure 2.5.2-1: KMC simulation results: ‘constant temperature’ quench 
Starting from a random configuration, kMC was used to evolve samples against a constant 
heat bath temperature.  All quenches, shown in (A) are plotted from high to low by color.  A 
subset of curves are replotted in (B), using new colors for ease of anaylsis by the reader. 
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In simulation samples quenched against heat baths with lower temperatures, we no longer 

observe this simple curve.  Figure 2.5.2-1 (B) shows a subset of the curves from (A) with a 

different choice of colors to make inspection of this region easier for the reader.  An 

inflection point can be seen starting at 0.24KMCT  such that the simulation sample’s energy 

no longer approaches the equilibrium value in an asymptotic fashion with time.  The energy 

remains relatively constant during two different windows in time, visually appearing as 

plateaus on the graph.  This indicates that there is a kinetic reason these simulation samples 

become arrested during observations on this time scale, exploring the PEL at that energy for 

a significant length of time.  This multiple step phenomena, in which there are distinctly 

different dynamics during separate time scales as the simulation sample quenches towards 

equilibrium, may be reflected in the relaxation dynamics of samples after they have 

equilibrated.  We note that there was indication of such a change in the temperature region 

same region in Section 2.4.4 

Several explanations have been proposed for this phenomena.  Caging, in which some 

molecules are surrounded by immobile molecules that allow changes only on long-time 

scales has been proposed as an explanation for the development of plateaus in other models3, 

133.  Alternately, this feature may represent regions in which the heat bath temperature is 

sufficiently low such that the energy required to break one, two, or three bonds becomes 

significantly different.  This would cause the kinetics to change as the sample evolves to 

lower energy via pathways requiring fewer bonds breaking and more ‘diffusion’ of 

vacancies.  We speculated in our previous work1 that this may be the mechanism behind a 

fragile-to-strong crossover (FSC). 
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2.5.3. ‘Constant Temperature’ Quenches: Glassy Structure 

It is interesting to compare the domain size for the simulations samples quenched using 

kMC with those for the equilibrium cases created with the Metropolis MC (Section 2.4.3).  

All the measurements are made at the end of the respective simulations.  When the kMC 

simulations appear to reach equilibrium, we find that the expectation value of the domain 

size is similar to that of simulation samples equilibrated with the Metropolis MC method.  

However when the final state of the simulation is not yet at equilibrium and the sample is 

considered arrested or glassy, the expectation value of the domain size becomes much 

smaller.  Thus for the kMC simulation samples, the domain size does not grow 

monotonically with lowering heat bath temperature, but instead deviates when the simulation 

sample is arrested on the observed time scale.  Equilibrium simulation samples should be the 

same regardless of what choice of transition probabilities is chosen, as long as they meet the 

condition of detail balance, so this is the result we expect.  A , 0.18 0.16kMC structureT  the 

domain size begins decreasing with temperature.  This is the same region in which the final 

values of the energy no longer reach the equilibrium value, but instead have fewer bonds. 
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Figure 2.5.3-1: Expectation value of the domain size at different temperatures 
The expectation value of the domain size in the direction of the long axis( ) and 
perpendicular to the long axis( ).  

We have stated earlier that the formation of these regions is not a thermodynamic property, 

but instead, the result of the preferred kinetic pathway as the simulation sample traverses the 

PEL. What is the source of the structural change?  We know that the overall energy of the 

glassy simulation samples is higher than predicted at low temperature as compared with the 

equilibrium configurations.  Thus, it is a requirement that there be a lower density of bonds, 

which would inhibit large aligned regions.  Additionally, it may be that there are pathways on 

the PEL which are no longer accessible, or are extremely unfavorable due to the separation of 

time scales between processes which break different numbers of bonds.  This comparison 

demonstrates that there is a distinct difference in the kinetics between the equilibrium and 

non-equilibrium simulation samples as reflected by the resulting structural features.
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2.6. Dynamic Heterogeneity: Evidence of Cooperative Motion 

Currently we have two conflicting views of the length scale.  First we demonstrated that 

the equilibrium supercooled liquids have an increasing domain size (Section 2.4.3) starting 

near the temperature at which we begin to observe cooperativity.  This length scale increases 

in a linear fashion as 0T , without either diverging, or showing a change at the FSC.  We 

see activated dynamics and a clear stretched exponential bond relaxation function (Section 

2.4.4) as the temperature is lowered in the same region the domain size begins increasing.  

However, we see at the FSC a return to Arrhenious behavior, suggesting length scale has no 

impact below the FSC.  This naturally leads to the question of how these two sets of 

measurements are related.  Particularly, since there seem to be at least some spatially 

dynamic heterogeneity (SDH) implied by the use of the stretched exponential, 

characterization of these relationships between length-scale and time-scale are important.  In 

Section 2.4.3, we used the bond relaxation time, bond  for our analysis of the system 

dynamics, however, concurrent measurements demonstrated the same trends and similar 

numeric values in the orientation relaxation time, orientation .  As the domain size was 

determined based on orientation, we will monitor the change in the orientation with time 

during this analysis. 

We can quickly see that the dynamics suggest a non-trivial relationship between the length-

scale and time-scale.  The limitations of our system have not yet made a formal analysis of 

this system relevant; however, we do find the mathematical description useful in describing 

our work.  The fundamental correlation function now involves a four point correlation 

function, the change in length scale (two points) and the change in time scale (two points).   
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  We are able to visually establish the presence of spatially correlated dynamics in our model.  

In Figure 2.6-1, we show a (40 x 40) set of vertices from the larger simulation lattice. We 

report the time for the molecule at each vertex to change orientation for the first time after an 

arbitrarily selected time, ot .  To compare each sample despite the disparate time scales at the 

three temperatures, we choose to represent the time to change orientation at each vertex 

relative to the distribution of times at that temperature alone.  For clarity, we group the 

molecules into quintiles based on the time for each molecule to change orientation for the 

first time.   

We observe the length scale of spatially correlated motion grows as the temperature 

decrease.  In particular, there are fewer regions which have a checkered appearance, which 

arises from individual molecules on neighboring vertices changing orientation at time 

intervals greater than 20% apart.  While the choice of the characteristic relaxation time is 

nontrivial (as discussed below), the increase in the size of dynamic heterogeneities is 

predicted by kinetically constrained models28.
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Figure 2.6-1: Representative of supercooled samples, time to first rotation 
The time required to for initial rotation of a molecule at each vertex within an equilibrated 
simulation is roughly distributed in 5 Sections, from shortest to longest, to emphasize the 
spacial distribution: ( ) ~first 20%, ( ) ~ 20-40%-,( ) ~40-60%,( ) ~40-60%, ( ) ~longest 
20%.  From left to right 0.4,  0.3 and 0.2 T  (each sample is normalized separately). 
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The representation in Figure 2.6-1 highlights the changes in movement along the PEL that 

occur as the simulation temperature decreases.  At moderate temperatures, the simulation 

sample can still overcome the energy barriers involving breaking several bonds.  Thus, the 

time for a molecule to change orientation for the first time is not as strongly dependent on the 

recent changes by its near-neighbors as it will become at lower temperatures.  This is similar 

to the observation that the domain size is smaller at high temperature.   

The relaxation time data in the range of 0.4 T  and and 0.3T  suggest fragile 

dynamics, and therefore, cooperativity.  In this regime, the number of bond influences the 

motion of a molecule.  Thus a change in the orientation of a molecule may facilitate or hinder 

the orientation changes of its near-neighbors.  However, we continue to see a growth in the 

size of the correlated domains as the temperature cools past the FSC to 0.2T .  This region 

has Arrhenious dynamics and should not necessarily demonstrate SHD. 

We have not yet addressed the question whether there are ‘fast’ and ‘slow’ regions. Are 

there spatial groupings of molecules that continue to remain mobile and change orientation 

quickly with respect to other regions of the lattice?  It is possible to evaluate the mobility of 

an individual vertex by checking whether the molecule is more likely to change orientation 

again immediately after it changes for the first time.  We do this by recording the time 

intervals between changes in orientation of the molecule at each vertex. 

Evaluating the data for the time between successive changes, we may see that an individual 

molecule will continue to change orientation many times in an interval, then remain 

stationary, before eventually resuming a sequence of quick changes.  This would be a time-

scale of the changes in mobility of an individual molecule, mobility i .  Since the motion of a 

molecule can facilitate change in its near-neighbors, we may see more, less, or similar spatial 
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heterogeneity in mobility i  as we do in first change i , the latter represented in Figure 2.6-1.  

Further, how are either of these values related to the overall relaxation time of the correlation 

function we previously measured orientation ?   

We have two cases to consider. If the time scale of changes in mobility of the molecules at 

all vertices is similar, then we can find the average time scale of mobility 

mobility mobilityi .  Therefore while there is SHD, the time for a molecule to change 

orientation for the first time roughly represents the overall correlation time.  We find that 

first change orientation .   Alternately, ‘fast’ regions stay ‘fast’ and there are large spatial 

heterogeneities with respect to mobility.  In this case, the relationship between 

first change orientation  is much more complicated, as the relaxation time of the correlation 

function scale would be dominated by molecules which require a long-time to change. 

Based on the spatial groupings of the time to the first change of a site (Figure 2.6-1) we 

find compelling evidence of SHD.  The question remains how important this feature is to the 

overall dynamics of the glass.  We record the time between changes in orientation for all the 

molecules from samples equilibrated at the same temperature as those in Figure 2.6-1 to 

make sure that we capture the time scale for ( )mobility i ; this data is collected for 10 times the 

number of MCS required for the change in orientation to occur.  Recording the length of time 

that each molecule spent in the same orientation, the distribution of relaxation times was then 

fit to a Gaussian curve, shown in Figure 2.6-2.  We can compare these reported times to the 

relaxation time orientation .
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Figure 2.6-2: The distribution of the time for the molecule to change orientation 
Tracks the average time it takes for an individual molecule on the lattice to change 
orientation (units log(t/ ov )) for at each vertex, then plots the histogram.  The distribution for 
each sample is well fit by a Gaussian curve with ( ) at 0.2 13.04 0.89T , ( ) at 

0.3 8.64 0.21T , ( ) at 0.4 6.58 0.11T .

We can see this from a rough comparison of the overall relaxation times for the entire 

lattice and the average time to rotation of individual molecules.  We report the values of 

bond  in Section 2.4.4, which are very close to the values of orientation  , we discuss here for 

logical congruency.  The integrated relaxation orientation  times are 6.97, 9.77 and 15.75, with 

decreasing temperature ( 0.4, 0.3, 0.2T T T ).  We note that these are longer than the 

time it takes for the sites to change for the first time indicating first change orientation  and that 
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there is some form of correlation time related to the persistence of the orientation of an 

individual molecule. 

Overall bond percolation, the creation of a geometric network which spans the system, has 

been shown to occur at temperatures above the glass transition.  Indeed, in our system, 

simulation samples in the fully-dense state will always have a space spanning bond network 

(Appendix B).  Therefore, structural percolation cannot be the signature of the glass 

transition, nor the sole reason behind the dramatic increase in relaxation times.  Alternately, 

it has been postulated that the increase in modulus at the glass transition is due to percolation 

of a dynamically slow network of the glass forming molecules, trapping pockets of 

dynamically fast droplets87.  This is supported by the idea that the propagation length of 

mobility is smaller in strong materials than in fragile materials28 and that the network 

structure suppress string like motion134.  While the overall molecule density is constant 

(every vertex occupied), the bond density is a non-conserved order parameter and may 

provide the key to unraveling the distributions of fast and slow molecules.  

We have attempted a variety of metrics to determine whether there is such a network 

structure in our systems.  In Figure 2.6-3, the average time between changes in orientation for 

an individual molecule is shown.  Those sites that retain the same orientation over a long 

period of time are shown in red/orange (note time scale on colorbar), so a network of sites 

which persist for a long-time would appear as a red network.  Thus far, we have not 

identified clear evidence of such behavior.  However, this choice would be very sensitive to 

time scale and our work certainly does not yet exclude the possibility of this dynamic 

mechanism. 

Regions of molecules favoring a specific ordering grow with decreasing temperature 

(Section 2.4.3).  As changes in orientations of highly bonded molecules are strongly 
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disfavored due to the transition states, it may be that these regions persist for kinetic reasons.  

This result is consistent with a dynamic viewpoint in which the concentration of mobile 

molecules is also decreasing28.  This indicates that the overall relaxation of the system -- the 

time it takes to no longer carry any correlation with the initial state--would reflect the process 

required for all molecules to have become mobile.  If so the overall exchange rate between 

slow sites and fast sites, mobility , becomes the time scale associated with the overall system 

relaxation87, 135.  This time scale may be the same as the relaxation times we calculated, or 

even longer than that associated with orientation  or bond  and not documented by any of our 

current metrics.  Huang and Richert found that exchange structural  for all temperatures in their 

experimental system135.  (This would be equivalent to the statement ,exchange orientation bond  in 

our work.)  Further, the length scale and relaxation time scale have been shown to be coupled 

in a non-trivial manner leading to the necessity for a more complex analysis to fully 

characterize this form of behavior.   

In future work, investigation of SHD could be evaluated for this system, however, we 

would need to exercise caution to consider the system anisotropy with respect to the i  and j

axis as demonstrated in Section 2.4.3.  The susceptibility of four-point correlation functions 

has successfully been used to quantitatively demonstrate the relationship between correlation 

length and relaxation time scale in a variety of systems134, 136.  However these values would 

be difficult to extract in our simulations due to the length of time required to capture 

sufficient information to calculate the appropriate variances.  Instead, a recent simplification 

of the values by using several approximations and the results of the fluctuation-dissipation 

theorem and the specific heat128, 137, 138 has lead to the development of metrics using 

relaxation times and thermodynamic variables which may be more accessible128, 137, 138.
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Figure 2.6-3: Representative of supercooled samples, average time to rotation
These figures represent the average time it takes for an individual molecule on the lattice to 
change orientation (units log(t/ ov )) at each vertex, note color bar is a different scale at each 
temperature.  From top to bottom the temperature is 0.4, 0.3, and 0.2 respectively.  The 
fastest times are blue, the slowest red.  
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2.7. Discussion

Establishing that the simulation samples quenched with the Metropolis MC method were 

indeed at equilibrium, due to the reproducibility, path independence and correct limiting 

behavior of the simulation samples, we are able use these samples as a starting point to 

evaluate low temperature conditions.  Additionally, this provides a backdrop against which 

the deviation of samples quenched with kMC from the known equilibrium behavior may be 

clearly illuminated.  We hope to extract from this comparison an understanding of the 

vitrification process in our system, establishing relevant temperatures and properties. 

A wide variety of temperatures have been identified within this work and a partial list is 

included here.  The subscripts from Chapter 1 have been extended to provide clarity in the 

context of this discussion. 

Temperature Value Section Located 
,mf binodalT 13log(3) 0.7 1.4.31

,mf spinodalT 0.25 1.4.31

,o DMFT 0.24 1.6.21

, :metropolisMC FSCT 0.24 0.26 1.6.31

,o MetropolisMCT 0.07 1.6.31

CvT 0.21 2.4.2

structureT 0.5 2.4.3

: ,fragility onsetT 0.5 2.4.4

:FSCT 0.24 0.26 2.4.4

oT 0.027 2.4.4

aT 0.46 0.5 2.4.4

xT 0.22 0.24 2.4.4

kMCT 0.24 2.5.2

,kMC structureT 0.18 0.16 2.5.3
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The comparison of all these reported temperatures, both those derived from an analytic 

approximation and three different simulation techniques, lead to an interesting conclusion.  

We are able to distinguish three clear temperature regions, with distinctive kinetic properties 

based on the underlying thermodynamics.  We present a synopsis in this paragraph followed 

with greater detail.  In the high temperature regime where the relaxation is Arrhenius, the 

influence of the transition states and height of the energy barriers has very little impact.  As 

we move to colder temperatures, we find the onset of an activated regime near 0.5onsetT .

Below this temperature, the simulation sample’s movement on the PEL becomes influenced 

by the transition states.  We notice that the domain size begins increasing and the stretching 

exponent reaches its low temperature plateau.  The simulation samples experience 

cooperative relaxation and the orientation of near-neighbors is very important on the 

motions.  The simulation samples also exhibit both kinetic and thermodynamic fragility.  We 

are able to access very low temperatures and see a return to strong behavior, with an increase 

in the stretching exponent and Arrhenius temperature dependence in the relaxation time.  The 

fragile-to-strong crossover temperature, 0.24 0.25FSCT  , appears to be related to the 

thermodynamic details of the system.  In the next few paragraphs we will weave together the 

observations that lead us to this description.  

At high temperature, the system will move easily over the PEL and explore large regions 

easily until the thermal energy is on the same order as the bond energy ( 1T ).  Below that 

temperature, the transition states will begin to have an effect and there will be an onset to 

activated dynamics.  In a mean-field description, our model experiences a first-order 

transition at , 0.7mf binodalT , however we don’t find this temperature to be a dramatic 

transition in our kMC results.  Instead, we note that by 0.5T  , which we identify as onsetT ,
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a number of results show a clear change in character and signal entry into an activated 

regime.  Thermodynamically, there is no clear change in the internal energy of the 

equilibrated structures, although the heat capacity increases strongly in this region.  Our best 

indication of thermodynamic fragility is that the temperature dependence of the relaxation 

time can no longer be well described with a simple Arrhenius relationship, but becomes 

super-Arrhenius below aT .  We notice this in all three simulation methods.  This observation 

has been found in other models139, however we note that the critical temperature suggested 

by the VF fit is very low, e.g. 0.027oT , foreshadowing that this function does not describe 

the approach to an ideal glass transition, which would be barely distinguishable from 0T .

In this same intermediate range we find the clear kinetic fragility, as well.  The stretching 

exponential  from the fit of the correlation functions, which has been decreasing with 

temperature, reaches its lowest values at : , 0.5fragility onsetT .  During the temperature range in 

which the kMC thermodynamics remain fragile, the value of remains constant, 

demonstrating that relaxation of the correlation function is clearly non-exponential.  We 

notice that there is a clear onset of a growing length scale of structures on the lattice at this 

temperature, 0.5structureT .  This length scale is kinetically, not thermodynamically 

determined, but does indicate that the near neighbor orientations, as described by the 

transition states, are beginning to have a large influence. 

There is a second important grouping of temperatures reflecting changes in the 

neighborhood of 0.24T , which we believe reflect the FSC.  Under the mean-field 

approximation, the spinodal is the temperature at which the system becomes unstable with 

respect to the liquid phase and will be trapped in an energy minima in the absence of thermal 
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fluctuations.  During our DMF simulations, we are able to evolve a simulation sample from a 

homogeneous, supercooled liquid state to a heterogeneous, low energy minima via a very 

small perturbation.  The critical temperature of a VF fit in the DMF simulations , 0.24o DMFT

is very close to the temperature of the mean-field spinodal ( , 0.25mf spinodalT ).  This would 

indicate complete arrest of the motion on the landscape if the system did not have thermal 

forcing available to allow it to escape energy minima. 

When we consider the results of the kMC, the change in relaxation time with temperature 

can also be well fit by an Arrhenius function below 0.22 0.24xT , indicating a 

thermodynamically strong glass former.  We see that at : 0.22 0.24FSCT , the stretched 

exponential now begins to increase with decreasing temperature, becoming kinetically 

stronger. (This is similarly observed in the previously reported Metropolis MC simulations 

where , : 0.22 0.24metropolisMC FSCT  despite the omission of the details of the transition states).  

We do not observe a dramatic change in the slope of domain size, indicating that there is not 

a diverging static length scale that at the FSC. 

We’ve established that, for our model, there is an increasing, but not diverging, static 

length scale for simulation samples equilibrated at decreasing temperature and the entropy 

remains positive for all temperatures.  These observations would seem to indicate that there 

is not a thermodynamic glass transition for this class of models.  Instead, glass transition only 

occurs when there is insufficient relaxation time to reach an equilibrium state.  However, the 

FSC does have an important thermodynamic signature, the maximum in the heat capacity.  

Additionally, initial calculations of the minima of the PEL, identified by finding the inherent 

structure of the simulations (Appendix G), appear to follow the pattern observed in that of 
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liquid silica at the FSC72.  If we can cool equilibrium liquids below this temperature, and in 

the absence of other indicators, how does the FSC relate to gT ?   

A purely kinetic description does not explain a subtlety we see when cooling a simulation 

sample with the kMC methodology.  Above the FSC, as a simulation sample cools at 

constant temperature, the energy will decrease at the same constant rate, regardless of the 

temperature until it approaches the equilibrium energy of the final temperature.  Then it 

slows and asymptotes into a smooth master curve, terminating at its equilibrium energy.  

However, at the FSC, the change in energy with time begins to show plateaus, suggesting 

that the simulation sample is experiencing significant changes as it traverses the energy 

landscape.  There appears to be an inflection point in the curve of time it takes to reach 

equilibrium.  Under the constraints of our simulation time, some of the low temperature 

samples reach equilibrium while others do not.  However there is no indication of a particular 

reason they could not reach equilibrium should we continue to run the simulation for even 

longer times.  For those samples which reach equilibrium above or below the FSC, the 

expectation value of the structure length is similar to the equilibrium structures which were 

equilibrated with the Metropolis MC.  Thus there is no indication that the simulation samples 

are different at equilibrium applying from applying different transition states during MC 

simulations, a result consistent with the detail balance requirement.  

This leads us to a very interesting image of what might be happening in some structural 

glass systems at very low temperature.  Invoking the energy land perspective, one may 

consider the variety of paths that a simulation sample may traverse in proceeding from one 

energy minima to another.  If a random thermal forcing can create as little as one pair of 

molecules which are not fully bonded, then the simulation sample can travel from one 
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initially fully satisfied state to another skirting many higher energy regions.  This process is 

diffusive in nature, which suggests the source of the Arrhenius temperature dependence as 

the simulation samples wander in the ravines which connect the energy minima.   

Conceptually, our model is always ergodic, however energy barriers may make the system 

effectively non-ergodic by inhibiting the complete exploration of the PEL at low 

temperatures, a feature observed in other kinetically constrained models27.  In those systems 

there is explicit frustration which causes the glassy dynamics.  While certainly exploring 

portions of the landscape with high potential energy becomes exceedingly rare at low 

temperature, even at very low temperature the number of degenerate ground states is greater 

than exponential.  Additionally all of the minima are connected via low potential energy 

pathways on the PEL, unlike those in other systems.  Therefore, we do not see the 

configurational entropy disappear at finite temperature. 

The development of a plateau in the relaxation dynamics from a random configuration to a 

low temperature minima at the fragile-to-strong crossover is a feature that calls for additional 

exploration.  One possibility is certainly that the population of unbounded molecules peaks in 

these simulations.  It is shown in Appendix E that the distribution of these molecules is a 

non-monotonic function of temperature.    Their presence makes the progress of the 

simulation exceedingly slow computationally, but this does not have the same dramatic effect 

on the ‘real time’ which we document.  However, this may hint at underlying structural 

features that lead to the system becoming trapped at higher energy states for a long length of 

time.  This indicates that documenting the population of molecules which have 0, 1, 2, or 3 

bonds may give insight into these issues.  When considering only the potential energy 

landscape, we should recall that it is not the internal energy alone, but the free energy with its 
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entropic component, that describes the equilibrium state140.  Therefore, we need to consider 

large, flat regions on the landscape that may describe barriers due to entropy alone, in which 

case it may never be necessary to take an energetic step up-hill141.

An alternate idea that involves percolation considers accessibility of regions on the PEL 

directly142.  In this theory, transitioning into the glassy state occurs when the possible paths 

which a simulation sample may follow between minima on the landscape no longer 

percolate.  Because the PEL is hyper-dimensional, the mean-field approximation of this 

transition becomes exact and predicts the correct behavior at the critical point142.  We have 

not formulated our mean-field approximation to address a PEL percolation transition; to do 

so we would need to include the details of the transition states and consider a time variable.  

However our static representation may still capture some of this flavor because it does 

consider the temperature at which amorphous energy minima are preferred with respect to 

the liquid (random) state, ,mf binodalT , as well as when the simulation sample will be confined 

to energetic minima, ,mf spinodalT .  This approach is similar to that described in the Introduction, 

which describes the simulation sample trajectories that lose ergodicity on time scale of the 

simulation108 and those that involve tree representation of movements110.

Other models with limited valency or ‘patchy’ interactions have recently been studied.  

Among the findings, we see that a number of gelformers have transitions influenced by their 

structural orientation including proteins143 and colloids92.  Beyond the scope of this set of 

materials, valency is also found to be a crucial detail in some materials with a liquid-liquid 

phase transition, which is not a spatially homogeneous gas/liquid separation, but instead a 

heterogeneous phase change between two different locally oriented structures 4, 107.
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Additionally, the number of bonding sites or patches appears to have more influence on 

this behavior than the location of the interaction although both contribute to the phase 

diagram143.  The overall effect of increasing the valency is to increase both the critical 

temperature and density when considering phase separation143.  Our phase diagram is similar 

to those found both experimentally and in other simulation models.  Indeed, without valency 

limited potentials in colloidal systems there is not a low temperature region that would be 

able to generate a disordered homogeneous (as opposed to phase separated) arrested state7, 17.

The lower the valency in these systems, the smaller the force for phase separation as most of 

the particles are fully bonded so there is no drive towards further density increase.  The 

possibility of finding a region in which the low temperature promotes long-lived bonding 

opens up exploration of colloidal gels133, 144.

Currently, in our model we do not have a preference for a crystalline form, however we 

could easily modify the Hamiltonian by inducing a field
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Vogel and Glotzer134 found that the length scale of clusters did not diverge at the FSC and 

that there was no clear indication that this temperature was linked to spatially heterogeneous 

dynamics.  However, they point out that the valency would have a strong effect on the spatio-

temporal mobility of particle motion because the imposed network structure statistically 

limits the number of number of near-neighbors which are mobile.  Our T-shaped molecule 

model can easily be extended into higher dimensions (Appendix D) or studied on other lattice 

structures.  Additionally, changing the bonding site number and locations on the molecule 

does not require any modification of the fundamental techniques. 

Our model could be considered one of a class of models which limits the number of near-

neighbor bonds via defining the properties of the molecule at the vertex as having fewer 

bonding regions than the number of edges of the lattice.  This leads to viewing the overall 

state of the system as a composite of the individual occupancy and orientations at each 

vertex.  A conceptually similar Hamiltonian is under very active investigation.  A limited 

valency system is created by restricting the number of bonds via exclusions of states of the 

system which have too many bonds converging at a single vertex (or too many near-

neighbors)113.  Models similar to ours, in which the valence restriction is a property of the 

molecule, may prove computationally faster during simulations because we can create ‘look-

up tables’ enumerating, a priori, every combination of near-neighbors.  Thus the calculation 

of energy of a state progresses via matrix multiplication.  Formulations restricting the number 

of bonds at a vertex require a step identifying whether the new state is possible, which 

requires comparisons, inherently slow computationally.  One way to side-step these issues is 

to map the restriction onto a model in which all occupation states are possible, but create an 

energy penalty for vertexes with large number of near-neighbors.  In the limit of an 
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extremely high penalty, we should recover the original exclusion of states.  This also 

suggests a mechanism for proving that the two classes of models may be mapped to each 

other.

With the simplicity of this model, the possibility of analytic explorations is enticing.  It is 

interesting to note that Sastry et al. found that the Bragg-Williams approximation was better 

at describing the skewing of the liquid gas spinodal to the low density side of the phase 

diagram than the Bethe-Peierls approximation in this class of models113.  However, no 

explanation for this was proposed.  In our model, this skewing was the result of the phase 

separation between the gas and a heterogeneous liquid phase.  It might be that the 

implementation of the Bethe-Peierls suppresses or excludes consideration of this phase.  

However, because within their work no explicit discussion of the implementation which 

would distinguish between an homogeneous and heterogeneous liquid is included, this 

explanation is tenuous at best.  An implementation of the Wertheim perturbation analysis was 

restricted to valencies above 3 and below 5, severely limiting this approach for exploration of 

a larger number of systems144.  With the simulation work in hand, extension of the analytic 

description of the model can be better approached. 

2.8. Conclusions

Our strikingly simple model can be used to describe the low temperature behavior of 

valence-limited glass formers.  Employing the Metropolis MC method, we can cool 

simulation samples to equilibrium providing the starting states for study of the 

thermodynamics, dynamics and structure.  Consideration of results from the evolution of the 

simulation samples with a kinetic MC recipe, thus including the effects of transition states on 

the sample motion on the PEL, yields a picture of three distinct dynamic regimes.  At high 
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temperatures the system is free to move without significant impact of the transition states.  

However, as the system cools, it reaches onsetT  below which activated events become 

important, the sample motion that must overcome an energy barrier by concerted thermal 

activation.  In this region we find that the relaxation time exceeds that of a simple Arrhenius 

dependence and the structural length scale increases.  In our model both are hallmarks of a 

fragile glass former. 

Further cooling results in a fragile-to-strong crossover in our system at FSCT .  Below this 

temperature, the stretching exponential increases in value and the relaxation time returns to 

an Arrhenius behavior with cooling.  The FSC resolves the Kauzmann Paradox by 

demonstrating that the extrapolation of the fragile properties above FSCT  is not valid as 

0T .  Instead, we find that the configurational entropy does not disappear at low T .

As is found in experimental systems, we can force our system into non-equilibrium 

conditions by quenching a random sample with the kMC method at a constant rate.  

However, when a random simulation sample is allowed to cool against a constant 

temperature bath we observe that it will eventually reach equilibrium.  We follow the 

potential energy as the system cools as a function of time.  We see a change in the cooling 

behavior around the FSC.  At higher temperatures, the sample cools rapidly until it 

asymptotes to the equilibrium temperature.  The overlay of this behavior at different 

temperatures leads to a cooling curve, along which all the samples are at equilibrium at the 

appropriate potential energy as the time progresses.  Near the FSC we note that there is the 

onset of a plateau at higher potential energies, indicating the simulation sample experiences a 

multi-step relaxation process where it is no longer at equilibrium as it is cooled.  There is no 

evidence, however, that the samples will not eventually reach equilibrium.  It does suggest 
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that on the time scale of experimental and simulated observations, the lattice is arrested at in 

a non-equilibrium state with higher potential energy.  We identify simulation samples that are 

at this temperature plateau as glasses, indicating that FSCT  may often be identified as gT .

During the simulations which are evolved from an initial, equilibrated state with the kMC 

method, we observe a peak in the heat capacity at the FSC.  Additionally, as we observe the 

structure of the system, it begins to become aligned due to kinetic reasons starting at onsetT ,

but does not show evidence of a static length scale divergence with temperature.  At low 

temperatures, simulation samples that would be characterized as arrested, glassy states show 

a significant decrease in static structuring.  Our model appears to show significant spatially 

dynamic heterogeneities, with an increasing correlation length as the temperature decreases.  

There is evidence that the evolution of the system is dominated by mobile molecules that can 

change their orientation quickly, and that the time for structural relaxation is determined by 

the time scale of exchange of mobile and immobile molecules. 

The kinetics and thermodynamics of self-assembled structures is a rich field for research 

today.  Our model allows us to explore low temperature conditions at long-times, resulting in 

insight into the class of limited valency systems.  In previous work we have extended this 

model into a two-phase regime and identified a large variety features in the gel phases upon 

the addition of solvent.  Similar work could lead to a deeper understanding of the phase 

behavior of physically reversible gels and illuminate the relationship between the glass 

transition and gelation.


