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1. Chapter 1: A Lattice Model of Vitrification and Gelation1

1.1. Introduction

There are natural parallels between the glass phase and physical gels (thermoreversible 

gels) as well as between vitrification and gelation.  Recently there has been considerable 

interest in unifying these two classes of disordered materials.  For example, theory and 

simulation predict the existence of both glass- and gel-like structures in colloidal systems9-11.

These predictions are consistent with features found experimentally12, 13.  In addition to 

structural similarity, dynamic observations have strengthened the conclusion that there is a 

relation between glasses and gels.  Physical gels have associations with finite bond lifetimes 

(in contrast to chemically crosslinked gels).  Experimental measurements of gelatin14 and 

poly (vinyl alcohol) gels15, both thermoreversible polymeric gels, have shown glass-like 

relaxation dynamics.  Colloids with short-range attractions share this property and can form 

gels at high densities that exhibit glass-like kinetic arrest16, 17 and relaxation properties18.  In 

this work we use a lattice model occupied by T-shaped molecules to explore the relation 

between glasses and physical gels.

The glass state has been studied in great detail and the dynamics of many systems in 

addition to physical gels are analogous to those of a glass.  Kauzmann, whose work was 

influential in the development of our current thermodynamic understanding of the glassy 

state, referred to the glass as one example of the ‘torpid’ state19, a general category that 

includes linear polymers under flow and plastically deformed metals and crystals.  

1 This chapter is reproduced with permission of the Journal of Physical Chemistry B from: 
Witman, J.; Wang, Z.-G., A lattice model of vitrification and gelation. Journal of Physical 

Chemistry B 2006, 110, (12), 6312-6324. 
Copyright 2006 American Chemical Society
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Additionally, a variety of other materials demonstrate dynamic behavior characteristic of 

glass-like states.  These include such diverse examples as the polycrystalline structure of thin 

films, protein folding20, 21 and granular material jamming22.

Lattice models have been extensively used to explore both the structure and dynamics of 

the glassy state.  Among the many examples it is useful to contrast two classes.  The first 

consists of models whose Hamiltonians directly induce frustration.  By construction, these 

models do not have fully satisfied alignment states.  There are no configurations that satisfy 

all of the locally preferred low energy states.  Ising spin glasses23, in which the interactions 

are randomly assigned to favor parallel or antiparallel orientation, are classical examples.  

Conversely there are models whose rules of motion make the formation of macroscopic 

uniform phases unlikely.  Falling under the umbrella of hierarchically constrained local 

dynamics, the evolution in time of these Ising-type models is restricted by the state of 

neighboring sites24.  These include the Fredrickson-Anderson facilitated kinetic Ising 

models25 and the East model26.  In a similar manner the tiling model27 and a recent model by 

Garrahan and Chandler28 demonstrates glassy dynamics based on local dynamical rules, 

although the coarse-graining implicitly does not include the crystal state.  Our model does 

not exclude ordered states, however unlike traditional liquids, these states have the same 

energy as satisfied yet inhomogeneous states. 

One way to capture the features and behavior of amorphous solids on a lattice is to assign 

anisotropic interactions.  Aranovich and Donohue have explored the role of anisotropy on 

molecular fluids29.  Highlighting that most molecules and particles have anisotropic 

interactions due to steric limitations of arrangement and bonding constraints, they considered 

a variety of phase transitions including condensation, crystallization, and polymerization.  
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Developed concurrently are several other models of Ising-like lattice liquids and glasses that 

in some way restrict the number of nearest neighbors on the lattice leading to glassy 

features30, 31.  In a similar manner, Del Gado et al. have employed a model in which 

monomers occupy a cubic lattice and are tetrafunctional, allowing for vacant sites within the 

network without energetic penalty18.  The presence of telechelic monomers that can from a 

network with ‘solvent’ intuitively leads to a picture of a polymeric gel. 

A minimal requirement for network formation in two dimensions is a trimer structure 

which allows junctions and branching.  The Mercedes-Benz model 32 , 33 (named for its 

resemblance to the famous logo) has three directional arms, each capable of supporting 

hydrogen bonding.  There is an energetic balance between the advantageous formation of an 

open ‘bonded’ structure in which the arms of the monomers touch and a force favoring an 

incommensurate dense structure.  This model has been studied in both on-lattice33 and off-

lattice32, 34 formulations.  Other on-lattice 35 and off-lattice models of water36 distinguish 

between hydrogen bonds and Van der Waals forces determined by the relative orientation of 

the monomers.  Our model features anisotropic interactions that lead to the number of bonds 

formed being smaller than the number of nearest neighbors.  In addition to sharing this 

feature with geometrically constrained systems (e.g. colloidal particles with short range 

interactions), our model is naturally relevant to network forming liquids such as silica 

glasses37 and water38, 39, in which the interactions are due to directional bonds. 

Gelation has commonly been associated with geometrical percolation. However, this 

condition is not sufficient to describe the transition in physically associating gels.  These 

systems, which have bond life times comparable or shorter than the time scale of interest in 

experiments, may not exhibit solid-like character at the geometric percolation threshold40, 41.
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Further, simulations by Kumar and Panagiotopoulos show no change in a thermodynamic 

property at gelation, suggesting that gelation is not a higher order thermodynamic 

transition42.  The specific molecular interactions yield rich behavior in some physical gels 

that does not conform to the percolation model43.

We endeavor to link the glass transition and gelation within a lattice model that can 

encompass both glass and physical gel phases in appropriate relation to the liquid and 

solution phases.  We investigate the properties of a lattice occupied by T-shaped molecules 

whose anisotropic nature leads to a wide variety of morphological states.  We explore these 

states by using a dynamic mean-field simulation method that by construction evolves towards 

a free energy minimum as well as a Monte Carlo method.  Glassy or gel-like behaviors are 

identified as corresponding to free energy minima associated with inhomogeneous and non-

periodic structures44.

Our primary concern in this work is to understand the thermodynamic and kinetic factors 

leading to such amorphous structures.  We have also completed initial work investigating the 

dynamics of our model system.   We propose that these amorphous, glass or gel-like 

structures arise as a result of the proliferation of a large number of such inhomogeneous free 

energy minima, which is intimately connected to an underlying spinodal of the uniform 

liquid or solution phase with respect to inhomogeneous fluctuations.  However, the resultant 

structures depend on the ‘processing’ or quenching conditions.  Therefore their origin is both 

thermodynamic and kinetic in nature.  Our study suggests that a mechanism for gelation is 

incomplete phase separation in the two-phase region of the phase diagram arrested by the 

onset of glass transition.
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1.2. T-shaped Molecule Model

    We consider a two-dimensional square lattice of N x N sites.  Each lattice site is either 

occupied by a 3-armed, T-shaped molecule, or is vacant, representing a solvent molecule.  

The T-shaped molecule can take any of the four orientations designated as 1, 2, 3 and 4 in 

Figure 1.2-1(a).  The vacant state (not shown) is denoted as state 5.  Each arm of the T-

shaped molecule is capable of forming an association (bond) of energy with the 

adjoining arm from a nearest neighbor molecule.  The added level of complexity in our 

model arises from both the state of a site (vacant or occupied with orientation 1,2,3 or 4) and 

the relative orientation of the molecule at that site with respect to its neighboring sites.  This 

relative orientation determines the association state as the molecule is anisotropic.   

Figure 1.2-1: Definition of T-shaped model 
(a) States of the T-shaped molecules on a square lattice.  The model contains these four states 
and a fifth state (not shown) which represents a vacancy.  (b) The relative orientation 
between site i,j and its nearest neighbors. 

We will denote the occupancy of site (i,j) in state a by ),(ˆ jipa  ( 1),(ˆ jipa  if site ),( ji  is 

in state aand 0 otherwise, and 
5

1
1),(ˆ

a
a jip  ). The Hamiltonian of our system is written as:  
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For completeness we have included an isotropic interaction between the solvent molecules 

(or equivalently between the solute molecules by virtue of the occupancy constraint).  In this 

work, we consider the case 0.

We have employed the following dynamic rules of motion for our model.  The molecules 

can undergo both rotational and translational diffusion.  During rotation a T-shaped molecule 

can interchange states 1,2,3 or 4 at a given site.  We do not attempt to mimic the actual 

physical rotation of the T-shaped molecules and will thus allow a T-shaped molecule to 

rotate from a given state to any of the other states in a single time-step.  For translational 

diffusion, we use Kawasaki-exchange dynamics45 between a T-shaped molecule and a 

nearest neighbor solvent molecule as well as for self-diffusion, or exchange, of neighboring 

T-shaped molecules.  In the fully-dense region of our phase diagram there is no fundamental 

difference between rotational and translational diffusion.  

In this work we employ both the Metropolis Monte Carlo (MC) simulation technique46 as 

well as the dynamic mean-field (DMF) simulation method47.  Thus far, MC simulations have 

only been performed on a fully-dense lattice with no vacancies.  The MC simulations 

proceed by selecting a site at random and then proposing a change in its orientation or an 
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exchange with a nearest neighbor; this rule would be equally applicable where there are 

vacancies.  The Metropolis recipe is used to determine whether this change is accepted. 

The DMF simulations (to be discussed further in Section 1.3) can be considered a mean-

field implementation of Monte Carlo dynamics47.  However for computational purposes it is 

convenient to use the Barker form48 of the transition probability , current newq :

newcurrent

new
newcurrent EE

Eq
expexp

exp  (2) 

instead of the Metropolis form ( newcurrentq  if currentnew EE  and 

)(exp currentnewnewcurrent EEq  if currentnew EE ).  In equation 2,  is an attempt 

frequency (which can be different for the rotational and translation moves) and E current  and 

E new  are respectively the energy of the system in its current state and new state.  As in the 

MC simulations, the new state reflects both orientation change and nearest neighbor 

exchange.  The dynamics in the DMF evolution of the singlet density at each lattice site 

follow a steepest descent path into a free energy minimum. 

1.2.1. Role of Anisotropic Interactions 

The anisotropy of the model, which allows for orientational disorder and mimics bonding 

and steric constraints, plays a strong role in the type of quenched structures we observe.  The 

organizing feature of this model is the presence of a non-bonding side or ‘back’.  Before 

exploring the phase diagram in detail it is helpful to consider some of the phases the lattice 

can adopt.  In our DMF simulations (to be described later in Section 1.3) we can identify 

whether a particular site was strongly oriented and would persist in that state over time.  
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These sites are shown in dark black in the figures.  Sites that are not strongly oriented appear 

in grey.  Sites that are most probably solvent molecules are represented as blanks.   

In the fully-dense limit, without solvent, the molecules must be arranged in pairs back to 

back in order for the lattice to be satisfied.  Otherwise there is an associating end presented to 

a non-bonding side.  These satisfied structures can be crystal-like (Figure 1.4.5-1(a)) or 

amorphous (Figure 1.4.5-1(b)) depending on the pattern of the pairs.  The amorphous 

structures can also contain unsatisfied sites at which not all arms form bonds with their 

neighbors.  These sites are still liquid-like in that they retain equal probability to arrange in 

any orientation. 

In other regions of the phase diagram the back of the molecule points towards the solvent.  

This gives the molecule a self surfactant character.  The molecules can be arranged in phase 

separated, highly satisfied states (Figure 1.5.5-1) or in gel-like states (Figure 1.5.5-2 and 

Figure 1.5.5-4).   In observing gel-like structures, two features are clear.  The first is that the 

structures involve at least a pair of molecules that form ladder-like structures.  The second is 

that there are unsatisfied sites located at the junctions of the fibrils.  Gel-like features are 

observed under a wide range of conditions.  The particular characteristics of the gel-like 

state, for example the fibril length and width, can be varied by altering the simulation 

conditions.

1.3. Dynamic Mean-field Simulations 

The dynamic mean-field (DMF) simulation technique is a deterministic method for 

evolving the singlet mean-field probability, ap , of the lattice sites from a given initial 

condition47.  It is similar to the dynamic density functional methods for molecular49 and 

polymeric fluids50.  Given the dynamic rules for a lattice model, the DMF equations of 
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motion are obtained from a local mean-field approximation of the master equation 

corresponding to those rules.  The DMF simulation method has formulations for both 

conserved and non-conserved order parameters.  The governing equations and detailed 

balance conditions for both cases were derived in the reference47.  Below we present the 

application of these equations to our current model.  

1.3.1. Dynamic Mean-field Equations 

The probability that a lattice site (i,j) will be in state aat time t is given by ),;( jitpa .  Our 

master equation encompasses both rotational diffusion and translational diffusion.  The 

overall probability that a molecule will be found in a particular orientation (states 1,2,3 and 

4) on the lattice is not conserved.  However the number of molecules on the lattice remains 

constant, requiring conserved motion.  These two forms of motion are captured in the master 

equation under the mean-field approximation given by:  

, '

( 1; ) ( ; ) ( ; ; ) ( ; ) ( ; ; ) ( ; )

( ; , , ') ( ; ) ( ; ') ( ; , , ') ( ; ) ( ; ')

a a b a
b a

c a a c
c ai i

p t i p t i q t i b a p t i q t i a b p t i

q t c i a i p t i p t i q t a i c i p t i p t i
 (3) 

for the first four states (a=1-4) and: 

5 5

5 5
5, '

( 1; ) ( ; )

( ; , 5, ') ( ; ) ( ; ') ( ;5, , ') ( ; ) ( ; ')c c
ci i

p t i p t i

q t c i i p t i p t i q t i c i p t i p t i   (4) 

for the solvent.  The summation in equation 3 over b includes states 1-4 and the summation 

in both equations over c includes all states.  We use the vector i  to denote the two 

dimensional coordinates and ', ii  indicates that i  and 'i  are nearest neighbor sites.  

);( abtq  is the transition probability for rotation from state b to state a.  The transition 
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probability for translation, ),',;( iaictq , involves exchanging the states between site i

and its nearest neighbor 'i .  Consistent with the mean-field approximation at the singlet 

density level, these transition probabilities can be written simply as47:

)];(exp[)];(exp[
)];(exp[

);( 1 itEitE
itE

batq
ba

b  (5) 

and

))];()';((exp[))]';();((exp[
))];()';((exp[

)',,;( 2 itEitEitEitE
itEitEibiatq

baba

ba  (6) 

In our calculation we take 1  to be 1/6 and 2  to be 1/24.  Also, the temperature of our 

system is always taken to be that of the final condition resulting in ‘instantaneous’ quenches.  

The energy appearing in the transition probabilities is given by 
);(

);(
itp

HitE
a

a , where H

is the mean-field energy of the system (equation 1) with the fluctuating );(ˆ itpa  replaced by 

the average .  As an example: 

),1;(),1;(),1;()1,;()1,;(

)1,;()1,;()1,;()1,;(
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),;(

43243

1321
1

1

jitpjitpjitpjitpjitp

jitpjitpjitpjitp
jitp

HjitE
 (7) 

where we reintroduce the two-dimensional lattice coordinates to emphasize the relative 

orientation of the T-shaped molecules with respect to the direction of its nearest neighbors. 

The master equation will evolve with time until it reaches a stationary state.  This 

stationary state is a result of detailed balance which is given by:

)()()()( abqipbaqip ba  (8) 

and

);( itpa
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)()'(),',()()'(),',( ipipiciaqipipiaicq caac  (9) 

By virtue of the choice of the transition probabilities which satisfy detailed balance, the 

DMF equations will evolve the system towards an equilibrium or metastable equilibrium 

state.  Thus, the stationary solutions of the DMF equations correspond to free energy minima.  

Glassy or gel-like phases are identified as inhomogeneous, non-periodic, stationary solutions 

of the DMF equations. Although the DMF equations cease to evolve at these stationary 

solutions, and hence would lead to complete structural arrest, such a result is a manifestation 

of the deterministic nature of the mean-field equations.  In the presence of random thermal 

motion, the system would continue to evolve through activated processes by jumping out of 

the local free energy minima.  Nevertheless, the existence of such free energy minima 

indicates structural arrest on some short time scales and hence signals a change in the 

character of the dynamics of the system.  Therefore, in addition to describing the temporal 

evolution of the system at the mean-field level, the DMF simulation technique provides a 

useful method for searching and locating these inhomogeneous free energy minima. 

1.4. Fully-dense System: Liquid, Crystal and Glass Phases 

In this Section we consider the behavior of the fully-dense system (where there is no 

solvent or state 5) under the mean-field approximation.  We start with an overview of the 

phase behavior in this region before proceeding calculate the transition temperature between 

the liquid and the vitrified phases as well as the spinodal of the liquid phase.  With this 

analysis as a guide we then use DMF simulations to characterize the response of the liquid to 

fluctuations and investigate the morphology of the solid. 
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1.4.1. Overview of Phase Behavior 

In the fully-dense region (p5=0) the lattice can assume a liquid phase or a solid 

configuration.  At high temperatures there is an equal probability that the molecules will be 

found in any of the four states (p1=p2=p3=p4=1/4); we identify this state with the liquid 

phase.  At sufficiently low temperatures, the T- shaped molecules at most of the lattice sites 

become strongly oriented in one of the four orientations.  A simple mean-field calculation 

predicts a first-order transition from the liquid state to these locally oriented solid states.  

Mean-field theory also predicts a spinodal for the liquid state below which a metastable 

liquid can no longer exist.  As this spinodal signals the spontaneous appearance of 

inhomogeneous free energy minima, we associate it with the ideal glass transition from this 

model.  The crystalline state in this model– an alternating bilayer structure– is a peculiar 

state.  Unlike many physical glasses, the crystalline state in our model has no energetic 

advantage over other amorphous configurations.  Its appearance is a result of a particular 

kinetic path.  For our purpose, the existence of this crystalline state has no special 

significance.  There are a vast number of equivalent lowest energy states that have all the 

arms bonded or satisfied (more details will be given in Section 1.6.1).     

1.4.2. Transition between the Liquid and the Vitrified States

Instantaneously quenched from the high temperature liquid to the low temperature 

crystalline or glassy states, the T-shaped molecule at an individual lattice site transitions from 

having an equal probability of being oriented in any of the four states to strongly preferring 

one state.  Characterization of the glass-like configurations requires specifying the spatial 

probability distribution of the molecule orientation of the full lattice.  As this is analytically 

intractable, we make a simplifying approximation that each site is dominated by one 
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particular orientation, and all the other orientations have equal probabilities.  Furthermore, 

we assume that the probability of the dominant orientation is the same for all lattice sites 

(although the dominant orientations at different lattice positions need not be the same).  

While the validity of these assumptions is not immediately obvious, our DMF simulation 

confirms that the vast majority of sites have the same bias toward a dominant local 

orientation and that the subdominant orientations have approximately equal probabilities. 

Taking the dominant probability to be p1, we can write an approximate free energy per site 

for the solid state as: 

2 2
1 1 2 2 1 1 2 2

1 3 12 21 ln 3 ln2solidf p p p p p p p p
 (10) 

where we have made use of our assumption p2 p3 p4.  In this calculation we do not 

distinguish between the crystal-like and the glass-like solid states because we neglect the 

details of the structure on the lattice.  Therefore this free energy also describes the bilayer 

crystalline structure described in Section 1.4.551.

The equilibrium state is obtained by minimizing the free energy with respect to these 

probabilities.  Phase transition occurs when this free energy equals that of the liquid with 

unbiased orientation distribution: 

f liq (9 /8) ln 4     (11) 

We find a first-order transition at 3ln3 with the solid state having 

p1 3/4,p2 p3 p4 1/12 at the transition. 

1.4.3. Stability Limit of the Uniform Liquid Phase 

Because the transition from the uniform liquid to the solid phase is first-order, the 

formation of the solid phase from a metastable liquid involves a nucleation barrier.  It is 
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therefore possible to supercool the liquid below the freezing temperature.  However, this 

supercooling can only proceed as far as the spinodal, or metastability limit of the liquid.  

Beyond this limit the uniform liquid becomes unstable with respect to an infinitesimal 

inhomogeneity in the probability distributions, i.e., an inhomogeneous structure will form 

spontaneously.  Each of these inhomogeneous(amorphous) structures corresponds to a local 

free energy minima.  Since in the mean-field picture there are no activated events, a system, 

having reached one such free energy minimum, is permanently trapped there.  This 

consideration motivates us to identify the spinodal as the mean-field signature for an ‘ideal’ 

glass transition.  In this sense the spinodal temperatures can be likened to the Kauzmann 

temperature Tk, the lowest temperature for the onset of the glass transition.  We note that 

other authors have previously hinted at the connection between the liquid spinodal and an 

ideal glass transition52-54.  This conclusion has been explicitly demonstrated in the case of 

block copolymer microstructural glasses55.  In reality, because of thermal fluctuation, the 

system can fall into these amorphous states earlier than the spinodal, as well as escape them 

and diffuse between minima39.

The spinodal of the liquid can be easily obtained by examining the second derivative of the 

free energy expression Equation 10.  Setting this derivative to zero, we find that the spinodal 

occurs at 4.  This value agrees with a more systematic calculation by finding the lowest 

eigenvalue of the second derivative matrix of the full mean-field free energy function as 

calculated in Section 5.3. 

1.4.4. Correlation in the Liquid State 

With the theoretical analysis of the mean-field behavior as a guide, we now proceed to 

examine the system in the fully-dense phase using the DMF simulation.  While the 
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equilibrium probability of a site being in each of the four orientations is equal in the liquid 

state, the anisotropy of the interactions leads to nontrivial spatial correlations.  Within mean-

field theory, these correlations can be examined by the response of the system to a small 

localized perturbing field.  Figure 1.4.4-1 shows the probability profile for the four different 

states on the i and j axes when site (0,0) is perturbed by a field of magnitude 0.0001 that

favors state 1.  The system is a liquid at 0.1,92.3 .

Because the field at the origin (0,0) favors state 1, the probability of this state at site (0,0) is 

enhanced at the expense of the other three states.  More reflective of the anisotropy of the 

interaction are the probability of the states next to (0,0).  For example, state 1 is depleted both 

to the left and to the right, whereas states 2,3 and 4 are enriched to the right.  The site (-1,0) 

is particularly interesting since state 3 is enriched while all other states are suppressed.  These 

trends, as well as the special symmetry of the profiles along the j axis, can all be rationalized 

by the energetic preference to have the arms of the molecules pointing to each other and not 

to have the arm of a molecular facing the back of another.

The effects of the field at site (0,0) diminish as we move far from the origin, manifesting as 

damped small oscillation with respect to the bulk value.  A correlation length can be defined 

as the length scale for the decay of the probability profiles to their bulk value; the correlation 

length shows the characteristic square-root divergence with the proximity to the spinodal as 

expected from the mean-field behavior.  However, the numerical prefactor turns out to be 

unusually small, the correlation length reaching only a few lattice spacings when T  is within 

one percent of the spinodal. 
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Figure 1.4.4-1: Result of small applied force in the liquid state 
The probability of being in each state as a function of position along the i and j axis after a 
small pinning force of magnitude 0.0001  favoring state 1 is applied at site (0,0) to a fully-
dense lattice.  The unperturbed liquid-like state at =3.92, =1 has an equal probability 
(0.25) of being in each state.  



20

1.4.5. Vitrification in DMF Simulations 

We can investigate the morphology of the solid-like state using DMF simulations.  Starting 

with the isotropic liquid state at high temperature where the four orientations are equal on all 

lattice sites, we quench the system instantaneously to a lower temperature.  Since the DMF 

equations are deterministic, we add small random perturbations in the probabilities to provide 

the initial driving force for setting the equations into motion.  Above the liquid-solid 

transition temperature, we find that the lattice of probabilities relaxes back to the isotropic 

liquid state.  For sufficiently small perturbations, it is possible to supercool the liquid below 

the transition temperature.  However, at some temperature between the transition and 

spinodal temperatures, a sufficiently large local perturbation will be able overcome the 

nucleation barrier and induce growth of the solid phase.  Figure 1.4.5-1(a) shows a typical 

configuration of the crystalline state obtained from a shallow quench past the coexistence 

temperature.  In this configuration, all the molecules on the lattice are satisfied; each 

associating end group is paired.
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Figure 1.4.5-1: DMF simulation results for the fully-dense state 
(a) Crystalline State ( 3.7, 1 ) and (b) Glassy State ( 4, =1).  Both simulations 
were started from a liquid state with small perturbations before instantaneously quenching to 
the final conditions.  The black molecules are strongly oriented in the indicated direction.  
The grey molecules indicate that the site has equal probability of being in any of the four 
orientations.  The orientation at these sites is chosen randomly in the figure.  

The formation of a crystal-like phase when a small number of nucleation sites exists is a 

kinetic phenomena, not a thermodynamic one.  Fully bonded amorphous states share the 

same entropy and energy.  The tendency to form a crystalline region arises from the 

propensity to bury the ‘back’ or non-bonding side of the molecule.  Figure 1.4.5-2 shows the 

evolution of a crystalline state in frames (a-f).  As described in Section 1.4.4, the response of 

a liquid to a fluctuation is anisotropic; this has a strong influence on the kinetics of 

orientation surrounding a nucleation site.  Consider for a moment one nucleation event, for 

example the molecule at lattice site (i,j) oriented in state 3 with a probability that upsets the 

metastability of the system (a).  The initial bias will tend to orient its neighbor to the right in 



22

the opposite direction, state 1, (b), as this orientation presents the largest probability for all 

the arms of the neighboring sites to be bonded. 

The surrounding sites of this initial pair experience an environment that has strong 

orienting properties.  The pair above the nucleus now will experience a strong tendency to 

align one of their associating ends with the associating ends pointing downward from the 

initial sites.  To take best advantage of the energetics, the new pair will align in the same 

direction as the previous pair.  This initiates the formation of a lamella (c). 

From the sides of this initial lamella will evolve lamella oriented in the orthogonal 

direction (d).  Again, the organizing feature is the anisotropic non-bonding side.  As the 

growth occurs in an outward manner, eventually the different domains of lamella begin to 

influence the growth of each other (e).  At the interSection there are a variety of satisfied 

orientations that can be adopted (f).

Figure 1.4.5-2: Progression of the DMF simulations from a nucleation point. 
The oriented (solid-like) T-shaped molecules are shown in black while the grey T-shaped 
molecules represent those which are not oriented (are liquid-like).
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When the system is instantaneously quenched to a temperature past the spinodal, spatial 

inhomogeneities in the probability distribution grow spontaneously.  Unlike the isolated 

nucleation events that occur between the coexistence temperature and the spinodal, the 

simultaneous growth of all instabilities leads to heterogeneous microenvironments.  The 

thermodynamic driving force for the T-shaped molecules to form associating bonds with 

their neighbors becomes sufficiently strong such that most or all adopt a preferred 

orientation.  The T-shaped molecules attempt to maximize the number of bonds by choosing 

the locally optimal orientation determined by their microenvironments.  The orderly growth 

of crystal-like structures at higher temperatures is replaced by simultaneous formation and 

growth of bonded clusters, which eventually grow to a large network.  The resulting structure 

appears very amorphous without clear crystalline ordering.  In this structure most sites are 

satisfied, i.e., their three arms are held strongly by bonds formed with their neighbors.  

However, because the structure results from the uncoordinated formation of associating 

bonds driven by the local needs of the molecules, some molecules may be left unsatisfied. 

These sites are shown in grey in Figure 1.5.5-1(b).  While one orientation is chosen randomly 

at each of these sites for the purpose of illustration, these grey sites retain their liquid 

character (p1 =p2 =p3 =p4).

1.5. Solvated Phases: Gel-like Structures with Glassy Features 

In this Section we explore the variety of morphologies that are observed when solvent 

(state 5) is present.  We start with a discussion of the role that the solvent plays in the system 

and an investigation of the high temperature solution state.  We follow this by a calculation 

of the mean-field phase diagram and our analysis of the spinodals.  Finally we present 

simulation results that highlight the role of the glass transition in arresting phase separation. 
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1.5.1. Role of Solvent in Phase Behavior 

When solvent is present, the interplay between phase separation and vitrification generates 

a variety of morphologies, including uniform solutions, phase separated droplets and a range 

of gel-like structures such as foam-like, networked and fibril-like morphologies.  Which of 

these structures is observed in the simulation depends closely on the quench conditions.

We observe the solution phase above the coexistence line.  The solvent and the T-shaped 

molecules are equally distributed over the lattice. The solute has an equal probability of 

being in any of the four states ( 4/),( jipa  for a 1,2,3,4 and 5( , ) 1p i j ).  At 

lower temperatures the lattice will phase separate into solvent-rich and solute-rich phases.  

The solute-rich phase can either be an isotropic liquid phase or be in a glassy state depending 

on the concentration and temperature.  

The interface between solvent- and solute-rich phases plays an important role in the local, 

morphological organization.  The solute prefers to orient in such a way that its non-bonding 

side is adjacent to the solvent.  This orients the molecule so that the associating groups are 

pointing towards the denser, solute-rich region, whether this region is still solution-like or 

has adopted a glassy configuration.  The anisotropic nature of the T-shaped molecule causes 

it to behave as a surfactant at the interface between the T-shaped molecule rich phase and the 

solvent.   

1.5.2. Mean-field Phase Diagram 

We calculate the equilibrium phase diagram using the simplest approximation involving 

the singlet density.  Although higher order approximations can be constructed without too 
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much difficulty, we choose this level of approximation so as to be consistent with the level of 

mean-field approximation in the DMF simulation. 

In the absence of orientational order, the liquid-liquid coexistence curve can be easily 

obtained.  Assuming equal probability of the solute being oriented in each of the four 

orientations ( p1 p2 p3 p4 /4), the free energy per site is simply 

)1ln()1()4/ln()8/9( 2f   (12) 

This is similar to the Bragg-Williams free energy for a lattice gas56, the factor of 1/4 inside 

the logarithm having no effect on the phase diagram57.  Equation 12 predicts a symmetric 

phase diagram with a critical point at 16/9.

For sufficiently low temperatures, we expect the high-density phase to be the vitrified 

phase with locally broken orientation symmetry.  Since the free energy of the lamellar 

crystalline state is identical to that of the glassy state in our approximate treatment of the 

glassy phase in the fully-dense state, we will not distinguish between these two states here 

either.  For the purpose of constructing the phase diagram, we will characterize the glassy 

phase the same way we characterize the fully-dense case ( p1 p2 p3 p4).  This 

characterization amounts to a uniform dilution approximation, in which the effect of the 

solvent is simply to change the normalization of the probabilities from 
4

1
1

a ap  to 

4

1a ap .  Under this approximation, the free energy of the glass-like state becomes, 

fran (1/2) 3p1
2 4 p1( p1) (7 /3)( p1)

2

          + p1 ln p1 ( p1)ln[( p1) /3] (1 )ln(1 )
 (13) 

where the last term accounts for the entropy due to the presence of solvent.
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Using Equation 13, the probability of the dominant orientation is obtained by minimizing 

the free energy with respect to p1.  The coexistence between the glassy state and the isotropic 

liquid or gas phases is calculated by equating the chemical potential ( ( f / )) and the 

grand potential density ( w f ).  The phase diagram is shown in Figure 1.5.2-1 with 

a triple point at 3.37,  0.97 .

Figure 1.5.2-1: Mean-field phase diagram 
(a) Phase diagram: binodal (solid line), macroscopic spinodal (dashed line) local ordering 
spinodal (dot dashed line), cascade of spinodals within the liquid-liquid spinodal (dotted 
lines).  1)(T  is the dimensionless temperature; (b) an expanded view of the high 
solute density region around the transition temperature for the glass-like phase. 
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1.5.3. Analysis of the Spinodals 

As in the fully-dense case, the spinodal plays an important role in determining the 

thermodynamic and kinetic behavior of the system when solvent is present.  With the DMF 

equations of motion, it is possible to perform a linear stability analysis of the uniform state 

and determine the linear rate of growth of the unstable modes that are consistent with the 

dynamic rules of the model.  For simplicity, however, here we will examine the issue of 

stability based purely on a consideration of the free energy.  The spinodal or limit of 

metastability is determined by evaluating the matrix of the second derivatives of the free 

energy:

)','(),(
]',',';,,[

'
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)2(

jipjip
FjiajiaF

aa

   (14) 

where F  is the Helmholtz free energy as a function of the spatially varying singlet 

probabilities.  We construct the matrix explicitly on a 16 16  lattice and diagonalize the 

matrix to find its eigenvalues.  The vanishing of the lowest eigenvalue defines the spinodal.  

The result is shown in Figure 1.5.2-1.

Inside the liquid-liquid coexistence, we have the usual spinodal of the uniform liquid with 

respect to macroscopic phase separation (dashed line).  In the high density region, there is 

another spinodal which corresponds to the limit of stability of the uniform liquid with respect 

to spatially inhomogeneous probability distribution on length scales of the size of the lattice 

spacing (dot-dashed line).  This spinodal is the extension of the one occurring at 4 in 

the fully-dense state.  As we decrease the temperature inside the envelope of the macroscopic 

spinodal, additional instabilities set in that represent progressively smaller length scales 

(dotted lines).  We represent the onset of these new unstable modes by a family of curves as 
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they move down the temperature.  We note that while both the liquid-liquid coexistence 

curve and the macroscopic spinodal curve are symmetric, these higher modes of instability 

become skewed towards high density, presumably reflecting the tendency for orientational 

ordering.  The most striking feature of this cascade of instabilities is that they converge to an 

extension of the spinodal of the uniform liquid with respect to local orientational ordering as 

temperature decreases.  These higher instabilities will be crucial for determining the 

morphology of quenched structures in the two-phase region. We note that the phase behavior 

implied by our phase diagram is very similar to the general phase diagram of a physical gel, 

lending confidence to our assertion of gel-like features58.

1.5.4. Correlations in the Solution Phase 

As in Section 1.4.4, we measure the correlation in the system via the introduction of a 

small biasing field to a single site.  Due to the anisotropy of the system, the resultant 

probability profile is again different for each state.  In Figure 1.5.4-1, we show the profiles 

for each state along the i and j axis for a solution at 7.1  near the critical point of 

9/16 .  For these calculations we use the grand canonical ensemble and set the 

chemical potential so that the unperturbed solution is kept at a density of 5.0c  solute.  

We bias the probability of state 1 to be higher at site (0,0) by introducing a field of 

magnitude 0.01  at that site. 

Overall there is an increase in solute density near the site of the perturbation.  However, the 

self-surfactant characteristic of the molecule results in a very different probability profile 

when solvent is present as compared to the fully-dense liquid.  In the negative i direction the 

perturbation has almost no effect on the probability profile whereas the profiles are 
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remarkably symmetric along the j axis.  This significant asymmetry between the positive and 

negative i directions as well as between the i axis and j axis foreshadows the inhomogeneous 

solid-like features at lower temperatures.   

A correlation length can be similarly defined from the site of the perturbation.  Again, a 

mean-field square root divergence with proximity to the critical temperature is obtained.  In 

comparison to the fully-dense case, however, at the same relative distance to the critical 

point, the correlation length is significantly longer here. 
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Figure 1.5.4-1: Result of small applied force in the liquid state 
The probability of being in each state as a function of position along the i and j axis after a 
small pinning force with magnitude 0.01  favoring state 1 is applied at site (0,0) to a 
solution.  The unperturbed solution-like state =1.7, =0.5 has an equal probability (0.125) 
of being in each rotational state of the solute and 0.5 of being solute (state 5).



31

1.5.5. DMF Simulations: Gelation as a Result of Arrested Phase Separation 

In the two phase region, a wide range of structures is observed.  The results of a stepwise 

quench in which the lattice is equilibrated at successively lower temperatures show very 

different characteristics than those of a lattice that is quenched to the same conditions in one 

step.  In order to illustrate this effect, we first present the results of a quench of the system 

that is equal parts T-shaped molecules and solvent.   

When the simulation is taken from the ‘high’ temperature solution phase to just below the 

liquid/liquid coexistence curve, it phase separates without any (orientational) ordering.  Both 

the solute-rich phase and the solvent-rich phase retain liquid character.  If we further quench 

this structure to below many spinodals but at a temperature such that the solute-rich phase is 

above the triple point, we observe the formation of a layer of oriented molecules at the 

interface (Figure 1.5.5-1(a)).  This film occurs at all of the solute-rich phase boundaries.  The 

bulk of the molecular rich phase retains the expected liquid-like character.  Small droplets of 

solvent-rich phase have developed within the initial solute-rich droplet.  If this system is 

cooled further so that the solute-rich phase is below the triple point, then the solute-rich 

phase solidifies into a glass-like structure (Figure 1.5.5-1(b)).  The presence of small, 

solvent-rich voids within the glassy droplet suggests a very dense gel-like structure. 
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Figure 1.5.5-1: DMF simulation results at 0.5
(a) Phase separated droplet shows the self-surfactant character of the molecules.  A 
simulation in the solution state was initially, instantaneously quenched to 2  and 
allowed to equilibrate, before instantaneously quenching to a final temperature of 3
and (b) Glassy droplet was successively equilibrated from a solution to 2 , 3  and 
then, as shown, at 4 . Sites shown in grey are not oriented but instead retain their liquid 
character. 

If we plunge the system with equal parts molecules and solvent below many spinodals and 

near or below the triple point, we observe networked gel-like structures.  Figure 1.5.5-2(a) 

presents a dramatic example of the highly ramified structure that is the result of an 

instantaneous quench.  The structure is very different from that of the more step-wise 

quenched Figure 1.5.5-1(b) despite resulting from simulations at the same final conditions.  

Experimentally, such differences in features are closely dependant on the ‘processing 

conditions’59.  Our model replicates a wide variety of morphologies by changing the quench 

conditions and volume fraction of molecules.  
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Overall, if we quench a simulation in very small increments from the solution phase, we 

allow for phase separation to proceed unhindered.  However, at some temperature below the 

triple point the phase separation transitions from liquid/liquid separation to liquid/solid 

separation.  The solid phase is a disordered, glassy phase and the simulation is structurally 

arrested.  As the simulation is further cooled small voids of solvent rich phase will 

accumulate within the molecular rich phase.  The resultant structure is a very dense gel.  In a 

similar manner if we quench from the solution phase directly to below the triple point the 

phase separation is arrested by the onset of the solid phase.  However, since there is not 

sufficient time for liquid/liquid phase separation before the onset of vitrification, the structure 

is much less dense and has a networked characteristic. 

Figure 1.5.5-2: DMF simulation results at =0.5
(a)A gel that results from a simulation instantaneously quenched from a solution state to 

4  and (b) A gel quenched from a solution state to a lower temperature 10 .  Sites 
in grey retain their liquid-like character.  
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Figure 1.5.5-3: DMF simulation results at =0.5: the characteristic length 
(defined as 2  over the peak position of the circularly average structure factor) as a function 
of the quench depth given in dimensionless temperature 1)(T .  The data are the result 
of averaging over 40 simulations of an 80 by 80 lattice.  The dotted line indicates the critical 
temperature. 

The length scale of the gel depends on the quench depth.  We compare an instantaneous 

quench to a moderate temperature (Figure 1.5.5-2(a)) with a quench to a very low 

temperature (Figure 1.5.5-2(b)). Although the system is initially at the same identical liquid 

conditions, the deeper quench results in a smaller feature size.  We can quantify the length 

scales of the gel by examining the peak position of the density-density structure factor60.  As 

can be noted in Figure 1.5.5-3, there is a clear trend towards a smaller characteristic length 

with temperature.  This is consistent with our analysis of the cascade of spinodals in Section 

1.5.3; the instability with respect to spatial inhomogeneity shifts to smaller length scales as 

temperature decreases.   

More precisely, however, the observed dependence on the temperature is a consequence of 

both thermodynamic and kinetic factors.  It is well known that in spinodal decomposition the 

most unstable mode has a wavelength inversely proportional to the square root of the 

distance to the critical temperature61.  In a simple binary mixture, coarsening occurs beyond 

this initial growth of the most unstable mode.  However in our system, once the 
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concentration of the T-molecule rich phase becomes sufficiently high, vitrification sets in 

which arrests any further domain growth.  The deeper the temperature quench, the smaller 

the length scale of the initial instability, and hence the smaller the length scale at which the 

system gets arrested.  The decrease in length scale with deeper quench was observed in a 

colloidal gel system studied by Dinsmore and Weitz13.

We note that there is an interesting transition between coarsening to macroscopically phase 

separated states at temperatures just below the critical point and developing ramified 

microstructures at lower temperatures (still above the triple point).  We speculate that this 

transition reflects the tendency toward inhomogeneous structures at finite length scales 

associated with the lower spinodals which are more of microphase separation than of 

macrophase separation in nature. 

Simulations at similar temperatures but at higher volume fraction of molecules demonstrate 

other features of the gel-like structures that can be formed.  At these higher concentrations, 

we can form dense gels that span the space of the simulation.  Figure 1.5.5-4(a) is a result of 

a two step quench.  While the solvent rich voids are of the same scale as the glassy droplet in 

Figure 1.5.5-1(b), this structure more resembles a foam.  As before, when the simulation is 

quenched directly it results in a more networked structure with smaller mesh sizes (Figure 

1.5.5-4(b)).
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Figure 1.5.5-4: DMF simulation results 65.0
(a) A two step quench starting with the solution phase instantaneously quenched to 3
and allowed to equilibrate before being quenched to 5 and (b) A single step quench 
from the solution state directly to 5 .

Exploring the portion of the two phase region at low volume fraction of the T-shaped 

molecules, we observe the formation of suspended small droplets and fibrils.  Given enough 

time to first phase separate under liquid/liquid conditions before quenching below the triple 

point, small droplets of glass form.  On the other hand, if quenched quickly ladder-like fibrils 

result.  These suspended structures could be due to the lack of a cluster diffusion mechanism 

in our dynamics; it is not clear, however, that when such a mechanism is included these 

droplets and fibrils would aggregate or coalesce.  As the surfaces of these structures have 

relatively few unbonded association sites, even if the droplets or fibrils were to come into 

contact they might not aggregate.  For the suspended structures to aggregate or coalesce, 

internal restructuring is required, which is greatly inhibited by the vitrification of the solute 
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below the triple point62.  Therefore, since these structures still correspond to local free energy 

minima we include them in the class of gel structures in our consideration, even though they 

lack the connectivity of a space-spanning network usually associated with gels. 

It has long been noted that gel formation in the two phase region is highly dependant of the 

conditions of formation, much to the chagrin of experimentalists.  De Gennes observed that 

incomplete phase separation due to an effective change in solvent quality during polymer 

association and slow kinetics of solvent diffusion lead to heterogeneous gels63.  Our model 

also results in heterogeneous gels; however in our case the inhibition of phase separation is 

due to kinetic arrest arising from the formation of a glassy state in the solute rich regions.

We develop a picture of the phase behavior of these systems being arrested in a metastable 

state by the onset of glass-like structure.  This incomplete phase separation, though driven by 

the thermodynamic conditions, represents a kinetic phenomenon.  The features that we 

observe are determined by the confluence of the thermodynamic and kinetic conditions. 

1.6. Structural Relaxation in the Glassy State 

Thus far, we have been focusing on the thermodynamic and structural properties of our 

system.  The diversity in morphologies observed in the gelation regime highlights the critical 

role of kinetics as well.  In this Section, we study the structural relaxation in the fully-dense 

phase.  Our discussion has been focused on the mean-field phase diagram and structures 

obtained with the DMF simulations.  Within this framework, once the system finds itself in a 

local free energy minimum, no relaxation is possible from this state.  However it is possible 

to study the relaxation in the liquid state as the system is cooled.  We explore the relaxation 

of the system in the fully-dense case by examining the energy landscape features and the 
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relaxation mechanism at low temperatures.  We also include results from both DMF and MC 

simulations that show dynamics characteristic of glass forming systems.   

1.6.1. Features of the Energy Landscape 

The energy landscape paradigm has become an important guide to consider the 

thermodynamic signatures of glasslike systems for reviews see 38, 64-66.  An unusual feature of our 

model is the exponentially large number of states in which all the associating sites are 

satisfied.  The lamellar crystalline state is but one of these states (Figure 1.4.5-1(a)).  A lower 

bound on the number of ground states in the fully-dense case can be estimated by the 

following argument.  We note that a foursome of molecules can be organized in two 

energetically equivalent ways which present to the neighbors of this grouping the same 

number of associating sites (Figure 1.6.1-1(a-b)).  A fully satisfied lattice can be created by 

using this foursome as the repeating units in either of these two states. Thus on a lattice of 

size n there are 4/2n  satisfied configurations.  This is a lower bound as more complex 

repeating units can be used to generate the lattice (Figure 1.6.1-1(c)) and there can also be 

structures that cannot be created using any repeating units.

Figure 1.6.1-1: Determining the number of ground states 
(a,b) two basic building blocks from which we can demonstrate that there are an exponential 
number of ground state configurations; (c) additional state not accounted for in the previous 
estimation 
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As the temperature in a glass forming liquid nears the glass transition Tg ,it has been 

empirically noted that the stretched exponential functional form, ])/(exp[)( tt , fits 

both experimental and simulation measurements of the structural relaxation well.  The 

dramatic increase of relaxation time upon cooling in fragile glasses can be described well by 

the Vogel-Fulchur (VF) equation, )]/(exp[/ oo TTD  with the value of D  being the 

‘fragility index’67.

The large degeneracy of the minima in the free energy landscape, together with the 

relatively low barriers separating the minima (in the sense that the rearrangements can be 

made by breaking a small number of bonds) implies fragile liquid behavior.  However at 

sufficiently low temperatures, the relaxation mechanism involves creating isolated unpaired 

bonds, with a well defined energy scale (see Section 1.6.4 for more discussion).  This 

suggests an Arrhenius dependence of the relaxation with temperature which is associated 

with strong liquid behavior.  Therefore we expect that our systems will exhibit fragile-liquid 

characteristics at higher temperatures and strong-liquid characteristics at very low 

temperatures. 

1.6.2. Relaxation in DMF Simulations 

The DMF simulation technique described in Section 1.3 is employed for temperatures 

above the spinodal to observe relaxation of small and random perturbations back to a uniform 

liquid state.  To quantify the relaxation behavior, we define an order parameter: 
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The decay of this function is found to be well fit by a stretched exponential form 

o
o

ttttm exp)( .  Figure 1.6.2-1 shows the behavior of the exponent  and 

characteristic time  as a function of temperature. 

We find that as the temperature decreases,  decreases significantly from one, as is 

characteristic of a fragile liquid68.  At the same time, the dependence of the relaxation time 

with temperature is well fit described by the VF equation.  Remarkably, the least square fit to 

the data in Figure 1.6.2-1 results in 24.0oT , very close to the theoretically predicted mean-

field spinodal, implying an ‘ideal’ glass transition at this temperature 69.  To see if this 

observed relaxation could be more a reflection of a critical slowing down rather than glassy 

dynamics, we have also fitted the relaxation time  into 
z

C
o T

T
2

1  where  and z  are 

respectively the correlation length and dynamic scaling exponents; the mean-field values

2/1  and 2z  are used70.  We find that the fit is quite poor (not shown). 

Figure 1.6.2-1: Glassy dynamics shown in DMF simulations 
a stretched exponential functional form is fit to the relaxation of the order parameter 
(equation 15) The figures show the temperature dependence of the stretching exponent 
and characteristic time .
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1.6.3. Relaxation in MC Simulations 

To investigate relaxation without the restriction of the mean-field approximation, MC 

simulations are performed.  The rules of motion are described in Section 2.  Simulations are 

equilibrated at each temperature over many MC steps (each step is defined as one randomly 

proposed move in configuration space that may or may not be performed)71  We then 

perform 1.6 x 106 MC steps on the initial configuration and track the correlation function 

)( ott  defined as the fraction of sites on a lattice which have not undergone any transition 

to other states from time t up to 0t .  We repeat this procedure 10 times and average the 

resulting correlation functions.  We then fit )( ott  with a stretched exponential form and 

repeated the process.  The temperature dependence of  and  are shown in Figure 1.6.3-1.  

Note the small increase in  at the lowest temperatures; this may reflect the approach to the 

strong liquid limit (this will be discussed further in Section 1.6.4).  Our results are similar to 

that of a simulation for liquid silica which found that the material behaved 

thermodynamically as a ‘fragile’ liquid at high temperature while a ‘strong’ liquid at low 

temperatures72.

When the VF equation is fit to the relaxation time as a function of temperature, we find 

07.0oT which is well below the mean-field spinodal temperature.  This is a consequence of 

activated events allowing for exploration of the energy landscape below the onset of 

inhomogeneous energy minima.  As in experiments, the glass transition is a kinetic 

phenomenon defined by the relaxation time of the system.  As equilibration at very cold 

temperatures takes an exceedingly long-time, and since our main focus in this present work is 

illustrating some structural and thermodynamic properties, we have not yet evaluated 
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temperatures as low as oT  found from the VF fit; these calculations will be performed in the 

future. 

Overall these MC simulation shows dynamics that reflect a ‘stronger’ liquid than that 

observed with DMF simulations.  Various explanations of deviations of oT  from kT  – which 

are generally greater for ‘stronger’ liquids than they are for more ‘fragile’ liquids– have been 

proposed68, 73.  The fundamental reason appears to be decoupling of the thermodynamics 

(distribution of energy minima) and kinetics (details of the depth of the well around the 

minima) on the landscape74.  Thus it is not surprising that the MC simulations which reflects 

both thermodynamics and kinetics would reveal different results than those of the DMF 

simulations which involve the thermodynamics alone. 

Figure 1.6.3-1: Glassy dynamics shown in MC simulations 
a stretched exponential functional form was fit to the averaged relaxation of the correlation 
function.  The figure shows the values of the stretching exponent  and the characteristic 
time .

1.6.4. Relaxation Mechanism at Low Temperatures 

The landscape features of our model imply a different relaxation mechanism than 

commonly associated with structural relaxation in supercooled liquid as it approaches the 

glass transition which usually involves hopping between deep free energy minima separated 

by large, energetic barriers65, 69, 75, 76.  In our model, proceeding from one ground state to 
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another involves only a small energy penalty.  All that is required is for one molecule to 

rotate, breaking a pair of bonds.  This pair of unsatisfied T-shaped molecule can then diffuse 

over the lattice, changing the state of the system at each time step, until they annihilate 

themselves by finding another unpaired T-shaped molecule.  We can directly observe this 

behavior in our MC simulations.  At low temperatures, the concentration of such unpaired 

molecules is roughly )exp( .  The area per unpaired molecule is thus )exp( .  Assuming 

this molecule diffuses freely with a diffusivity , the area visited in time t  is proportional to 

the mean-square distance traveled by the molecule R2 ~ t .  The system will have relaxed 

from its initial configuration if an unpaired molecule has visited an area of the size of the 

area per unpaired molecule.  Thus the relaxation time is simply )(e~ 1 xp 77.  While this 

argument does not predict the time dependence of the relaxation dynamics, it shows that the 

slowing down of the dynamics as temperature decreases is due to the decrease in the number 

of (essentially isolated) 'mobile' (i.e., unpaired) molecules.  This is a very different process 

than that of an activated process on a landscape with deep energy minima, which often 

requires concerted or facilitated motion.  Instead of the glass or gel being the result of high 

energy barriers, in our model they result from the multiplicity of energetically degenerate 

states.

The temperature dependence predicted from the low temperature argument is Arrhenius.  

Thus at very low temperatures, our model should behave like a strong liquid; this is 

consistent with the upward turn of the stretching exponent  as temperature is decreased at 

very low values and the observation that the right-most data for the characteristic time  on 

the semilog plot (Figure 1.6.3-1) appears to approach a straight line. 
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1.7. Conclusions

The strength of this lattice model lies in its simplicity and its ability to capture a wide range 

of morphological behavior without imposing an artificial constraint that causes the system to 

be frustrated.  In our model, amorphous vitrified (glass or gel-like) structures arise not 

because of frustration but because of the ready availability of a large number of 

inhomogeneous free energy minima; this observation is consistent with the recent 

thermodynamic picture of structural glasses resulting from self-generated randomness as a 

result of a large number of degenerate ground states78-81.  Although nontrivial, glassy 

dynamics do not require the existence of a large number of inhomogeneous free energy 

minima, however the existence of such minima necessitates a change in the dynamics.  

Shifting from liquid-like to glass-like, relaxation of the system now requires leaving the free 

energy minima through thermal activation.  In the DMF simulations, which do not allow for 

thermal fluctuations, the dynamic transition temperature occurs at the mean-field spinodal.  

When activated motion is possible in the MC simulations, the dynamic transition temperature 

is lower than the spinodal.  However, it is important to note that both simulations exhibit 

glassy behavior at low temperatures. 

An important result of this work concerns the nature of the gel phase and its relationship to 

the glass phase.  Various authors have noted the similarities between these two classes of 

materials17, 82-84.  Our model allows us to explore this relationship.  From the structural and 

thermodynamic point of view, both states of matter result from the proliferation of a large 

number of inhomogeneous free energy minima, which are ultimately connected to the 

underlying mean-field spinodals with respect to inhomogeneous structural fluctuation.  In our 

model, the glassy state is obtained as a result of the quenching of the liquid phase in the high 
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density, one-phase region of the phase diagram below the temperature for the appearance of 

an exponentially large number of inhomogeneous free energy minima.  The gel state can be 

viewed as an extension of the glassy state into the two phase region, or equivalently as an 

incomplete phase separation arrested by the onset of glass transition.  The length scale of the 

gel phase is determined primarily by the most unstable, i.e. fastest-growing, mode – a deeper 

quench leads to a network with smaller mesh size.  The arrest of phase separation is a result 

of the system having reached a state of local free energy minimum.  At such free energy 

minima, the deterministic thermodynamic driving force vanishes; further evolution of the 

structure must require overcoming free energy barriers.  Such a relaxation mode is very 

different from the coarsening process in a typical phase separating binary fluid; in our case 

the relaxation of this structurally arrested state is more properly described as an aging 

process.

The behaviors exhibited by our model relate well to those of colloidal gels in particular.  

Colloidal gels are akin to a solvated glass that has short range attractive interactions17, 84, a 

feature that we capture in our model.  The decrease in the characteristic length scale with 

quench depth lends further credence to this correlation.  While it might be surprising that this 

is the case given the isotropic nature of a colloidal particle, we believe that this suggests that 

the steric constraints on the system are fundamentally similar to an anisotropic interaction in 

a lattice model.  Indeed, a two dimensional square lattice model in which each site can only 

form up to three attractive interactions with its nearest neighbors is identical to our T-shaped 

molecule model. 

Our model can be extended in several directions.  First, as alluded to in the model 

description, it is straightforward to add an isotropic term that either favors or disfavors 
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nearest neighbor contacts between the solute molecules.  The latter type would suppress the 

critical temperature, possibly making it lower than the glass transition in the fully-dense case.  

The resulting phase diagram would appear closer to the phase diagram for colloidal particles 

with short-ranged attractions17.  Second, it is possible to construct three-dimensional versions 

of the model.  Besides the obvious fact that most systems are in three dimensions, the mean-

field approximations are more accurate in three dimensions than in two.  Finally, exploring 

the dynamics of the solvated state should prove interesting and help investigate the gelation 

transition as it relates to vitrification.  We plan to pursue these directions in the future. 
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