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Abstract 

  Glass and gel formers exhibit unusual mechanical characteristics and amorphous phases 

which are highly dependent on their thermal history.  We introduce a lattice model with T-

shaped molecules that exhibits glassy and gel-like states without introducing artificial 

frustration.  This system has a large number of degenerate energy minima separated by small 

barriers leading to a broad, kinetically-explored landscape.  It particularly replicates valence-

limited materials, which can form self-assembled materials with highly controlled physical 

properties.  Despite its remarkable simplicity, this model reveals some of the fundamental 

kinetic and thermodynamic properties of the glass transition and of gel formation.   

  A dearth of low temperature experimental and simulation measurements has inhibited 

investigation in this field.  We overcome this difficulty by using a modified Metropolis 

Monte Carlo method to quickly provide equilibrium samples.  Then kinetic Monte Carlo 

techniques are used to explore the properties of the equilibrium system, providing a 

touchstone for the non-equilibrium glassy states.  

Fully-dense simulation samples reveal a fragile-to-strong crossover (FSC) near the mean-

field (MF) spinodal.  At the FSC, the relaxation time returns to Arrhenius behavior with 

cooling.  There is an inflection point in the configurational entropy, cs .  This behavior 

resolves the Kauzmann Paradox which is a result of extrapolation from above the inflection 

point.  In constrast, we find that the cs  remains finite as 0T → .  We also observe different 

kinetics as the system is quenched below the FSC, resulting in non-equilibrium, amorphous 

states with high potential energy persisting for long periods of time.  Simulation samples 

remain at non-equilibrium conditions for observation times exceeding those permitting 

complete equilibration slightly above the FSC.  This suggests the FSC would often be 
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identified as the glass transition without indication that there is true arrest or a diverging 

length scale.  Indeed, our simulations show these samples do equilibrate if sufficient time is 

allowed.  To elucidate the complex, interdependent relation time and length scales at the FSC 

will require careful consideration of the spatial-dynamic heterogeneity.   

Dynamic mean-field simulations at high density and in the solvated regime reveal a rich 

range of morphological features.  They are consistent with simulated and experimental 

results in colloidal systems.  Stability limits of decreasing length scales beneath the phase 

separation bimodal coincide into a single curve, which terminates at the fully-dense MF 

spinodal, suggesting that gelation and vitrification are the same phenomena.  Our work 

indicates that gelation is, therefore, a result of phase separation arrested by a glass transition. 
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 where 1R
R

T TT k
ε= = ).  Lower case use of thermodynamic variables indicates that they are 
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Overview of Thesis 

Amorphous materials are ubiquitous in our daily lives.  As a high school teacher in the 

state of California, our curriculum acknowledges four states of matter: solid, liquid, gas and 

plasma. We give a nod to polymers and large biomolecules and move on.  Inevitable when 

discussing materials in class, the items which catch students’ eye are much more 

complicated.  What is an LCD?  Why are there different recycling codes, shouldn’t we be 

able to mix it all together?  What was that stuff they served down in the cafeteria today?  It is 

wonderful to explain what we know and then challenge them to pursue open questions.   

The center of this thesis is to develop an understanding of the characteristics and dynamics 

of amorphous materials.  We are able to draw connections between two broad classes of 

glasses and physical gels by introducing a strikingly simple T-shaped molecular model on a 

two dimensional lattice.  Having gained important insight into this relation, we then pursue 

more fundamental issues of the nature of the glass transition.  

The focus of chapter one1 is to identify and connect amorphous materials that are arrested 

on some time scale without invoking artificial frustration.  The mean-field phase diagram of 

this model mimics those phase diagrams calculated for other systems2 and seen in 

experiments3.  Dynamic mean-field simulations demonstrate a wide variety of phases 

including liquid, solutions, glassy materials, foams and gels.  Further evaluation 

demonstrated a kinetic preferred alignment and highlighted the large number of degenerate 

energy minima on the landscape.  The calculated instabilities within the two phase region of 

the phase diagram converged along a line terminating in the fully-dense spinodal, suggesting 

a strong connection between gelation and the glass transition.  Initial results of the dynamics 

of the simulations suggested the possibility of a return to strong behavior at the lowest 
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temperature.  We thus were able to define gelation in this model as phase separation arrested 

by vitrification.  As we could investigate equilibrium at low temperatures, we noticed that 

there was behavior consistent with the fragile-to-strong crossover. 

In the time between publishing our first paper1 (chapter 1) and now as we are finishing 

work leading towards a second paper (chapter 2) several powerful conclusions were drawn in 

other research groups.  In models capturing a wide range of experimental observations, from 

specific DNA tetramers3 to silicon4, a commonality was emerging.  The controlling feature in 

the modeled potentials was the ability to suppress the isotropic portion allowing anisotropic 

forces to dominate5.  This leads to local ordering which stabilizes the overall amorphous 

materials inducing dynamic arrest, observed as vitrification or gelation2.  This suggests that 

the overall behavior of many of these materials can be reduced to generic descriptions of 

their valency6, 7 .   

However, as a field we are still bound by the fundamental difficulty encountered in 

simulation: computation time.  Achieving low temperature results, particularly those which 

are able to avoid vitrification, will require the development of complex mechanisms to 

overcome difficulties in time scales in the potentials studied thus far8.  Based on our success 

with this model in our initial work, we sought to overcome this difficulty.  Placement of our 

T-shape molecules on a lattice naturally invokes the valence-limited potential with a 

computationally efficient Hamiltonian.  We correctly postulated that using a combination of 

Monte Carlo simulations would allow us to investigate our system at the desirable low 

temperatures. 

The second chapter is also formatted as an independent paper, although it includes a more 

extensive discussion relating to what may often be framed as future work in a dissertation.  
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Within this work, we concentrate on the glass transition in the fully-dense region.  Our model 

allows us to quench the simulation samples to very low temperatures using a modified 

Metropolis Monte Carlo recipe.  We can then apply the appropriate kinetic Monte Carlo 

approach to study the dynamics and structure of the equilibrium systems.  This provides a 

backdrop against which we consider the temperature quench of simulation samples using the 

kinetic Monte Carlo method.  Glassy states which persist for long lengths of time are 

documented.  Overall, we see a clear signature of the fragile-to-strong crossover (FSC) at low 

temperatures.  However, we do not observe evidence of a divergent length scale consistent 

with a thermodynamic critical point.  We also find that the Kauzmann paradox is resolved by 

the change in the temperature dependence of the relaxation time at the fragile-to-strong 

crossover and, indeed, observe a positive configurational entropy as 0T → .  There is a 

dramatic change in the relaxation behavior at the FSC which would lead to a lower limit of 

the experimentally observable relaxation to equilibrium; however, this is not a fundamental 

kinetic arrest.  

In seeking simplicity of explanation, we do not want to lose sight of the rich complexity 

and wide variety of glassy materials.  However, with this in mind, we sally forth into an 

investigation of a simple model with surprisingly rich dynamics and thermodynamics. 
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1. Chapter 1: A Lattice Model of Vitrification and Gelation1 

1.1. Introduction 

There are natural parallels between the glass phase and physical gels (thermoreversible 

gels) as well as between vitrification and gelation.  Recently there has been considerable 

interest in unifying these two classes of disordered materials.  For example, theory and 

simulation predict the existence of both glass- and gel-like structures in colloidal systems9-11.  

These predictions are consistent with features found experimentally12, 13.  In addition to 

structural similarity, dynamic observations have strengthened the conclusion that there is a 

relation between glasses and gels.  Physical gels have associations with finite bond lifetimes 

(in contrast to chemically crosslinked gels).  Experimental measurements of gelatin14 and 

poly (vinyl alcohol) gels15, both thermoreversible polymeric gels, have shown glass-like 

relaxation dynamics.  Colloids with short-range attractions share this property and can form 

gels at high densities that exhibit glass-like kinetic arrest16, 17 and relaxation properties18.  In 

this work we use a lattice model occupied by T-shaped molecules to explore the relation 

between glasses and physical gels.   

The glass state has been studied in great detail and the dynamics of many systems in 

addition to physical gels are analogous to those of a glass.  Kauzmann, whose work was 

influential in the development of our current thermodynamic understanding of the glassy 

state, referred to the glass as one example of the ‘torpid’ state19, a general category that 

includes linear polymers under flow and plastically deformed metals and crystals.  

                                                 
1 This chapter is reproduced with permission of the Journal of Physical Chemistry B from: 

Witman, J.; Wang, Z.-G., A lattice model of vitrification and gelation. Journal of Physical 
Chemistry B 2006, 110, (12), 6312-6324. 

Copyright 2006 American Chemical Society 
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Additionally, a variety of other materials demonstrate dynamic behavior characteristic of 

glass-like states.  These include such diverse examples as the polycrystalline structure of thin 

films, protein folding20, 21 and granular material jamming22. 

Lattice models have been extensively used to explore both the structure and dynamics of 

the glassy state.  Among the many examples it is useful to contrast two classes.  The first 

consists of models whose Hamiltonians directly induce frustration.  By construction, these 

models do not have fully satisfied alignment states.  There are no configurations that satisfy 

all of the locally preferred low energy states.  Ising spin glasses23, in which the interactions 

are randomly assigned to favor parallel or antiparallel orientation, are classical examples.  

Conversely there are models whose rules of motion make the formation of macroscopic 

uniform phases unlikely.  Falling under the umbrella of hierarchically constrained local 

dynamics, the evolution in time of these Ising-type models is restricted by the state of 

neighboring sites24.  These include the Fredrickson-Anderson facilitated kinetic Ising 

models25 and the East model26.  In a similar manner the tiling model27 and a recent model by 

Garrahan and Chandler28 demonstrates glassy dynamics based on local dynamical rules, 

although the coarse-graining implicitly does not include the crystal state.  Our model does 

not exclude ordered states, however unlike traditional liquids, these states have the same 

energy as satisfied yet inhomogeneous states. 

One way to capture the features and behavior of amorphous solids on a lattice is to assign 

anisotropic interactions.  Aranovich and Donohue have explored the role of anisotropy on 

molecular fluids29.  Highlighting that most molecules and particles have anisotropic 

interactions due to steric limitations of arrangement and bonding constraints, they considered 

a variety of phase transitions including condensation, crystallization, and polymerization.  
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Developed concurrently are several other models of Ising-like lattice liquids and glasses that 

in some way restrict the number of nearest neighbors on the lattice leading to glassy 

features30, 31.  In a similar manner, Del Gado et al. have employed a model in which 

monomers occupy a cubic lattice and are tetrafunctional, allowing for vacant sites within the 

network without energetic penalty18.  The presence of telechelic monomers that can from a 

network with ‘solvent’ intuitively leads to a picture of a polymeric gel. 

A minimal requirement for network formation in two dimensions is a trimer structure 

which allows junctions and branching.  The Mercedes-Benz model 32 , 33 (named for its 

resemblance to the famous logo) has three directional arms, each capable of supporting 

hydrogen bonding.  There is an energetic balance between the advantageous formation of an 

open ‘bonded’ structure in which the arms of the monomers touch and a force favoring an 

incommensurate dense structure.  This model has been studied in both on-lattice33 and off-

lattice32, 34 formulations.  Other on-lattice 35 and off-lattice models of water36 distinguish 

between hydrogen bonds and Van der Waals forces determined by the relative orientation of 

the monomers.  Our model features anisotropic interactions that lead to the number of bonds 

formed being smaller than the number of nearest neighbors.  In addition to sharing this 

feature with geometrically constrained systems (e.g. colloidal particles with short range 

interactions), our model is naturally relevant to network forming liquids such as silica 

glasses37 and water38, 39, in which the interactions are due to directional bonds. 

Gelation has commonly been associated with geometrical percolation. However, this 

condition is not sufficient to describe the transition in physically associating gels.  These 

systems, which have bond life times comparable or shorter than the time scale of interest in 

experiments, may not exhibit solid-like character at the geometric percolation threshold40, 41.  
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Further, simulations by Kumar and Panagiotopoulos show no change in a thermodynamic 

property at gelation, suggesting that gelation is not a higher order thermodynamic 

transition42.  The specific molecular interactions yield rich behavior in some physical gels 

that does not conform to the percolation model43. 

We endeavor to link the glass transition and gelation within a lattice model that can 

encompass both glass and physical gel phases in appropriate relation to the liquid and 

solution phases.  We investigate the properties of a lattice occupied by T-shaped molecules 

whose anisotropic nature leads to a wide variety of morphological states.  We explore these 

states by using a dynamic mean-field simulation method that by construction evolves towards 

a free energy minimum as well as a Monte Carlo method.  Glassy or gel-like behaviors are 

identified as corresponding to free energy minima associated with inhomogeneous and non-

periodic structures44. 

Our primary concern in this work is to understand the thermodynamic and kinetic factors 

leading to such amorphous structures.  We have also completed initial work investigating the 

dynamics of our model system.   We propose that these amorphous, glass or gel-like 

structures arise as a result of the proliferation of a large number of such inhomogeneous free 

energy minima, which is intimately connected to an underlying spinodal of the uniform 

liquid or solution phase with respect to inhomogeneous fluctuations.  However, the resultant 

structures depend on the ‘processing’ or quenching conditions.  Therefore their origin is both 

thermodynamic and kinetic in nature.  Our study suggests that a mechanism for gelation is 

incomplete phase separation in the two-phase region of the phase diagram arrested by the 

onset of glass transition.   
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1.2. T-shaped Molecule Model   

    We consider a two-dimensional square lattice of N x N sites.  Each lattice site is either 

occupied by a 3-armed, T-shaped molecule, or is vacant, representing a solvent molecule.  

The T-shaped molecule can take any of the four orientations designated as 1, 2, 3 and 4 in 

Figure 1.2-1(a).  The vacant state (not shown) is denoted as state 5.  Each arm of the T-

shaped molecule is capable of forming an association (bond) of energy −ε  with the 

adjoining arm from a nearest neighbor molecule.  The added level of complexity in our 

model arises from both the state of a site (vacant or occupied with orientation 1,2,3 or 4) and 

the relative orientation of the molecule at that site with respect to its neighboring sites.  This 

relative orientation determines the association state as the molecule is anisotropic.   

 
Figure 1.2-1: Definition of T-shaped model 
(a) States of the T-shaped molecules on a square lattice.  The model contains these four states 
and a fifth state (not shown) which represents a vacancy.  (b) The relative orientation 
between site i,j and its nearest neighbors. 
 

We will denote the occupancy of site (i,j) in state a by ),(ˆ jipa  ( 1),(ˆ =jipa  if site ),( ji  is 

in state aand 0 otherwise, and ∑
=

=
5

1
1),(ˆ

a
a jip  ). The Hamiltonian of our system is written as:  
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 (1) 

For completeness we have included an isotropic interaction between the solvent molecules 

(or equivalently between the solute molecules by virtue of the occupancy constraint).  In this 

work, we consider the case η = 0. 

We have employed the following dynamic rules of motion for our model.  The molecules 

can undergo both rotational and translational diffusion.  During rotation a T-shaped molecule 

can interchange states 1,2,3 or 4 at a given site.  We do not attempt to mimic the actual 

physical rotation of the T-shaped molecules and will thus allow a T-shaped molecule to 

rotate from a given state to any of the other states in a single time-step.  For translational 

diffusion, we use Kawasaki-exchange dynamics45 between a T-shaped molecule and a 

nearest neighbor solvent molecule as well as for self-diffusion, or exchange, of neighboring 

T-shaped molecules.  In the fully-dense region of our phase diagram there is no fundamental 

difference between rotational and translational diffusion.  

In this work we employ both the Metropolis Monte Carlo (MC) simulation technique46 as 

well as the dynamic mean-field (DMF) simulation method47.  Thus far, MC simulations have 

only been performed on a fully-dense lattice with no vacancies.  The MC simulations 

proceed by selecting a site at random and then proposing a change in its orientation or an 
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exchange with a nearest neighbor; this rule would be equally applicable where there are 

vacancies.  The Metropolis recipe is used to determine whether this change is accepted. 

The DMF simulations (to be discussed further in Section 1.3) can be considered a mean-

field implementation of Monte Carlo dynamics47.  However for computational purposes it is 

convenient to use the Barker form48 of the transition probability , current newq → : 

 ( )
( ) ( )newcurrent

new
newcurrent EE

Eq
ββ

β
ω

−+−
−

=→ expexp
exp  (2) 

instead of the Metropolis form ( ω=→newcurrentq  if currentnew EE <  and 

[ ])(exp currentnewnewcurrent EEq −−=→ βω  if currentnew EE > ).  In equation 2, ω  is an attempt 

frequency (which can be different for the rotational and translation moves) and E current  and 

E new  are respectively the energy of the system in its current state and new state.  As in the 

MC simulations, the new state reflects both orientation change and nearest neighbor 

exchange.  The dynamics in the DMF evolution of the singlet density at each lattice site 

follow a steepest descent path into a free energy minimum. 

1.2.1. Role of Anisotropic Interactions 

The anisotropy of the model, which allows for orientational disorder and mimics bonding 

and steric constraints, plays a strong role in the type of quenched structures we observe.  The 

organizing feature of this model is the presence of a non-bonding side or ‘back’.  Before 

exploring the phase diagram in detail it is helpful to consider some of the phases the lattice 

can adopt.  In our DMF simulations (to be described later in Section 1.3) we can identify 

whether a particular site was strongly oriented and would persist in that state over time.  
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These sites are shown in dark black in the figures.  Sites that are not strongly oriented appear 

in grey.  Sites that are most probably solvent molecules are represented as blanks.   

In the fully-dense limit, without solvent, the molecules must be arranged in pairs back to 

back in order for the lattice to be satisfied.  Otherwise there is an associating end presented to 

a non-bonding side.  These satisfied structures can be crystal-like (Figure 1.4.5-1(a)) or 

amorphous (Figure 1.4.5-1(b)) depending on the pattern of the pairs.  The amorphous 

structures can also contain unsatisfied sites at which not all arms form bonds with their 

neighbors.  These sites are still liquid-like in that they retain equal probability to arrange in 

any orientation. 

In other regions of the phase diagram the back of the molecule points towards the solvent.  

This gives the molecule a self surfactant character.  The molecules can be arranged in phase 

separated, highly satisfied states (Figure 1.5.5-1) or in gel-like states (Figure 1.5.5-2 and 

Figure 1.5.5-4).   In observing gel-like structures, two features are clear.  The first is that the 

structures involve at least a pair of molecules that form ladder-like structures.  The second is 

that there are unsatisfied sites located at the junctions of the fibrils.  Gel-like features are 

observed under a wide range of conditions.  The particular characteristics of the gel-like 

state, for example the fibril length and width, can be varied by altering the simulation 

conditions. 

1.3. Dynamic Mean-field Simulations 

The dynamic mean-field (DMF) simulation technique is a deterministic method for 

evolving the singlet mean-field probability, ap , of the lattice sites from a given initial 

condition47.  It is similar to the dynamic density functional methods for molecular49 and 

polymeric fluids50.  Given the dynamic rules for a lattice model, the DMF equations of 
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motion are obtained from a local mean-field approximation of the master equation 

corresponding to those rules.  The DMF simulation method has formulations for both 

conserved and non-conserved order parameters.  The governing equations and detailed 

balance conditions for both cases were derived in the reference47.  Below we present the 

application of these equations to our current model.  

1.3.1. Dynamic Mean-field Equations 

The probability that a lattice site (i,j) will be in state aat time t is given by ),;( jitpa .  Our 

master equation encompasses both rotational diffusion and translational diffusion.  The 

overall probability that a molecule will be found in a particular orientation (states 1,2,3 and 

4) on the lattice is not conserved.  However the number of molecules on the lattice remains 

constant, requiring conserved motion.  These two forms of motion are captured in the master 

equation under the mean-field approximation given by:  

 

, '

( 1; ) ( ; ) ( ; ; ) ( ; ) ( ; ; ) ( ; )

( ; , , ') ( ; ) ( ; ') ( ; , , ') ( ; ) ( ; ')

a a b a
b a

c a a c
c ai i

p t i p t i q t i b a p t i q t i a b p t i

q t c i a i p t i p t i q t a i c i p t i p t i
≠

≠

⎡ ⎤+ = + → − →⎣ ⎦

⎡ ⎤+ ↔ − ↔⎣ ⎦

∑

∑∑G G

G G G G G G

G G G G G G G G  (3) 

for the first four states (a=1-4) and: 

 
5 5

5 5
5, '

( 1; ) ( ; )

( ; , 5, ') ( ; ) ( ; ') ( ;5, , ') ( ; ) ( ; ')c c
ci i

p t i p t i

q t c i i p t i p t i q t i c i p t i p t i
≠

+ =

⎡ ⎤+ ↔ − ↔⎣ ⎦∑ ∑G G

G G

G G G G G G G G   (4) 

for the solvent.  The summation in equation 3 over b includes states 1-4 and the summation 

in both equations over c includes all states.  We use the vector i
G

 to denote the two 

dimensional coordinates and ', ii
GG

 indicates that i
G

 and 'i
G

 are nearest neighbor sites.  

);( abtq →  is the transition probability for rotation from state b to state a.  The transition 
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probability for translation, ),',;( iaictq
GG

↔ , involves exchanging the states between site i
G

 

and its nearest neighbor 'i
G

.  Consistent with the mean-field approximation at the singlet 

density level, these transition probabilities can be written simply as47:  

 
)];(exp[)];(exp[

)];(exp[
);( 1 itEitE

itE
batq

ba

b GG
G

ββ
β

ω
−+−

−
=→  (5) 

and 

 
))];()';((exp[))]';();((exp[

))];()';((exp[
)',,;( 2 itEitEitEitE

itEitE
ibiatq

baba

ba GGGG
GGGG

+−++−
+−

=↔ ω  (6) 

In our calculation we take 1ω  to be 1/6 and 2ω  to be 1/24.  Also, the temperature of our 

system is always taken to be that of the final condition resulting in ‘instantaneous’ quenches.  

The energy appearing in the transition probabilities is given by 
);(

);(
itp

HitE
a

a G
G

∂
∂

= , where H 

is the mean-field energy of the system (equation 1) with the fluctuating );(ˆ itpa

G
 replaced by 

the average .  As an example: 

[

⎥⎦
⎤++++++−+−+

−++++++
−

=
∂

∂
=

),1;(),1;(),1;()1,;()1,;(

)1,;()1,;()1,;()1,;(
2),;(

),;(

43243

1321
1

1

jitpjitpjitpjitpjitp

jitpjitpjitpjitp
jitp

HjitE ε

 (7) 

where we reintroduce the two-dimensional lattice coordinates to emphasize the relative 

orientation of the T-shaped molecules with respect to the direction of its nearest neighbors. 

The master equation will evolve with time until it reaches a stationary state.  This 

stationary state is a result of detailed balance which is given by:  

 )()()()( abqipbaqip ba →=→
GG

 (8) 

and 

);( itpa

G
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)()'(),',()()'(),',( ipipiciaqipipiaicq caac

GGGGGGGG
↔=↔  (9) 

By virtue of the choice of the transition probabilities which satisfy detailed balance, the 

DMF equations will evolve the system towards an equilibrium or metastable equilibrium 

state.  Thus, the stationary solutions of the DMF equations correspond to free energy minima.  

Glassy or gel-like phases are identified as inhomogeneous, non-periodic, stationary solutions 

of the DMF equations. Although the DMF equations cease to evolve at these stationary 

solutions, and hence would lead to complete structural arrest, such a result is a manifestation 

of the deterministic nature of the mean-field equations.  In the presence of random thermal 

motion, the system would continue to evolve through activated processes by jumping out of 

the local free energy minima.  Nevertheless, the existence of such free energy minima 

indicates structural arrest on some short time scales and hence signals a change in the 

character of the dynamics of the system.  Therefore, in addition to describing the temporal 

evolution of the system at the mean-field level, the DMF simulation technique provides a 

useful method for searching and locating these inhomogeneous free energy minima. 

1.4. Fully-dense System: Liquid, Crystal and Glass Phases 

In this Section we consider the behavior of the fully-dense system (where there is no 

solvent or state 5) under the mean-field approximation.  We start with an overview of the 

phase behavior in this region before proceeding calculate the transition temperature between 

the liquid and the vitrified phases as well as the spinodal of the liquid phase.  With this 

analysis as a guide we then use DMF simulations to characterize the response of the liquid to 

fluctuations and investigate the morphology of the solid. 
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1.4.1. Overview of Phase Behavior 

In the fully-dense region (p5=0) the lattice can assume a liquid phase or a solid 

configuration.  At high temperatures there is an equal probability that the molecules will be 

found in any of the four states (p1=p2=p3=p4=1/4); we identify this state with the liquid 

phase.  At sufficiently low temperatures, the T- shaped molecules at most of the lattice sites 

become strongly oriented in one of the four orientations.  A simple mean-field calculation 

predicts a first-order transition from the liquid state to these locally oriented solid states.  

Mean-field theory also predicts a spinodal for the liquid state below which a metastable 

liquid can no longer exist.  As this spinodal signals the spontaneous appearance of 

inhomogeneous free energy minima, we associate it with the ideal glass transition from this 

model.  The crystalline state in this model– an alternating bilayer structure– is a peculiar 

state.  Unlike many physical glasses, the crystalline state in our model has no energetic 

advantage over other amorphous configurations.  Its appearance is a result of a particular 

kinetic path.  For our purpose, the existence of this crystalline state has no special 

significance.  There are a vast number of equivalent lowest energy states that have all the 

arms bonded or satisfied (more details will be given in Section 1.6.1).     

1.4.2. Transition between the Liquid and the Vitrified States  

Instantaneously quenched from the high temperature liquid to the low temperature 

crystalline or glassy states, the T-shaped molecule at an individual lattice site transitions from 

having an equal probability of being oriented in any of the four states to strongly preferring 

one state.  Characterization of the glass-like configurations requires specifying the spatial 

probability distribution of the molecule orientation of the full lattice.  As this is analytically 

intractable, we make a simplifying approximation that each site is dominated by one 
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particular orientation, and all the other orientations have equal probabilities.  Furthermore, 

we assume that the probability of the dominant orientation is the same for all lattice sites 

(although the dominant orientations at different lattice positions need not be the same).  

While the validity of these assumptions is not immediately obvious, our DMF simulation 

confirms that the vast majority of sites have the same bias toward a dominant local 

orientation and that the subdominant orientations have approximately equal probabilities. 

Taking the dominant probability to be p1, we can write an approximate free energy per site 

for the solid state as: 

 ( )2 2
1 1 2 2 1 1 2 2

1 3 12 21 ln 3 ln2solidf p p p p p p p pβ βε= − + + + +
 (10) 

where we have made use of our assumption p2 = p3 = p4.  In this calculation we do not 

distinguish between the crystal-like and the glass-like solid states because we neglect the 

details of the structure on the lattice.  Therefore this free energy also describes the bilayer 

crystalline structure described in Section 1.4.551. 

The equilibrium state is obtained by minimizing the free energy with respect to these 

probabilities.  Phase transition occurs when this free energy equals that of the liquid with 

unbiased orientation distribution: 

βf liq = −(9 /8)βε − ln 4     (11) 

We find a first-order transition at βε=3ln3 with the solid state having 

p1 =3/4,p2 = p3 = p4 =1/12 at the transition. 

1.4.3. Stability Limit of the Uniform Liquid Phase 

Because the transition from the uniform liquid to the solid phase is first-order, the 

formation of the solid phase from a metastable liquid involves a nucleation barrier.  It is 
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therefore possible to supercool the liquid below the freezing temperature.  However, this 

supercooling can only proceed as far as the spinodal, or metastability limit of the liquid.  

Beyond this limit the uniform liquid becomes unstable with respect to an infinitesimal 

inhomogeneity in the probability distributions, i.e., an inhomogeneous structure will form 

spontaneously.  Each of these inhomogeneous(amorphous) structures corresponds to a local 

free energy minima.  Since in the mean-field picture there are no activated events, a system, 

having reached one such free energy minimum, is permanently trapped there.  This 

consideration motivates us to identify the spinodal as the mean-field signature for an ‘ideal’ 

glass transition.  In this sense the spinodal temperatures can be likened to the Kauzmann 

temperature Tk, the lowest temperature for the onset of the glass transition.  We note that 

other authors have previously hinted at the connection between the liquid spinodal and an 

ideal glass transition52-54.  This conclusion has been explicitly demonstrated in the case of 

block copolymer microstructural glasses55.  In reality, because of thermal fluctuation, the 

system can fall into these amorphous states earlier than the spinodal, as well as escape them 

and diffuse between minima39.   

The spinodal of the liquid can be easily obtained by examining the second derivative of the 

free energy expression Equation 10.  Setting this derivative to zero, we find that the spinodal 

occurs at βε=4.  This value agrees with a more systematic calculation by finding the lowest 

eigenvalue of the second derivative matrix of the full mean-field free energy function as 

calculated in Section 5.3. 

1.4.4. Correlation in the Liquid State 

With the theoretical analysis of the mean-field behavior as a guide, we now proceed to 

examine the system in the fully-dense phase using the DMF simulation.  While the 
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equilibrium probability of a site being in each of the four orientations is equal in the liquid 

state, the anisotropy of the interactions leads to nontrivial spatial correlations.  Within mean-

field theory, these correlations can be examined by the response of the system to a small 

localized perturbing field.  Figure 1.4.4-1 shows the probability profile for the four different 

states on the i and j axes when site (0,0) is perturbed by a field of magnitude 0.0001β that 

favors state 1.  The system is a liquid at 0.1,92.3 == ρβε .   

Because the field at the origin (0,0) favors state 1, the probability of this state at site (0,0) is 

enhanced at the expense of the other three states.  More reflective of the anisotropy of the 

interaction are the probability of the states next to (0,0).  For example, state 1 is depleted both 

to the left and to the right, whereas states 2,3 and 4 are enriched to the right.  The site (-1,0) 

is particularly interesting since state 3 is enriched while all other states are suppressed.  These 

trends, as well as the special symmetry of the profiles along the j axis, can all be rationalized 

by the energetic preference to have the arms of the molecules pointing to each other and not 

to have the arm of a molecular facing the back of another.   

The effects of the field at site (0,0) diminish as we move far from the origin, manifesting as 

damped small oscillation with respect to the bulk value.  A correlation length can be defined 

as the length scale for the decay of the probability profiles to their bulk value; the correlation 

length shows the characteristic square-root divergence with the proximity to the spinodal as 

expected from the mean-field behavior.  However, the numerical prefactor turns out to be 

unusually small, the correlation length reaching only a few lattice spacings when T  is within 

one percent of the spinodal. 
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Figure 1.4.4-1: Result of small applied force in the liquid state 
The probability of being in each state as a function of position along the i and j axis after a 
small pinning force of magnitude 0.0001β favoring state 1 is applied at site (0,0) to a fully-
dense lattice.  The unperturbed liquid-like state at βε=3.92, ρ=1 has an equal probability 
(0.25) of being in each state.  
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1.4.5. Vitrification in DMF Simulations 

We can investigate the morphology of the solid-like state using DMF simulations.  Starting 

with the isotropic liquid state at high temperature where the four orientations are equal on all 

lattice sites, we quench the system instantaneously to a lower temperature.  Since the DMF 

equations are deterministic, we add small random perturbations in the probabilities to provide 

the initial driving force for setting the equations into motion.  Above the liquid-solid 

transition temperature, we find that the lattice of probabilities relaxes back to the isotropic 

liquid state.  For sufficiently small perturbations, it is possible to supercool the liquid below 

the transition temperature.  However, at some temperature between the transition and 

spinodal temperatures, a sufficiently large local perturbation will be able overcome the 

nucleation barrier and induce growth of the solid phase.  Figure 1.4.5-1(a) shows a typical 

configuration of the crystalline state obtained from a shallow quench past the coexistence 

temperature.  In this configuration, all the molecules on the lattice are satisfied; each 

associating end group is paired.   
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Figure 1.4.5-1: DMF simulation results for the fully-dense state 
(a) Crystalline State ( 3.7, 1βε ρ= = ) and (b) Glassy State ( 4, =1βε ρ= ).  Both simulations 
were started from a liquid state with small perturbations before instantaneously quenching to 
the final conditions.  The black molecules are strongly oriented in the indicated direction.  
The grey molecules indicate that the site has equal probability of being in any of the four 
orientations.  The orientation at these sites is chosen randomly in the figure.  

 

The formation of a crystal-like phase when a small number of nucleation sites exists is a 

kinetic phenomena, not a thermodynamic one.  Fully bonded amorphous states share the 

same entropy and energy.  The tendency to form a crystalline region arises from the 

propensity to bury the ‘back’ or non-bonding side of the molecule.  Figure 1.4.5-2 shows the 

evolution of a crystalline state in frames (a-f).  As described in Section 1.4.4, the response of 

a liquid to a fluctuation is anisotropic; this has a strong influence on the kinetics of 

orientation surrounding a nucleation site.  Consider for a moment one nucleation event, for 

example the molecule at lattice site (i,j) oriented in state 3 with a probability that upsets the 

metastability of the system (a).  The initial bias will tend to orient its neighbor to the right in 
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the opposite direction, state 1, (b), as this orientation presents the largest probability for all 

the arms of the neighboring sites to be bonded. 

The surrounding sites of this initial pair experience an environment that has strong 

orienting properties.  The pair above the nucleus now will experience a strong tendency to 

align one of their associating ends with the associating ends pointing downward from the 

initial sites.  To take best advantage of the energetics, the new pair will align in the same 

direction as the previous pair.  This initiates the formation of a lamella (c). 

From the sides of this initial lamella will evolve lamella oriented in the orthogonal 

direction (d).  Again, the organizing feature is the anisotropic non-bonding side.  As the 

growth occurs in an outward manner, eventually the different domains of lamella begin to 

influence the growth of each other (e).  At the interSection there are a variety of satisfied 

orientations that can be adopted (f).   

 
Figure 1.4.5-2: Progression of the DMF simulations from a nucleation point. 
The oriented (solid-like) T-shaped molecules are shown in black while the grey T-shaped 
molecules represent those which are not oriented (are liquid-like).   
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When the system is instantaneously quenched to a temperature past the spinodal, spatial 

inhomogeneities in the probability distribution grow spontaneously.  Unlike the isolated 

nucleation events that occur between the coexistence temperature and the spinodal, the 

simultaneous growth of all instabilities leads to heterogeneous microenvironments.  The 

thermodynamic driving force for the T-shaped molecules to form associating bonds with 

their neighbors becomes sufficiently strong such that most or all adopt a preferred 

orientation.  The T-shaped molecules attempt to maximize the number of bonds by choosing 

the locally optimal orientation determined by their microenvironments.  The orderly growth 

of crystal-like structures at higher temperatures is replaced by simultaneous formation and 

growth of bonded clusters, which eventually grow to a large network.  The resulting structure 

appears very amorphous without clear crystalline ordering.  In this structure most sites are 

satisfied, i.e., their three arms are held strongly by bonds formed with their neighbors.  

However, because the structure results from the uncoordinated formation of associating 

bonds driven by the local needs of the molecules, some molecules may be left unsatisfied. 

These sites are shown in grey in Figure 1.5.5-1(b).  While one orientation is chosen randomly 

at each of these sites for the purpose of illustration, these grey sites retain their liquid 

character (p1 =p2 =p3 =p4).   

1.5. Solvated Phases: Gel-like Structures with Glassy Features 

In this Section we explore the variety of morphologies that are observed when solvent 

(state 5) is present.  We start with a discussion of the role that the solvent plays in the system 

and an investigation of the high temperature solution state.  We follow this by a calculation 

of the mean-field phase diagram and our analysis of the spinodals.  Finally we present 

simulation results that highlight the role of the glass transition in arresting phase separation. 
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1.5.1. Role of Solvent in Phase Behavior 

When solvent is present, the interplay between phase separation and vitrification generates 

a variety of morphologies, including uniform solutions, phase separated droplets and a range 

of gel-like structures such as foam-like, networked and fibril-like morphologies.  Which of 

these structures is observed in the simulation depends closely on the quench conditions.   

We observe the solution phase above the coexistence line.  The solvent and the T-shaped 

molecules are equally distributed over the lattice. The solute has an equal probability of 

being in any of the four states ( 4/),( ρ=jipa  for =a 1,2,3,4 and 5( , ) 1p i j ρ= − ).  At 

lower temperatures the lattice will phase separate into solvent-rich and solute-rich phases.  

The solute-rich phase can either be an isotropic liquid phase or be in a glassy state depending 

on the concentration and temperature.  

The interface between solvent- and solute-rich phases plays an important role in the local, 

morphological organization.  The solute prefers to orient in such a way that its non-bonding 

side is adjacent to the solvent.  This orients the molecule so that the associating groups are 

pointing towards the denser, solute-rich region, whether this region is still solution-like or 

has adopted a glassy configuration.  The anisotropic nature of the T-shaped molecule causes 

it to behave as a surfactant at the interface between the T-shaped molecule rich phase and the 

solvent.   

1.5.2. Mean-field Phase Diagram 

We calculate the equilibrium phase diagram using the simplest approximation involving 

the singlet density.  Although higher order approximations can be constructed without too 
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much difficulty, we choose this level of approximation so as to be consistent with the level of 

mean-field approximation in the DMF simulation. 

In the absence of orientational order, the liquid-liquid coexistence curve can be easily 

obtained.  Assuming equal probability of the solute being oriented in each of the four 

orientations ( p1= p2 = p3 = p4 =ρ/4), the free energy per site is simply 

)1ln()1()4/ln()8/9( 2 ρρρρβερβ −−++−=f   (12) 

This is similar to the Bragg-Williams free energy for a lattice gas56, the factor of 1/4 inside 

the logarithm having no effect on the phase diagram57.  Equation 12 predicts a symmetric 

phase diagram with a critical point at βε=16/9. 

For sufficiently low temperatures, we expect the high-density phase to be the vitrified 

phase with locally broken orientation symmetry.  Since the free energy of the lamellar 

crystalline state is identical to that of the glassy state in our approximate treatment of the 

glassy phase in the fully-dense state, we will not distinguish between these two states here 

either.  For the purpose of constructing the phase diagram, we will characterize the glassy 

phase the same way we characterize the fully-dense case ( p1> p2 = p3 = p4).  This 

characterization amounts to a uniform dilution approximation, in which the effect of the 

solvent is simply to change the normalization of the probabilities from ∑ =
=

4

1
1

a ap  to 

∑ =
=

4

1a ap ρ .  Under this approximation, the free energy of the glass-like state becomes, 

βfran = −(1/2)βε 3p1
2 + 4 p1(ρ − p1) + (7 /3)(ρ − p1)

2[ ]
          + p1 ln p1 + (ρ − p1)ln[(ρ − p1) /3]+ (1− ρ)ln(1− ρ)

 (13) 

where the last term accounts for the entropy due to the presence of solvent.  
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Using Equation 13, the probability of the dominant orientation is obtained by minimizing 

the free energy with respect to p1.  The coexistence between the glassy state and the isotropic 

liquid or gas phases is calculated by equating the chemical potential (βμ=(∂βf /∂ρ)) and the 

grand potential density (βw=βf −βμρ).  The phase diagram is shown in Figure 1.5.2-1 with 

a triple point at 3.37,  0.97βε ρ≈ ≈ . 

 

Figure 1.5.2-1: Mean-field phase diagram 
(a) Phase diagram: binodal (solid line), macroscopic spinodal (dashed line) local ordering 
spinodal (dot dashed line), cascade of spinodals within the liquid-liquid spinodal (dotted 
lines).  1)( −∗ ≡ βεT  is the dimensionless temperature; (b) an expanded view of the high 
solute density region around the transition temperature for the glass-like phase. 
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1.5.3. Analysis of the Spinodals 

As in the fully-dense case, the spinodal plays an important role in determining the 

thermodynamic and kinetic behavior of the system when solvent is present.  With the DMF 

equations of motion, it is possible to perform a linear stability analysis of the uniform state 

and determine the linear rate of growth of the unstable modes that are consistent with the 

dynamic rules of the model.  For simplicity, however, here we will examine the issue of 

stability based purely on a consideration of the free energy.  The spinodal or limit of 

metastability is determined by evaluating the matrix of the second derivatives of the free 

energy:   

)','(),(
]',',';,,[

'

2
)2(

jipjip
FjiajiaF

aa ∂∂
∂

≡    (14) 

where F  is the Helmholtz free energy as a function of the spatially varying singlet 

probabilities.  We construct the matrix explicitly on a 16 ×16  lattice and diagonalize the 

matrix to find its eigenvalues.  The vanishing of the lowest eigenvalue defines the spinodal.  

The result is shown in Figure 1.5.2-1.   

Inside the liquid-liquid coexistence, we have the usual spinodal of the uniform liquid with 

respect to macroscopic phase separation (dashed line).  In the high density region, there is 

another spinodal which corresponds to the limit of stability of the uniform liquid with respect 

to spatially inhomogeneous probability distribution on length scales of the size of the lattice 

spacing (dot-dashed line).  This spinodal is the extension of the one occurring at βε=4 in 

the fully-dense state.  As we decrease the temperature inside the envelope of the macroscopic 

spinodal, additional instabilities set in that represent progressively smaller length scales 

(dotted lines).  We represent the onset of these new unstable modes by a family of curves as 
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they move down the temperature.  We note that while both the liquid-liquid coexistence 

curve and the macroscopic spinodal curve are symmetric, these higher modes of instability 

become skewed towards high density, presumably reflecting the tendency for orientational 

ordering.  The most striking feature of this cascade of instabilities is that they converge to an 

extension of the spinodal of the uniform liquid with respect to local orientational ordering as 

temperature decreases.  These higher instabilities will be crucial for determining the 

morphology of quenched structures in the two-phase region. We note that the phase behavior 

implied by our phase diagram is very similar to the general phase diagram of a physical gel, 

lending confidence to our assertion of gel-like features58.   

1.5.4. Correlations in the Solution Phase 

As in Section 1.4.4, we measure the correlation in the system via the introduction of a 

small biasing field to a single site.  Due to the anisotropy of the system, the resultant 

probability profile is again different for each state.  In Figure 1.5.4-1, we show the profiles 

for each state along the i and j axis for a solution at 7.1=βε  near the critical point of 

9/16=βε .  For these calculations we use the grand canonical ensemble and set the 

chemical potential so that the unperturbed solution is kept at a density of 5.0=cρ  solute.  

We bias the probability of state 1 to be higher at site (0,0) by introducing a field of 

magnitude 0.01 β  at that site. 

Overall there is an increase in solute density near the site of the perturbation.  However, the 

self-surfactant characteristic of the molecule results in a very different probability profile 

when solvent is present as compared to the fully-dense liquid.  In the negative i direction the 

perturbation has almost no effect on the probability profile whereas the profiles are 
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remarkably symmetric along the j axis.  This significant asymmetry between the positive and 

negative i directions as well as between the i axis and j axis foreshadows the inhomogeneous 

solid-like features at lower temperatures.   

A correlation length can be similarly defined from the site of the perturbation.  Again, a 

mean-field square root divergence with proximity to the critical temperature is obtained.  In 

comparison to the fully-dense case, however, at the same relative distance to the critical 

point, the correlation length is significantly longer here. 
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Figure 1.5.4-1: Result of small applied force in the liquid state 
The probability of being in each state as a function of position along the i and j axis after a 
small pinning force with magnitude 0.01β favoring state 1 is applied at site (0,0) to a 
solution.  The unperturbed solution-like state βε=1.7, ρ=0.5 has an equal probability (0.125) 
of being in each rotational state of the solute and 0.5 of being solute (state 5). 
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1.5.5. DMF Simulations: Gelation as a Result of Arrested Phase Separation 

In the two phase region, a wide range of structures is observed.  The results of a stepwise 

quench in which the lattice is equilibrated at successively lower temperatures show very 

different characteristics than those of a lattice that is quenched to the same conditions in one 

step.  In order to illustrate this effect, we first present the results of a quench of the system 

that is equal parts T-shaped molecules and solvent.   

When the simulation is taken from the ‘high’ temperature solution phase to just below the 

liquid/liquid coexistence curve, it phase separates without any (orientational) ordering.  Both 

the solute-rich phase and the solvent-rich phase retain liquid character.  If we further quench 

this structure to below many spinodals but at a temperature such that the solute-rich phase is 

above the triple point, we observe the formation of a layer of oriented molecules at the 

interface (Figure 1.5.5-1(a)).  This film occurs at all of the solute-rich phase boundaries.  The 

bulk of the molecular rich phase retains the expected liquid-like character.  Small droplets of 

solvent-rich phase have developed within the initial solute-rich droplet.  If this system is 

cooled further so that the solute-rich phase is below the triple point, then the solute-rich 

phase solidifies into a glass-like structure (Figure 1.5.5-1(b)).  The presence of small, 

solvent-rich voids within the glassy droplet suggests a very dense gel-like structure. 
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Figure 1.5.5-1: DMF simulation results at 0.5ρ =  
(a) Phase separated droplet shows the self-surfactant character of the molecules.  A 
simulation in the solution state was initially, instantaneously quenched to 2=βε  and 
allowed to equilibrate, before instantaneously quenching to a final temperature of 3=βε  
and (b) Glassy droplet was successively equilibrated from a solution to 2=βε , 3=βε  and 
then, as shown, at 4=βε . Sites shown in grey are not oriented but instead retain their liquid 
character. 
 

If we plunge the system with equal parts molecules and solvent below many spinodals and 

near or below the triple point, we observe networked gel-like structures.  Figure 1.5.5-2(a) 

presents a dramatic example of the highly ramified structure that is the result of an 

instantaneous quench.  The structure is very different from that of the more step-wise 

quenched Figure 1.5.5-1(b) despite resulting from simulations at the same final conditions.  

Experimentally, such differences in features are closely dependant on the ‘processing 

conditions’59.  Our model replicates a wide variety of morphologies by changing the quench 

conditions and volume fraction of molecules.  
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Overall, if we quench a simulation in very small increments from the solution phase, we 

allow for phase separation to proceed unhindered.  However, at some temperature below the 

triple point the phase separation transitions from liquid/liquid separation to liquid/solid 

separation.  The solid phase is a disordered, glassy phase and the simulation is structurally 

arrested.  As the simulation is further cooled small voids of solvent rich phase will 

accumulate within the molecular rich phase.  The resultant structure is a very dense gel.  In a 

similar manner if we quench from the solution phase directly to below the triple point the 

phase separation is arrested by the onset of the solid phase.  However, since there is not 

sufficient time for liquid/liquid phase separation before the onset of vitrification, the structure 

is much less dense and has a networked characteristic. 

 
Figure 1.5.5-2: DMF simulation results at ρ =0.5 
(a)A gel that results from a simulation instantaneously quenched from a solution state to 

4=βε  and (b) A gel quenched from a solution state to a lower temperature 10=βε .  Sites 
in grey retain their liquid-like character.  
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Figure 1.5.5-3: DMF simulation results at ρ =0.5: the characteristic length 
(defined as 2π over the peak position of the circularly average structure factor) as a function 
of the quench depth given in dimensionless temperature 1)( −∗ ≡ βεT .  The data are the result 
of averaging over 40 simulations of an 80 by 80 lattice.  The dotted line indicates the critical 
temperature. 
 

The length scale of the gel depends on the quench depth.  We compare an instantaneous 

quench to a moderate temperature (Figure 1.5.5-2(a)) with a quench to a very low 

temperature (Figure 1.5.5-2(b)). Although the system is initially at the same identical liquid 

conditions, the deeper quench results in a smaller feature size.  We can quantify the length 

scales of the gel by examining the peak position of the density-density structure factor60.  As 

can be noted in Figure 1.5.5-3, there is a clear trend towards a smaller characteristic length 

with temperature.  This is consistent with our analysis of the cascade of spinodals in Section 

1.5.3; the instability with respect to spatial inhomogeneity shifts to smaller length scales as 

temperature decreases.   

More precisely, however, the observed dependence on the temperature is a consequence of 

both thermodynamic and kinetic factors.  It is well known that in spinodal decomposition the 

most unstable mode has a wavelength inversely proportional to the square root of the 

distance to the critical temperature61.  In a simple binary mixture, coarsening occurs beyond 

this initial growth of the most unstable mode.  However in our system, once the 
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concentration of the T-molecule rich phase becomes sufficiently high, vitrification sets in 

which arrests any further domain growth.  The deeper the temperature quench, the smaller 

the length scale of the initial instability, and hence the smaller the length scale at which the 

system gets arrested.  The decrease in length scale with deeper quench was observed in a 

colloidal gel system studied by Dinsmore and Weitz13. 

We note that there is an interesting transition between coarsening to macroscopically phase 

separated states at temperatures just below the critical point and developing ramified 

microstructures at lower temperatures (still above the triple point).  We speculate that this 

transition reflects the tendency toward inhomogeneous structures at finite length scales 

associated with the lower spinodals which are more of microphase separation than of 

macrophase separation in nature. 

Simulations at similar temperatures but at higher volume fraction of molecules demonstrate 

other features of the gel-like structures that can be formed.  At these higher concentrations, 

we can form dense gels that span the space of the simulation.  Figure 1.5.5-4(a) is a result of 

a two step quench.  While the solvent rich voids are of the same scale as the glassy droplet in 

Figure 1.5.5-1(b), this structure more resembles a foam.  As before, when the simulation is 

quenched directly it results in a more networked structure with smaller mesh sizes (Figure 

1.5.5-4(b)). 
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Figure 1.5.5-4: DMF simulation results 65.0=ρ  
(a) A two step quench starting with the solution phase instantaneously quenched to 3=βε  
and allowed to equilibrate before being quenched to 5=βε and (b) A single step quench 
from the solution state directly to 5=βε . 
 

Exploring the portion of the two phase region at low volume fraction of the T-shaped 

molecules, we observe the formation of suspended small droplets and fibrils.  Given enough 

time to first phase separate under liquid/liquid conditions before quenching below the triple 

point, small droplets of glass form.  On the other hand, if quenched quickly ladder-like fibrils 

result.  These suspended structures could be due to the lack of a cluster diffusion mechanism 

in our dynamics; it is not clear, however, that when such a mechanism is included these 

droplets and fibrils would aggregate or coalesce.  As the surfaces of these structures have 

relatively few unbonded association sites, even if the droplets or fibrils were to come into 

contact they might not aggregate.  For the suspended structures to aggregate or coalesce, 

internal restructuring is required, which is greatly inhibited by the vitrification of the solute 
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below the triple point62.  Therefore, since these structures still correspond to local free energy 

minima we include them in the class of gel structures in our consideration, even though they 

lack the connectivity of a space-spanning network usually associated with gels. 

It has long been noted that gel formation in the two phase region is highly dependant of the 

conditions of formation, much to the chagrin of experimentalists.  De Gennes observed that 

incomplete phase separation due to an effective change in solvent quality during polymer 

association and slow kinetics of solvent diffusion lead to heterogeneous gels63.  Our model 

also results in heterogeneous gels; however in our case the inhibition of phase separation is 

due to kinetic arrest arising from the formation of a glassy state in the solute rich regions.   

We develop a picture of the phase behavior of these systems being arrested in a metastable 

state by the onset of glass-like structure.  This incomplete phase separation, though driven by 

the thermodynamic conditions, represents a kinetic phenomenon.  The features that we 

observe are determined by the confluence of the thermodynamic and kinetic conditions. 

 

1.6. Structural Relaxation in the Glassy State 

Thus far, we have been focusing on the thermodynamic and structural properties of our 

system.  The diversity in morphologies observed in the gelation regime highlights the critical 

role of kinetics as well.  In this Section, we study the structural relaxation in the fully-dense 

phase.  Our discussion has been focused on the mean-field phase diagram and structures 

obtained with the DMF simulations.  Within this framework, once the system finds itself in a 

local free energy minimum, no relaxation is possible from this state.  However it is possible 

to study the relaxation in the liquid state as the system is cooled.  We explore the relaxation 

of the system in the fully-dense case by examining the energy landscape features and the 
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relaxation mechanism at low temperatures.  We also include results from both DMF and MC 

simulations that show dynamics characteristic of glass forming systems.   

 

1.6.1. Features of the Energy Landscape 

The energy landscape paradigm has become an important guide to consider the 

thermodynamic signatures of glasslike systems for reviews see 38, 64-66.  An unusual feature of our 

model is the exponentially large number of states in which all the associating sites are 

satisfied.  The lamellar crystalline state is but one of these states (Figure 1.4.5-1(a)).  A lower 

bound on the number of ground states in the fully-dense case can be estimated by the 

following argument.  We note that a foursome of molecules can be organized in two 

energetically equivalent ways which present to the neighbors of this grouping the same 

number of associating sites (Figure 1.6.1-1(a-b)).  A fully satisfied lattice can be created by 

using this foursome as the repeating units in either of these two states. Thus on a lattice of 

size n there are 4/2n  satisfied configurations.  This is a lower bound as more complex 

repeating units can be used to generate the lattice (Figure 1.6.1-1(c)) and there can also be 

structures that cannot be created using any repeating units.  

 

 
Figure 1.6.1-1: Determining the number of ground states 
(a,b) two basic building blocks from which we can demonstrate that there are an exponential 
number of ground state configurations; (c) additional state not accounted for in the previous 
estimation 
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As the temperature in a glass forming liquid nears the glass transition Tg ,it has been 

empirically noted that the stretched exponential functional form, ])/(exp[)( βτθ tt −= , fits 

both experimental and simulation measurements of the structural relaxation well.  The 

dramatic increase of relaxation time upon cooling in fragile glasses can be described well by 

the Vogel-Fulchur (VF) equation, )]/(exp[/ oo TTD −=ττ  with the value of D  being the 

‘fragility index’67. 

The large degeneracy of the minima in the free energy landscape, together with the 

relatively low barriers separating the minima (in the sense that the rearrangements can be 

made by breaking a small number of bonds) implies fragile liquid behavior.  However at 

sufficiently low temperatures, the relaxation mechanism involves creating isolated unpaired 

bonds, with a well defined energy scale (see Section 1.6.4 for more discussion).  This 

suggests an Arrhenius dependence of the relaxation with temperature which is associated 

with strong liquid behavior.  Therefore we expect that our systems will exhibit fragile-liquid 

characteristics at higher temperatures and strong-liquid characteristics at very low 

temperatures. 

1.6.2. Relaxation in DMF Simulations 

The DMF simulation technique described in Section 1.3 is employed for temperatures 

above the spinodal to observe relaxation of small and random perturbations back to a uniform 

liquid state.  To quantify the relaxation behavior, we define an order parameter: 
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The decay of this function is found to be well fit by a stretched exponential form 

β

τ
⎟
⎠
⎞

⎜
⎝
⎛ −

−=− o
o

ttttm exp)( .  Figure 1.6.2-1 shows the behavior of the exponent β  and 

characteristic time τ  as a function of temperature. 

We find that as the temperature decreases, β  decreases significantly from one, as is 

characteristic of a fragile liquid68.  At the same time, the dependence of the relaxation time 

with temperature is well fit described by the VF equation.  Remarkably, the least square fit to 

the data in Figure 1.6.2-1 results in 24.0≅oT , very close to the theoretically predicted mean-

field spinodal, implying an ‘ideal’ glass transition at this temperature 69.  To see if this 

observed relaxation could be more a reflection of a critical slowing down rather than glassy 

dynamics, we have also fitted the relaxation time τ  into 
z

C
o T

T
ν

ττ
2

1
−

−=  where ν  and z  are 

respectively the correlation length and dynamic scaling exponents; the mean-field values

2/1=ν  and 2=z  are used70.  We find that the fit is quite poor (not shown). 

 
Figure 1.6.2-1: Glassy dynamics shown in DMF simulations 
a stretched exponential functional form is fit to the relaxation of the order parameter 
(equation 15) The figures show the temperature dependence of the stretching exponent β  
and characteristic time τ . 
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1.6.3. Relaxation in MC Simulations 

To investigate relaxation without the restriction of the mean-field approximation, MC 

simulations are performed.  The rules of motion are described in Section 2.  Simulations are 

equilibrated at each temperature over many MC steps (each step is defined as one randomly 

proposed move in configuration space that may or may not be performed)71  We then 

perform 1.6 x 106 MC steps on the initial configuration and track the correlation function 

)( ott −θ  defined as the fraction of sites on a lattice which have not undergone any transition 

to other states from time t up to 0t .  We repeat this procedure 10 times and average the 

resulting correlation functions.  We then fit )( ott −θ  with a stretched exponential form and 

repeated the process.  The temperature dependence of β  and τ  are shown in Figure 1.6.3-1.  

Note the small increase in β  at the lowest temperatures; this may reflect the approach to the 

strong liquid limit (this will be discussed further in Section 1.6.4).  Our results are similar to 

that of a simulation for liquid silica which found that the material behaved 

thermodynamically as a ‘fragile’ liquid at high temperature while a ‘strong’ liquid at low 

temperatures72. 

When the VF equation is fit to the relaxation time as a function of temperature, we find 

07.0≅oT which is well below the mean-field spinodal temperature.  This is a consequence of 

activated events allowing for exploration of the energy landscape below the onset of 

inhomogeneous energy minima.  As in experiments, the glass transition is a kinetic 

phenomenon defined by the relaxation time of the system.  As equilibration at very cold 

temperatures takes an exceedingly long-time, and since our main focus in this present work is 

illustrating some structural and thermodynamic properties, we have not yet evaluated 
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temperatures as low as oT  found from the VF fit; these calculations will be performed in the 

future. 

Overall these MC simulation shows dynamics that reflect a ‘stronger’ liquid than that 

observed with DMF simulations.  Various explanations of deviations of oT  from kT  – which 

are generally greater for ‘stronger’ liquids than they are for more ‘fragile’ liquids– have been 

proposed68, 73.  The fundamental reason appears to be decoupling of the thermodynamics 

(distribution of energy minima) and kinetics (details of the depth of the well around the 

minima) on the landscape74.  Thus it is not surprising that the MC simulations which reflects 

both thermodynamics and kinetics would reveal different results than those of the DMF 

simulations which involve the thermodynamics alone. 

 
Figure 1.6.3-1: Glassy dynamics shown in MC simulations 
a stretched exponential functional form was fit to the averaged relaxation of the correlation 
function.  The figure shows the values of the stretching exponent β  and the characteristic 
time τ . 
 

1.6.4. Relaxation Mechanism at Low Temperatures 

The landscape features of our model imply a different relaxation mechanism than 

commonly associated with structural relaxation in supercooled liquid as it approaches the 

glass transition which usually involves hopping between deep free energy minima separated 

by large, energetic barriers65, 69, 75, 76.  In our model, proceeding from one ground state to 
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another involves only a small energy penalty.  All that is required is for one molecule to 

rotate, breaking a pair of bonds.  This pair of unsatisfied T-shaped molecule can then diffuse 

over the lattice, changing the state of the system at each time step, until they annihilate 

themselves by finding another unpaired T-shaped molecule.  We can directly observe this 

behavior in our MC simulations.  At low temperatures, the concentration of such unpaired 

molecules is roughly )exp( βε− .  The area per unpaired molecule is thus )exp(βε .  Assuming 

this molecule diffuses freely with a diffusivity ω , the area visited in time t  is proportional to 

the mean-square distance traveled by the molecule R2 ~ωt .  The system will have relaxed 

from its initial configuration if an unpaired molecule has visited an area of the size of the 

area per unpaired molecule.  Thus the relaxation time is simply )(e~ 1 βεωτ xp− 77.  While this 

argument does not predict the time dependence of the relaxation dynamics, it shows that the 

slowing down of the dynamics as temperature decreases is due to the decrease in the number 

of (essentially isolated) 'mobile' (i.e., unpaired) molecules.  This is a very different process 

than that of an activated process on a landscape with deep energy minima, which often 

requires concerted or facilitated motion.  Instead of the glass or gel being the result of high 

energy barriers, in our model they result from the multiplicity of energetically degenerate 

states.  

The temperature dependence predicted from the low temperature argument is Arrhenius.  

Thus at very low temperatures, our model should behave like a strong liquid; this is 

consistent with the upward turn of the stretching exponent β  as temperature is decreased at 

very low values and the observation that the right-most data for the characteristic time τ  on 

the semilog plot (Figure 1.6.3-1) appears to approach a straight line. 
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1.7. Conclusions 

The strength of this lattice model lies in its simplicity and its ability to capture a wide range 

of morphological behavior without imposing an artificial constraint that causes the system to 

be frustrated.  In our model, amorphous vitrified (glass or gel-like) structures arise not 

because of frustration but because of the ready availability of a large number of 

inhomogeneous free energy minima; this observation is consistent with the recent 

thermodynamic picture of structural glasses resulting from self-generated randomness as a 

result of a large number of degenerate ground states78-81.  Although nontrivial, glassy 

dynamics do not require the existence of a large number of inhomogeneous free energy 

minima, however the existence of such minima necessitates a change in the dynamics.  

Shifting from liquid-like to glass-like, relaxation of the system now requires leaving the free 

energy minima through thermal activation.  In the DMF simulations, which do not allow for 

thermal fluctuations, the dynamic transition temperature occurs at the mean-field spinodal.  

When activated motion is possible in the MC simulations, the dynamic transition temperature 

is lower than the spinodal.  However, it is important to note that both simulations exhibit 

glassy behavior at low temperatures. 

An important result of this work concerns the nature of the gel phase and its relationship to 

the glass phase.  Various authors have noted the similarities between these two classes of 

materials17, 82-84.  Our model allows us to explore this relationship.  From the structural and 

thermodynamic point of view, both states of matter result from the proliferation of a large 

number of inhomogeneous free energy minima, which are ultimately connected to the 

underlying mean-field spinodals with respect to inhomogeneous structural fluctuation.  In our 

model, the glassy state is obtained as a result of the quenching of the liquid phase in the high 
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density, one-phase region of the phase diagram below the temperature for the appearance of 

an exponentially large number of inhomogeneous free energy minima.  The gel state can be 

viewed as an extension of the glassy state into the two phase region, or equivalently as an 

incomplete phase separation arrested by the onset of glass transition.  The length scale of the 

gel phase is determined primarily by the most unstable, i.e. fastest-growing, mode – a deeper 

quench leads to a network with smaller mesh size.  The arrest of phase separation is a result 

of the system having reached a state of local free energy minimum.  At such free energy 

minima, the deterministic thermodynamic driving force vanishes; further evolution of the 

structure must require overcoming free energy barriers.  Such a relaxation mode is very 

different from the coarsening process in a typical phase separating binary fluid; in our case 

the relaxation of this structurally arrested state is more properly described as an aging 

process.  

The behaviors exhibited by our model relate well to those of colloidal gels in particular.  

Colloidal gels are akin to a solvated glass that has short range attractive interactions17, 84, a 

feature that we capture in our model.  The decrease in the characteristic length scale with 

quench depth lends further credence to this correlation.  While it might be surprising that this 

is the case given the isotropic nature of a colloidal particle, we believe that this suggests that 

the steric constraints on the system are fundamentally similar to an anisotropic interaction in 

a lattice model.  Indeed, a two dimensional square lattice model in which each site can only 

form up to three attractive interactions with its nearest neighbors is identical to our T-shaped 

molecule model. 

Our model can be extended in several directions.  First, as alluded to in the model 

description, it is straightforward to add an isotropic term that either favors or disfavors 
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nearest neighbor contacts between the solute molecules.  The latter type would suppress the 

critical temperature, possibly making it lower than the glass transition in the fully-dense case.  

The resulting phase diagram would appear closer to the phase diagram for colloidal particles 

with short-ranged attractions17.  Second, it is possible to construct three-dimensional versions 

of the model.  Besides the obvious fact that most systems are in three dimensions, the mean-

field approximations are more accurate in three dimensions than in two.  Finally, exploring 

the dynamics of the solvated state should prove interesting and help investigate the gelation 

transition as it relates to vitrification.  We plan to pursue these directions in the future. 
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2. Chapter 2: The Glass Transition:  

Comparison of the Supercooled Liquid  

and the Kinetically Arrested Glass 

 

2.1. Introduction 

Interest in valence-limited materials is growing, due to both their unique behaviors and 

their potential to form self-assembled materials with highly controlled physical properties.  

Despite length scales which differ by orders of magnitude, from atomic4, 85, 86 and molecular 

5, 72, 87 fluids to polymeric88 and colloidal systems7, these materials share common structural 

and dynamic features.  They are all characterized by intermolecular potentials in which 

anisotropic interactions prevent high density conglomerates, instead allowing for more open 

and organized network formation7.  These potentials describe unique and important 

molecular materials such as water, silica89 and silicon4.  The ‘lock and key’ specificity of 

natural motifs allows DNA3, 90 and proteins3, 91 to form anisotropic, networked structures.  

Directional anisotropic interactions can also be an emergent characteristic in systems after a 

conformational change.  Examples include polymer-grafted nanoparticles92 and low-

molecular mass gelformers93, proteins and DNA which assemble into fibers8.  Additionally, 

the phase diagrams of a subset of these systems, those that form gels3, 13, 29, 90, 94, 95, (Appendix D), 

seem to be influenced primarily by the specific number of possible nearest neighbors6, 

suggesting that design of novel materials can be predicted from general principles.  Our 

strikingly simple T-shaped molecular model captures the behavior of this diverse class of 

materials well1. 
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The phase diagram presented in our previous work demonstrated that valence-limited 

systems can form a wide range of materials influenced not only by the equilibrium 

characteristics, but also by kinetic arrest.  The T-shaped molecular model includes simple 

liquids, gels, glasses, foams and colloidal solutions in different regions of the phase diagram 

dependent in part on the quenching conditions.  We use the term ‘molecule’ to describe our 

elementary bonding unit; however, our model could equivalently represent an abstraction of 

an atomic, molecular, polymeric or colloidal system.  As we seek to understand this class of 

materials, we must grapple with the thermodynamic and kinetic features of dynamic arrest in 

the high density region.  Particularly, we need to consider the nature of the glass transition as 

it pertains to this system.   

All materials, under the appropriate experimental conditions, can be supercooled below 

their normal melting temperature and arrested in an amorphous state on the observed 

timescale.  Many material properties change as the glass transition temperature, gT , is 

approached due to a dramatic slowing in the molecular motion and an increase in the 

relaxation time, τ .  One of the most interesting features of supercooled liquids is that the 

relaxation processes become non-exponential.  Near gT  the response function, ( )tφ , is well 

fit by the Kohlrausch-Williams-Watts (KWW) equation: 

  ( ) ( )t
t e

β

τφ
−

=  (1) 

The value of the stretching exponent β  generally decreases from 1, or simple exponential 

behavior, as the temperature is lowered.  This behavior is also observed in gel forming 

materials96.   
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The temperature dependence of τ  near gT  has often been used to classify glass formers64.  

‘Strong’ materials show nearly linear behavior on an Arrhenius plot of log( )τ  as a function 

of inverse temperature.  Conversely, ‘fragile’ materials exhibit non-linear, super-Arrhenius, 

activation energy growth as the temperature decreases67.  Usually, fragile liquids have a 

smaller value of β  than strong liquids97.   

At high temperatures, simple liquids are Arrhenius in nature.  As they are quenched, they 

reach a temperature, onsetT , below which there is the onset of a more fragile regime.  In a 

number of systems there is an apparent return to Arrhenius behavior at very low temperatures 

referred to as the fragile-to-strong crossover (FSC)3, 5, 72, 89, 98-102.  In addition to these 

dynamic properties, it has been shown that there is an inflection point in the configurational 

entropy, ( )cs T , near FSCT .  If we were to extrapolate the ( )cs T  from temperatures above the 

FSC, then we would find a finite temperature or ‘Kauzmann’ temperature, KT , at which 

( ) 0c Ks T = .  Below KT , the entropy of the liquid would be less than that of a crystal resulting 

in a violation of the third law as 0T → 19, commonly known as the ‘Kauzmann Paradox’38.  

However, the inflection point may avoid this result, instead leading to ( ) 0cs T >  for all 

temperatures89.  Valence-limited systems have also been also shown to have vC  maxima, or 

inflections in ( )cs T , at all densities in the phase diagram.  Whether this universally reflects a 

structural change is not clear7; however, there is compelling evidence that structural changes 

in colloidal systems with patchy interactions are related to the maximum in heat capacity40, 91. 

We have previously identified two factors that contribute to the rich phase behavior of the 

T-shaped model: local arrangements that lead to stable structures on microscopic length 

scales and degenerate energy minima on the potential energy landscape (PEL).  Degenerate 
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ground states are a general characteristic of limited valency systems7.  Under the PEL 

paradigm103, 104, a system is described as a point moving along a hyper-dimensional surface.  

If the simulation sample is at equilibrium, the probability that the system will occupy a 

specific location on the PEL is determined only by the thermodynamics.  In both equilibrium 

and arrested systems, the transition states between minima on the surface defines the motion 

kinetics and as well as the dynamic response.  

A variety of explanations have been posed for the origin of the FSC transition.  As in the 

case of the glass transition, we can broadly group these descriptions into those with a kinetic 

basis and those which suggest an underlying thermodynamic cause.  From either perspective, 

a rough overview is coming to light.  Couched in the perspective of the PEL, near gT  the 

energy required to overcome the energetic barriers between minima becomes significant.  

Additionally, the system may be unable to explore the full landscape due to the lack of 

mobility of near-neighbors, reducing the configurational entropy.  The confluence of these 

effects leads to super-Arrhenius temperature dependence in this regime.  At the lowest 

temperatures, the system becomes energetically trapped or structurally frustrated in a single 

basin or region of basins such that configurational entropy is nearly temperature independent.  

Only energetic terms contribute to the relaxation time dependence on temperature, which 

becomes Arrhenius again.  Strong glass properties such as simple exponential behavior of the 

correlation function, appear to be connected to elementary local independent process of bond 

breaking7.  Inherent in this description is a reduction in configurational entropy as the 

exploration of the surface becomes limited, and regions may become inaccessible.  

Kinetically constrained descriptions of glassformers describe facilitated motion of the 

molecule based on the mobility of the near-neighbors.  Above FSCT  hierarchical dynamics 
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dominate, requiring multiple near-neighbors to obtain certain configurations before moving. 

At lower temperatures only infrequent single, isolated activation steps lead to diffusive 

motion28.  The higher temperature dynamics are thus the result of cooperative motion, 

leading to fragile characteristics, while the lower temperature dynamics are the result of 

individual rearrangements and, thus, return to diffusive motion and strong behavior.  From 

this viewpoint, it is the kinetics of the model that lead to the thermodynamic and structural 

properties28.  It is interesting to note that this model depends on the formation of defects 

which at low temperature have a concentration proportional to the energy, matching our 

prediction for the T-shape model1.   

Alternately, it has been noted that there are a vanishing number of defects at low 

temperature in network glass formers, often with a dramatic threshold or ‘cutoff’ of the 

density of states at the FSC89.  This suggests that the PEL has a large gap between higher 

temperatures, where there are many locally metastable configurations, and low temperatures 

with limited configurations that met bond requirements.  This observation may be a result of 

a buried phase transition105.  Of particular note is a speculated buried liquid-liquid 

coexistence line in systems with potentials that facilitate both a high density isotropic liquid 

phase and a low density networked liquid phase5, 36, 106.  The ‘Widom line’, which is a 

continuation of the coexistence line past the critical point and into the one phase region of the 

phase diagram, reflects the asymptotic convergence of response functions close to the critical 

point due to their common reliance on the correlation length.  A system crossing the Widom 

line upon cooling will not demonstrate the discontinuity in the measured characteristics 

associated with a phase transition, but will still exhibit a dramatic change.  The result is that 

the response function maximum, in our case vC , marks thermodynamically the FSC5, 72.  It 
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has been suggested that different classes of glass formers may be characterized by the shape 

and magnitude of vC as well as its relative location with respect to the melting temperature of 

the liquid107. 

An example of a buried liquid/liquid phase transition can be found, in valence controlled 

atomic glass formers (e.g. in MD simulations of a modified Stillinger-Weber potential85 for 

tetrahedral silicon4, as well as in a germanium experimental system86) where there is a 

liquid/liquid transition such that the coexistence shifts from a single liquid metastable with 

respect to the crystal phase to two liquids, one of which is structurally similar to the crystal.  

This liquid immediately crystallizes resolving the Kauzmann paradox4.   

It has been postulated that there is a phase transition in trajectory space, as opposed to 

configurational space108.  The premise is that the order parameter that should be evaluated is 

the trajectory of a system on the configuration manifold of the PEL.  As the system becomes 

increasingly correlated in motion on the PEL, a first-order phase transition takes place 

between trajectories that remain ergodic and those that are non-ergodic108, 109.  While no 

thermodynamic variables are specifically causal to this transition, there is a direct 

relationship to the features of the PEL108.  Along a similar line of thought, tree 

representations of the PEL have been helpful in evaluating pathways towards low energy 

minima110.  Wales and Bogdan created the discontinuity or tree graphs for several Lennard-

Jones (LJ) potentials to demonstrate the entropic funneling could direct the state of the 

system, as is reflected in the heat capacity calculations110. 

Spatial heterogeneity with regard to dynamic phenomena has been well documented in 

both simulations and experiments of glassy systems87.  The correlation functions of glass-like 

materials are often well described by a stretched exponential fit, pointing to the likelihood of 
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a superposition of relaxation phenomena.  This leads to the assumption of different local 

environments which would accommodate this range in values.  Empirically, the Vogel-

Tammann-Fulcher (VTF) is often used to describe the temperature dependence of the 

dynamics for fragile glasses: 

 
o

D
T T

oeτ τ
⎛ ⎞
⎜ ⎟

−⎝ ⎠=   (2) 

It is mathematically equivalent to the Williams-Landel-Ferry equation used in polymer 

science64, 111.  The accuracy of this fit in so many systems suggests that the presence of a 

characteristic temperature oT , at which the relaxation time would diverge, has a physical 

origin.  This result inspired an early theory by Adam and Gibbs69, which defines the glass 

transition as a loss of ergodicity due to growing cooperatively rearranging regions, described 

by the size of energy fluctuations required to allow a group of particles to collectively relax 

into their local equilibrium.  Other more recent theories and models build on this work, 

utilizing some form of spatial partitioning of the system27, 68.  There is growing experimental 

and theoretical evidence that material dynamics are very different in regions only a few 

nanometers apart at temperatures near the glass transition.  An excellent review of spatial 

heterogeneity by Ediger97 captures a variety of results from experimental and simulated 

systems, as well as potential explanations.  Of note, it is not clear whether the spatial 

heterogeneity is a result or cause of the dynamic heterogeneity.  There is no apparent 

structural cause for these cooperative regions as a liquid is supercooled.  X-ray and neutron 

scattering studies only show small changes in local packing even in samples with viscosity 

changes of 12 orders of magnitude97.  Our model gives us insight into the spatial dynamics of 

a prototypical example of valence-limited glasses, hopefully lending further information 

towards this fundamental question. 
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Within this chapter we extend our work with the T-shaped molecule model to include not 

only structural, but also dynamic information collected from simulation samples.  A paucity 

of low temperature measurements hinders attempts to understand the fragile-to-strong 

Crossover (FSC)102, 112.  Exploration of valence-limited systems have also been inhibited by 

the inability to access low temperatures113.  Our work, which captures low temperature 

supercooled equilibrium states as well as kinetically arrested states, sheds some light on these 

questions.  After defining the model in the appropriate context in Section 2, we describe the 

simulation methods used in Section 3.  We then analyze the equilibrium liquids structure and 

dynamics in Section 4, and compare these with the kinetically arrested, non-equilibrium, 

glass formers reported in Section 5.  In Section 6, evidence of structural heterogeneity in the 

equilibrium system is presented.  We end this chapter with a discussion of our results to date 

and a brief summary of our conclusions. 

 

2.2. Definition of T-shaped Molecule Model 

   The T-shaped molecule occupies the vertex, located at i
G

 on a square lattice, a model we 

previously described1.  Each T-shaped molecule, ασ , has three bonding sites which lie in a 

plane, resulting in 4 possible orientations, 1, 2,3 or 4α = .  When the T-shaped molecules at 

two neighboring vertices, , 'i i
G G

, are oriented such that they each have bonding sites along 

the same edge, we define the resulting connection to be a bond which leads to a favorable 

energetic interaction.  Else, there is no interaction. 

Our simulation samples are in the fully-dense region of the phase diagram where every 

vertex is occupied by a molecule.  While the density of T-shaped molecules (1 per vertex) is 



 
 
 

55 

 

a conserved quantity, the density of bonds is not.  Instead, the density of bonds is strongly 

influenced by the temperature.  In the limiting case of high temperature, the bond density is 

9/8 per vertex on a square lattice114.  As the temperature goes to zero, the bond density 

approaches 3/2 per vertex.   

For convenience and clarity, we restate the Hamiltonian for the fully-dense lattice: 

 ( ) ( ) ( )
, '

; ; '2
i i

H t t i t iα γ
βεβ σ σ−= ∑G G

G G
 (3) 

where  

 ( ) ( )
1 if both molecules have bonding

; ; '    sites along the shared edge , '

0 otherwise

t i t i i iα γσ σ

⎧
⎪

= ⎨
⎪
⎩

G G G G
 (4) 

the Greek subscripts indicate the orientation of the molecule(α = 1,2,3 or 4), t  indicates that 

the orientation may be different at different times, and the sum is over all shared edges (near-

neighbors pairs).  The temperature is expressed in reduced units ( ) 1T βε −∗ = .  We omit the 

asterisks in the following text for convenience.  All simulation samples studied are 128 

vertices by 128 vertices with periodic boundary conditions.  This is much larger than any 

spatial correlation found within the simulation samples themselves. 

In previous work (Section 1.4.3)1,  we reported the transition temperature under the mean-

field approximation as 1
, (3log 3)mf criticalT −= with the supercooled stability limit of 

, 1/ 4mf spinodalT = .  In the following sections and discussion, we will identify other 

temperatures of interest.  However, these transition temperatures provide a reference point 

during our work. 



 
 
 

56 

 

2.3. Simulation Methods 

The glass transition is, by its very nature, controlled by the interplay of the 

thermodynamics and kinetics of the material.  One powerful description of this interrelation 

is the energy landscape paradigm.  We can visualize all possible states of the lattice as 

defining a hyper-dimensional PEL (albeit discrete) in conformational space.  A specific state 

of the system (our simulation sample) m  is located on the PEL at the conformation 

coordinate mxG , where ( ) ( ) ( ){ }1 21 2, , ,
Nm Nx i i iα α ασ σ σ≡

G G GG " .  The numerical subscripts specify 

individual molecules, σ , in orientation α and location i
G

 on the square lattice.  The energy at 

mxG , mE ,is defined by the Hamiltonian and motion along the surface to a new coordinate kxG  

occurs by the change in orientation of a single molecule.   

The energy at each state, however, only defines the intrinsic thermodynamics of the 

system.  We must also incorporate the appropriate transition probabilities k mq →  between 

states such that at long-time ( t →∞ ) the probability that a simulation sample is found in 

state m , mp , reflects the canonical distribution.  (All our simulations were performed using 

the canonical ensemble with our simulation samples coupled to a thermal bath.)  In Section 

2.3.1, we will find that there are many choices of k mq →  which could satisfy the requirement 

and lead to the appropriate distribution.  We employ two different Monte Carlo (MC) 

simulation techniques with their associated transition probabilities in our work.   

The first is a modified Metropolis MC recipe, as described in Section 2.3.2, with which we 

indentify the low temperature ‘equilibrium’ conditions.  If we wish to explore the kinetic 

properties of our model and collect dynamic information, we must also define the physically 

appropriate transition states m kx∗
→

G
 for our model.  The choice of k mq →  is now further 
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restricted to incorporate the energetic impact of these transition pathways.  Residence time 

kinetic Monte Carlo (kMC) incorporating both the use of the landscape description to find 

the transition probabilities and a technique to improve the speed of the simulation is 

described in Section 2.3.3.  Further description of these methods can be found in Appendix 

E. 

2.3.1. Master Equation 

   As the equilibrium probabilities are not known a priori, we use the master equation 

formalism such that any initial distribution explores conformation space according to the 

dynamic path115: 

 
( ) ( ) ( )m

k m k m k m
k k

dp t q p t q p t
dt → →= −∑ ∑  (5) 

The transition probabilities, k mq → , specify the rules of motion along the landscape from kxG  

to mxG .  At long-times, steady state should be reached, so the left hand side of (5) must go to 

zero and the probabilities ( )kp t  and ( )mp t  adopt their equilibrium value.  This results in the 

condition of detail balance with: 

 ( ) ( )exp expk m k m k mq E q Eβ β→ →− = −  (6) 

We notice that the choice of transition probabilities is not unique.  As is often the case, 

even our simple model does not result in an analytically tractable master equation.  Instead, 

we find the dynamic and equilibrium properties by creating a lattice ‘sample’ and using 

Monte Carlo (MC) simulations to evolve this sample in time46, 116.   
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2.3.2. Metropolis Monte Carlo Simulations 

   As mentioned above, two different MC simulation methods were employed for these 

studies.  First, a modified Metropolis recipe117 was employed for equilibration of the lattices.  

Under the modified Metropolis algorithm, the probability of acceptance is a comparison of 

the initial and final states only.  Although the rate of change of breaking a single bond 

increases exponentially with decreasing temperature, all transitions to lower or degenerate 

energy states are accepted (see Figure E-1).  The acceptance rate for this method was 

sufficiently large to cool to very low temperatures relative to the predicted mean-field 

transition.  Thus, the method allows for a simulation sample to explore a large number of 

configurations quickly from a computational stance.   

   In our implementation, we challenge an individual molecule with a random transition from 

its current orientation to a new orientation chosen at random.  The acceptance of the new 

orientation or return to its original orientation completes the move.  We define one Monte 

Carlo step (MCS) to be equal to the same number of challenges as there are vertices on the 

lattice.  However we select the molecule for the move randomly, so in one MCS not every 

vertex on the lattice may be challenged.  While the time step for each Monte Carlo attempt 

under this recipe does not have an explicit connection to real time, and therefore the 

dynamics do not have a clear definition, we note at equilibrium the distribution of states is 

expected to be canonical and the conditions of detail balance is met118, 119.   We consider the 

Metropolis results to represent the true equilibrium description of the system, an assumption 

supported by results (see Section 2.4.1). 
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2.3.3. Kinetic Monte Carlo Simulations 

   In addition to the two conditions described by (5) and (6), extracting dynamic details via 

residence time kinetic Monte Carlo (kMC) simulation- also known as the ‘n-fold method’- 

requires us to define the conformational surface between mxG  and kxG  for all states m and k

118.  The transition state energy, *
m kE →  at m kx∗

→
G

 describes the energy barrier to the change in 

state.  The transition probabilities m nq →  reflect the potential energy difference between mxG  

and m kx∗
→

G
  

 *exp( ( ))m k m k mq E Eω β→ →= − −  (7) 

where 1ω−  becomes the fundamental time scale which encompasses all faster relaxation 

process due to thermal vibrations within the energy well that our coarse grain model neglects.  

Conveniently, because each state is linked via the rotation of a single molecule ( )iασ
G

, we 

define *
m k mE E→ −  as the number of bonds that specific molecule had at state m , which must 

be broken to move to the new state.  Notice that there is no impact of the final orientation of 

that molecule on the transition probability.  This choice also meets the requirements of detail 

balance.   

The traditional importance method, proposing a new state and then accepting, or rejecting, 

that move based on comparison with a random number, is inadequate at low temperature 

because of the large number of rejected moves46.  Instead, we found the n-fold, or residence 

time 118, 120, 121, technique to be very effective.  In this technique, every event is accepted and 

the time between events is weighted by the total probability of moves. 
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2.4. Supercooled Liquid: Investigation of Equilibrated Samples 

Using the modified Metropolis recipe, we are able to quench to very low temperatures, 

creating simulation samples which are in an equilibrium state.  We use the term equilibrium 

to denote samples which reflect path-independent quantities, which are characterized by the 

current conditions regardless of previous temperature history.  In this section, we will present 

results that establish that the MC samples are at equilibrium, and then use these equilibrated 

samples as the initial point for both thermodynamic and kinetic calculations.   

We note that while we can calculate a first-order, mean-field liquid to solid transition 

temperature ,mf binodalT , the significance of the melting temperature and the order of the actual 

transition are not clear from the outset.  One objective is to ascertain the differences between 

the equilibrium behavior and the non-equilibrium behavior.  For the purposes of this work 

and consistency with other sources, we will refer to all simulation samples as supercooled 

liquids without regard to the implication of metastability with respect to a solid.  In a similar 

fashion, all simulation samples that deviate from equilibrium at long-time, as described in 

Section 2.5, will all be classified as glasses without specific demonstration of dynamic arrest. 

2.4.1. Equilibrium Results from Metropolis MC Method 

The simulation samples that are quenched initially via the Metropolis recipe do indeed 

appear to reflect an equilibrium state, with similar energetic and structural length scales of 

low temperature simulation samples that are quenched with the kMC method.  The 

Metropolis recipe does not provide dynamic information, but does search the PEL more 

rapidly because there is no energetic barrier for transition beyond the difference in the 

number of bonds in initial and final states.  If we are able to access a large number of 
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configurations during our simulation time, then we have the ability to meet the conditions of 

equilibrium described by equation (6).  We noted that the measured acceptance rate, the 

percent of MCS that represents motion on the PEL, remains sufficiently high even at low 

temperature implying that we are, indeed, capable of meeting this requirement. 

While we cannot formally prove that these simulations are truly the equilibrium state, 

evidence points to reproducible results that, excluding the initial decay, do not change in 

energy over long simulation periods.  For all results in this section, each simulation sample 

was created at a unique, random, initial condition equivalent to T →∞ .  They were then 

‘quenched’ by using the final temperature during all simulation moves.  The samples were 

relaxed for at least 106 MCS before any data was reported.  In previous work1 we found that 

the Metropolis MC simulation samples had a relaxation time of less than 102 MCS for 

samples as low as T=0.18 (refer to Figure 1.6.3-1).  This gives us confidence we had reached 

the low energy equilibrium state for each temperature.  Ten separate measurements of the 

internal energy density, u , were recorded at intervals of 1000 MCS, from which the average 

was then calculated.  This was repeated for a second independent simulation run with the 

same quench conditions but a different initial configuration.  Both sets of data are reported in 

Figure 2.4.2-1.  Two additional series following the same protocol were generated but 

omitted in our figure as they were not used for the fitting of u .  None of the energy values 

differed by more than 1%.   

Additionally, the simulation samples’ path independence- that is, whether the states could 

be completely defined by the current conditions regardless of previous thermal history- was 

also investigated.  In the stepwise method, a sample was equilibrated at high temperature, 

then ‘quenched’ to the next cooler temperature, where it was equilibrated and the process 
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repeated (temperature steps followed those reported in Figure 2.4.4-1, so individual data 

points could be compared).  This procedure provided a set of simulation samples that is not 

distinguishable from those generated during the direct quench. 

As seen in Figure 2.4.2-1, the samples also approach the high-and-low temperature energy 

limits, as we would expect.  In Section 2.4.3, we indicate the presence of the crystalline state 

(long range enrichment in either orientation 1 and 3 or 2 and 4) as primarily a kinetic 

phenomena.  We note that in the absence of a crystal with lower free energy, any of the 

degenerate minima would be the equivalent thermodynamic equilibrium state122.  Thus, our 

calculation of the configurational entropy in Section 2.4.2, which indicates that the entropy 

remains positive as the temperature goes to zero, is consistent with the absence of a unique 

state with the lowest energy.  The structural ordering documented in Section 2.4.3, which 

occurs due to the anisotropic nature of the molecules, is not representative of a unique 

equilibrium state. 

2.4.2. Configurational Entropy 

There are several different methods to calculate the heat capacity, and thus entropy, for a 

simulation sample.  As the model is defined on a lattice and each molecule has a discrete 

number of orientations, the only entropy present in our system is the configurational entropy.  

If our system is at equilibrium, we can use the thermodynamic relationships 

 ( ),   V
V T

V T

CUC s T s dT
T T

∞

=∞

∂
≡ = −
∂ ∫  (8) 

where vC  is the heat capacity per site and s is the entropy per site.  The entropy density at 

infinite temperature can be easily found using the Boltzmann definition, log(4)
T

s
=∞
= as 

there are 4 orientations at each site.   
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   Alternately, we could measure the heat capacity directly from our simulation results  

because we can measure the fluctuations in the energy, via the variance of the internal 

energy, as 

 
( )2

2V

U U
C

kT

−
≡  (9) 

However, because of the statistical inefficiency of using the variance of the internal energy 

(see Appendix F), we chose to fit the data to an arbitrary function that can be differentiated 

analytically using Eq. (8).  Hyperbolic functions were chosen because the energy has both a 

high and low temperature asymptote (polynomial and simple exponential expansions cannot 

take advantage of the two known values).  We found that 

 
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

2

9 3 tanh 1 tanh8 8
9 3 0.375 0.2560.468 tanh 1 0.468 tanh8 8

b cu a aT T

T T

= − − + −

= − − + −
 (10) 

describes our data well, with a small number of variables (note the -9/8 and -3/8 are set by 

the asymptotes).   

   In Figure 2.4.2-1 (a), we plot the data with its fit (equation (10)).  As mentioned above, we 

use the analytic derivative of equation (10) to calculate the specific heat, shown in (a)inset.  

To insure that this choice does not deviate in a systematic way, the variance of the energy 

measured directly from the simulation samples employing equation (9) is shown with black 

dots (●).  Additional confirmation is given by the close alignment of the slope of the line 

segment connecting adjacent energy measurements marked by the red stars (*).  The entropy 

per site calculated from the integration of /VC T and knowledge of the high temperature limit 

is shown in Figure 2.4.2-1 (b).   
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  The equilibrium conditions generated by this Hamiltonian require that there be a peak in 

the heat capacity at some temperature, CvT .  We draw this conclusion by considering the 

functional shape of the internal energy per site, u .  In the high temperature limit, the thermal 

energy will overwhelm any resistance from bonds and explore the entire energy landscape.   

Thus, the internal energy will be equivalent to the energy of the random state ( 9/8u =− ).   

As this condition is asymptotic as T →∞  and the energy decreases upon cooling, the 

function is by nature concave down above CvT .  As a sample cools (under conditions slow 

enough to maintain equilibrium) towards absolute zero, the molecules will preferentially 

align towards a bonded condition.  Therefore 3 / 2u → −  as 0T →  and below CvT  the 

internal energy function is concave up.  We find this description to be consistent with all 

simulated conditions in this study.  The maximum heat capacity occurs at 0.21CvT =  (recall 

, 0.25mf spinodalT = ). 



 
 
 

65 

 

 
Figure 2.4.2-1: Thermodynamic features of the 'supercooled' liquid 
 (A) u  as a function of T .  The data (●) was fit to an arbitrary analytic function(___).  The 
inset shows VC  calculated by three methods: (●) variance of the energy, (*) slope of the line 
segment connecting adjacent energy measurements, (___) the analytic derivative.  (B) s  (___) 
calculated from the integration of /VC T  and knowledge of the high temperature limit. 
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We note that the greatest error in calculating entropy occurs in the low temperature 

measurements, when relaxation times are the longest, as one would expect.  Computational 

limitations have precluded other investigations from achieving low temperature results123; we 

are fortunate to have a simple model and technique to overcome this difficulty.  However 

within this error our calculations still suggest a positive residual entropy, a result that has also 

been found in an experimental system124.  This quantity can only be reasonably extrapolated 

from low temperature equilibrium conditions.  There is very active research into the 

applicability and definition of thermodynamics and statistical dynamic quantities in the 

immediate vicinity of 0T = , which are beyond the scope of this work125, 126. 

If the configurational entropy of the glass does not go to zero as temperature goes to zero, 

the extrapolated inversion of the liquid and crystal entropies is not thermodynamically 

mandated.  This provides a resolution to the ‘Kauzmann Paradox’ for our system without the 

need for a thermodynamic or dynamic event at lower temperatures.  Indeed, it questions the 

universal applicability of the assumption that one may calculate the ‘ideal glass transition’ 

based on extrapolations of the configurational entropy to 0cs = .  

2.4.3. Structure 

Because of the system anisotropy, there is noticeable ordering as the temperature is 

lowered.  The anisotropic nature of the molecules leads to the formation of ‘back-to-back’ 

pairs so that the non-bonded sides of the molecules face each other.  Structures in the same 

direction as the long axis of the molecule are formed.  The result is local enrichments of 

molecules whose long axis is oriented in the same direction (α =1,3 or α =2,4).  

Measurements of simulation samples at different temperatures show a pronounced increase 

in the size of these domains at colder temperatures.  



 
 
 

67 

 

 
Figure 2.4.3-1: Representative snapshots of simulation samples 
Supercooled liquid simulation samples at (A) T=1.0 and (B) T=0.20 .  Coloring is a guide to 
the eye to distinguish orientations 1├ and 3 ┤from 2 ┬ and 4 ┴ . 

Given that there is a kinetic preference for an aligned system (described in Section 1.4.5), 

which we intuitively relate to the ordered crystalline state, why do we not observe the 
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macroscopic crystal in the MC samples?  When we used the dynamic mean-field (DMF) 

simulation to cool a sample which had a small fluctuation at a temperature very close to the 

transition temperature, we indeed did see a crystalline structure1.  The nature of the DMF 

simulation as a method of steepest decent is such that once it finds one energy minimum, it 

does not continue to explore the configuration space.  The small kinetic preference toward 

the alignment leads to formation of a long range structure when only a single disturbance is 

introduced.  In contrast, either form of the MC simulation permits the sample to explore a 

wide range of energy minima at this temperature, most of which have minimal ordering.  

(Due to the anisotropic nature, there is ordering on a small-length scale congruent with the 

need for the ‘back-to-back’ alignment for bond formation.)  Recently Ediger et al. 127 posited 

that the kinetic rate of crystallization is proportional to the rate of discovery of crystalline 

configurations on the PEL.  In our model, the overwhelming number of non-aligned minima 

would make crystallization unlikely. 

We are able to see clear regions with local enrichments of molecules whose long axis is 

oriented in the same direction (α =1,3 or α =2,4).  These regions grow with decreasing 

temperature, despite their kinetic origin, due to the stabilization of the bonds within their 

boundaries.  Rotation of a molecule to a different orientation would raise the energy of the 

simulation sample by at least one bond, possibly two.   
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Figure 2.4.3-2: Distribution of domain size at different temperatures  
The anisotropic ordering is pronounced when the length of rows/columns in the enriched 
regions are measured in the direction of the long axis (inset: domain length measured in 
perpendicular direction). 

 

The local enrichments demonstrate the model’s tendency toward reversible self-assembly.  

Indeed, a number of other anisotropic or limited valence models and materials share this 

characteristic that local homogeneous patches stabilized by a network of intermolecular 

bonds (e.g.7, 90 and references therein).  Due to the small length scale of these regions with respect to 

the lattice spacing, measurements along the axis in a linear direction are significantly more 

revealing than the traditional radial distributions and structure factors.  We have chosen the 

expectation value of the domain size, or length scale of local enrichment of either the 1├ and 
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3 ┤or 2 ┬ and 4 ┴ orientation, as a convenient representation of the degree of orienting.  In 

Figure 2.4.3-3 we can clearly see that there is an onset of increased orientation at 

approximately 0.5structureT = , but that there does not seem to be any signature of divergence in 

this length scale as 0T → .  It is important to note that there are approximately an equal 

number of molecules in each orientation within a sample during the duration of the 

simulation.  The locally oriented regions do not necessarily indicate an underlying phase 

transition due to a symmetry breaking in orientation.   

 
Figure 2.4.3-3: Expectation value of the domain size at different temperatures 
The expectation value of the linear distribution in the direction of the long axis(▲) and 
perpendicular to the long axis(▼)  
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2.4.4. Relaxation Time 

We employ the relaxation time as proxy for rheological measurements of the material’s 

viscous character.  Among many possible choices for the relaxation time, we explore the 

relaxation time for two autocorrelation functions within this work.  The bond autocorrelation 

function, ( )b ot tφ − , comparing the bonding state of the lattice at time t  to that at the time 0t  

defined as: 
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We also simultaneously evaluated the molecule-orientation autocorrelation function, 
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The structural resistance and solid-like features in our simulation samples are provided by 

the bonding structure.  As has been observed in other models3, the local structure can 

reinforce the bonding along a specific edge, , 'i i
G G

.  Thus, a bond may break and reform 

quickly, returning to the original structure and not suggesting actual progress towards 

relaxation.  Further, in our model several different orientations of the molecule at a specific 

site may result in the same local bonding characteristics.  The results for the orientation and 

bond relaxation functions were very similar.  As the bonding state defines the 
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thermodynamics and as we also use bonding to describe the structural correlation functions, 

we choose to report the bond relaxation function results here.  Later, in Section 2.6 we will 

refer to the orientation times. 

We evaluated the equilibrium relaxation time, τ , for the simulation samples that were 

created by quenching from an initial random state (infinite temperature) to the final 

temperature and equilibration for more than 106 MCS with the Metropolis method.  

Following equilibration, the data for the autocorrelation functions was collected using kMC 

simulations.  As described earlier, it is important that we consider the transition states to 

capture appropriate motion on the energy landscape when we are directly evaluating any 

function involving time dependence. 

There are many ways to characterize the relaxation time from the autocorrelation function 

results.  For this work, the use of the integrated relaxation time, or mean relaxation time, is 

preferred because it incorporates both the influence of the characteristic time, cτ , and the 

stretching exponent, β .  We calculated the relaxation time by first fitting the autocorrelation 

function with the stretched exponential equation, ( ) s
t

t e
β

τφ
⎛ ⎞−⎜ ⎟
⎝ ⎠= .  The Euler gamma function 

then allows us to calculate the integral.  
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It also provides a clear connection to the relaxation time calculated by a single exponential 

relationship.  In the simple exponential relaxation function, the relaxation time remains the 
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same when integrated over the interval, ( )
t

t e τφ −=  or 
0

t
e dtττ

∞ −= ∫ 38.  We found that in all 

cases the stretched exponential provided a better fit than a single exponential function.   

The values of τ  and β  are reported in Figure 2.4.4-1.  We monitored the decay of the 

correlation function and fit the data to each measurement separately to ensure that the 

simulation sample was exploring similar regions of the PEL and that we did not neglect a 

longer timescale.  As the error of the integrated relaxation time τ  was small (each 

measurement is reported separately and at most temperatures the symbols overlap), we have 

confidence that the reported values reflect the actual relaxation times.  On the other hand, 

there was a larger variation in β  (Figure 2.4.4-1 inset).  Other authors often report β  as 

nearly independent of temperature, noting that the change in the vicinity of gT  is minimal3.  

It has been noted that the value of β  is very sensitive to the fitting method128, 129.  We 

considered different ways to fit the data, particularly whether to include or exclude very short 

or long-time processes.  Compared to the variance in values of τ  or β  between quenches at 

the same temperature, neither truncated data set had fitting parameters which were 

significantly different.   

The value of β  can be used as an indicator of the kinetic fragility as it represents the non-

exponential movement of the simulations sample on the PEL.  Indeed a dramatic change in 

β  upon a return to simple exponential relaxation is given as the hallmark of the fragile-to-

strong crossover (FSC) in a spin facilitated kinetic Ising model129.  Despite the spread of our 

measurements, since we are considering the FSC, it is interesting to note that the simulation 

samples become more fragile as the temperature is lowered to : , 0.5fragility onsetTβ ≈ .  The value 
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of β  then stabilizes until it begins to increase at : 0.26 0.24FSCTβ ≈ − .    Again, however, the 

specific temperatures are difficult to establish. 

 
Figure 2.4.4-1: The integrated relaxation time of supercooled simulation samples 
The points (●) are independent fits of relaxation runs (4 at T=0.16, 3 at T=0.18, 8 at T=0.20, 
10 for all other) which overlap closely on this scale.  The data is fit in to the (__) Arrhenius, (-
-)Vogel-Fulchur and (●●●) Adams-Gibbs equations.  Inset: shows the (●) values of the 
stretched exponent β , (●) the average value and (--) as a guide to the eye.  Note that while x-
axis is 1/T, to match the main plot for convenience to the reader, the y-axis on the inset is 
linear. 
 

The integrated relaxation time as a function of temperature was fit with four functions.  As 

expected from the implied cooperative relaxation, the Vogol-Tammann-Fulchur 

function(VTF): 

 
2.85
0.0230.656o

D
T T T

oe eτ τ
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠= =  (14) 
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fit the complete data set better than an Arrhenius function: 

 ( )aE 3.32T T0.368oe eτ τ
⎛ ⎞⎜ ⎟
⎝ ⎠= =  (15) 

We notice that the activation energy, AE , in the Arrhenius fit is 3.32, which is slightly 

larger than that which would be required to break three bonds.  In regions of the system 

which are fully satisfied, change in orientation of a monomer requires that three bonds be 

broken.  This represents the highest energy barrier to local relaxation.  Whereas, at higher 

temperatures samples have a smaller bond density, the largest energy barrier may be 

circumvented by longer pathways over the PEL, there will be a time penalty for this diffusive 

motion.  Therefore, while the energy scale is appropriate for both scenarios, the details of the 

relaxation mechanism remain unknown. 

With the thermodynamic calculations made before, we are able to evaluate the fit of the 

Adam-Gibbs69 (AG) equation.  This equation, and the theory on which it is based, was 

inspired in part from the excellent empirical fit of the VTF function.  If we postulated that 

there is a physical significance to oT , the singularity suggests a divergent relaxation time 

consistent with the ideal glass transition.  oT  is often then equated with Kauzmann 

temperature KT .   

  The configurational entropy, calculated at each temperature as shown in Figure 2.4.2-1, is 

known, so it is not a degree of freedom in our fit for the AG equation: 

 
1.89

13.6c c
C

TS TS
oe eτ τ

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =  (16) 

The fit is relatively poor.  However, if we restrict the fit to a smaller region closer to the 

expected glass transition, as is commonly done128, the fit greatly improves (not shown).  
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Recent work suggests that the AG should also fit well if extended above the activated regime, 

where the cs  has little dependence on temperature123.   

  Alternative relationships are also being actively proposed as the source of the relaxation 

behavior and the nature of gT  is investigated.  Recently, Elmatad et al. proposed a quadratic 

fit, which could be used to collapse an impressive range of data from structural glass 

formers112.  We could use this functional form to fit our data, either over the entire 

temperature range, 

 
( ) ( )( )

22 223.32 2.281 12.281.48
a

a

TJ
T T T

oe eτ τ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠= =  (17) 

or alternately over an arbitrary subset of temperatures (no fits are shown).  The physical 

rational behind this functional fit, based on the activation energy required to relax a domain 

of a particular size, limits its application to temperatures where the system movement on the 

energy landscape is dominated by activated, cooperative motions ( aT T< ).  Likewise, it will 

no longer apply when the temperature is further cooled ( xT T< ) returning to motion without 

correlated transitions.  The authors expected that below xT  the relaxation dynamics would 

return to an Arrhenius form.  We did not find unique choices of aT  and xT  while attempting 

to fit this function to our relaxation data.  However, our data is consistent with a transition 

into a cooperative, fragile, relaxation regime, followed by a return to Arrhenius, strong, 

behavior at even lower temperature, as demonstrated elsewhere. 
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Figure 2.4.4-2: Exponential fits of relaxation time in low and high temperature data 
Separate Arrhenius fits to the (__) lower temperature ( 0.16 0.2T< < ) and (--) higher 
temperature ( 0.5 1.0T< < ) data highlights the changes in relaxation time temperature 
dependence.  Some adjacent data points continue to be well fit, but there is gradual change 
indicating fragile behavior in the window between the two regions.  

   

To highlight that there is a cooperative relaxation temperature regime flanked both at high 

and low temperature by simple, non-cooperative relaxation, we fit the high and low 

temperature data to separate Arrhenius fits.  Notice in Figure 2.4.4-2 that the activation 

energy of the two fits is different, however, both are on the order of the energy required to 

break three bonds ( low , 3.61, high , 2.92A AT E T E= = ).  At lower temperatures it is 

elevated, as we would expect.  There is no indication of a divergence in the relaxation time of 

the equilibrium system.   
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2.5. Supercooled Liquids: Nonequilibrium Glassy States 

As expected, the simulation samples prepared using the kMC method and Metropolis MC 

recipe produce the same results when at high temperatures.  However, at lower final 

temperatures, the simulation samples which are relaxed with kMC develop a change in their 

dynamics during quenching.  We note that if at any specified ‘observation time’ not all 

samples will have equilibrated, instead they are arrested at a ‘glassy’ state.  The structure of 

these low temperature, non-equilibrium samples is significantly different than those prepared 

with the Metropolis quench.  Because we are able to observe the simulation samples, 

evolution for very long-times, we notice that there is a change in the relaxation behavior at 

the fragile-to-strong crossover (FSC).  Further, we can continue to investigate temperatures 

beneath the FSC and find that simulation samples will, given enough time, return to 

equilibrium.   

We first establish that our system has traditional glassy behavior by performing a constant 

rate quench in Sec. 2.5.1.  The simulations are terminated when they reach T  close to zero.  

They are not allowed to relax, but presumably would age, if investigated.  Our goal is to 

demonstrate that our model behaves as a glass former and mimics experimental work.   

In Section 2.4, we use the Metropolis MC simulations to prepare equilibrium sample for 

evaluation.  We can determine the relaxation dynamics after equilibration using kMC (see 

2.4.4).  However, the Metropolis MC method does not give us any information about the 

dynamics during a quench.  Thus, we turn our attention to relaxation during quenching at a 

‘constant temperature’ where the simulation is in contact with a heat bath at the final 

temperature during all steps.  Further comparison of the equilibrium samples prepared 

initially with the Metropolis MC recipe and the simulation samples evolved with kMC, for a 
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period of time at which some samples seem to have equilibrated and others have not is found 

in Section 2.5.3.  Samples quenched with either MC method appear to have the same 

characteristics as we would expect from the condition of detail balance.  However, samples 

that have not equilibrated indeed have structural characteristics which reflect this. 

2.5.1. Constant Rate Quenches 

We can observe dynamic changes and thermodynamic changes upon cooling in 

equilibrated samples.  However, we are able to observe a clear signature of a traditional glass 

transition by inducing kinetic arrest with a rapid quench, similar to those performed in the 

laboratory.   

Using the n-step kMC algorithm, we are able to cool the system at a constant rate.  The 

simulation samples are initialized at a random state as before and at 5T = , which is a very 

high temperature in our system.  They are then cooled at the rate T
tγ Δ= Δ  by performing a 

MCS using kMC at the current T .  The resulting elapsed time is then used to calculate the 

new T .  As the simulation sample cools, each MCS takes longer and results in a larger jump 

in temperature.  At some point, depending on the quench rate, the temperature jump results in 

the simulation sample leaving an equilibrium quench path.  At this point, the sample has 

arrested and does not find any more satisfied states.  The simulation is stopped when the new 

temperature is negative.  Results from various quench rates are shown Figure 2.5.1-1, with 

the inset providing fits for each data set and the lowest temperature truncated.  It is important 

to note that we repeated simulations with different initial random configurations at each rate.  

The discrete nature, particularly where there are large temperature drops, leads to clusters of 
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points.  To demonstrate that these are due to individual runs, not from a single sample 

becoming arrested in that area, the inset provides fits to each simulation run separately. 

 
Figure 2.5.1-1: Constant rate kinetic Monte Carlo simulation samples  
Energy density as a function of T for 10 independent simulations: γ =0.01(*), 0.001(▲), 
0.0001(▼), 0.00001(●).  Inset: To emphasize that there are multiple initial conditions 
simulated each data set is individually fit.  We omit the lowest temperature data. The fit is an 
arbitrary equation similar to Eq. (10) (see Section 2.4.2) without the expectation that the low 
temperature asympote will be -9/8, intoducing a 4th fit variable: 

( ) ( ) ( ) ( )( )23 tanh 1 tanh8
b cu d a aT T= − − + − .   

 

Such behavior is commonly seen in dynamic scanning calorimetry (DSC) measurements in 

the laboratory.  This effect is also captured in several other models27, 130.  It conforms to the 

general understanding that a slower cooling rate will prevent the system from falling out of 

equilibrium at higher temperatures and depress the measured glass transition.  Presumably, 
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an infinitely slow quench would describe the supercooled equilibrium state with the same 

results as can be found in the previous Section.  Therefore, we conclude that we do model a 

glass forming system and that our results are not the due to some unphysical characteristic of 

this Hamiltonian. 

2.5.2.  ‘Constant Temperature’ Quenches: Evolution with Time  

In the context of the energy landscape paradigm, the physical origin of kinetic arrest is 

generically represented as an inability to relax when trapped in a potential well.  Thus, the 

glassy system has a higher energy than the equilibrium system due to its large number of 

unbonded molecules.  We perform a ‘constant temperature’ quench by initializing a 

simulation sample at a random configuration and running the kMC simulation against a 

constant temperature heat bath.  Thus, the energy of the transition states are constant.  The 

exploration of the PEL by the simulation sample leads to a low energy state, which is not 

discernible from the equilibrium state (as determined by our metrics thus far) if the 

simulation is run for long enough time.  

In Figure 2.5.2-1 the evolution of the energy with time at a given temperature is plotted on 

a semi-log plot.  The range of time scales for the simulation samples to reach their final 

energy is dramatic.  In order to determine whether the low temperature patterns that we see 

are independent of the choice of initial state or highly dependent on individual quench 

pattern, additional simulation samples were quenched at 0.16,  0.14 T = and 0.12   These 

temperatures were chosen as the samples evolved sufficiently to see their long-time behavior 

during the ‘observation time’ of our simulations, but would be most sensitive to their 

immediate environment on the PEL.  There were some deviations in the curves of separate 

samples quenched under the same conditions as we would expect from diffusion over 
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different regions on the PEL, but they are small; and, overall, the relaxation paths coincide as 

can be seen in the figure.   

Initially, all the samples relax quickly, as they are very far from equilibrium.  Following 

this preliminary growth in bonding, we observe a very interesting trend.  When quenched 

against moderately low temperature baths, above 0.3T ≈ , the simulation samples follow a 

single curve as approach they their long-time energy values. We note that these values are 

very similar to those which are very close to the equilibrium values found by the Metropolis 

MC, consistent with the hypothesis that these kMC simulations are also in equilibrium.  

Neglecting the initial portion of the quench, we also find that the simulation samples 

approach their final equilibrium value through a sequence of states which are also in 

equilibrium, although at a higher ‘effective’ temperature.  This result is congruent with recent 

studies of colloidal systems131, 132. 
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Figure 2.5.2-1: KMC simulation results: ‘constant temperature’ quench 
Starting from a random configuration, kMC was used to evolve samples against a constant 
heat bath temperature.  All quenches, shown in (A) are plotted from high to low by color.  A 
subset of curves are replotted in (B), using new colors for ease of anaylsis by the reader. 
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In simulation samples quenched against heat baths with lower temperatures, we no longer 

observe this simple curve.  Figure 2.5.2-1 (B) shows a subset of the curves from (A) with a 

different choice of colors to make inspection of this region easier for the reader.  An 

inflection point can be seen starting at 0.24KMCT ≈  such that the simulation sample’s energy 

no longer approaches the equilibrium value in an asymptotic fashion with time.  The energy 

remains relatively constant during two different windows in time, visually appearing as 

plateaus on the graph.  This indicates that there is a kinetic reason these simulation samples 

become arrested during observations on this time scale, exploring the PEL at that energy for 

a significant length of time.  This multiple step phenomena, in which there are distinctly 

different dynamics during separate time scales as the simulation sample quenches towards 

equilibrium, may be reflected in the relaxation dynamics of samples after they have 

equilibrated.  We note that there was indication of such a change in the temperature region 

same region in Section 2.4.4 

Several explanations have been proposed for this phenomena.  Caging, in which some 

molecules are surrounded by immobile molecules that allow changes only on long-time 

scales has been proposed as an explanation for the development of plateaus in other models3, 

133.  Alternately, this feature may represent regions in which the heat bath temperature is 

sufficiently low such that the energy required to break one, two, or three bonds becomes 

significantly different.  This would cause the kinetics to change as the sample evolves to 

lower energy via pathways requiring fewer bonds breaking and more ‘diffusion’ of 

vacancies.  We speculated in our previous work1 that this may be the mechanism behind a 

fragile-to-strong crossover (FSC). 
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2.5.3. ‘Constant Temperature’ Quenches: Glassy Structure 

It is interesting to compare the domain size for the simulations samples quenched using 

kMC with those for the equilibrium cases created with the Metropolis MC (Section 2.4.3).  

All the measurements are made at the end of the respective simulations.  When the kMC 

simulations appear to reach equilibrium, we find that the expectation value of the domain 

size is similar to that of simulation samples equilibrated with the Metropolis MC method.  

However when the final state of the simulation is not yet at equilibrium and the sample is 

considered arrested or glassy, the expectation value of the domain size becomes much 

smaller.  Thus for the kMC simulation samples, the domain size does not grow 

monotonically with lowering heat bath temperature, but instead deviates when the simulation 

sample is arrested on the observed time scale.  Equilibrium simulation samples should be the 

same regardless of what choice of transition probabilities is chosen, as long as they meet the 

condition of detail balance, so this is the result we expect.  A , 0.18 0.16kMC structureT ≈ −  the 

domain size begins decreasing with temperature.  This is the same region in which the final 

values of the energy no longer reach the equilibrium value, but instead have fewer bonds. 
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Figure 2.5.3-1: Expectation value of the domain size at different temperatures 
The expectation value of the domain size in the direction of the long axis(▲) and 
perpendicular to the long axis(▼).  
 

We have stated earlier that the formation of these regions is not a thermodynamic property, 

but instead, the result of the preferred kinetic pathway as the simulation sample traverses the 

PEL. What is the source of the structural change?  We know that the overall energy of the 

glassy simulation samples is higher than predicted at low temperature as compared with the 

equilibrium configurations.  Thus, it is a requirement that there be a lower density of bonds, 

which would inhibit large aligned regions.  Additionally, it may be that there are pathways on 

the PEL which are no longer accessible, or are extremely unfavorable due to the separation of 

time scales between processes which break different numbers of bonds.  This comparison 

demonstrates that there is a distinct difference in the kinetics between the equilibrium and 

non-equilibrium simulation samples as reflected by the resulting structural features.   
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2.6. Dynamic Heterogeneity: Evidence of Cooperative Motion 

Currently we have two conflicting views of the length scale.  First we demonstrated that 

the equilibrium supercooled liquids have an increasing domain size (Section 2.4.3) starting 

near the temperature at which we begin to observe cooperativity.  This length scale increases 

in a linear fashion as 0T → , without either diverging, or showing a change at the FSC.  We 

see activated dynamics and a clear stretched exponential bond relaxation function (Section 

2.4.4) as the temperature is lowered in the same region the domain size begins increasing.  

However, we see at the FSC a return to Arrhenious behavior, suggesting length scale has no 

impact below the FSC.  This naturally leads to the question of how these two sets of 

measurements are related.  Particularly, since there seem to be at least some spatially 

dynamic heterogeneity (SDH) implied by the use of the stretched exponential, 

characterization of these relationships between length-scale and time-scale are important.  In 

Section 2.4.3, we used the bond relaxation time, bondτ  for our analysis of the system 

dynamics, however, concurrent measurements demonstrated the same trends and similar 

numeric values in the orientation relaxation time, orientationτ .  As the domain size was 

determined based on orientation, we will monitor the change in the orientation with time 

during this analysis. 

We can quickly see that the dynamics suggest a non-trivial relationship between the length-

scale and time-scale.  The limitations of our system have not yet made a formal analysis of 

this system relevant; however, we do find the mathematical description useful in describing 

our work.  The fundamental correlation function now involves a four point correlation 

function, the change in length scale (two points) and the change in time scale (two points).   
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  We are able to visually establish the presence of spatially correlated dynamics in our model.  

In Figure 2.6-1, we show a (40 x 40) set of vertices from the larger simulation lattice. We 

report the time for the molecule at each vertex to change orientation for the first time after an 

arbitrarily selected time, ot .  To compare each sample despite the disparate time scales at the 

three temperatures, we choose to represent the time to change orientation at each vertex 

relative to the distribution of times at that temperature alone.  For clarity, we group the 

molecules into quintiles based on the time for each molecule to change orientation for the 

first time.   

We observe the length scale of spatially correlated motion grows as the temperature 

decrease.  In particular, there are fewer regions which have a checkered appearance, which 

arises from individual molecules on neighboring vertices changing orientation at time 

intervals greater than 20% apart.  While the choice of the characteristic relaxation time is 

nontrivial (as discussed below), the increase in the size of dynamic heterogeneities is 

predicted by kinetically constrained models28. 
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Figure 2.6-1: Representative of supercooled samples, time to first rotation 
The time required to for initial rotation of a molecule at each vertex within an equilibrated 
simulation is roughly distributed in 5 Sections, from shortest to longest, to emphasize the 
spacial distribution: (■) ~first 20%, (■) ~ 20-40%-,(■) ~40-60%,(■) ~40-60%, (■) ~longest 
20%.  From left to right 0.4,  0.3 and 0.2 T =  (each sample is normalized separately). 



 
 
 

90 

 

The representation in Figure 2.6-1 highlights the changes in movement along the PEL that 

occur as the simulation temperature decreases.  At moderate temperatures, the simulation 

sample can still overcome the energy barriers involving breaking several bonds.  Thus, the 

time for a molecule to change orientation for the first time is not as strongly dependent on the 

recent changes by its near-neighbors as it will become at lower temperatures.  This is similar 

to the observation that the domain size is smaller at high temperature.   

The relaxation time data in the range of 0.4 T =  and and 0.3T =  suggest fragile 

dynamics, and therefore, cooperativity.  In this regime, the number of bond influences the 

motion of a molecule.  Thus a change in the orientation of a molecule may facilitate or hinder 

the orientation changes of its near-neighbors.  However, we continue to see a growth in the 

size of the correlated domains as the temperature cools past the FSC to 0.2T = .  This region 

has Arrhenious dynamics and should not necessarily demonstrate SHD. 

We have not yet addressed the question whether there are ‘fast’ and ‘slow’ regions. Are 

there spatial groupings of molecules that continue to remain mobile and change orientation 

quickly with respect to other regions of the lattice?  It is possible to evaluate the mobility of 

an individual vertex by checking whether the molecule is more likely to change orientation 

again immediately after it changes for the first time.  We do this by recording the time 

intervals between changes in orientation of the molecule at each vertex. 

Evaluating the data for the time between successive changes, we may see that an individual 

molecule will continue to change orientation many times in an interval, then remain 

stationary, before eventually resuming a sequence of quick changes.  This would be a time-

scale of the changes in mobility of an individual molecule, ( )mobility iτ
G

.  Since the motion of a 

molecule can facilitate change in its near-neighbors, we may see more, less, or similar spatial 
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heterogeneity in ( )mobility iτ
G

 as we do in ( ) first change iτ
G

, the latter represented in Figure 2.6-1.  

Further, how are either of these values related to the overall relaxation time of the correlation 

function we previously measured orientationτ ?   

We have two cases to consider. If the time scale of changes in mobility of the molecules at 

all vertices is similar, then we can find the average time scale of mobility 

( )mobility mobilityiτ τ≈
G

.  Therefore while there is SHD, the time for a molecule to change 

orientation for the first time roughly represents the overall correlation time.  We find that 

 first change orientationτ τ= .   Alternately, ‘fast’ regions stay ‘fast’ and there are large spatial 

heterogeneities with respect to mobility.  In this case, the relationship between 

 first change orientationτ τ≠  is much more complicated, as the relaxation time of the correlation 

function scale would be dominated by molecules which require a long-time to change. 

Based on the spatial groupings of the time to the first change of a site (Figure 2.6-1) we 

find compelling evidence of SHD.  The question remains how important this feature is to the 

overall dynamics of the glass.  We record the time between changes in orientation for all the 

molecules from samples equilibrated at the same temperature as those in Figure 2.6-1 to 

make sure that we capture the time scale for ( )mobility iτ
G

; this data is collected for 10 times the 

number of MCS required for the change in orientation to occur.  Recording the length of time 

that each molecule spent in the same orientation, the distribution of relaxation times was then 

fit to a Gaussian curve, shown in Figure 2.6-2.  We can compare these reported times to the 

relaxation time orientationτ . 
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Figure 2.6-2: The distribution of the time for the molecule to change orientation 
Tracks the average time it takes for an individual molecule on the lattice to change 
orientation (units log(t/ ov )) for at each vertex, then plots the histogram.  The distribution for 
each sample is well fit by a Gaussian curve with (■) at ( )0.2 13.04 0.89T μ σ= = = , (■) at 

( )0.3 8.64 0.21T μ σ= = = , (■) at ( )0.4 6.58 0.11T μ σ= = = . 
 

We can see this from a rough comparison of the overall relaxation times for the entire 

lattice and the average time to rotation of individual molecules.  We report the values of 

bondτ  in Section 2.4.4, which are very close to the values of orientationτ  , we discuss here for 

logical congruency.  The integrated relaxation orientationτ  times are 6.97, 9.77 and 15.75, with 

decreasing temperature ( 0.4, 0.3, 0.2T T T= = = ).  We note that these are longer than the 

time it takes for the sites to change for the first time indicating  first change orientationτ τ<  and that 
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there is some form of correlation time related to the persistence of the orientation of an 

individual molecule. 

Overall bond percolation, the creation of a geometric network which spans the system, has 

been shown to occur at temperatures above the glass transition.  Indeed, in our system, 

simulation samples in the fully-dense state will always have a space spanning bond network 

(Appendix B).  Therefore, structural percolation cannot be the signature of the glass 

transition, nor the sole reason behind the dramatic increase in relaxation times.  Alternately, 

it has been postulated that the increase in modulus at the glass transition is due to percolation 

of a dynamically slow network of the glass forming molecules, trapping pockets of 

dynamically fast droplets87.  This is supported by the idea that the propagation length of 

mobility is smaller in strong materials than in fragile materials28 and that the network 

structure suppress string like motion134.  While the overall molecule density is constant 

(every vertex occupied), the bond density is a non-conserved order parameter and may 

provide the key to unraveling the distributions of fast and slow molecules.  

We have attempted a variety of metrics to determine whether there is such a network 

structure in our systems.  In Figure 2.6-3, the average time between changes in orientation for 

an individual molecule is shown.  Those sites that retain the same orientation over a long 

period of time are shown in red/orange (note time scale on colorbar), so a network of sites 

which persist for a long-time would appear as a red network.  Thus far, we have not 

identified clear evidence of such behavior.  However, this choice would be very sensitive to 

time scale and our work certainly does not yet exclude the possibility of this dynamic 

mechanism. 

Regions of molecules favoring a specific ordering grow with decreasing temperature 

(Section 2.4.3).  As changes in orientations of highly bonded molecules are strongly 
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disfavored due to the transition states, it may be that these regions persist for kinetic reasons.  

This result is consistent with a dynamic viewpoint in which the concentration of mobile 

molecules is also decreasing28.  This indicates that the overall relaxation of the system -- the 

time it takes to no longer carry any correlation with the initial state--would reflect the process 

required for all molecules to have become mobile.  If so the overall exchange rate between 

slow sites and fast sites, mobilityτ , becomes the time scale associated with the overall system 

relaxation87, 135.  This time scale may be the same as the relaxation times we calculated, or 

even longer than that associated with orientationτ  or bondτ  and not documented by any of our 

current metrics.  Huang and Richert found that exchange structuralτ τ>  for all temperatures in their 

experimental system135.  (This would be equivalent to the statement ,exchange orientation bondτ τ τ>  in 

our work.)  Further, the length scale and relaxation time scale have been shown to be coupled 

in a non-trivial manner leading to the necessity for a more complex analysis to fully 

characterize this form of behavior.   

In future work, investigation of SHD could be evaluated for this system, however, we 

would need to exercise caution to consider the system anisotropy with respect to the i  and j  

axis as demonstrated in Section 2.4.3.  The susceptibility of four-point correlation functions 

has successfully been used to quantitatively demonstrate the relationship between correlation 

length and relaxation time scale in a variety of systems134, 136.  However these values would 

be difficult to extract in our simulations due to the length of time required to capture 

sufficient information to calculate the appropriate variances.  Instead, a recent simplification 

of the values by using several approximations and the results of the fluctuation-dissipation 

theorem and the specific heat128, 137, 138 has lead to the development of metrics using 

relaxation times and thermodynamic variables which may be more accessible128, 137, 138. 
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Figure 2.6-3: Representative of supercooled samples, average time to rotation 
These figures represent the average time it takes for an individual molecule on the lattice to 
change orientation (units log(t/ ov )) at each vertex, note color bar is a different scale at each 
temperature.  From top to bottom the temperature is 0.4, 0.3, and 0.2 respectively.  The 
fastest times are blue, the slowest red.  
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2.7. Discussion 

Establishing that the simulation samples quenched with the Metropolis MC method were 

indeed at equilibrium, due to the reproducibility, path independence and correct limiting 

behavior of the simulation samples, we are able use these samples as a starting point to 

evaluate low temperature conditions.  Additionally, this provides a backdrop against which 

the deviation of samples quenched with kMC from the known equilibrium behavior may be 

clearly illuminated.  We hope to extract from this comparison an understanding of the 

vitrification process in our system, establishing relevant temperatures and properties. 

A wide variety of temperatures have been identified within this work and a partial list is 

included here.  The subscripts from Chapter 1 have been extended to provide clarity in the 

context of this discussion. 

Temperature Value Section Located 
,mf binodalT  ( ) 13log(3) 0.7− ≈  1.4.31 

,mf spinodalT  0.25 1.4.31 

,o DMFT  
0.24  1.6.21 

, :metropolisMC FSCTβ  
0.24 0.26≈ −  1.6.31 

,o MetropolisMCT  
0.07  1.6.31 

CvT  0.21 2.4.2 

structureT  0.5≈  2.4.3 

: ,fragility onsetTβ  0.5≈  2.4.4 

:FSCTβ  0.24 0.26≈ −  2.4.4 

oT 0.027  2.4.4 

aT 0.46 0.5≈ −  2.4.4 

xT 0.22 0.24≈ −  2.4.4 

kMCT 0.24≈  2.5.2 

,kMC structureT  0.18 0.16≈ −  2.5.3 

 



 
 
 

97 

 

The comparison of all these reported temperatures, both those derived from an analytic 

approximation and three different simulation techniques, lead to an interesting conclusion.  

We are able to distinguish three clear temperature regions, with distinctive kinetic properties 

based on the underlying thermodynamics.  We present a synopsis in this paragraph followed 

with greater detail.  In the high temperature regime where the relaxation is Arrhenius, the 

influence of the transition states and height of the energy barriers has very little impact.  As 

we move to colder temperatures, we find the onset of an activated regime near 0.5onsetT ≈ .  

Below this temperature, the simulation sample’s movement on the PEL becomes influenced 

by the transition states.  We notice that the domain size begins increasing and the stretching 

exponent reaches its low temperature plateau.  The simulation samples experience 

cooperative relaxation and the orientation of near-neighbors is very important on the 

motions.  The simulation samples also exhibit both kinetic and thermodynamic fragility.  We 

are able to access very low temperatures and see a return to strong behavior, with an increase 

in the stretching exponent and Arrhenius temperature dependence in the relaxation time.  The 

fragile-to-strong crossover temperature, 0.24 0.25FSCT ≈ −  , appears to be related to the 

thermodynamic details of the system.  In the next few paragraphs we will weave together the 

observations that lead us to this description.  

At high temperature, the system will move easily over the PEL and explore large regions 

easily until the thermal energy is on the same order as the bond energy ( 1T ≈ ).  Below that 

temperature, the transition states will begin to have an effect and there will be an onset to 

activated dynamics.  In a mean-field description, our model experiences a first-order 

transition at , 0.7mf binodalT ≈ , however we don’t find this temperature to be a dramatic 

transition in our kMC results.  Instead, we note that by 0.5T ≈  , which we identify as onsetT , 
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a number of results show a clear change in character and signal entry into an activated 

regime.  Thermodynamically, there is no clear change in the internal energy of the 

equilibrated structures, although the heat capacity increases strongly in this region.  Our best 

indication of thermodynamic fragility is that the temperature dependence of the relaxation 

time can no longer be well described with a simple Arrhenius relationship, but becomes 

super-Arrhenius below aT .  We notice this in all three simulation methods.  This observation 

has been found in other models139, however we note that the critical temperature suggested 

by the VF fit is very low, e.g. 0.027oT = , foreshadowing that this function does not describe 

the approach to an ideal glass transition, which would be barely distinguishable from 0T = .  

In this same intermediate range we find the clear kinetic fragility, as well.  The stretching 

exponential β  from the fit of the correlation functions, which has been decreasing with 

temperature, reaches its lowest values at : , 0.5fragility onsetTβ ≈ .  During the temperature range in 

which the kMC thermodynamics remain fragile, the value of β  remains constant, 

demonstrating that relaxation of the correlation function is clearly non-exponential.  We 

notice that there is a clear onset of a growing length scale of structures on the lattice at this 

temperature, 0.5structureT ≈ .  This length scale is kinetically, not thermodynamically 

determined, but does indicate that the near neighbor orientations, as described by the 

transition states, are beginning to have a large influence. 

There is a second important grouping of temperatures reflecting changes in the 

neighborhood of 0.24T ≈ , which we believe reflect the FSC.  Under the mean-field 

approximation, the spinodal is the temperature at which the system becomes unstable with 

respect to the liquid phase and will be trapped in an energy minima in the absence of thermal 
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fluctuations.  During our DMF simulations, we are able to evolve a simulation sample from a 

homogeneous, supercooled liquid state to a heterogeneous, low energy minima via a very 

small perturbation.  The critical temperature of a VF fit in the DMF simulations , 0.24o DMFT =

is very close to the temperature of the mean-field spinodal ( , 0.25mf spinodalT = ).  This would 

indicate complete arrest of the motion on the landscape if the system did not have thermal 

forcing available to allow it to escape energy minima. 

When we consider the results of the kMC, the change in relaxation time with temperature 

can also be well fit by an Arrhenius function below 0.22 0.24xT ≈ − , indicating a 

thermodynamically strong glass former.  We see that at : 0.22 0.24FSCTβ ≈ − , the stretched 

exponential now begins to increase with decreasing temperature, becoming kinetically 

stronger. (This is similarly observed in the previously reported Metropolis MC simulations 

where , : 0.22 0.24metropolisMC FSCTβ ≈ −  despite the omission of the details of the transition states).  

We do not observe a dramatic change in the slope of domain size, indicating that there is not 

a diverging static length scale that at the FSC. 

We’ve established that, for our model, there is an increasing, but not diverging, static 

length scale for simulation samples equilibrated at decreasing temperature and the entropy 

remains positive for all temperatures.  These observations would seem to indicate that there 

is not a thermodynamic glass transition for this class of models.  Instead, glass transition only 

occurs when there is insufficient relaxation time to reach an equilibrium state.  However, the 

FSC does have an important thermodynamic signature, the maximum in the heat capacity.  

Additionally, initial calculations of the minima of the PEL, identified by finding the inherent 

structure of the simulations (Appendix G), appear to follow the pattern observed in that of 
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liquid silica at the FSC72.  If we can cool equilibrium liquids below this temperature, and in 

the absence of other indicators, how does the FSC relate to gT ?   

A purely kinetic description does not explain a subtlety we see when cooling a simulation 

sample with the kMC methodology.  Above the FSC, as a simulation sample cools at 

constant temperature, the energy will decrease at the same constant rate, regardless of the 

temperature until it approaches the equilibrium energy of the final temperature.  Then it 

slows and asymptotes into a smooth master curve, terminating at its equilibrium energy.  

However, at the FSC, the change in energy with time begins to show plateaus, suggesting 

that the simulation sample is experiencing significant changes as it traverses the energy 

landscape.  There appears to be an inflection point in the curve of time it takes to reach 

equilibrium.  Under the constraints of our simulation time, some of the low temperature 

samples reach equilibrium while others do not.  However there is no indication of a particular 

reason they could not reach equilibrium should we continue to run the simulation for even 

longer times.  For those samples which reach equilibrium above or below the FSC, the 

expectation value of the structure length is similar to the equilibrium structures which were 

equilibrated with the Metropolis MC.  Thus there is no indication that the simulation samples 

are different at equilibrium applying from applying different transition states during MC 

simulations, a result consistent with the detail balance requirement.  

This leads us to a very interesting image of what might be happening in some structural 

glass systems at very low temperature.  Invoking the energy land perspective, one may 

consider the variety of paths that a simulation sample may traverse in proceeding from one 

energy minima to another.  If a random thermal forcing can create as little as one pair of 

molecules which are not fully bonded, then the simulation sample can travel from one 
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initially fully satisfied state to another skirting many higher energy regions.  This process is 

diffusive in nature, which suggests the source of the Arrhenius temperature dependence as 

the simulation samples wander in the ravines which connect the energy minima.   

Conceptually, our model is always ergodic, however energy barriers may make the system 

effectively non-ergodic by inhibiting the complete exploration of the PEL at low 

temperatures, a feature observed in other kinetically constrained models27.  In those systems 

there is explicit frustration which causes the glassy dynamics.  While certainly exploring 

portions of the landscape with high potential energy becomes exceedingly rare at low 

temperature, even at very low temperature the number of degenerate ground states is greater 

than exponential.  Additionally all of the minima are connected via low potential energy 

pathways on the PEL, unlike those in other systems.  Therefore, we do not see the 

configurational entropy disappear at finite temperature. 

The development of a plateau in the relaxation dynamics from a random configuration to a 

low temperature minima at the fragile-to-strong crossover is a feature that calls for additional 

exploration.  One possibility is certainly that the population of unbounded molecules peaks in 

these simulations.  It is shown in Appendix E that the distribution of these molecules is a 

non-monotonic function of temperature.    Their presence makes the progress of the 

simulation exceedingly slow computationally, but this does not have the same dramatic effect 

on the ‘real time’ which we document.  However, this may hint at underlying structural 

features that lead to the system becoming trapped at higher energy states for a long length of 

time.  This indicates that documenting the population of molecules which have 0, 1, 2, or 3 

bonds may give insight into these issues.  When considering only the potential energy 

landscape, we should recall that it is not the internal energy alone, but the free energy with its 
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entropic component, that describes the equilibrium state140.  Therefore, we need to consider 

large, flat regions on the landscape that may describe barriers due to entropy alone, in which 

case it may never be necessary to take an energetic step up-hill141.   

An alternate idea that involves percolation considers accessibility of regions on the PEL 

directly142.  In this theory, transitioning into the glassy state occurs when the possible paths 

which a simulation sample may follow between minima on the landscape no longer 

percolate.  Because the PEL is hyper-dimensional, the mean-field approximation of this 

transition becomes exact and predicts the correct behavior at the critical point142.  We have 

not formulated our mean-field approximation to address a PEL percolation transition; to do 

so we would need to include the details of the transition states and consider a time variable.  

However our static representation may still capture some of this flavor because it does 

consider the temperature at which amorphous energy minima are preferred with respect to 

the liquid (random) state, ,mf binodalT , as well as when the simulation sample will be confined 

to energetic minima, ,mf spinodalT .  This approach is similar to that described in the Introduction, 

which describes the simulation sample trajectories that lose ergodicity on time scale of the 

simulation108 and those that involve tree representation of movements110. 

Other models with limited valency or ‘patchy’ interactions have recently been studied.  

Among the findings, we see that a number of gelformers have transitions influenced by their 

structural orientation including proteins143 and colloids92.  Beyond the scope of this set of 

materials, valency is also found to be a crucial detail in some materials with a liquid-liquid 

phase transition, which is not a spatially homogeneous gas/liquid separation, but instead a 

heterogeneous phase change between two different locally oriented structures 4, 107.   
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Additionally, the number of bonding sites or patches appears to have more influence on 

this behavior than the location of the interaction although both contribute to the phase 

diagram143.  The overall effect of increasing the valency is to increase both the critical 

temperature and density when considering phase separation143.  Our phase diagram is similar 

to those found both experimentally and in other simulation models.  Indeed, without valency 

limited potentials in colloidal systems there is not a low temperature region that would be 

able to generate a disordered homogeneous (as opposed to phase separated) arrested state7, 17.  

The lower the valency in these systems, the smaller the force for phase separation as most of 

the particles are fully bonded so there is no drive towards further density increase.  The 

possibility of finding a region in which the low temperature promotes long-lived bonding 

opens up exploration of colloidal gels133, 144.   

Currently, in our model we do not have a preference for a crystalline form, however we 

could easily modify the Hamiltonian by inducing a field  
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Vogel and Glotzer134 found that the length scale of clusters did not diverge at the FSC and 

that there was no clear indication that this temperature was linked to spatially heterogeneous 

dynamics.  However, they point out that the valency would have a strong effect on the spatio-

temporal mobility of particle motion because the imposed network structure statistically 

limits the number of number of near-neighbors which are mobile.  Our T-shaped molecule 

model can easily be extended into higher dimensions (Appendix D) or studied on other lattice 

structures.  Additionally, changing the bonding site number and locations on the molecule 

does not require any modification of the fundamental techniques. 

Our model could be considered one of a class of models which limits the number of near-

neighbor bonds via defining the properties of the molecule at the vertex as having fewer 

bonding regions than the number of edges of the lattice.  This leads to viewing the overall 

state of the system as a composite of the individual occupancy and orientations at each 

vertex.  A conceptually similar Hamiltonian is under very active investigation.  A limited 

valency system is created by restricting the number of bonds via exclusions of states of the 

system which have too many bonds converging at a single vertex (or too many near-

neighbors)113.  Models similar to ours, in which the valence restriction is a property of the 

molecule, may prove computationally faster during simulations because we can create ‘look-

up tables’ enumerating, a priori, every combination of near-neighbors.  Thus the calculation 

of energy of a state progresses via matrix multiplication.  Formulations restricting the number 

of bonds at a vertex require a step identifying whether the new state is possible, which 

requires comparisons, inherently slow computationally.  One way to side-step these issues is 

to map the restriction onto a model in which all occupation states are possible, but create an 

energy penalty for vertexes with large number of near-neighbors.  In the limit of an 
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extremely high penalty, we should recover the original exclusion of states.  This also 

suggests a mechanism for proving that the two classes of models may be mapped to each 

other. 

With the simplicity of this model, the possibility of analytic explorations is enticing.  It is 

interesting to note that Sastry et al. found that the Bragg-Williams approximation was better 

at describing the skewing of the liquid gas spinodal to the low density side of the phase 

diagram than the Bethe-Peierls approximation in this class of models113.  However, no 

explanation for this was proposed.  In our model, this skewing was the result of the phase 

separation between the gas and a heterogeneous liquid phase.  It might be that the 

implementation of the Bethe-Peierls suppresses or excludes consideration of this phase.  

However, because within their work no explicit discussion of the implementation which 

would distinguish between an homogeneous and heterogeneous liquid is included, this 

explanation is tenuous at best.  An implementation of the Wertheim perturbation analysis was 

restricted to valencies above 3 and below 5, severely limiting this approach for exploration of 

a larger number of systems144.  With the simulation work in hand, extension of the analytic 

description of the model can be better approached. 

2.8. Conclusions 

Our strikingly simple model can be used to describe the low temperature behavior of 

valence-limited glass formers.  Employing the Metropolis MC method, we can cool 

simulation samples to equilibrium providing the starting states for study of the 

thermodynamics, dynamics and structure.  Consideration of results from the evolution of the 

simulation samples with a kinetic MC recipe, thus including the effects of transition states on 

the sample motion on the PEL, yields a picture of three distinct dynamic regimes.  At high 
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temperatures the system is free to move without significant impact of the transition states.  

However, as the system cools, it reaches onsetT  below which activated events become 

important, the sample motion that must overcome an energy barrier by concerted thermal 

activation.  In this region we find that the relaxation time exceeds that of a simple Arrhenius 

dependence and the structural length scale increases.  In our model both are hallmarks of a 

fragile glass former. 

Further cooling results in a fragile-to-strong crossover in our system at FSCT .  Below this 

temperature, the stretching exponential increases in value and the relaxation time returns to 

an Arrhenius behavior with cooling.  The FSC resolves the Kauzmann Paradox by 

demonstrating that the extrapolation of the fragile properties above FSCT  is not valid as 

0T → .  Instead, we find that the configurational entropy does not disappear at low T . 

As is found in experimental systems, we can force our system into non-equilibrium 

conditions by quenching a random sample with the kMC method at a constant rate.  

However, when a random simulation sample is allowed to cool against a constant 

temperature bath we observe that it will eventually reach equilibrium.  We follow the 

potential energy as the system cools as a function of time.  We see a change in the cooling 

behavior around the FSC.  At higher temperatures, the sample cools rapidly until it 

asymptotes to the equilibrium temperature.  The overlay of this behavior at different 

temperatures leads to a cooling curve, along which all the samples are at equilibrium at the 

appropriate potential energy as the time progresses.  Near the FSC we note that there is the 

onset of a plateau at higher potential energies, indicating the simulation sample experiences a 

multi-step relaxation process where it is no longer at equilibrium as it is cooled.  There is no 

evidence, however, that the samples will not eventually reach equilibrium.  It does suggest 
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that on the time scale of experimental and simulated observations, the lattice is arrested at in 

a non-equilibrium state with higher potential energy.  We identify simulation samples that are 

at this temperature plateau as glasses, indicating that FSCT  may often be identified as gT .   

During the simulations which are evolved from an initial, equilibrated state with the kMC 

method, we observe a peak in the heat capacity at the FSC.  Additionally, as we observe the 

structure of the system, it begins to become aligned due to kinetic reasons starting at onsetT , 

but does not show evidence of a static length scale divergence with temperature.  At low 

temperatures, simulation samples that would be characterized as arrested, glassy states show 

a significant decrease in static structuring.  Our model appears to show significant spatially 

dynamic heterogeneities, with an increasing correlation length as the temperature decreases.  

There is evidence that the evolution of the system is dominated by mobile molecules that can 

change their orientation quickly, and that the time for structural relaxation is determined by 

the time scale of exchange of mobile and immobile molecules. 

The kinetics and thermodynamics of self-assembled structures is a rich field for research 

today.  Our model allows us to explore low temperature conditions at long-times, resulting in 

insight into the class of limited valency systems.  In previous work we have extended this 

model into a two-phase regime and identified a large variety features in the gel phases upon 

the addition of solvent.  Similar work could lead to a deeper understanding of the phase 

behavior of physically reversible gels and illuminate the relationship between the glass 

transition and gelation.  
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Appendix A: Dimensionless Units 

The energy of a bond in our model is not established from a physical system.  Therefore, 

we carefully define it with regard to the thermal energy.  For this work, the temperature of 

the simulation is the variable T  which is scaled by  

 
1rT k

ε≡ ≡   (1) 

where ε  is the energy of a bond and k  the Boltzmann constant.  In the stochastic 

simulations we perform the internal energy u  per lattice site is compared to the thermal 

energy 1β−   using the definition: 

 
# of bonds # of bonds

2N 2N
rTu

kT T
εβ

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2) 

Reported values of the internal energy are multiplied by 1k −  as seen by: 

 ( ) ( )# of bonds # of bonds
2N 2Nru kTε

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3) 

The denominator 2N reflects that each bond is shared by two sites, where there are N sites 

on the lattice. 

We calculate the residual entropy by extracting estimates heat capacity in two ways.  One 

is to estimate the slope of our data and employ the thermodynamic definition: 

 
# of bonds

/ 2
r

V
V r

kTU uC
T T T N T

Δ∂ Δ ⎛ ⎞≡ ≈ = ⎜ ⎟∂ Δ Δ⎝ ⎠
 (4) 

In the penultimate equalityU  and T  comes from the formal definition; the estimation retains 

the factor of 1k −  in our reported quantities as it refers to the definition provided in equation 
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(3).  The alternate definition comes from harnessing the measured susceptibility within our 

simulation runs: 

 
( )2 22

2 2V

U U U U
C

kT kT

− −
≡ =  (5) 

We derive this from our simulations by calculating: 

 

( )

2 2

2

22
2 2

2 2 2 2

# of bonds # of bonds1
2N 2N

# of bonds # of bonds var # of bonds
4 4

V

r

r r
V

C
Tk T

kT kTC
N T N T

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠

⎛ ⎞− ⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

(6) 

Therefore to return it to the units of 1N −  so that it scales properly on a per site basis, we 

multiply by an extra factor of N  with the final result: 

 ( )4

2

var # of bonds
4

r
V

kTC
N T

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (7) 

In Appendix F, we discuss the importance of averaging over only samples which are 

uncorrelated in time.  We take care insure that the observations of the samples used for our 

analysis are taken at time points much further apart than the relaxation time. 
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Appendix B: Comparison with Bond Percolation 

As we consider the connectivity of our simulation results, it is helpful to relate this to the 

bond percolation threshold.  It has been noted that percolation is a necessary, but not 

sufficient condition for structural arrest in a reversible gel.  Bond percolation is defined as a 

connected network of bonded sites which spans the lattice.  The case in which there is no 

interaction energy between bonds (the bonds are randomly placed on edges) is equivalent to 

the high temperature limit in our model.  The threshold for bond percolation is defined as the 

minimum probability that an edge is occupied required for network.   This probability pc is 

1/2 on a square lattice and approximately 1/4 on a cubic lattice145-147.  Converting to the 

number of bonds per site, the percolation threshold density would be 1 on a square and 3/4 on 

a cubic lattice.  We notice that the dynamic phenomena we observe occur well below the 

high temperature limits of our model and that the bond densities were larger than the 

percolation threshold.  It is therefore reasonable to assume (although not rigorously proven), 

that all our simulated samples are percolating networks.  This is consistent with the 

observation that the percolation threshold is above the gelation threshold for reversible 

bonding systems40.  The dynamic transitions which we measure are not a direct consequence 

of percolation. 
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Appendix C: Landau Theory Calculations in Two Dimension 

During the interpretation of our simulation results, it is useful to orient ourselves to the 

relevant values of the scaled temperature 
r

T
T

β
ε=  by considering the mean-field results.  

It is important to acknowledge the simple Landau theory, which expands the energy in terms 

of an order parameter has severe and well documented limitations.  However, the results 

provide insight into the order parameters in our model and a starting place for our continued 

analysis.  We note that this is a form of the mean-field approximation, as is clearly seen in 

the values of the results.  We note that in our results, there is a locally preferred structure at 

lower temperature.  This is consistent with an order/disorder transition, and reinforces the 

less obvious lack a macroscopic symmetry breaking with two of the states dominating at all 

vertices (preponderance in either the (1,3) ┤, ├ or (2,4)┴, ┬).  Indeed, in all cases there is 

little skewing, even when structure on the order of the length scale of the simulation sample 

size develops.  However it is not clear the number of order parameters needed to describe 

these results. 

In this implementation, we define two order parameters, α  and δ , to allow for the 

possibility of two forms of order/disorder symmetry breaking in the system behavior.  Both 

indicate the same limit of stability limit 0.25T = .  Thus, in our mean-field results presented 

in Chapter 1, we assert that the orientations not involved in a locally ordered structure will 

have degenerate probabilities.  Employing this assumption we recover the spinodal 

temperature, 0.25T = , further validating that symmetry breaking occurs only in one 

direction (either ┤, ├ or ┴, ┬). 
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We use classical Landau theory148 to identify when the random state becomes unstable 

relative to the ordered lamella state for the fully-dense lattice.  This describes a liquid to 

crystal phase transition.  It is important to note that at this value of T  (or conversely 

temperature), the system will spontaneously order into a lamella.  Other satisfied structures 

might spontaneously form at temperatures near this transition, but they are neglected in this 

estimate.  Thus, the predictions of this analysis would not be inconsistent with observation of 

a lamella state in a simulation sample at a higher temperature, or a transition to a different 

energy minima altogether.   

 At the heart of Landau theory is a functional form of the free energy as an expansion 

in powers of an order parameter.  We can then use the functional form to identify when the 

free energy minimum transitions from the zero to a finite value of that parameter.  Defining 

an order parameter to distinguish between a glassy and a polycrystalline state remains a 

fundamental challenge in this field149.  We recognize that we cannot identify order 

parameters to discuss generically this transition because of the degeneracy of the potential 

energy minimum.  However, we can identify order parameters for the specific transition from 

the disordered state to the lamella state, where all the rows (or columns) are identical in one 

direction and in the opposite direction they alternate.  If we assume periodic boundary 

conditions, we can reduce the lattice to two sites without loss of generality.  In this state two 

molecule orientations (e.g. ┤, ├ ) will dominate the lattice and the probability of the other 

two (e.g. ┴, ┬) will be equal everywhere, but smaller.  This introduces the first-order 

parameter, α.  A second order parameter, δ, is introduced when we choose either the left-

hand or right-hand site to be in state 1 (alternately the top or bottom site to be in state 2).   
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 We use these order parameters to write the free energy expansion.  Both α  and δ  

are even functions so no linear term appears in the free energy expansion.  The transition 

occurs when the second order terms change from positive to negative (or the global free 

energy minimum changes from zero to nonzero).  The value of ε  required for this transition 

is 4 (or the temperature of this transition is T =0.25).  . 

Using the Hamiltonian, we find the internal energy for our model is: 

{ [

]
[

1 1 2 3 2
1 1

3 4 1 3 4

2 2 3 4 1 3

4 1 2

( , ) ( , 1) ( , 1) ( , 1) ( 1, )
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p i j p i j p i j p i j p i jβη
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 (1) 

With the value of the reduced temperature given in chapter 2 .  The free energy is therefore 

given by:  

 
4

, , , ,
1 1 1

ln
N N

k i j k i j
i j k

f u p pβ β
= = =

= +∑∑∑  (2) 

We substitute the following relations to describe the lamella state in terms of one site: 

 

2, , 4, ,

2, , 2, , 1 2, 1,

1, , 1, 2, 3, 1, 3, 3,

1, , 2, , 1

  

    

      

  

i j i j

i j i j i j

i j i j i j i j

i j i j

p p

p p p

p p p p

p p

+ +

+ + +

+

=

= =

= = =

=

 (3) 

and write the remaining terms of the ordered parameters α and δ: 
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1

2

3

4

 ¼ (1  ) 
 ¼ (1 -  )
 ¼ (1  ) -
 ¼ (1 -  ) 

p
p
p
p

α δ
α
α δ
α

= + +
=
= +
=

 (4) 

We then expand the free energy in terms of the ordered parameters.  This gives: 

( ) …+++⎟
⎠
⎞

⎜
⎝
⎛ +++= 22 4

2
1

8
4ln

8
9 δβαβββ JJJf  

Thus the onset of instability with respect to the lamella phase is at 1 4T − = −  and both 

ordered parameters become unstable at the same time.  This result foreshadows the general 

mean-field solution which does not specify which final state of the lattice is preferred (not 

restricted to the ordered parameter of a single energy minima- that of the lamella).  It also 

supports the results of the DMF simulations which find that even once a minima is found and 

one orientation is strongly preferred at vertex i
G

. 
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Appendix D: Mean-Field Calculation in Three Dimensions 

A natural extension of our work is to consider the model in other lattices forms, either in 

two dimensions (e.g. hexagonal) or in three dimensions (e.g. cubic).  We also can consider 

other conformations of the bonding sites or additional bonding sites.  For example, a 

molecule with 4 or 5 bonding sites would still be valence-limiting on a cubic lattice (6 edges 

at each vertex).  The complexity this adds to the mean-field calculations is dramatic if we 

explicitly consider the full Hamiltonian as we did in Chapter 1.  During our work, we found 

the mean-field diagram was a very useful guide for our understanding of the simulations.  

Others have recently shown that despite the simplicity of this approximation, it provides a 

more accurate estimate of simulation results than other more detailed calculations.  A more 

detailed discussion of this can be found in Chapter 2.   

A further provocative thought is that the glass transition occurs as lack of percolation of 

mobile regions around glassy states on the potential energy landscape (PEL).  The large 

dimensionality of the PEL exceeds the upper critical dimension limiting a mean field analysis 

such the mean-field conditions are met and the approximation when used in this way 

provides the exact results142.  We have not formulated our approximation to address a 

percolation transition in accessible portions of the PEL explicitly; however the connection 

between the ideas is appealing. 

As the Hamiltonian becomes larger, we find we can simplify our perspective by 

considering there are two types of occupied orientations.  The first is one in which is part of a 

locally ordered domain and thus is energetically stabilized.  The second is a non-ordered 

liquid like phase.   
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In this Section we will consider the same T-shaped molecule, but now on a cubic lattice.  

Exploration beyond the current T-shape model in 2-dimensions into 3-dimensions or on 

alternate lattice structures is motivated by both the expectation of more physically relevant 

systems but also by the increase in accessibility of the equilibrium gel phase.  This phase 

occupies a larger range of densities on the phase diagram as the valency is lowered7.  Indeed, 

access to this phase can be shown to require anisotropic interactions7.  In colloidal gels, 

represented by potentials that have directional attractive interactions on the smaller than the 

length scale of the particle, kinetic arrest can be achieved through non-equilibrium routes 

during phase separation at lower densities (the high density phase becomes an attractive 

glass) and also via reversible paths at higher density94, 95, 133. 

On the cubic model there are 12 possible orientations for each molecule.  We will refer to 

the probability that the molecule at the vertex is in a locally ordered domain as pα .  Given 

the density of molecules ρ , and recalling that the other orientations are degenerate as they 

are still in a liquid-like phase, the value of these probability of the other occupied states are:  

  
( )

11
pp α

β
ρ −

=  (1) 

When in the fully-dense region ρ =1.  Else, we have used the random dilution approximation 

by assuming that the interaction with the solvent is neutral.  In addition to calculating the 

phase diagram, we also demonstrate that the model retains the same degeneracy of ground 

states which we believe to be fundamental to the nature of this class of materials.  First we 

will consider the fully-dense state.  At high temperature each orientation is equally probable 

so: 

  ( )1/12pα =  (2) 
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We can calculate the random potential energy by recalling that there are 6 near-neighbors 

on a cubic lattice, with 3 possible bonds that the molecule at the vertex we are considering 

could form.  The multiplicative factor or 12 arises from the 12 possible orientations and we 

divide by 1/2 because each bond is shared by two molecules. 

 ( ) 36 3 12
2 4randomu p pα α
ββ β−

= − × × × × =  (3) 

Adding to this the entropy we find 

 3 12 log( )
4
3 log(12)
4

random random random

random

random

f u s

f p p

f

α α

β β

β β

β β

= +

= − +

= − +

 (4) 

 

Recall that we are using the same reduced units as described in the other portions of this 

work.  At lower temperatures, there will be a fraction of molecules that may adopt a locally 

oriented structure.  This results in  

 
( )1 -

 > (1/12) ;  
11

p
p p α
α β =  (5) 

 
2

2 (1 ) (1 )3 30 183
2 11 11oriented

p pu p p α α
α α

ββ
⎛ ⎞− −⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (6) 

It would be quite difficult to tally by hand the 216 possible combinations, but the use of 

locally ordered states helps considerably.  First, we consider the interactions resulting from 

the molecule of interest being in a locally preferred orientation, pα .  We notice that there 

must be three bonds between the central molecule and its near-neighbors which are also in 

the locally preferred orientation by definition resulting in a factor of 23pα .  Next, we consider 

the central molecule and the possible bonds it can form with near neighbor molecules which 
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are not in locally preferred orientations.  There are 12 orientations at each near neighbor, 

however, only 6 are oriented toward the center molecule, and one of these configuration must 

already represent the locally oriented structure.  There are three bonds which might form 

between the central locally oriented structure and these liquid like neighbors.  Thus there are 

15 possible bonds adding 
( )15

11
p

p α
α

ρ −
.   

Now we consider the liquid like states in the from the center molecule.  There are 11 states 

remaining.  As before, along the three vertices from which locally oriented bonds are 

oriented, there are 5 remaining liquid states that can occupy one of the 3 bonds originally 

between the locally preferred direction and 5 liquid orientations at the near neighbor sites that 

meet the geometrical requirements.  Thus, a first term of ( ) 2

75
11

pαρ⎛ ⎞−
⎜ ⎟
⎝ ⎠

.  There are 6 

orientations at the central molecule that could present a bond forming direction along the 

vertice that did not have a bond in the original locally oriented structure.  There are the 6 

near-neighbors that could take advantage of this.  This provides a second term of 

( ) 2

108
11

pαρ⎛ ⎞−
⎜ ⎟
⎝ ⎠

Collecting these terms we find that  

 
2

2 (1 ) (1 )1 3 30 183
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α α
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α
α α α
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= +

⎛ ⎞− −⎛ ⎞= − + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
−⎛ ⎞+ + − ⎜ ⎟

⎝ ⎠

 (7) 

Extension into the solvated region involves merely replacing 1 pα−  with ρ .  We then 

calculate the chemical potential from the free energy as  
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 ;liquid oriented
liquid oriented

f fβμ βμ
ρ ρ

∂ ∂
= =

∂ ∂
 (8) 

This allows us to write the grand potential as w f u= − .  The grand free potential energy 

describes the relationship between temperature and density.  We consider several different 

coexistence cases.  First, we calculate the low density high density coexistence.  Then, as 

temperature lowers, we consider a low density solution in coexistence with a high density 

locally ordered liquid.  These relationships are shown in Figure D-1. 

 
Figure D-1: The three dimensional phase diagram 
The red line (—) represents the low density/high density solution coexistence curve.  It is 

superseded by a coexistence between a low density solution represented as a blue line (—) 

and a high density ordered phase as shown as a green line(—).  The fully-dense bimodal is 
T=0.31 and the spinodal is at T=0.14. 
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Just as before in the two dimensional case, the quench method whether a continuous 

quench from a random state, or in a step-wise pattern between previously cooled samples, 

does not change the average energy of the simulation sample as seen in Figure D-2.  This 

indicates a path independence that further suggests the samples have achieved equilibrium. 

 

Figure D-2: Simulation results for different quench methods 
The Metropolis MC method was used to quench the simulation samples to low temperature 
based on the choice of path.  In the first method, simulation samples were initially in a 
random configuration and then quenched against the final temperature (o).  In the second 
method, a simulation sample was equilibrated at high temperature and then cooled in a 
successive series of steps (*).  The mean-field bimodal and spinodal are marked as reference 
temperatures. 
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We can take an preliminary look at the value of the heat capacity vC .  In our two-

dimensional work, we considered three methods of evaluating vC .  In the end, the one we 

felt was the most representative in the end was fitting the internal energy curve to an analytic 

fitting function and taking the derivative.  We have not shown that in Figure D-3.  Instead, 

we have represented the calculation of vC  using the variance method taking the information 

directly from the instantaneously quenched simulation samples.  As a reference, we also use 

the quick method of calculating the slope between two measurements with a simple 

difference method.  These results suggest that the vC  maximum is higher than the mean-field 

spinodal.  Whether this is due to the smaller sampling size, not using the preferred method of 

calculating vC  or some other reason, the impact of this observation on the fragile-to-strong 

crossover is not evaluated here. 
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Figure D-3: Heat capacity measurements in the three dimensional model 
The heat capacity is calculated by two methods.  First, we use the variance from the 
simulation data itself to calculate the heat capacity (o).  As a comparison, we employ a 
simple difference method to calculate the slope between data from the internal energy (*).  
The mean-field bimodal and spinodal are once again provided as reference. 

One of the key aspects of this model is that it provides a greater than exponential number 

of ground states connected by very small barriers in energy.  Each of the follow groupings is 

a locally oriented structure that can be tiled across a simulation sample and would result in 

every bond being satisfied.  The boundaries of the tiles all are such that they are 

interchangeable so that the number of minima is greater than 4N.  There are also other tiling 

groupings that are not accounted for by combinations of these structures (not shown).  Thus, 

increasing the dimensionality retains this important characteristic. 
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Figure D-4: Samples of possible locally oriented structures in three dimensions 
These four structures could interchangeable be used to tile a large sample.  Their boundary 
conditions match.  Each structure is a 4 x 4 x 4 cube. 
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Appendix E: Stochastic Simulation Techniques 

While increases in processor speed and new computational techniques have made 

simulations a powerful tool in analyzing many systems, they are still plagued by the diversity 

in size and time scales110, 150, 151.  Thus, despite the intuitive appeal of molecular dynamics 

(MD) simulations or off-lattice calculations as incorporating ‘more accurate physics’, the 

increased efficiency of on-lattice kMC simulations allow for a much longer time-scale to be 

evaluated.  In the following discussion, we shall parallel the description of MC simulation 

techniques outlined in Section 2.3. 

Master Equation 

We can visualize all possible states of the lattice as defining a hyper-dimensional energy 

surface (albeit discrete) in conformational space.  For the purpose of describing this space, 

the state of the lattice will be identified as a lower case roman character, while the orientation 

of a specific molecule as a Greek character with a subscript describing its location on the 

simulation.  A specific state m  is located at the conformation coordinate mxG , where 

{ }(1) (2) ( ), , ,m Nx σ σ σ≡
G " .  The numerical subscripts define the location of the molecule σ  on 

the square lattice.  The energy at mxG  is defined by the Hamiltonian previously described and 

motion along the surface occurs by the change in orientation of a single molecule.  The 

system is coupled to a thermal bath allowing for transfer between states.  This gives us at 

equilibrium results distributed according to the canonical ensemble; the probability ( )mP eq  

that the system is located at mxG , is given by  
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( )1( ) exp

k

m m

E

k

P eq E
Z

Z e β

β

−

= −

=∑
 (1) 

where k  includes all states.   

The equilibrium probabilities are not known a priori, instead we use the master equation 

formalism such that any initial distribution explores conformation space as defined by115: 

 
( ) ( ) ( )m

k m k m k m
k k

dP t q P t q P t
dt → →= −∑ ∑  (2) 

The transition probabilities, k mq → , specify the choice of motion along the landscape from kxG  

to mxG .  At long-times, steady state should be reached, so the left hand side of (5) must go to 

zero and the probabilities ( )kP t  and ( )mP t  adopt their equilibrium value.  This results in the 

condition of detail balance with: 

 ( ) ( )exp expk m k m k mq E q Eβ β→ →− = −  (3) 

We notice that the choice of transition probabilities is not unique.  Our choice of 

Hamiltonian does not result in an analytically tractable master equation, so we solve for the 

dynamic and equilibrium properties using MC simulations46, 116.   
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Metropolis Monte Carlo 

Two different Monte Carlo simulation methods were employed for these studies.  First, a 

simple Metropolis recipe117 was employed for equilibration of the lattices.  In this method, a 

specific molecule, ( ; )t iασ
G

, is chosen at based on a random choice of lattice vertex i
G

.  Then a 

change in orientation of the molecule from α γ→  is proposed at random.  We define the 

number of bonds that ( ; )t iασ
G

 forms with its near-neighbors as ( ; )b t iα

G
.  The transition state 

between state m and state n  is defined as the difference in the energy between the two 

orientations is compared with a random number.   

 
(1/ )( ( 1; ) ( ; ))1 if  (attempt accepted)

otherwise 0 (attempt rejected)

T b t i b t i

m n
e uq

γ α+ −

→

⎧ >⎪= ⎨
⎪⎩

G G

 (4) 

If the attempt is accepted, the molecule adopts the new orientation, ( 1; )t iγσ +
G

.  Otherwise 

the original orientation is retained, ( 1; )t iασ +
G

.  N  attempts (where N  is the number of 

vertices on the lattice) is one MCS.  The acceptance rate for this method was sufficiently 

large to cool to very low temperatures relative to the predicted mean-field transition as shown 

in Appendix C. 
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Figure E-1: Metropolis MC acceptance ratio and bond saturation temperature 
Despite the ‘bond saturation’ or the percent of possible bonds which have been formed at low 
temperature, the ‘acceptance ratio’ or number of MC attempts which result in a change to the 
number of attempts made overall, remains relatively large.  
 

Under the Metropolis algorithm, the probability of acceptance is a comparison of the initial 

and final states only.  Although the rate of change of breaking a single bond increases 

exponentially with decreasing temperature, all transitions to lower or degenerate energy 

states are accepted.  Thus, the method allows for a lattice to explore a large number of 

configurations quickly from a computational stance.  While in our notation we indicate an 

attempt as an increment in time, 1t + , the time has no explicit connection to physical time 

and therefore the dynamics do not have a clear definition.  However, we note at equilibrium 

the distribution of states is expected to be canonical and any method which leads to the 

correct detail balance is acceptable118, 119.    
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Kinetic Monte Carlo: 

As we are investigating the properties of the vitrified state, which by definition are time 

dependent, we need to choose a simulation method which allows us to investigate the 

dynamics of our system.  If the system resides for a considerable length of time within a 

stable or metastable state and then experiences a very quick (on the time scale of the 

residence time) transition between such states, the dynamics of the system may be highly 

dependent on rare transitions.  An example of such an event is the difficulty in overcoming 

high potential energy barriers requiring large activation energies110, 150. In such cases, the 

runtime for a traditional MD simulation is prohibitive; the rare events are separated by an 

impractical number of MD steps and the sampling necessary to create an accurate 

thermodynamic ensemble exceeds conventional resources150.  The wide variety of systems 

studied that include rare events, and the overall utility of the appropriate kMC simulation 

results has lead to the development of refined understanding of choice transition states and 

improved computational techniques 110, 119, 150, 152-161. 

   In addition to the two conditions described by (5) and (6), extracting dynamic details via 

kMC simulations requires us to define the of the conformational surface between mxG  and kxG  

for all states m and k 118, 119.  We then form a dynamical hierarchy of transition rates m kr →  

that would reflect the expected behavior of the model system both at equilibrium as well as in 

non-equilibrium case.  The transition probabilities are defined as  

  
max

m k
m k

rq
ξ

→
→ =  (5) 

where maxξ is greater than or equal to the largest transition rate118.  A wide variety of systems 

have been studied using this technique27, 118, 119, 151, 162, 163.  Many examples such of reaction 
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rates have been directly proposed using the general properties of transition state theory or 

meet its requirements.  Transition-state theory proposes that the transition rate m kr →  is 

dependent on the details of reaching the saddle point m kx∗
→  along the path in between mxG  and 

nxG 115, 163.  It has been noted that the specific form of the transition probabilities influences the 

non-equilibrium simulation time156, even leading to incorrect growth exponents119.   Kang 

and Weinberg point out that in most cases the energetic barrier from the initial state, mxG , to 

the transition state m kx∗
→ , describes the microscopic transition process119.   

   In our model, we neglect any microscopic energetic details of a simulation sample in state 

m  favoring instead a common vibration frequency, ω .   The transition probabilities m nq →  

reflect of the potential energy difference between mxG  and m nx∗
→

G
  

 exp( ( ))m n mq E Eω β ∗
→ = − −  (6) 

where 1ω−  becomes the fundamental time scale.  Conveniently, because each state is linked 

via the rotation of a single molecule mσ , we define mE E∗ −  as the number of bonds that 

specific molecule had at state m , which are broken to move to the saddle point.  With this 

choice of the transition probability, there is no impact of the final orientation of that molecule 

on the transition probability and meets the requirements of detail balance. 

We have several large separations between time scales on our lattice.  The fastest processes 

are not activated or cooperative events.  The exploration of the local minima, the fastest 

process, has already been reduced to a constant.  We accomplished this by incorporating all 

β -relaxations (exploration of the local minima) into a single thermal variable, ω , which we 

assume to be temperature independent over the range of our simulations and the same for all 
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wells.  This establishes a reference time for our system.  The transitions between basins do 

have a significant dependence on the local topology of the PEL.  Even with our simple set of 

transition rates, at low temperatures the difference in breaking a single bond as opposed to 

three bonds is very significant.  We can see this clearly from the plateaus in Figure 2.5.2.  

Additionally, in the case of a molecule has no bonds with its neighbors there is also fast event 

taking place on a time scale distinct from the kinetically activated rotations.  This is 

discussed below and illustrated in Figure E-2 and Figure E-3. 

   By definition, any kinetic MC simulation uses the current transition rate dependent 

relationship: 

  
log( )

m m
m

ut
n q

−
Δ =

∑
 (7) 

where u  is a random number, iq  is the transition rate for each possible process, in our case 

given by equation (6).  The number of states which can change due to that process is mn , for 

our model this is ( ; )
i

b t iα∑G
G

.  It is important to remember that while at most only one 

transition occurs between steps, the ‘clock’ of elapsed time is running for all molecules in 

parallel, so we need to include all of them in the time increment. 

Because we are investigating the low temperature properties of these simulations, using 

traditional importance methods of proposing a new state46 and then accepting or rejecting 

that move does not improve the simulation time significantly because of the large number of 

rejected moves.  Instead, a residence time or ‘n-fold’118, 120, 121 technique in which an event is 

selected with the appropriate frequency based on the transition rate and every event is 

accepted improves the time considerably.  The transition probabilities and determination of 

elapsed real time is the same as any other kMC technique. 
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This technique is requires that the set of available configuration states and their transition 

properties are know a priori, 27, 151, 164.  The most computationally intensive portion of the 

method is creating the list of possible transitions with their relevant rates.  We are favored in 

our case by the limited range of our potential, which makes updating this list reasonable. 

To enact this process for our, we evaluate the bond energy at every vertex ( );b t iα

G
 and then 

grouped the same energies and weight them by the appropriate transition probability as given 

in (6).  Therefore we have the intervals: 

1 1 2 2 3

0 0 0 0 0 0 0

0 1 2 3

1

( ) ( ) ( ) ( ) ( )( ) ( )0, , , , , , ,
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

m m m m mm m m m m

tot tot tot tot tot tot tot

tot

tot o

p t p t p t p t p tp t p t
p t p t p t p t p t p t p t

where
p t p t p t p t p t

p t n t nω

= = = = =
⎡ ⎞ ⎡ ⎞ ⎡ ⎤⎡ ⎞ ⎟ ⎟⎢ ⎢ ⎢ ⎥⎟⎢ ⎟ ⎟⎢ ⎢ ⎢ ⎥⎣ ⎠ ⎣ ⎠ ⎣ ⎠ ⎣ ⎦

= + + +

= +

∑ ∑ ∑ ∑ ∑

31 2

2 2( ) ( ) ( )T T Tt e n t e n t eω ω ω
−− −+ +

(8) 

We then generate a random number u  and find the corresponding interval.  A second 

random number is chosen to decide which specific monomer will change.  The rotation 

change is proposed by a third random number.  Finally the physical time is updated using 

equation (7).  This completes one step.  The values of mn  are updated for the new time step 

and the cycle repeats. 

An ‘instantaneous’ quench rate, in which we initialize a simulation sample in a random 

configuration and run the kMC simulation at the final temperature shows an extreme 

example of this behavior.  This choice was used in both the results presented in Sections 

2.5.2 and 0.  The two figures below are representations of the initial portion of the these 

simulations to demonstrate the effect of the various rates on time progression.  One 

advantage of the residence time kMC technique is that the time between steps changes with 

the configuration of the lattice.  When there are many slow processes, the time step is small.  
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However if these processes are reduced, the time step becomes larger in a dynamic fashion.  

In Figure E-2, the ‘physical time’ and is shown after 1000 MCS at a variety of temperatures.  

Notice that there is a non-monotonic relationship between the progressed time and 

temperature. 

  
Figure E-2: Physical time at 1000MCS for a variety of temperatures 
Despite the same number of successful attempts, the amount of physical time that has elapsed 
is dramatically different at different temperatures. 

For the same ‘snap shot’ in time above, we report the number of monomers we report the 

fastest process, which would result in the smallest progression in physical time for each 

MCS. 
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Figure E-3: The number of non-bonded molecules at 1000 MCS as a function of T  
Notice that the smallest number of non-bonded molecules after the same number of MC 
attempts which were successful is the smallest where the elapsed time in Figure E-2 is the 
largest.  This indicates that this fast process was selected with greater frequency.  The change 
in color of symbols indicates whether the simulation was close to its final temperature (o) or 
still had a long way to progress before it would relax fully (∆).  

The elapsed physical time in each simulation is a dynamic quantity, responding to the 

distribution of molecules in different bonding states.  Thus the accepted simulation step 

drives will be smaller when there are more fast processes, but then become larger if the 

number of these processes decreases and the accepted steps are related to the slower, 

activated events.  This is one of the advantages of this technique.  There also may be a true 

dynamic consequence to this pattern of non-bonded states, a relationship that should be 

explored further in subsequent work. 
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Appendix F: Calculation of the Heat Capacity from Monte Carlo 

SimulationsEmploying a kinetic Monte Carlo recipe, we can define the relaxation time of 

a simulation sample by noting that there is a difference of the expectation value of the error 

when subsequent observations are correlated in time.  When deriving the correlation 

function, we need to exercise great caution in specifying what assumptions are being made.  

We start our analysis of the correlation function by defining an observable tA  which may be 

a continuous value such as the energy, or a discrete value such as the state of the lattice 

sample at time t.  Properly, an ensemble average would imply averaging over configurational 

space or time, which are equivalent in an equilibrium system.  However we are going to be 

generous with our definition of ensemble average to include systems which are metastable, 

that is, are not strictly at equilibrium, but are arrested in a subset of configurational space. 

As an MC simulation reflect movement over the PEL, subsequent observations are highly 

correlated.  This provides a difficulty in using the variance, σ ,  to measure the heat capacity 

of a simulation because the calculation of expectation value of the variance, 2Aδ , deviates 

from σ  non-trivially.  As we note in our work, the vC calculation from the derivative of an 

arbitrarily fit to the energy follows the same trend as the vC  calculated with the measured 

variance, a relationship shown in Figure F-1.  However we also note that as more 

observations are made, the two values become closer.   

How closely does the expectation value of the variance match the actual value as a function 

of the number of observations?  We shall answer that question in two parts.  Initially we will 

ignore the correlated values and see how the accuracy of expectation value of the variance to 



 
 
 

135 

 

the relates to the number of measurements during simple sampling.  Then we shall address 

the more complex case of how the variance is related to the correlation (or relaxation) time. 

Formally, we start with the assumption that we are measuring independent observations of 

a quantity A  which obeys a Gaussian distribution with mean A  and variance, 

22A Aσ = − .  If we make a set of n observations of the distribution, { }iA , the unbiased 

estimator of the mean is:  

  1

1 n

i
i

A A
n =

= ∑  (1) 

as we have no other information about the sampling or the distribution.  Similarly, the 

deviations from the observations quantity, i iA A Aδ = − , allow us to find the expectation 

value of the variance. 

 

( ) ( )

( )

( )

22

1

2 2

1
22

22

1

1 2

2

n

i
i
n

i i
i

A A A
n

A A A A
n

A A A A

A A

δ
=

=

= −

= − +

= − +

= −

∑

∑  (2) 

If we assume that there is no correlation between measurements, the order of summation of 

the set may be changed (i.e. indices i and j  may be interchanged if this violates no other rule 

of summation).  However we do have the restriction that the observations are not equally 

weighted, although we do not have further information about the value of the weights.  Thus 

this correlation, that the term i iA A  has more information than i jA A , which provides the first 

correction to the expectation value.  
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1 1 1
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1 1 1 1

1 1 1

1 1 1 1

n n n

i i j
i i j

n n n n

i i i i j
i i i i j

A A A A
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A A A A A
n n n n

δ
= = =

−

= = = ≠ =

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞
= − − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑
 (3) 

The ensemble average can be moved inside the summations.  The individual values i jA A  and 
2
iA  are each replaced by the values 2A  and 2A .  
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⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠

⎛ ⎞−
= − − ⎜ ⎟

⎝ ⎠

⎛ ⎞= − −⎜ ⎟
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 (4) 

From the expression (4) we can conclude that improving our estimate of the susceptibility 

goes as 1
n  with uncorrelated observations.  This shows one computational limit of these 

methods. 
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Figure F-1: Specific heat per site calculated by two different methods 
The first method was using the slope of u found by simple difference method (*) and using 
the susceptibility calculated from the variance in the measurements (O) 

 

We can now tighten again our assessment by removing the assumption that subsequent 

observation are uncorrelated.  Returning to equation our original definitions, we remember 

that the set order is now important, and we cannot interchange indices in sums because they 

carry information about the order of observation.   
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Next we notice that there is no specific event that breaks the time symmetry between two 

observations.  Thus only the magnitude of k it t tδ = −  is important.  Therefore, i kA A =

0 k iA A − .  Therefore, if we define 't k i≡ −  we can remove one of the summations. 
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This already has the form of a response function embedded in it.  If we proceed carefully 

through the integration we find that the integrated response function can be directly related to 

the expectation value of the response as46: 

 ( )
2

2 1 2 AA
n t

τσδ
δ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (7) 
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Appendix G: Inherent Structures on the Energy Landscape 

While there is compelling evidence for the existence of spatial heterogeneity, it is not 

known if it is a universal characteristic of glassy systems or how it originates.  Sastry et al. 165 

ran molecular dynamics (MD) simulations of a binary Lennard-Jones mixture.  They found 

that the exploration of the potential energy landscape by the system was distinctly different in 

the high temperature (above gT ) and low temperature (below gT ) region.  In the high 

temperature region, the average energy was insensitive to temperature; however, the 

distribution in energy of the inherent structures of the explored basins was high.  At low 

temperature the average energy again changed little with temperature, however the system 

explored only basins with low energy inherent structures.  The transition between these two 

plateaus in the average energy of the inherent structures was dramatic.165  

We develop a Metropolis based scheme for exploring the configuration space of the fully-

dense lattice.  In these simulations we first equilibrate the lattice at a particular temperature.  

Then we can explore the energy landscape using zero temperature quench166 and evaluate 

relaxation time with different correlations.  Results indicate that the simulations have glassy 

dynamics, even using the Metropolis recipe. 

We perform a zero temperature quench to identify the inherent structures.  During the zero 

temperature quench, no annealing is possible; the system can never gain potential energy75.  

In our model there are numerous (and often broad) saddles in our potential energy surface.  

Thus not all basins are uniquely defined.  We modified an algorithm used by Glotzer et al. 

for these non-unique minimizations166.   

After we allow the lattice to equilibrate, we have the lattice continue to explore 

configuration space using the algorithm above.  Every 1000 MCS we identify the inherent 
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structure.  First we perform one MCS accepting all states with lower potential energy.  If a 

suggested change in molecule orientation has the same energy it is not accepted.  Then we 

perform a second MCS using the heat bath method46 suggested by Glotzer et al.  The heat 

bath method accepts all moves with lower potential energy, ½ of the moves with equal 

potential energy and none of the moves with higher potential energy.  These two steps are 

repeated until the energy no longer decreases between steps or a minimum of 100 times.   

Preliminary data shows that the difference in the potential energy of the inherent structures 

with temperature is very small, on the order of a tenth of a percent, see 

Figure G-1.  This is smaller than those reported elsewhere.  We do not yet have sufficient 

data to resolve a trend above the error bars.  But it is very unlikely that with more data we 

could see the types of trends shown with both a high and low temperature plateau165, 166.  This 
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suggests that our data is more consistent with the change in behavior appearing at the FSC as 

has been documented in silica72. 

Figure G-1: Average inherent structure potential energy as a function of T 
Beginning with an equilibrated Metropolis MC simulation at the T  reported.  The lattice size 
is 40 by 40 with a TAM at every site.  Average potential energy of the 100 inherent 
structures is shown.  Recall that the random (infinite temperature) potential energy of this 
model is –1.125 and the potential energy of a fully satisfied structure is –1.5. 
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