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Introduction.

The property of unique decomposition into primes is
fundemental in multiplicative arithmetic. The purpose of the
present undertaking is to give eriteria for this property, and
to restore it by means of ildeals when it is lacking, using only
the single operation of multiplication.

We start, therefore, with a system closed under a single
binary operation, assumed 1o be associative and commtative.
Following Belll‘, we shall call such & system an ovum. An ovum
is seid to be regular if cancellation is permissable. A regular
ovunt is a commutative semi-group, as Dickson has defined this
term. Criteria for unique decomposition in regular ova have been
given by Kbenigz' in very beautiful form indeed (Theorem 4.l1).
Conditions have likewise been given by Klein—BarmenS’ and by
Hard4', the latter for the non-commtative case. Te give criteria
in § 1l for ova which are not necessarily regular (Theorem 1l.l),
and another set in $5 generalizing Koenig's result (Theorem 5.3).
The former is applied to general commutative rings, the result
(Theorem 1.5) depending on a clever manipulation devised by
Fraenkels‘ in order to obtain unigue decomposition in essentially
finite rings.

The concept of an ideal, as introduced in § 2, is essen-
tially that due to Prufer6'. The definition is framed differently,

however, in order to preserve the analogy with Dedekind ideals,



In § 3 we postulate the Teilerkettensatz and the condition that
every prime ideal by irreducible, and obtain the unique decom-
position of any ideal into the product of mutually coprime,
"einartig", primary ideals. In § 4 we obtain criteria that the
ideals in & reguler ovun admit unique decomposition into prime
ideals, these being entirely anaslogous to those obtained by
Noether’®. The development in both § 3 and § 4 follows

van der Waerdens', who follows Krullg'.

In §'5 we note that, when we pass to rings, every ovoid
ideal is also a ring ideal, but not always conversely. The two
systems are multiply isomorphic, yet have in general very differ-
ent arithmetic properties. It is noteworthy that if unique decom-
position holds in the ring, then every ovoid ideal is a principal
ideal, which is not necessarily the case for ring ideals. Thus
ovoid ideals appear to have & more intimate connection with the
multiplicative properties of the ring than do ring ideals,
although they are not presumed to have such interesting additive
properties, nor to be so useful in the study of algebraic mani-
folds.

Before passing on to the detailed development of the
theory, I wish here to express my thanks %o Professo§§ E. T. Bell

and M. Ward for many helpful suggestions in this endeavor.
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1. Criteria for unigue factorization in ova.

A system consisting of a class 8 , an equality rela-
tion = , and a binary operation o , will be called an ovum
if the following postulates are satisfied:

Pyt To every pair & , £ of elements of & there
corresponds an element ¢ unique to within equal
elements. fWe write aef = ¢

Po: If @«=a' and é=4" , then aokbr=a's k.

Pz: TFor every triplet « , & , & of elements of S

aol(hboc) =(aekh)ec.

Py: Gdo b = boa.

Ps: There exists an element ¢ in & such that

Roz = Zoa = A
for all « in & .
The element z of /z— is evidently unique. It will be

called the identity element of cS) .

The element 4o & is called the product of 4 and 44- ,
and 4 and 4 are factors thereof. We shall write simply « &
in place of « ° & .

: . as P /) *

The immediate consegquences of /3 and /% are well-known™.
Briefly, we may form the product of any finite number of elements

of S . This product is independent of the order in which the

* See van der Waerden, "lboderne Algebra", v 1, pp 20-22.



successive products are formed, and of the order in which the
factors occur. It depends only on the factors occurring there-
in, and the frequency with which they occur. Powers of any

element @ of 5 ere defined in the usual way:

Then the index laws
th % - Q"L-{—n
(&™) =a™ 7~
hold for all non-negative integers »t , » .,
An element 4 of (5) is said to divide, or to be a divisor

of, an element K of <5) , 1f the equation

av = &

has a solution X in (5) . 4 is then called a multiple of <« .
We indicate this by @/4 . The relation thus defined is transi-
tive and reflexive, but not in general symmetric.

Divisors of the identity element ¢ of 8 are called
unities. They form a group.

Ir @,4 and @/4, always implies « = & , We shall say
thet the Dwxm 5 is reduced.

If «,/4 and & /a. then we write @« v &, and say that
a 8and .4 are associate. This is an equivalence relation with
the property that if 4« ' and £« € then ao £a'sed Hence <5,

Torms a reduced ovum with respect to the binary operation e and



e~ as the equality relation. This ovum we called the reduced
ovun of (S) .

In the remainder of this section we consider only re-
duced ova. The results hold for eny ova provided we interpret
‘ a=4¢ ! as meaning " & is associate to & ," and "unigue®
as meaning "unique to within associates."

Let, then, 8 be a reduced ovum.

If Q./K/; , but a#é , Wwe write a.”é , and say

that « is a proper divisor of b, This relation is readily

seen to be transitive.
An element of &9 which has no proper divisors othen than
2 1is called irreducible; otherwise, reducible.

An element « of cS) is called deconposable if proper

divisors 4 and ¢ of a exist such that @« = ¢c¢ . Otherwise, @

is called indecomposable. If « is indecomposable, and 4 = &e s

then either «= § or a=ea ; that is, if z// a then a=ax.
Hence the proper divisors of &« form a subovum of S

An element /b of & is called prime if the relation
Vi /a ya implies that either f /a or /J | & , and completely
prime if /b" /a ¢ implies that either /f’/“ or (/”5 e, ~
being any positive integer. ZEvery prime element is plainly inde-
composable.

Consider the segquence of elements « , a* s 43 ) seva,

where a4 is any element of S « If they are not all distinct,

let q,’z be the first element of the sequence which is equal to an



4 ‘
element @ 4 (A >o) further out in the sequence:

2 A+ A
A = @

A A

. 241 / 4+l/ 2
How « Qa , 80 that « a . likewise

A+

a’ | A . Sipnce we are assuming that /5 is reduced,

this implies that

We arrive in this way at the following result:

If « is any element of a reduced ovum (.S) , Then either
every element of the sequence & a” s a’ s eee is distinct, or
else they are all distinct up to a certain point, and all equal
from that point on. The nurber of distinct elements in the

sequence will be called the index of @ ; if all the powers of &

are distinet, we shall say that a is of infinite index.

An element « of 8 is said to be decomposable into

irreducible elements if distinct irreducibles /, PR ,/4

exist such that
:o/”'

! /»(;
Q:ODI /31. &04 2

where the C(L- are positive integers. The decomposition of « is

said to be unique if the existence of another
waigue s

3 b fos
a:g, Z; {, ’
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implies that
(i) the sets Z/’a,,... ,/7,»‘ f s 297, PRI Z,of are

identical, so that, by suitable numeration, 4/ =4

5, /, R

(i1) = 5 L (=, 2., 2 ).
The second of these is equivalent to the statement

that either «, = (5

; or else nmeither «; nor 5,- is less

then the index of %, .
Theorem 1.1
The following conditions are necessary and sufficient
that every element of a reduced ovum /<S7 admit unique decomposi-
tion into irredgcible elements of 49 :
I. Teilerkettensatz: If a sequence «, , 4, , ...
of elements of 5 is such that <y, Vi 4; , ‘then
the sequence terminates.
II. Zvery reducible element is decomposable.
IIT. Zvery irreducible element is completely prime.

Proof of Sufficiency:

We show first that every element of 5 is decomposable
into a product of irreducible elements of (57 .

For if an element 4 of 5 had not this property, then
it could not be itself irreducible. ience by II we could write
a = éc, , Where 4/{@. , c//a . If both @ and ¢. were
decomposable into irreducibles, then clearly « would also be.

Selecting the one which is not decomposable, we proceed as with



a , obtaining a further proper divisor thereof not decompos-
able into irreducibles. But this process gives rise to an
unending sequence of proper divisors, in contradiction to I.

Suppose now that we have two decompositions of « :

, % oy _ B, ﬁ»‘
SR A A

Since the result is evident for @ = z we can assume a # z ’

and that the irreducibles pp, ..., /74 are all different

from 2, and from each other, and similarly for ZH e Z/, .

{ / ﬂl ﬂ‘ v. .

Since (/5 , Z, Z P we infer from an obvious exten-~

sion of III that /, divides one of the g/ , say X, . This

implies that 0/7, = X, . Continuing with /)‘,..., /74 we get

the result that ~# =42 , and, by suitable numeration, /‘)z -—Z; , (2~ /, --u/l)-
Since now /7, divides none of the elements 4., .., g,,_ >

2

it follows from III that it cannot divide [ ;,‘A . But
<, / ﬁ%/ A. ﬁa)
051 2?/ Zﬁ e 5; ?
LT} /"g/ /‘{// “
and hence from III agein, /)/ /gl . Similarly, Z’ /, 5

and since 5 is reduced,

>

Similarly,

-
X
i
>
,\\
il
N
.
v
&
N\
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Proof of Necessity:

Assuming now that every element of Ay is uniquely de-

composable into irreducible elements, we note first that if
x; ; &y ,
a = %/ e %4 P {%i >0 /

then the divisors of & are the elements

o 29
pr g
where C; ranges from O to «; . But these are finite in num-

ber. Hence I is certainly true.

Iet now « be any reducible element of 15) . let
& «
a=p i (>0 ).

Then & =/§, and ¢ :ﬁlq’—,/é:‘... /):4 are both proper
divisors of @ , and & = 4¢ . Hence II is established.

If now %4 /44 , Where /9 is irreducible, and if /9
does not occur in the decomposition of 4 , then it mmst oceur
in that of 4 with multiplicity > £ . Hence either / /a or
ﬁb’z/,(- . This proves III.

g.e.d.

Theorem 1,2

The conditions I, II, III of Theorem l.l are independent.

Proof:

Independence of I:

of »n
Teke for example the set of all numbers of the form Z #7

where o ranges over all non-negative real numbers, and L over

all non-negative rational integers. Iultiplication is the usual

b
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variety:

i

(7™ )(2fn™) = 27777,

The only irreducibles are / and 7 . Since they are evidently
completely prime, III holds, Evidently IT also holds. Yet I
e
does not, e.g. the sequence <, Z f} Z "L) Zf,,, violates it.
g.e.d.
Independence of IT.

Teke for example the set of divisors of /< , the pro-
duct of 4 and & being the L.C.M of 4 and & . Since the set
is finite, I holds. The irreducibles ere £ and S , which are
plainly prime (and hence completely prime, since the system is
idempotent). Thus IIT holds.

Yet II does not. For example, the only decompositions
of 4/ are 4=2°4 eand 4= 'Y" 4, so that %/ is indecomposable.

g.e.d.
Independence of III.
Take for example the ovum fo, z f,g, 3 } with

multiplication table:

7B
/b o ég o
Z o Z o
2 o o 4

Since the set is finite, I holds. Since ¢ is the only reducible
element, and since J =/>; , /) £o Z # O , it is decom-
posable. Hence IT holds. III does not, however, for %l —:5.2 ,
S0 thatdé /Z 4, and yet /; /g and f///l are both false.

q_.e.d.
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If an element a of an ovum J has the property that
ax = ﬁ.y always. implies & = 7 , 1t is called regular;
otherwise, irregular. Every regular element is clearly of in-
finite index. The product of two regular elements is regular,
and every divisor of a regular element is regular. An ovum is
sald to be regular if all its elements are regular.

If an element Z of an ovum J has the property that

A = Z for all 4 in <57 , We call it a zero element. It

is plainly unique, provided it exists. If # 1is decomposable:
Z=4q4 , ¥4 a ,24# 6 , then 5 and 4 are called
nilfactors. Any nilfactor is clearly irregular, though, unlike
the case in rings, an irregular element is not necessarily a
nilfactor. We have excluded the existence of & zero element in
regular ove sinece it contributes nothing to the arithmetic theory
thereof.

Parenthetically, if a reduced ovum 457 has a zero # ,
and every element of 157 » including 2 , adnits unique decom-

position into irreducibles, then <5 is finite. In fact, if

e= B

then ,g is identical with the set of all elements of the form

G 27
/’; /)4 as each 5: ranges independently from O 1o «, .,
S is therefore simply isomorphic with the reduced ovum of the
‘ «, ~%n
residue class ring of any positive integer of the form W, RN

where T,

., ..., T, are any distinct prime numbers.
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In & regular ovum, every reducible element is decom-
posable. Likewise every prime element is completely prime.
Hence from Theorem 1.1 we have immediately:

Theorem 1.3

Necessary and sufficient conditions that every element
of & regular ovum be uniquely decomposable into irreducibles
are

I. Teilerkettensatz.

IX. Every irreducible element is prime.

If 4 and 4% &re elements of eSD , and if ¢ is a
common divisor thereof such that every other common divisor of
A and é divides ¢ , then £ 1s said to be a greatest

common divisor (G.C.D.) of &« and # . 1If it exists, it is

unique to within associates.

Koenig showed that if every pair of elements of a regular
ovun possess & G.C.D., then every irreducible element is prime,
and then?eﬂto the property of unique factorization, by Theorem
1.3. Since this condition is evidently also necessary, we have
Koenig's elegant result:

Theorem 1.4

Necessary and sufficient conditions that every element
of & regular ovum be uniquely decomposable into irreducibles are

I. Teilerkettensatz.

II. ZExistence of G.C.D. of every pair of elements.
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Off hand we should suppose that similar criteria would
hold for en irregular ovum, adjoining to these, say, the condi-
tion that every reducible element be decomposable. Such is not
the case, as the third example iy the proof of Theorem 1.2 shows.
There every pair of elements has a G.C.D., and yet the prime
property breeks down. The reason for this, and the proper gener-
alization of Theorem 1.4 for irregular ova, will be given in.§ 5
(Theorem 5.3).

We shell close this section with apvlications of Theoren
1.1 to general commutative rings having a principal indentity.
The next theorem, giving criteria for general rings, is very
gimilar to & result of Fraenkel's mentioned in the Introduction.
That the result is not true for ova can be seen by referring to
the second example in the proof of Theorem 1.2. We remark that
since we have to use addition and subtraction we are not at
liberty to pass to the reduced ovum.

Theorem 1.5

Necessary and sufficient conditions that every element
of a commutative ring f% be uniquely decomposable into irreduc-
ibles are:

I. Teilerkettensatz: If 4z, //éz- , then the sequence

Qq, Gy terminates.
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II. Vielfachenkettensatz: If &, i 4;,, , then
elther the sequence «,, 4, ... terminates, or
‘no element # O is divisible by all the «, .

III. ZEvery irreducible element is completely prime.
Proof:

The condition II is plainly necessary. Hence by
Theorem 1,1 we have only to show that if these three conditions
are satisfied, then every reducible element is decomposable.

et & be any reducible element of /)? .

If & 1is regular then it is decomposable. For if
a=4e Ela ,ifléd |, alc | then

ad /e,
illa ,
éle

P
in contradiction to 7 //4— . Hence Q/’c is false, and ¢ //4,_
Now let « Dbe irregular. By I every element has an
irreducible divisor. Let /) be an irreducible divisor of a .

If & were indecomposable then

a = a
where a4 «a’,
Hence a/; P a’/’
so thet @ ap Maf’zw

If now /5 were regular, then « would be divisible by every

member of the sequenée /6,/:‘,*3,.., in contradietion to IT.
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Hence /4 is irregular.
Since we are in a ring, % is a divisor of zero, so
that C# O exists in /f such that
/z e = ‘0 .
Let a’ = a.éz .

We proceed to S'hOW. that
a = (é'+c)/,v
affords a decomposition of «4 , i.e. that (élf < ) I a.
For if 4 /(ﬁ’«—c) , then, since a/d/, ale . Let
C =4q€.
Then ¢ = a’/(,
=4 «f—/e.
= ,ﬂ/, c
= O,
But ¢ # o .'. Hence & cannot divide « '+ ¢ , So that (a’rc Ma .
g.e.d.

It is well known that if evexry ideal in a ring he a
principal ideal, then I holds., We can also show that III holds.
it Z be é residue class ring of an algebraic ring fz{ then

(i} since every ideal in /{ has a two-term basis, one

of which can be chosen arbitrarily, it follows that
every ideal in 7€ is a principal ideal;

(11) since IT holds in A it holds in /T also.

This yields a direct proof of the unique decomposition property

in any residue class ring of a ring of algebraic integers.
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2. Ideals and their fundamental properties.

If /4 and 8 are subclasses of an ovum 157 , we shall
denote the class sum and common part of A’ and /3 by 4 U/B
and /4/) B , respectively. If /4 is a subelass of /j we
write /4 C /5 or //3 2 A . We shall denote by /48 the class
of all products « 4 , 88 & Tranges over A and /(:/— over 3 .
It /‘? consists of the single element 4 of,;(g , We may write
@ 5 in place of 4/3 « The class of all common divisors of /4
will be denoted by A/A) .

A subclass /4 of 5 will be called an ideal class, or
simply an ideal, if it includes every element 4 of 45 which
has the Iproperty that J% is divisible by all common divisors
of the set /4)( , for every (fixed) element 1« of S .
Expressed otherwise, if the class 5 has the property that, for

each %X in«g s

4(//32:) Qﬁ(ﬁl’),
A 2 B.

then
Whenever the letter X occurs in the following, the statement

is assumed to hold for every X in S . Ideals will be denoted
by smaell German letters.

let [ Ve an ideal. Then if a class /‘} has the property
AxA) = Alxi)

we say that /4 generates, or is a generator of, the ideal Z
Evidently every possible generator of 4 1is a subelass of & .

A Finite g€ nerator (s Cafjed a basis.
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Conversely, if A is any class, then the class /[
of all elements 4 with the property that 4 x is divisible
by every common divisor of /4 X , is an ideal, and A is =

generator thereof. For then

Alax) = A(Ax)

and, from the way in whiech /A is defined, if
A ( Bx) 2 LA(Ax )
then /4 2 8 .

If /4 generates the ideal Z , we write

Z=0A).

If A consists of the elements « , & s see OF '5 , We

write

2=(a, & ... ).

P4

Theorem 2,1

A necessary and sufficient condition that

(A) € (B)
is that AMX)QA(BX) for all % in S.

A necessary and sufficient condition that
(A)=(B)
is that AlAx) N(Sx) foranl in S .

Proof:

i

i

Iét 4 =(/A), éI = (5), so that



19

AlAx) = A (ax)
A(Bx) = Alhx),

Then we have to show that & necessary and sufficient condition

that
Z < h
is that Algx) 2 4 Chxe).
If g C /4 then plainly
dx < bx
so that Azv)2 0 bx).

The converse is an immediate consequence of the defini-
tion that 4 be an ideal.

The second part of the theorem is an obvious consequence
of the first. ' © g.e.d.
Theorem 2.2

1t (H)S (A )ana (B) < (8”), then (AB) < (4°8").

12 (A ) =(4")exa (B) = (B'), taen (AB) = (4'B").
Proof:

By Theorem 2.1,

Nlhx) A(A %)
A(Bv) 2 A(B%).

Replacing « by »@z in the first of these, we have

Aadx) 2 A(A'é).

NJ
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Since this is true (for each fixed x in é? ) for all A in

&5, end hence all 4 in 55 , we infer that
N(ABx) 2 ACA B).
Again using Theorem 2.1, this gives us
(AB) < (A'B).

In similar feshion we prove that
DV ~ Al 5
(A'B) € (A'B),

and hence that

(AB) € (AW

The second part of the theorem is an obvious consequence
of the first. | g.e.4.

It 7 = /‘] and /] = /3 are ideals, then the product
of @ and /| 1is defined to be the ideal generated by 473 .
We shall write this 2 - ﬁ or A Zj , and in order to avoid
confusion with the product of two classes, as already defined,
we shall employ the convention that the juxtaposition of capital
latin letters will always denote simple class product, while the
Juxtaposition of small German letters will always denote ideal
product.

Thus fZ[9 = (>423,»
Theorem 2.3

If /4 and Z} are any two subeclasses of é; , then

(A)- (B) =(AB).
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Proof:
Let =M = (/4)
h=p8 =(8B).
Then by definition
A)(B)= 2l = (AB).
(A) =~ CA")
(23) = (/3();
so that by Theorem 2.2,
(AB) =(AB),
(A)(B) = (AB).
g.e.d.
Theorem 2.4

If 7 end ﬁ are any ideals in S , then EZI ﬁéd.

Proof :
tet 2=A4 ,h =8B . men since 48=BA ve nave
(A8)=(BA).
Hence by Theorem 2.3,
(A)C1B) =CBICA).
g.e.d.
Theorem 2.5
ir L, fa , £ are any ideals in S , then
Cz-br o =ab-c.

Proof':

I.etd:/} ,f]—é ,Ezc. Then, since /4'/36:/45(’)
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we have (4-/38}-:546'5).

Hence by Theorem 2.3,

(AV(Be) = (AB)(C)

and agein /4):/6)(6):(/4)_/5)' ((’) qg.e.d.
The proof of Theorem 2.5 shows incidentally that
Zhr = (Hi3¢C).
of

The extension to any numberA factors is obvious.
Theorem 2.6
1t €2 , bl ,then AAC B'A
Proof ;
Let j:A , a/: /‘}’ , b:/3 , b’:gl Then by hypoth-

esis

(A) € (CA')
(B)< (B).

Hence by Theorem 2.2,

(AB) < (4'8)

and by Theorem 2.3, //4 )(/3) c (/4:)(/5/)

g.e.d.
It 42 /J we say that the ideal 4 divides, or is a
divisor of, the ideal [] . It Z D b , we say that 4 1is

a proper divisor of b . It 7 divides /f] , We say also

that [7 is a multiple of A .
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An ideal [ 1is called a greatest common divisor

(G.C.D.) of the ideals g and /4 if

(1) it is a common divisor of 4 and A , and

(ii) every common divisor of 4 and b divides £ .

An ideal L 1is called a least common multiple (L.C.M.)
of the ideals 7 and f1 if

(i) it is a common multiple of  and ZJ ,

(ii) every common multiple of 7 and b is a multiple

of L .

If A andﬁ have a G.C.D. it is plainly uniquely
determined; we denote it by /‘7’ b ) . Similerly for the L.C.M.,
which, if it exists, is denoted by [‘z; b ./

Theorem 2.7

Every pair of ideals 4 , 17 possesses a G.C.D. In

fact, if 7 = (A) , b= (B) , then
(2, 4) = (A B).

Proof: Let
C

=AY 8,
(¢c) =CA°73).

™
1]

We need only show that L has the desired properties.

Since C) 2 /4

if follows that (C' ) Z (/‘4 ),
that is, L 2 4.
Similerly, ' c 2 ﬁ .

If now d 2z, d26



and L{ = :z) >
then 'Z) 2
so that V:ZD = Cf.

Hence (D) 2((’))
that is, d 2 c. q.e.d.
Theorem 2.8

Every pair of ideals O , lﬁ possesses an L,C.M.

In fact if 7 ::/4 s ﬁ = ZB , then
[E;ﬁ]:/}/)zg‘
Proof:
Let C =An B.
We proceed o show that C? is an ideal with the desired

vroperties. To show the first, let the class ;Z) be such that

A(Dx) 2 A(C%).

Now C ¢ A
so that Cro € Hx
and A4(Cx) 2 AA ),
Similerly, A(cx)2 A8
Honce A(Dx) 2 AAx)
end A (D)2 A (B
But 4 end /3 ave ideals, so that
D <c A
D ¢ B,
DcC.

and hence
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67 is therefore an ideal., Let [ = ()
Now KQ /1 5 () QE,

i.eo ’ [ g 1 P [ Q b.c
Conversely, if

ens - D,
then DcAHA, Db
so that < C,

That is, d<c

qoe-d-

Theorem 2.8 shows that the common part of two ideals is

also an ideal, and indeed the L.C.M.
dhk

ever, in general an ideal.

We thus sometimes write

for Zz}’, ﬁ] . The class sum of two ideals is not, how-

Theorem 2.7 shows that if /4 generates A and B
generates ﬁ , then /4(/ B generates (n", Z])
write (/4) B) for 6‘1‘//3) , 80 that

(A, B) =(a,4)
We remark that /I,/J)z(lé, Z) ,[47;/}1_]= [b;ﬂj,
anqalsothatif /ﬂ,b)=ﬁ or [Z,/ﬁ_/:d

[7 2 74 , and conversely.

We shall

then

Theorenm 2.9

1r 4 s £{7 , L are any ideals in S then

/Z) (ﬁ,c))f(ﬂi’,b),c)
[a, [4 c)]=00[7,41 c]
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Proof:

By Theorem 2.7, both members of the first equation have
the common value (34 “73 L/C:/) , and both members of the second
have the cormon value /fq 2?,, C?. q.e.d.

We write (7, 4,L) or (A,5,C) ftor the first, and
[1;7, b, EJ or ﬁn ﬁ,) L for the second, and similarly for any
number of ideals.

Theorem 2,10

2(b, b ... k. J)=(as, 3k, 34 ).

Proof:
We shall prove this for 22 =X , the induction to any

7 being quite obvious. let 7 =4 A= (3, £= C.
Evidently, AlBYCSf = AB “YAC .

The ideal generated by the class on the left is, by

Theorem 2.3,1?4)(73°/C: ) , that is, by Theorem 2.7,
(4, c).

The ideal generated by the class on the right is, by
. . s
Theorem 2.7, ((/4/3), (1)) , that is, by Theorem 2.8,

(2h,20).
Since these must be identical,

3(5,&) :(;7&,2[).

ge.e.4d.
The class <S) is evidently an ideal, which we denote by

I , and call the unit ideal.
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Theorem 2.11

If 7 is eany ideal, then T Z = 4,
Proof':

If 4« is inA and .J is in—do , then Aa x is
divisible by every member of d (/4 x) , so that da is in A .

Hence S/‘} < /‘)

Since S contains an identity element, 'S)/‘)’ =2 /)
Hence S/ = A, and by Theorem 2.3, @d = 4.

qg.e.d.
We remark that I 2 4. for all 4 . For S=2 A s

80 that /5)) 2 (//4) , for all A .

Theorem 2.12 i 2 H/J
[2,4]2 al.
Proof:
+ 2 h.

Hence by Theorems 2.6 and 2.11,

Z 2 4h.
Similarly L 244,
Hence d, h =24 f g.e.d.

If an ideal A admits a basis A which consists of a

single element « of S , then 7 1is called a principal ideal.

We write Z= (a).

Theorem 2.13

The set of principal ideals en S is an ovum simply

isomorphic with the reduced ovum of 5 .



Proof:
To every a4 1in 45) we let correspond the principal
ideal (ou) .- To every principal ideal Z we let correspond
any element of <g generating it.
If (a) =(&)
then a/ 6 and 61/0\ , 80 that « «— &, Conversely if
A g— , then every divisor of 2 xv is also a divisor of

4x , and vice versa, so that

(«) = (&),

Hence the correspondence is ("/, /) between the set of
principal ideals in <§ and the reduced ovum of 5 . lMoreover
it is an isomorphism, since, by Theorem 2.3,

(a)if) = (at).
q,e.d.

Theorem 2.14

If (Z2,4) =0 eand(Z,.)=d , then (g, trr )= d.

Proof':

On multiplying and using Theorem 2.10, we obtain

(a* it ¢c, ) =md = d.
Now (/Yﬁi)ﬁ,l.’.) =(LT,£)=LT.
On multiplying by 4 , we obtain
(24 2b,de) = 20 = 4.
By Theorem 2.9, then, ,
(g2dli,dc, be ) =id, 4c),

whence

('5) b[) _ E/ g.e.d.
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Theorem 2,15

[e,0]- (2,) € 28,

Proof: By Theorem 2.10,

[ 61(a, k)= ({anid, L2, b]h).

Now [d,6]¢ 4
so that ld,blacdh.
Similarly, la,hlbcat.
mence Ly hnl-(a,h) S ah. g.e.d.

Theorem 2.16
If (d;ﬁ) =(F" , then [d,b_/ = dls.

Proof:

From Theorem 2.12 we have

[a,4] =2 14
From Theorem 2.15 we have
[a,b4¢da.
Hence ld, b1 =an. q.e.d.

If (ﬁ) [7)': O , then Z and [/ have no common divisor
other then [ , and we say that they are coprime.

Theorem 2.17

If 4,2y ,0., Ln are coprime$ in pairs, then

[LZ,)Iz,z),,., a,‘_ ,{ = d,d*"'dn,
Proof:

By Theorem 2.16 the result is true for »n =X . Assuming
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it to be true for 71,——-/,
[fi,) iz)"')in-/-/ = 11’1;/1"'11"_’

By hypothesis,

By Theorem 2.16, then

[, 20, dn d=dlid, . duid, dn J

= Zj/‘i"'in—l 5 J,,_ _/

Hence the result follows by induction. g.e.d.

Theorem 2.18

1 (ﬂ,ﬁ)=LT and A4 2 4L , then 4 2 L.
Proof:
Let (4,0 ) =d.
Then, by Theorem 2.14,
(a,bey =d.
By hypothesis, & 2 AL , so that 4 = { . Hence
A =2 cC.
qg.e.d.
An ideal having no proper divisor other than & is
called irreducible. An ideal fﬂ with the property that F 244

implies that /'.72 i or A 2 H is called prime.
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Theorem 2.19

Every irreducible ideal is prime.
Proof:

Let Ib be irreducible, and let Ib 244.

Let (g, 2)= L.

Then [ 2 /] , so thet either r£=h or =0 .
If c=H ,then/ﬂQd . If [ =T ,then/bgb by

Theorem 2,18.
q_.e .d.

Theorem 2.20

A sufficient condition that every ideal in <S) have a
finite basis, is that the Teilerkettensatz hold for ideals in
S , that is, if 4;,, 2 4, , then the sequence &,, 4, ...
must terminate.
Proof:

let @, be any element of the ideal Z . If a = (;,),
then the result is true. If 2 # (c‘,) , then there exists

«, in Z but not in (;;,_,) , S0 that

(/6(, ; 443_) D (‘!/)a

It 4 # (4,) G, ) » then we can find «, in 4 but
not in («,, ., ) , so that
(d\,)%ijafsj-)(vq/) VIL)-
Since this process gives rise %o a sequence of proper

divisors; it must terminate after a finite number of steps.
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Hence we obtain a set of elements «,, <« , , .., “n of S

such that

L = (“l,) MA)III) ‘4)‘,/’

q.e.d.

Unlike the case in ringé, the Teilerkettensatz is not a
necessary condition that every ldeal have a finite basis. This
is shown by the first example in the proof of Theorem 1.2. In
fact here every ideal is a principal ideal.

3. Decomposition of ldeals

In this section we meke the following assumptions con-
cerning the ideals of an ovum 45)

I. Teilerkettensatz: If 4,,, O 4, , then the

sequence Z,, d,,... terminates.

IT. ZEvery prime ideal is irreducible.
The final result to be obtained is the unique decomposition of
every ideal into the product of mutually coprime, primary ideals
(Theorem 3.4 ).

Postulate II is the converse of Theorem 2.19, so that
we speak indiscriminetely of prime ideals and irreducible ideals.

The following theorem depends only on the postulate I.
Theorem 3.1

If Z 1is any ideal, then there exists a finite number of
distinct prime ideals fh > oo Ha such that

u) ﬁ% 2 4 (}.:/) Ly < )

(i1) 7 . /:1,‘\// _ .,(,_‘“ /{’7«1 ) ('-,(”, >0 )“

V]
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Proof:

If 7 is itself prime, the result is evident. If Z
is not prime, then fthere must exist ideals 27 and L such
that : , L o
Here 4 P/ meens that Z 1is not a divisor of 4 .

Setting k! = (a4, k)

LI = ([i b Lj
we note that H’ O a , c’oa . By Theorem 2.10,
bt (2t ab, ail, he)
L - d 2 i 2 dL-; L 2
end, since A is a common divisor of I, Z 4, 4r, hcC,

i 2 k't

If both 11«7 ' and L’ have the desired property, then 4
must have it. Hence if A has it not, we can find a proper
divisor of A also not having it. Continuing thus we get an
infinite sequence of proper divisors, in contradiction to I.

g.e.d.

An ideal 7 with the property that 122 E.b always
implies that 5[2 d. or else that E[ 2 h° , for some positive
integer ¢ , will be called primary.

Theorem 3.2
A primary ideal is cheracterized by the property that it

has only one prime ideal divisor other than [ .
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Proof:
et E[ be a primary idesl, and let distinct prine
ideals ﬁ, JCEE F" be chosen as in Theorem 3.1 so that

fo 29 5 (=12,

al d"t

[Z 2 /7,'-“/7/, , («? 70)-
g R

for otherwise “r

.« .
/~('7/ 2 :ﬂz— ﬁ" >
contrery to the prime property of /5, , the condition II, and

the fact that

Aoo# o //'rz,-..,/a).

./I
Hence ? must divide some power of /b, , 88y
. C,
g2 h
x -
But then /j'_ 2 1_[ > ﬁ: “ , (j =, e, )
and hence /j] = /«7:- .

We thus conclude that 4 =/ , and /;7, the only prime
divisor of IZ .
Iet now EZ have only the single prime divisor /:l +a .

Then by Theorem 3.1 an integer ¢ exists such that
g 2p°.
Suppose now that q 2 ah.

1t B b, then (fr, )= & by II, and hence by
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Theorem 2.14, for the case & = [T,

(’"/jf, k) =u.
Consequently ( q- 5 b ) =
and, by Theorem 2.18, IZ 2 Z.

if F 2 L, then 2 &°, and hence g 2 /,7:“-

Thus either 5 2 A or else ‘Z 2 br, and L is
therefore primary. g.e.d.
Theorem 3.3

If A and & have no prime aivisor # (7 in common, then

(4, @) =m.
Proof:
let (E;b)‘-‘ L . Then L has no prime divisor other
than ¢ , and hence by Theorem 3.1, L =M. g.e.d.

Theorem 3.4

Every ideal is uniquely representable as the product of
mutually coprime, primary ideals.
Proof:

let 7 be any ideal % ;7 , and let distinet prime ideals

/:J,,.,., /;7,‘ be chosen as in Theorem 3.1 so that
/J,' 2 4, (-’5’-‘-'/,.-.,"?—)
4 2/.7,”('---‘2;7:‘2 , (50 ).
set J; - (2, f1%).
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Clearly, ﬁ; is the only prime ideal divisor of q"

other than (¥ , and hence by Theorem 3.3
(4o, 9) =@ . (2¢))
Hence, by Theorem 2.17,
[40 5 gud = 4baGn
On multiplying out the product
Gt ge = (@, )2 1) (2, A7)

by means of Theorem 2.10, we see that each term in the resulting

expression on the right is divisible by Z . Hence

i 2 ?, [[4"'%:.

i 5 (z‘:/),,,}&)

But ?,. 2
so that i/, i‘ ?,, 2 4.
Hence i = [1’ gz_ 7* .

Since by Theoreni 3.2 each i’,- is primary, this gives the

desired representation. Suppose now that we have another such :
¢ / /
i = ZZI Q/z “'Q”'
/ / /
Since A 2 G, Yy v Ya
’ ’
it follows that /J’ must divide one of the IZ/- , S8y ?J . By
Theorem 3.2, /J, 1s the only prime ideal divisor of Z' . Hence

’ e
/7,_ must divide one of the remaining 7/ , say ?‘ . Continu-

ing in this fashion, we get 4 =2 , and, by proper numeration,

P,’ 2 i: > (Z':/, ve, /L),
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By Theorem 3.3, P
P 7')‘

(71/) Q:’.)_‘-Uv > (=2

Hence by Theorem 2,14,

(q;) Lz.z'gﬂ- ) = .
But I-Z, 2 [Z/, iz"'f*

Hence, by Theorem 2.18,

4

)
1Y)

Similarly we can show that _,

o= L, .
whence L[: A
/ < B L0
Likewise, 6/,- = ?;- , (2 =2, .-, )
and hence the representation is unique. q.e.d.

4, Ideal theory for regular ova.

In the present section 451 will denote a regular ovunm,
a
If we construct formally gquotients yA from S , and operate
with them as with ordinary fractions, we obtain an abelian group,

which we shall call the quotient-group of ,5 , and which we

shall denote by Z . Since this is a well-known process we
shall only very briefly give the steps involved.

Wesaythatvg‘ = % if and only if 46{=£c.
The relation = +thus defined is found to be reflexive, symmetric,

and transitive.
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The product of two fractions is defined thus:

. &£ _ ac
¢ AL oL
We readily see that if £ = al , € _ _, , ‘then
A &’ A
9___ . e “I !
¢ X T &I

We then show that ) is an abelian group with respect
to = and ¢ thus defined.
The subset f , where 2z is the identity element of 3,
is simply isomorphic with /(5' , and so may be "identified" with
5 by passing to ah whole new system isomorphic with 5 .
The elements of Z will be denoted by small Greek letters.
An element &« of 2 is said to divide an element 3
of Z , relative to 45) , if the equation 1

¥ =35

has a solution x in S » Ve then write « / 3 . This rela-
tion is plainly transi;cive and reflexive.

The class of common divisors of a subclass A of Z
will be demoted by 4 (A). A will ve called en < -module

if it includes every subclass 5 of Z having the property that
A(gs) 2 ACAY)

for every f in Z . This is equivalent to saying that
A (//.5)5) =2 A(/‘Z ©)

for every ¥ in KS) .



For if we put ¥ = ;f and it A ve in A (A E )then a(y
is in A(Az} . Hence u{dvz is in [ (Bv)end £ is in A(BE).

We can carry over the whole of the theory of ideals aS
presented in §2 to ,Sj-modules. Since the set of ideals of
zS/ is a subclass of the set of 45) -modules, it is permiss-
able to multiply an ideal by an b) -module. <§ ~modules will

be denoted by small German letters with a tilde; as E ,
unless otherwise designated.

The purpose of the present section is to show that the
following three conditions are necessary and sufficient that th‘e
system of ideals in 5 constitute a regular arithmetic:

I. Teilerkettensatz: If Z.

ip,; 2 4, , then the

sequence g,, d, ,.. must terminate.

II. ZEvery prime ideal is irreducible.

IIT1. S is integrelly closed in Z .

The meening of III is that if « in 2: is such that a
exists in S such that xoé" is in 8 for every positive
integer » , then & isg in & .
Theorem 4.1

If 5 contains every element f of Z- with the property
that fi ¢ 7 , then A = , and conversely.
Proof:

ividently (%, = ;A\("U‘ X/, so that by Theorem 2.1 it
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suffices to show that

Azx) € Aix).

For then 4 2 (4 , whence A =G .
Let ﬂ( be in A(E'){) , So that »{/&K for every a
in 4 . Set p= ¥ Thenfd. is in 3 for all a in
J '
4 , that is, /)EL € @I . Hence by hypothesis Jo is in

S , so that &£ /% , and
Adae) € dle).

To prove the converse we note that if )oa* < T,
then fz' = F isin o . qg.e.d.
Theorem 4.2

If 4 be any ideal, then the class P of elements )O

—

of & such that
)0 4 < m

is an & -module.
Proof:

Let & be any element of . such that S X is divi-
sible by every member of zﬂ(/Px) . Then ga, is divisible by
every member of A(/Pa), for each &« in Z . Since all the
members of Pa, are in S , the element 2 oceurs in YA\ (’Pa-)-
Hence ga. is divisible by 2 , that is, g‘t is in 'S .

Hence, by definition of P , S is in /7 . /Ois

consequently an S-module. g.e.d.
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The 45; -module defined by Theorem 4.2 for an ideal 4. ,
will be denoted by .
Theorem 4.3

If A # &, then A~ contains an element f of 2.
not in S .
Proof:

If every element of a™’ were in cS , then, by definition
of Z" , S would contain every element f of Z with the
property that jDLZ € O . Hence by Theorem 4.1, Z =& , con-

trary to hypothesis. q.e.d.

Theorem 4.4

For every prime ideal /ﬁ , /Jp N

Proof:
Since /;7—’ 2
we have a2 ppa 2 A
Hence by II, BE'=F oxr ppE =0
1f /ﬁ/:" :/:1 , then
pozpp e ) e BT

-1
Hence if 4 be any element of /7 , and o any element of F s
the elements a«™ of 2 lie in /:1 . Comsequently, by III, &«
is in S .

Thus we conclude that every element of /7_/ is in 8 s
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in contradiction %o Theorem 4.3,

Hence /7/5" =4a. g.e.d.

Theorem 4.5

Every ideal is representable as the product of a finite
number of prime idesals.
Proof:

let A be any ideal. Then by Theorem 3.1 there exists
a set ,b,) “n ,ﬁ,l of prime ideal divisors of Z , not all

necessarily distinct, such that
E'=2 /7,/ﬁi-'-/ﬁh
Choose a set with this property, and such fhat .2 is as small
as possible.
It 2=/ |, thenﬁ, 24 ?_/J, , and & = f1, . Assume
the result to be true for all ideals for which 2 -/ primes

can be found with the above property. Then if A require exactly

/. primes at least, we have
ﬁ, 2 i 2 F, /'7‘- 1r¢ FQ N
Multiplying by /:l,.l and using Theorem 4.4,

P /-‘7," P /;,4/;1 .

Hence Z 1’ 1is an ideal (since it is an o -module
included in & ), admitting the result of Theorem 3.1 for .-/

primes. By hypothesis for induction
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2

Iultiplying by /:7, ,
- o, L/
z /h'/zz '/74 ' g.e.d.

Theorem 4.6

irg= lbl'"ﬁ*’ Z‘J =ﬁ,/'--/fl,’ ,and 2 4. , then
every prime ideal # fr occurring in the representation of b
occurs in that of 7 , and in fact at least as often.
Proof :

The theorem is frivial for b = . Hence we can
assume 4 > o and b # .

Since Ib,’ 2 ko2 Ao fAa ~ We have from the prime
property of /;1,’ that A, must divide one of the H. , say p, .

Using II, we infer thaf
P p
Multiplying the redation
plo B2 om0 i

-1
by #,, we get , ,
;a; e /:‘ 2 Fz”' /’74
The theorem is evidently true for 4 = / , as the result

Ly

shows. Assuming it to be true for all products b of less than

A primes, then /,71’,‘,.,/74/ all occur among the primes /—"7“ ey /71,
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repeated ones occurring at least as frequently. Hence the same
result holds when we adjoin f%/ to the former set, and its
equal ;& to the latter. g.e.d.

Combining Theorems 4.5 and 4.6 we have immediately:
Theoren 4,7

Zvery ideal is uniguely representable as the product of
a Tinite number of primes, the multiplicity of each prime being
unigquely determined.
Theorem 4.8

It Af=4 L , then fh = L .

[An immediate consegquence of Theorem 4.7.]
Theorem 4.9

It 42 h , then L exists such that 4L =b.
Proof :

Define [ to be the product of those primes in the re-
presentation of f] which are left after those in the representa-
tion of & have been removed. The result is then clear.

d.e.d.

Theorem 4,10

¢l
The conditions I, II, III for a rezular ovum < are

equivalent to the following conditions:
IV. ZEvery ideal in <& is uniquely representable as
the product of a finite number of prime ideals.

V. If 4 O i then [ exists such thet Z2H = L .

VI. If 24 =4 € , then U =0 . z{’uhis is a conse-
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quence of IV if we assume thet multiplicities
are unigquely determined.]
Proof :

I follows on converting the usual Teilerkettensatz
for an arithmetic to the Teilerkettensatz for ideals by means
of V.

II follows from the fact that /7 = f7 is the unique
representation of a prime ﬁ , 80 that it can have no proper
divisor # .

It remains now to show III. let o« be an element of
Z with the property that 4 exists in 45) such that a o« ™
is in S for every positive integer # . We are to show that

o lies in 5 .

Iet 4 be the ldeal generated by the elements

A, Ax,ax’, ... of & :
4 = (q)b‘_a/, “a e e )‘
. L,
Then * = (ﬁl, A S AC

(w\_)( a4, aa, vv.-x);"' )

= (a) 4. .

Using VI, i = ().
. . @
Consequently « [ e a , S0 that 2 /a( , and « is in J.

g.e.d.



46

Theorem 4.11

If Z be eny ideal, then an ideal ﬁ and & principal
ideal ( ¢ ) exist such that Z 4 =(ec).
Proot:
We need only take ¢ +to be an element of Z . Then
4 2 (¢ ) and the result follows from V.
g.e.d.
We shall conclude this section with a brief account of

Practional ideals. By a fractionsl ideal i’ we mean an <S’-

module for which & exists in é’) such that KE' is an ideal.

Theorem 4,12

Necessary and sufficient for E to be a fractional idesal
is that 5 have a finite basis.
Proof:  If T = A, 0, X
then by multiplying by the product 4 of the denominators of
the «,. we see that 67 < .
Conversely, if {v 5 is an ideal, then by Th 2.20 and I

it has a finite basis:

‘// [*

/’6’ 1 = (/‘4 2t o “ ” ) .
Hence ) ;
[-"Z" = ( ZL 2 T ;77 ) .

g.e.d.

Theorenm 4.13

If A is eny ideal, then 4 ' is a fractional ideal.
Proof:

If 4 is eny element of A , then ad =~/ ¢ .
gec.de
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Theorem 4,14

—

The set of fractional ideals in 2  forms an abelian
group with respect to multiplication.

Proof:

A

1t ad S, 6l <, then(a,éi)('?ig)s'u-;
hence the closure property. The associative and commutetive
laws and the existence of identity are clear.

let L be any fractional ideal, so that -o exists i»
such thet 4 £ = Z € a . By IV,

2 = pipae fa

By Theorem 4,13, ﬁﬁd, NP fi;' are fractional ideals,

Since |- -

Zp el e

we see that E' has the inverse

v, 9 -t 1
B s S pt el
Hence the set is an abelisn group. q.e.d.
d

We shall denote A 4’ by —

Theorem 4.15

The group of fractional ideals is the quotient-group

< Lol
of the ovum of ideals in © . Every fractional ideal A is
representable in the form

s SR !1 - ;L"' /51
H_ e . = e 2
FI ' ' FJ

Ty



where H end [ are coprime, and the sets f/ﬁ, 3 4o, ﬁ/L 5,
i[L’,... ;A f have no element in common.
Proot :

Since ¢ exists in J such that cd = b & o

we have that

i =

b
c

where L = (¢ ) < .

If now we represent ﬁ and L as the product of primes,
and cancel those occurring in both ﬁumerator and denominator, we
get the desired representation.

ge.c.d.

5. Criteria for unigue decomposition in terms of ideals.

In this section we show that the condition that every
irreducible element be completely prime, occurring in the criteria
for unique decomposition (Theorem 1l.l), can be replaced by the
condition that every ideal be & principal ideel. The fact that,
unlike the case of principal ideesls in ring theory, this condition
is necessary, points to the conclusion that ovoid ideals have a
more intimate connection with the multiplicative properties of
the ovum or ring than do ring ideals., For example, in the ring
CfZ'%'f of polynomials with integer coefficients every ovoid
ideal is a principal ideal, whereas polynomial ideals are notor-
iously lacking in tﬁé usual properties of an arithmetic. Ovoid
ideals, howevef, are not presumed to have the interesting additive

properties of ring ideals, nor the utility of polynomial ideals
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in the study of algebraic manifolds.

As a matter of fact, every ovoid ideal defined for a
ring /i is also a ring ideal, though not conversely. Since
i = 1 , a¥ is in Z for every A in Z and every ¢

in £ . If 2, and «

, are in 4 , then (4, £« , J ¥ is

divisible by every common divisor of the set A v {since q, ¥
and «, ¢ are). Hence 4 is closed under addition and sub-
traction, and under multiplication by any element of /f . As
an example of a ring ideal which is not an ovoid ideal we have
(<, t’) in the ring cl ﬁJ). Since F(¥ ) is divisible by
every common divisor of <frx ) and ¥ f(¢.), the element 1
should ocecur in (<, »J) , which it does not.

To every ring ideal there corresponds a unique ovoid
ideal, nemely that generated by any generator of the ring ideal,
including the ring ideal itself. As we have noted, the corres-
ﬁondence,is many-one. It is, moreover, an isomorphism. Hence
the arithmetic of ring ideals is multiply isomorphic to that of
ovoid ideals.,

| Turning now to the matter of principal ideals in an ovum

;? , we ask, what is the significance of the equation
(a,4) = (c),
¢
where 4 , - , ¢ are elements of O ? It must be remarked

that it means decidedly more than that ¢ be the G. C. D. of «

and & . It says that for every i in é; , (¢X is the G.C.D.
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- 'L‘l'nc
of «x and «x , The same is fure for ring ideals, since then

€ 1is a linear combination of 4 and 6- « Thus the above
relation is in a sense a generalization to an ovum of the
notion of a linear function in a ring. This is borne out by

the way ovoid ideals multiply:

((‘4) U”)(C’JL) = { wC, {A"C)mvt) {F-V(_/,

See also the remark after Theorem 5.2.

If we replace the ideals in Theorem 2.14 by principal
ideals, we obtain the following:
Theorem 5,1

If <a,¢/=(2) and (w,c) -~ (LJ , then
[(4) V‘w’..) 'J(_(/(,/

Theorem 5.2

If (a,v/ = () then . [ve implies « /e.
Proof:

If (u, /) = (¢/) then every common divisor of ~ ¥
and ¢« ¥ 1is a divisor of v . If x/:o-d' , then « is a

common divisor of ¢ and ¢ < , whence & /c’..

Q.€.d.
This simple but fundamental result shows that («, £/ =(z/
is the proper generalization of the notion of "linearly coprime"

elements, i.e. elements 4 and & such that -ta 4 4 ¢ = /.
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Theorem 5.3
Necessary and sufficient conditions for unique decom-
position into irreducibles in a reduced ovum sre:
I. Teilerkettensatz (as in Theorem 1l.1).
II. BEvery reducible element is decomposable {as in
Theorem 1.1).
III. ZEvery ideal is a principal ideal.

Proof of Sufficiency

We have to show that III implies that every irreducible
element be completely prime.

Iet /b be an irreducible element, and let
/J”‘ [a &,
Let (‘4)/): (JC)

~ is irreducible, either « = b or £ =z

‘/

Since A / o end

ir u‘(-—'/o , then o/«
If A =, , then by & successive application of

Theorem 5.1,

(«, p*) = (£J.

Hence by Theorem 5.2,
Pl
’ 2 / i A 7 I
Hence either /’ “ or /9 [ =, so that Vit is completely

prime. ge€.d.
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Proof of Necessity.

Let « and & be any two elements of S , and let
075/ )t ) /% be the irreducibles occurring in the decompos-

*
itions of 4 and @ . Let

a

s pl p

where some of the «; or (3‘- may be zeroc, but where none exceeds

i}
<[

~
S

|

the index of the corresponding /ﬂ,- : The element

e = pl pt

where Yz‘ = e (',(’. L 5.0) R (:Z‘ e z),

is evidently the G.C.D. of & and ¢ .

let «° be an erbitrary element of S , and let
¥ Fa
b4 *:%’ e /94
Then since

Yi+ }"L - M/‘(;* fz‘)(//'{i*‘?"l.)’

)/a + f, ) )/q_ + \f‘h
it follows that Cx = /J, /’4
is the G.'C'.D. of
«£ f’ . Ay .f,i
ax = /7, e . / },a.
and e+ %

4 x =Z/J,

Hence (G ) 4«) =(¢)



53

Iat now 7 be any idsal., let 4, be any element of

a . 1If
d = (a,)

then the desired result is true. If not, then /é', exists in

A but not in [a,) . Let

(an) = (&, &, ).

Then 4, i @, o forif 4, = 4, then &, /-4—, ,
and < would be in (). Evidently 4, is in Z. .

Ir Z < (a,)
then the desired result is true. If not, then 45 exists in A
such thet a, # 4. .

But I is a consequence of unique decomposition, so that
this process must terminate, and Z = (.. / for some integer >t .

Qe.€od.

This theorem gives the correct generalization of Koenig's
Theorem 1.4, It has already been noted that III is equivalent to
the following two postulates:

1II,: Every pair «, ¢ of elements of S hes & 6.6.D.

(a, ).

III;: (a,ﬁ)cz(ac)é’-cj for all <, €, ¢ & S,

The third example in the proof of Theorem 1.2 illustrates
the necessity of III,. It satisfies I, II, and III, , but not IIL,.

For 2 is the G.C.D. of /7 and 5 , but x 1s not the G.C.D.



of /Mf and Z:v for all x° . For example, put x:/o :

the G.C.D, of A" = O and i/z= © 1s O, met o .
It should be remarked that, unlike the case in rings,

I is not a consequence of III. %¥he first example in the proof

of Theorem 1.2 illustrates this. See also the remsrk at the

end of § 2.

Applying this result to that of Theorem l.5
we get the following:
Jheorsm 5.%

Necessary and sufficient conditions that every
element of a commutative ring 7E be uniquely decompos-~
able into irreducibles are:

I. Teilerkettensatz (as in Theorem l.5).

II. Vielfachenkettensatz (as in Theorem 1.5).

III. Every pair q, 4 of elements of /U has a
GuCuDe, (4, £), in K

W (a,4)cw(ac, fc ) for 811 4, &, ¢c 1n K «



