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ABSTRACT

Using the Linear Cambination of Atomic Orbitals (LCAO) formalism and
the tight-binding approximation, we have investigated three separate types
of surface phenomena via the Green's function method and the phase shift
technique. We obtain the shift in the energy levels due to the following:
(1) creation of the surface, (2) surface reconstruction, and (3) the ad-
sorption of a single atom. In the first two parts, we study the (001) face
of a two-band crystal with the CsCl structure, simulating the surface
properties of semiconductors or insulators. In the third part, we study
the interaction of a single atom with the (001) surface of a bcc metal.
The results obtained are contrasted with those obtained from a one-band
calculation for the (001) surface of a simple cubic crystal. We find that
the second unoccupied band is of utmost importance in understanding these

surface phenomena.
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I. INTRODUCTION

Chemisorption and chemical reactions on solid surfaces depend crucially
upon the electronic structure and the geometry of the surface atoms. At
the present time, we have at our disposal the experimental techniques to
determine the composition and atomic geametry of the surface species (e.g.,
Auger electron spectroscopy and low-energy electron diffraction) as well as
the surface electronic structure (e.g., photoemission and ion neutraliza-
tion spectroscopy). This is largely due to the new instrumentation available
to study processes occurring on solid surfaces under ultra-high vacuum
conditions. However, the theories concerning these processes are still
very rudimentary at the present time. At best, they give only semi-
quantitative agreement with experimental results. More often, the calcu-
lations are carried out with assumptions which lead to a great deal of
simplification. These model calculations can only give us qualitative
understanding of surface phencmena.

The difficulties in the theories arise from the enormous number of
particles involved in the problem. As such, one has to consider many-body
effects. In molecules with several electrons, the electons are correlated
in their motion. The correlation is achieved by incorporating the distance
between two electons ris or mixing excited states into the wave function.
For a many-electron system, such an approach would be desirable but, for
obvious reasons, has not been successfully implemented. The response of
the system to an external perturbation, e.g., the creation of a surface,
surface reconstruction or chemisorption, involves the participation of all
electrons to varying degrees. In addition, é crystal with a surface has a

reduced symmetry compared to the infinite crystal. This is due to the loss



of translational symmetry in the direction perpendicular to the surface.
The discontinuity in the periodicity of the atoms requires that we know
the potential energy in the surface region. Such a potential would decay
away from the surface and into the vacuum.

In principle, one can write down a many-body Hamiltonian that includes
the interaction of all the electrons plus the correct potential energy with
the proper boundary conditions: As far as we know, the solutions of the
Schrddinger equation with this Hamiltonian would give us complete and
accurate solutions that would agree with experiment to arbitrary accuracy.
However, this is a hopeless task. Instead, a great deal of simplification
is made if we assume the electrons to move independently of one another.
The interactions between the electrons are approximated such that the
Hamiltonian becomes a one-electron Hamiltonian. Within this one-electron
picture, the energy levels form energy bands and provide us an interpreta-
tion of many physically observed facts. An important consequence of the
band picture is the occurrence of energy gaps in some crystals. Crystals
with energy gaps are called semiconductors or insulators. Semiconductors,
such as Si and Ge, are of great importance, especially in the electronics
industry. Consequently, a great deal of research aimed at understanding
these materials has been carried forward both in industrial and university
laboratories.

Since the one-electron picture has given us much insight into the
properties of an infinite cnystal, it is natural to apply it to the study
of surface phenomena. Throughout the calculations in this thesis, the
valence electrons are assumed to be moving independently of one another.

Fach electron moves in the potential due to the ion cores of the lattice



atoms. From this one-electron Hamiltonian, we obtain the energy bands

and the wave functions for the infinite crystal. The potential is assumed
to undergo a step function change from the bulk value to that of the
vacuum (taken to be the zero reference) at the surface. The wave functions
for the surface are obtained by a perturbation method. In this way, we
have a wave mechanical description of a crystal with a surface.

The nature of chemical bonds in molecules depends largely on the
orbitals of the interacting electrons, their energies and spatial distri-
butions. Once the bonding is known, the structure corresponding to the
most favorable configuration can be found. In chemical dynamics, reactions
take place along minimum energy paths on the potential energy surfaces. In
the gas phase, these energy surfaces are calculated by obtaining the
energetically most favorable spatial distribution of the electrons at each
configuration of the nuclei. Thus a knowledge of  the spatial and energy
distribution of the electons is crucial in understanding both the structure
and dynamics of molecules.

In solids, it is equally important to know the distribution of the
electrons in momertum (k) space assuming the one—eleétron picture. This
corresponds to a knowledge of the band structure. For a crystal with a sur-
face, both theory and experiment show a band structure that is different
from that of the bulk. A knowledge of the electronic structure of the
surface is crucial in understarding both the surface struéture and dynamics.

It is believed that the two major factors affecting adsorption and
chemical reactions on solid surfaces are the geometry of the atoms in the
surface region and the electronic structure of the surface. Both are con-

sistent with chemical bonding conéepts in molecules, i.e., the role of the



spatial and energy distribution of the electrons. Therefore, before a
clear understanding of adsorption and chemical reactions on solid surfaces
can be obtained, we have to know first the electronic structure of the clean
surface. The positions of the atoms in the surface region are inputs to the
calculation. Although both the theoretical and experimental investigations
are often carried out on well-characterized surfaces which are seldom
realized in real situations, the importance of fundamental research cannot
be overestimated. The ultimate goal of surface physics is to understand,
control and improve catalytic reactions on surfaces, with the hope that the
results obtained on well-characterized surfaces can be extrapolated to more
realistic chemical reaction conditions.

Therefore, the first part of this project’consists of a calculation
of the electronic structure of the clean surface for a two-band crystal,
appropriate for semiconductors or insulators. Experimentally, it is known
that states localized on the surface can exist inside the band gap. These
states are known to play an important role in semiconductor devices. Since
they are localized on the surface, they might be important in the inter-
action with foreign gaseous molecules. Thus, it is desirable to know the
conditions for their existence and their positions in momentum D) space.
In addition, the presence of a surface can shift the energy levels in the
bulk bands. Furthermore, the effect of the empty conduction band on the
surface electronic structure can be studied.

The above calculation assumes that the positions of the surface atoms
are the same as their equilibrium positions in the bulk. It is a well-
known fact that on many surfaces, the atoms are shifted periodically from

their bulk equilibrium positions. The positions of the atoms can be probed



by diffracting low-energy electrons (% 500 eV) from solid surfaces. The
dimensions of the surface unit cells can be determined from the diffraction
patterns. In some cases, they show a larger surface unit cell than if the
atoms stay in their bulk equilibrium positions. In the second part of the
project, we investigate a possible mechanism of surface reconstruction (re-
arrangement of atoms on the surface). The theory is based on the fact that
the electronic energy must be lowered if the surface reconstructs.

After the properties of the clean swrface are well-understood, we then
proceed, in the third part of this project, to study the interaction of a
foreign atom with the surface. This constitutes the most fundamental step
in any surface reaction. We investigate the interaction of a discrete
adatom state with an underlying continuum of states. The interaction leads
to bonding and antibonding resonances which are familiar concepts in chemistry.

The above three parts of the project constitute a rather complete
analysis of the fundamental properties of the clean surface and its inter-
action with a foreign atom. To summarize, the questions we want to answer
in this project are the following:

1. What is the effect on the electronic structure when a surface

is created?

2. Why do atoms on the surface rearrange into new periodic

structures?

3. What is the effect on the electronic structure when a

foreign atom interacts with the surface?
These three separate, but related, questions correspond to three different
perturbations on a surface. The following three chapters explore fully

their effects on the energy levels of the unperturbed systems.



CHAPTER II

ELECTRONIC STRUCTURE OF CLEAN SURFACES

Section A:

Section R:

An Overview of the Calculation and Results
[Published as an extended abstract in J. Vac.

Sci. Technol. 12, 351 (1975)1.

Green's Tunction Calculation of the Surface
Properties of a Two-Band Crystal

[in press, Phys. Rev. B12 (1975)].



8

Abstract: Surface Properties of a Two-Band Semiconductor

W. Ho, S. L. Cunningham and W. H. Weinberg

Division of Chemistry and Chemical Engineering, California Institute
of Technology, Pasadena, California 91125

L. Dobrzynski

Institut Max von Laue-Paul Langevin, B P 156 Centre de tri, 38042
Grenoble Cedex, France ’

It has been shown!’?’3 that very simple model calculations can give
useful insight into the properties of solid surfaces. This is due largely
to the fact that the calculations can be carried quite far analytically so
that only simple numerical computations are needed. Previous work !’2?3 has
been confined to the study of one-band crystals of various structure and has
been used to simulate the surface properties of metals. In this work, we
present results of a two-band calculation which are appropriate for the study
of semiconductor surfaces.

Using the LCAO or the tight-binding formaiism, we have calculated the
band energies for a two~band semiconductor with a CsCl structure. One orbital
is assumed for each atom in the crystal with the orbitals being different for
the two basis atoms in the unit cell. With these bands, the free surface
properties of the (00l1) surface are calculated using the Green's function and
the phase shift techniques,l’2 which are similar to that used to study point
defects in a crystal. The phase shift technique allows us to determine the
change in the density of states due to the perturbation caused by creating the
surface. A major advantage in the present calculation is that the Green's
function is obtained analytically.

We have calculated the free surface properﬁies for three different models.
In the first, we consider only the nearest neighbor hopping integral (resonance

integral), vy . In the second calculation, we extend the first to include one
1



of the second neighbor interactions, Yz’ the hopping integral between atoms

of the same type in adjacent unit cells. In these two calculations, we do not
consider the variation of the local potential in the vicinity of the surface.
In the third calculation, we have added to the firs; model a change in the
self-energies of the surface atoms, Uo' With only Yl included in the calcu-
lation, no surface states are found. With Yz added, Shockley surface states
appear inside the band gap. With Uo added, Tamm surface states appear inside
the band gap. 1In addition, surface states occur above the conduction band.
The surface states appear for arbitrarily small Y2 and Uo’ and their separation
distance from the top of the valence band (and the top of the conduction

band, in the case with Uo) is proportional to the magnitude of Yz and Uo'
Since the energy states below the band gap are completely filled for a semi~
conductor, Friedel's sum rule is satisfied, and all three of our calculations
are self-consistent.

Within the nearest-neighbor-interaction framework, we have calculated
the variation in the surface tension as a function of the filling of the band.
We have also found the change, due to the surface, in the electronic specific
heat and electronic surface entropy as a function of temperature. These
properties are significantly different from those calculated ﬁith a filled
one-band model,3 and are consistent with the known properties of a semi-
conductor. Thus, we show that the presence of the second unoccupied band
is crucial in studying semiconductor surfaces.

The present calculations can be easily extended to the study of the
free surface of the alkali metals with the b.c.c¢. crystal structure by
setting the energy gap to zero. When this is done, our calculations agree

with previous results.?
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ABSTRACT

We have calculated the electronic properties of the clean (001) surface
of three model €rystals with the CsCl structure. One model results in no
surface states, the second model yields Shockley surface states, and the third
model yields Tamm surface states. We derive analytic expressions for both
the bulk crystal Green's function and the (001) surface Green's function.
Using the resolvent technique, we present the surface state bands. Using the
phase shift technique, we present the change in the total density of states
(both inside and outside of the bands) due to the creation of the surface.
From this we show the change in the specific heat due to the surface, and we
find the surface entropy. Finally, we use the surface Green's function to
determine the local densities of states for the layers near the surface and
compare them with the local density of states in the bulk. Our results, which
can be used to understand the properties of both semi-conductor and insulator
surfaces, are contrasted with previous results for one-band crystal surfaces

which are appropriate only for metals.
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I. INTRODUCTION

Chemical and physical processes which occur at a solid surface depend
critically upon the electronic structure of the surface layer of atoms. For
example, adatoms which chemisorb to the surface interact with the first layer
of atoms. In addition, the presence of surface states can cause the electronic
energy bands to bend and thereby alter the electrical conductivity in the
surface region. In order to understand these processes from a fundamental
point of view, we must start with the study of the electronic structure of
the clean surface. In a later paper,! we will build on the results of this
paper and consider the problem of chemisorption and reconstruction.

In this paper we are concerned with the electronic properties of the
clean (001) surface of a three-dimensional two-component crystal which has
the CsCl structure (two interpenetrating simple cubic lattices). We use
the Linear Combination of Atomic Orbitals (LCAO) formalism within the limits
of the Tight Binding (TB) approximation. The Green's function (or resolvent)
is determined for the bulk crystal as well as the perturbation required to
create the surface. Then the phase shift function is calculated from which
the change in the electronic density of states due to the perturbation can
be found. 1In addition, we find the surface Green's function from which we
obtain the density of states for each layer in the crystal. Each aspect of
this calculation is reviewed briefly below.

There is a long history, reviewed by Koutecky2 and by Davison and
Levine, 3 of the use of the LCAO and TB approximations for studying surface
properties. In 1939 Goodwin" first used the method to study a finite monatomic
linear chain. He found that electronic surface states (where the wave

function and charge density are localized near the chain ends) were present
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only if the energy of the orbital on the end atoms was altered by more than
a critical amount. Later, Hoffmann and K.onyaS studied the same system without
the restriction of the TB approximation.

Use of the LCAO method on mixed linear crystals started in 1951 with the
work of Hoffmann.® He considered the bulk properties of an infinite chain of
the type Aan where 1 and m are arbitrary integers. Later, Amos and Davison’
examined the surface properties of the simpler AB type chain. For the infinite
chain, there are two energy bands separated by an energy gap. As in the work
of Goodwin,“ they found that the electron orbital energy on the surface atoms
must be perturbed in order to get surface states. Their surface states (called
outer states) fell either above the top band or below the bottom band. More
general work by Davison and Koutecky8 found that surface states could also
appear in the band gap (inner states) for certain typesvof perturbations.

Levine and Davison? compared qualitatively the results from a one-
dimensional LCAO chain calculation to real binary systems such as NaCl, CdS
and GaAs. They assumed the chain to be made up of alternating s-like and
p-like atoms. This model, unlike those previously considered, gives the band
gap minimum at the center of the Brillouin zone rather than at the zone edge.
They found that surface states appeared in thelband gap even without
perturbing the electron orbital energies of the end atoms. Thus the LCAO
method can give rise to the two general types of surface states: namely, the
Tamm state where a perturbation near the surface is required and the Shockley
state where no perturbation is needed. In addition to the study of surface
states, the LCAO formalism has been used to study more subtle properties of
one-dimensional systems. As an example, Cunningham and Maradudin!® ha;e

recently used the LCAO approach to calculate the surfacg induced dynamic

effective charge near the ends of a finite chain.
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The LCAO-TB formalism has also been applied to three-dimensional systems
using three different techniques. One important techniQue which was used by
Koutecky and Tomasek!! first solves for the bulk electronic energy levels as
a function of the general complex wave vector. The allowed values of the wave
vector are then determined by satisfying the appropriate boundary conditions;
namely, the wave function in the crystal must match smoothly onto a decaying
wave function in the vacuum. This technique of wave function matching has
been used widely in studying surface states,12 but since it does not generally
use the LCAO formalism, we will not mention it further.

Another important technique which is used widely is based on the obser-
vation by Goodwin!3 that for each wave vector component parallel to the surface,
the three-dimensional problem takes on the same form as the one-dimensional
problem. This has led to a series of papers dealing with slab systems in which
the crystal is infinite in extent in two directions but finite (typically less
than 20 layers) in the third direction. Then for each wave vector component,
an eigenvalue matrix of manageable size (size is determined by the product
of the number of orbitals per atom and the number of layers in the slab) is
obtained. Work using this technique has appeared by Pugh,l“ Hirabayashi,15
Alstrup,le’17 and more recently by Pandey and Phillips.lg’19 With the
exception of work by Joannopolous and Cohen?? on GaAs, the use of the LCAO
technique with slab calculations has been confined to single component
crystals of the diamond structure. Many other slab calculations have been
done,?! but they do not use the LCAO approach.

These two techniques give information about the energy and wave function
of the surface states for various components of the two-dimensional wave
vector parallel to the surface; They do not, however% allow one to determine

the change in the bulk density of states upon creating the surface, nor do they
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allow one to study the density of state changes which occur in chemisorption.
This information is important in the study of photoemission and the study
of heterogeneous catalysis, and it can be obtained by the third technique
(the one we use in this paper).

The third technique for using the LCAO formalism for studying the
surface of three-dimensional systems is known as the Green's function or
resolvent technique. The details of this method will be discussed in
Section III. Baldock?? used this approach (which is due to Lifshitz) to combine
the Green's function method with the LCAO model. Then Koster and Slater?3
generalized the method and applied it to the study of impurity levels and
end effects of simpie one-dimensional systems. Koutecky and Davison?"
applied the technique to a general mixed one-dimensional crystal where the
unit cell is composed of an arbitrary number of atoms of an arbitrary type.
They demonstrated how both Tamm and Shockley surface states can arise. Thus,
the situation now is that the surface electronic properties of one-dimensional
systems are well understood.

Concerning three-~dimensional systems, the resolvent method has been
used by Koutecky,25 Holland,26 and Brown?’ to formally discuss the properties
of surface states. Tomasek?® applied the method to the study of the (111)
surface of silicon and by using several simplifications performed the entire
calculation analytically. Later, Freeman?® showed how the resolvent method can
be applied to more realistic systems by performing numerical calculations.
Then Levine and Freeman3( applied the technique to the surface of a crystal
with the zinc blende structure. They examined the effect of changes in the
positions of the surface atoms upon the energies of the surface states thefeby
illustrating the flexibility and'power of the resolvent technique. Very

recently, van der Avoird, et al.,3! have set up a numerical procedure based
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on the resolvent technique applied to a finite slab geometry. This technique
should be suitable for quantitative calculations on real systems, but results
from this approach are yet to appear.

As we will see below, the resolvent technique requires knowledge of the
bulk Creen's function and the perturbation required to create the surface.
The calculations presented above2?2731 result in a determination of the energy
of the surface state as a function of wave vector parallel to the surface.
The density of states is generally not obtained. A variation of the resolvent
method was used by Kalkstein and Soven3?2 wherein they solve directly for
the Green's function appropriate for the surface. This allows them to calculate
directly the density of states for each layer in the crystal. Thus, the
effect of the surface on the bulk electronic levels can be directly seen
independent of whether surface states exist. Bose and Foo33 have recently
performed a similar calculation on a one-dimensional binary system simulating
an ionic crystal.

The phase shift technique, coupled with the Green's function method, is
a convenient way to study the effect of a perturbation upon the energy levels
of a general Hamiltonian. DeWitt 3% presented the essential elements of the
phase shift technique which has been formally applied to the problem of
surfaces by Blandin3 and Toulouse.3® The method calculates the phase shift
in the Bloch waves due to scattering from a perturbation (the surface). This
phase shift gives the change in the energy levels due to the perturbation and
thus can be related to the change in the density of states. This, in turn,
can be related to éeveral physical properties of interest regarding the surface.

This approach has been applied to several model systems. Allan,37 and
Allan and Lenglart38’39 have e#tensively studied the clean surface properties

of a one-electron-band crystal of various structures (sc, fcc, bec). They
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showed how the surface perturbation can give rise to surface states as

well as how the bulk states are changed due to the surface, and, in addition,
they found the change in the electronic specific heat due to the creation

of the surface.

The phése shift approach can also be used to study chemisorption.
Recently, Einstein"Y has expanded earlier work of Einstein and Schrieffer'!
to study the changes in the density of states caused by chemisorption. This
application of the phase shift technique complements the Green's function
approach to chemisorption that has been discussed by Schrieffer“? and Grimley
and Pisani.'3

The main advantage of the phase shift technique is that it gives directly
the change in the density of states. This information is important since it
is directly applicable to photoemission and chemisorption. No other method
gives this same information in such a straightforward manner. The main
disadvantage to the phase shift technique is its dependence on knowledge of
the crystal Green's function. Usually, one must use numerical techniques
for even the simplest of model cases. As a consequence, all of the work
to date37"%! has been confined to studying model one-band crystals. These
_reSults, then, have only been useful in understanding the surface properties
of metals.

In this paper, we apply the phase shift technique for the first time to
a model two-band crystal. An important point is that we have been able to
obtain the Green's function for the bulk in an analytic form. Thus, whereas
some numerical work is required, the complete calculation is no more difficult
than the previously considered one-band crystals. The results of this calcu-
lation, then, are useful in understanding the surface properties of semi-

conductors and insulators.
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In Section II we derive the bulk properties of our model. This includes
the bulk band structure as well as the bulk crystal Green's functions.
In Section III we discuss the phase shift technique and present the perturba—
tions appropriate for the surface. Here we consider three distinct cases;
i.e,, one which yields no surface states, one which results in Shockley
surface states, and finally one which produces'Tamm surface states. We show
the change in the density of states due to the creation of the surface and
determine the surface contribution to the specific heat for each case. 1In
Section IV we obtain the surface Green's function for the case in which there
are no surface states. This allows us to find the local density of states

for each layer in the crystal. In Section V we summarize our results.

IT. BULK GREEN'S FUNCTIONS

The one-electron Hamiltonian for the bulk crystal is given by

2
HO=2%+ZZU;—§[§J h)

e L B ,
where p is the electron momentum operator, m, and ? are the mass and position,
respectively, of the electron, and x(L8) is the position of the Bth type basis
atom in the f£th unit cell of fhe crystal. We consider a crystal with the |
CsCl structure so that the index B takes on two values, 1 or 2, for the two
types of atoms in thp uﬁit cell. The term U is the electron-ion core potential
which is centered on each atom site. As is common in the LCAO formalism,

electron-electron interactions are neglected.

The solution of the Schrodinger equation is assumed to be of the form

H =Y c H—-SZ["J )

’
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> \ .
where @(? - x(28)) is an atomic-like orbital for a free atom centered on site

(28). For this calculation, we assume one orbital for each atom in the crystal,
and, whereas the specific form of the orbital is never needed, the orbital is
assumed to be spherically symmetric (s-1like).

Substituting Eq. (2) into the Schrodinger equation and using the Tight

Binding (TB) approximation we obtain the following matrix equation:

2; Aﬁ? HO[’g:éJ Cog = ECpog- s (3)
where

Ho[éé] = G| )

<§: §> = S (5)
and

|§>5@;_;[§J. )

Within the limits of the TB approximation, the diagonal elements of the
Hamiltonian matrix becomes the orbital energies of the free atoms, E; and E,.

Thus,

2
B> = 46 > B = 1’2' (7)

)
<g|H

For the off-diagonal elements (also called hopping integrals), we have for

nearest neighbors

£
<l Ho

A
2> = Yl ) (8)
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and for second neighbors

2 241 1 9
Q|7 =P =0,
G|y = yz(z) =y, - (10)

There are two types of second neighbor hopping integrals indicated by the
superscript in Eqs. (9) and (10) because there are two types of second neighbors.
Later in the calculation we are forced to set one of these hopping integrals
to zero so that the bulk Green's function can be expressed in analytic form.
In ionic crystals, the two components generally have different radii which
implies that the two second neighbor hopping integrals will have different
values, and quite often one will be significantly greater than the other,
This justifies our neglect Qf one SE the second neighbor hopping integrals.

In our calculation, all energy terms are expressed in units of Yl' The

parameters E E, and Y, are taken as adjustable. Although approximate values

1’ 72

can be obtained for these parameters by assuming a particular form for the
orbitals and the potential, we feel that more specific choices than the
general ones we have made would by no means change the qualitative nature of
our results. The geometry and parameters of the problem are shown in Fig. 1.

In all the results presented in this paper, we have chosen E, = 2.0 and

1

E2 = ~2.0 in units of Yq-

Using the standard approach,”'+ we assume the wavefunction to be of the

Bloch form by assuming the coefficients Cz to be

B
)

w(g|Epelx® o (11)

1
_ N2
C28 =N
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where ﬁ-is the wave vector, j is the band index and N is the number of unit
cells in the crystal. By substituting Eq. (11) into Eq. (3), and using the
matrix element defined in Eqs. (7) - (10), we obtain a (2x2) secular matrix
equation which can be solved to obtain the bulk energy bands. We find

(L) (2)

Bp. = &(E; +E) + (v, )+, ) £,@)

1+

a{iey - 8, + 20, Y -, P £, 0

2 . 2,+%
+ 256 v,° £ (¢%~2 ,
where
¢ ¢ ¢
= X A Z
fl($)..cos 5 CO0s - cos s
£,(8) = cos ¢_ + cos ¢_ + cos ¢
9 ¢) = cos 5 T cos y cos ¢,
> >
$=ak ,

and where a is the crystal lattice spacing. In Eq. (12), the plus (minus)
sign is associated with the branch index j = 1(2).

In this paper we are concerned with the surface properties of the (001)
surface (See Fig. 1). For this surface, the wave vector components parallel
to the surface’(kx and ky) are good quantum numbers, but the wave vector
perpendicular to the surface (kz) is not. The Brillouin zone for the bulk
crystal is a cube with sides of length 2ﬂ/ao. The Brillouin zone for the
surface is a square with sides of length 2ﬂ/a0. To get the projection of the
bulk energy bands onto the surface Brillouin zone, we sweep the z-component
of the wave vector, kz, from the value 0 to vr/aO (the energy expression is
symmetric with respect to reflection of kz so that only half of the kz values

are needed).

(12)

(13)

(14)

(15)



23

In Fig. 2 we present the results obtained for a segment of the surface
Brillouin zone where we have chosen a particular value of ky. The zero of
energy is taken to be the average of the orbital energies of the free atoms.
In Fig. 2a we show the energy bands for the case in which only the nearest

neighbor hopping integral is included. 1In Figs. 2b and 2c, the second

(1) (2)

neighbor interactions YZ and Y2 s respectively, are added to the first

(1) (2)

neighbor calculation. We see that D) affects the upper band and Y2

affects the lower band. Since in a semiconductor only the lower band is

(2) _

filled, we have made the arbitrary choice of retaining Y,

@ o,

in our

"2
calculations and setting Y2
In order to determine the Green's function, we must know the eigenvector,

w(BIEj), of the (2x2) Hamiltonian matrix. From Eqs. (3) and (12) we obtain

w(l|kj) = -F e_i%<¢x+¢y+¢z)/A , (16)

w(2|k) = e/, (17)
where

T = 8y, £ (9) (18)

= [F2+‘(E1—E§j)2.]1/2 . (19)

The retarded Green's function satisfies the following matrix equation®®

L . (ONEE 2
H - (E+ 1i€)s, .8, .| G wowe sEB[= =8 .8 . 20
;T{: o{es] ( )800-%8 [BB’J 2o~ Ogg (20
where the superscript zero denotes the Green's function for the bulk crystal.

The term ie, which is appropriate for a retarded Green's function, is a positive
imaginary infinitesimal which will be dropped in the subsequent discussion

until needed in Eq. (37). The Green's function can be related to the eigenvalues

and eigenvectors of the Hamiltonian matrix byL+6
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==

> - E-Er

kj kj

SO (127 )
[BB”E]

where

X(27) = %(R) - %7,

and the summation is over all wave vectors in the three-dimensional Brillouin

Y weelkpwr(e k) _ik-x(ee”)

zone and over the two branch indices. That Eq. (21) satisfies Eq. (20) can

be seen by direct substitution. Performing explicitly the summation over j

in Eq. (21) gives

(0)[22 } ;Z{w(élil)ww'lﬁn
N >
k

BB E- Ezl

+ W£8L§2)W*(Bfl§2l} xR

B

Substituting Eqs. (12), (16) and (17) into Eq.

Green's functions

o (0) [22 _ .
{11 E) = Z (E-Ep) D(227) ,

|
=~ =~

(0 [u' EJ _

G(O){fi ’EJ = :g: FDB(QQ’)e_i%(¢x+¢y+¢z)
k

*
0) (272 I (OR3]
G [2 1’EJ = [12 ’E] >
where .
eik'x(lﬂ’)
N[(E—El)(E-EB)—FZ]

DB(QQ’) =

(23) gives for the bulk

(21)

(22)

(23)

(24)

- (25)

(26)

(27)

(28)
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and

-
Ey = B, + 2v,,(4).

An important feature of this calculation is‘the fact that, whereas Eq. (23)
appears to be cumbersome, the eigenvalues and eigenvectors combine in just
the right way to make the needed bulk Green's‘functions in Eqs. (24) - (27)
rather simpie.

In order to study the surface properties, it is appropriate to express
the bulk Green's functions in a mixed Bloch-Wannier representation.32’38’39
This effectively reduces the three-dimensional problem into a number of one-
dimensional problems. As we will show below, each one~-dimensional problem
can be solved analytically. Thus, we expoloit the translational symmetry
parallel to the surface by expanding the bulk Green's functions in terms of

KS(Egs/ao), the wave vector parallel to the surface |

BB’ s I B B~ ,
S

) g g - o
(0 [u EJ =% > G(O)[ 2%z ’—$S’EJe1ks-x(Q£ )

where NS is the number of two-dimensional unit cells in the surface and Rz
labels the unit cells in the direction perpendicular to the surface.
By comparing Eq. (30) with the results in Egs. (24) - (27), the bulk

Green's functions in the mixed representation become

L8 -

(0)i"z"z =~ _ .
G [l 1 ’CbS’EJ = ; (E“EB) DS (QZSLZ )
Z

(29)

(30)

(31)
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L e
(O) zZ Z -> = - IL ,Q, -
@22 . Zk:@:}zl)Ds(zz), (32)
z
(o 2 - ) )
0)|7z7z = - oy —173(d +d_+0 )
G 1 2 ,¢S,E j%: FDS(QZZZ e x 'y ‘z' | (33)
z N
(4“2 AN e *
©0)|"z "z » _ 0|7z z
G 2 1 0Bl =G 12 » 9HE| (34)
where
D (L 8 7) = e ¥ax(ats ) (35)
- _ _ _ z Py
s 'z z Lz[(E El)(E EB) F<]
and where Lz is the number of unit éells in the z-direction (LZNS=N).
To obtain the Green's functions in closed analytic form, we convert the
sums to integrals through the transformation
. L m '
. ' 2
D ) S fd¢z £(o /a ). (36)
k -1
z :
All of the resulting integrals are of the general form*’
T ' ’
1 cos (Zz¢z) ) 4nt1+l£zl 379
z cos ¢, - £ + ie t2_l ?
-1
where
2 %
£ - (8°-17, £>1
. 2. %
e={ ¢+1i0-¢)%, . |g] <1 (38)

2 %
£+ (E°-1)° , g < -1



It might be noted in passing that obtaining the integrals in the form of Eq.

27

(37)

is the step that forces us to set one of the second neighbor hopping integrals

to ze

where

ro. "8

The final results for

2 8-
z z

(0)
G [1 1

->
’%’E]

0)|'z7z =
G 12 ’¢S’EJ
L e )
G(O) z" 2 g B
21 °'s?
a = E—E2—2Y2(cos
_ 2
P = 1/B(t"-1) ,
d = E—El ,
= ) 1
£ = 4yq COS(Z¢X)
£ = -A/B ,
A= ad-2£2
B = 2

the bulk Green's functions are
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’

(39

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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Two important properties of the Green's functions are apparent from these
equations. First, in the bulk, the Green's functions depend only upon the

-

separation distance between layers, ZZ—ZZ , and not on the value of Qz and
lz’ separately. Second, the two Green's functions in Eqs. (39) and (40) are
complex only when the magnitude of the parameter & is less than unity
(see Eq. (38)). This occurs only when the energy E falls within one of the
two bands (see Egs. (43) - (49)).

Except for an ambiguity in sign which is fully discussed in both
Section IV and in the Appendix, the set of equations from Eq. (38) through
Eq. (49) completely defines the bulk Green's functions. It requires only a

simple numerical program to obtain any of the bulk Green's functions for

>
arbitrary energy E and two-dimensional wave vector ¢S.

III. PHASE SHIFT CALCULATIONS

We form the (001) surface by passing an imaginary plane between atoms of
type 2 in the Qz=0 plane and atoms of typé 1 in the Qz=l plane as shown in
Fig. 1. Each surface formed consists of only one type of atom. The effects
of the surface formation can be introduced into the Hamiltonian by adding a
perturbation term which exactly cancels all interactions which occur across
the imaginary plane. Thus, in matrix notation analogous to Eq. (4), we write

for the perturbed system

%% BN £ % R N e
H{BB’) = HO[BB'} * V{ss') ’ S

where V is the surface perturbation term. If, for example, we consider the
bulk crystal to have only nearest neighbor interactions (i.e., Y2=0), then

the perturbation term is



29

22
= e + 6
V[BS’J Yl[ézzlésldzéoés'z 522053252;1 3’1}

X {52 2% a7 T 0 08 aeet T 0 pea1®y 0o+ S oS 2’+1J (5D
xx yy Xx'yy X X vy X X vy
In the resolvent technique,?5727 the energy of the surface state is
obtained from the determinant equation
L) (0 [ e
d § .8 . - v .. |G e Bl = . 52
et 1%24-p ;;[BBJ[BB]O (52)

The value of E for which this equation is satisfied is the surface state energy.
The equation is valid only for energies outside the bands where the Green's
functions are real. For energies inside the band, the real part of Eq. (52)
gives resonances inside the bulk bands. The matrices appéaring in Eq. (52) are
infinite in size. Since the translational symmetry in the direction parallel to
the surface is preserved in the cleaved crystal, each matrix in Eq. (52) can be
expressed in the mixed Bloch-Wannier reﬁresentation. For the Green's function,
this is done in Eq. (30). For the perturbation matrix, we have
V[zzzf‘,$ J :E:: V{zxzyzz oo%z’J e_iﬁs.g(gg») . (53)
BB 8 2 1 B B
Xy
In contrast to the matrix in Eq. (51), the non-zero elements in Eq. (53) form
a matrix which is finite in size; in fact, it is quite small, either (2x2) or
(3%3) in this paper.
In analogy with the resolvent technique, the phase shift technique:*w"39

defines the determinant function (Fredholm determinant)

s, oo

D(§ ,E) = det|s :E: (0) bz E 54
S’ Q, 9[ BB Z ;,-,47 B!» 8”(1)5’ . ( )
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For energies E outside the bands, the condition
D(F,E) = 0 (55)

gives the energy of the surface state for each value of $§. For energies inside
the bands, the function D(gg,E) is complex. For this case, we define the

partial phase shift function
> >
n(e,,E) = - arg D(9,E) . (56)

The total phase shift per surface unit cell is obtained by summing the

partial phase shift over the surface Brillouin zone, i.e.,

N = 2 @5, (57)
S“(;S

It 1s related in a simple way to the change in the density of states. We have 35> 36

pn(ey = =L | (58)

where An(E) is the shift in the number of energy states per unit energy per
surface unit cell. This change in the density of states is the desired result
of this portion of the calculation. From it, several physical properties of
the surface can be determined.

To proceed with this calculation, then, we must define the explicit form
of the perturbation matrix which creates the surface. In this paper we consider
three different model cases. For Model I, we consider the bulk crystal to have
only nearest neighbor interactions. To create the surface we cancel the effect
of the transfer integrals across the imaginary plane. Thus, the perturbation for
Model I is given in Eq. (51). Upon substitutiﬁn into Eq. (53), we obtain a

matrix whose non-zero elements can be put into (2x2) form,
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L 27 N 0 ~fX($s)
v

6 g 20| N (59)
—Ex*(e,) 0 >
where
X = e ¥ty (60)
and where f is given in Eq. (46). The rows and columns of this matrix are
labelled by the rows of atoms in Fig. 1 that participate in the perturbation.
For this case, the first row indicates a value of (ng) = (02) while the second
row is for (2,8) = (11). For all other values of (2,8), the matrix
elements of V are identically zero. Thus, whereas matrix V is technically
infinite in size, there are only two non-zero terms. As we will see below,
there are no surface states for Model I.
For Model II we consider the bulk crystal to have both first and second
neighbor interactions a; shown in Fig. 1 and discussed in Section TI. For
this case the perturbation needed to create the surface extends to the second
layer from the surface, and the resulting perturbation matrix is (3x3). We
have
0 —fx($s) Y,
Rzzz, > > '
Y2 0 0

For this matrix, the third row and column are labelled by the atomic row
(QZB) = (12). As we will see below, Model II gives rise to Shockley surface

states.



32

For Model TII we again consider the situation in Model I where only
first neighbor interactions are assumed. However, upon creating the surface
we assume that the orbital energy on the first layer of atoms on each surface
is changed by an amount UO. The physical basis for this perturbation is that
the crystal potential at the surface is different from its value in the bulk.

The perturbation matrix for this case is

>
L U, ~£x (¢ )
v{ z 2 ,$S) = (62)

-
Exx(G) U

where the labels of the rows and columns are the same as in Model I. The reason
for considering this model is that it results in Tamm surface states.

The surface states which fall outside of the bands can now be easily
determined by the resolvent technique. We have numerically calculated the
Fredholm determinant (qu (54)) for each of the three models as a function of
energy E for various choices of wave vector, 58. When the determinant goes
through zero as we vary E, we have a surface state. For Model I, this never
occurs which means there are no surface states within the context of this
model,

For Model II, Shockley surface states occur in the band gap. In Fig. 3
we show a three-dimensional view of the energy band structure for one-quarter
of the surface Brillouin zone. The shaded region just above the valence band
is the Shockley surface state band. 1In Fig. 4 ﬁe show a detail of this
surface state band as a functiog of ¢X for a particular choice of ¢y. The
energy between the crossing point in the bulk band and the surface state

curve is exactly equal to the magnitude of Yoo which for the calculations in
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this paper has been chosen to be 0.2, in units of Yl' Note that the surface
state band merges with the bulk band and stops at a poiﬁt in the Brillouin
zone slightly beyond the position where the top and bottom of the valence
band cross. This property of the surface state band is shown fully in Fig., 5
where we plot the boundary of the surface state inside the two-dimensional
surface Brillouin zone.

Finally, in Fig. 6 we show the Tamm surface states which arise from
Model III. Here, surface states exist above both the valence band and the
conduction band (note break in energy axis). The surface state above the
conduction band merges with the bulk band near the Brillouin zone boundary.

At the Brillouin zone boundary, the energy difference between the band edges
and the surface states is equal to the perturbation UO which for these calcu-
lations has been chosen to be 0.2 in units of Yl'

It is important to note a significant difference in the existence condi-
tions for the surface states in the present calculation compared with previous
results, In this work, éﬁockley surface states appear in Model II for
arbitrarily small values of Y, and Tamm surface states appear in Model III for
arbitrarily small values of Uo. In the one-band model calculations of Allan
and Lenglart38,39 only Tamm states appear and only when the surface perturbation
UO exceeds a certain critical value (for the (001) surface of simple cubic
crystal;, the existence condition is that Uo>yl). It is also generally true
for one-dimensional systems (as discussed in Section I) that a perturbation
exceéding a critical value is needed before surface states appear.

States in the bulk bands are localized on one of the two types of atoms
in the crystal. States with energies in the upper (conduction) band are
localized on atoms of typel, whefeas states with energies in the lower (valence)

band are localized on atoms of type 2., This is because we chose El to be
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positive and E_, to be negative. Concerning surface states, then, those which

2
originate from the upper band (the upper surface state for Model III) are
localized on the surface where the first layer consists of atoms of type 1
(upper surface £n Fig. 1). On the other hand, surface states originating from
the lower band (Model.II and lower state in Model III) are localized on the
surface where the first layer of atoms is of type 2 (lower surface in Fig. 1).

For arbitrary wave vector, $S, the Fredholm determinant (Eq. (54)) can
also be evaluated for energies inside the bands for each of the three models.
In this case the determinanp is éomplex, and by using Eq. (56) the partial
phase shift can be calculated. By way of illustration, in Fig. 7 we have
plotted the partial phase shift for a particular point in the surface
Brillouin zone. In Fig. 7a we show the partial phase shift for Model I at the
point ¢X=¢y=ﬂ/2. Sinée there are no surface states in this model, the phase
shift is non-zero only for energies inside the bands (compare with Fig. 2a).
The phase shift function is antisymmetric with respect to the energy zero due
to the sign of the Gréen;é function as is fully discussed in Section IV and
the Appendix.

In Fig. 7b we show the partial phase shift for Model II. 1In this figure
the surface state which exists just above the valence band is indicated by the
step in the partial phase shift from the value -7 to 0. As we move down in
energy from the energy zero, the phase shift jumps from O to -m at the zero of
the Fredholm determinant.3%>%9 It stays constant at -7 until the top of the
valence band is reached at which point it jumps to -w/2. The results for
Model III are presented in Fig. 7c. Again we see the effect of the surface
state just above the valence band. In Fig. 7d we show the partial phase shift
for Model III, but this time for a different wave vector point which is closer

to the zone boundary where the bands are more narrow (notice the change in scale).
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Here we see the effect of the two surface states, one above the valence band
and one above the conduction band.

Superficially, there seem to be discrepancies between our partial phase
shifts and those obtained previously for one-band crystals by Allen and
Lenglart.39 They find a jump of 27 at the surface state energies rather than
-7 as in our case. The difference is explained by realizing that when a crystal
is cleaved, two surfaces are formed. The properties derived from the phase
shift technique are the combined contributions from both surfaces. In the model
of Allan and Lenglart,39 the two created surfaces are identical since their
model contains only one type of atom. Thus, if surface states exist (in their
model only Tamm surface states are possible), they exist on both surfaces resulting
in a phase shift of #2w. (The plus or minus sign distingulshes between states
appearing below or above the single energy band, respectively.) In our calcu-
lation, however, the type surfaces formed are not identical (see Fig} 1). The
surface states are localized on either one or the other of the surfaces.
Therefore, our phase shift changes by -m, with the minus sign due to the fact
the surface state appears above the band from which it originates. If we had
cleaved the CsCl crystal along the (110) plane, the two surfaces formed would
be identical and the phase shift would then jump by #2m at the surface state
energy.

To obtain the total phase shift function, the partial phase shift
function for each wave vector must be summed over the surface Brillouin zone
as shown in Eq. (57). We have done this numerically by choosing a uniform
displaced mesh of points in the irreducible segment of the Brillouin zone.

The method of deriving this mesh, which is the optimum set of points of a given

size for accurately determining averages over the Brillouin zone, has been

fully described recently by Cunningham.50 If the number of points chosen is
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too small, the results of the summation will fluctuate as the number of
points is changed. We have increased the number of points in the sample
until the fluctuations in the results have become small. Typically, this
means that we used samples containing 400 points.

The total phase shifts for the three modejs are shown in Fig. 8. For
Model I we obtain the simple antisymmetric curve shown in Fig. 8a. The curves
start and stop at the bulk crystal band edges since there are no surface
states. In Fig. 8b we show the total phase shift for Model II. Since the
inclusion of Yo does not change the shape of the conduction band and does not
introduce surface states near that band, the total phase shift in the energy
range E>0 is very nearly the same as in Fig. 8a. The results in the region
of the valence band, however, are quite different due to the difference in the
band shape and the presence of the surface state. Even though the partial phase
shifts equal ~-m between the bulk and surface states, the total phase shift
does not reach the valué,of ~m. This is due to the fact that there is not a
single value of energy E which lies between the bulk and surface state for
every point in the Brillouin zone (see Figs. 3 and 4). The total phase shift
for Model IIT is shown in Fig. 8c. Here, the total phase shift does reach a
value of -w since energies just above the valence band edge are always between
the bulk and surface states for all points in the Brillouin zone (see Fig. 6).
In addition, the presence of the surface state associated with the valence
band changes the total phase shift in the region of positive energies.

The interest in the total phase shift is due to the simple relation between
it and the change in the density of states due to the creation'of the surface
(see Eq. (58)). Upon taking the derivative of the curves in Fig. 8, we obtain
the change in the density of states for each model, and these results are shown

in Fig. 9. 1In Fig. 9a we show the results for Model I. We see that the creation
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of the surface has shifted the bulk states toward the band gap'by increasing

the number of states near the gap and depleting the number of states far from
the gap. The magnitude of the sharp peaks at the band edges is only approximate
since the differentiation is done numerically, and small uncertainties in the
phase shift values lead to large uncertainties in the derivative when the

derivative is large.

In Fig. 9b we present the results for Model II. The conduction band
results are similar to the results in Fig. 9a. The presence of the Shockley
surface states, however, greatly changes the valence band results. The
complexity of the changes in the density of states is a result of the
band structure. The.increase in the density of states at E=-2.0 is due to
the presence of surface states. The increase in the density of states at
E=-3.2 is analogous to the shift of bulk states toward the band gap in
Fig. 9a. The minimum in.the density of states at E=-2.8 is due to the fact
that more bulk states are removed in this region than there are surface

states added.

In Fig. 9¢ we present the change in the density of states for Model TII.
Here the interpretation is a litﬁle easier since the band structure is simpler.
For the valence band, there is a sharp depletion of bulk states right at the
band edge with all of the states being put into the surface states just inside
the band gap. For the conduction band, again the bulk states are depleted
right at the band edge, but this time the surface states have energles that
overlap those of the bulk bands.

Once the change in the density of states is known, changes in the thermo-
dynamic properties of the crystal due to the surface can be obtained. For

example, the change in the electronic specific heat, ACv(T), is given by
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o0

ac (T) = de EAn(E) §—f—£§—TT—)— , (63)

-

where f£(E,T) is the Fermi-Dirac function, given by
) ,=[(E—u)/kBT }'1
(E,T) e + 1 s (64)
and where p is the Fermi energy. We assume the Fermi energy to be exactly
in the middle of the band-gap (u=0) and to be independent of temperature T.
Another thermodynamic property, the surface entropy, is given by an integration

of Eq. (63),
T
_ .y dT”
5,(T) —/ACV(T) = (65)
0

In Fig. 10 we present the change in the electronic specific heat due to

the surface.for each of the three models. Three features are worth noting.
First, the results for the three models afe quite similar. This is expected
since the addition of a weak second neighbor interaction (Yz=0.2Yl) or a weak
surface atom perturbation (Uo=0.2yl) should not greatly change the thermo—
dynamic properties. This is true even though two of the models have surface
states, while one does not. Second, at low temperatures we find that the
change in the specific heat approaches zero exponentially with temperature.
This is consistent with the fact that the models have a forbidden energy gap
in the change in the density of states. 1In contrast to this, we have also
plotted in Fig. 10 the results obtained by Allan and Lenglart38 for the (001)
surface of a half-filled one-band simple cubic crystal. 1In this case, the
change in the electronic specific heat at low temperature approaches zero
linearly with temperature. Third, at high temperatures (possibly above the

melting temperature of real crystals), the change in the specific heat becomes
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negative. This occurs because at high temperatures the levels far from the
Fermi energy are more strongly weighted in the integral (Eq. (63)) than those
close to the Fermi energy, and the change in the density of states for these
levels (see Fig. 9) is negative.

In Fig. 11 we show the electronic surface entropy obtained from Eq. (65)
for each of the three models. Again we see the exponential behavior at low
temperatures. In addition, we see that the electronic surface entropy is
positive for all temperatures as it should be.

A comment should be made regarding the positioning of -the Fermi level.
Since our method of creating the surface does not change the total number of
electrons in the crystal, then the integral up to the Fermi level of the
change in the density of states must vanish. From Eq. (58), this integral is
proportional to the phase shift function at the Fermi level. Thus, to insure

that we conserve the number of electrons in the crystal, we have the condition

u

n/An(E) dE

— 00

=0 | (66)

n(u)

This is one of the ways to express the Friedel®! sum rule for perturbed systems.
By examining Fig. 8, we see that without further changes, this condition forcés
us to place the Fermi levél either inside the band gap or outside of the bands
for all three models (for Model\III, we can also chose fhe Fermi level to be
just above the conduction band .edge). Thus our model calculations are parti-

cularly suited for discussion of semiconductor or insulator properties. .In

order to apply our model to two-band metals, we would need to add a '"self-

consistency" term to the perturbation matrix in the same manner as Allan.37
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1V. SURFACE GREEN'S FUNCTIONS

In this section we derive the Green's functions appropriate for the
gsurface. There are two main reasons for doing this. First, the layer density
of states can be calculated in the manner shown by Kalkstein and Soven.32 This
allows us to see directly how the effect on the electronic levels due to the
surface perturbation is localized within the first few layers of the solid.
From this we can make contact with photoemission experiments since it is the
density of states near the surface that is measured, and this need not be the
same as the density of states in the bulk. Second, the surface Green's functions

can be used as a starting point in studying further changes in the crystal

surface. kSpecifically, the surface Green's function can be used to study the

1,52 1,40-43

effects of reconstruction and chemisorption
In analogy with Eq. (20), the retarded surface Green's function satisfies

the equation
Q‘QI‘ 2"1”
' - 41 46 - G P W VR = - P - Y
E E H{BB,} (E+ie)d,, a8 [B " E} So0 588 (67)
e 8~

where H is given by Eq. (50), and where we have dropped the superscript (0) to
represent the surface Green's function. By multiplying Eq. (67) by the bulk
Green's function G(O)(R'"B'"ZZB) and by summing over indices £ and B, we obtain

Z;J;g{;‘ (O) /Q,”‘/Q;”
ol 2l =¢ A
[B g E) [B g ’E]

DIDY A OO I 1 L I (68)

o e B g’
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where V is the perturbation matrix given by Eq. (51). As in Eq. (30) and

Eq. (53), we convert the surface Green's function to the mixed Bloch-Wannier

representation,
‘ L 8- > >
e” 1y |t kLo x(2L7)
= = p ,Eje” S . 69
o|iioe) A A ]e (69)
s

In this representation, Eq. (68) becomes
-, - ;);2';
G 2z zz g - G(O) KZ'z z $
B""7B"" s B"77B""’7s

Z Z (0) 2;”12 Rzg'z’ 1;2;’ - }
+ G goeag 20|V g 204 |Claagaarby] » (O

D
where we have dropped the explicit dependence on E for convenience.
In this portion of the problem, we chose (for convenience) to consider only
Model I. Because of the particularly simple form of the perturbation matrix,
Eq. (59), we can explicitly carry out the matrix multiplication in Eq. (70). 1In
addition, we use the fact that G(2,8,%2'8') is nonzero only if £ and %) are on the
same side of the surface. Thus, if we consider first the upper surface in

Fig. 1 we obtain
L 7R L 7L 2“0 12
z "z| _ ~(0)|{z "z (0) {7z 01 z
G[B’ 8 ] ¢ {B’ g J e {B‘ ZJV{zlJG[le ] ’ D

where we have suppressed the dependence on $s' By setting 22’=1 and B”’=1, we

solve Eq. (71) for the surface Green's function to get

12 12
2| (0| 0) (10). (01
G[lB ] =G [16 J 1 - ¢ [12JV[21} . (72)

Finally, this expression can be substituted back into Eq. (71) to give the
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general surface Green's functions. By substituting the explicit expressions
in Eqs. (39)-(42) for the bulk Green's functions and after considerable
algebraic manipulation, the surface Green's functions can be written as

(remember that Qz and zz’ > 1)

(2 8~ 2 2 ) (2 +2 71
cl 272 - G(O)( z z | _ G(O) z z (73)
8 1 81 8 1)’
r 3
g L8 (2 +2 - 0
G(Qzﬁz () R I () kP 74)
8 2 82 L8 2
where 8=1,2. Similarly, for the lower surface in Fig. 1 (Qz and Rz’ 2 0) we
obtain
LR LR~ L+ -1 1
gl 2z z - G(O) zZ z _ G(0) z 'z (75)
B 1 B 1 B 1 g
L8 L L4+ “-1 O
cl 2z | 2 G(O) z'z | _ G(0) z 'z (76)
B 2 B 2 B 2 ?

where B=1,2. The fact that the surface Green's function can be expressed as
the difference of two bulk Green's functions is a significant simplification in
our problem. This fact was recognized to be true for the one-band crystal
surfaces by Dobrzynski and Mills,52 and it is also true for a finite diatomic
chain.s3

The density of states on the layer labelled by Kz and B is related to the

imaginary part of the surface Green's function by32

Qz -1 Z ' zzzz > »
P 8 ,E| = ;T—_N— Im G B B ,¢S,E . » (77)
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Only the diagonal elements of the Green's function matrix are needed. By
substituting the analytic expressions for the bulk Green's functions into

Eqs. (73) - (76), we obtain the simple expressions

2 2
z"z 22,-1
= - L = 78
Gll} J d(1-t ) , =1 (78)
(22"
z'z| _ 2%,
G1,%, % = 3 a@-t72) a1, (79)
szzzz” = J d@-t 2zt g <0 (80)
11 | > Ta T
(2 2
z z -22_+1
h B - pA <
G\z 5 J a(l-t ) s %, 20, (81)
where
I = 2¢/B(t>-1) (82)

and Im t is to be interpreted as -sgn(E)Im t, where sgn(E) is the sign of E.

The term sgn(E) is added because‘of an ambiguity in sign in taking the
square root of a square. This ambiguity arises in all aspects of the use
of this Green's function. The ambiguity is removed by comparing the results of
the calculation in the limit of zero band gap (when the two atoms in the unit cell
become identical) with a separate calculation for a body-centered cubic (bcc)
crystal. There is no ambiguity in sign for the bcc case. The sign which is
given'in Eq. (82), then, is based on the assumption that theré is a continuous
‘change in the Green's functions in going from the zero band gap case to the
case with finite band gap. 1In the Appendix we show explicitly how this is done
for the calculation of the partial phase shift discussed in Sec. III.

In Fig. 12 we show the layer density of states (LDS)Acalculated numericalli

by sampling the surface Brillouin zone and evaluating Eq. (77). From the form
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of the surface Green's functions in Eqs. (78) - (81), the LDS for the upper
surface in Fig. 1 is the mirror imagine of the LDS for the lower surface.

This means, for example, thgt the LDS for the layer £z=l, 8=1 is the same as

the LDS for the layer zz=0, =2 when the energy axis E is changed to -E. For

this reason we only show the LDS for layers in the lower surface.

| In Fig. 12a we show the LDS for atoms of type 2 representing the first, third
and fifth layer of atoms from the surface and for a layer in the bulk. 1In

Fig. 12b we show the LDS for atoms of type 1 corresponding to the second, fourth,
and sixth layef of atoms along with the LDS for a layer in the bulk. From these
curves we see that the density of states at the surface is considerably niore narrow
in energy than the bulk density of states. This feature of band narrowing has

[
32,5% and has been observed using photo-

been demonstrated theoretically for metals
emission.55 Here we have demonstrated that band narrowing also occurs for
semiconductors. Experimentally, the observed photoemission bandwidths for a
large number of semiconductors are more narrow for UPS than for XPS.%®  This
trend can be interpreted as being due to band narrowing at the surface since
the escape depth of electrons in UPS is smaller than for XPS.
In addition, from Fig. 12 we see that the density of states for the

surface layers rapidly approaches the bulk density of states as we move into

‘the crystal from the surface. By the fifth layer, the LDS is very similar to

the bulk density of states.

V. CONCLUSIONS

We have obtained, for the first time, analytic expressions for both the
bulk Green's function and the (001) surface Green's function of a two-band

model crystal of the CsCl structure. These Green's functions are significant



45

because, in addition to studying the properties presented in this paper,
they can serve as a starting point for calculations of both surface reconstruction
and chemisorption on semiconductors and insulators. These two vital problems
have not yet been examined from the Green's function point of view. The fact
‘that tﬂé Green's functions are analytic is important because it is then possible
to study the surface using only simple numerical calculations, and consequently,
it is much easier to understand how the results depend on the model parameters.
This feature is often missing from more elaborate numerical calculations.

We have calculated the change in the density of electronic states caused
by the creation of the surface for three separate models. The three models were
chosen because one results in no surface states, one results in Shockley surface
states, and one results in Tamm surface states. The existence conditions for
these surface states is significantly different from those obtained previously,
both in one-dimensional models and in one-band three—dimensionél models. The
change in the density of states shows both the addition of the derived surface
states and, equally important, the concomitant perturbation of the infinite
crystal density of states. In addition, we have used the change in the density of
states to calculate various thermodynamic  properties of the semiconductor
or insulator surface, namely, the electronic specific heat and the surface electronic
entropy. We have found, in contrast to one-band metals, that the surface
specific heat falls to zero exponentially at low temperatures.

‘We have presented the local densities of states for a few layers of atoms
in the surface region for the case when there are no surface states. We expect
the results to be -qualitatively the same for the other two models. We have shown,
as is true for one-band crystals, that the band widths of the densities of
states on the surface layers are m&re narrow than for the bulk layers. This

fact can explain some of the discrepancies which have appeared between the results
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of UPS and XPS studies on semiconductor surfaces.

Finally, whereas the work in this paper is concerned with a specific surface
of a specific structure of a two-band crystal, we believe that the qualitative
features of the results are quite general and are common to all semiconductor and
insulator surfaces. This belief is sup?orted by analogy to the fact that for
one-band metals, the model results for three faces of a simple cubic crystal,
two faces of a body-centered cubic crystal, and one face of a face-centered cubic
crystal are all qualitatively the same. Thus we believe that the results in this
paper can serve as a general basis for the way in which one views both semiconductor

and insulator surfaces.
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APPENDIX

We present here the calculation of the partial phase shift for the case
of zero band gap by two different methods. For the first method, we set
El = E2 = 0 in the derivation of the bulk Green's function of Sec. II to get
the Green's function appropriate for a body—cgntered cubic (bce) crystal. We
then obtain an analytic expression for the partial phase shift which contains no
sign ambiguity. For the second method, we use the partial phase shift expression
given in Sec. III and evaluate them in the limit El - Ez -+ 0. By comparing the
two results, the sign ambiguity is removed for Model I. The same method has been
used for Model II and III, and for the surface Green's function in Sec. IV.

Setting E. = E2 =Y, = 0 in Egs. (31) -~ (35), we find that each of the Green's

1
functions, when written in integral form (using Eq. (36)), contains the factor

E/(Ez—Fz). This factor can be split into partial fractions as.

2B _ 1 + 1 . (A.1)

Using this identity and the integral from Eq. (37), we obtain for the bce bulk

crystal Green's functions

\

L - ”
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where
P- = 1/£(1>-1) | (A.5)
I
s - (82—1)2 s s > 1
1
= s +i@-sH? “1<s <1 (A.6)
2 %
s + (s°-1)° , s < =1 ,
s = -E/2f (A.7)

’

and where f is given by Eq. (46) and x($s) is given by Eq. (60).
Using the perturbation matrix for Model I, Eq. (59), the Fredholm determinant

in Eq. (54) reduces to the simple expression
2
p@A_,B) = -1/("-1) . (A.8)

Inside the band, the magnitude of s (Eq. (A.7)) is less than unity. Thus, using
Eq. (A.6) in Eq. (A.8) and calculating the partial phase shift in Eq. (56) we

obtain

n(3,B) = -arg (4.9)

(1-s2)%

There is no ambiguity in the sign of the square root in this expression since the
sign of the square root in Eq. (A.0) is fixed.
In the second approach, we use the expressions for the bulk Green's functions

given in Eqs. (39) - (42) and take the limit as E, = E = (0. Again, the

1”70

Fredholm determinant in Eq. (54) can be written analytically with the result

DG_,B) = -1/(c-1) (A.10)

where t is given by Eq. (38). Inside the bands, we have
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;,
t=¢+i@(1-£57 (A.11)
and the parameter £ (from Eq. (47)) can be related to s (Eq. (A.7)) by
2
g =25 -1 |, (A.12)

Substituting for t in Eq. (A.10) we obtain

2%
> U1 (1-£%)
D(¢S,E) =3 1+ 1(l_€) . (A.13)

The partial phase shift thus becomes

2 1

%
n(gs,E) = —arg|—> ) g . (A.14)

(1-s%)

The ambiguity in sign lies in the numerator of the argument ‘since s can be
negative. By comparison with Eq. (A.9) we see that the positive root is the
correct root. Thus, the numerator always has the sign opposite in sign to the
energy E (note f is always positive in Eq. (A.7)). We assume from continuity that
this sign convention is valid even when the band gap is not zero and when the

partial phase shift cannot be obtained analytically.
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FIGURE CAPTIONS:

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

The geometry of the (001) surface of a crystal with the CsCl
structure. The plane of atoms of type 2 is a distance aO/2
behind the plane of atoms of type 1. The first-neighbor
interaction is Yy and the second-neighbor interaction between

atoms of type 2 is Yo

The projection of the infinite crystal energy bands onto a
segment of the surface Brillouin zone showing the quasi-continuum
of states for each value of wave vector. Results are for the
cases when (a) only nearest-neighbor interactions are included,
(b) second-neighbor interactions between atoms of type 1 are
included, and (c¢) second-neighbor interactions between atoms of
type 2 are included. For all results we use E, = 2.0 and

1

E2 = -2.0.

’

The energy bands for one-quarter of the surface Brillouin zone
for Model II showing the Shockley surface states (shaded area)

lying just above the valence band.

Detail of the surface states for Model II for a particular

segment, ky = ﬂ/ZaO, of the surface Brillouin zone.

The shaded region shows the region in the surface Brillouin

zone for which Shockley surface states exist in Model II.



Figure 6:

Figure 75

Figure 8:

Figure 9:

Figure 10:

Figure 11:

55

Position of the Tamm surface states for Model IIT for a particular
segment, ky = w/2ao, of the surface Brillouin zone. Note the

break in the vertical scale.

The partial phase shift as a function of energy for a particular
point, kX = ky = ﬂ/2a0, in the surface Brillouin zone for

(a) Model I, (b) Model II, and (c) Model III. (d) The partial
phase shift at a point near the zone edge, kx = 91T/10aO and

ky = ﬂ/2ao, for Model III. Note the break in scale.

Total phase shift as a function of energy for (a) Model I,

(b) Model IT, and (c) Model III.

The change due to the creation of the surface in the total
density of states (per unit energy) per surface unit cell as a
function of energy for (a) Model I, (b) Model II, and (c)

Model III.

The change due to the creation of the surface in the electronic
specific heat as a function of temperature for each of the three
models. The results for the half-filled one-band crystal (ref. 38)

are plotted for comparison.

Electronic contribution to the surface entropy as a function of
temperature for each of the three models. The results for the

half-filled one-band crystal (ref. 38) are plotted for comparison.
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Figure 12: The local density of states (per unit energy) per surface atom
for the first six layers of atoms in the lower surface of
Figure 1. (a) Results for atoms of type 2 and (b) results for
atoms of type 1. The local density of states for layers in the

bulk are shown for comparison.
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Figure 1
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iigure 2(a)
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Figure 2(b)
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CHAPTER IIT

ATOMIC REARRANGEMENT ON CLEAN CRYSTAL SURFACES

Section A: ILowering of the Electronic Energy Due to
Surface Reconstruction
[submitted as a Letter to the Editor to

Surface Science (1975)1].

Section B: Effect of Surface Reconstruction on the
Electronic Energy of a Two-Band Crystal

[submitted to Phys. Rev. B (1975)].
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When atoms spontaneously rearrange on the surface of a crystal due to
any of a variety of possible mechanisms, then the total surface electronic
energy (or the Gibbs energy) must be lower for the reconstructed surface
than for the unreconstructed surface. This fact may make it possible in
the future to predict, and thereby fully understand, the structures due
to surface reconstruction on arbitrary crystal surfaces. At present, how-~
ever, calculations are limited to model systems with the aim at understand-
ing the general physical principles involved.

The first calculation of the change in the total electronic energy due
to reconstruction was recently performed by Dobrzynski and Mills.t They
considered a simple cubic monatomic crystal with one orbital (s-type) per
atom (sometimes called s~band cubium). They used the Linear Combination of
Atomic Orbitals (LCAO) formalism and assumed only nearest neighbor hopping
integrals. This model gives a single cosine-like energy band. The unre-
constructed surface unit cell and surface Brillouin zone (SBZ) for the (001)
surface is a square.

Dobrzynskl and Millsl then imposed a (2x1) reconstruction pattern on
the (001) surface by arbitrarily displacing every other row of atoms in the
surface in the y-direction (parallel to the surface). This had the several
effects of (1) perturbing thé overlap integrals in a regular manner between
the atoms in the first plane, (2) making the surface unit cell twice as long
in the y-direction, and (3) reducing the size of the SBZ in the ky direction
by a factor of two. This "folding" of the SBZ allows two states which formerly
had the wave vector values of ky and —ky + Sgn(ky)n/a (a is the unrecon-
structed unit cell dimension and sgn(ky) is the sign of ky) to interact,

thereby reducing the energy of the low energy state and increasing the
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energy of the high energy state. The overall effect throughout the zone
is for the lower energy states in the band to move down in energy, and for
the higher energy states to move up.

At T = 0°K, the Gibbs energy and the total electronic energy are
equivalent. To calculate the total electronic energy, the energies of the‘
occupied states are summed from the bottom of the band up to the Fermi
level. Dobrzynski and Mills® showed, and it should be clear from the above
discussion, that if the Fermi level is located anywhere in the band, there
is a decrease in the total electronic energy for the reconstructed surface
when compared to the unreconstructed surface. However, if the band is
completely filled (or completely empty), Dobrzynski and Mills found that
the total electronic energy is unchanged upon reconstruction.

Semiconductors and insulators are known to reconstruct. Therefore, it
is of interest to consider what happens when the bulk crystal has more than
one band and to see if reconstruction on semiconductors and insulators can
be described in this same language.

In this paper, we report results on an investigation parallel to that
of Dobrzynski and Mills wherein the crystal model has two bulk bands. We
consider a simple cubic crystal with a two atom basis in the CsCl structure.
In Fig. 1(a) we show the (001) unreconstructed surface in which the open
circles represent basis atoms of type 1 in the surface plane, the filled
circles represent basis atoms of type 2 in a plane located a/2 below the
surface plane. The SBZ is a square, as shown in Fig. 1(b), with the
boundaries at wave vector values of #* w/a. We use the LCAO formalism, the
tight binding approximation, and assume only nearest neighbor hopping

integrals. The projection of the bulk energy bands onto the SBZ is shown
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in Fig. 1(c) where we have varied ky for a fixed value of kX. The cross-
hatch indicates that there is a continuum of energy states in that region.
The explicit values of the energies of these bands depends upon the follow-

ing: (1) the choice of orbital energies E, and E, for the two basis atoms;

1
(2) the choice of the size of y, the nearest neighbor hopping integral; and
(3) the choice of kX. However, the shape of the bands is independent of
these choices. Note also that if the orbital energies El = E,, i.e., the
two basis atoms become identical, then the model becomes a body-centered-
cubic metal and the band gap goes to zero.

Upon this surface, we impose the atomic motions shown in Fig. 2(a)
which represent a (2xl) reconstruction of the surface. Alternate rows of
atoms of type 1 in the first plane are moved in the positive or negative
y-direction. This has the effect of increasing some of the nearest neighbor
hopping integrals by an amount g, and decreasing others. The new unit cell
is twice as long in the y-direction as in the unreconstructed surface, and
therefore the new SBZ is half as large in the ky direction, as shown in
Fig. 2(b). In Fig. 2(c) we show a schematic of the "folding" of bands in
the k _ direction. Where the cross-hatch is double, there are two continua
of electronic states overlapping. These overlapping states interact in
exactly the same fashion as for the one-band sifuation.l

The method for finding the effect of reconstruction on the electronic
density of states, and hence on the electronic energy is tedious and will
only be outlined here. The formalism we follow is the same as that of
Dobrzynski and Mills,l and the details will be presented elsewhere.’ The
steps are as follows: (1) Determine the Green's functions for the bulk

crystal as a function of energy, E, and kx and ky. (2) Perturb the system
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by cutting bonds across a plane to create a surface. (3) From a Dyson
equation formalism, use the bulk Green's functions and the perturbation to
determine a new Green's functions appropriate for a crystal with a surface.
To perform these first three steps, there is considerable advantage in
having analytic expressions for the Green's functions. The model we have
chosen has this important advantage. These first three steps have been
fully discussed elsewhere3 (including the analytic expressions for the
surface Green's functions) in a study of the properties of the clean surface
of this model.

(4) Determine the perturbation which creates the reconstructed surface.
This is shown in Fig. 2(a). (5) Manipulate the surface Green's functions
from step (3) into a form appropriate for the enlarged unit cell and the
reduced Brillouin zone. (6) Use the reconstruction perturbation and these
new Green's functions to calculate the partial phase shift functional. This
quantity is given by -arg det (I - VG) (I is the unit matrix, V is the per-
turbation matrix, and G is the Green's function matrix) as is fully des-
cribed in refs. (1) and (3) and references therein. (7) The total phase
shift functional is a sum of the partial phase shifts over the two-dimensional
Brillouin zoneuL appropriate for the reconstructed surface. (8) Finally,
from the total phase shift we determine the change in the density of
electronic states due to the surface reconstruction perturbation and hence,
by a simple integration, the change in the electronic energy. This above
procedure is well establishedl—3 as a general prescription for amalyzing
the effects of perturbations on systems with a large number of particles.

It is possible, as in the work of Dobrzynski and Mills,l that the

perturbation which gives rise to the reconstruction can also create new
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surface states. In our model and for this (2xl) structure, there are no
new surface states created. However, we have found new surface states
when the surface is reconstructed into a c(2x2) structure as is fully dis-
cussed elsewhere.2

In Fig. 3, we present the results of this work. Here we show the
decrease in the tQtal electronic energy, AU, as a function the size of the
perturbation, e, where both are expressed in units of the hopping integral y.
We show three cases, ranging from a large band gap (curve a) to a zero band
gap or bece metal (curve ¢). (Band gaps, Eg, are expressed in units of vy.)
The Fermi level is assumed to be in the middle of the band gap. (For the
case where the band gap is zero, the Fermi level is put exactly at the
middle of the band.) Based on this graph, we may make the following three
conclusions:

(1) The decreases in the total energy for the case of a metal with a
half-filled band (curve c) and for a large gap semiconductor (curve a) are
of the same order of magnitude. This result proves, as was impossible with
the Dobrzynski and Millsl model, that when a band becomes nearly full, the‘

presence or absence of other empty bands nearby fundamentally affects the

behavior of the_system upon reconstruction. Contrary to the previous
result% we have shown that the phenomenology presented here is capable of
explaining reconstruction on semiconductor surfaces.

(2) The decrease in the electronic energy is a quadratic function of
the perturbation for small values of e. This was previously shovm to be
true for metals,l and we have shown that it is also true for semiconductars
and insulators. This is a general result for small perturbations.

(3) The decrease in the electronic energy is inversely related to the

band gap. As the band gap gets larger, all other model parameters being



86

held constant, the magnitude of the decrease in the electronic energy gets
gnaller (compare curves a, b, and ¢). This implies that metals and narrow
gap semiconductors will have a greater tendency to reconstruct than will
large gap insulators. The tendency for the metals and narrow gap semi-
conductors is nearly the same (as seen by the closeness of curves b and c).
Other structures due to reconstruction of this surface give similar,
but not identical, results. A complete discussion of this behavior will

be presented elsewhere.2
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Figure Captions

Figure 1

Figure 2

Figure 3

(a)

(b)

(e)

(a)

(b)

(c)

Atomic geometry of the unreconstructed (001) surface of a
erystal with the CsCl structure. Open circles are surface

atoms of type 13 filled circles are second plane atoms of

type 2.

Square surface Brillouin zone (SBZ).

Schematic of the projection of the bulk energy bands onto the
SBZ as a function of ky for a fixed value of kx. The cross-
hatch in each band represents a continuum of states.

Imposed displacement pattern for the (2x1) reconstructed
surface.

Reduced surface Brillouin zone apprcpriate for the reconstructed
surface.

Schematic of the folded energy bands.

The double cross-hatched area in each band is where two continua
of states exist and interact.

Decrease in the total electronic energy as a function of the
perturbation parameter e for three different‘values of the

band gap. All quantities are in units of y.
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ABSTRACT

We present the change in the total electronic energy which occurs when
the surface atoms of a crystal reconstruct in a periodic mamner. We study
the (001) face of a model two-band crystal with the CsCl structure. The
energy changes due to uniform relaxation of the surface, as well as a
(2x1) and a c(2x2) reconstruction, are considered. The results are obtained
by a Green's function perturbation technique where a resolvent is used to
determine the presence of surface states, and a phase shift function is
calculated to determine the change in the density of states. The Green's
functions appropriate for the reconstructed surfaces are analytic. We
find that relaxation inward lowers the electronic free energy, and, in
addition, we show that reconstruction always lowers the electronic free
energy. The method is quite general and can be used to study arbitrary

reconstructed structures.



94

I. Introduction

Currently there exist several different ‘cheor‘iesl_6 which attempt to
explain the origin of the fractional order beams7 obtained by low-energy
electron diffraction (LEED) experiments from solid surfaces. The appearance
of these fractional order beams is due to a different arrangement of the
atoms near the surface than in the ideal bulk crystal. These theories can
be - divided into four categories in which it is suggested that
reconstruction is due to the following: (1) missing atoms, (2) hybridized
surface orbitals, (3) vibrational instabilities, and/or (4) a lowering of
the total electronic energy. In this paper, we will consider the fourth
category. First, however, we will briefly discuss each of the other three
aprroaches.

A model firstused by Lander and Mbrrisonl to explain the various
equilibrium positions of the surface atoms is based on the presence of vacan-
cies periodically arranged on the surface. By choosing carefully the
different sites where the vacancies occur, different structures are obtained
due to surface reconstruction on the (100) and (111) crystallographic
orientations of Ge and Si. More recently, Phillips1 has extended this
idea and obtained the fraction of vacancies for the (100), (110), and (111)
faces of Ge and Si. He asserts that the presence of vacancies reduces the
strain energy caused by the dangling bonds. The fraction of vacancies is
correlated to the degree of covalency by examining the covalent contribu-
tion to the Gibbs energy. Thus, the covalent forces are taken to be
responsible for rearranging and removing atoms from the surface. What
remains to be shown in this theory is the reason why the vacancies arrange

themselves in certain structures and not others, and whether the theory
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is applicable to metal surfaces.

A second type of model proposed by Haneman and co—workers2 deals with
hybridization of the surface dangling bond. In their model, the recon-
struction is achieved through a "rumpling” of the surface atoms. By in-
creasing the s-character in the dangling bonds of the raised atoms and
the p-character in the lowered surface atoms, they have been able to use
chemical bonding ideas to explain the (2x1) structure. This scheme indi-
cates that the fractional order diffraction beams can be explained by
relatively small changes in the positions of the atoms near the surface.
What remains to be shown in this theory is how the ideas are applicable
to other semiconductor surfaces, whether the theory can distinguish between
different reconstructed surface structures, and whether the ideas are
applicable to metal surfaces.

A third possible mechanism for surface reconstruction is that the
surface may be unstable to a surface vibration.3 In some cases this in-
stability may be due merely to the lower coordination number for the atoms
at the Sur’face.LTL On the other hand, the interatomic force constants are
quite likely different near the surface compared to those in the bulk.

This difference may be due to either the fact that the normal bulk force
constants are altered near the surface or to the fact that additional forces
may be present at the surface which are symmetry forbidden in the bulk.3
Alternatively, it has been.suggesteds that the instability could be due
to the coupling of the surface phonon to a charge density wave. Several
variations of this same basic idea have appeared using the labels Peirel's
transition, giant Kohn anomaly, or Jahn-Teller distortion.5 This approach

has the two advantages that it is applicable in some form to all surfaces
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and that the reconstructed surface structure does not need to be known
in advance. However, what remains to be shown is how the surface force
constants quantitatively change near the surface by whatever mechanism and
whether reasonable changes in the force constants on real systems lead to
the observed structures (this has been done only for the Si(111) surfaceg’S).
The fourth type of approach to the question
of surface reconstruction is to determine the lowering of the electronic
energy which might occur due to the reconstruction. Since this is the
approach used in this paper, we will discuss this idea fully below.
Recently, Ibach and Rowe8 have been able to infer indirectly the
structure of the réconstructed clean surfaces of Si(100) and (111) by
studying the adsorption of hydrogen on these surfaces with Energy loss
Spectroscopy (ELS), Ultraviolet Photoemission Spectroscopy (UPS) and LEED.
Upon hydrogen adsorption, the LEED patterns do not change for the (7x7)
structure on the clean (111) surface and the (2x1) structure on the (100)
clean surface. However, in the case of the (2x1) structure on the cleaved
(111) surface, the LEED pattern returns to that of the unreconstructed
surface. Tor the models which don't assume missing atoms, the fractional
order spots would disappear upon adsorption. With the missing atom model,
one might expect the LIFFD pattern to remain the same before and after ad-
sorption. From these considerations, Ibach and Rowe suggested that dif-
ferent mechanisms are responsible for the different reconstructed struc-
tures on the various surfaces. Therefore, at present it appears that each
of the above theories should be pursued, for it is not yet clear which
approach will ultimately prove to be most useful.

Tt is clear that if atoms rearrange on surfaces, it is because the



97

reconstructed surface has a lower Gibbs energy. This is true no matter
which of the first three approaches is used. Recently, ideas concerning
the lowering of the Gibbs energy (also called the total electronic energy)
have begun to be put on a quantitative basis, in particular by the work of
Dobrzynski and Mills.6 They have studied the (001) surface of a model one-
band simple cubic crystal, simulating the properties of transition metals.
The particular surface rearrangement they considered resulted in a (2x1)
structure. They found that the greatest decrease in the total electronic
energy occurred when the single band was half-filled and that the decrease
diminished to zero as the band became either empty or completely filled.

In this paper, we use the same scheme as Dobrzynski and Mills to calcu-
late the decrease in the electronic energy of a two-band crystal upon recon-

9 of this two-

struction of the surface. It was found in owr previous study
band crystal that the presence of an empty second (cornduction) band greatly
changes the surface electronic and thermodynamic properties compared to
the results one obtains with a filled one-band calculation. Therefore, the
present study was undertaken to see whether, contrary to the results of
Dobrzynski and Mills, there is a decrease in the electronic energy upon
reconstruction when the crystal has one filled band and a second empty band,
i.e., the model studied is to be applicable to insulator or semiconductor
crystals.

The physical basis of our theory can be briefly stated as follows. When
the surface unit cell becomes larger upon reconstruction, there are two
immediate consequences. The surface Brillion zone (SBZ) becomes smaller

in size, and the energy bands fold over. In the region where the bands

overlap, the states are degenerate. The perturbation which causes the
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folding of the energy bands removes the degeneracies and changes the density
of states of the unperturbed (1x1) surface. The net result of this change
is to push states away from the energy band gap region toward the bottom
(top) of the valence (conduction) band. For a filled valence band, this
leads to a net lowering of the total electronic energy.

In a previous paper,9 we studied the ideal unreconstructed (001) surface
of a crystal having the CsCl structure. We used the LCAO formalism,
assumed the Tight Binding approximation, and derived analytic expressions
for both the bulk and the surface Green's functions. In this paper, we use
the previously derived surface Green's functions as the wavefunction des-
cribing the unreconstructed surface. The change in the density of states
due to the reconstruction is determined conveniently by the phase shift
technique. The change in the electronic energy is then obtained by a simple
integration. In the few cases where they occur, we find the surface states
by the resolvent technique.

Two different reconstructed structures are considered here. The
sirface atoms are arbitrarily rearranged in two different ways forming the
(2%1) and the c(2x?) structures. In the (2x1) case, we have studied
separately motions parallel and perpendicular to the surface. In addition,
we have studied the change in the electronic energy as a function of the
band gap. In all éases_considered, we have found a decrease in the total
electronic energy for a filled band. Depending upon the relative strength
of this energy compared to the unfavorable strain energy created by moving
the surface atoms out of their bulk equilibrium positions, reconstruction
can occur.

In Section IT, we present the general Green's function formalism for
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an arbitrary structure of a reconstructed surface, and this is then used
to obtain the change in the electronic energy due to the reconstruction.
We also present the geometry of the different cases considered, which in-
cludes in addition to the (2x1) and c(2x2) structures, a uniform surface
relaxation as well. In Section ITI, wepresent and discuss the results.
These include the phase shift functions, the changes in the density of
states, and the change in the electronic energy for each of the cases con-
sidered. In addition, a simple lattice dynamical calculation is carried
out to get an estimate of the elastic strain energy associated with the
reconstruction deformation. Comparing these results, we obtain the condi-

tions necessary to obtain a decrease in the total energy of the system.

We summarize our results in Section IV.



100

IT. Formalism

The surface we study in this paper is the (001) surface of a crystal
with the CsCl structure. The (001) surface consists of atoms of the same
type. Although second neighbor interaction was taken into account in our
previous paper,9 for simplicity we will include only the first neighbor
interaction here. Due to this limitation, there are no surface states on
the unreconstructed surface. In Fig. 1,lO we present the geometries for
the reconstructed surface structures considered. InFig. 1(a) we show a
(2x1) structure with the rows of atoms in the first plane displaced alter-
nately in opposite [010] directions. The hopping integral decreases
(increases) in magnitude as the distance between the atoms in the first and
second planes increases (decreases). The effect of the reconstruction is
described by e, which is the change in the nearest neighbor hopping integral v.
The unit cell has become twice as long in the y~direction and the number of
basis atoms in the first two planes has increased from two to four. In
Fig. 1(b), the (2x1l) structure is obtained with atoms in the first plane dis-
placed alternately in opposite directions perpendicular to the surface.
The reconstructed unit cell and the basis atoms are the same as in Fig. 1(a).
In Fig. 1(c), the atoms are displaced in yet a third manner in order to
produce the c(2x2) structure. The unit cell has again become twice as
large, but in this case it is square and rotated by 45°.  The number of
basis atoms is again four.

The sizes and shapes of the SBZ change as the unit cells become larger
and assume different shapes. In Fig. 2(a) the SBZ is seen to decrease to
half its former dimension in the y-direction for the (2x1) structure. In

Fig. 2(b) the SBZ for the c(2x2) structure is rotated by 45° and is again
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half the original size. These changes in the SBZ's affect the band structure
and thus the density of states because the energy bands fold along the new
SBZ boundaries.

In the following, we will derive a general scheme upon which the calcu-
lations for the various reconstructed structures are based. We will not
repeat the arguments given in our previous paper9 since the models are the
same in both places.

Since the translational symmetry in the directions parallel to the
surface are still present in both the unreconstructed and the reconstructed
semi-infinite crystals, the problem is simplified by expressing the surface
Green's functions in a mixed Bloch-Wannier representation. Expanding the
surface Green's functions for the (1x1) surface in terms of the two-dimensional
wave vector parallel to the surface,

1 S N ;'Jés-;(u‘)
G(2B,8'8',E) = = N G(2,B,818",k_,E)e , @D)
Sk
s
where NS is the number of unit cells on the (I1xl) surface, B8 and g' take on

the values 1 or 2 (the labels for the two basis atoms), (28) denotes the

gth type basis atom in the #th unit cell, the notation
®(22') = %(2) - =" (2)

is the vector difference of the p?sitions of the 2th and 2'th unit cells, Qz
labels the unit cell in the direction perpendicular to the surface, and the
letter s above the summation sign indicates that the sum is over the wave
vectors in the "standard" (1x1) SBZ. TFor the reconstructed surface, a

similar expansion is obtained,

L LAk (LD
G(IA,L'A',E) = - Y G(LﬁA,LéA',kS,E)e R (3)
N -

k
s
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where NN (= %—NS for our cases) is the number of unit cells in the recon-
structed surface, A and A' index the new basis atoms (A and A' take on the
values 1, 2, 3 or 4 in the case of (2x1) and c¢(2x2) reconstruction), (LA)
denotes the Ath basis atom in the Lth unit cell, and the letter N above
the summation sign indicates that the sum is over the wave vectors in the
"new" reconstructed SBZ. MNotice the caret over the Green's function.

If we refer to the same pair of atoms in both the (1x1) and the re-

constructed cases, i.e., if we set
(28,2'8") = (LA,L'A'Y) (4)

we have

G(eB,2'8',E) = G(IA,L'A',E) . (5)

We can then equate the right hand side of Eqs. (1) and (3) and obtain
é(LZA,LQAgis,E)as a linear combination of G(QZB,Qéggﬁs,E)where Ks will
now only refer to the reconstructed SBZ. Effectively é(LZA,LéA',ES,E) is the
wavefunction describing the reconstructed layers. Since the perturbation
is confined to the surface layer, L, and L; take on the value of the surface
layer (note that the two planes of atoms of type 1 and 2 make up one layer).
The details of this calculation are illustrated for both the (2x1) and the
c(2x2) reconstruction in the next section.

The effects of surface reconstruction can be studied by the phase shift
technique which is basically a perturbation method. Of major interest is
the change in the density of states due to the perturbation. This scheme

11 n

is quite general and has been applied to a wide variety of problems.
our previous paper,9 the method is applied to study the effects of creating

a clean surface. The method can equally well be applied to the study of
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Due to the translational symmetry, the perturbation matrix can also
be expressed in the mixed Bloch-Wannier representation. In our present
case, the perturbation matrix is given by
) N -k _x(IL")
V(L A,LIAY K ) = ) V(IA,L'AYe , (6)
AR s
L ,L
Xy
where the sum is over the unit cells in the reconstructed surface and where

V(IA,L'A") is the change in the interaction between atoms (LA) and (L'A').

We then obtain the Fredholm determinant,
D(E_,E) = det(T - ey . 7

The surface states which arise from surface reconstruction are located at

energies E outside the energy bands such that
D(K,E) = 0 . (8)

Within the bands, the partial phase shift function is given by ("partial"

implies that the function is found for only a single value of ?S)
n(k_,E) = - arg D(KE) (9

and the total phase shift per surface unit cell is obtained by summing over

the reconstructed SBZ,

N

nE) = = § (kLB . (10)
N, S
N =
kS

The change in the density of states is obtained directly from

An(E) = - (11
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With a simple integration we then obtain the change in the Gibbs energy at

absolute zero temperature (ground state énergy),6

E
U=—%JFdEn(E) , (12)

where Er is the Fermi energy. Dobrzynski and Mi1156 have investigated the
temperature dependence of the Gibbs energy. From their analysis, the first
order correction is zero in our case since the Fermi level lies in the
middle of the band gap and An vanishes there. Thus, the change in the
Gibbs energy at absolute zero is a good approximation for all temperatures.
In the next section, we apply the formalism presented here to two different

reconstructed surface structures.
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III. Results and Discussion
The band structure for the bulk crystal referenced to the unrecon-
structed SBZ, within the tight-binding approximation and assuming only first

neighbor interactions, is given by9

¢ ¢ ¢ 1/2
R R 2 2 'x 2Ty 2 'z
EKj =tz (Eg + 256y° cos” — cos” - cos® ’ (13)
where
> >
feak (14)

a is the crystal lattice constant indicated in Fig. 1(a), and Eg is the
band gap which for this structure is equal to the magnitude of the difference
in orbital energies, El and Ez, between the two types of atoms. There are
two branches and j takes on the values 1 and 2. The zero of the energy is
arbitrarily chosen to be the average of E, and E,.

For purposes of illustration, the parameters y and Eg are fitted to
the photoemission data for CsI obtained by DiStefano and Spicer.l3 They
found the width of the valence band to be 2.5 £ 0.3 eV and the band gap at

300%K to be 6.2 eV. Using these values, we find

y = 0.58 eV, (15)
and

E?

1f-= 106.7 . (16)

The Green's functions for crystals with the (001) unreconstructed
surface obtained in our previous paper9 are given as the difference of two
bulk Green's functions. They take on a rather simple form for the surface

layer, 2, = zé = 1; namely,

G(ll,ll,gs) = }—2?913;—1; , (17)
t



e _at
G(12,12,¢S) = =5 | (18
f
> t ~i%(¢x toay)
6(11,12,3 ) = ~ e o, (19)
s f
.1
1=+ ¢.)
G(12,11,4 ) = Se ¢ X YV (20)
S f
where
a=z&kt- El s (21)
d=E-E, , (22)
¢ ¢
f = L4y cos 7;-cos f; s (23)
£z (ad - 2€2)/28% (24)
9 1/2
g - (g7 - 1) £ > 1
21/2
t =4g + 11 - £9) , g} < 1 (25)
» 1/2
E+(E"‘l) b} {:;<""1
A. Static Relaxation Without Reconstruction

For uniform relaxation, the surface unit cell is (1x1), and the perturba-

tion matrix is a simple (2x2) matrix given by

> 0 &

V(L B2 854 ) = > (26)
g O

where the rows (and columns) of the matrix are labeled by the sites (£,8) =

(11) and (12), and where

.1
¢ o 150, + ¢.)
g = WA cos 7§-cos 7¥-e 27'x y . 27
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In Eq. (27), A, expressed in units of y, is the change in y as the surface
plane of atoms of type 1 is displaced in the direction perpendicular to
the surface. The Green's function matrix is reduced to a (2x2), and its
elements are given in Egqs. (17) - (20). The Fredholm determinant in Eq.
(7) is obtained analytically and is given by

2

2
—%ylii-— . (28)
€20t + 1)

D(K,,E) = (1 - a2 -
From the argument of this determinant, the total phase shift is obtained
nunerically by summing the partial phase shift over the SBZ (by sampling
values at a set of special points as described in ref. 14). The result
obtained is shown in Fig. 3. In Fig. 4, we show the change in the
density of states calculated from Eq. (11). The singularities at E = £5.35
are due to the flat natuwre of the bands.l5 We see that states are pushed
away from the band gap region and toward the bottom (top) of the valence (conduction)
band. Thus, fora filled valence band and positive values of b, the electronic
enerqy of the system is necessarily decreased. The actual decrease is calculated
from Eq. (12). In Table I, we sumarize the results for two values of A.
Positive values of A, i.e., an increase in vy, are chosen for the following

6

0]
reason. In the gas phase, the bond distance in CsI is 3.32 At , and increases

(0]
to 3.96 AL/

in the crystal. One might expect the nearest neighbor distance
on the surface to approach the value in the gas phase since one end of the
surface layer is free. Therefore, the surface atoms seek a new minimum in
potential energy at a shorter nearest neighbor distance. We assume that
the whole surface layer relaxes imward, and this relaxation increases y.

From the results for two different values of A, an approximate linear rela-

tion is obtained between A and AU. There is an appreciable decrease in the
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electronic energy due to the contraction of the first layer.

18 with-

Relaxation on a one-band metal was treated by Allan and Lannco
in the tight-binding approximation. Our approach here is very similar to
theirs. In addition, they included a Born-Mayer type of repulsive energy
between nearest neighbor atoms. They found that the surface layers relax
inward with a maximun decrease in the separation between the first and
second planes of atoms occurring for a half-filled band. TFor empty or
filled bands, no relaxation was found. Thus, the results we present here
show the importance of the second empty band in the study of semiconductor
and insulator surfaces.

Benson and co—workerslg have investigated extensively surface relaxa-
tion and surface energies of the neutral (100) and ionic (110) faces of
alkali halides with the NaCl structure and the neutral (110) face for those
with the CsCl structure. In general, the atoms in the surface layer relax
inward with different amounts of displacement for the anions and cations on
the neutral surfaces. For the ionic (110) face of the alkali halides with
the NaCl structure, the decrease in surface energy due to relaxation is two
to three times greater than the corresponding decrease for the neutral (100)
face. The values we obtain for AU have the same order of magnitude as the
values they have for the (110) face of the cesium_halides.l9 In our calcu-
lation, we include neither the polarization of the ions nor the van der
Waals interactions. The inclusion of these effects would decrease further
the surface energies.19 Thus, our results are the lower limits to the
"actual" values.

Laramore and Switendick2o studied the relaxation of the neutral (100)

surface of LiF by analyzing LEED intensity profiles. They found the best
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fit to the experimental data occurred when the lithium ions relax inward by
0.35 Z and the fluorine ions by 0.1 Z.

Contraction of the surface layer of atoms is also found for semi-
conductors. Appelbaum and Hamann2l have studied the effects of relaxation
on the electronic energy states of the Si(111) surface by numerically
integrating the Schrodinger equation. By assuming that the surface atoms

o}
contract by 0.33 A, new surface states appear which can be associated with

the 82 and 83 states observed experimentally by Rowe and Ibach.22

23

For metal surfaces, Alldredge and Kleinman®~ also found a large inward

contraction for the Li(001) surface. Their calculation, which is a fully
self-consistent treatment of the electrons, is probably the best first
principles calculation performed to date.

However, not all the surface layers of crystals contract. The surfaces
of fee crystals tend to expand. Benson and Claxton2Ur studied the (110),
(100) and (111) faces of rare-gas crystals and found an outward expansion
of 3.6, 2.6 and 1.2% of the bulk interlayer spacings, respectively. The
(100), (110) and (111) faces of fcc metals (including transition metals)
were studied by Burton and Jura.25 The interlayer spacings were found to
increase in all cases, and the distortions decreased away from the surface
region. The close-packness of the fcc structure tends to discourage any

closer approach of the atoms compared to their bulk separations. We do not

believe that our simple model is capable of explaining outward relaxations.

B. (2x1) Reconstruction, z-Displacement

The assumed displacement geometry for this problem is shown in Fig. 1(b),
and the corresponding SBZ is shown in Fig. 2(a). To proceed, we must first
derive the unperturbed surface Green's functions appropriate for the (2x1)

reconstruction. There are two possible approaches. The first method is
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to equate the coefficients in the Fourier transforms in Eqs. (1) and (3)
after converting the sum in Eq. (1) to a sum over the reconstructed SBZ.
This method was mentioned previously in Sec. II. The second approach is to
find the transformation matrix between the basis functions for the recon-
structed and the unreconstructed surfaces. Then a similarity transforma-
tion can be performed on the Green's function matrix. The two methods give
the same results, but we will present only the first due to its relative
simplicity.

There are four basis atoms ih the (2x1) reconstructed surface. Thus,
the bulk band structure referenced to the new SBZ consists of four branches

and is given by9

¢
Eor. ::tl»[E2 + 256Y2 C082 2 cos® L cos
2 g 2

73 , (29)

where we have chosen the plus (minus) sign for j =1(2), and

X gin® 2L 2
5 sin® =~ cos”

N H

Eo. = %

) ¢ b y1/2
2 2 2 7z
k3 } s (30)

[Eé + 256y2 cos
for j = 3(+) and 4(-). These equations result naturally from simply folding
the bulk bands appropriate to the unreconstructed surface in Eq. (13).

To derive the surface Green's functions, we observe that the sum in

Eq. (1) can be converted to a sum over the (2xl) SBZ as follows

,
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where sgn (¢y) denotes the sign of the y-component of 3, and g& is the unit
vector in the y-direction. The sum in Eq. (31) still includes the same
terms in the SBZ as in Eq. (1). Since we have chosen to distort the
surface in the y-direction, the unit distance in the x-direction remains
the same as the (lxl) surface, while that in the y-direction becomes twice

as long. When referring to the same pair of atoms, we have simply
t - 1
XX(QQ ) = XX(LL ) (32)

for the x-component of X(22") and %(1L'). However, the corresponding equality
for the y-component does not always hold. From Eq. (5) we then equate the

coefficients of the sums in Eqs. (3) and (31) and obtain immediately

¢
i az-[xy(KQ') - xy(LL‘)]
n - 1 o) >
G(LZA,LéA' ,CbS,E) = 5 e G(QZB )9'%8' )¢S >E)

-i sgnle,) al x, (22"
+ G(2 8,8'8",%. - sen(¢ )me. ,BE)e © (33)
AR/ S - vy ?

where we have used the fact that
21
Ny = 5N, (34)

We can further simplify Fq. (33) by evaluating the exponentials. Eq. (33)

may then be dissected into the following

1"

~ > -
G(LZB,L;B',$S,E> %{G(zzs,zée'ﬁs,’ﬂ) + Gl B8R0, - Sgn(cby)wey,E]} , (35)

i

é(LZB + 2,108 + 2,$S,E) , (36)
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. -i¢

- _ L Yy 1
G(LZB,LéB'+ 2,¢S,E) =5 e {G(RZB,RZB',$83E)

-
- G(QZB,ZQB',gs - Sgn(¢y)vey,E)} R (37)
N 1 i¢y
tnt - Int

G(LZB + 2,LZB ,$S,E) = 5e {G(RZB,KZB ,gS,E)

N
- G(ZZB,QQB',gs - sgn(¢y)wey,E)} R (38)

where B, B' = 1, 2, and

Xy(LL') =0 , (39)
since all the atoms are in the same enlarged unit cell. Thus, we see that
the layer-by-layer reconstructed surface Green's functions are obtained as
a sun or difference of two known (1x1) surface Green's functions.

The perturbation matrix is obtained from Eq. (6). The periodic change
in the nearest neighbor hopping integrals is shown in Fig.1(b). The per-
turbation is confined to the first and second planes both of which are in

the first layer and is given by

( -12¢
0 v 0 wv¥®e y
N . ¢X v 0 -V 0
V(1A,1A ,¢S) = 2e COS - , (40)
0 ~v# 0 -y
124
L ve Y 0 -V 0

where the rows (and columns) are labeled by the index LZ =land A =1, 2,

3, and 4, and
. ¢x
7
v = e . (41)



We recall that e, in units of y, is the change in y due to reconstruction.
The Green's function G that is needed is therefore reduced to a (ix4) matrix
with &= 2! =L =L!=1inEgs. (35) - (38). Once V and G are known, the
effects of reconstruction on the electronic structure of the surface can be
studied within the formalism developed in Section II.

There are no surface states for this reconstructed surface structure.
In Fig. 5, we present the total phase shift and in Fig. 6, the correspond-
ing change in the density of states. Again, states are shifted toward the
bottom (top) of the valence (conduction) band, leading to a decrease in the
electronic energy. States are also pushed toward the band gap region in a
very small energy range. These singularities in the density of states are
always present in our calculation since the band edges are flat.l5 To
insure conservation of states, the integral of An up to the Fermi level must
be zero. This is one way of stating the Friedel sum rule,9 and it is satis-
fied at the zeros of the total phase shift. TFrom Fig. 5, we see that there
are two new zeros inside the bands which are absent in the case of static
relaxation (Fig. 3). This would allow us to place the Fermi level inside

the bands if we so desired. However, in all cases the sum rule is satisfied

with the Fermi level in the middle of the band gap.

C. (2x1) Reconstruction, y-Displacement

The unperturbed energy bands and Green's function for the y-displacement
- reconstructed surfaée are the same as those for the z-displacement. The
displacements of the atoms and their effects on y are shown in Fig. 1(a).
Since the structures are different for y- and z-displacements, the pertur-
bation matrices are different. For the y-displacement, the perturbation

matrix becomes
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. -12¢
0 ¥ 0 v¥e ¥
~ o) -V 0 -V 0
V(1A,1A',4 ) = 2e cos —
S 2 . .
0 A 0 v
12¢
L ve y 0 \Y 0

The matrix elements are between the same basis vectors as Eq. (40).

Again, no surface states due to this type of reconstruction are found.
The changes in the electronic structure with 0, 5.0 and 10.7y band gaps
are considered. In Fig. 7, we present the total phase shifts for the three
cases. An obvious effect is the narrowing of the bands as the band gap
becomes larger. The phase shift changes continuously from the zero band
gap case to one with a finite gap, and its shape is preserved. The deriva-
tives of the phase shifts become larger at larger band gaps. This means
that the change in the density of states is more pronounced at larger band
gaps. However, the change in the electronic energy is an integrated effect
weighted by the energy. According to Eq. (12), the decrease in the elec-
tronic energy should be the greatest for the case of zero band gap.

In Fig. 7(c), scale expansion is shown of the sharp change in the
phase shift at the band edge. Within each band, the phase shift and its
derivative are continuous except at the band edges where there are singu-
larities in the derivative. All the other phase shifts show similar
behavior.

In Fig. 8, we show the change in the density of states for Fig. 7(c).
Qualitatively, it is very similar to the one for z-displacement shown pre-
viously in Fig. 6. However, the exact structure is different and will

result in a different gain in electronic energy for the same set of model

parameters.

(42)



D. o(2%2) Reconstruction

The geometry for this problem is shown in Fig. 1(c), and the correspond-
ing SBZ is shown inFig. 2(b). The bulk band structure correspording to this

SBZ is given by

-

2 ¢y

2 cos” —-cos” s (43)

X
2

N

E]_Ej = % = {Eé + QSSY:Z cos

1

for j = 1(+) and 2(-), but in contrast with Fq. (30), we have
¢ ¢ b y1/2
T N 2 2% 2% 2%
E}-Ej =+ 5 [Eg + 256y” sin = S1n~ -5~ o8 T} s {4y4)
for J = 3(+) and 4{-).

The surface Green's functions are derived in the same way as for the

(2¢1) case. We first convert the sum in Eq. (1) to a sum over the c(2x2) SBZ,

>
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Fquating the coefficients of the sums in Eqs. (3) and (45), we obtain
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XL = 0, (48)
since all the atoms are in the same enlarged c(2x2) unit cell. Eg. (46) can
similarly be dissected as was done in the (2x1) z-displacement case. How-
ever, the result is more lengthy and will net be given.

The perturbation matrix, referring to the geometry in Fig. 1l(c), is

given by
¢ -i(¢_+¢ ) -i(o +¢ ) -i2¢_ )
0 . -1 +e Xy 0 -e L A e ¥
iCo_+¢_) iCe_-4.)
. . 1+e * Y 0 -1+e Y 0
V(1A,1A',6) = ¢ \
-i(¢,~9.) -i0¢_+¢ )
0 lre XY 0 1-e XY
i _+¢. ) i2¢ i(d +o )
|-e Y v Y 0 1-e 7 0 )

where, again, the rows (and columns) are labeled by LZ =land A =1, 2, 3, and 4.

For this case, surface states are fourd to lie both below the valence band
and above the conduction band for arbitrarily small e. In Fig. 9, we show
the regions in the SBZ where the surface states exist for three different
values of €. The portions of the SBZ where the surface states exist become
larger for larger values of e. The fact that reconstruction can create new
surface states is not new. For the one-band model, simulating the transition
metals, Dobrzynski and Mills6 found that reconstruction created surface states
lying symmetrically below and above the energy band but- only when the per-
turbation exceeded a certain critical value. Thus, reconstruction can add
new features to surface electronic spectra.

In Fig. 10, we show the positions of the surface states in relation to
the surface energy bands. In each case the energy bands are cross sections

along a particular segment in the SBZ. These segments are labeled in Fig. 2(b).

(49)
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In Fig. 10, the single cross-hatched areas denote a continuum of single
bulk states, whereas the double cross-hatched area shows where two continua
of bulk states overlap due to the folding back of the SBZ. In Fig.klO(a),
the surface states are located near the zone boundary and merge into the
energy bands for smaller wave vectors. At a higher value of ky’ shown in
Fig.10(b), surface states exist for all values of kX. Surface states, when
they exist, lie close to the band edges, but no surface states are found
inside the band gap.

In Fig. 11, we present the total phase shift with the contribution from
the surface states included. TFor surface states lying below (above) an
energy band, the partial phase shift jumps from 0 to W(—W).g This intro-
duces two additional spikes in the total phase shift. As before, the total
phase shift and its derivative are continuous except for the singularities
at the band edges. In Fig. 12, we show the change in the density of states.
The extra spikes in Fig. 11 lead to the oscillations near the band edges
which are shown with an expanded energy scale. The positive peak below the
band edge shows an increase in the density of states due to the presence of
the surface states. As before, the net effect of reconstruction is to push
states toward the bottom (top) of the valence (conduction) band. In com-
parison with Fig. 8, we see that the changes in the density of states for

the (2x1) and the c(2x2) reconstruction are quite different.

E. Decrease in the Ground State Electronic Energy, Strain Energy and Change

in the Total Energy

The change in the ground state electronic energy is given by Eq. (12).
The integration is carried out numerically for all the cases considered

with the Fermi level pimned at the middle of the band gap (EF =0).
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The results are summarized in Table II and plotted in Fig. 13. There are
four features to nofice. First, the values of AU are considerably smaller
than those obtained for éhe static relaxation. Second, for the values of

e considered, our numerical results show a quadratic dependence of AU on

e. This was also found to be true for small values of e with the one-band
mode1.6 Third, for the (2x1) reconstruction, the results show that for all
values of e and for a band gap of 10.7y, the lowering in the electronic
energy is greater for an in-plane displacement than for a displacement per-
pendicular to the surface. For the same gap, the lowering is greater still
for the in-plane motion of the c(2x2) reconstruction. Fourth, with all
other parameters equal, the results show an inverse relation between the
decrease in the electronic energy and the band gap.

In Fig. 14, we show the explicit dependence of AU on the band gap for
two values of €. The decrease in the electronic energy is largest in the
case of zero band gap (bcc metal). This can be understood in terms of the
interaction between states with the same k but different in energy, i.e.,
the smaller the energy difference, the stronger the interaction. Therefore,
the interaction between states in different bands increases as the band gap
decreases and is the strongest in the zero band gap case. As a result,
states are pushed more toward the bottom (top) of the valence (conduction)
band with decreasing energy gap, and the decrease in electronic energy is
largest at zero band gép. In addition, as the gap increases the bands
become more narrow, while the absclute maximum of the phase shift remains
approximately constant (see Fig. 7). In the limit of infinite gap, the
bands approach zero width, and AU also goes to zero.

From Fig. 13, we see that reconstruction using our simple model always

lowers the electronic energy of the system, and the decrease becomes larger
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at increasing values of e (and hence, by assumption, for increasing values
of atomic displacements): This is because the present calculation does not
include many of the electron interactions in the system. In particular,
there are no repulsive interactions between the atoms in the crystal. When
such terms are included, the change in the total energy, rather than con-
tinuing negative indefinitely, must eventually rise for displacements
greater than some critical value.

One method of modeling this behavior is to include an elastic strain
energy term in the total energy expression.6 The total energy becomes,
then, a sun of the electronic energy in Fig. 13 (which is negative) plus a
strain energy term (which is positive). In what follows, we will first
relate, in a simple way, the strain energy to the displacement of the atoms.
Second, we will relate the parameter e to the displacement of the atoms.
Finally, we will show the necessary conditions under which reconstruction
can occur.

First, we consider the elastic strain energy associated with the relative
displacement of the atoms in the first and second planes. We do this by
assuning that these atoms interact with their nearest neighbors via a
harmonic potential. The force constant of these oscillators, A, can be deter-
mined by considering the phonon dispersion curves. We will consider only
the (2x1) structure with in-plane displacements. The other cases can be
treated similarly. From Fig. 1(a) we see that the displacement is similar to
the displacement structure one obtains for a longitudinal phonon propagating
in the y-direction with wavelength ZaO. This corresponds to a wave vector
of 7r/a.o which is at the bulk Brillouin zone boundary. The frequency of

this phonon is given by26
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where M is the mass of the atom which is moving and W is the frequency
of the longitudinal optic phonon of interest. Continuing with our example
of CsI, the phonon dispersion curves have been calculated by Karo and

Hardy27 with the result that w o at the X point in the bulk Brillouin zone

is found to be 1.3 x 1013 sec_l. If we assume that the force constant at
the surface is reduced by a factor of a, then we obtain for the strain

energy per unit cell

2

2 {3
V3 2 2
= —6—M OJLO (1(5}7) s (51)

where v3 6y/3 is equal to the effective displacement, ér, in the direction
of the nearest neighbors, and the factor 8 arises from the fact that there
are 8 nearest neighbor bonds per reconstructed unit cell.

In order to relate the strain energy Q to the electronic energy AU,
it is necessary to relate Sr to e. For small displacements, we can expand

the hopping integral y as follows:

- dy
Y =Y, + & Sr (52)
rIr
o
where v is the nearest neighbor distance in the bulk and Y, is the bulk

nearest neighbor hopping integral. From the definition of e, we have

S (53)
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We now define a new positive constant ¢ such that
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where a is the Bohr radius (used merely to make ¢ a dimensionless constant).

Since we have already related AU to ¢ (in Fig. 13), we use Eq. (54)

in Eq. (51) to express Q in terms of e. This gives

Y

Q=—-5Mu (55)

a
2 10 ol

V3 2 2_9}_[&3}2

Inserting the values of the constants and using the mass of the iodine

atom for M, we obtain
2
%= 0.93 & [E} . (56)

We see that this simple model results in Q (as well as AU) being quadratic
in e. Consequently, whether the total energy AEt is positive or negative
is determined entirely by the choice of constants a and c.

In Fig. 15 we present the two cases where Q < AU and Q > AU. For

. . . . 28
this figure, AU can be given approximately by

2
AU - .30 [E] . (57)
Y Y .

Thus, we see in comparison with Eq. (56), that if a/c2 < 0.32, then the
total energy AE, will be negative as inFig.15(a). This situation leads to
reconstruction. On the other hand, if a/c2 > 0.32, the total energy AE,

will be positive as inFig. 15(b), and no reconstruction will occur.



122

IV. Conclusions
We have found that the presence of an empty conduction band is of
fundamental importance in understanding reconstruction on semiconductor or

® which

insulator surfaces. Contrary to the results of Dobrzynski and Mills
showed that surface reconstruction has no effect on a one-band crystal

when the band is filled, we find that if a second band is present, the
magnitude of the decrease in the electronic energy upon reconstruction is
comparable to that obtained on a bcc metal with a half-filled band. In
other words, the fact that the electronic band structure may contain gaps

is not of fundamental importance as far as the change in electronic energy
due to reconstruction is concerned. What is important, however, is that
the calculation of this energy change includes the effect of these empty
conduction bands.

The process of reconstruction discussed in this paper is not like those
discussed elsewhere5 and which carry the labels Peirel's transition, giant
Kohn ancmaly, or Jahn-Teller distortion. The difference is that the process
discussed in this paper (and also by Dobrzynski and Millss) does not
require the system to open any new gaps in the density of states, or under-
go a metal-insulator transition. Rather, in our mechanism, if the system
is initially ametal (oran insulator), it remains a metal (or an insulator)
after reconstruction.

We have found that the gain in the electronic energy is inversely
proportional to the band gap, i.e., the smaller the band gap, the larger
the effect of reconstruction. Thus, this mechanism will have its greatest
effect on metals and narrow gap semiconductors and its least effect on
large gap insulators.

We have found that different reconstructed structures result in
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different changes in the electronic energy in spite of the fact that all
of the model parameter values are identical and the fact that the model is
very simple. Thus, it is, in principle, possible‘to use this method to
predict the reconstructed structures on systems that have not yet been
investigated experimentally. This feature of being able to make predic-
tions is not shared by all the other theoretical approaches to reconstruc-
tion.

Most important, we have found that our simple model always gives a
decrease in the electronic energy. This statement is true no matter how
many bands (2 or more) are included and no matter what the reconstructed
structures may be. This is because the process of reconstruction always
allows new states to interact which didn't interact before the reconstruc-
tion. This new interaction always pushes the states apart in energy. Thus,
the lower energy states which are filled are always pushed down, and the
higher energy states which are empty are pushed up. This always leads to
a gain in the electronic energy. The reason this conclusion is important
is that it now adds a burden to the theorist in future calculations. It
will not be sufficient, as in the past,2 to show that any particular chosen
reconstructed surface structure lowers the electronic energy. It will also
be necessary both to prove that the model used is sufficiently accurate to
distinguish between various structures and that other structures do not
have a lower electronic energy than the chosen structure. Meeting all these

necessary criteria will not be easy.
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Table I:

Table II:

1

~d

8

Table Captions

Decrease in the electronic enérgy due to a uniform contraction
of the surface layer of atoms. The band gap is appropriate for
CsI. We assume y = 0.58 eV for all cases.

Decrease in the electronic energy due to the (2x1) and c(2x2)
reconstruction. Three different band gaps are considered for
the (2x1) in-plane displacement. The displacements ér, in the

direction of the nearest neighbors, (in units of the lattice

o]
constant a_ = 4.57 A) are obtained with ¢ = V3 [see Eq. (54) and
Fig. 15(a)]. Note the quadratic dependence of AU on e. We

assume vy = 0.58 eV for all cases.



Table T
g A 4 o,
Y Y Y ergs/cm
0.10 -0.0626 -27.9
10.7
0.20 -0.130 -57.9
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Table IT
Eg € Sr AU AU
£ £ o 2
Y Y a, Y ergs/cm
Reconstructed 9
Structures (c = V3) (x 10%)
0.0 0.0 0.0 0.0
0.05 0.0033 -0.0753 -0.168
(2x1) 10.7 0.10 0.0067 -0.301 -0.671
y= 0.15 0.010 -0.677 -1.51
Displacement
0.20 0.013 -1.21 -2.70
0.30 0.020 -2.70 -6.02
0.10 0.0067 -0.427 -0.951
5.0
0.20 0.013 -1.71 -3.81
0.10 0.0067 -0.459 -1.02
OQO
0.20 0.013 -1.86 -4.14
(2x1) :
Z- 10.7 0.20 0.013 -1.12 -2.50
Displacement
c(2%x2) 0.10 0.0087 -0.347 -0.773
- 10.7

Displacement 0.20 0.013 -1.35 -3.01
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Figure Captions

Geometries of the reconstructed surfaces. Type 1 atoms are on
the (001) surface. Type 2 atoms are beneath the plane and in the
body-centered positions. e is the change in the nearest neigh-
bor hopping integral y. Solid lines represent the new unit
cells. Arrows point in the directions of displacements.

(a) (2x1) in-plane displacement,

(b) (2x1) normal displacement. Dots (crosses) represent atoms
moving out (into) the surface plane,

(¢) c(2x2) in-plane displacement.

Surface Brillouin Zone (SBZ) for the reconstructed surface.

(a) (2x1), (b) c(2x2), and a and b refer to the segments in the
SBZ where the cross sections in the energy bands are taken for
Figs. 10(a) and 10(b), respectively. large square represents
SBZ for (1x1) surface.

Total phase shift per surface unit cell for the uniform contrac-
tion of the surface layer. No reconstruction is included.
Change in the density of states per surface unit cell for the
uniform contraction of the surface layer. This is proportional
to the derivative of Fig. 3.

Total phase shift per (2x1) reconstructed surface unit cell for
displacements of atoms normal to the surface.

Change in the density of states per (2x1) reconstructed surface
unit cell for displacements of atoms normal to the surface.
Singularities at the band edges are due to the flatness of

the bands.
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Figure 7: Total phase shift per (2x1) reconstructed surface unit cell as
a function of the band gap, Eg’ for in-plane displacement of
the atoms, (a) Eg = 0, bec crystal, (b) Eg = 5.0, (&) Eg =
10.7, appropriate for CsI. An expansion is included of the
sharp change in n(E) for (c). Note for larger band gaps the
bands get more narrow, but the shape and the absolute magnitude
of n(E) remain approximately the same.

Figure 8: Change in density of states per (2xl) reconstructed surface
unit cell for Fig. 7(c). It is qualitatively the same as Fig. 6.

Figure 9: Region of the SBZ where surface states exist for in-plane dis-
placement of the c(2x2) reconstruction. Area in dots is for
; = 0.2. Area in double cross-hatches is for ¢ = 0.3. Area in
single cross-hatches is for e = 0.4. Surface states spread
through the SBZ as the value of € is increased.

Figure 10: Relation of surface states to energy bands of the c(2x2) recon-
struction along two segments in the SBZ [labelled a and b in
Fig. 2(b)]. Surface states appear symmetrically below and
above the valence and the conduction bands, respectively.

Double cross-hatched areas denote overlap due to folding of
the bands. (a) Along a in Fig. 2(b) surface states merge into
the energy bands. (b) Along b in Fig. 2(b) surface states
exist for all values of L No surface states are found inside
the band gap.

Figure 11: Total phase shift per c(2x2) reconstructed unit cell. Two

new spikes at E/y = #5.45 are due to the presence of surface

states.



Figure 12:

Figure 13:

Figure 1k:

Figure 15:
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Change in the density of states per c(2x2) surface unit cell.
Rapid oscillations are due to the surface states which lie
close to the band edges. In the expanded scale the positive
fintte peak inAnis due to the surface states.

Change in the electronic ground state energy, AU, as a function
of the change ¢ in the nearest neighbor hopping integral, Y.
Subscript z in case d denotes displacement normal to the surface.
In cases without subscripts, displacements are taken to be in
the plane of the surface. The decrease in U is quadratic in e.
Change in the electronic ground state energy, AU, as a function
of the energy gap, Eg’ for two values of €. Surface is recon-
structed into a (2xl) structure with displacement in the plane
of the surface.

Change in the total electronic energy, AEt’ as a function of

e for the (2xl) reconstruction. Strain energy Q depends
quadratically on e. The surface force constant is taken to

be 1/2 the bulk value. Displacement is in the plane of the

surface. (a) ¢ = V3 in Eq. (54), (b) c = V3/2.
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Figure 1 (b)



N

136

Figure 1 (¢)




O

137

ky 4 I

Figure 2 (&)




138

Figure 2 (b)



139

Lt |~

-0.1+

Fisure 3

-0.2%



140

\ )
) |
/ / .
/ A 1900-
1500-
A 1200-
3 _ _ }
T T m \\IOl\\ A.._M ! N_. m O
1200
,01=%3 1700
eury 1900
0=3

(Ix1)

NENiva

Figure 4



2°01=°3

20=>3
JjuswaoD|dsip-2z
(1x2)

r00-

200~

Figure 5



142

2°01=°3
20=3
JuawadD|dsIp-2
(Ix2)

1£00-
4200-
0
4200
(U
100



143

AL~

20 =3
(IX2)

¢00-

10°0-

100

3) &
¢00

Figure 7 (a)



144

O |~
O
—~ QO _
_)_(—O.“
(@)
N YW
<
-—-—-—-—-—-—-—-.:::::::
—O

Figure 7 (b)

—003



145

b~

?N0.0l 1£€00-
1
Ge'G- _m_m.mu 0 1100~
S O 5 1o
1100 )
B L
J0l="3 (3)
20=53 o) e
(] X 2) ) %oo



146

Ol-~  Ol-~
! y ~4%0°0-
+420°0-
.M ]
ER- ) S 0 G - 6
_ ﬁ _ ! T7 _ i — O
; 200
2'01=°13
2°0=3 :
(1%2) | | 100
Q9] Q Y

(F)UV

Figure 8



G0

147

GO

Figure 9



148

<
s [ /
O X5 /
i /
2 00
e
S Q |
-+ : ‘
wn O \
@ o \
) h|0
bt ~ 9 \
w @ E:I L9 . E; \
- * .
5 O ¥ O &)
U) it (\I “ ”
: x>\ ~— W (@) |
O L
< (0] (00)
O @ 00 @
O>< = Yo} o) o)
% | I |
Qd
"""" ] O X Eﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁ?l
o3¢ X QRIRLRRKS
X B Rsssss
b,
0207050 %0220 %% %%
P00 %0 %0 %0 %0 %% % %%
0 %0%0% %! 1020050 %0 % %0 20 20 %0 %%
%0 %0 %0 %% o %0% %% %%
SRR 020 0% %%,
0%t %0 0% %% SRS
RS 5 %
2020505 %% %%
0700020 %% %%
QRRRRRRS]
RRRHRS
020255
0 %0%%%
0005050 %
02020205
%% %%
020 %% % —_
0303030 ;
XXX O
e kede
0300050
oo
LSS
£
‘e%e!
o2
WO X J
e K5
& &
Ve D.O
(0 (<}
W %S
. ]
[} )
\ »
B )
[N \l
Lyl
o N~ 0 MO 0 N~
w W w0 O @) U?

I
(£ 30 sjiun) Abisu3

Figure 10 (a)



T

O.BESOO

--Surface States

k)’
C(2x?2)
€=0.3
Eg:=|Of7

O.15

149

0.075

)

b

(

&ﬁ%ﬁ%ﬁ%&%
% ¢/
2%0% % %% %0,
PO
020052 %%
KRR
LR
2e%0%%
R
oqeseses

0%

5

PSS
%

N/
XX

d

LK

g

'A"'

A
o N4 PNy

(L 40 spiun) Abisu3

O.15
@,
4
X
{
A

//.

o

0.075

_

e o EE A — G S — — — —— . S m— — — b
—
— —

— —

Figure 10 (b)

-,

-5.64

-566
-5.68

570}
572l



o LLJ|>\

150

J'01=03
2°0=2

(2x2)0

v00-

c00-

Figure 11



151

Ol-~ Ol -~ ?/
4 | ~45'0--+00-
€0~ ..m.o-z
] o G-
! \ T T O 7]
- H{g0 4200-
« 101 A
@
S 0 G- /- 6-
° = W _ —o
4200
4400
'

(F)UV

Figure 12



152

—¢0°0-
e~y B o A
L 0l="3 (2x2)0 —-—29 AY
N.O_u@m ,N:xmv ........... D
0- @m_ (1% 2) === 5
O'G= m_ ‘(1%x2) ———(
2°0l= ‘(I1x2) ———p —1¢00-
—10°0-
i
A
>
0 20 'O 0"

Figure 13



153

10°0-

Figure 14



154

-¢00-
20°0-
00- &
D
)
<
o 3
o
o
41000 X
4200
d¢00

Figure 15 (a)



155

\ —
\
\
\
\
\
N\ +
\ Wl
\ <
\
\
\
\\\ \\
\O \ —
N \
\
N \
AN \
\ \
\ \
\
N
~ AN \\
—— O -
v —|NQ|N \\
X o ! " \
N w3 o \
\
\
\i
fa)
-l | I | | |
N J — @) — QJ P
O O O S ® e
O O @) O (l) Cl)
|

(£ jo spun) Kbiau3

Figure 15 (b)



156

CHAPTER IV

SINGLE ATOM CHEMISORPTION ON A BCC METAL



1567

SINGLE ATOM CHEMISORPTION ON A BCC P’HE'.TALHr

W. Ho, S. L. Cunningham® and W. H. Weinberg

Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

June, 1975

To be Submitted to Surface Science

t Work partially supported by NSF Gramt GK-L43433

% TBM Postdoctoral Research Fellow



158

ABSTRACT

The effect of chemisorption of a single atom on the (001) surface of a
bee metal is investigated via the Green's function and the phase shift
techniques using the LCAC method and the tight-binding approximation. In
particular, we obtain the change in the electronic density of states An
due to two different binding sites, the on-site and the centered fourfold-
site. For each site, the adatom energy level Ea is set both inside
and outside the band and several adatom-substrate interaction strengths o
are considered. By varying these parameters we obtain a qualitative under-
standing of the effects on Ah due to either the adsorption of different
atoms or a readjustment of E, arising from a flow of charge onto or away
from the adsorbed atom. We compare our results to previous studies of
chemisorption on the (001) surface of an s-band simple cubic crystal and

find that the overall qualitative features are similar,



TI. Introduction

The theory of chemisorption constitutes a formidable many-body problem.
A fundamental understanding of the process would require an extensive treat-
ment of the interaction of the electrons in the semi-infinite crystal and
those in the adsorbed molecules. lacking such a theory, much insight and
understanding can be gained through simpler model calculations. In this
paper, we use the Linear Combination of Atomic Orbitals (LCAO) method and
the tight-binding approximation to study the effect of single atom chemi-
sorption on the electronic structure of a semi-infinite crystal. We obtain,
via the Green's function technique, the change in the density of states due
to the interaction of the adatom with the surface. Such properties have
been observed expérimentally by photoemission.(l)

In our model, the semi-infinite crystal is described by a one-electron
Hamiltonian, and the adatom interacts with the nearest-neighbor surface
atoms with a strength o. We do not include explicitly the coulomb inter-
action between the electrons in the solid and on the adatom. Any redistribu-
tion of the electrons due to a change in potential energy around the adatom
can be partially accounted for by a readjustment of the orbital energy Ba of
the adatom in its free state. The amount of change can be solved for self-

(2) In the Anderson model,(3)

consistency to satisfy Friedel's sum rule.
the occupancy of the adatom orbital is solved for self-consistency, and the
resulting coulomb interaction redefines E_- This shift in the orbital energy
does not affect qualitatively our results since we place E, in several
different locations, both inside and outside the energy band. This will
become clearer in section III. For a complete account of the current

. . . . . . . b4
theories in chemisorption, there exist several recent reviews on the subject.( )
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In order to study chemisorption, the electronic wave function of a solid
with a surface must be known. Assuming the tight-binding approximation, we
generate the energy levels and the associated wave functions using the LCAO
formalism for the (001) surface of a bce metal. A complete description of

(5)

this surface has been given elsewhere. There, we obtained the Green's
functions appropriate for the (001) surface with only the nearest neighbor
interaction y in the solid being considered. 1In this present work, the
adatom energy level is assumed to be a nondegenerate delta function at energy
Ea. The adatom is coupled to the surface atoms with a binding strength o.
The interaction is treated by a perturbation method.
(2)

The approach taken here has been used by Allan in obtaining the
binding energy of single transition metals adsorbed on the (001) surface of
tungsten, simulated by a fivefold degenerate s-band simple cubic crystal.
Self-consistency is treated both in the adatom and the surface atom directly
bonded to it in order to satisfy Friedel's sum rule. More recently, Einstein

(6) have extended the method to study the indirect interaction

and Schrieffer
between two adatoms on the (100) surface of a simple cubic metal. The
adatom energy is fixed just below the center of the band. Three different
binding positions, the on-site, the bridge~site, and the centered fourfold-
site, are considered. The binding energies for single atom adsorption are
obtained as a function of the filling of the energy band for different inter-
action strengths of the adatom with the surface atoms. Similar calculations
are carried out to obtain the indirect interaction between two adatoms. The
change in the electronic density of states due to chemisorption on the (100)
s-band simple cubic crystal has been studied both by Davenport, Einstein

(7 (8)

Only the on-site adsorption is considered.

and Schrieffer and by Einstein.
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The perturbation of the density of states is found to diminish rapidly
away from the adatom-surface atom complex and oscillates rapidly, as it
should for an indirect interaction through the substrate electrons.

There are four reasons for carrying out the present calculation on the
change in the density of states due to chemisorption on the (001) bee
crystal. First, it constitutes a test of the sensitivity of the results
to the different substrate crystal structures. Second, it investigates the
effect of different binding sites on the change in the density of states.
Third, within the same model, the calculation can be easily extended to a
single atom adsorbate on the (001l) surface of a two-band crystal with the
CsCl structure. The interaction of the adatom level with the second (con-
duction) band can be studied, and its importance can be assessed. The
adatom level can now be fixed inside the band gap, in addition to being
inside the bands or above or below the conduction and the valence bands,
respectively. Finally, a simple modification of the present theory can be
made to study the adsorption of a monolayer of atoms on the same surface
with or without a band gap. Even if there is no direct interaction between
the adatoms, the indirect interaction through the substrate electrons is
present. Other effects can arise in addition to the sum of the individual
adatom effects. The present calculation will then be important as a basis
for comparison. Such calculations are in progress.

Two binging sites, the on-site and the centered fourfold-site, are con-
sidered in the present calculation. For each binding site, the adatom
energy level is set at three different values, one just below the middle of
the band, one near the bottom of the band and one below and outside the band.

For each position of the adatom level, the change in the density of states
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is calculated for several different adatom-substrate interaction strengths.
The same interaction strengths are used for both binding sites, allowing us
to compare the two results with the same parameters. Since the adatom-
substrate interaction ¢ depends on the distance of the adatom from the sur-
face, by varying ¢, we have in fact studied the change in the density of
states as the adatom position varies in the direction perpendicular to the
surface.

In section II, we present briefly the perturbation method used in the
calculation. The method is quite general and can be used to study a variety

of surface problems, such as the electronic structure of the clean surface(S)

and surface reconstruction.(g)

The practicality of the method depends on
knowing the Green's functions analytically. As such, it has been limited
to date to simple model systems. In section III, we present the calcula-
tions and results for the on-site adsorption, and in section IV, those for

the centered fourfold-site adsorption. We summarize our results in section

V.

II. General Formalism

In order to derive the Green's functions appropriate for the (001) sur-
face of a bec metal, we need to know first the infinite crystal (bulk)
Green's functions. Assuming only nearest-neighbor interactions, the energy |
band calculated within the LCAO formalism and the tight-binding approximation
is given by

: : 6,

E§ = + 8y cos 7;-005 7¥-COS - @D)

where

t=ka (2)
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y 1s the nearest-neighbor hopping integral and a, is the crystal lattice
spacing. The energy band appropriate for the surface is obtained by
sweeping ¢, over its possible values in the first Brillouin zone. In Fig.
1, we show the energy band along a particular segment at a constant value
of ky in the surface Brillouin zone (SBZ). The zero of energy is chosen to
be at the orbital energy of the substrate atoms in their free states, and
all energies are expressed in units of the nearest-neighbor hopping integral
y. There is a continuum of states inside the band. From the eigenvalues

(0)

are generated within

(5)

and eigenfunctions, the bulk Green's functions G
this one-electron picture as has been done previously.
We then create the (001) surface by passing an imaginary plane perpen-

dicular to the z-axis. The Hamiltonian of the system becomes
H= Ho +vV o, (3)

where HO is the infinite crystal Hamiltonian and v is the perturbation
associated with the creation of the surface, i.e., breaking the bond Y.
The (001) surface Greeﬁ's functions have been obtained(S) from the bulk

Green's functions through the perturbation V by

g =a® 4+ g0yg . ()

(5)

Once the Green's functions are known, the shift in the energy levels

caused by the perturbation can be studied by the phase shift technique.(lO)

(5)

To understand the effect of surface formation, the phase shift function

is given by

(0, (5)

n = -arg det(I -~ VG

b
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where I is the identity matrix. In the case of chemisorption, the pertur-
bation is associated with the formation of chemical bonds between the adatom
and the substrate. Thus, we can define a phase shift function for chemi-

sorption by
n = —arg det(I - VG , (6)

where ¥ is the interaction matrix and G is the Green's function appropriate
for the adatom and substrate. As shown later, G is composed of G and the

adatom Green's function Ga given by

_ 1
Ga(E) =<ty ’E - H +1e 5>
) 1
“E-E ¥i ° (7

where ¢_ and H_ are the adatom orbital and Hamiltonian, respectively, in
the free state, and € is a positive infinitesimal. Once the phase shift
functions are known, the change in the density of states is given by a

simple differentiation,

1l an
i

An = d'—E' . (8)

The surface Green's functions for a two-band crystal with the CsCl

(5) on the study of the electronic

structure are derived in a previous paper
structure of the clean surface. By setting the band gap equal to zero in
that work, we obtain the (001) surface Green's functicns for a bec metal.

These functions are given by

2%2—1
G(zz) = JEQL -~ t ) 5 4 >1 (3
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for odd numbered planes with the surface plane chosen arbitrarily to be the
first plane, and L, 2 1 for the semi-infinite crystal. For even numbered
planes, the Green's functions for a crystal with a surface are given by

28

- Z
Ge,) =JdEQ -t ), 2, >1 . (10)

The symbols in Egs. (9) and (10) are defined by

2t

J = —5 " (11)
B(t® - 1)
£ - (52 - 1)1/2 , &£>1
t={e+ix-edY? | g <1 (12)
e+ 2-DY2 L g,
where
2 2
£ = E_:.ﬁ?_f__ , (13)
2f
¢ ¢
f = U4y cos 7;-cos 7¥ R . (1)
B = -2F% (15)

and where Im t is to be interpreted as -sign (E) Im t , and‘KZ labels the
unit cells in the z-direction (perpendicular to the surface).
For the surface plane of atoms, the Green's function takes on a simple

form,

6, (3,.E) = _QEE_— , (16)

£7°(t + 1)

where 38 is the component of the vector 3 parallel to the surface. In the
case of single atom adsorption, the appropriate Green's function to use is

the total Green's function defined by(2’6)



.ﬁi.
N ]
GS(¢S,E)e | s (7

i

Omlde¢

i = L
N }
¢S

where NS is the number of surface unit cells, and

> . > . >
Rij =la e *+17]a ey » (18)

—). . - 3 - .
where e, and gy are unit vectors in the x and y directions, respectively.

An origin is chosen at an arbitrary surface atom. In actual calculations,

the sum in Eq. (17) is converted into an integral

¢

S e

i

ol

™ ™ ..
ij .1 J o ™
cH@E) Y J d o, | do, 6 (3 ,E)e . (19)

- -

With this background, the single atom chemisorption can be easily formulated.

We first present the on-site adsorption.

ITI. On-Site Adsorption

The geometry for the on-site adsorption is shown in Fig. 2. The adatom
ig assumed to interact directly only with the single substrate atom located

beneath it. The on-site Green's function is given by

it m
+
J d ¢, J d ¢, G5B (20)
-7

-

1
(2Tr)2

GT(E) =

This integral is evaluated by summing over a set of special poihts in the
SBZ.(ll) The real and imaginary parts of GT are shown in Fig. 3. The
imaginary part is related to the local density of states for the first plane

of atoms through

1

p(E) = - = Im GL(E) . (21)
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The Green's function matrix for the adatom-substrate system is given by

Gp(E) 0
GT(E) = . (22)

0 Ga(E)

Since we include only the direct interaction ¢ of the adatom with the sub-

strate atom beneath it, the perturbation matrix is (2x2) and becomes

V.(E) = ’ (23)

where 6Va takes into account the change in the adatom orbital energy. In

the Anderson model,cs)

this shift in energy is due to a coulomb interaction
term where the occupation number of the electrons in each spin direction is
solved self-consistently for the adatom orbital. In a separate approach,
_SVa is solved self-consistently in order to satisfy Friedel's sum rule.(Z)
Both methods simulate the response of the adatom to its coupling to the sub-
strate.

The phase shift function is given by

2
nT(E) —arg’:l - GVaGa(E) -0 Ga(E)GT(E):]

2
-0 “ImG,(E)
~tan™t °r X (24)
E )

2
- (Ea + GVa) -0 ReGT(E

From Eq. (24), we can redefine E, by
| B
Ea = Ea + GVa . (25)

Hence, by sd¢tting Ea at different places, inside and outside the bands, we
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do in fact obtain the effect of GVa on the qualitative results. In our
calculations, GVa is set equal to zero.

Then change in the density of states is given by Egs. (8) and (24).
It is the difference in the density of states of the adatom-substrate
system from that of the clean semi-infinite crystal plus the free atom.

Instead, following Davenport, Einstein and Schrieffer,(6’7)

we plot the
difference in the density of states between the adatom-substrate system and

the clean substrate, i.e.,
An(E) = An(E) + §(E - E) . (26)

In Fig. 4, we present the results with Ea set at -y for three values of o.
The overall qualitative features are similar to the s-band simple cubic
crystal results. For ¢ = vy, the adatom energy level interacts with the
substrate band resulting in bonding and antibonding resonances below E and
above E = 0, respectively. For o = 6y, these two peaks approach the band
edges. Tor a still larger interaction (o = 9y ), these peaks split off the

bands and become delta functions at energies given by
2 -
E~-E -0 ReGT(E) =0 (27)

All these results are qualitatively obtained with the s-band simple cubic
model. However, there is one essential difference which is due to the dif-
ference in the underlying substrate crystal band structure. For the bcc
crystal, there is a d}vergence in the bulk density of states at E = 0. As

a result, a decrease in the density of states near E = 0 is always present
for arbitrarily small o. For large values of o, rather than a smooth energy

independent 4An inside the band, there are sharp dips near E = 0. Such dips
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do not occur in the simple cubic crystal results.

Y, we obtain

In Fig. 5, we show the results with‘Ea = -By. For o

0. As ¢ in-

the bonding and antibonding resonances with the dip below E
creases, the bonding resonance splits off first, while the antibonding
resonance approaches the top band edge and eventually splits off. At o =
9y, the antibonding rescnance assumes a sharp peak just below the top band
edge. Again, we see the large dips near E = 0. In Fig. 6, we place Ba below
the band at -10v. In this case, the bonding state is always below the
band. The antibonding peak first broadens and then sharpens as it approaches
the top band edge for increasing values of o.

For the cases we have considered, AﬁTluas a quite smooth and predictable
behavior. The positions of the split off states, when they exist, are given

by Eq. (27) and are presented in Table I.

IV. Centered Fourfold-Site Adsorption

The geometry for this type of adsorption is given in Fig. 7. The adatom
is situated above the center of the surface unit cell and interacts directly
with the four substrate atoms with a total strength of o. The binding
strength is assumed to be the same as in the case of on-site adsorption.

The four substrate atoms can be considered collectively when the adatom
binds to the surface. The orbitals localized on the substrate atoms which
directly interact with the adatom can be combined symmetrically to represent

(2,6) The centered Green's

the ground state wavefunction of the substrate.
function GC is then a sum of four total surface Green's functions and is

given by

11

e ® =@ + @ + M@+ et (28)
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where the superscripts indicate the coordinates of each atom. From Eq.

(17), we obtain

X4+e + e (29)

o N i, b, iCre)

G (E) = 1~ 1 GS(¢S,E)[1 +e

°3
s

Since Gs(gs,E) is an even function in ¢X and ¢y’ the phase factors in Eq.

(29) reduce to a sum of cosines and Eq. (29) becomes

GC(E) = Gs(gs,E)[l + 2 cos ¢X + Ccos ¢X cos ¢y] . (30)

)
é

Il
N
S ¢X, y>0

In Fig. 8, we present the imaginary and the real parts of Gc' In contrast

to G.,, both Im.GC and ReGC are continuous. This result has also been noted

(2,12)

T,

for the simple cubic crystal. On this basis, we would expect our
results to be quite similar to those for the simple cubic crystal.

The Green's function matrix is given by

G (E) 0
GC(E) =1 . (31)
0 G,E

In order to evaluate the perturbation matrix, we assume that the total direct

interaction of the adatom with the four immediate substrate atoms is o. We

then obtain

VC(E) = | . (32)
o} 8V
a
Since GC and VC have the same form as GT and VT’ we obtain the phase shift
function nc(E) and the change in the density of states AﬁC(E) by simply

replacing the subscript T by ¢ in Egs. (24) and (26), respectively.
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In Fig. 9, we present the results for Ea = -y and four different
values of o¢. The results are quite similar to those for the simple cubic
crystal. Tor a relatively weak interaction, the delta function of the adatom
energy level broadens into a Lorentzian peak. This is expected since the
atomic state with energy E, is no longer a stationary state when it binds
to the surface. As o is increased, the single lorentzian peak splits into
a bonding and an antibonding resonance. The peaks become more narrow as
they approach the band edges. For o = 9y, the peaks split off both below
and above the band. For larger values of o, Aﬁc is quite smooth inside the
band. In Fig. 10, we show the results for Ea = -6y. For o = y, the peak
is sharper. The bonding state is split off the band for both ¢ = 6y and
9y. In Fig. 11, Ea is placed below the band at -10y. In this case, the
bording state has split off the band for all values of o. The antibonding
resorgnce behaves similar to the on-site case. Again, positions of the
split off states, whenthey exist from Eq. (27) by replacing the subscript T
with ¢, are given in Table I.
V. Conclusions

We have obtained the change in the density of states 4An for a single atom
adsorption on the (001) face of a bec metal. While the overall qualitative
behavior is similar to that of the simple cubic crystal for the same binding
site, the details of the change are sensitive to the bandvstructure of the
substrate. For the on-site adsorption, a sharp decrease in the density of
states is obtained near E = 0 where degeneracies in energy levels occur for
the bee metal. These are absent in the simple cubic crystal. As a conse-
quence of this singularity in the bulk density of states, there are always
bonding and antibonding resonances for an arbitrary small adatom-substrate

interaction.
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The details in An also depend on the binding site. TFor the centered
fourfold adsite, the above mentioned singularities are absent. Tor large
values of ¢, An is negative and smooth throughout the band. TFor small o,

a lorentzian peak is obtained. For an adatom near the center of the band
(Ea = ~y), the results are very similar to the on-site adsorption on the
simple cubic crystal. The reasons for this behavior lie in our choice of

a symmetric combination of the four substrate wavefunctions nearest to the
adatom. As can be seen from the imaginary part of Gc in Fig. 8, the singu-
larity in the local density of states for the surface plane of atoms is
removed in the symmetric combination. [The local density of states is
related to Im.GC by Eq. (21).] The smoothness in this symmetrically combined
wavefunction prevents any sharp decrease in the density of states near the
center of the bard.

As a function of the position of Ea, the effect due to chemisorption is
most pronounced for Ea near the center of the band. Tor Ea near the bottom
of the band, the antibonding resonances become prominant only after the
bonding resonances have split off below the band. For Ea below the band,
only the antibonding resonances appear since the bonding resonances lie
below Ea.

The present results will serve as the basis for comparison to a similar
calculation which will be carried out for a substrate having a gap in its

(13) They can further lead to a qualitative assessment of the

energy band.
effect and importance of other adatoms when a monolayer of atoms is ad-
sorbed on the surface. These simple model calculations can only give us
a qualitative understanding of the interaction of a discrete energy level

with a continuum of energy states. However, they have allowed us to formu-

late a very complicated many-body problem in terms of much simpler
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one-electron concepts. A quantitative or semi-quantitative understanding

of chemisorption must await a much more sophisticated theory.
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TABLE CAPTTION

Table I: Energies of the split off states (S0S) for the on-site and the
centered fourfold-site adsorption. All energies are expressed

in units of the nearest neighbor hopping integral vy.
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TABLE I

£, Egos Eios
-1 - 9.75 -10.04
8.83 9.19

-6 - 9.85 ~10.02
-12.61 -12.76
-10 ~10.10 -10.11
-10.87 ~10.91

~12.88 ~12.96

-15.37 -15.46
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FIGURE CAPTIONS

Figure 1: Energy band along a particular segment in the square surface
Brillouin zone (SBZ) for the (001) surface of a becc metal. A
continuum of states exists inside the band.

Figure 2: Geometry for the on-site adsorption. The adatom, circle with
cross-hatch, bonds directly to a single surface atom. Dotted
circles denote atoms located beneath the y-z plane and in the
body~centered positions. %, labels the unit cells in the z-
direction. a is the crystal lattice spacing.

Figure 3: Real and imaginary parts of the Green's function appropriate for
on-site adsorption. The imaginary part is related to the local
density of states for the surface plane of atoms through Eq. (21).

Figure 4: Change in the density of states An for on~site adsorption. The
arrow points to the position of the adatom energy level, E. = -v,
in its free state.

Figure 5: Change in the density of states AR for on~-site adsorption. The
arrow points to the position of the adatom energy level, Ea = -6y,
in its free state.

Figure 6: Change in the density of states An for on-site adsorption. The
arrow points to the position of the adatom energy level, Ea = -10v,
in its free state. E, is below the band.

Figure 7: Geometry for the centered fourfold adsorption site. The adatom,
circle with cross-hatch, bonds directly to four adjacent surface
atams.

Figure 8: Real and imaginary parts of the Green's function appropriate for

the centered fourfold adsorption site. Both curves are continuous
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in contrast to the discontinuities at E = 0 for the case of on-
site adsorption in Fig. 3.

Figure 9: Change in the density of states An for the centered fourfold ad-
sorption site. The arrow points to the position of the adatom
energy level, E_ =-v, in its free state.

Figure 10: Change in the density of states An for the centered fourfold ad-
sorption site. The arrow points to the position of the adatom
energy level, Ea = -6y, in its free state.

Figure 11: Change in the density of states An for the centered fourfold ad-
sorption site. The arrow points to the position of the adatom
energy level, E_ = -10v, in its free state. E, is below the band.

The graph with an expanded vertical scale is also given.



180

Figure 1
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CHAPTER V

CONCLUSIONS
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V. CONCLUSIONS

In this thesis, we have investigated, in three parts, the change in
the electronic structure due to surface creation, surface reconstruction
and single atom chemisorption. These are three of the fundamental problems
that one must study before understanding surface phenomena from first
principles. The detailed conclusions for each part are summarized at the
end of each respective chapter.

The problems were attacked successively, each building on the results
of the previous study. We first studied the electronic structure of the
clean (001) surface of a two-band crystal with the CsCl structure. The
model was used to simulate a semiconductor or insulator surface. We found
that the presence of the second empty (conduction) band, separated by the
band gap from the valence band, has important effects on the shift in the
energy levels during surface creation. The electronic and thermodynamic
properties obtained were consistent with the known properties for crystals
‘with a band gap. These are results which cannot be obtained with a one-band
model.

Once we obtained a wave mechanical description of the surface, we
proceeded to investigate the effect of a structural change of the surface
on the electronic energy levels. The results were contrasted with those
from a one-band calculation. Again, we found that the qualitative behavior
depends critically upon the presence of the empty conduction band.

From these two studies, we have concluded that the surface properties
of semiconductors or insulators depend crucially upon the existence of the
conduction band even though it is not occupied. The perturbation due to

the surface causes the energy levels in the conduction band to interact
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and to affect the energy levels in the valence band for both the case of
surface creation and surface reconstruction.

From this observation, we next want to assess the importance of the
conduction band when we introduce a discrete energy level into the system
as occurs in chemisorption. The novel situation which occurs involves the
interaction of the discrete atomic energy level with two continua of states
which can in turn interact with each other. However, in order to have a
basis for comparison, the calculation in Chapter IV was carried out for a
bee metal. We have found that the results obtained can be expressed in
concepts similar to those of chemical bonding in molecules. Calculations
for the two-band case are now underway.

Throughout our calculation, we have assumed a simple model analogous
to Huckel molecular orbital theory in molecular quantum chemistry. Although
the Hickel model is relatively simple compared to an extensive configuration
interaction (CI) calculation, it has given a good first order understanding
of the electronic structure of molecules. Similarly, we beiieve that the
tight binding approximation we have used can give good physical insight
into the electronic structure of surfaces. The calculations become more
important in view of the fact that an extensive treatment of these surface
phenomena does not exist at the present time. However, it should always be
kept in mind that in order to obtain quantitative agreement with experiment,
one must include the interaction between the electrons and use a many-body
wave function. Unfortunately, the capability of doing this does not
presently exist. Consequently, model calculations, such as those in this
thesis, are the only method currently practical to advance our understanding

of these important surface phenomena.
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CHAPTER VI

APPENDICES

Section A: Quantum Molecular Calculation of

the Low Lying States of Cyclobutadiene.

Section B: Picosecond Spectroscopy - A Study of

Nonlinear Optical Phenomena.
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APPENDIX A

Low Lying States of Cyclobutadiene

This is a preliminary report of ab initio study of the ground state and
low lying excited states of cyclobutadiene. Of particular interest is the
question of whether the ground state isasingletoratriplet. Simple MO and
VB ideas give rise to different ordering of low lying states.

Simple MO considerations lead to the following MO scheme for the

orbitals of cyclobutadiene in a square geometry:

1lu

aZu

The ground state configuration is [o core](azu)z(eg)z. Since the degenerate
orbitals egx and e  are orthogonal, we expect the lowest state to be a

triplet

2
Lo core](azu) (e e = egyegx)aﬁaa}

Vepiplet - a{ g gy

In the simple MO picture, four states arise from the (a2u>2(eg)2 configura-

tion:
1

Alg: (x

2 4 v?)(a - Ba)

lBlg: (X2 ~ yz)(uB - Ba)

B, i (xy + yx)(aB - Ba)
2gi OV * X ;

3

A, 1 (xy - yx)(oa) >
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where X = e = .
gx> ¥ 7 Cgy

Evaluating the energies for these wavefunctions, we get the following

ordering of states:

STATES

1 2 2

A1g (x™ +vy7) _— EO + JXX + ny

1

B * —  Eyt It K

1 2 O F ¥ 0 T ox ENERSY
2 2

Blg(x—y) _ Ey + Uy ~ Ky

3

A2g (xy - yx) e Ey * JXy - ny

(Energies of the states not ordered to scale.)

The coulomb repulsion, Jxx’ between two electrons in the egX orbital should

be greater than the coulomb repulsion, ny, between an electron in e_  and

gx
an electron in egy' In ordering the Blg and lBZg states, we assumed that
ZKXy > JXX - ny’ EO is the energy of the core plus the energy of the

doubly occupied an orbital and one-electron energies for the egX and egy
orbitals.
The VB method predicts strikingly different ordering of states. In VB

theory, there are two ways to make two double bonds,

2=l g A |
e, Ve T allyey Fooge)logey ¥ by04)0808]
2l s .,

3

where ¢. denotes orbital centered on site 1. To get the proper symmetry
(D)) we take resonant and antiresonant combinations (Swa - wa), and

(Swa + wa). This results in two singlet states.
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lpa * wb = 4 1 lA
2 1g
S S
3 4 ?a - wb = _ I lB .
lg

Triplet states arise from making one m bond and triplet coupling the other

two P orbitals:

1
2
A T _
+. T ~
N by = aloa, + 4,97 (0585 = d50))08aa]
A 4.
T
by = allogey + 6,82)(810, = ¢,0)aBoa]
. . Tw]_l_ = a[(¢l¢2 + ¢2¢1)(¢3¢1+ - ¢u¢3)0t60coc]
4t
(There are only 3 independent eigenfunctions since Twl + Tw2 = ng + Twu.)
The appropriate symmetry combinations are:
3 _T T _T T
A2g ly - U)l + sz = 1P3 + ‘1’4 b
_ T T
N T B
B
_ T T
Iyy - lpg ‘i}u b
0 4
- 3E
-4 4 + u
4 4 +.
. + 3A
4 A 2g
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The ordering of the low lying states from the two approaches are:

lAlg %+ y2)
"By, Gy 30 A
1131g &2 - y9) -——3A2g HERE
3A2g (xy - yx) 1Blg
MO vat

(Energies of the states are not ordered to scale.)
We see that there is a rather drastic disagreement between the VB and MO
descriptions at this level. This disagreement makes cyclobutadiene theoreti-

cally interesting.

A DESCRIPTION OF THE CALCULATIONS

The basis set used is the Gaussian equivalent of a double zeta basis,

the (9SC5PC/HSH) basis contracted to (HSCZPC/2SH).2’3

Recently, IR spectra of cyclobutadiene have been recorded. The spectra

4,5

indicate that cyclobutadiene has an effective square geometry (Duh)' We

have used a fixed DlJrh geometry throughout our calculation. We used a C-C
o]
bond distance of 1.424 A from the results of a geometry search for cyclo-
’ o

butadiene by Buenker and Peyerim’hoff.6 We chose 1.084 A as the C-H bond

distance which is the experimental C-H bond distance for benzene.7

135°
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RESULTS

After the HF calculations on the triplet state had converged, the sigma
core was frozen. The core Hamiltonlan cobtained was used in all subsequent
calculations. This reduced the size of the basis to 8w functions. In
the GVB calculations, correlations of electrons in the m bonds are taken
into consideration.

The configurations for the MBS CI calculations were obtained from all
possible excitations among the four lowest m orbitals. For the FULL CI
calculations, configurations were obtained from all possible excitations
among the 8t orbitals. Total energies for the low lying excited states and

the excitation energies are tabulated in Tables I and II.

DISCUSSION

HF calculations predict that the 3A, lies lower than the lBlg by 0.2035

2g
e.V.. The ordering of the states arising from the (azu)z(eg)2 configuration

agrees qualitatively with that from a simple MO consideration. We would

expect that the lB is separated from the 3A2g (xy - yx) by twice the

g
exchange integral, K%y’ and similarly for lAlg and lBlg' The exchange

integral, ny, obtained from the splitting of lAlg (x2 + yz) and lBl
2

g

- y2) is 1.3 e.V., and from the splitting of B, and 3a, is 1.2 e.V..

2g 2g
1 2 2 1 2 2 . .
(The Alg (x™ + y7) and Blg (x° - y°) were obtained by doing the HF calcu-

(x

lation with MO occupation x2 and then doing the 2 configuration CI, mixing

in yz. The 2 CI configurations were generated from single excitation among

the four lowest orbitals.)
In the GVB calculation, the m bonds are localized, reducing the symmetry
of the molecule from Du to C,... The GVB calculation on the singlet state

h yAY
was done on the VB structure | I , and for the triplet state, the structure




200

Although these states are not symmetry states, the GVB calcula-

tions show that the singlet is lower than the triplet by 0.5383 e.V.. The

actual singlet and triplet states of the molecule are obtained from a linear

combination of the two equivalent VB structures, i.e. + and
. 4. . .
[ ; * £ The states are split by the resonance and antiresonance

energies. IFrom the GVB calculations, the singlet state is lowered in energy
more than the triplet state since two pairs are correlated in the singlet
whereas only one pair is correlated in the triplet. The HF description of

1
the Blg
tion of the bonding pairs.

is inadequate since the HF wavefunction does not describe correla-

Both the MBS CI and the FULL CI calculations show that the singlet state
is lower than the triplet state by about 0.4 eV. We conclude that the ground

state of cyclobutadiene in a square (th) geometry is lBlg’

June, 1974 Wilson Ho
Bob Walkup

(The total energy of the 3A2g state obtained from the HF calculation
using the 48 basis functions is 0.017 e.V. higher than the energy obtained
with the 8r functions after freezing the core, even though the final wave-
functions agree to 4 digits. This indicates a possible flaw in the GVB
program. )

We have also carried out a geometry search of cyclobutadiene and found
the ground state to be rectangular with energy about 0.2 e.V. lower than the
optimum square geometry. The resonance energies of the ground state were

obtained as a function of the geometrical distortion by the SOGI method.

These results will be reported elsewhere.
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TABLE I

Total Energies for Cyclobutadiene (in hartrees)

HESCE GVB MBS CT FULL CI
3A2g(xy ) ~153.5941 - ~153.6306 ~153.6417
‘1 triplet - ~153.5973 - -

1 2 2
B G - y7) ~153.5866 - ~153.6476 -153.6577
singlet - ~153.6171 - -
2
X ~153.5399 - - -
L2 4 2
1+ ¥ ~153.4906 - ~153.5619 ~153.5765
leg(Xy £ yx) ~153.5047 - ~153.5013 ~153.5268
4
', singlet - ~153.5079 - -
5
B, ~153.3615 - - -
3Eu - - ~153.1828 ~153.4927
1 - - ~153.2799 ~153.3198



Excitation Energies for Cyclobutadiene (in eV)
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TABLE IT

3
Azg(xy - yX)

.+
.4+ triplet

1 2 2

Blg(x - y9)

singlet

HFSCF GVB

0 -

- 0.5383
0.2035 -

- 0
L.4751 -
2.8151 -
2.4326 -

- 2.9714
6.3298 -

MBS CI

0.

10

4675

.3361

.9847

4893

.0106

FULL CT

0.u343

2.2082

3.5612

4.4878

9.1936
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Figure Caption

The energy levels of the low lying states of cyclobutadiene in
four separate calculafions with the ground state 1Blg in the
Full CI calculation as the zero reference. HF stands for
Hartree-Fock, GVB stands for Generalized Valence Bond, MBS CI
stands for Minimum Basis Set Configuration Interaction, and

FULL CI stands for Full Configuration Interaction.
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APPENDIX B

The Study of Nonlinear Optical Phenomena with a Picosecond lLaser

The time scale in optical spectroscopy has undergone drastic changes
in recent years. Flash spectroscopy, devised by Norrish and Porrter,l has
been used to detect short-lived triplet states and has extended conventional
spectroscopy from the millisecond into the microsecond region. With the dis-
covery of the laser,2 new time domains have become accessible for the study
of the interaction of light with matter. Nanosecond pulses are obtainable
with a Q-switched laser.3 When the laser is mode-locked, picosecond pulses
can be produced,u allowing us to study ultrafast primary processes occurring
in molecules.5 However, not too many problems in spectroscopy can be studied
with these ultrashort pulses due to the limited number of fundamental fre-
quencies available from these solid state lasers, namely 1060 nm from Nd+3—
glass and 694.3 nm from ruby. Nevertheless, the interaction with matter of
these short duration and high intensity pulses has resulted in the observa-
tion, for the first time, of nonlinear optical phenomena at optical fre-
quencies.6 These highly interesting phenomena include the generation of
optical har'monics,7 stimulated Raman scattering,8 photon echoes,9 and the

10 In this

simultaneous absorption of two photons via a virtual state.
section, we present the two-photon absorption and the subsequent fluorescence
of 1,2,5,6-dibenzanthracene (DBA).

In cur laboratory, we have a Nd+3—glass laser, mode-locked and Q-switched
by an Eastman Kodak #9860 bleachable dye diluted to 0.15 optical density with

dichloroethane. Basically, the solid state laser consists of a 8" x 1/2"

Nd+3—glass rod cut and placed at the Brewster angle in a Korad K-1 laser head,
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and situated between a 99.99% reflectance mirror and a partially trans-
mitting, 45% reflectance, mirror. The bleachable dye solution is also
placed at the Brewster angle. The laser cavity forms a Fabry-Perot inter-

fercmeter and sustains discrete optical frequencies
(1

where n is the number of half wavelengths of light in the resonator, L is
the length of the cavity and c is the speed of light in vacuum. Optical
pumping is achieved by a flash lamp which coils around the laser rod. The
process involved is shown in Figure 1. Energy from the pumping light is
used to excite the Nd+3 ions to the absorption band. The ions quickly under-
go radiationless transitions tothe “F state. The sharp infrared radiation
at 1060 rm is due to the stimulated emission from uF3/2 to uIll/Z states.
The coherent output, however, consists of random spikes of variable dura-
+ion. This is overcome by placing a photo-bleachable dye in the cavity.

The dye functions as a shutter, or Q-switching, and is kept closed during
the initial pumping by abscrbing the emission from the laser rod. In this
way, it is possible to achieve a large population inversion without oscil-
lation. As the excited state population continues to grow, the intensity
of the light becomes great enough to bleach the dye transition. Energy is
then released in a "giant" pulse of nanosecond duration. However, if the
relaxation time of the dye is very short compared to the round trip time for
a pulse to travel between the mirrors, a sharp pulse can be obtained via the
bleaching of the dye by the "giant" Q-switched pulse and subsequent rapid
relaxation of the dye. Since only intense pulses can bleach the dye, the

sharp pulse obtained is also of high intensity. As this pulse propagates



208

between the mirrors, a fraction of it is transmitted each time it is reflected
from the partially transmitting mirror. The dye also éerves to lock in
phase each of the Fabry-Perot modes. The mode-locking produces pulses of
picosecond duration. Thus the output of the laser consists of a train of
picosecond pulses separated by the round trip time it takes for a pulse to
travel the distance between the mirrors.

The first nonlinear effect obtained with laser light was observed in
1961 by Franken, et al.7 at the University of Michigan. They were able to
generate the second harmonic light at a wavelength of 347.15 rm by focusing
the beam from a‘ruby laser onto a quartz crystal. They found that the con-
version to the second harmonic light is about 1 part in 108, and that the
intensity of the second harmonic isapproximately proportional to the square of
the intensity of the fundamental light. Since then, conversions up to 20%

1 and Maker et al.12 reported

have been obtained. In 1962, Giordmaine
second-harmonic generation from an unfocused ruby laser light in KDP and
quartz. The materials suitable for the generation of optical harmonics must
be transparent both to the fundamental light and its harmonics and have non-
linear dielectric constants. In addition, the materials must be anisotropic
and cannot have a center of inversion symmetry. Glass which is isotropic may
be induced to generate a second harmonic if an external strong bias field is
applied. In our laboratory, the unfocused light from the Nd+3—glass laser is
passed into a phase-matched potassium dihydrogen phosphate (KDP) crystal.

The second harmonic, with.a wavelength of 530 nm, lies in the green region
of the visible spectrum.

Another nonlinear effect is the simultaneous absorption of two photons

by molecules and was first observed in 1961 by Kaiser and Garrettlo in
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CaF :Eu2+. They obtained fluorescence light around 425 mm by focusing ruby-

2

laser light of wavelength 6%4.3 mm at CaPzzEu2+. This process differs from
the process of generating optical harmonics. In the two-photon absorption
process, there are four, rather thanthree, real and virtual levels involved.
In addition, the crystal can have a center of inversion, and fluorescence is
observed after excitation to a real absorbing state at twice the laser
frequency. The absorption of the first photon excites the molecule to a
virtual state of approximately zero lifetime, lying at 1/2 the energy of the
real absorbing state. Due to the high intensity of the laser, a second photon
can be absorbed simultaneously and excite the molecule to the real absorbing
state. The intensity of the resulting fluorescence light varies quadratically
with the intensity of the excitation light as opposed to the linear rela-
tionship found for low intensity excitation light.

in our laboratory, two-photon fluorescence has been observed in various
liquids. The method is used to measure the time duration of the laser
pulses and to synchronize temporally the various beams traveling different
paths in the experiments. The pulse width of a mode-locked laser cannot be
measured at the present time with an oscilloscope-photodiode detection
system. The fastest oscilloscope, Tektronix 519, has a rise time of 0.3 nsec,
two orders of magnitude greater than the pulse duration.

13 have reported the observation of two-photon fluor-

Giordmaine et al.
escence of 1,2,5,6-dibenzanthracene (DBA) in benzene. The emission occurs
in the 400 - 420 nm region with a lifetime < 50 nsec. In their laser reson-
ator, the front reflector is a plane parallel quartz mirror of 0.63 cm

thickness. Standing waves are set up within this oscillator medium in

addition to those from the main laser resonator. The emission arises via
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the simultaneous absorption of two photons from the optical pulses separated
by 60 psec, the time it takes to travel a distance twice the thickness of
the plane parallel mirror. In our experiment, the front reflector is wedged.
The second harmonic of the Nd+3—glass laser is passed through a beam splitter
and the two beams are subsequently joined to induce the two-photon fluor-
escence. In this way, the time separation of the two pulse trains can be
accurately determined, and the two pulse trains can be used as exciter and
prober in an experiment, respectively. In Figure 2, we show the experimental
arrangement.

The 1060 mm Nd+3—glass laser output, simultaneous mode-locked and Q-
switched by Kodak #9860 dye solution, is passed through a KDP crystal to
genevate 530 mm light pulses. The 530 nm light goes through a beam splitter,
and the resulting two beams are collimated, intensity matched, and reduced
to a diameter of 1 mm throughout the 5.0 cm fluorescence cell containing
10"2 M DBA in benzene. Each beam is intense enough to produce two-photon
fluorescence by itself. The track produced is recorded with Polaroid 3000
film.

In one of the two beams, a variable delay is set up to vary the temporal
separation of the two beams. The variable delay consists of 3 prisms, one
of which is mounted on a translational stage with a precision micrometer
head covering a range of 0 to 50 mm and read to an accuracy of 0.0l mm. An
intensity enhancement results from a simultaneous absorption of two photons
due to the dependence of the integrated fluorescence on the integral of the
fourth power of the electric field.lu

A typical two-photon fluorescence spot and its photodensitometer trace

are shown in Figure 3. The contrast ratio, the ratio of the signal to the
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background intensity, is about 1.2. The movement of the two-photon
fluorescence spot as a function of the time separation between the two pulses
is shown in Figure 4. A V-shaped curve is obtained as the relative temporal
position of the two pulses reverses. From the change in the position of

the variable delay and the corresponding change in the two-photon fluorescence
spot, the index of refraction of the solution is calculated to be 1.50 as
compared to 1.5415 for benzene alone.

The length of the two-photon fluorescence spot % is given by

,Q,:.Oﬂ (2)

where o is a constant depending on the pulse shape, n is the refractive
index of the solution, and t is the pulse duration. From the photodensito-
meter trace, by taking % to be the full-width at half-maximum intensity
above the background, and a = 1 for a Lorentzian pulse, the 530 mm optical
pulse is found to have a duration of about 9 psec.

Other systems were also studied. Solutions of naphthalene in benzene failed
to show an enhancement of intensity due to two-photon fluorescence. In
this case, the two beams used are the 530 rm and its Raman line at 560 mm
scattered from a solution of fluorobenzene.16 The absence of two-photon
fluorescence from solutions of naphthalene in benzene can be attributed to
the presence of impurities which quench the fluorescence. If lower concen-
trations are used,'such as 10-4 M solutions, it is possible that the fluor-
escence intensity becomes too weak to be detected due to low concentrations.
This was confirmed with concentrations from 107 to 107° M.

Another possible difficulty might lie in the difference in the

530 nm and the 560 nm intensities. Since the 560 rm alone produces no
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recordable track due to its low intensity, and the 530 nm does, the intensity
of the 530 nm should be properly matched to that of the 560 mm. In principle,
the brightness of the two photon enhancement spot is proportional to IlIZ’

where I, and I, are the intensities of the 530 nm and the 560 mm pulses,

1 2
respectively. Onthe other hand, the brightness of the background is proportional to

Ii. Thus by decreasing the 530 nm intensity, the contrast ratio can be
improved. This was tried with 10_3 M naphthalene in benzene with 3 laser
shots per photograph. However, no noticeable fluorescence spot was observed.

With two 1060 rm photons, fluorescence was observed in Rhodamine 6G, an
organic dye, and amuch better contrast ratiowas obtained. In this case, the
two beams collided withone another without either one being reflected from
a mirror.

In summary, we have shown a nonlinear optical effect, the simﬁltaneous
absorption of two photons, obtained with a picosecond laser. This is one
of the numerous interesting phenomena resulting from the large field strength
of the light pulses. From the position of the two-photon fluorescence spot,
beams traveling different paths in an experiment can be synchronized temp-
orally. With one beam acting as the excitation source and the other as the
probe, the time scale in kinetics is reduced to the picosecond range. How-
ever, an extensive study of primary chemical processes involving excited
electronic states awaits the development of lasers tunable in the U.V.
region. Nevertheless, numerous applications have already been made. Recently,
lasers have been used successfully for isotope separation.17 Historically,
the field of optics has played an important role in science. The invention
of telescopes, diffraction gratings, and the theory of electricity and

magnetism have all made great advances in science. The laser has providedus with
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a new form of light. Its full potential is yet to be realized.

Summer, 1973
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Figure Captions

The processes involved in a four-level system for Nd+3-glass
laser. The excitation is to a band of energy states.
Experimentai arrangement for observing two-photon fluorescence.
LC is the laser cavity; F1 is a BGl8 filter which transmits
only the 530 rm pulses; B is a 530 nm beam splitter; R is a
100% reflector at 530 rm; VD is the variable delay; L is a
system of collimating lenses which reduces the size of each
beam to 1/2; F2 are filters used to adjust the intensities of
the beams; C is a camera using Polaroid 3000 film and set at

2 v 1,2,5,6-dibenzanth-

£/2.8; SC is the solution cell with 10
racene (DBA) in benzene; M is a totally reflecting mirror.

A typical two-photon fluorescence (TPF) spot and its photodensi-
tometer trace for 1,2,5,6-dibenzanthracene (DBA) in benzene.
Arrow points to the intensity enhancement at the TPF spot. The
contrast ratio is about 1.2, low compared to TPF from other
organic molecules, €.g., Rhodamin 6G.

Positions of the TPF spot from mirror as a function of the
variable delay (VD) positions. Arrow points to the position of
the VD at which the paths of the two separate beams are exactly

equal; the two beams are again synchronized temporally after

they rejoin (see Figure 2).
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