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Abstract

A photonic crystal is a periodic dielectric structure that possesses a band of
frequencies in which propagating electromagnetic waves are forbidden. Two-
dimensional photonic crystals exhibit a band gap for waves traveling in the crystal plane,
a property that offers promise for improved operation of optoelectronic devices including
semiconductor lasers, light-emitting diodes, and frequency filters.

A theoretical investigation of two-dimensional photonic band gap crystals has
been performed. The plane-wave expansion method is used to solve Maxwell’s equations
for the electromagnetic frequency bands in several square (Laue group 4mm) and
triangular (Laue group 6mm) crystal structures. The size of absolute band gaps is often
limited by band degeneracies at lattice symmetry points. By reducing the lattice
symmetry, these degeneracies can be lifted to increase the size of existing photonic band
gaps, or to create new gaps where none existed for the more symmetric structure.
Symmetry analysis also offers a rational approach for exploring and designing new
photonic crystal structures. Gap maps for several important crystal structures are
presented as a useful reference guide for experimentalists.

The utility of photonic crystals for many applications is enhanced through the
introduction of a defect into the crystal structure, which creates localized frequency states
within the photonic band gap. Defect modes in two-dimensional square photonic crystal
structures were studied using a supercell approach. By changing the radius of a single
rod, several defect modes with complex electromagnetic field patterns appear within the
photonic band gap. The mode frequencies can be tuned by varying the size of the defect
rod. The double-rod square structure has two rod types per unit cell, yielding different

defect characteristics depending on which rod is altered.
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In addition, anisotropic etching of patterned silicon has been investigated
experimentally using a hyperthermal neutral fluorine atom beam generated by laser-
induced detonation of SFs. The detrimental effects of surface charging are eliminated by
the use of charge-neutral etch species; however, inelastic scattering of energetic reactive
species has a significant effect on the development of the etch profiles, especially at high
aspect ratios. Etch profile anomalies including microtrenching and undercutting are

observed.
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CHAPTER 1

Introduction

Light scattering is at the heart of many of nature’s most spectacular displays,
including the formation of rainbows, clear blue skies, and fiery sunsets. Even the brilliant
colors of blue jay feathers and butterfly wings are the result of the interplay of light waves
with thin films and fine microstructures on the wing surface. The rather simple
interactions of electromagnetic waves with scattering elements help to create a world
filled with beautiful colors.

The Lycaena alciphron butterfly shown in Fig. 1-1(a) is brightly colored with
shades of blue, purple, and copper. Such colors are not caused by pigments, which are
rarely found in animals, but instead are “structural” colors: the wing surfaces are covered
with arrays of precise and repeated structures that scatter light to produce the color.'”
The scanning electron micrograph in Fig. 1-1(b) shows an example of these
microfeatures, which have a periodicity on the order of visible light wavelengths. Similar
multilayer thin-film structures are also responsible for the iridescent color of some
butterflies and birds.

The marvelous effects of light scattering processes are not limited to nature.
Many of the technological advances made in the field of optics have come about by the
ability to utilize light scattering, reflection, and refraction in a useful manner. Light
waves are confined within the high refractive index glass of fiber optic cables by total
internal reflection. The structure of atoms in a crystalline solid are explored by scattering
x-rays off of the crystal and studying the resulting diffraction pattern. The dielectric

mirrors commonly used in laser cavities rely on coherent scattering of light waves off of



the layered interfaces of dissimilar materials. These are just a few examples of the ways
in which light properties can be controlled and used in applications.

The near-perfect reflective property of dielectric mirrors is the result of stacking
several layers of low-loss dielectric with alternately high and low refractive index, each of
which is a quarter-wavelength thick. In this way, electromagnetic waves with the desired

wavelength will satisfy the Bragg condition for coherent reflection,
2dcosO = nh, (1.1

where d is the thickness of the repeating unit, 6 is the angle of incidence, n=1, 2, 3...,
and A is the light wavelength. Since the Bragg condition for a quarter-wave stack is
satisfied at 6=0°, these mirrors reflect light efficiently at normal (or near-normal)
incidence yielding a “stop band” of frequencies about the wavelength L. Waves with
frequencies outside the stop band, or that are incident upon the mirror at an angle, are
transmitted through the layered mirror.

The reflection and transmission properties of the dielectric mirror are a result of
classical scattering of light from the interfaces of two different media, and are not
restricted to this one-dimensional structure. In fact, we can extend the same concept of
periodic dielectric materials to higher dimensions to create a photonic crystal—a structure
that has the ability to reflect light frequencies through a range of incident angles, and for
all polarizations of light. Examples of periodic crystal structures in one, two, and three
dimensions are shown in Fig. 1-2. Like the quarter-wave stack, a photonic crystal has a
frequency stop band called the photonic band gap (PBG), a region of the electromagnetic
frequency spectrum where propagating modes are forbidden. In two dimensions, the
PBG exists for waves traveling in the plane of the crystal; in three dimensions, light
waves at all angles of incidence with frequencies within the PBG are reflected. In each
case, it is the proper selection of materials and geometry that gives photonic crystals the

ability to control the propagation of light waves.



1.1 Photonic Crystals

The new field of photonic crystal research began in 1987, when Yablonovitch first
suggested that a three-dimensionally periodic dielectric structure could be made to
possess a forbidden frequency gap irrespective of the propagation direction.” His idea
was to use the photonic crystal to inhibit the spontaneous emission of atoms by
overlapping the frequency band gap with the atomic emission frequency. Reducing the
power losses to spontaneous emission would result in improved performance of
optoelectronic devices that are limited by spontaneous processes, such as semiconductor
lasers, heterojunction bipolar transistors, and solar cells. Also in the same year, John
suggested that a three-dimensional dielectric superlattice array could induce strong
localization of photons, an effect that may lead to a number of useful device
applications.”*

The tantalizing prospects for the improved operation of optoelectronic devices
spurred researchers to prove (or disprove) that photonic crystals could exist. Within a

few years, researchers had established the theoretical basis for calculating the properties
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of photonic crystals’” and had identified specific geometries in two® ' and three”!!
dimensions that should possess a photonic band gap. In 1991, the first experimental
verification of theoretical predictions was achieved when a face-centered-cubic-like
structure of air holes in dielectric was found to possess a full photonic band gap in the
microwave regime. '

Photonic crystals are not limited to any fundamental length scale; in fact, the
wavelength of the photonic band gap directly scales with the size of the dielectric
clements that form the crystal. Specifically, the periodicity of the scattering elements
should be of the order A/2. Many of the proposed device applications of photonic crystals

involve light in the visible and near-IR region of the electromagnetic spectrum (A in the

range of 300 to 1500 nm) requiring photonic crystal features on the order of tenths of



microns. This is the same size scale of the features on computer chips, microfabricated
with state-of-the-art processing technology. However, photonic crystals have an
additional requirement over computer chips in that the tiny features must possess near-
perfect periodicity over several microns in width—a challenging feat even with current
advanced techniques. Three-dimensional photonic crystals pose an ecven greater
challenge as the perfect periodicity must be extended in the vertical direction. Though

P10 help

some clever three-dimensional photonic crystal designs have been proposed
case the trouble of microfabrication, such structures may still lie beyond the reach of our
current abilities.

Two-dimensional photonic crystals, however, are easier to microfabricate than
their 3D counterparts precisely because the requirement of periodicity in the third
dimension has been removed. Thus, the 2D structure readily lends itself to standard
photolithographic and etching techniques. The desired crystal pattern is defined in
photoresist on the surface of a dielectric material, and can then be transferred to the
material below with an anisotropic etching process.

Although 3D photonic crystals may hold the greatest promise for applications due
to their unique ability to control light waves irrespective of the direction of propagation,
the importance of 2D structures should not be underestimated. Their strong reflectivity
properties over a wide frequency band and all angles within the crystal plane provide an
advantage over traditional (one-dimensional) Bragg mirrors. Applications where such
dielectric mirrors are used (e.g., laser diodes'’) could be improved through the use of 2D
periodic structures. The relative ease of fabrication and their role in important device
applications makes 2D photonic crystals worthy of more detailed study, and provides the

motivation for the research work presented here.



1.2 Theoretical Considerations

Ideally, one would like to be able to specify the desired properties of the photonic
crystal (e.g., a large band gap) and then perform calculations to determine the crystal
structure that will possess these properties.  Unfortunately, the solution is not
straightforward—while it is known how to calculate the frequency band properties from a
given photonic crystal structure, the inverse problem remains as yet intractable. One
must propose a specific photonic crystal structure, perform the frequency calculations,
and then evaluate the results. Thus, our success at achieving the desired properties relies
on our ability (or luck) to guess a priori a correct crystal structure. A guiding principle
that would help researchers sift through the countless geometrical arrangements and
select the most promising crystal structures would be invaluable.

The initial studies of two-dimensional photonic crystals focused on simple rod
geometries (square and circular cross-sections) arranged in patterns described by the basic
2D Bravais lattices. Band gap calculations of these crystals showed that some
arrangements, like that of the triangular lattice of nearly close-packed “air rods” (holes) in
a dielectric background, do possess large band gaps. Similarly, holes arranged on a
square lattice also possessed a photonic band gap, albeit smaller than that for the
triangular-based structure. It was also found that crystals composed of circular cross-
section rods tended to have larger band gaps than those crystals with hexagonal or square
cross-section rods. '

At first glance these results appear to suggest that a high degree of crystal
symmetry is required for a photonic band gap to appear. On the other hand, symmetry
tends to foster degeneracies in the frequency bands which inhibit the opening of band
gaps. For example, a uniform material is perfectly symmetric but does not possess any
band gaps because the lack of dielectric constant modulation leads to a continuous

spectrum of allowed frequencies. Thus, a balance of symmetry and disorder is necessary



for the crystal to have a photonic band gap. By gaining a greater understanding of this
delicate balance, the observed characteristics of the photonic crystals could be explained
in terms of their symmetry properties. In addition, crystal symmetry can be used as a

guiding principle in the design of large band gap photonic crystals.

1.3 Fabrication of Photonic Crystals

Once the theoretical studies have identified a photonic crystal geometry with the
desired properties, the next step is to fabricate the crystal structure. For photonic band
gaps in the microwave regime, the fundamental length scale of the crystal is on the order
of centimeters allowing for straightforward construction with bulk dielectric materials
and a patient machinist. Smaller photonic crystals are more difficult to microfabricate,
though techniques for creating near-perfect photonic crystals with sizes on the order of
microns have been successfully developed. In one interesting example, a 2D photonic
crystal with a band gap centered at a wavelength of 5 um was fabricated by
electrochemical etching of silicon in hydrofluoric acid.!®  This structure, shown in
Fig. 1-3, was etched to a depth of 75 um, with a lattice constant of only 2.3 um. Though
this example was an important breakthrough for photonic crystal fabrication, the
technique would be difficult to apply in cases where the photonic crystal is used in an
optoelectronic device such as a light-emitting diode. In such instances it would be most
convenient to directly integrate the photonic crystal and device, using the same processing
steps for both components simultaneously. This can be achieved by using micro-
fabrication techniques.

The ideal two-dimensional crystal has perfect periodicity within the plane, and a
long extension of the structure in the third dimension (i.e., a high aspect ratio) so as to
eliminate the end effects of the rods. Even if the crystal is “sandwiched” between

cladding layers, the etched holes (rods) must penetrate well into the bottom cladding layer



° The requirement of high aspect

to minimize power losses in the vertical direction.'
ratios with minimal variation in the rod diameter along their entire length poses great
demands on the fabrication process. The crystal specifications become even more
difficult to realize when the photonic band gap is chosen to occur in the visible to near-IR
frequency regime.

Many of the profile anomalies that occur during plasma etching of small features
are caused by electrical charge build-up on the photoresist layer used to define the etch
pattern. The excess charge creates a static electric field that can deflect the path of
incoming reactive ions, resulting in profile irregularities such as bowed sidewalls and
microtrenches at the foot of etched features. Such phenomena can considerably alter the
desired feature profiles and hinder attempts to achieve high aspect ratios.

The problem of charge-induced nonuniformities can be eliminated by using
neutral species instead of ions. However, this entails the difficulty of creating a
directional source of reactive neutrals necessary to achieve anisotropic etching. Ions are
easily accelerated and directed by electromagnetic fields, but neutral species require a
different approach. A novel method and apparatus for generating a nearly mono-
energetic beam of neutral atoms with energies of 1-10 eV was developed for the study of
gas-surface scattering experiments.” This source can be adapted to create a collimated
beam of reactive neutral atoms with hyperthermal translational energies suitable for

anisotropic etching.

1.4 Research Objectives

Before a photonic crystal is utilized to improve performance of an optoelectronic
device, the properties of the crystal itself should be optimized. Since it is the photonic
band gap that makes such crystals desirable for applications, it is essential to identify and

design crystal structures which possess the largest possible photonic band gaps.



Theoretical calculations are an important first step in this design process. In this thesis
work we sought to identify two-dimensional photonic crystal structures that possess large
photonic band gaps, using analysis of the crystal symmetry properties as a guide towards
the most promising geometries.

The work presented in Chapter 2 focuses on the class of 2D crystal structures
formed with a square lattice basis (designated Laue symmetry group 4mm). The size of
the photonic band gaps in these structures is often limited by degenerate frequencies at
points of high lattice symmetry. These band degeneracies can be lifted by altering the
lattice symmetry properties, potentially increasing the size of existing photonic band gaps,
or causing new gaps to open where none existed before. Specifically, we explore the
effects of symmetry changes brought about by the addition of different diameter rods into
the unit cell of these crystals.

In Chapter 3, an overview of the hexagonal 2D photonic crystal structures that
form Laue symmetry group 6mm is presented. This symmetry group contains two of the
most widely utilized crystal structures in experiments, the triangular and honeycomb
structures. We compare the band gap properties of several structures that fall within the
6mm class based on their symmetry properties. Small changes to the crystal symmetry
properties can have a great impact on the photonic band gap properties of the crystal. The
symmetry-based approach is used to identify 2D structures that possess large band gaps
and also have geometries that lend themselves to easy microfabrication. The compiled
results can serve as a useful reference guide for experimentalists.

Perfect photonic crystals are useful because of their ability to reflect
electromagnetic waves at all frequencies inside the photonic band gap. However, some
very useful properties can be obtained through the introduction of a physical defect into
the otherwise perfect crystal structure. A photonic crystal defect is analogous to the
intentional addition of dopant atoms into a semiconductor material: in both cases, the

defect introduces discrete allowed states into the band gap. Because the allowed photonic



defect modes are bordered by forbidden frequencies, they can be used as a well-defined
“sink” for electromagnetic energy. This property can be exploited in light-emitting
devices such as semiconductor lasers and diodes, where it is desirable to channel as much
of the input energy as possible into a single mode. The introduction of physical defects
into square photonic crystal structures is described in Chapter 4. Some implications of
defect modes for improved device operation are also explored.

Finally, in Chapter 5 experimental studies of neutral fluorine etching of silicon are
presented. A pulsed beam of hyperthermal neutral fluorine atoms with translational
energies tunable from 4 to 30 eV is used for the anisotropic etching of patterned silicon.
Though the use of neutral species prevents the appearance of etch profile anomalies by
charge-induced processes, scattering of energetic reactive species was found to affect

significantly the development of feature profiles.
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(b) (c)

Fig. 1-1. The blue, purple, and copper colors of the butterfly Lycaena alciphron (a) have
their origin in light scattering from fine microstructures on the wing surface, an example
of which is shown in (b) for the Zeuxidia amethystis butterfly.! The wing microfeatures
closely resemble a two-dimensional photonic crystal (c).! The photograph in (a) is
reprinted with permission from M. Maier.*?
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(b)

N O

(©)

Fig. 1-2. Schematic drawings showing examples of (a) one-, (b) two-, and (c) three-
dimensional photonic crystal structures. The “one-dimensional photonic crystal” shown
in (a) is a traditional quarter-wave stack dielectric mirror.



14

Fig. 1-3. Scanning electron micrographs of a two-dimensional photonic crystal fabricated
by electrochemical etching of silicon.'® (a) The photonic crystal structure is 200 um wide
and 75 um high. The lattice constant of the triangular macropore array is 2.3 pm, and the
diameter of the pores is 2.13 pm. (b) A tenfold magnification of the inset in (a) shows the
micromachined edges of the photonic crystal and the polished 45° inclined edge. (c) A
tenfold magnification of the inset in (b) shows the perfect periodicity of the crystal
structure. The pore walls are just 170 nm thick.
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CHAPTER 2

Symmetry Reduction in Group 4mm Photonic Crystals

Abstract

The size of absolute band gaps in two-dimensional photonic crystals is often limited by
band degeneracies at the lattice symmetry points. By reducing the lattice symmetry, these
degeneracies can be lifted to increase the size of existing photonic band gaps, or to create
new gaps where none existed for the more symmetric structure. Specifically, symmetry
reduction by the addition of different diameter rods into the unit cell of two-dimensional
square lattices (Laue group 4mm) is explored. This approach is especially useful in
opening absolute band gaps in structures of dielectric rods in air, which are more easily
microfabricated than a crystal of air columns in a dielectric background. Symmetry
reduction offers a rational approach for exploring and designing new photonic crystal

structures.

Reprinted with permission from the article
C. M. Anderson and K. P. Giapis, Phys. Rev. B 56, 7313 (1997).
© 1997 The American Physical Society
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2.1 Introduction

The past decade has witnessed the start of an exciting new field in optoelectronics.
The first assertion in 1987 that periodic dielectric structures could be made to possess a
photonic band gap'“—a region of the frequency spectrum where propagating modes are
forbidden—has captured the imaginations of researchers around the world. A photonic
band gap is analogous to an electronic band gap in semiconductors; this analogy bears
promise for photonic crystals to impact optical device applications as semiconductors
have done for electronics.

Much of the interest surrounding photonic crystals stems from their ability to
provide frequency-mode control of light propagating through them. This property gives
photonic crystals the potential to greatly improve the efficiency of optoelectronic devices.
For example, radiation losses in high-Q resonance cavities can be reduced by embedding
the cavity in a photonic crystal.? Frequencies that fall within the photonic band gap are
exponentially attenuated with no absorption. The use of an entirely dielectric medium
also provides an improvement over traditional metallic shielding methods, where high
losses reduce their usefulness at optical frequencies. Fine control of frequency
propagation may be obtained through the introduction of “defect” modes (localized
frequency modes) into the gap, which channel emission to one or a few select

>3 Photonic defect modes, most easily formed by blocks of dielectric

frequencies.
material inserted into or removed from the photonic crystal, could lead to thresholdless

solid-state lasers and more efficient solar cells.

16—8 15,9-] 1

Many three-dimensional”™ and two-dimensiona photonic crystals with band
gaps in the microwave region have been fabricated. For the most promising applications,
however, it is desirable to have photonic gaps at visible to near-infrared (IR) wavelengths.
The frequency at which the band gap occurs is directly related to the size of the scattering

clements comprising the lattice. Specifically, the size of the features must be of order
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M2, where A is the wavelength at which the gap occurs. A photonic crystal with a band
gap in the microwave regime has lattice elements a few millimeters in size, but to achieve
a band gap in the visible region of the electromagnetic spectrum requires precise
fabrication of lattice elements on the order of 0.25um. Though a method for
microfabricating three-dimensional (3D) crystals with full photonic band gaps using
standard photolithographic and etching techniques has been proposed,’ fabrication of
such small features is exceedingly difficult. Perhaps for this reason attention has been
drawn towards two-dimensional (2D) lattice structures, where fabrication requirements
are not as stringent. Several groups have successfully fabricated 2D crystals with near-IR

— . . 15
12714 and even visible frequency gaps.

band gaps

Although 3D photonic crystals suggest the most interesting ideas for novel
applications, 2D structures could also find several important uses, as a result of their
strong angular reflectivity properties over a wide frequency band. For example, 2D
photonic crystals with absolute band gaps provide a large stop band for use as a feedback
mirror in laser diodes,'® an improvement over traditional (one-dimensional) Bragg
reflectors.

The larger a photonic band gap is, the greater the forbidden region of the
frequency spectrum. Thus, it is essential to identify and design crystal structures which
possess the largest photonic band gaps for a given dielectric contrast ratio. For two
different crystals possessing absolute band gaps of equal size, it may be advantageous
from a fabrication standpoint to choose the one that has the band gap occurring at the
higher non-dimensionalized frequency, ma/2nc, where  is the frequency, a is the lattice
constant, and c is the speed of light in vacuum. For a given filling fraction, the feature
size scales with a; thus, the crystal with the higher mwa/2mc should be easier to fabricate.
But how does onme sift through the countless geometrical arrangements to select

manufacturable structures with large band gaps in the desired frequency regime?

Theoretical calculations are indispensable, albeit a formidable task in view of the
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numerous structures to model with many variational parameters (e.g., lattice type, filling
fraction, shape of filling element). A rational approach towards the design of photonic
crystals is needed, rather than brute-force computation.

Photonic crystals are most valuable when they possess an absolute band gap,
where propagating modes are forbidden regardless of wave polarization. Many crystals
possess band gaps for some light polarizations, but these may not overlap to produce an
absolute band gap. Often this is a result of band degeneracies at points of high symmetry
in the crystal, which prevent gaps from opening. In some cases the degeneracy can be
lifted by reducing the crystal symmetry. Consider for example the 3D face-centered-
cubic lattice with spherical dielectric “atoms,” which does not possess an absolute
photonic band gap.17 By decreasing the symmetry of the lattice through the introduction
of a two-point basis set (which produces the diamond lattice), a degeneracy in the bands
is lifted and a full photonic band gap is obtained.'” In two-dimensional photonic crystals,
a similar idea of lattice symmetry reduction has also been effective in producing larger
band gaps.18 Here, we present a more complete description of symmetry reduction in

Laue group 4mm lattices.

2.2 Two-Dimensional Square Structures

There are three plane groups (two-dimensional space groups) that comprise the

" The first belongs to the Laue group 4, a

square crystal family: p4, p4mm, and p4gm.
relatively low symmetry group that has four symmetry operations. Each of the last two
plane groups possesses eight symmetry operations and together they form the Laue group
4mm. Two-dimensional photonic crystals that have the symmetry of the latter group will
be the focus of the present article. Such crystals are formed by circular cross-section rods

having a dielectric constant €, embedded in a different background material with

dielectric constant &,. The infinitely long rods are assumed to be paralle] to the 7z axis,
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and the cross-section with the x-y plane forms one of the group 4mm lattices. There are
several ways to arrange rods within the unit cell of such a lattice without departing from
the symmetry group. The simplest structure (shown by the rods labeled with index A in
Fig. 2-1) contains one rod in each primitive unit cell, with the rod axes arranged on the

lattice sites given by the vectors
a(/)=/l,a +/,a, (2.1)

Here a, and a; are primitive lattice vectors and /; and /, are any two integers, collectively
termed /. For the coordinate system shown, the primitive lattice vectors are a; =a(1,0)
and a>=a(0,1), where a is the lattice constant. The rods occupying these sites all have
diameter d;.

A different structure can be obtained by the overlay of another square lattice with
rods of diameter d, on top of the single-rod square lattice, as shown by the index B rods
in Fig. 2-1. The added structure has the same lattice constant a, but is displaced with
respect to the first lattice by T="Y2(a; +a;). This arrangement forms a new lattice when
di # d», which is termed the “double-rod square lattice.” Both the single-rod and double-
rod square lattice structures have the symmetry of the plane group p4mm, and all of the
rod sites have 4mm symmetry (i.e., four-fold rotation and mirror planes along the two
principal symmetry axes).'” However, the symmetry is changed slightly in the latter
crystal structure, as the smallest unit cell must now contain two rods. In either case, the
rods are all assumed to be made of the same dielectric material and are embedded in a
different dielectric background. The ratio of the two rod diameters, B=d-/d,, can be
varied to control the position and size of band gaps. The rod diameter ratio can have
values from O to o, but since S and ' yield equivalent crystal structures, we examine B
values between 0 and 1 only. Note that at either =0 or 1, the single-rod square lattice

structure 18 recovered.
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There are several other ways in which one can reduce the symmetry of the single-
rod square structure. Consider the “glide-symmetry square lattice” as shown in Fig. 2-2.
While at first glance this structure might not appear to be more than a random collection
of rods, it belongs in the plane group p4gm, thus possessing quite a large number of
symmetry operations. Each rod site has ..m symmetry (a mirror plane off the principal
axes). The primitive unit cell is shown by the square outline. Varying the angle that the
lattice elements form with the primitive unit cell produces a whole class of new
structures. We define this angle of tilt, 6, as the angle between the line diagonal of the
lattice elements and the x axis, as illustrated in Fig. 2-2.

New structures can emerge from combining the two previous ideas, i.e.,
increasing the number of rods in the unit cell and introducing the glide symmetry
operation. Consider, for example, the overlay of this new glide-symmetry lattice structure
with the single-rod square lattice, such that the rods of the latter lie at the corners and
center of the primitive unit cell. The single-rod square lattice elements have diameter d,,
and the rods associated with the glide lattice have diameter ¢>. This complex structure
combines two different rod symmetries, with a total of six rods in each primitive unit cell.
We will show that even this type of symmetry reduction can yield large absolute band
gaps. The glide lattice, superimposed with the single-rod square lattice, gives two
parameters that may be varied to maximize the absolute photonic band gap: the ratio of
the rod diameters for the two lattices (f=d,/d)) and the tilt angle §. We examine B
values ranging from O to oo, since  and 7' no longer yield equivalent crystal structures.
In Fig. 2-3, three different periodic structures that may be obtained by varying 6 are
shown. At 6=0° [Fig. 2-3(a)] the structure becomes the double-rod square lattice. We
also consider two other lattice positions, as shown in Figs. 2-3(b) and 2-3(c) at angles of

18.4° and 45°, respectively.
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2.3 Theory and Photonic Band Gap Calculations

The propagation of electromagnetic waves through dielectric media is described
by Maxwell's equations. These equations can be solved using a plane-wave expansion
technique to yield the electromagnetic frequency spectra of waves in a periodic dielectric
crystal.'” To begin, Maxwell's equations are combined to give the wave equation in terms
of the magnetic field H

1 o’
Vx| —VxH|=—H (2.2)
e(x) ¢
where g(X) is the position-dependent dielectric constant, ® is the frequency, and ¢ is the
speed of light in vacuum. The magnetic field H(x) and the dielectric function &(x) can be

expanded in a sum of plane waves

Hx) =Y D by o&,e (2.3)
G Xi=1,2
g(x)= Y k(G)e ™ (2.4)
G

where K is the wave vector in the Brillouin zone and G is a reciprocal-lattice vector. The
unit vectors €, are magnetic wave polarizations orthogonal to k+ G and the coefficients
M. are the corresponding components of the magnetic field. The Fourier coefficients

K(G) are defined in the usual manner by

1 HCx
K(G)=— e(x)e " “Vax (2.5)
Acell Acer
where the integration is carried out over the area A_.; of one lattice unit cell.
In two-dimensions, the vectors k+G always lie in the plane of the rods.
Therefore, the unit vectors &;, & must either lie in the plane or along the z axis. This

property allows us to rewrite Eq. (2.2) as two simpler equations, each describing a
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particular wave polarization. For the magnetic field vector parallel to the axes of the rods
(H-polarization), Ao x.c =0 for all k+ G. Substituting the plane wave expansions into the

wave equation gives an eigenvalue problem

S (k+G)-(k+GHMG -Gy, :‘:—;h,w (2.6)
<

where (G- G’) is a matrix found by inverting the k(G —G’) matrix of coefficients
defined in Eq. (2.5). By first expanding the dielectric function £(x) in a plane wave basis
and then inverting the resulting matrix to obtain N(G—G”), faster convergence to the
eigenvalues of Eq. (2.6) is achieved than by direct plane wave expansion of £ '(x).*’

For E-polarization the electric field vector is parallel to the rod axes and H(x) is in

the rod plane. Here k¢ =0 for all k + G, yielding another eigenvalue problem:

2

’ ’ (’0
2+ Gk + GG -Gk = g 2.7)
<

Standard eigenvalue techniques are now used to solve Egs. (2.6) and (2.7) to obtain the
propagating wave frequencies for the corresponding polarizations.

In this formulation, all information pertaining to the geometry of the lattice is
contained in the coefficient matrix 1, or analogously the k matrix. This provides a very
convenient solving routine, as the bulk of the solution “machinery” remains in place,
while only the K coefficient matrix changes with different crystal structures.

The integral in Eq. (2.5) can be expanded and simplified to give

f8a+(l_f)8b’ G:O’

K(G) = (2.8)

(e, —8)—), ¢ Vdx, G=#0,

The integral in the second part is now over the rods only. Here, J 1s the rod filling

fraction, defined as f=A,,4/Ac.1.
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For the case of circular cross-section rods of radius r that do not overlap, the

coefficients become

fea+(l_f)£b’ GZO,
= 2nrd (G 2.9
K(G) £, b)z . ( V) —z(GT)’ G = 0. ( )
T AccllG

where Jj is the first order Bessel function of the first kind and G =|G|. The summation is
over all rods inside one unit cell with positions described by translation vectors T,
measured from the origin of the coordinate axes. For example, consider the glide-
symmetry square lattice shown in Fig. 2-3(b). There are four rods in the unit cell, located

at positions described by the translation vectors

3 1
T, :ga1 +§a2
|
T,=~—a +—-a,
8 8
(2.10)
3 1
T% = —'gal —gaz
1 3
T4 = gal —*8‘32
Substituting these vectors into Eq. (2.9) and simplifying yields
f£a+(1—f)8b’ G:-O,
K(G)= 4nrJ (Gr) a a 2.11
(Ea—eb)—A—G—‘ COS(§(3g1+g2))+COS(§(g1—3gz)) , G=#0. ( )
cell

Here g; and g (integers, denoted collectively by g) are components of the reciprocal

lattice vector defined by

27
G(g)— 2 gla +— 782, (2.12)
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The results that follow were obtained using 729 plane waves for the single-rod
square lattice, and 1225 plane waves for the double-rod square lattice and the glide-
symmetry square lattice. A greater number of plane waves was required to maintain
accuracy for the latter cases due to a more complex unit cell arrangement. The results
were tested using 1757 plane waves, for which the band frequencies differed from those
calculated with fewer plane waves by a maximum of 0.8%. Most bands differed by less
than 0.5%. Thus, we believe that all of the results reported here are accurate to within at
least 1% of their true values. The results of the accuracy test also seem to suggest that
band calculations with significantly fewer plane waves will not meet the 1% accuracy

condition.

2.4 Photonic Band Gap Results

We first examine the single-rod square lattice of air holes in a different dielectric

8,21,22
background.'®*"

The dispersion relation for a background material with dielectric
constant £,=11.4 (€gaas at A=1.5 um) and a rod filling fraction of f=0.77 is shown in
Fig. 2-4. The figure inset shows the irreducible portion of the Brillouin zone and the
corresponding lattice symmetry points. An absolute band gap does exist for this
structure, which is produced by an overlap of the H, and E; band gaps.+ It 1s bounded on
the lower side by the H-polarization gap boundary, and on its upper side by the
E-polarization gap. A summary of our calculations for the single-rod square lattice is
shown in the “gap map” of Fig. 2-5, where non-dimensionalized frequencies are plotted

as a function of the filling fraction. An absolute band gap appears at filling fractions

between 0.68 and 0.79, and has a maximum value of A® = 0.0188(2mc/a) at f=0.77.

" A gap for a particular polarization bounded by the nth and (n+1)th frequency bands is
designated with subscript .
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As the rod filling fraction nears the closed-packed condition (f=0.785 for a square
lattice of circular rods), the rods in the structure begin to touch and the absolute band gap
quickly disappears. The frequency band plot of Fig. 2-6 for f=0.8 demonstrates that the
size of the absolute band gap is limited because the second, third, and fourth
H-polarization bands are degenerate at the M point of the Brillouin zone. If this band
degeneracy can be lifted while maintaining (or increasing) the size of the E-polarization
gap, a larger absolute band gap will ensue. By placing a smaller diameter rod at the
center of each square unit cell (as shown in Fig. 2-1), the crystal symmetry is reduced.
The effect of this symmetry reduction on the square lattice dispersion relation is shown in
Fig. 2-7, where a rod with diameter ratio S=0.16 has been added to the structure for the
same total filling fraction f=0.8. The H-polarization degeneracy has been lifted, resulting
in a much larger H-polarization gap. Remarkably, the upper E-polarization gap is also
greatly enlarged. Thus, the overlap between the two gaps increases, resulting in a much
larger absolute band gap. The gap map for the double-rod square lattice when 8=0.16 is
shown in Fig. 2-8. The maximum absolute band gap for the double-rod square structure
occurs when B=0.16 and f=0.793. With a gap width of Aw=0.0548(2xrc/a), this
photonic band gap is nearly three times larger than the best value obtained for the single-
rod square lattice case.

The effect of symmetry reduction on the size and position of the band gaps may be
more dramatically demonstrated by generating a gap map as a function of . Figure 2-9
illustrates such a gap map for the double-rod square lattice at a filling fraction of 0.793.
The band gaps for the single-rod square lattice are obtained when $=0 or, equivalently,
unity.T There are no absolute band gaps present for §=0 at this filling fraction. As Bis
increased, a complex gap map unfolds as a result of symmetry breaking. Both the H» and

E; gaps substantially widen and overlap to produce an absolute band gap with maximum

"When =1, the gap positions are shifted by a factor of \/5 as a result of the change in the
unit cell size.
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width at $=0.16. A smaller absolute gap also forms at B~=0.5. Several other gaps in
both E- and H-polarizations appear and disappear as [ is varied.

Extensive calculations have shown that both the filling fraction and the size of the
symmetry breaking element are important factors in dictating which crystal arrangements
will possess absolute photonic band gaps. In Ref. 23, it was shown that the region of
filling fractions where the rods begin to touch or overlap is a critical region of the band
gap spectrum, where many band gaps begin to close or open up. Furthermore, it was
shown that a connected lattice arrangement was important in the production of
H-polarization gaps. The introduction of small rods into the unit cell may work to create
larger absolute band gaps by increasing the total rod filling fraction to regimes where
large gaps occur, without suffering the consequences of disrupting the lattice
connectivity.

Though we have managed to greatly increase the size of the absolute band gap for
the square lattice arrangement of holes in dielectric, the resulting structure may not be
practical for device applications. The maximum absolute gap condition has a very large
filling fraction, f=0.793. For a midgap wavelength of 1500 nm (near-IR), the dielectric
walls between adjacent holes will be as thin as 6 nm. The precise microfabrication of
such small features is extremely difficult. In fact, the results of several studies have
shown that to open an absolute photonic band gap in a crystal of air columns in a
background dielectric requires the rod filling fraction to always be near the close-packed

condition.>* %

Therefore, if we are to identify photonic crystal structures which possess
large absolute gaps and can also be easily fabricated, we must consider the opposite
arrangement, namely that of dielectric rods in air. It has been shown® that for the single-
rod square lattice, no absolute gaps occur for the case of dielectric rods in air due to the
complete absence of an H-polarization gap. In addition, we have searched all filling

fractions of the double-rod square lattice [see Fig. 2-3(a)] of dielectric rods in air. A gap

map for a filling fraction of 0.33 is shown in Fig. 2-10(a), where non-dimensionalized
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frequencies are plotted as a function of the rod diameter ratio 8. Values of S greater than
1 yield the same structures as those at B~'. The gap map is filled with many large
E-polarization gaps that open and close as the rod diameter ratio is varied. The gaps tend
to decrease in size at higher frequencies. An interesting feature of this gap map is the
presence of “defect-like” modes occurring between adjacent E-polarization gaps at high
frequencies and low values of . Three such defect modes are indicated by the horizontal
arrows in the figure. In each case, a narrow frequency band appears along the length of a
seemingly single E-polarization gap, splitting it in two and creating the isolated mode.
From a different perspective, this observation could also be interpreted as follows: the
two dissimilar rod sizes in the double-rod square lattice may act as a very regular pattern
of defects, creating singular frequency pass-bands contained within a band gap. In
contrast to the abundance of large E-polarization gaps, only a few small H-polarization
gaps exist. The largest H-polarization gaps occur at high frequencies for values of 8 near
1, but these do not overlap with any E-polarization gaps. The largest absolute gap for the
double-rod case was found for a filling fraction of 0.33 and $=0.57. However, the gap is
fairly small, having a maximum width of Aw=0.0280(2nc/a) at a non-dimensionalized
mid-gap frequency of 0.752. Thus, other ways must be sought to reduce the symmetry of
the square lattice to find arrangements which yield larger absolute band gaps.

The glide-symmetry structure with 8= 18.4°, shown in Fig. 2-3(b), accomplishes a
more severe symmetry reduction than that for the double-rod lattice, as mirror planes
along major symmetry axes have been eliminated. This symmetry reduction opens
several large H-polarization gaps and yields three large absolute band gaps. Band
frequency calculations for this structure were performed along the symmetry lines
forming the edges of the irreducible 1/8 of the Brillouin zone. The existence of band gaps
was confirmed by density of states calculations using uniformly spaced k points in the
entire first Brillouin zone. The calculations are summarized in the gap map shown in

Fig. 2-10(b) at a filling fraction of 0.33. In this figure, the single-rod lattice is recovered
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when =0. The lowest frequency gap occurs at intermediate values of J3, and is entirely
limited by the size of the H-polarization gap that opens inside an existing E-polarization
gap. This gap is formed by the overlap of Hg and Ejo gaps,” and has a maximum width
of 0.0757(2nc/a) at f=0.3 and B=0.55. Two other absolute gaps form at and near the
equal rod diameter condition. The H-polarization gaps (H;o and Hj;) share one
E-polarization gap (Ejgs). The lower frequency gap has a maximum width of
0.0741(2rc/a) at f=0.33 and B=1, while the upper gap maximum is 0.0762(2nc/a) at
f=0.33 and B=1.05. 1t is interesting to note that similar gaps do not exist for the double-
rod lattice [Fig. 2-10(a)]. An additional degree of symmetry reduction (accomplished
through the introduction of the glide symmetry operation) was necessary to open the new
absolute gaps. As all three absolute gaps for the glide-symmetry lattice have similar
maximum widths, we can choose which gap to utilize for experimental purposes. From a
fabrication standpoint it may be easier to utilize the highest frequency absolute gap. For
equal size rods the filling fraction is given by f=nmr/a’, where n is the number of rods in
the unit cell. Therefore, for a given filling fraction the rod radius scales with g, and is
inversely proportional to \/Z With six rods in each glide-symmetry lattice unit cell, it is
especially important to make the lattice parameter a as large as possible to increase the
smallest feature dimension. However, it has also been shown that higher frequency gaps
are more sensitive to random lattice disorder than those at lower frequencies.”” Since the
introduction of a certain amount of disorder during fabrication is probable, especially for
small-size features, this may also affect the choice of absolute band gap.

Continuing the study of the symmetry reduction argument, we have also examined
the structure shown in Fig. 2-3(c). The primitive unit cell for this structure contains six
rods, as does the previous case, but now the rods line up in diagonal rows (8=45°). After
searching all filling fractions and rod diameter ratios of dielectric rods in air, no absolute
photonic band gaps were found for this structure. A gap map is shown in Fig. 2-10(c) for

a filling fraction of 0.33. Several large E-polarization gaps exist, but only one small H-
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polarization gap opens up and does not overlap the E-polarization gaps. The lack of
absolute gaps makes sense in light of the fact that this crystal structure belongs to the
plane group p4mm, as do the single-rod and double-rod lattices. All of the p4mm
symmetry crystals of dielectric rods in air have very small (or absent) H-polarization
gaps.

Striking differences may be seen in comparing the three gap maps of Fig. 2-10.
The most symmetric structure, that of Fig. 2-10(a), possesses the greatest number of large
band gaps, albeit for only one polarization. This structure also exhibits defect-like modes
in some of the upper E-polarization gaps, a characteristic not seen in the other lattices
studied here. It is easy to create E-polarization gaps in ordered crystals comprising of
dielectric rods in air. These gaps are usually quite large and robust with respect to
changes in the crystal structure.”” The challenge 1s to force H-polarization gaps to open at
frequencies that overlap with the E-polarization gaps. Introduction of the glide-symmetry
operation in Fig. 2-10(b) has succeeded in this more difficult task, opening three large
H-polarization gaps. Some of the E-polarization gaps—present in the more symmetric
case—have been eliminated by this reduction in lattice symmetry, but several large gaps
survive to create absolute band gaps. In Fig. 2-10(c), ordered rows of rods are separated
with pockets of empty space. The hardy E-polarization gaps remain, though only one
small H-polarization gap exists. The remarkable evolution of gaps occurs simply by
changing the tilt angle, 6.

Our analysis suggests that the best 4mm-group-based structure for obtaining large
absolute band gaps with dielectric columns in air is the structure with glide symmetry,
shown in Fig. 2-3(b). Removing the mirror plane symmetries along the principal axes of
the square lattice (present in the p4mm plane group but not in p4gm) contributes to the
opening of H-polarization gaps, and ultimately produces large absolute band gaps. At
first glance, it might seem unlikely that the glide structure would have any gaps at all.

However, there are many symmetry operations present within this structure, which
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apparently are enough to allow gaps to open. This example illustrates the power of the
symmetry-reduction idea—it provides a rational way to identify new structures with
absolute band gaps that might have otherwise been overlooked. Indeed, it is doubtful as

to whether the structure of Fig. 2-3(b) would have been studied without this motivation.

2.5 Discussion

Though we have explored a method for systematically identifying new photonic
crystal structures, we have not yet detailed a quantitative connection between the degree
of symmetry reduction and the size of the absolute photonic gap. Such a relationship—if
it exists—would be immensely beneficial for the design. of photonic crystals. Other
researchers have also searched for the link between crystal properties and band gap
opening in an attempt to explain and predict the occurrence of photonic band gaps.
Joannopoulos et al.® studied electromagnetic fields and lattice connectivity to understand
photonic gap openings. Cassagne et al.*® have investigated the opening of gaps for 2D
hexagonal structures using a perturbative approach. Although these investigations shed
light into how gap opening occurs, they also fall short of providing physical rules for
selecting the optimal structure. Ideally, deciphering the connection between symmetry
reduction and band overlap should enable one to determine the crystal arrangement that
yields the maximum absolute band gap for a given dielectric contrast. For the single-rod
square lattice, we have seen that band degeneracies at a high symmetry point in the crystal
can be lifted by reducing the lattice symmetry. However, we lack an a priori
understanding as to what “degree” the symmetry should be broken to maximize the
photonic gaps. Photonic crystal modeling is analogous in many ways to electronic crystal
modeling. Though several methods exist for calculating properties of crystals of atoms,
these methods do not allow one to exactly determine the ideal structure to optimize a

given property (e.g., hardness). Instead, one must first propose a structure and then
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calculate its crystal properties to determine if the goal has been met. However, judicious
guesses of promising structures greatly assist in the study of these materials. In photonic
crystal modeling, symmetry reduction can, at the least, be considered as a guiding

principle to the design of new photonic structures.

2.6 Summary and Conclusions

We have shown that the size of absolute photdnic band gaps in two-dimensional
square lattices can be significantly increased by reducing the lattice symmetry.
Specifically, two interpenetrating square lattices with different diameter rods can yield
photonic crystals with gaps significantly larger as compared to the single-rod lattice with
the same dielectric contrast. For air holes in a background medium of GaAs (e=11.4),
the maximum gap size of the double-rod square lattice was nearly three times the size of
the best single-rod lattice band gap at the same dielectric contrast. However, absolute
band gaps for crystals of air rods in background dielectric occur at high filling fractions,
resulting in thin-walled structures that are difficult to fabricate. This problem may be
avoided by fabricating photonic crystals of dielectric rods in air. However, no photonic
band gaps exist for either the single-rod or double-rod lattices of dielectric rods in air. By
removing the mirror planes of the single-rod lattice geometry through the introduction of
the glide symmetry operation, crystals with large absolute band gaps have been obtained.
These band gaps occur at moderate filling fractions (=0.35) and thus should be easier to
fabricate than those of holes in dielectric. Lattice symmetry reduction provides a guiding
principle towards a more rational design of 2D photonic crystals, and might also be

successfully applied for band gap engineering in 3D photonic crystals.
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Fig. 2-1. The two-dimensional single-rod (sites labeled A) and double-rod (sites A and
B) square structures, showing the unit cell and the primitive lattice translation vectors.
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Fig. 2-2. The two-dimensional glide-symmetry square lattice, with the unit cell indicated.
The rod arrangements may be rotated by varying the angle 6 to obtain various structures.
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Fig. 2-3. Two-dimensional square structures produced at tilt angles (a) 6=0°, (b)
6=18.4°, and (c) 8=45°. The arrangement in (a) is the double-rod structure (p4mm),
shown with a larger unit cell. The arrows in (a) illustrate the direction of rotation—
accompanied by lattice compression—that is performed to obtain the glide-symmetry

square lattice (group p4gm) in (b). Further rotation and compression produces the group
p4mm structure in (c).
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Frequency (wa/2nc)

Fig. 2-4. Frequency band plot for the single-rod square lattice of holes (f=0.77) in a
background dielectric (&, =11.4). E-polarization modes are shown by the solid lines, and
H-polarization modes by the dashed lines. The H, and E3 gaps overlap to produce an
absolute band gap (crosshatched region) of width 0.0188(27nc/a).
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Fig. 2-5. Gap map for the single-rod square lattice of air holes in a background dielectric
(&p=11.4). An absolute band gap occurs where the upper two polarization gaps overlap.
The maximum gap occurs at f=0.77 (indicated by the arrow).
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Fig. 2-6. Frequency band plot for the single-rod square lattice of holes (f=0.8) in a
background dielectric (g, =11.4). E-polarization modes are shown by the solid lines, and
H-polarization modes by the dashed lines. The absolute band gap disappears at large
filling fractions due to an H-polarization band degeneracy at lattice symmetry point M.



41

Frequency (wa/2nc)

Fig. 2-7. Frequency band plot for the double-rod square lattice of holes in background
dielectric (ep=11.4), with f=0.8 and $=0.16. Reducing the lattice symmetry by
introducing an additional rod into the unit cell lifts the H-polarization (dashed lines)
degeneracy while maintaining a large E-polarization (solid lines) gap, resulting in a large
absolute band gap (crosshatched region).
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Fig. 2-8. Gap map for the double-rod square lattice (8=0.16) of air holes in a
background dielectric (g,=11.4), showing a significantly larger absolute band gap than
that for the single-rod lattice. The maximum gap of 0.0548(2mtc/a) occurs at a filling
fraction of 0.793 (indicated by the arrow).
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Fig. 2-9. Gap map for the double-rod square lattice (f=0.793) of air holes in a
background dielectric (g, = 11.4) as a function of . Lattice symmetry reduction increases
gap sizes for both polarizations to yield absolute band gaps. The largest absolute gap
occurs at f=0.16 (arrow).
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Fig. 2-10. Gap maps for two-dimensional square structures of dielectric rods (g,=11.4)
in air produced at tilt angles (a) 8=0°, (b) 8=18.4°, and (¢) 8=45°. The lattice filling
fraction in each case is f=0.33. The structures in (a) and (c) belong to plane group
p4mm, and have limited H-polarization gaps. Only the arrangement in (b) possesses the
glide symmetry operation (group p4gm), which opens several large H-polarization gaps to
produce three absolute band gaps. The largest gap (indicated by the vertical arrow) has a
maximum width of 0.0762(2nc/a) at f=1.05. Horizontal arrows in (a) point to defect-
like modes present within the E-polarization gaps.
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CHAPTER 3

A Comprehensive Guide to Two-Dimensional Hexagonal
Photonic Crystals

Abstract

We present an overview of the hexagonal two-dimensional photonic crystal structures
that form the Laue symmetry group 6mm. This symmetry group contains two of the most
widely utilized crystal structures in experiments, the triangular and honeycomb structures.
Using a symmetry-based approach, we compare the band gap properties of several
structures that fall within the 6mm class. For crystals formed of air columns in a high
dielectric background, the triangular lattice is the optimal arrangement for the largest
absolute band gap. The converse arrangement of dielectric rods in air achieves its
maximum band gap in the reduced symmetry triangular arrangement, composed of a
hexagonal lattice interpenetrated by a triangular one with smaller diameter rods. Gap
maps for several important crystal structures are presented as a reference guide for

experimentalists.
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3.1 Introduction

A decade old now, the idea of photonic band gap (PBG) crystals'” has matured
into a research field of its own. Demonstrations of the feasibility of microfabricating
such crystals in two ® and three’® dimensions continue to stimulate investigations into
their applications as well as their fundamental properties. An understanding of PBG
crystal properties is essential not only for developing new optical devices but also for
judiciously choosing the best crystal for a particular application. The design of photonic
crystals, with specific properties defined a priori, remains elusive and presents a
considerable theoretical challenge.

One of the goals of modeling the electromagnetic wave propagation through
periodic dielectric media has been the identification of crystalline structures that possess
large absolute photonic band gaps, most suitable for applications. Many 2D structures
based on the simple Bravais lattices have been studied and some have been shown to
possess absolute band gaps.lo_l6 Often such investigations were not performed with ease
of microfabrication in mind; indeed, some structures with sizable gaps pose considerable
obstacles to microfabrication. For example, the triangular structure of circular cross-
section rods has the largest band gap known of any 2D structure; however, this crystal has
very thin walls between adjacent holes (e.g., ~ 15 nm for visible wavelengths) that are
difficult to realize at small length scales. Thus, an additional aim of modeling is to
identify crystal geometries that best combine large absolute band gaps with
manufacturability.

However, a systematic approach towards targeting new structures for study has
thus far been lacking. What new structures should be studied? How will we know when
the structure with the largest possible band gap has been found? Symmetry, a
fundamental property that both links and differentiates crystal structures, provides a

framework to help address these questions.
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We use a benchmarking technique based on photonic crystal symmetry as a guide
to those arrangements that possess large absolute photonic band gaps. Within a class of
photonic crystal structures, we seek the optimal “amount” of total structure symmetry that
will give rise to the largest absolute band gaps. Different structures may be compared
based on their symmetry properties, and those arrangements that lack sufficient symmetry
properties can be discarded without further investigation. New structures that fall within
the regime of the ideal amount of total structure symmetry can be investigated more
closely. The advantage of such an optimal symmetry principle is that it allows
researchers to focus on the most promising crystal structures, and may also indicate when
the structure with the maximum possible absolute band gap has been found.

Both experimentalists and modeling groups have migrated toward a single class of
structures that have been shown to possess large absolute band gaps. These structures
belong to the hexagonal lattice family, or Laue symmetry group 6mm. Here, we present a
comparison of the structures within this class from the viewpoint of their symmetry
properties. We show how both lattice and point symmetries combine to determine the
band properties of the crystal. The differences in band structure are clearly demonstrated
by a comparison of the crystal gap maps. These gap maps also form a concise, yet

comprehensive, guide to the most utilized 2D PBG structures.

3.2 Symmetry Properties of Laue Group 6mm

There are five plane groups (i.e., two-dimensional space groups) that compose the
hexagonal crystal family: p3, p6, p31m, p3ml, and p6mm."” The first two belong to a
class of structures with relatively low symmetry, the Laue group 6. The last three plane
groups form the Laue group 6mm, and possess a much higher degree of symmetry. The
plane groups p3/m and p3ml each have 6 unique symmetry operations, while p6mm has

12 symmetry operations, the most of any of the 2D lattices. As high crystal symmetry
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plays an important role in opening PBGs, we will investigate 2D photonic crystals that
have Laue group symmetry 6mm. Figure 3-1 illustrates schematically the symmetries
present in each of these plane groups. The unit cell is shown as a rhombus, the typical
crystallographic unit cell representation for the hexagonal crystal family. The solid
symbols mark points of rotational symmetry, with the number of sides »n representing an
n-fold rotational point. Solid lines mark mirror lines, and dashed lines indicate glide lines
(i.e., reflection, followed by translation). The high degree of symmetry present in the
pomm plane group is clearly demonstrated in the figure. The p6mm group yields many
interesting crystal structures, and will be the focus of much of the discussion in this paper.

The plane group alone is not enough to define the entire crystal symmetry; the
point group is also needed to describe the symmetry of the dielectric rods or holes within
the two-dimensional crystal structure. For example, consider a single rod placed at the
corners of the plane group unit cells shown in Fig. 3-1. If the rod has a circular cross
section, then the crystal belongs to plane group p6mm. If the rod has a triangular cross
section, the crystal might have the symmetry of either plane group p3I/m or p3ml,
depending on the orientation of the rod with respect to the unit cell axes. Usually,
choosing circular rods will tend to move the crystal into a higher symmetry group than for
other rod cross-section shapes such as hexagons or triangles. Other properties such as rod
diameter or material can also be used to modify the overall crystal symmetry.

Previous studies of rod geometry (shape) on the photonic band gap properties of
hexagonal lattice structures have shown that circular cross-section rods tend to produce

the largest absolute band gaps and are the preferred shape.'®'®"

Thus, we will study
arrangements of circular cross-section rods with the additional requirement that the rods
do not overlap; this will likely not exclude important crystal arrangements, as it is has

been shown that existing band gaps rapidly disappear when the connectivity of the

structure changes.20
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3.3 Photonic Band Gaps

The two-dimensional photonic crystals are formed by infinitely long rods whose
intersection with a plane forms one of the 6mm lattices. The rods are composed of a
material with dielectric constant g,, embedded in a different background dielectric
material €. In this study, the crystals are formed using two materials, gallium arsenide
(€Gaas = 11.4 at A=1500 nm) and air (g,,=1.0). The GaAs can either fill the crystal rods
or the background (leaving air occupying the rods, producing holes) yielding two
complementary structures for each lattice arrangement.

To obtain the photonic crystal frequency bands, Maxwell’s equations for electro-
magnetic wave propagation are solved using the plane wave expansion technique
described by Ho er al.?' The frequency modes in a two-dimensional crystal separate into
two orthogonal polarizations: H-polarized, with the magnetic field vector aligned with
the rod axes, and E-polarized, with the electric field vector parallel to the rods. This
mode decoupling greatly simplifies the solution of Maxwell’s equations.  Band
calculations for the simple triangular lattice were performed using 469 plane waves, while
all other structures were studied using 1261 plane waves. Crystal arrangements other
than the triangular structure are more complex and require a larger number of expansion

terms to ensure sufficient accuracy (within 1% error).

3.3.1 Triangular Structures

One of the first two-dimensional photonic crystals studied was the simple
structure formed by rods arranged on a triangular lattice.'*'"*** A triangular lattice with
circular cross-section rods is a natural place to begin the investigations as this structure
possesses a high degree of symmetry—an important factor in opening large band gaps.
The simple triangular structure is composed of one rod with point symmetry 6mm in each

unit cell, yielding a structure with p6mm symmetry. A gap map for air columns in a
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background dielectric of &,=11.4 is shown in Fig. 3-2, where nondimensionalized band
frequencies are plotted against rod filling fraction. At high filling fractions an
H-polarization (H;) and E-polarization (E;) gap overlap, producing a large absolute band
gap for all possible wave polarizations and direction of propagation. The maximum size
of the absolute band gap occurs at a filling fraction f=0.823, and is an impressive
A®=0.0759(2nc/a) wide. This frequency domain band gap corresponds to a wavelength
gap of 235 nm, centered at 1500 nm. This absolute band gap remains the largest of all of
the two-dimensional structures studied to date.

The complementary structure of circular cross-section dielectric rods in air does
not fare as well. The gap map for the triangular lattice of €,=11.4 rods in air is shown in
Fig. 3-3. This arrangement is dominated by large E-polarization gaps that exist across a
wide range of filling fractions. One low frequency H-polarization gap (H;) opens at
filling fractions from 0.22 to 0.72, but lies between the two adjacent E-polarization gaps
and does not produce an absolute band gap. A higher frequency H-polarization gap exists
for a limited range of filling fractions (f=0.04-0.17), but also does not overlap with any
of the E-polarization gaps. Only a few H-polarization streaks open within existing
E-polarization gaps, producing small absolute gaps at nondimensionalized frequencies of
approximately 0.8(27mc/a). These tiny gaps appear to be of limited experimental utility.

The dramatic differences between the two complementary triangular structures
has been qualitatively explained by examining the character of the individual
polarizations.* H-polarization gaps are largest when the high dielectric constant material
is arranged in a well connected lattice network, while E-polarization gaps prefer isolated
regions of high dielectric material. Both polarization gaps appear in the triangular lattice
of air columns when the rods are nearly close-packed; under these conditions, a network
of thin high-€ “veins” connect “spots” of dielectric material, simultaneously satisfying the

requirements of both wave polarizations.
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In addition to the material and filling fraction requirements, it is equally important
for the structure to possess the correct amount of symmetry to open absolute band gaps.
Indeed, if large absolute band gaps were dependent only on the lattice geometry, then the
triangular lattice of holes in dielectric should possess a large absolute band gap for other
rod cross-sectional shapes, such as squares or rectangles. As this is not the case,'™"” we
must conclude that rod (scattering element) symmetry is an important factor. Conversely,
since a square lattice of circular cross-section holes in dielectric has a much smaller
absolute band gap than the corresponding triangular case,'” the lattice symmetry must
play a significant role in dictating the frequency band properties. Therefore, it appears
that the combination of high lattice and element symmetry is critical in the formation of
band gaps.

The large absolute band gap of the triangular lattice does not necessarily provide
the optimal structure choice for use in all experiments or devices, due to very thin
dielectric walls present between adjacent air holes at the maximum gap condition. For a
midgap wavelength of 1500 nm and the maximum gap filling fraction of 0.823, the

dielectric walls are as thin as 35 nm. To improve manufacturability at small length

scales, the filling fraction must be reduced below that for the maximum gap condition.

3.3.2 Honeycomb Structures

In an effort to overcome the fabrication difficulties associated with the triangular
lattice structure, attention has turned towards other arrangements. Many different crystal
structures within the p6mm class can be obtained by changing the symmetry of the rods
that compose the crystal. If the single 6mm rod of the triangular lattice is replaced with
two rods, each with 3m. symmetry, the honeycomb (or graphite) structure is obtained.'”"
Like the triangular photonic crystal, the honeycomb lattice also possesses a high degree of

symmetry. The primitive unit cell, however, must now contain two rods instead of one.

Though the overall symmetry class of the structure has not changed, the element
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symmetry of the rods has been reduced and thus the overall symmetry of the honeycomb
structure is slightly lower than that of the triangular structure. In 2D photonic crystals it
has been shown that reducing the symmetry of a structure can cause larger band gaps to
open.lz’14 This principle has been shown to improve the band gaps in some 3D photonic
crystals as well.”'

First, we examine the honeycomb lattice of air columns in a background
dielectric. The gap map for this structure is shown in Fig. 3-4. One absolute band gap
appears for this structure, having a maximum magnitude of A®w=0.0285(2nc/a) at a rod
filling fraction of 0.57. This gap does not surpass the size of the absolute gap present in
the triangular structure; it appears that reduction of rod symmetry has not helped in this
situation. Analyses of many crystal arrangements with the low dielectric constant
material in the rods have shown that large gaps occur at high rod filling fractions. For the
honeycomb structure, the maximum filling fraction before the rods begin to touch
(f=0.605) 1s not large enough to form substantial gaps. Symmetry reduction is not
enough to overcome the fundamental material dependence of the photonic gaps.

For the complementary arrangement of high dielectric constant rods in air, the
situation is reversed and large gaps tend to open at smaller filling fractions. Thus, we
would expect that symmetry reduction could play a favorable role in opening large band
gaps for this honeycomb structure. Indeed, we see in the gap map of Fig. 3-5 that several
large H-polarization gaps have opened up, producing four substantial absolute band gaps.
The largest absolute gap for the honeycomb lattice occurs at a filling fraction f=0.14, and
is 0.0881(2nc/a) wide. Though this band gap is not quite as large as the maximum for the
air-in-dielectric triangular lattice, this structure may be much easier to microfabricate as
no thin walls or tiny features are present; for a midgap wavelength of 1500 nm, the rod
diameters will be 202 nm at the maximum gap condition. The existence of multiple band

gaps in this structure may also provide opportunities for novel applications.
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3.3.3 Reduced Symmetry Triangular Structures

A new crystal structure may be obtained by combining the two different rod
symmetry types of the triangular and honeycomb structures. That is, we include both
6mm and 3m. rods in the same unit cell. If all of the rods are identical, then the crystal
reverts back to the simple triangular structure. However, if the rods of each symmetry
type differ from each other (e.g., different diameters), a new “reduced symmetry
triangular” structure is obtained.'? This structure has also been termed the face-centered
graphite lattice.”

Following the nomenclature in Ref. 12, the ratio of the rod diameters is defined as
B=d>/d;, where the index 1 refers to the 3m. symmetry rods, and index 2 refers to the
6mm rod. The honeycomb lattice is recovered when f=0, and the triangular lattice when
B=1 or oo. The parameter  and the filling fraction f can be varied in an effort to
maximize the absolute PBG. In Fig. 3-6, the effect of changing the rod diameter ratio 3 is
shown for a structure of dielectric rods in air for constant filling fraction f=0.14 (the
maximum gap condition for the honeycomb structure). The absolute gap of the
honeycomb structure is increased through the addition of a small 6mm symmetry rod into
the unit cell, reaching a maximum width when S=0.11. Here, the size of the absolute
gap is 0.0967(2nc/a), an increase of 9.9% over the honeycomb structure gap. However,
the increased gap size has been obtained at the cost of manufacturability; for a midgap
wavelength of 1500 nm, the minimum feature size has dropped from approximately 200
nm in the honeycomb lattice to a mere 24 nm. Though the reduced symmetry triangular
structure has not passed the test of fabricational ease, it sheds light on the effectiveness of
symmetry breaking. For crystals composed of dielectric rods in air, we have seen that no
absolute gap occurs for the triangular structure (all 6mm symmetry rods). A large
absolute band gap opens up for the honeycomb lattice (3m. symmetry rods) that can be
increased even further by combining the two rod types in one crystal structure. Thus, it

appears that the ideal “amount” of symmetry lies somewhere between that of the
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triangular and honeycomb structures. Based on this brief analysis, we might predict that
structures composed of lower symmetry elements than that for the honeycomb lattice will
have correspondingly smaller absolute band gaps.

Now we consider the complementary structure, that of air holes in a dielectric
background. We have already seen that a large gap exists for the triangular lattice, and
that the gap is decreased for the honeycomb structure. Combining the two rod symmetry
types will produce one of two possible outcomes: (1) The gap will be larger than for the
triangular lattice, suggesting that this is the optimal condition to yield the maximum
absolute gap, or (2) the absolute gaps formed by the two rod types will all be smaller than
that for the 6mm rods alone, implying that the triangular lattice forms the optimal
structure. Fig. 3-7 illustrates that the latter prediction is correct. In this gap map, the non-
dimensionalized frequencies are plotted versus rod diameter ratio for a constant filling
fraction of 0.57. The absolute gap for the honeycomb structure is present at S=0 and
becomes steadily smaller as 3 decreases. Two new absolute gaps open at intermediate
values of f, at nondimensionalized frequencies of 0.88(2mc/a) and 0.55(2nc/a).
However, none of these absolute gaps are larger than the maximum gap found for the
triangular structure of holes. The introduction of 3m. rods into the triangular structure
only serves to decrease the size of the absolute band gap.

The results obtained thus far are summarized in terms of the crystal symmetry.
For structures with the high dielectric constant material contained in the rods, the
maximum absolute gap occurs when symmetry elements 6mm and 3m. are both present.
For a photonic crystal of air columns in a high dielectric background, the maximum
absolute gap is found using only 6mm symmetry elements. This suggests that the optimal
element symmetry present within the p6mm plane group has been determined;
introduction of elements with lower symmetry into the unit cell should only decrease the

size of the absolute gaps.
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3.3.4 Other p6mm Structures

Further reduction of the element symmetry can produce other p6mm lattices.
Consider, for example, the structure produced by placing three identical circular cross-
section rods in the unit cell such that they have 2mm element symmetry. This new
arrangement is called the “rotated honeycomb” structure, as the resulting crystal appears
as though the hexagonal cells of the honeycomb lattice have been twisted with respect to
one another. Following the guideline for the correspondence of absolute gaps and lattice
symmetry, the element symmetry in the rotated honeycomb structure is expected to be too
low to produce large absolute PBGs. Figure 3-8 shows that this is indeed the case. The
gap map for a structure of dielectric rods in air is shown for a range of filling fractions.
The structure mostly possesses E-polarization gaps at small filling fractions, though two
thin H-polarization gaps also exist. One gap (H;) overlaps very slightly with the lowest
E-polarization gap (E3) at a filling fraction f=0.4.

To try to improve this tiny absolute gap, we can combine the 2mm symmetry
elements with a higher symmetry element, as was done for the reduced symmetry
triangular lattice case. If a 6mm symmetry rod is added to the unit cell we obtain a new
structure, termed the rotated double-rod structure. Here, an additional parameter (3, the
6mm to 2mm rod diameter ratio) is available to help improve the maximum gap obtained
for the honeycomb lattice of rods in air. The triangular structure is recovered when S=1.
No improvements in absolute gap size are found as f3 is varied, as is illustrated in the gap
map of Fig. 3-9. The maximum absolute gap was that found for the rotated honeycomb
case (=0) at a filling fraction of 0.42. This small absolute gap does not offer any
advantages over those structures previously investigated. However, these results do agree
with the analysis of the optimal amount of structural symmetry. Though at first glance it
may appear that the rotated honeycomb structure is very similar to the honeycomb
structure (compare insets of Figs. 3-5 and 3-8), they display a marked difference in

frequency band properties.
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3.3.5 Boron Nitride Structures

We have exhausted all of the promising crystal structures within the p6mm plane
group, and have developed a hierarchy of element symmetries to produce the optimal
absolute photonic band gaps. However, we still do not know how the photonic gaps of a
crystal outside the p6mm plane group will compare. It is possible that the unique
combination of element symmetry and the symmetry of the plane group will combine to
produce a structure with a larger absolute band gap than was found for the p6mm
structures.

If the two identical 3m. symmetry elements in the hexagonal structure are replaced
with two different 3m. symmetry elements (for example, with two rods of different
diameters), then a new structure is obtained that has the symmetry of the plane group
p3mli. This structure has been termed the boron nitride structure because of the analogy
to the atomic crystal structure of that compound.]3 The p3ml plane group has lower
symmetry than the p6mm group, as there are only 6 unique symmetry operations as
compared with the 12 symmetry operations present in the latter case. Still, this structure
is quite similar to the honeycomb structure, and might offer an improvement upon the
largest gap structure found there.

Figure 3-10 shows the gap map for the boron nitride structure of air cylinders in a
dielectric background material at a rod filling fraction of 0.57. The triangular lattice is
obtained when one of the rods is removed (8=0); the honeycomb structure is produced
when the rods are of equal diameter (f=1). A few small absolute band gaps form for this
structure, but none surpasses the large band gap present in the triangular structure of air
columns in dielectric. This result is also true at higher rod filling fractions. These
observations are in agreement with the optimal symmetry guidelines, as we have already
surmised that the triangular structure will give the largest band gap for a crystal of air

columns in dielectric.
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The opposite configuration of dielectric cylinders in air 18 shown in the gap map
of Fig. 3-11 for a filling fraction of 0.14. The maximum band gap occurs at S=1, the
honeycomb lattice condition. Another respectable absolute band gap also forms at
intermediate values of f, reaching a maximum width of 0.0743(2mc/a) at $=0.34,
slightly smaller than the size of the honeycomb structure gap. After searching a range of
filling fractions for the boron nitride structure, we found that the case when the rods are

of equal diameter (the honeycomb structure) produces the largest absolute band gap.

3.4 Discussion

The band gap results for many specific crystal structures within the 6mm Laue
group have been presented. Most of the crystals belong to the p6mm symmetry group, the
two-dimensional plane group with the highest symmetry. We have also studied one
structure within the p3m/ symmetry group, the boron nitride structure. Notably absent
from the discussion so far have been crystal structures with the symmetry of group p3/m.
However, using circular cross-section rods tends to increase the overall crystal symmetry
of p31m structures to that of either p3mI or p6mm. A true p3I/m symmetry crystal would
require the use of lower symmetry rods (e.g., triangular or rectangular cross-section)
which are expected to yield smaller band gaps, based on previous studies.'®!?

A summary of important properties of the crystal structures formed by air rods in
a high dielectric background is shown in Table 3-1. The large absolute band gap width of
the triangular structure is clear from a comparison of the gap size in wavelength units. If
the band gap is chosen to be centered at 1500 nm, the triangular structure gap would be
234 nm, over three times the size of the honeycomb lattice absolute band gap. Clearly,

the high symmetry of the triangular lattice is the optimal arrangement for crystals of holes

1n dielectric.
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Table 3-2 summarizes the results for two-dimensional crystals of dielectric rods in
air. Here, a much different picture is obtained as the structure symmetry is decreased.
The triangular lattice here does not possess any sizable band gaps. However, significant
benefits are obtained by decreasing the rod symmetry: Large absolute band gaps are
present in both the honeycomb and reduced symmetry triangular structures, both of which
contain rods with 3m. symmetry. The largest band gap found for crystals of dielectric
rods in air is for the reduced symmetry triangular structure, with a bandgap width of
151 nm centered at 1500 nm. However, this structure may not be optimal for device
microfabrication because of the presence of small diameter rods within the crystal. The
smallest rods are 24 nm in diameter at 1500 nm midgap. To overcome the problems
associated with creating these small features, the honeycomb structure may be a better
suited design choice. The band gap (137 nm) is smaller than that for the reduced
symmetry triangular structure, but the minimum feature size is nearly an order of
magnitude larger, at 202 nm. Sacrificing a small amount of band width may be worth the
great gain in fabricational ease. As the symmetry of the rods is decreased even further,
the absolute gap sizes drop off quickly. Thus, for crystals composed of dielectric rods in
air, it appears that the optimal amount of crystal symmetry is that of the maximally
symmetric plane group (p6mm) containing elements that are slightly less symmetric (the
3m. rods).

Why is it that swapping the placement of dielectric material within the crystal
structure changes the symmetry required to produce the maximum absolute band gaps?
The answer is not straightforward, but lies in the complex interplay of the fields and the
dielectric materials. The electromagnetic frequency modes prefer to concentrate their
energy in regions of high dielectric constant in order to lower the mode frequency.” The
energy distribution can be quantitatively stated in terms of the energy density, u, by the

relation
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1
u=5(E-D+B~H):eE2. 3.1

Waves with orthogonal polarizations will behave differently in structures that have
isolated high-¢ regions versus those with connected high-€ material due to the dissimilar
electromagnetic field concentrations. It may also be expected that the mode degeneracies
in the two complementary crystal structures will also be different. In the case of air holes
in dielectric, the band gaps in the triangular structure are not limited by band
degeneracies. Lowering the symmetry in this case cannot improve the band properties,
and only serves to decrease the gap size due to a lowering of the total rod filling fraction.
However, for dielectric rods in air, the H-polarization gaps are restricted because of band
degeneracies at high lattice symmetry points. Crystal symmetry reduction lifts these band
degeneracies, greatly increasing the magnitude of the H-polarization gaps and creating
large absolute band gaps where none existed for the triangular structure. Both material
filling fraction and crystal symmetry must be optimized to produce these large absolute
PBGs.

It is already known that high rod filling fractions are favored in crystals comprised
of air holes, while dielectric rod arrangements prefer smaller filling fractions. In addition,
we have determined the optimal amount of symmetry through a comparison of structures
that fall within the hexagonal group of two-dimensional crystals. This approach offers a
guide towards new crystal arrangements, and may suggest when the crystal structure with
the largest absolute band gaps has been found. Analysis of crystal symmetry provides a
general set of rules for exploring new geometries that should be applicable to 3D

photonic crystals as well.
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3.5 Conclusions

Using a symmetry analysis approach, we have investigated a variety of hexagonal
two-dimensional photonic crystal structures. This methodical approach allows one to
delineate the relationship between rod and crystal symmetries and the resulting photonic
band structure. Symmetry analysis has been used to identify the crystal geometries that
yield large band gaps for the two complementary dielectric configurations (air columns in
dielectric, and dielectric rods in air).

For crystals that are comprised of air columns within a dielectric background
material €,=11.4, the maximum photonic band gap is found for the triangular lattice
structure of circular cross-section rods with filling fraction f=0.823. The magnitude of
the absolute photonic band gap for this structure is Aw=0.0759(2mnc/a), and is the largest
band gap (in wavelength) found in any of the two-dimensional photonic structures.
However, the thin walls present within the crystal render microfabrication difficult, and
thus the complementary crystal arrangement (dielectric rods in air) may be preferred. For
dielectric constant €, = 11.4 rods in air, the optimal structure was found to have a blend of
6mm and 3m. symmetry elements. This reduced symmetry triangular structure has a
maximum absolute photonic band gap of Aw=0.0967(2nc/a) at a rod filling fraction
f=0.14 and a rod diameter ratio B=0.11. As was the case for the triangular lattice, the
small features within this crystal structure (in this case, small diameter rods) may again
lead to problems in fabrication. It may be advantageous to sacrifice some of the photonic
gap width in exchange for manufacturing robustness by reverting to the honeycomb
structure. Though the gap size is 9% smaller than that for the reduced-symmetry
triangular lattice, the smallest feature size is 8.5 times larger, making this structure easier

to fabricate.



63

3.6 References

1

11

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and
Electronics,” Phys. Rev. Lett. 58, 2059 (1987).

S. John, “Strong Localization of Photons in Certain Disordered Dielectric
Superlattices,” Phys. Rev. Lett. 58, 2486 (1987).

J. R. Wendt, G. A. Vawter, P. L. Gourley, T. M. Brennan, and B. E. Hammons,
“Nanofabrication of Photonic Lattice Structures in GaAs/AlGaAs,” J. Vac. Sci.
Technol. B 11, 2637 (1993).

K. Inoue, M. Wada, K. Sakoda, A. Yamanaka, M. Hayashi, and J. W. Haus,
“Fabrication of Two-Dimensional Photonic Band Structure with Near-Infrared Band
Gap,” Jpn. J. Appl. Phys. 33, 1.1463 (1994).

U. Griining, V. Lehmann, S. Ottow, and K. Busch, “Macroporous Silicon with a
Complete Two-Dimensional Photonic Band Gap Centered at 5 um,” Appl. Phys. Lett.
68, 747 (1996).

T. F. Krauss, R. M. De La Rue, and S. Brand, “Two-Dimensional Photonic-Bandgap
Structures Operating at Near-Infrared Wavelengths,” Nature 383, 699 (1996).

C. C. Cheng and A. Scherer, “Fabrication of Photonic Band-Gap Crystals,” J. Vac. Sci.
Tech. B 13, 2696 (1995).

V. N. Bogomolov, S. V. Gaponenko, A. M. Kapitonov, A. V. Prokofiev, A. N.
Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, “Photonic Band Gap in the
Visible Range in a Three-Dimensional Solid State Lattice,” Appl. Phys. A 63, 613
(1996).

C. C. Cheng, A. Scherer, V. Arbet-Engels, and E. Yablonovitch, “Lithographic Band
Gap Tuning in Photonic Band Gap Crystals,” J. Vac. Sci. Tech. B 14, 4110 (1996).

P. R. Villeneuve and M. Piché, “Photonic Band Gaps in Two-Dimensional Square and
Hexagonal Lattices,” Phys. Rev. B 46, 4969 (1992).

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a
Photonic Band Gap in Two Dimensions,” Appl. Phys. Lett. 61, 495 (1992).



12

14

15

16

20

21

22

23

64

C. M. Anderson and K. P. Giapis, “Larger Two-Dimensional Photonic Band Gaps,”
Phys. Rev. Lett. 77, 2949 (1996).

D. Cassagne, C. Jouanin, and D. Bertho, “Photonic Band Gaps in a Two-Dimensional
Graphite Structure,” Phys. Rev. B 52, R2217 (1995).

C. M. Anderson and K. P. Giapis, “Symmetry Reduction in Group 4mm Photonic
Crystals,” Phys. Rev. B 56,7313 (1997).

D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal Photonic-Band-Gap Structures,”
Phys. Rev. B 53, 7134 (1996).

C.-S. Kee, J-E. Kim, and H. Y. Park, “Absolute Photonic Band Gap in a Two-
Dimensional Square Lattice of Square Dielectric Rods in Air,” Phys. Rev. E 56, R6291
(1997).

International Tables for Crystallography, edited by T. Hahn, D. Reidel Publishing
Company, Boston (1987).

T. Baba and T. Matsuzaki, “Theoretical Calculation of Photonic Gap in Semiconductor
2-Dimensional Photonic Crystals with Various Shapes of Optical Atoms,” Jpn. J.
Appl. Phys. 34, 4496 (1995).

R. Padjen, J. M. Gerard, and J. Y. Marzin, “Analysis of the Filling Pattern Dependence
of the Photonic Bandgap for Two-Dimensional Systems,” J. Mod. Opt. 41, 295 (1994).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton
University Press, Princeton, 1995).

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic
Dielectric Structures,” Phys. Rev. Lett. 65, 3152 (1990).

M. Plihal and A. A. Maradudin, “Photonic Band Structure of Two-Dimensional
Systems: The Triangular Lattice,” Phys. Rev. B 44, 8565 (1991).

Y. Chen, “Photonic Band Gaps of Two-Dimensional Photonic Lattices: The Face-
Centered Graphite Structures,” Superlattices and Microstructures 22, 115 (1997).



65

(a)

(b)

Fig. 3-1. Symmetry properties of the Laue group 6mm plane groups (a) p31im, (b) p3ml,
and (c) p6mm. All mirror lines (solid) and glide lines (dashed) are shown inside the
lattice unit cell. Points of rotational symmetry (twofold, threefold, sixfold) are indicated

by the filled symbols (ovals, triangles, hexagons, respectively).
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Fig. 3-2. Gap map for the triangular structure of air holes in a background dielectric
(ep=11.4). A large absolute band gap occurs where the lowest H-polarization and
E-polarization gaps overlap. The maximum gap occurs at f=0.823 and has a magnitude
Aw=0.0759(2rc/a), the largest absolute band gap of any two-dimensional photonic
crystal. The hatched region represents filling fractions where the rods overlap.
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Fig. 3-3. Gap map for the triangular structure of dielectric rods (g,=11.4) in air. Though
several wide E-polarization gaps exist, the H-polarization gaps are limited in size and do
not overlap with the E-polarization gaps to produce an absolute gap.
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Fig. 3-4. Gap map for the honeycomb structure of air holes in a background dielectric,
showing a small absolute band gap formed by the overlap of the Hs and E¢ bands. The
maximum gap width is Aw=0.0285(2nc/a) at f=0.57, much smaller than for the
triangular structure. The reduced rod symmetry has resulted in a smaller band gap.
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Fig. 3-5. Gap map for the honeycomb structure of dielectric rods in air. The reduced rod
symmetry has opened several large H-polarization gaps to produce four absolute band
gaps. The largest occurs at f=0.14 and has a magnitude of Aw=0.0881(2nc/a).



70

)
=
N
—
®
s
>
)
c
)
S
o
o)
| .
L

o TR

Bl H-Polarization 000

02} X

@000

| N NN

0.0 i 1 1 i

0.0 0.2 0.4 0.6 0.8 1.0
Rod Diameter Ratio (B)

Fig. 3-6. Gap map for the reduced-symmetry triangular structure (f=0.14) of dielectric
rods in air, as a function of 8. The large absolute gap of the honeycomb structure (shown
at B=0) is increased further by including higher symmetry (6mm) rods in the unit cell.
The maximum absolute gap occurs at §=0.11.
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Fig. 3-7. The gap map for the reduced-symmetry triangular structure of air holes at
f=0.57 possesses three absolute band gaps through a range of 3 values. However, none
of these gaps are larger than that of the triangular structure.
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Fig. 3-8. Gap map for the rotated-honeycomb structure of dielectric rods in air. Two
H-polarization gaps exist, but minimal overlap occurs between the H; and E; gaps. The
rods composing this structure have low symmetry (2mm), greatly reducing the size of the
band gaps. Compare this gap map with that in Fig. 3-5.
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Fig. 3-9. Gap map for the rotated double-rod structure (f=0.42) versus f, the ratio of the
2mm to 6mm rod diameters. The introduction of a higher symmetry (6mm) rod into the
unit cell is not effective in yielding larger gaps. The triangular structure is recovered at
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Fig. 3-10. Gap map for the boron nitride structure of air holes in dielectric for f=0.57.
Though H-polarization and E-polarization gaps exist and overlap to produce absolute
band gaps, they do not exceed the maximum absolute gap of the triangular structure.
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Fig. 3-11. Gap map for the boron nitride structure of dielectric rods in air for the
maximum gap case of f=0.14. An absolute gap occurs from the overlap of Hy and Es at
intermediate values of the rod diameter ratio . The absolute gap at S=1 corresponds to
that of the honeycomb structure, and is the largest gap found for the boron nitride
structure as well.
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CHAPTER 4

Defect Modes in Two-Dimensional Photonic Crystals

Abstract

Physical defects in two-dimensional square photonic crystal structures are studied using
the supercell plane-wave solution technique. Changing the radius of one of the rods in
the crystal introduces allowed frequency states into the photonic band gap. These modes
are strongly localized about the defect site and exhibit complex electromagnetic field
patterns. Defect modes for the crystal of holes in a dielectric background are present in
the absolute band gap for both E- and H-polarization waves, but these do not overlap to
create an absolute defect band. The double-rod square structure has two rod types per
unit cell, yielding different defect characteristics depending on which rod is altered.
Selection of the smaller radius rod as the defect site decreases the effective size of the
resonance cavity and reduces the number of allowed defect modes. The additional
parameter afforded by the double-rod lattice may be useful in designing photonic crystal

defect modes for applications.
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4.1 Introduction

Perfect photonic crystals can inhibit electromagnetic waves from propagating
through the crystal over a continuous range of frequencies, called the photonic band gap.'
Band gaps have their origin in the scattering processes that occur when electromagnetic
waves interact with the interfaces of dissimilar materials comprising the photonic crystal.
By appropriately choosing the properties of the scattering elements (e.g., size, dielectric
constant, lattice arrangement), one can design a crystal with a specific band gap. Multiple
band gaps are possible for certain polarizations of the incident electromagnetic radiation.
However, “absolute” band gaps that exist for all possible wave polarizations are usually
limited in extent and harder to realize. Still, several different structures have been shown
both theoretically and experimentally to possess photonic band gaps for all wave vectors
and pol;’:lrizations.z”6

The ability to control the reflection and transmission properties of light could lead
to new physical phenomena when excited atoms are contained within a photonic crystal.
Suppression or enhancement of spontaneous emission,”’ photon bound states,® and
changing of the photon orbital angular momentum’ are just a sampling of the events
which can come about because of the interplay of atoms and photons with photonic
crystals. Utilizing these properties could greatly improve the operation of various
optoelectronic devices.'®"® In addition, novel optical devices such as perfect channel-
drop filters'* are possible by utilizing the symmetry properties of defects in photonic
crystals.

For applications such as semiconductor lasers and light-emitting diodes, it is
desirable to channel as much of the energy as possible into a single mode. A perfect
photonic crystal is not directly helpful for this application, as all frequencies within the
gap are forbidden. With minor alterations, however, the crystal can provide narrow

frequency modes within the band gap where light propagation is allowed.
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A photonic band gap bears similarities to an electronic band gap: the electronic
states in semiconductor crystals are arranged in energy bands separated by regions where
no wavelike electron orbitals exist—the electronic band gap. Though this property makes
semiconductors unique and important among the world of solids, these materials are most
useful in applications when doped with small amounts of impurities. Very small amounts
of dopant species can substantially alter the electronic properties of the bulk
semiconductor. Through careful control of the amount and type of dopants used, discrete
energy states are introduced into the electronic band gap. Electrons from the valence or
conduction bands can hop into the band gap and occupy these new states at energies that
were disallowed in the undoped semiconductor.

The introduction of defects into a photonic crystal can similarly affect the
properties of light propagation. The photonic crystal can be “doped” by adding or
removing material from certain sites within the lattice, or by replacing a small section of
the crystal with a different dielectric constant material. These defect sites create new
allowed frequency states within the band gap, providing a place for electromagnetic

modes to couple to atoms, dipoles, or the substrate material.

4.2 Analogies Between Photonic Crystals and Semiconductors

Photonic crystal properties can perhaps be more easily understood by comparing
them to the electronic properties of solid-state materials, where the concepts are more
likely familiar. Many of the descriptive terms applied to the phenomena surrounding
photonic crystals have their origin in the techniques and nomenclature of quantum
mechanics and solid-state physics.

In the quantum mechanical description of atoms or molecules, the Schrodinger
equation is used to obtain the allowed values of the energy for the system of particles. An

isolated atom has a distinct set of energy levels that arise from the potential energy of the
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electrons in the presence of the atomic nucleus and other electrons. In the case of
molecules, additional energy states are formed by the molecular vibrations and rotations.
When these atoms or molecules are in close proximity to each other, as in a semi-
conductor material, they can no longer be treated as single entities, but rather behave as a
single system with its own properties. Outer shell electrons are no longer bound to a
single atom but belong to the bulk material. The close arrangement of atoms in a crystal
lattice creates a periodic electronic potential. The solutions of the Schrodinger equation
for the electron energy levels of this crystalline system split into many levels, spaced so
tightly that they form energy bands. The highest partially filled energy band is called the
conduction band, which is separated from the valence band below by the energy band
gap.

A photonic crystal resembles a semiconductor material, where the atoms are
replaced by macroscopic quantities of dielectric material and the electrons are instead
electromagnetic waves. A classical formulation is used to describe wave propagation
through the periodic potential created by the crystalline arrangement of two (or more)
materials with different dielectric constants. The allowed frequencies of the electro-
magnetic waves are solutions of the Maxwell equations and yield propagating modes
inside the photonic crystal. For most bulk dielectric materials, the frequency solutions
criss-cross through k-space, forming a continuous spectrum of allowed frequency bands.
However, particular arrangements of dielectric materials can give rise to regions of the
frequency spectrum in which no allowed frequency bands exist for all values of the
wavevector. A “photonic band gap” opens between the allowed frequencies which is
analogous to the energy band gap for semiconductors. Borrowing terminology from
solid-state physics, we refer to the frequency band that forms the lower boundary of the
photonic band gap as the valence band while the upper boundary defines the edge of the

conduction band. As solutions to the Maxwell equations do not exist for frequencies
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within the photonic band gap, electromagnetic waves with frequencies that fall within this
gap are evanescent in the crystal.

The electrical and optical properties of semiconductor materials are significantly
altered through doping, the intentional addition of small amounts of impurities. A dopant
atom that has extra valence electrons as compared to the semiconductor atom it has
replaced in the crystalline lattice is called a donor, as it contributes mobile electrons to the
material. Similarly, an acceptor has fewer valence electrons than the normal lattice
atoms, and helps create an excess of holes. In addition to influencing the conductivity of
the material, the dopants also introduce discrete impurity energy levels into the band gap.
Donor states are measured relative to the conduction band edge; acceptor states are
likewise measured from the valence band edge.

It is similarly possible to dope a photonic crystal through the intentional
disruption of the dielectric “atoms” in the crystal structure. A defect can be easily
introduced by changing the size, shape, or dielectric constant of a feature in the crystal.
The introduction of a single defect site changes the local potential function for an
electromagnetic wave, creating the possibility of allowed frequency solutions that are
forbidden in the bulk photonic crystal. These frequency defect modes lie within the
photonic band gap, and are localized in space about the defect site. Extended modes of
long range defect states can be created by disrupting the periodicity of the crystal through
a line of defects or a physical space in between a plane of unit cells. In this way, defect
modes can be guided through the photonic crystal structure by propagating along the path
of defects.

As the dopant concentration in a semiconductor material increases, the discrete
energy levels inside the band gap start to split into bands. Under conditions of very heavy
doping, the donor (acceptor) impurity band can join with the conduction (valence) band,

effectively decreasing the width of the band gap. As will be shown later, a similar effect
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is also observed in photonic crystals when several defects are closely spaced in the

structure.

4.3 Method of Defect Calculations

The plane wave expansion method, described in detail in Chapter 2, was used to
calculate the photonic crystal frequency band structure. This method utilizes periodic
boundary conditions at the edge of the unit cell, and implicitly assumes that the crystal is
infinite in extent. The frequency solutions to Maxwell’s equations are governed by the
geometry of the materials within the unit cell as well as these periodic boundaries. The
plane wave expansion method can be extended to crystals containing a defect by using a
“supercell” approach.15 Several small unit cells are combined together and the defect is
introduced into this structure. The periodic boundary conditions are then applied to this
large supercell, effectively creating an infinite crystal with regularly spaced defects. To
determine the properties of a single defect, the supercell must be large enough in size so
that the interaction between two adjacent defects is negligible. That is, we desire each
defect to act like it is the only defect in an otherwise perfect crystal. As the defect modes
inside the photonic crystal are localized about the defect site, it is possible to satisfy this
requirement with a reasonably sized supercell (36 to 100 individual unit cells). This
supercell plane wave method provides a convenient way to calculate the band structure of
crystals with defect modes.

The greatest drawback of the supercell approach is that a large number of plane
waves must be used to accurately describe the complex arrangement of dielectric material
within the supercell. To retain the same level of accuracy as for a single unit cell
calculation, a supercell comprising N unit cells requires the use of N times the number of
plane waves.'° Retaining a large number of plane wave requires much computer memory

and also slows down calculations. Therefore, the supercell size must be judiciously
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chosen so that it is large enough to reduce the artificial interactions of adjacent defects,
yet sufficiently small to produce accurate calculations with a reasonable number of plane
waves.

The calculations of the band structure and defect mode frequencies were
performed using 1849 plane waves, the maximum possible within existing computer
memory limitations. The profile of the dielectric function is well-described throughout
most of the unit cell and the error introduced by the overshoot in the dielectric function

(Gibbs’ phenomenon at a jump discontinuity) is tolerable.

4.4 Results

4.4.1 Square Lattice of Holes in Dielectric

We first consider the single-rod square lattice of air holes in a background
dielectric material (¢,=11.4). The band structure for the perfect crystal was previously
discussed in Chapter 2, with the gap map shown in Fig. 2-5. A full photonic band gap is
produced by an overlap of the H-polarization gap (H;) with the upper E-polarization gap
(E»); the largest gap corresponds to a filling fraction of f=0.77. Now we investigate the
effects of introducing a physical defect into the crystal.

For the single-rod square lattice, f=0.77 corresponds to a hole radius of
r=0.495a. As the lattice is nearly close-packed, the defect is most easily created by
decreasing the size of one of the holes in the crystal (i.e., more high dielectric constant
material is added). The hole is entirely filled in when r=0.

We begin by examining the influence of the defect on the lower E-polarization
gap, which occurs between the first and second bands. Figure 4-1 shows the results of the
band gap calculations for supercells with an increasing number of unit cells. As the
defect hole is slowly filled in, three defect states enter the photonic gap from out of the

conduction band. Since these modes originate in the conduction band they are termed
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“donor” levels, utilizing the analogy with semiconductors. The first donor mode appears
when the defect radius is r=0.46a. This is a non-degenerate mode that traverses across
the width of the band gap as the radius of the defect hole gets smaller. This mode merges
with the valence band at ¥=0.11a. Two other defect modes also appear as the hole radius
changes: another non-degenerate defect state, and a state composed of a pair of
degenerate modes. Like the first defect mode, these also descend into the photonic gap
from out of the conduction band. However, they remain well within the gap even when
the defect hole is entirely closed. A unique feature of these latter two defect bands is that
they cross when the hole radius is 0.3a. At this point, there are three distinct
electromagnetic field modes (one non-degenerate mode plus a degenerate pair) that share
a common frequency. Comparison of the three plots in the figure shows that the defect
bands become narrower in frequency as the size of the supercell increases. When the
supercell size is small [Fig. 4-1(a)], the electromagnetic fields localized about the defect
sites do not dissipate sufficiently before an adjacent defect is encountered. The
communication between these defect sites results in a broadening of the defect bands."’
This phenomenon is analogous to the broadened energy levels present within the energy
gap of a heavily doped semiconductor. The defect modes of the photonic crystal also
show slightly more broadening near the edges of the gap. This broadening comes about
as the localized nature of the defect mode meets with the extended modes of the
continuum of states. The transition is not abrupt; rather, the localized mode tries to blend
smoothly into the continuum, gradually becoming less and less confined to the site of the
physical defect as the defect mode approaches and enters the band of states.

The electric field is polarized along the axis of the rods and therefore it is easy to
plot the magnitude of the electric field inside the supercell. The distribution of the
electric field inside the 100 unit supercell is shown in Fig. 4-2 for the three defect modes,
for various sizes of the defect rod. The character of each mode remains the same even as

the defect size changes. The first defect state (mode 1) has a maximum field intensity
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located at the very center of the defect. Following the descriptive terms used in Ref. 18,
we label this mode a monopole since it possesses a single maximum without a node in the
azimuthal direction. The second defect state (mode 2) is deemed a quadrupole, also with
the electric field localized about the defect site. The bottom row of the plot shows one of
the pair of degenerate dipole states of the third defect mode. As one moves from left to
right in the figure, the defects descend further into the photonic gap away from the
conduction band edge. The modes become more localized about the defect site, as
evidenced by the smaller field intensities near the edges of the unit cell. The
electromagnetic fields are strongly localized in space around the location of the defect.

The introduction of a defect also influences the bands that form the absolute band

Though we can still apply the same supercell solution technique to find the defect
characteristics as was done before, we encounter some difficulties. The bands at higher
frequencies are much more sensitive to changes in the crystal structure than are the lower
bands.'® Similarly, these higher bands will also be sensitive to artificial changes in the
lattice structure, as those introduced through the error in the Fourier series expansion of
the dielectric constant. Thus, to achieve the same degree of accuracy in the solutions for
these higher bands requires many more plane waves than for the lower bands.
Unfortunately, the computer memory resources available limit the maximum number of
plane waves to 1849, as used for the lower E gap calculations. A preliminary study
showed that significant error (up to 15 percent variation in the band gap width) is present
in the frequency solutions for the higher gaps. It should be noted that this error is not
inherent to the solution method, but rather a reflection of our failure to retain a sufficient
number of terms in the plane wave expansion.

Due to the large errors in the calculated frequencies, a definitive description of the
defect frequencies present in the absolute gap is difficult. However, if the solutions for

these higher frequency gaps are accepted with caution, it is possible to gain some
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understanding of the defect mode characteristics. With this warning in mind, we proceed
with a qualitative description of the defect states.

Figure 4-3 shows the band frequencies as a function of the defect size for the
H-polarization gap. The supercell used in this calculation contains 64 unit cells. As
before, we begin with a perfect crystal with all of the holes having a radius of 0.495a,
then slowly decrease the size of one of the holes. A total of five defect states are seen to
drop down out of the conduction band and into the photonic gap. All of these states
appear as bands, artificially broadened due to the small size of the supercell. This
impurity band effect is especially apparent near the conduction band edge. Sudden jumps
in the width of the photonic band gap occur as the broad defect bands merge with the
continuum. Note that this effect is much more severe for this structure than for the E;
gap—another indicator of the sensitivity of these higher lying bands. The degree of
degeneracy of a particular defect mode is shown in the figure with solid and dashed lines
representing non-degenerate and doubly-degenerate modes, respectively. The first four
defect states traverse the gap as the defect rod radius decreases, and eventually reach the
valence band. The last defect mode, a degenerate pair, remains contained within the band
gap even when the hole has been completely filled (r=0).

The band plot for the upper E-polarization gap displays similar characteristics, as
shown in Fig. 4-4. Again, five defect states are present for this structure, three non-
degenerate modes, and two doubly-degenerate ones. In contrast to the H-polarization
case, these modes enter the photonic gap in close proximity to each other. The first two
modes appear to cross in frequency twice as they make their way through the gap. The
second and third defect appear to merge with each other before entering the valance band.
Likewise, the fourth and fifth bands leave the conduction band intertwined before
splitting into two separate defect modes. It is difficult to state with certainty if these band
mergers are the result of interaction between the localized electromagnetic fields of

adjacent defect sites, or if they are a symptom of the poor calculation accuracy. The
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results of the lower E-polarization gap suggest the former to be true, and that using a
larger supercell will produce discrete frequencies that do not merge together.

Now that we have considered the effects of the crystal defect on each wave
polarization separately, we can combine the results to model the modes present inside the
absolute band gap. Though a fairly dense array of defect states appear over most values
of the defect rod radius, none of the defect modes from the two orthogonal polarizations

overlap. An “absolute defect” within the absolute gap does not exist for this structure.

4.4.2 Square Lattice of Dielectric Rods in Air

The band structure of a photonic crystal composed of dielectric rods in air was
examined in Chapter 2. Recall that for the single-rod structure, several E-polarization
gaps exist over a large range of filling fractions, while no H-polarization gaps appear for
any rod configuration. The addition of a different diameter rod into the unit cell was
shown to greatly increase the size of the absolute gap for the crystal structure of holes in
dielectric. However, applying the same technique in the case of dielectric rods does not
result in the appearance of any significant H-polarization gaps. A gap map for the
double-rod crystal structure at a filling fraction of 0.126 is shown in Fig. 4-5, where non-
dimensionalized frequencies are plotted as a function of the rod-diameter ratio. Though
gaps for H-polarized waves are clearly absent, the E-polarization gaps remain large at
several values of the rod diameter ratio. Consider the crystal formation at the point where
B=0.3. The lowest frequency gap for this structure appears between bands E; and E-,
and is only slightly reduced in size from the single-rod structure (at f=0). An important
difference between these structures is that in the former case two different kinds of
elements exist inside the unit cell. There is now a choice as to which element may be
perturbed to create a defect in the crystal, and the properties of the defect mode should be

different depending on which type of rod is manipulated.
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First, we examine the lowest E-polarization gap when a defect is introduced into
the single-rod structure. We begin with a perfect crystal where every rod has a radius of
0.2a (filling fraction f=0.126), and slowly decrease the radius of one of the rods inside a
100 unit supercell. This crystal structure has previously been investigated by another
glroup19 and shown to have many interesting defect properties. We will present our
results here for completeness and comparison with other crystal structures. Figure 4-6
shows the frequencies of the defect modes inside the photonic band gap as the radius of
the defect rod changes. The perfect photonic crystal is represented by the vertical dashed
line. Almost immediately after the radius of the rod is less than 0.2a, a defect state enters
the gap from the valence band. This non-degenerate mode increases in frequency as the
defect rod gets smaller, ending with a frequency of 0.38(2mc/a) when the rod 1is
completely removed. This mode is the only one that appears when material is removed
from the crystal. In contrast, many defect states appear when material 1s added to the
lattice by increasing the size of the defect rod. The first mode is a doubly-degenerate
state that appears out of the conduction band at a defect radius of 0.24a. This mode
sweeps across the gap, rejoining the continuum of states in the valence band at r=0.44aq.
At about the same point, three non-degenerate states drop out of the conduction band and
begin to sweep their way across the gap. Five other defect modes also appear as the size
of the defect rod is increased to 0.8a, when it begins to touch the nearest neighbor rods.

Now, consider a double-rod crystal structure that has the same filling fraction
(f=0.126) as the above case but with a rod diameter ratio of $=0.3. The radii of the rods
in this structure are therefore either 0.271a or 0.08134, and there is a choice as to which
element to select as the site of the crystal defect. Varying the size of one of the larger
rods results in the defect band plot shown in Fig. 4-7. This plot is very similar to that for
the single-rod structure. Again, one non-degenerate acceptor mode emerges from the
valence band when the size of the rod is decreased. For an increase in the rod radius, a

doubly degenerate donor appears, followed by three non-degenerate modes. The relative
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position and slope of all of these modes is quite similar to what was found in Fig. 4-6.
However, the bands plots for these two structures differ in the modes that appear at large
values of the defect radius; the last three non-degenerate modes that were present in the
single-rod structure are absent for the double-rod case.

A very different defect band structure is obtained when the smaller radius rod is
chosen as the defect site (Fig. 4-8). In this case, there are no acceptor modes present even
when the small rod is entirely removed from the structure. When the rod diameter is
increased above 0.12a a non-degenerate mode drops out of the conduction band and
sweeps across the gap, merging with the valence band at 0.32a. A range with no defect
modes follows until a doubly-degenerate donor mode appears at 0.4a. It is joined by
three non-degenerate defect modes as the rod radius increases further. These modes
remain within the band gap even when the defect rod radius is increased to the maximum,
where it touches the nearest neighbor rods. The defect structure for the smaller radius rod
supports fewer modes than was the case for the larger rod defect, even though the bulk
crystal structure is identical for both. We interpret this difference as the result of a
change in the effective size of the resonance cavity created by the dielectric material
surrounding the defect. The larger radius rods primarily contribute to confinement of the
defect mode, as the greater extent of high dielectric constant presents a larger barrier to
the light than do the smaller rods. The smaller rod defect is enclosed by four large rods as
nearest neighbors, creating a smaller resonance cavity than for the case of the large rod
defect which is enclosed by other large rods as second-nearest neighbors. Since fewer
modes can exist inside a smaller cavity volume, we see fewer defect modes present for
the small rod defect that for the large rod case.

Additional information is gained through comparison of the electric field
distributions for the defect modes in each of the above structures. The modes for the
single-rod lattice with rods of radius 0.2a are shown in Fig. 4-9. The field distribution for

the acceptor mode at r=0.075a [Fig. 4-9(a)] shows that the defect is a classic monopole:
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the field is concentrated at the center of the defect and decays rapidly away from this site.
The other electric field patterns in Fig. 4-9(b)—(j) are the donor modes shown in the order
in which they appear in the photonic gap as the defect rod radius is increased. In order to
be proper eigenfunctions (i.e., solutions of the Maxwell equations subject to the boundary
conditions of the photonic crystal) each mode must be orthogonal to the others.” This
requirement gives birth to a variety of fascinating field patterns that surround the defect.
The dipole in (b) is one of the pair of doubly-degenerate states that appear at a defect rod
radius of 0.3a. The other mode of the degenerate pair (not shown) is rotated 90° with
respect to this one, keeping in line with the 4mm symmetry of the structure. This mode
pair is followed by three non-degenerate modes: (c) a quadrupole, (d) another quadrupole
with different orientation, and (e) a second-order monopole. These field patterns are
shown at rod radii where the modes occur at frequencies near the middle of the photonic
gap, such that localization of the fields about the defect should be the greatest. One of a
degenerate pair of hexapole modes is shown in (f), perhaps a surprising field pattern
considering the 4mm lattice symmetry. Another mode of a degenerate pair, a second-
order dipole, occurs in (g). The modes of these degenerate pairs transform into each other
under a 90° rotation, satisfying the point symmetry of the defect site within the supercell.
Increasing the radius of the defect rod further yields octopoles in (h) and (i), and finally a
second-order monopole in (j). These last three modes are shown for the case when the
defect rod just begins to touch its nearest neighbors (r=0.8a).

Next, we compare the electric field distributions for the double-rod structures.
Figure 4-10 shows the defect modes present for the case discussed previously, when one
of the large rods is selected as the defect. A monopole acceptor mode appears in (a) when
the rod radius is decreased to r=0.07a. This mode pattern is very similar in shape to that

in Fig. 4-10(a), but the maximum magnitude appears to extend over a larger area of the

" The exception to this requirement is in the case of degenerate modes, which have equal
frequencies and whose eigenfunctions are not necessarily orthogonal.
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unit cell. This observation also supports the conjecture that the effective cavity volume of
the defect site in this structure is larger than for the small rod defect. The field plots in
(b)—(g) are the donor modes for this structure. Modes (b), (f), and (g) are one of doubly-
degenerate pairs, while (c), (d), and (e) are non-degenerate. The electric field patterns
evolve in the same manner as the modes for the single-rod structure, with the exception
that the orientations of the quadrupole modes appear to be reversed. Actually, it is
because the position of the large rods nearest the defect site that are rotated 45° with
respect to the nearest neighbor rods for the single-rod structure that causes the apparent
switch in the order of the modes.

The electric field patterns for the double-rod lattice with the rod of smaller radius
used as the defect site are shown in Fig. 4-11. As was shown in the band plot for this
structure, no acceptor modes exist even for complete removal of one of the rods. Thus,
the field pattern of the first donor mode can take the form of a monopole, as shown in
Fig. 4-11(a). Note how much more localized this mode appears compared with that of
Fig. 4-10(a). Further increase in the radius of the defect rod leads to a degenerate dipole
pair shown in (b), two non-degenerate quadrupoles in (c) and (d), and a second-order
monopole in (¢). The field plots for the last two modes are shown for the case when the
defect rod is nearly touching the nearest neighbor rods. The defect frequencies are still
fairly close to the conduction band edge at this point, as recognized from the less-

localized appearance of the electric fields in the plots.

4.5 Discussion

In the design of photonic crystals with physical defects for optoelectronic
applications (e.g., light-emitting diodes) two factors must be considered. First, the

electromagnetic energy of the system should be confined to one or a few discrete modes,
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with minimized losses to other undesired modes. Second, the electromagnetic radiation
must have a way to exit the photonic crystal into the device.

We have shown that it is relatively easy to satisfy the first condition. The
introduction of a single physical defect can produce discrete allowed frequency modes
within the otherwise forbidden frequency regime of the photonic band gap. Since these
frequencies lie within the gap, the fields are evanescent away from the site of the defect.
The energy is confined within a kind of resonance cavity. The quality factor Q for the
cavity can become very large when the physical defect is isolated inside the photonic
crystal (i.e., for large supercells).” For many applications, what is desired most is a
single pure allowed state. Consider the band plot for the E; gap in Fig. 4-1(c), where the
second and third defect states cross at a common frequency value. Though they share the
same frequency at this point, this particular crystal structure may not be desirable for
some applications, as energy can be dissipated into three distinct mode patterns. For
these applications it may be preferable to instead utilize the first defect state, a non-
degenerate mode that is well-confined within the photonic band gap and does not
intersect any other defect states. However, the unique characteristic of two different
symmetry modes sharing a common frequency might be useful should energy from
dissimilar sources need to be coupled into a common frequency.

To be useful for applications, the energy trapped within the defect mode must be
able to interact with the world outside of the crystal. The most efficient means of
extracting (imparting) energy from (to) the defect mode is by coupling the resonance to
another mode or field pattern with a large overlap. That is to say, the symmetry of the
resonance mode is an important consideration in how one chooses to couple to the
energy. In the example above, the first defect state of the E; has a monopole-like field
pattern, and therefore a monopole source placed at the defect site would provide a means
of very efficiently pumping energy into this mode. Conversely, this resonant mode would

best excite an atom or wave which has the same monopole symmetry.
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These factors, as well as the ease of fabrication, must be considered in the design
of photonic crystal structures. The double-rod crystal structure of dielectric rods in air
has an advantage over the holes-in-dielectric case, as the thin walls present in the latter
have been eliminated. This makes the rod structure much easier to fabricate especially at
sub-micron length scales. In addition, the double-rod structure has an extra degree of
freedom in selecting the defect properties of the crystal. By varying either the small or
large radius rod, very different frequency characteristics can be obtained. For the case
when the small radius rod is used as the defect, the monopole mode can be tuned to any
frequency within the photonic band gap by appropriately adjusting the rod radius. This is
an advantage over both the single-rod lattice and the double-rod lattice with the large rod
defect, as in these structures the monopole mode ranges over the lower half of the

photonic band gap only.

4.6 Conclusions

We have shown that the introduction of a different size scattering element into a
photonic crystal can produce allowed frequency modes within the photonic band gap that
are strongly localized about the site of the defect. The frequencies and symmetry
properties of these modes can be controlled by varying the size of the defect. As more
defect sites are introduced into the crystal, the discrete frequency modes broaden into
bands analogous to the effect in heavily doped semiconductors. For the single-rod square
lattice of holes in a dielectric background, two modes with distinct field patterns can be
made to coexist at the same frequency. This frequency crossing may not be of interest for
light-emitting applications, but might be useful for coupling fields with differing
symmetry patterns. For the double-rod structure of dielectric rods in air, the choice of

two lattice elements as defect sites leads to different defect mode properties for each case.
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The supercell approach is a convenient method for calculating the defect mode
properties of photonic crystals but has one drawback: a very large amount of computer
memory is required to retain a sufficient number of plane wave expansion terms for
accurate results. The errors introduced by considering too few plane waves are small for
the lower lying bands, but rapidly become significant as the band frequencies increase.
Thus, a different solution technique that overcomes this problems is required for accurate

numerical solutions of the defect modes in the upper bands.
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Fig. 4-1. Frequency of defect states for the E; gap in the single-rod square structure of air
holes in a dielectric background (g, = 11.4) with supercells of (a) 36, (b) 64, and (c) 100
unit cells. The holes in the perfect structure have radius 0.495a, with the defect
introduced by decreasing the radius of one of the holes. The modes within the photonic
band gap may be non-degenerate (solid lines) or doubly-degenerate (dashed lines). The
defect modes exist as bands for the smaller supercell, becoming more discrete as the
supercell size increases. Note the frequency crossing of the second and third modes.
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Fig. 4-2. Magnitude of the electric field for three defect modes of the single-rod square
structure of holes (r=0.495q) in dielectric, shown for the 100 unit supercell. The third
mode is one from a pair of degenerate states. The electric field patterns are calculated for
three different values of the defect rod radius. Modes 2 and 3 have the same frequency
when r=0.3a. As the rod radius decreases, the mode frequencies approach the middle of

the photonic band gap and the resonant electric field becomes more localized about the
defect site.
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Fig. 4-3. Frequency of the defect states for the H, gap in the single-rod square structure

of air holes (r=0.495a) in a background dielectric (g,=11.4).

The calculation is

performed for a 64 unit supercell. Five defect modes leave the conduction band and enter
the photonic band gap as the radius of one of the holes is decreased. The defect
frequency bands broaden as they near the conduction band edge, producing a discrete
jump in the photonic gap frequency at the points where they merge.
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Fig. 4-4. Frequency of the defect states for the E; gap in the single-rod square structure of
air holes (r=0.495a) in a background dielectric (g, =11.4), calculated with a 64 unit
supercell. As for the H-polarization case, discrete jumps in the photonic band gap width
occur when broadened frequency bands merge with the continuum of states. The first
two defect modes cross in frequency twice as they traverse the band gap.
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Fig. 4-5. Gap map for the double-rod square structure of dielectric rods (¢, =11.4) in air

as a function of f3, the ratio of the two rod diameters. The structure has a filling fraction
f=0.126, equivalent to a rod radius of 0.2a at B=0. The single-rod structure is recovered
at either f=0 or 1. Three large E-polarization gaps exist for a range of f values.
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Fig. 4-6. Frequency plot of the defect states in the single-rod square structure of dielectric
rods with radius 0.2a, calculated with a 100 unit supercell. The vertical dashed line
indicates the location of the perfect array. Decreasing the radius of the defect rod creates
a single acceptor mode within the photonic band gap. Several donor modes enter the gap
as the rod radius in increased up to the maximum r=0.8a, when the defect rod first
touches the nearest-neighbor rods.
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Fig. 4-7. Frequency plot of the defect states in the double-rod square structure (f=0.126,
B=0.3) of dielectric rods in air. In this case, one of the larger radius rods (r=0.271a) is
chosen as the defect site. The vertical dashed line indicates the location of the perfect
array. The single acceptor mode still exists, though fewer donor modes enter the gap as
compared with the single-rod structure.
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Fig. 4-8. Frequency plot of the defect states in the double-rod square structure (f=0.126,
B=0.3) of dielectric rods in air. Here, one of the smaller radius rods (r=0.0809q) is
chosen as the defect site. The vertical dashed line indicates the location of the perfect
array. No acceptor modes exist for this structure, even for complete removal of the rod at
r=0. Increasing the size of the defect rod creates five distinct donor modes, four of
which are still within the photonic band gap at the maximum rod radius.
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Fig. 4-9. Electric field configurations of the defect modes for the single-rod square
structure of rods (r=0.2a) in air. The acceptor mode has a monopole distribution, shown
in (a) for r=0.075a. Donor modes are shown in (b) through (j). (b) One dipole field
pattern from a pair of degenerate states, r=0.3a. (c) and (d) Non-degenerate quadrupoles,
r=0.475a. (e) Second-order monopole, r=0.5a. (f) One of a pair of degenerate
hexapoles, r=0.525a. (g) One of a pair of degenerate second-order dipoles, r=0.65a.
(h) and (1) Non-degenerate octopoles, r=0.8a. (j) Second-order quadrupole, r=0.8a.
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Fig. 4-10. Electric field configurations of the defect modes for the double-rod square
structure of rods (f=0.126, B=0.3) in air, with one of the large radius rods as the defect
site. Decreasing the rod radius creates an acceptor mode monopole, shown in (a) for
r=0.07a. Increasing the rod radius gives the donor modes shown in (b) through (g). (b)
One dipole field pattern from a pair of degenerate states, r=0.45a. (c) and (d) Non-
degenerate quadrupoles, r=0.72a. (e) Second-order monopole, r=0.72a. (f) One of a
pair of degenerate hexapoles, r=0.919a. (g) One of a pair of degenerate second-order
dipoles, r=0.919a.
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Fig. 4-11. Electric field configurations of the defect modes for the double-rod square
structure of rods (f=0.126, f=0.3) in air, with one of the small radius rods as the defect
site. There are no acceptor modes for this structure—all field distributions shown are
donor modes. (a) Monopole, r=0.18a. (b) One of a pair of degenerate dipoles, r=0.5a.

(c) Non-degenerate quadrupole, r=0.65a. (d) Non-degenerate quadrupole, r=0.73a. (e)
Second-order monopole, »=0.73a.
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CHAPTER 5

Hyperthermal Neutral Fluorine Etching of Silicon

Abstract

A hyperthermal neutral fluorine atom beam has been generated by laser-induced
detonation of SFs. The pulsed beam has an ion fraction of much less than 1%, with
average translational energies tunable from 4 to 30 eV. The collimated neutral fluorine
beam has been used in the anisotropic etching of silicon. Etch profile anomalies
including microtrenching and undercutting similar to those found in traditional reactive
ion etch processes were observed. The appearance of these phenomena is explained by
inelastic scattering of energetic, reactive F atoms. A rough “shag carpet” texture is
observed on flat surfaces exposed to the beam at high translational energies. It was
discovered that this roughness could be eliminated through the introduction of thermal
molecular chlorine to the surface during etching. Silicon etch rates were measured using
a sensitive quartz crystal microbalance and found to agree with the etch rates of a
photoresist masked silicon wafer measured from SEM pictures. However, the trend of
etch rate versus beam energy does not match the \/E dependence expected for collision-
induced desorption. This is most likely due to a variation of the fluorine beam flux as the

energy is varied, resulting in reduced etch rate for higher beam energies.
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5.1 Introduction

The properties of photonic crystals discussed in the previous chapters are not
restricted to any specific wavelength of light. As long as the elements that form the
crystal are large enough so that the system can be described classically, the photonic band
gap results are valid. Thus, we can use photonic crystals in applications that range from
the microwave regime (millimeters to meters) down to visible light wavelengths (sub-
micron device scale). The band gap properties scale such that the size of the photonic
crystal elements should be of the order of the wavelength of interest.

Many optoelectronic devices, €.g., semiconductor lasers and light-emitting diodes,
that operate at visible to near-infrared (IR) wavelengths could potentially be improved
through utilization of photonic crystals. These devices have sizes on the order of microns
and are currently made by standard semiconductor microfabrication techniques. Through
a series of processing steps involving deposition, masking, and etching, a complex device
can be slowly built up on the substrate. If a photonic crystal were to be introduced into
the structure of one of these optoelectronic devices, its design should be integrated into
the device so that it could be fabricated simultaneously. Thus, it is a reasonable starting
point to use common semiconductor materials to form photonic crystals.

Fortunately, semiconductors are an excellent choice for use in microscale
photonic crystals. They have reasonably high dielectric constants (€5 = 11.8, £gaas = 13.1)
that provide a large enough dielectric contrast with air to allow photonic band gaps to
open. They also have low absorption coefficients in the infrared and near-infrared region
of the electromagnetic spectrum so that absorptive losses to the dielectric medium are
minimized. Finally, the processing techniques already developed for computer chips may
be directly applied in the microfabrication of photonic crystals.

Two-dimensional photonic crystals are especially well suited for fabrication by

traditional lithographic techniques. The desired pattern is first defined on the photoresist
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and then etched deep into the substrate. Typically, the crystal depth needs to be several
times that of the unit cell size in order to minimize the end effects of the rods and
promote confinement of the electromagnetic waves within the plane. In addition, the rods
should all be straight, smooth, and uniform over the entire depth, as deviations will tend
to disrupt the photonic band gap properties and impair the crystal performance. These

requirements place great demands on the etching process.

5.1.1 Fabrication Issues

Plasma etching techniques are commonly employed in very large scale integration
(VLSI). The plasma is a complex mixture of moieties including ions, electrons, and
neutrals (molecules and radicals), with ions and radicals being the main contributors to
etching. The positive ions are accelerated through a potential drop across the plasma
sheath to bombard the wafer surface. Neutral reactive species from the plasma can also
be transported to the wafer surface by diffusion. Directional etching of the surface
material occurs through a combination of chemical reaction and momentum transfer from
the energetic ions. The interaction of energetic ions with the solid surface is of particular
importance in determining the final profiles.

Figure 5.1 illustrates some of the profile irregularities that may appear during
etching. The sidewalls might not be perfectly straight, but can become sloped or bowed,
as shown in Figs. 5.1(a) and (b), respectively. RIE lag is the phenomenon where narrow
trenches are etched slower than wider trenches [Fig. 5-1(c)]. “Microtrenching” (d)
describes the appearance of a sharp groove near the foot of the etched feature. Finally,
“undercutting” (e) occurs when the material beneath the protective mask is removed.
Such profile irregularities can become pronounced in the etching of deep trenches, and
may be detrimental to the performance of a photonic crystal.

When the pattern mask is insulating (e.g., photoresist) plasma-induced charging

can cause electrostatic deflection of the incoming ions, resulting in some of the



112

undesirable profile anomalies shown above. The detrimental effects of surface charging
can most easily be eliminated altogether by the use of neutral reactive species for etching

instead of plasma ions.

5.1.2 Neutral Beam Etching

In the laboratory, we began work on a new kind of etching process that uses a
beam of hyperthermal neutral atoms for etching instead of high-energy ionized species.
Through the development and study of this novel etching technique, it was our goal to:

(1) Gain a deeper understanding of some of the fundamental processes that occur
when reactive species impinge upon semiconductor surfaces,

(2) Develop a technique that might help overcome some of the etching limitations
encountered in industrial fabrication processes, and

(3) Use this new process to achieve high aspect ratio etching that could be used to
fabricate a two-dimensional photonic crystal.

The hyperthermal neutral atom source provides a unique opportunity to
investigate etching phenomena in the absence of charging effects found when plasmas
interact with patterned surfaces. Comparison of the results of neutral beam etching with
reactive ion etching may help elucidate some of the important mechanisms that direct
etch profile evolution.

As silicon is by far the most important semiconductor used in microprocessing
today, we have chosen to study the etching of silicon using a hyperthermal neutral beam
of fluorine atoms. The source of fluorine in the experiments is sulfur hexafluoride (SF),
a commonly used source gas for industrial plasma etching. SF¢ was chosen because it is
highly stable, non-corrosive, non-toxic, and can yield many fluorine atoms per source

molecule.
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5.2 Experimental Description

5.2.1 Equipment

A schematic drawing of the hyperthermal neutral atom beam apparatus 1s shown
in Fig. 5-2. The apparatus consists of several ultrahigh vacuum chambers (base pressure
approximately 1x10™® Torr) connected by small apertures. The isolated design is
intended to confine the bulk of the source beam in the first chamber, selecting only a
portion of the beam for contact with the silicon wafer. The design also assists in
maintaining low background pressure in the mass spectrometer, located in the fourth
chamber.

The hyperthermal neutral fluorine atoms are generated in the first chamber. Pure
SF¢ source gas is injected into the vacuum chamber at a pressure of 125 psig by means of
a home-built piezoelectric pulsed molecular beam valve.! The valve opens by the
application of a high voltage pulse (typically 400 to 800 V) to the piezoelectric disk
translator, which flexes and retracts the sealing poppet. The applied voltage controls the
displacement of the poppet and consequently the time that the valve remains open. The
duration of the gas pulse is approximately 300 us. The SFs gas expands supersonically
under choked flow into a 10-cm-long water-cooled copper nozzle through a 1 mm
diameter orifice at the apex of the cone. The inside surface of the copper nozzle has been
plated first with nickel and then a thin layer of bright gold to maximize the surface
reflectivity. Shortly after gas injection, a light pulse from a Lumonics model TEA-840
CO, laser is fired. The laser light enters the vacuum chamber through a zinc selenide
window positioned just beside the nozzle, is reflected and is focused into the cone by
means of a gold coated spherical mirror with a 50 cm focal length. The exact timing
between the introduction of the source gas and the firing of the laser pulse is precisely
controlled to 0.1 us by a timing circuit. The energy of the intense laser pulse is readily

absorbed by the SFg gas, as the 10.6 um emission of the CO; laser corresponds to the v;
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vibrational mode of the SF¢ molecule.” The intense laser light initiates a high-density
plasma which atomizes the gas. As the plasma expands out of the nozzle, electron-ion
recombination occurs and a hyperthermal beam of (mostly) neutral atomic fluorine and
sulfur atoms emerges. At this point, the expanding species are in the molecular flow
regime and no further collisions between particles occur.

Though the atomic beam has been somewhat collimated by the 20° full included
angle of the conical nozzle, the angular divergence is further reduced by passing the beam
through a 0.5 inch diameter skimmer, located on the flange separating the first and second
chambers. The off-axis species are contained within the source chamber and are removed
by means of a 3000 //s cryogenic high vacuum pump. In the second chamber, the beam
is either allowed to impinge upon the substrate for etching, or is skimmed further and
passed into a double-differentially pumped chamber for detection by a UTI model 100C

axial quadrupole mass spectrometer (MS).

5.2.2 Fluorine Beam Analysis

The hyperthermal beam is characterized by tuning the MS to the mass-to-charge
ratio (m/e) of interest, and recording the signal as a function of time after the laser pulse is
initiated. The resulting time-of-flight (TOF) distribution N(t) is used to calculate the
translational energy distribution P(E) of the beam.

A typical TOF curve for fluorine neutrals (filled symbols) is shown in Fig. 5-3(a).
Knowing that the fluorine atoms travel 126.5 ¢cm from the nozzle apex to the ionizer of
the MS, the translational energy distribution is computed and is shown in Fig. 5-3(b).
The fluorine atoms in this beam have an average translational energy of 14.0 eV, with an
energy spread of 2.5 eV measured full width at half-maximum (FWHM).

The relative ion content of the beam is determined by comparing the MS TOF
signals with the ionizer current turned on versus off. With the ionizing current off only

charged species can be focused, mass filtered, and detected by the mass spectrometer.
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The measured ion signal for fluorine is shown by the open symbols in Fig. 5-3. The
integrated signal with the ionizer off dropped to approximately 4% of the value measured
with the ionizer on. The actual ion fraction of the beam is estimated to be significantly
lower than the measured 4% for the following reason. lons are detected with very high
efficiency by the MS. Neutral species, however, must undergo ionization in order to
become detectable. The ionization process occurs with relatively low efficiency (1 in
10°) and is further hampered by the small contact time between the fast hyperthermal
species and the ionization volume. Therefore, we have concluded that the ion content of
the beam is very low.

The translational energy imparted to the fluorine atoms can be controlled by
adjusting experimental parameters such as the laser energy and the delay time between
introduction of the gas pulse and firing of the laser. Higher laser energies and shorter
delay times tend to produce species with higher translational energy. The fluorine
translational energy can range from 4 to 30 eV, with a FWHM spread of 10 to 30 percent
of the average energy. The more energetic beams tend to have a larger energy spread than
the beams of slower species. A sampling of the possible fluorine beam translational
energy distributions is shown in Fig. 5-4 along with the calculated energies. The
maximum magnitudes for each curve have been normalized to the same value.

The MS was also tuned to detect sulfur (m/e =32) and other higher mass numbers
that might exist from incomplete detonation of the SFs source gas. The sulfur peak had a
similar TOF distribution as for fluorine. From the integrated signals we calculated a
fluorine to sulfur ratio of 4:1, lower than the expected theoretical value of 6:1. We
suspect that the reason for this difference is that the MS is more sensitive to the higher
mass numbers, yielding a relatively larger signal for sulfur. No signal above noise was
observed for any SF, fractions, indicating near complete breakdown of SF¢ into F and S
atoms. Previous studies on a similar hyperthermal atom source have also indicated that

the SF¢ is more than 99% atomized.’
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5.3 Experimental Results

5.3.1 Silicon Etch Profile Evolution

Several etching experiments were performed using the hyperthermal neutral
fluorine beam. A silicon wafer patterned with photoresist was mounted on a movable
stage and placed in the second chamber of the vacuum system. After a hyperthermal
fluorine beam with the desired energy has been established and characterized with the
MS, the wafer was lowered into the path of the skimmed fluorine beam, 72 cm from the
source. In our system, the hyperthermal beam cannot be monitored at the same time
etching is occurring because the wafer blocks the beam from entering the mass
spectrometer chamber. After the desired number of beam pulses have elapsed, the wafer
was raised out of the path of the beam. The hyperthermal beam was checked to ensure
that the essential qualities have remained unchanged during the course of the experiment.

We used 80,000 pulses at 2.3 Hz of a hyperthermal fluorine beam with
translational energy of 17.6 £ 2.6 eV to etch a masked single-crystal Si wafer. The
scanning electron micrographs (SEMs) in Fig. 5-5 show isometric (a) and cross-sectional
[(b) and (c)] views of some of the line-and-space structures that were etched. The trench
sidewalls are relatively straight, showing a slight slope towards the bottom of the trench.
Some microtrenching can be seen next to the sidewalls, a phenomenon that is also
- observed in plasma etching. The mask remained intact throughout the etching process
without any discernible erosion. There was very slight undercutting (etching under the
mask) unlike what typically occurs in plasma etching of Si at room temperature with
fluorine-based chemistry where the undercutting is more severe. The bottom surface of
the etched areas is not smooth, but rather exhibits a “shag carpet” texture that is visible in
the SEMs. The microfeatures are approximately 40 nm wide and 100 nm deep. The total
etch depth (measured from the bottom of the mask to the top of the shag) is 0.35 um,

corresponding to an etch rate of 44nm/10,000 pulses. Comparison of the etch depth
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between the features and in the open area away from masked features in Fig. 5-5(c) shows
them to be roughly equal. In fact, the space between the line features appears to be etched
slightly deeper, though the shag carpet surface makes accurate comparison difficult. A
higher etch rate in between closely spaced features than in open areas is termed “negative
lag.”

To reduce the rough texture at the bottom of the etched areas, we replaced the
pure SFg source gas with a mixture of SFs and xenon gas. In small amounts, the xenon
did not effect the plasma discharge. TOF measurements showed that the hyperthermal Xe
atoms had the same velocity as F (and S), but due to its higher molecular mass
Mxe=131.3 versus Mg=19.0) Xe had nearly 7 times the translational energy of F. It
was hoped that the additional energy would help to smooth out the surface as etching
occurred, thus preventing the microfeatures from forming. Etching experiments with
mixtures of 10% and 30% Xe in SF¢ were performed. However, both showed no
measurable change in the quality of the bottom surface compared to the etch with SFs
only.

Next, we modified the experimental system by installing an additional pulsed-
operation valve near the wafer position in the second chamber. Thermal chlorine gas at
room temperature was pulsed onto the wafer surface, alternating with the hyperthermal
fluorine beam pulses using pure SF¢ source gas. The chlorine gas readily dissociates and
attaches to the exposed silicon, making the surface more susceptible to etching by the
hyperthermal fluorine atoms. The results of an etching experiment on a masked Si wafer
with 60,000 pulses of a 16.3 = 2.0 eV fluorine beam is shown in Fig. 5-6. The improved
surface smoothness is readily apparent in all three SEMs. Fig. 5-6(a) shows a peculiar
etched surface of alternating rough and smooth stripes. This is a result of the direction
from which the chlorine gas was pulsed onto the surface. In order to keep the pulsed
valve from blocking the path of the hyperthermal fluorine beam, the valve was placed off

to one side. The chlorine pulse was incident upon the wafer surface at an angle, and was
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therefore shadowed in places by the masked features. Surface segments in the line-of-
sight of the thermal Cl, beam were much smoother than areas that are shadowed by the
posts, verifying that the addition of chlorine is responsible for the surface smoothing.

Cross-sections of line-and-space patterns are shown in the micrographs in Fig.
5-6(b) and (c). The trench sidewalls have a similar shape as those in Fig. 5-5. The
microtrenching at the base of the sidewalls is much more visible now that the shag carpet
surface has been smoothed out. The total etch depth is 0.35 um, the same as the depth of
the SFg etch with 80,000 pulses. Thus, in addition to smoothing the bottom surface, the
presence of chlorine appears to have increased the silicon etch rate to 58 nm/10,000
pulses. The observation is in agreement with a previous study that demonstrated
enhanced F-atom etching of Si by the addition of molecular chlorine.” Since thermal Cl,
does not etch Si spontancously, the sidewalls do not exhibit enhanced undercutting.
Comparison of the etch depth in the trench and the open area of Fig. 5-5(c) verifies that a
very small amount of negative lag is present.

We used the same combination of hyperthermal fluorine plus thermal chlorine to
perform a deep etch and study profile evolution for high aspect ratio etching. A single
masked silicon wafer was exposed to 100,000 pulses of a 16.0 £ 1.7 eV hyperthermal F
beam and thermal Cl,, then removed from the chamber and cleaved. One half of the
wafer was then etched with an additional 100,000 pulses so that the evolution of the
feature profiles could be examined at two different etch depths. Fig. 5-7 shows two
SEMs of the wafer surface after 100,000 pulses. As before, the addition of chlorine has
helped to smooth the bottom surfaces and prevents the shag carpet from forming. The
microtrenches next to the sidewalls are well developed, and some undercutting beneath
the protective mask is visible in both SEMs. The sidewalls slope inwards towards the
trench bottom as before, but are not perfectly straight; a dislocation in the slope of the
sidewall appears approximately halfway down the structure, best seen in Fig. 5-7(b). This

abrupt change in the sidewall slope is readily apparent in Fig. 5-8, when the wafer has
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been etched with 200,000 pulses. The top portion of the trench profiles all have the same
slope, then bend towards the bottom of the trench, then curve in again slightly near the
bottom of the trench. We will discuss the reasons for the formation of this unusual
phenomenon in a later section. After 200,000 pulses the microtrenches have become very
deep, resulting in the appearance of finger-like columns in the center of each etched line.
The mask remained in good condition with little alteration even after a large number of
pulses. Very slight negative lag is also observed in Fig. 5-8(b). The total etch depth for
this experiment was approximately 1.3 um, corresponding to an etch rate of 65nm/10,000

pulses. The sidewall profiles were undercut by 5%.

5.3.2 Measurement of Etch Rate

The hyperthermal neutral fluorine atom source can be tuned to vary the average
translational energy from 4 to 30 eV. As the etching of silicon is both a chemical and a
momentum induced process, varying the incident beam energy could have an effect on
the rate at which material is removed from the surface.

To study the effects of translational energy on silicon etch rate, we installed a
Leybold Inficon model XTM/2 Deposition Monitor into the second chamber of the
vacuum system. The monitor is a quartz crystal transducer type deposition (or etch)
process monitor and is capable of precisely measuring small changes in mass. The
principle of operation is based on the piezoelectric sensitivity of a quartz crystal to mass
loading. When a voltage is applied across the faces of a properly cut quartz crystal, the
crystal is distorted and changes shape in proportion to the applied voltage. Certain
discrete frequencies of applied voltage induce a sharp electro-mechanical resonance in the
crystal. When mass is removed from the face of the resonating crystal, the resonant
frequency increases. The change in frequency is very reproducible and can be directly

related to the removal of mass from the crystal surface. Using the material density and
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areca of the crystal, the calculated change in mass can be converted to a change in
thickness, the etch depth.

A thin layer (approximately 1 um) of silicon has been deposited onto the surface
of a quartz crystal resonator. The crystal was placed inside the temperature controlled
rate monitor and installed in the vacuum chamber. The hyperthermal neutral fluorine
beam was started, and the TOF distribution was measured with the MS to allow for
calculation of the beam energy. The silicon covered quartz crystal 1s then lowered into
the path of the beam and the fluorine begins to etch the silicon layer. The crystal resonant
frequency is monitored for 10 to 20 minutes to establish an average etch rate. The crystal
is then pulled out of the path of the beam and the delay between the gas and laser pulses
is changed to establish a new beam energy. The process is repeated for a range of
fluorine energies from 10 to 24 eV, the prime operating regime of the hyperthermal
source.

The etch rate versus average translational fluorine atom energy for two
experimental runs is plotted in Fig. 5-9. Though there is some scatter in the data, it
appears that the highest etch rate occurs for an average fluorine energy of 15 eV. The
etch rates calculated for the silicon coated quartz crystal resonator are slightly higher than
those found for etching of the masked silicon wafers. The presence of a thicker layer of
Si0, on the surface of the masked wafers, which has a slower etch rate than Si, would
explain this result.

From the quartz crystal data, it appears that the etch rate decreases for beam
energies greater than =17 eV, much different than the \/E dependence expected for
collision-induced desorption. This unexpected result is most likely due to a decrease in
the neutral fluorine flux at higher energies. The higher energy species were obtained by
lessening the delay time between the introduction of the gas pulse into the copper nozzle
and the firing of the laser. Thus, the laser light interacts more with the leading edge of

the incoming gas pulse compared with beams at longer delays (lower energy). The gas
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pulse profile does not have as much time to develop inside the cone before the plasma is
ignited by the laser, effectively reducing the amount of source gas in the plasma
discharge. As etch rate is expected to depend linearly on flux, the reduced plasma gas
density will produce a lower etch rate for these higher energy atom beams. We expect the
same to be true for very long laser delay times as well (which yields low energy beams).
In this case, the source gas pulse is well developed and has likely begun to dissipate into
the chamber when the laser light pulse arrives at the nozzle, resulting in a lower density
plasma discharge.

Attempts to remove the effect of flux variation from the etch rate measurements
were unsuccessful due to difficulties in measuring the flux of neutral species. Figure 5-10
shows the total number of counts detected by the mass spectrometer at m/e =19 when the
ionizing current is turned on (“neutrals”) and off (“ions”). The flux of neutrals appears to
reach a maximum when the translational energy of the beam 1s 14 eV. As the beam
energy increases further, the flux drops off and then abruptly increases again. The ion
flux, on the other hand, is negligible at energies less than 12 eV but sharply rises at higher
energies. We believe that the reduced plasma density at short delay times inhibits
efficient recombination of electrons and ions to yield neutral atoms, resulting in the
increased ion signal. Comparison of the two curves suggests that the apparent neutral
flux increase at high beam energies is due to the presence of these ions. Though the ion
content may only be slightly increased, the efficiency with which these ions are detected
in the MS is much greater than for neutrals, masking the measurement of true fluorine

flux.

5.4 Discussion

The creation of an active fluorine atom source that is both directional and neutral

allows us to investigate the evolution of etch profiles in the absence of charging effects,
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present when etching in plasmas. This permits the unambiguous determination of the role
of inelastic scattering on profile evolution.

For all etching runs performed, microtrenches were seen to appear at the foot of
each etched feature. A model of atom-surface interaction dynamics has shown that direct
inelastic scattering (DIS), a single atom-surface collision process, is solely responsible for
microtrenching.” As the profile of a trench begins to evolve, the steepest slope is located
at the edges of the feature. Hyperthermal F atoms that impinge upon this portion of the
feature strike the surface at an oblique angle and are likely to be scattered in the forward
direction, retaining a significant portion of their original energy. In this manner, the flux
of high energy fluorine atoms is larger at the sidewall feet than in the center of the trench
causing a larger etch rate at those locations. Once the microtrench begins to form,
forward scattering by DIS is further enhanced by the presence of steep sidewalls on both
sides of the microtrench. Thus, the feature becomes more and more pronounced as
etching continues.

The same scattering mechanism is believed to be responsible for the shag-carpet
microroughness seen for the hyperthermal fluorine etch chemistry. Microscopically
corrugated surfaces, such as those of the rough fluorosilyl layer, are the origin of this
phenomenon. When large angles of incidence are encountered, DIS increases resulting in
nanotrench formation and an even greater surface roughness. Thus, a macroscopically
flat Si surface is unstable to etching by directed hyperthermal neutral F atoms. A similar
shag-carpet phenomenon has been found to occur when polymer surfaces on the Space
Shuttle are exposed to the static atomic oxygen atmosphere at low earth orbits.® The
motion of the Shuttle is equivalent to its surfaces being bombarded by 5 eV reactive
oxygen atoms. This similarity further suggests that the microstructure formation is a
function of etching with low energy neutral beams.

An inadequate supply of reactive fluorine atoms to the Si surface impedes etching |

of the protruding entities, allowing for DIS to occur. The addition of thermal molecular
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chlorine to the surface helps smooth out the etched surfaces by supplying an additional
flux of reactive species to the surface. At room temperature, molecular chlorine
dissociatively chemisorbs onto the first few atomic layers of the silicon surface.” Any
dangling silicon bonds are now saturated, making the top surface layers more susceptible
to etching by incoming hyperthermal F atoms.

The discontinuous slope of the sidewalls observed in the deep etching experiment
is also the result of the DIS process. The origin of this phenomenon is explained with the
help of the schematic drawings in Fig. 5-11. The microtrench begins to form as an
extension of the feature sidewall. As etching proceeds and the microtrench deepens, the
sidewall begins to curve more and more inwards (a). Hyperthermal F atoms now strike
the sidewall at a decreased incident angle, resulting in broader forward scattering. Thus,
more scattered energetic atoms begin to reach the upper part of the inner sidewall of the
microtrench where they etch, thereby decreasing its steep slope (b). The result of this
interaction is that direct scattering of the main incident beam at the inner trench wall
increases, causing additional flux to arrive at near normal incidence to the outer wall (c).
This contributes to etching of the outer sidewall thus causing a break in the continuity of
its slope. As etching continues, the inner sidewall is etched away by the main incident
beam; the scattered flux that maintained its slope no longer reaches the outer wall but
instead is directed toward the bottom of the microtrench (d). Thus, it is now possible for
the cycle to begin again as the slope of the outer sidewall begins to curve. Continued
etching may result in an oscillation of the sidewall slope, as was observed in Fig. 5-8.

Though we have thus far only discussed DIS in detail, two other types of
scattering processes are also possible: a) Indirect inelastic scattering (IIS), which
involves multiple atom-surface collisions, yielding an atom that possesses a small fraction
of the original incident energy but a complete loss of “memory” of the incident angle; b)
Trapping desorption (TD), which refers to atoms that leave the silicon surface with

thermal energies, having no correlation to the initial energy and angle of incidence.
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These two processes scatter reactive fluorine species in a cosine distribution about the
surface normal, and together are responsible for the observed undercutting of the mask.’
Fluorine atoms scattered by IIS, having a higher energy than the TD species, contribute
more to the isotropic sidewall etching and undercutting. These species can undergo
multiple scattering events within the trench, eventually impinging on the bottom surface
again and contributing to the etch rate. In contrast, species scattered in open areas are lost
from the surface. This difference accounts for the slight negative lag seen in the SEMs.
The ideal etch profile is one with perfectly straight, vertical sidewalls, no mask
undercutting, and a flat surface at the trench bottom. There are several ways in which one
might adjust the etching conditions to improve the quality of the etched profiles.
Increasing the average energy of the fluorine neutrals should increase the probability of
reaction at first impact with the surface, reducing the amount of forward scattering. This
explains why effects such as microtrenching are not observed when etching at higher
energies (>50 eV). In addition, the increased reactivity of the higher translational energy
F atoms at the bottom of the trench results in a smaller flux of scattered non-reacted F
atoms to the sidewalls, thereby improving anisotropy. Alternatively, the incident beam
translational energy can be tailored so that scattered species have energies below
threshold for reaction. This could be aided by lowering the temperature of the silicon
wafer so that the energy of the scattered species is not enough to facilitate reaction at the
sidewalls. Another solution is to raise the energy necessary for fluorine atoms to react
with the substrate. This could be achieved by adding a small amount of oxygen to the
etch mixture, which would form a thin layer of siliconoxyfluorides (SiOFy) on the
exposed etching surface. As SiOF, has a higher threshold for etching than does SiF,, the
hyperthermal fluorine atoms directly striking the bottom surface could be selected so that
they have a high enough energy to etch, but indirectly scattered species would not react at

the sidewalls.
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5.5 Conclusions

We have shown that a hyperthermal neutral fluorine atom beam, produced from
the plasma formed by laser excitation of SFs, can be used for anisotropic etching of
silicon. Etch rates are fairly low (approximately 1 nm per minute) mostly due to low
fluorine flux far away from the expanding beam source and low pulse rate. Accurate
measurement of the neutral flux at varying F energies using the mass spectrometer was
difficult as detection of the small fraction of ions present in the beam overshadowed the
neutrals. Without this flux calibration, significant variation of the F atom flux with beam
energy will result in anomalous measurements of etch rate. Since the MS is inherently
more sensitive to ions than neutrals, the ions should be removed from the beam in order
to improve the accuracy of the flux measurement. This can be achieved by deflecting the
ions with a charged plate prior to entering the MS. Alternatively, methods specifically
developed for the measurement of neutral fluxes such as a torsion balance,® can be
employed.

The hyperthermal neutral fluorine source provides a unique opportunity to study
the interactions of neutral species and surfaces during etching. Though profile anomalies
due to charging effects have been avoided, scattering of energetic species was shown to
have a significant effect on the development of etch profiles, particularly for deep etching.
The severe microtrenching and sloped sidewalls observed would likely impair the
properties of a photonic crystal fabricated by this technique. Understanding the
consequences of scattering is important so that the adverse effects on profile development

can be minimized.
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Fig. 5-1. Schematic drawings illustrating possible plasma etching profile anomalies.
The hatched regions represent the photoresist that defines the pattern for the substrate
below. (a) Sloped sidewalls. (b) Bowed sidewalls. (c) RIE lag. (d) Microtrenching. (e)
Undercutting.
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Fig. 5-3. Time-of-flight distribution (a) and the corresponding translational energy
distribution (b) for fluorine atoms (m/e=19). The integrated signal for ions, measured
with the ionization current turned off (open circles), is 4% of the signal with the
ionization current on (filled circles). The beam has an average translational energy of
14.0 eV, with an energy spread of 2.5 eV.
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Fig. 5-4. Translational energy distributions for several hyperthermal neutral fluorine
atom beams, showing the range of possible energies. The average translational energy 1s
indicated beside each distribution. The magnitude of each curve has been normalized to
the same value.
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Fig. 5-5. Scanning electron micrographs of the trenches etched in silicon to a depth of
0.35 um by the hyperthermal neutral fluorine beam. The microtrenching phenomenon is

clearly seen in the cross-sectional view in (b), and the rough “shag carpet” bottom surface
is visible in (b) and (c).
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Fig. 5-6. Scanning electron micrographs of silicon etched by the hyperthermal neutral
fluorine beam with the addition of thermal molecular chlorine during etching. The
chlorine creates a significantly smoother surface than for hyperthermal F etching alone.
The striped surface in (a) is due to shadowing of the surface by the posts. Microtrenching
is visible at the foot of the sidewalls. The etch depth 1s 0.35 um.
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Fig. 5-7. Scanning electron micrographs of silicon etched with 100,000 pulses of the
hyperthermal neutral fluorine beam plus thermal molecular chlorine. The microtrenching
phenomenon is quite pronounced. A break in the sidewall slope can be seen in (b),
approximately midway up the feature. Some undercutting of the mask is also visible.
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Fig. 5-8. Scanning electron micrographs of silicon etched with a total of 200,000 pulses
of the hyperthermal neutral fluorine beam plus thermal molecular chlorine. The total etch
depth is 1.3 um, with 5% undercutting of the mask. The deep microtrenches have
produced finger-like columns in the middle of each trench. A break in the sidewall slope
is seen approximately halfway down each trench, becoming steeper towards the bottom.
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Fig. 5-9. The silicon etch rate as a function of the average translational energy of the
hyperthermal fluorine atom beam, as measured with a silicon-coated quartz crystal
microbalance. The etch rate is maximum for beams with F atom energies of
approximately 15 eV, and appears to decrease for energies greater than 17 eV. The trend
is likely caused by reduced fluorine atom flux at high beam energies.
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Fig. 5-10. Fluorine (m/e =19) flux as a function of the translational energy of the beam as
measured by the mass spectrometer with the ionizing current turned on (neutrals) and off
(ions). The apparent increase in neutral flux at energies greater than 18 eV is due to the
increased ion content in the beam.
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Fig. 5-11. Schematic depiction of the sequence of scattering events that result in a
discontinuity in the slope of the profile sidewall.
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CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

Photonic crystals provide the opportunity to control and manipulate
electromagnetic waves within the range of frequencies of the photonic band gap. This
unique property offers promise for improved operation of existing optoelectronic devices
including semiconductor lasers and light-emitting diodes, as well as the development of
novel optical devices such as filters, switches, and interconnects. Although 3D crystals
may be especially valuable because of their ability to control waves in all directions of
propagation, 2D structures also find several important uses as a result of their strong
reflective properties within the plane of the photonic crystal. In both cases, the useful
properties for applications are enhanced by the presence of a wide forbidden frequency
range, and thus we seek crystal structures that possess the largest photonic band gaps
possible.

To achieve this goal, theoretical methods for calculating the frequency band
properties of photonic crystal structures have been developed. Though these methods are
a great improvement over the alternative—a “cut and try” experimental approach—the
search for the best structures is a difficult task in view of the wide range of variational
parameters to model (e.g., lattice type, filling fraction, shape of filling elements, dielectric
contrast). The overwhelming number of possible geometrical arrangements even for 2D
crystals suggests the need for a rational approach toward selecting the most promising
structures for study. Symmetry analysis of the crystal lattice and filling elements can

serve as a guide through the vast domain of possible structures, aiding in the discovery of
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those with large photonic band gaps that are also relatively easy to microfabricate. In
addition, symmetry principles can be used as a way to increase the band gap width in
some crystals known to possess large photonic band gaps.

Using a symmetry analysis approach, we have investigated a variety of two-
dimensional photonic crystal structures. First, consider the crystals formed when the rods
contain the low dielectric constant material and are surrounded by a high dielectric
constant background. For this case, both the square and triangular lattice structures have
absolute band gaps when the filling fractions are near the close-packed condition. The
size of the absolute photonic band gap in the single-rod square lattice can be significantly
increased by introducing another rod with a different diameter into the unit cell. The
band gap of this double-rod square lattice is nearly three times the size of the best single-
rod lattice band gap at the same dielectric contrast. Still, the single-rod triangular
structure has the largest photonic band gap (in wavelength) of all the 2D structures of
holes in dielectric, and is only made smaller by reducing the lattice symmetry or by the
addition of more scattering elements into the unit cell. Comparison of the symmetry
properties of these structures suggests that the most favored arrangement for structures
with the low dielectric constant material in the rods is that with the highest symmetry
possible. Specifically, this is the p6mm based structure with circular cross-section holes.

The greatest disadvantage of utilizing the absolute band gaps of these crystals is
that the largest gaps occur at high rod filling fractions, resulting in thin-walled structures
that are difficult to microfabricate. This problem may be avoided by instead using the
complementary crystal arrangement, fabricating photonic crystals that have the high
dielectric constant in the rods surrounded by air. However, no absolute photonic band
gaps exist for either the single-rod or double-rod square lattice structures, or the triangular
lattice of dielectric rods in air. Thus, by merely switching the placement of the dielectric
materials in the crystal, the photonic band gap properties have been greatly affected.

Analysis of the crystal symmetry properties can guide the way towards finding new
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geometric arrangements that will optimize the photonic band gap width for crystals of
dielectric rods in air.

For crystals with a square lattice basis, large absolute band gaps can be obtained
by reducing the lattice symmetry. Removing the mirror planes of the single-rod square
geometry through the introduction of the glide symmetry operation was found to lift band
degeneracies and open substantial band gaps at moderate filling fractions. The triangular
lattice structures were also found to benefit from symmetry reduction, for example by
lowering the rod symmetry from 6mm to 3m. to create the honeycomb lattice structure.
The optimal arrangement, the reduced symmetry triangular structure, has a blend of 6mm
and 3m. symmetry elements which combine to form a crystal with the largest absolute
photonic band gap found for 2D structures of dielectric rods in air. However, the small
features within this crystal structure (in this case, small diameter rods) may again lead to
problems in microfabrication. Thus, it may be advantageous to sacrifice some of the
photonic gap width in exchange for manufacturing robustness by reverting to the
honeycomb structure. Here, the photonic gap is slightly more narrow but the crystal
structure does not contain any exceptionally small features, making it much better suited
to microfabrication.

Though perfect photonic crystals are valuable in applications where complete
reflection of waves within the band gap is desired, the introduction of a physical defect
into the crystal can be used to create a strongly localized electromagnetic mode with
specific properties. The frequencies and symmetry properties of these defect modes can
be controlled by choosing the appropriate size of the defect, and may be useful in devices
to direct energy in and out of the crystal. For crystals that contain more than one type of
scattering element, the choice of which element to use as the defect site gives even greater
flexibility to precisely tune the defect mode properties.

In addition to theoretical calculations, we have developed a novel dry-etching

technique that can be used in the microfabrication of photonic crystal structures. A
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hyperthermal neutral fluorine atom beam, produced from the plasma formed by laser
excitation of SFs, was used for anisotropic etching of silicon. The advantage of using
neutral species for etching is that problems in etch profile evolution caused by charging of
the wafer surface are avoided. However, scattering of reactive species was found to play
a significant role in the development of the feature profiles, causing the formation of
sloped sidewalls, deep microtrenches, and some undercutting of the mask. These
anomalies were present to the extent that an attempt to microfabricate a photonic crystal
with features on a sub-micron size scale would be greatly hindered. In order to etch such
a crystal using this hyperthermal fluorine source, it would be imperative to reduce the
effects of the reactive scattered species, perhaps by changing the etch chemistry or
lowering the reactivity of the sidewalls through cooling. In the event that this does not
sufficiently improve the etched profiles, other etching techniques such as RIE or high-
density plasmas might be sought as a way to achieve the good profiles with high-aspect

ratio necessary for 2D photonic crystals.

6.2 Future Work

With the presentation of the work in this thesis, the theoretical investigation of
perfect 2D photonic crystal structures is somewhat complete. The focus of future work
should now shift towards the issues that real structures present. For example, the results
for the structures described here assumed infinitely long rods, which for practical
purposes implies that the rod length is many times longer than the lattice constant
(L>>a). The reality of photonic crystal fabrication is that the rods often do not meet this
requirement, and the truncated rods can affect the performance of the crystal. Also, for
applications where it is desirable to couple light out of the crystal structure in the
direction normal to the crystal plane, the effects of the ends of the rods cannot be

neglected. These considerations suggest the need for fully three-dimensional modeling of
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2D crystals. Band frequency calculations alone cannot capture all of the relevant
phenomena that exist for truncated crystals. Calculation methods such as finite-
difference time-domain solution of the Maxwell equations are well-suited to describe
truncated structures, and can yield information about the electromagnetic waves both
inside and outside the crystal structure.”? Thus, this method can also be used to gain an
understanding of the scattered electromagnetic wave patterns. This is particularly useful
when designing photonic crystals for device applications where the 2D crystal is used in
place of a 1D Bragg reflector mirror. The reflected radiation from photonic crystals
seems to concentrate along the principal lattice axes,” a much different pattern than waves
reflected from a dielectric mirror. The use of crystals without mirror planes, such as the
glide-symmetry square structure, might provide a more even spatial distribution of
reflected waves, offering an improvement over square or triangular lattice structures.

The supercell approach is a convenient method for calculating the defect mode
properties of photonic crystals. The drawback is that a very large amount of computer
memory is required to retain a sufficient number of plane wave expansion terms to yield
accurate results. The errors introduced by carrying too few plane waves are small for the
lower lying bands, but rapidly become significant as the band frequencies increase. To
obtain accurate numerical solutions of the defect modes in the upper bands, a Green’s
function approach is recommended.*® Green’s functions take advantage of the fact that
the defect modes are localized about the site of the physical defect, and require
significantly less computer memory to achieve accurate results. Thus, defect modes in
the high-frequency photonic band gaps of the 2D glide-symmetry structure can be
studied. Two types of rod symmetries are present in the unit cell of this structure, and are
expected to yield different defect characteristics depending on which is chosen as the site
of the defect. In addition, removing multiple rods in this structure could yield modes with

very unique properties due to the interplay of the different symmetry sites.
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