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ing material (Pyropel, available from McMaster, Part #93015K76). The insulation 

is cut into 1.125" squares, and then holes 0. 75" diameter are punched into them. 

The resistive heaters are fastened to the hot segment blocks using self-adhering tape 

(available from Minco or McMaster). For the cold segments, the heat sinks were used 

because it was found that without them, the TECs went into thermal runaway. This 

occurs when the hot side of the TEC is not sufficiently cooled, resulting in conduc­

tion of heat back to the cold side, increasing its thermal load, leading to more current 

being supplied to the TEC, causing more heating on the hot side, etc. In order to 

further dissipate heat from the TECs, a small fan is mounted at the bottom of the 

column blowing upwards, and a shimstock duct is used to constrain this air flow over 

the heat sinks. This cooling results in the TECs running more efficiently. 

To assemble the column elements, the thermistor probes are inserted into the 

reamed holes, and the heaters and TECs (with heat sinks) are attached to each 

segment block. Thermal compound is used on both sides of the TECs, although no 

thermal compound was deemed necessary for the resistive heaters. Alternating hot 

and cold segment blocks slide onto the CCN column tube, again using a thin layer 

of thermal compound to maximize thermal conductivity, with an insulating square 

used between each one. Once all the segment blocks are in place, the entire column is 

insulated using strips of Pyropel along the three sides without heat sinks, and using 

small squares of insulation for the hot segments in between heat sinks. The insulation 

is then fixed in place using cable ties. 

Lining the CCN column tube with filter paper can be a little tricky. The filter 

paper used is Whatman 3Chr. Thicker filter paper was tried, but it did not have 

enough flexibility to fit into the tubing without folding. Thinner paper would result 

in an increased frequency of regenerating the water in the column because the paper 

would dry out more quickly. To properly line the column, a strip of filter paper much 

longer than necessary (approximately 6 to 12" more), and with a width somewhat 

larger than one circumference of the ID of the tube, is cut. A solid, clean rod (typically 

0.5" OD) is used to slowly work the filter paper into a circular shape. The paper is 

then inserted slowly into the tubing without wrinkling. It is likely necessary to twist 
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the paper into a smaller diameter to get it to fit. Once the paper lines the entire tube 

length, it must be uncoiled such that the seams of the paper are straight. Finally, the 

paper should be manipulated such that it tightly lines the inside of the tube. Wetting 

of the tubing will also help bring the paper in contact with the tube wall. The paper 

should be inspected on a frequent basis because it has a tendency to come off of the 

tubing wall. If this occurs, and cannot be fixed by gently rolling a rod over that 

section, the paper should be replaced. Finally, a small aluminum split ring is used 

to hold the paper in place at the bottom of the column. It holds the paper after the 

air flow has entered the outlet skimmer and therefore does not affect the growth of 

CCN in the column. It is roughly 3/8" high, thin (0.020" wall thickness), and around 

0. 70" diameter before it is split and a small amount of material removed. 

A.3.3 CCN Outlet 

The CCN instrument outlet (Figures A.9 to A.12) focuses the combined aerosol and 

sheath flows through a small nozzle in order to size and count grown droplets in the 

OPC. It also has a water reservoir to catch any liquid water running down the CCN 

column tube. The skimmer has a sharp edge to minimize flow disturbances. It sits off 

the wall, however, in order to prevent any large beads of water from entering the OPC, 

which can cause serious problems, typically by dripping on to the front receiving lens. 

The nozzle was designed with a 15° half angle. It was found that nozzle diameters 

much smaller than 0.040" seemed to cause droplet impaction, so 0.040" seems to be 

close to the lower limit for the nozzle diameter. It might be possible to reduce the 

nozzle size (which would narrow the spread of aerosol in the view volume of the OPC) 

by reducing the nozzle converging angle. If the angle is reduced by too much, however, 

the time lag between the end of the column and sizing at the OPC might result in a 

shift in droplet size due to evaporation, although this shouldn't be a problem as the 

surrounding air should be close to saturation. The nozzle was designed such that it 

can be easily replaced without substantial additional machining. 
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Figure A.6: Mechanical drawing of CCN column cold segment. 
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Figure A.8: Mechanical drawing of CCN column heat sink modification. 
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Figure A.9: Assembly drawing of outlet. 
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Figure A.10: Mechanical drawing of outlet nozzle. 
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Figure A.12: Mechanical drawing of outlet flange. 
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A.3.4 OPC Mounting Block 

The OPC mounting block (Figures A.13 to A.17) was designed for minimum vol­

ume and weight, while robustly mounting all the components (transmitter, receiver, 

beam dump, nozzle) with high precision and repeatability. All OPC parts should be 

carefully machined such that their mating is smooth but without slop. Such tight 

precision means that parts can easily get jammed if they are not put in or pulled out 

straight, especially before they are anodized. A very thin coating of vacuum grease 

should be used in order to help prevent this from occurring. All pieces should be 

provided in order to properly fit them to the mounting block. The inside surface of 

the OPC mounting block in the vicinity of the scattering volume is roughened slightly 

before anodizing in order to minimize spurious light entering the receiver. 

A.3.5 OPC Transmitter 

The newly designed transmitter (Figures A.18 to A.22) incorporates a new laser (Blue 

Sky FBC-011) which provides more power (18 mW), and a cleaner beam (due to the 

fact that it is fiber-coupled) than the previous laser. With the old laser, spurious light 

resulted in significant DC noise in the detector, which necessitated the addition of a 

spatial filter (one focusing lens, a pinhole positioned at the beam waist, and a second 

recollimating lens), which was very difficult to machine and align properly. The new 

transmitter is much simpler. The laser emerges from the laser collimated (0. 7 mm 

spot size) with little spurious light. The beam is then transformed using a cylindrical 

optic such that it is wider ( 4 mm) in the dimension perpendicular to the aerosol 

stream, but no thicker (remains 0.7 mm in the direction of the flow) at the view 

volume point, with a low divergence (approx. 2°). This minimizes coincidence errors, 

i.e. the chance that two droplets are present in the view volume simultaneously while 

maximizing the homogeneity of the beam with respect to droplets passing through 

the beam along slightly different streamlines. Spurious light caused by the cylindrical 

optic is reduced by the use of baffles. Note that there no adjustment in the machined 

pieces; all the pieces are aligned by carefully machining the parts so that they have 
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Figure A.13: Mechanical drawing of OPC mounting block, cross-section view. 
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Figure A.14: Mechanical drawing of OPC mounting block, top view. 
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Figure A.17: Mechanical drawing of OPC mounting block, Face C (receiver view). 
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nearly identical axes of symmetry and close sliding fits. 

The laser head is held in place in the cylindrical optic holder using a crush fit; a 

45° angle notch is cut into the ring which, when tightened, squeezes the 0-ring tightly 

against the laser barrel. Axial location of the laser head is not critical, as the output 

is collimated. This assembly (laser head, crush fit ring, cylindrical optic housing) is 

then inserted in to the transmitter housing. Alignment is achieved by use of a pin 

which slides into the pin alignment holes in all three pieces, and is then removed once 

the assembly is fastened together properly. The pin is positioned such that it is at 

the top of the transmitter when the transmitter is mounted into the OPC mounting 

block. 

In order to equalize pressure in the transmitter, holes are drilled into it. This 

prevents a case where the transmitter was assembled at atmospheric pressure, and 

low pressures achieved during flight result in a large force on the cylindrical optic 

because of an imbalance in pressure. These holes fix both sides of the optic at ambient 

pressure. The window at the end of the transmitter is used to isolate the optics from 

the possibly harsh high-humidity environment of the OPC, and also to provide a high 

quality seal for the CCN instrument. In event that the CCN instrument is operated 

at a low, constant pressure, the window is forced onto the 0-ring by the (larger) 

ambient pressure, tending to make an improved seal. The teflon retaining ring is 

used to prevent scratching of the window by the retaining ring. A long thread (0.85") 

was provided in the transmitter housing so that optical components could be added 

in the future to further condition the beam, if desired. 

A.3.6 OPC Receiver 

The OPC Receiver (Figures A.23 to A.29) uses two identical aspherical lenses to col­

lect, collimate, and re-focus the light onto a fiber optical cable (1 mm core diameter), 

which then transmits the light to the APD photodetector. It is held onto the mount­

ing block using a split clamp arrangement. The front asphere is held in place using a 

black anodized nut. Similarly to the OPC mounting block cavity, this nut is rough-
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Figure A.18: Assembly drawing of OPC transmitter. 
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Figure A.20: Mechanical drawing of OPC transmitter crush fit ring. 

"O 
ctl 
Q) 

.s::::. 
..... 
CD 
C/) 

ca -0 -:;:::: 
C> 
c: 
:§ 
en 
..... 
0 
u.. -ctl -
en 
w 
I-
0 z 



132 

0 00 
..- I r-~ . , 

ID i 
C\I 0 

ID ..-. 

0 
0 
(0 

"O 
<1' 
CD .... 

.r:. -.q 

..-

Co -,..... 

......................... . 

PART NAME DRAWN BY: 

TRANSMITTER: WINDOW RETAINING RING Patrick Chuang 
Caltech 

MATERIAL: AL 6061 I DRAWING# 4 of 5 DATE 11241998 

Figure A.21: Mechanical drawing of transmitter window retaining ring. 
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ened slightly before anodizing to minimize spurious light in the cavity. The receiver 

rear housing holds the receiver re-focusing lens, which has axial adjustment. The lens 

must be adjusted in order to maximize the amount of light that is transmitted to 

the fiber optic cable, which attaches to the receiver using an SMA style fitting. The 

SMA receptacle can be purchased from Newark, and machined such that it is press-fit 

into the SMA flange. Once the lens is in place, it should be fixed using (removable) 

epoxy, preferably one that will break cleanly from the threads when sufficient force 

is applied. 

The receiver also needs to be properly positioned axially when inserted into the 

OPC mounting block. This is found by changing the distance of the receiver from the 

view volume until the signal for monodisperse droplets is maximum. It has been my 

experience that the signal is not very sensitive to changes in the receiver position. 

A.3. 7 Beam Dump 

The beam dump (Figures A.30 and A.31) is used to capture the unscattered beam. 

This is accomplished by reflecting the beam using a mirror mounted at the end of the 

Wood's Horn beam dump at a 45° angle. The reflected beam then enters the beam 

dump which is curved, painted black, and tapered to a seal at the end. This is a very 

effective way to eliminate the unwanted light. The Wood's Horn is attached to the 

OPC mounting block using a split clamp arrangement. Once in place (aligned such 

that the mirror is rotated to properly reflect the unscattered beam), the Wood's Horn 

does not need to be re-aligned as removing the beam dump requires removing only 

those bolts that fasten the split clamp to the mounting block. The mirror is attached 

to the end of the tubing using RTV. 

A.4 Electrical Drawings 

A.4.1 Wiring Diagram 

Figure A.32 is a wiring diagram for the CCN instrument. 
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Figure A.23: Assembly drawing of OPC receiver. 
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Figure A.24: Mechanical drawing of receiver front housing. 
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Figure A.26: Mechanical drawing of receiver rear housing. 
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Figure A.27: Mechanical drawing of receiver rear lens holder. 
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Figure A.28: Mechanical drawing of receiver rear lens retaining ring. 
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Figure A.29: Mechanical drawing of receiver SMA flange. 
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Figure A.32: Wiring diagram of CCN instrument. 
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Non-Inverting Amp Value 
1 kn 
1 kn 

100 kn 
50 n 
N/A 

0.1 µF ceramic 
6.8 µF tantalum 

Inverting Amp Value 
200 n 
1 kn 
25 n 
50 n 
2 kn 

0.1 µF ceramic 
6.8 µF tantalum 

Table A.2: Component values for OPC amplifier inverting and non-inverting circuits. 

A.4.2 Circuit Diagrams 

Figures A.33 and A.34 are the circuit diagrams for the amplifiers used to increase 

the signal of the output of the Hamamatsu APD. The op-amp in both cases is the 

CLC426 by National Semiconductor. Note that two amplifiers in series are used in 

order to provide a high ( 100 kn) input impedance to the amplifier, and to also invert 

the signal. The first amplifier is used in the non-inverting configuration where the 

high input impedance can be achieved, followed by the inverting amplifier. Use of the 

inverting amplifier alone would have resulted in a very low (approx. 1 kohm) input 

impedance, much too low for the APD circuit to drive. 

A.5 Instrument Operation 

This section describes operational procedures for testing and running the CCN in­

strument. 

A.5.1 Normal Field Operation 

The instrument is designed such that upon turning the power switches on, the in­

strument begins running automatically. There are currently two power switches, one 

for only the temperature controllers, and one for all the other electronics. Before 

turning on the instrument, one must wet the column manually. This is accomplished 

as follows: 
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Figure A.33: Non-inverting amplifier circuit diagram. 



147 

+Vee 

+Vee 

-----~Rs 

7 -Vee 

3 

Cs 
OUT 

2 Rout 
R6 

IN 

Rs 

-Vee 

Figure A.34: Inverting amplifier circuit diagram. 
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1. Remove the inlet top. 

2. Plug the nozzle inlet to the OPC using a small (approx. 1/2" diameter) rubber 

sphere that is attached to a long string. To ensure a good seal, a very thin layer 

of vacuum grease can be applied to the sphere. This sphere is then dropped 

down into the column such that it rests on the nozzle inlet, ensuring that no 

water gets into the nozzle. The string is used to pull the sphere out after the 

column is wetted. 

3. Spray water into the column to completely wet the filter paper using a misting 

spray bottle that can be purchased from hardware/gardening stores for misting 

plants. It is recommended that the bottle be modified so that a long tube 

(Tygon, preferably) connects the bottle with the end that produces the mist. 

This allows the bottle to be positioned such that if water spills out of the bottle 

accidentally, it does not harm any instrumentation. It is also more convenient 

to manipulate the misting end when it is attached to the flexible tubing. 

4. Allow any excess water to drain into the outlet flange reservoir. Remove the 

rubber sphere, inspect the column to make sure that it is wet (and that the 

filter paper is smoothly adhering to the walls), and replace the inlet top. 

A.5.2 Test Procedures 

The following are procedures used to test the CCN instrument. 

OPC noise test 

With no flow in the instrument, turn on the laser and the detection electronics (APD, 

amplifiers, MCA). If this is the first time that the system is turned on, adjust the 

Lower Level Detection screw on the MCA card (located on the front panel) until 

the MCA dead time is at most 53. The lowest channel that registers counts should 

be less than channel #100, preferably less than channel #50. If it is too high, try 

cleaning the receiver lenses (probably the front lens), or perhaps the amplifier gain is 
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too high, in which case the gain should be reduced by using different resistors. Once 

the MCA is set properly, it shouldn't require subsequent adjustment. 

If, at any future times, the dead time with no flow in the instrument is much 

larger than 53, it is likely that some water has gotten into the OPC. Remove the 

receiver and check the front receiver lens. Clean any water droplets or water marks 

that have accumulated on it. Also inspect the OPC cavity for any other residual 

water drops. In the case of a large amount of water getting into the system, the 

beam dump mirror and the transmitter front window may also require cleaning. To 

clean optical components, first blow off any loosely adhering particles using a can 

of optical/electronic component air, and then clean with a cotton swab dipped in a 

small amount of spectrophotometer grade acetone. 

OPC and detector check 

To check that the OPC, photodetector electronics, and MCA are working properly, 

turn the instrument on (all electronics, with wetted column). Flow particles (large, 

monodisperse particles are preferable but not necessary) through the instrument. 

Hook up an oscilloscope to both the input and output of the amplifier circuit (which 

correspond to the output of the APD and the input to the MCA). The APD output 

should negative pulses that are Gaussian in appearance. Each pulse width should be 

roughly 5 µs. The output of the amplifier circuit should be positive pulses with no 

baseline offset (because the amplifier circuit is ac-coupled to the APD circuit), and 

the ratio of the negative to positive pulse heights should correspond to that of the 

overall amplifier circuit gain. If large ( > 100 µm diameter), monodisperse aerosol is 

used, the MCA should produce a distribution that is well offset from the lower cutoff 

channel, and has a distribution similar to that of a DMA transfer function. Multiple 

peaks may be indicative of a problem with the DMA neutralizer. If the Caltech design 

neutralizer is being used, replace the polonium strips if they are old. 
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Column temperature check 

The column temperatures can be checked two ways. They can be manually checked 

using the terminal block located near the front of the instrument beside the tem­

perature controllers. The orange wires are the temperature monitors, and the gray 

wires the corresponding grounds. A multimeter can be used to quickly check if the 

temperatures are at setpoint. The temperatures can also be checked by running the 

field software, which logs the temperatures. 

Other checks 

If mysterious electronic problems occur, the first thing to check is to see if any fuses 

have blown at the power input. External 28 VDC power runs into the instrument, 

through the switches, and then through a number of fuses in parallel with a set of 

resistors designed to buffer any power transients. It's possible that one or more fuses 

have blown and need to be replaced. 

Flowrates should be checked periodically to make sure there are no leaks and that 

the critical orifice is not partially clogged. Besides using a hand vacuum pump for leak 

testing, the instrument can be leak tested by running clean filtered air through the 

instrument, which should naturally not give any counts. Checking that the differential 

pressure transducer for the aerosol flow is at setpoint is an easy and accurate way 

to determine if the flows are correct. Another simple test is to use a Gillibrator to 

measure the total inlet flowrate. 
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