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the paper into a smaller diameter to get it to fit. Once the paper lines the entire tube
length, it must be uncoiled such that the seams of the paper are straight. Finally, the
paper should be manipulated such that it tightly lines the inside of the tube. Wetting
of the tubing will also help bring the paper in contact with the tube wall. The paper
should be inspected on a frequent basis because it has a tendency to come off of the
tubing wall. If this occurs, and cannot be fixed by gently rolling a rod over that
section, the paper should be replaced. Finally, a small aluminum split ring is used
to hold the paper in place at the bottom of the column. It holds the paper after the
air flow has entered the outlet skimmer and therefore does not affect the growth of
CCN in the column. It is roughly 3/8” high, thin (0.020” wall thickness), and around

0.70” diameter before it is split and a small amount of material removed.

A.3.3 CCN Outlet

The CCN instrument outlet (Figures A.9 to A.12) focuses the combined aerosol and
sheath flows through a small nozzle in order to size and count grown droplets in the
OPC. It also has a water reservoir to catch any liquid water running down the CCN
column tube. The skimmer has a sharp edge to minimize flow disturbances. It sits off
the wall, however, in order to prevent any large beads of water from entering the OPC,
which can cause serious problems, typically by dripping on to the front receiving lens.
The nozzle was designed with a 15° half angle. It was found that nozzle diameters
much smaller than 0.040” seemed to cause droplet impaction, so 0.040” seems to be
close to the lower limit for the nozzle diameter. It might be possible to reduce the
nozzle size (which would narrow the spread of aerosol in the view volume of the OPC)
by reducing the nozzle converging angle. If the angle is reduced by too much, however,
the time lag between the end of the column and sizing at the OPC might result in a
shift in droplet size due to evaporation, although this shouldn’t be a problem as the
surrounding air should be close to saturation. The nozzle was designed such that it

can be easily replaced without substantial additional machining,.



115

500
7] /#6 Clearance hole
I
.500
1.700 1.350 1.000 1—
Reamed hole 0.126"
I diam x 0.65" deep
4 55
!
] =11
! i
| G 563
1.125 = =l

p

N

‘——‘I' .750(A)

(A) For close sliding fit of 3/4" OD tubing (provided)

[PART NAME DRAgvaéh
CCNS COLUMN: COLD SEGMENT Cates - and
MATERIAL: AL 6061 DRAWING # 1 of 3 DATE 10 14 1998

Figure A.6: Mechanical drawing of CCN column cold segment.
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Figure A.7: Mechanical drawing of CCN column hot segment.
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Figure A.8: Mechanical drawing of CCN column heat sink modification.
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Figure A.9: Assembly drawing of outlet.
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Figure A.10: Mechanical drawing of outlet nozzle.




120

SO TSN SANINSY
ALV ALRRRALLNY

1.0000) —¢ ] 2.003
22 % A
A | é;f
T ‘
d b—.e?sq ; \
2 x 4-40 tapped 875(B)—
holes, 0.35" deep, l—1 OOO((A))-
180 deg apart (D). 1 563 4 x 6-32 clearance
1.875 holes, 90 deg apart on

circle 1.563" diam (E).

ﬁ\) For smooth sliding fit into OPC Mounting Block (provided). See
ote (B) of Outlet Nozzle.

B) For smooth sliding fit of Outlet Orifice. See Note (B) of Outlet

ozzle.

(C) For smooth sliding fit of Outlet Flange

(D) To fit with Outlet Nozzle

(E) To fit with OPC Mounting Block (will be provided).

[PART NAME
OUTLET: SKIMMER

DRAWN BY:
Patrick Chuang
Caltech

MATERIAL: SS 316

DRAWING # 3 of 4

DATE 10 14 1998

Figure A.11: Mechanical drawing of outlet skimmer.
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Figure A.12: Mechanical drawing of outlet flange.
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A.3.4 OPC Mounting Block

The OPC mounting block (Figures A.13 to A.17) was designed for minimum vol-
ume and weight, while robustly mounting all the components (transmitter, receiver,
beam dump, nozzle) with high precision and repeatability. All OPC parts should be
carefully machined such that their mating is smooth but without slop. Such tight
precision means that parts can easily get jammed if they are not put in or pulled out
straight, especially before they are anodized. A very thin coating of vacuum grease
should be used in order to help prevent this from occurring. All pieces should be
provided in order to properly fit them to the mounting block. The inside surface of
the OPC mounting block in the vicinity of the scattering volume is roughened slightly

before anodizing in order to minimize spurious light entering the receiver.

A.3.5 OPC Transmitter

The newly designed transmitter (Figures A.18 to A.22) incorporates a new laser (Blue
Sky FBC-011) which provides more power (18 mW), and a cleaner beam (due to the
fact that it is fiber-coupled) than the previous laser. With the old laser, spurious light
resulted in significant DC noise in the detector, which necessitated the addition of a
spatial filter (one focusing lens, a pinhole positioned at the beam waist, and a second
recollimating lens), which was very difficult to machine and align properly. The new
transmitter is much simpler. The laser emerges from the laser collimated (0.7 mm
spot size) with little spurious light. The beam is then transformed using a cylindrical
optic such that it is wider (4 mm) in the dimension perpendicular to the aerosol
stream, but no thicker (remains 0.7 mm in the direction of the flow) at the view
volume point, with a low divergence (approx. 2°). This minimizes coincidence errors,
i.e. the chance that two droplets are present in the view volume simultaneously while
maximizing the homogeneity of the beam with respect to droplets passing through
the beam along slightly different streamlines. Spurious light caused by the cylindrical
optic is reduced by the use of baflles. Note that there no adjustment in the machined

pieces; all the pieces are aligned by carefully machining the parts so that they have
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Figure A.13: Mechanical drawing of OPC mounting block, cross-section view.




124

Tap 6-32 X 0.40 DP

_ 90 degrees along a
2-024 Oring groove  qircle %.56 BCD ]

Top View
[PART NAME DRAWN BY:
OPC MOUNTING BLOCK: TOP VIEW Patrick Couang
MATERIAL: AL 6061 DRAWING # 2 of 5 DATE 1302 1998

Figure A.14: Mechanical drawing of OPC mounting block, top view.
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Figure A.15: Mechanical drawing of OPC mounting block, Face A (beam dump view).
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Figure A.16: Mechanical drawing of OPC mounting block, Face B (transmitter view).
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Figure A.17: Mechanical drawing of OPC mounting block, Face C (receiver view).
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nearly identical axes of symmetry and close sliding fits.

The laser head is held in place in the cylindrical optic holder using a crush fit; a
45° angle notch is cut into the ring which, when tightened, squeezes the O-ring tightly
against the laser barrel. Axial location of the laser head is not critical, as the output
is collimated. This assembly (laser head, crush fit ring, cylindrical optic housing) is
then inserted in to the transmitter housing. Alignment is achieved by use of a pin
which slides into the pin alignment holes in all three pieces, and is then removed once
the assembly is fastened together properly. The pin is positioned such that it is at
the top of the transmitter when the transmitter is mounted into the OPC mounting
block.

In order to equalize pressure in the transmitter, holes are drilled into it. This
prevents a case where the transmitter was assembled at atmospheric pressure, and
low pressures achieved during flight result in a large force on the cylindrical optic
because of an imbalance in pressure. These holes fix both sides of the optic at ambient
pressure. The window at the end of the transmitter is used to isolate the optics from
the possibly harsh high-humidity environment of the OPC, and also to provide a high
quality seal for the CCN instrument. In event that the CCN instrument is operated
at a low, constant pressure, the window is forced onto the O-ring by the (larger)
ambient pressure, tending to make an improved seal. The teflon retaining ring is
used to prevent scratching of the window by the retaining ring. A long thread (0.85”)
was provided in the transmitter housing so that optical components could be added

in the future to further condition the beam, if desired.

A.3.6 OPC Receiver

The OPC Receiver (Figures A.23 to A.29) uses two identical aspherical lenses to col-
lect, collimate, and re-focus the light onto a fiber optical cable (1 mm core diameter),
which then transmits the light to the APD photodetector. It is held onto the mount-
ing block using a split clamp arrangement. The front asphere is held in place using a

black anodized nut. Similarly to the OPC mounting block cavity, this nut is rough-
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Figure A.20: Mechanical drawing of OPC transmitter crush fit ring.
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Figure A.21: Mechanical drawing of transmitter window retaining ring.
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Figure A.22: Mechanical drawing of transmitter window washer.
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ened slightly before anodizing to minimize spurious light in the cavity. The receiver
rear housing holds the receiver re-focusing lens, which has axial adjustment. The lens
must be adjusted in order to maximize the amount of light that is transmitted to
the fiber optic cable, which attaches to the receiver using an SMA style fitting. The
SMA receptacle can be purchased from Newark, and machined such that it is press-fit
into the SMA flange. Once the lens is in place, it should be fixed using (removable)
epoxy, preferably one that will break cleanly from the threads when sufficient force
is applied.

The receiver also needs to be properly positioned axially when inserted into the
OPC mounting block. This is found by changing the distance of the receiver from the
view volume until the signal for monodisperse droplets is maximum. It has been my

experience that the signal is not very sensitive to changes in the receiver position.

A.3.7 Beam Dump

The beam dump (Figures A.30 and A.31) is used to capture the unscattered beam.
This is accomplished by reflecting the beam using a mirror mounted at the end of the
Wood’s Horn beam dump at a 45° angle. The reflected beam then enters the beam
dump which is curved, painted black, and tapered to a seal at the end. This is a very
effective way to eliminate the unwanted light. The Wood’s Horn is attached to the
OPC mounting block using a split clamp arrangement. Once in place (aligned such
that the mirror is rotated to properly reflect the unscattered beam), the Wood’s Horn
does not need to be re-aligned as removing the beam dump requires removing only
those bolts that fasten the split clamp to the mounting block. The mirror is attached
to the end of the tubing using RT'V.

A.4 Electrical Drawings

A.4.1 Wiring Diagram

Figure A.32 is a wiring diagram for the CCN instrument.
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Figure A.23: Assembly drawing of OPC receiver.
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Figure A.24: Mechanical drawing of receiver front housing.
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Figure A.25: Mechanical drawing of receiver front lens nut.
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Figure A.27: Mechanical drawing of receiver rear lens holder.
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Figure A.28: Mechanical drawing of receiver rear lens retaining ring.
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Figure A.29: Mechanical drawing of receiver SMA flange.
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Figure A.30: Mechanical drawing of OPC beam dump clamp.
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Figure A.31: Mechanical drawing of OPC beam dump tubing modification.
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Figure A.32: Wiring diagram of CCN instrument.
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Component Non-Inverting Amp Value Inverting Amp Value

Ry 1 kQ 200 Q

R, 1 kQ 1 k2

Rin 100 k2 25 Q

Rout 50 Q 50

R: N/A 2 k2
C1 and C2 0.1 uF ceramic 0.1 pF ceramic
C3 and C4 6.8 uF tantalum 6.8 uF tantalum

Table A.2: Component values for OPC amplifier inverting and non-inverting circuits.

A.4.2 Circuit Diagrams

Figures A.33 and A.34 are the circuit diagrams for the amplifiers used to increase
the signal of the output of the Hamamatsu APD. The op-amp in both cases is the
CLC426 by National Semiconductor. Note that two amplifiers in series are used in
order to provide a high (100 k€2) input impedance to the amplifier, and to also invert
the signal. The first amplifier is used in the non-inverting configuration where the
high input impedance can be achieved, followed by the inverting amplifier. Use of the
inverting amplifier alone would have resulted in a very low (approx. 1 kohm) input

impedance, much too low for the APD circuit to drive.

A.5 Instrument Operation

This section describes operational procedures for testing and running the CCN in-

strument.

A.5.1 Normal Field Operation

The instrument is designed such that upon turning the power switches on, the in-
strument begins running automatically. There are currently two power switches, one
for only the temperature controllers, and one for all the other electronics. Before

turning on the instrument, one must wet the column manually. This is accomplished

as follows:
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1. Remove the inlet top.

2. Plug the nozzle inlet to the OPC using a small (approx. 1/2” diameter) rubber
sphere that is attached to a long string. To ensure a good seal, a very thin layer
of vacuum grease can be applied to the sphere. This sphere is then dropped
down into the column such that it rests on the nozzle inlet, ensuring that no
water gets into the nozzle. The string is used to pull the sphere out after the

column is wetted.

3. Spray water into the column to completely wet the filter paper using a misting
spray bottle that can be purchased from hardware/gardening stores for misting
plants. It is recommended that the bottle be modified so that a long tube
(Tygon, preferably) connects the bottle with the end that produces the mist.
This allows the bottle to be positioned such that if water spills out of the bottle
accidentally, it does not harm any instrumentation. It is also more convenient

to manipulate the misting end when it is attached to the flexible tubing.

4. Allow any excess water to drain into the outlet flange reservoir. Remove the
rubber sphere, inspect the column to make sure that it is wet (and that the

filter paper is smoothly adhering to the walls), and replace the inlet top.

A.5.2 Test Procedures

The following are procedures used to test the CCN instrument.

OPC noise test

With no flow in the instrument, turn on the laser and the detection electronics (APD,
amplifiers;, MCA). If this is the first time that the system is turned on, adjust the
Lower Level Detection screw on the MCA card (located on the front panel) until
the MCA dead time is at most 5%. The lowest channel that registers counts should
be less than channel #100, preferably less than channel #50. If it is too high, try

cleaning the receiver lenses (probably the front lens), or perhaps the amplifier gain is
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too high, in which case the gain should be reduced by using different resistors. Once
the MCA is set properly, it shouldn’t require subsequent adjustment.

If, at any future times, the dead time with no flow in the instrument is much
larger than 5%, it is likely that some water has gotten into the OPC. Remove the
receiver and check the front receiver lens. Clean any water droplets or water marks
that have accumulated on it. Also inspect the OPC cavity for any other residual
water drops. In the case of a large amount of water getting into the system, the
beam dump mirror and the transmitter front window may also require cleaning. To
clean optical components, first blow off any loosely adhering particles using a can
of optical/electronic component air, and then clean with a cotton swab dipped in a

small amount of spectrophotometer grade acetone.

OPC and detector check

To check that the OPC, photodetector electronics, and MCA are working properly,
turn the instrument on (all electronics, with wetted column). Flow particles (large,
monodisperse particles are preferable but not necessary) through the instrument.
Hook up an oscilloscope to both the input and output of the amplifier circuit (which
correspond to the output of the APD and the input to the MCA). The APD output
should negative pulses that are Gaussian in appearance. Each pulse width should be
roughly 5 ps. The output of the amplifier circuit should be positive pulses with no
baseline offset (because the amplifier circuit is ac-coupled to the APD circuit), and
the ratio of the negative to positive pulse heights should correspond to that of the
overall amplifier circuit gain. If large (> 100 pgm diameter), monodisperse aerosol is
used, the MCA should produce a distribution that is well offset from the lower cutoff
channel, and has a distribution similar to that of a DMA transfer function. Multiple
peaks may be indicative of a problem with the DMA neutralizer. If the Caltech design

neutralizer is being used, replace the polonium strips if they are old.
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Column temperature check

The column temperatures can be checked two ways. They can be manually checked
using the terminal block located near the front of the instrument beside the tem-
perature controllers. The orange wires are the temperature monitors, and the gray
wires the corresponding grounds. A multimeter can be used to quickly check if the
temperatures are at setpoint. The temperatures can also be checked by running the

field software, which logs the temperatures.

Other checks

If mysterious electronic problems occur, the first thing to check is to see if any fuses
have blown at the power input. External 28 VDC power runs into the instrument,
through the switches, and then through a number of fuses in parallel with a set of
resistors designed to buffer any power transients. It’s possible that one or more fuses
have blown and need to be replaced.

Flowrates should be checked periodically to make sure there are no leaks and that
the critical orifice is not partially clogged. Besides using a hand vacuum pump for leak
testing, the instrument can be leak tested by running clean filtered air through the
instrument, which should naturally not give any counts. Checking that the differential
pressure transducer for the aerosol flow is at setpoint is an easy and accurate way
to determine if the flows are correct. Another simple test is to use a Gillibrator to

measure the total inlet flowrate.
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