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ABSTRACT 

Genetically identical cells harvested in the same environment exhibit heterogeneity in gene 

expression.  This phenomenon, termed gene expression noise, has been measured in several 

model organisms under various conditions. However, we still do not have a clear 

understanding of (1) the factors responsible for generating gene expression noise, or (2) the 

potential consequences noise can have on cellular processes. In an attempt to investigate 

these issues, we have determined the effects of 1) directional selection, 2) promoter 

mutation and 3) fluctuations in transcription factor localization on gene expression noise.  

First, we have used analytic and computational modeling of the effects of directional 

selection on gene expression noise to discover that, assuming expression can be described 

by up to two independent parameters, μ, mean, and σ, noise, strong directional selection 

yields an increase in noise. Next, we generated mutant promoter libraries and measured 

gene expression to determine the effects of cis-regulatory mutations on gene expression 

noise. Here we found that the expression noise can indeed be modulated by mutation 

independent of mean expression levels, lending credence to the previously mentioned 

analytical result. Based on this result, that mutations can harness noise, we wanted to 

determine whether the binding and unbinding of transcription factors to promoter regions 

also contributed to gene expression noise. To do so, we analyzed the localization dynamics 

of a transcription factor Crz1. We determined that Crz1 translocates to the nucleus in 

coherent bursts of localization in response to calcium. The frequency, but not the duration, 

of these bursts increases with the concentration of extracellular calcium. This frequency 

modulation propagates downstream of Crz1, enabling proportional regulation of target 

genes. Intrigued by this result, we characterized different types of localization dynamics 

used by the yeast proteome. We have found several classes of localization behavior, 

including proteins that burst on several timescales, exhibit static heterogeneity, and show 

amplitude modulation. Strikingly, several of these dynamic localization systems must co-

exist in the same cell under the same conditions. Amongst the proteins that burst on a fast 

timescale like Crz1, Msn2 and Mig1 are transcription factors that both burst when deprived 

of glucose. Furthermore, both regulate a common set of target genes. Interestingly, when 
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imaged together, the proteins exhibit correlations on two timescales, a positive correlation 

that typically lasts for an hour and an anti-correlation that lasts a few minutes. We are 

continuing to investigate the potential regulatory impact of these correlations by measuring 

the expression of their combinatorial target genes. 
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NOMENCLATURE 

Amplitude Modulation (AM): A technique used in electronic communication to transmit 

information through a radio carrier wave. Here the strength of the transmitted signal varies 

in relation to the information being sent. We have adapted this term to nuclear localization 

to describe a phenomenon in which the nuclear intensity of a protein varies in response to a 

biological signal. 

Directional Selection: Selective pressure favoring the increasing (or decreasing) values of 

a quantitative trait- causing allele frequency to continue to shift in one direction. 

Frequency Modulation (FM): A technique used in electronic communication in which 

information is conveyed over a carrier wave by varying its frequency. Note that this in 

contrast to amplitude modulation in which the frequency is constant. We have adapted this 

term to nuclear localization to describe a phenomenon in which the frequency of nuclear 

localization bursts varies in response to a biological signal.   

Gene Expression Noise: Copy number variability in mRNA or proteins across a clonal 

population of cells.  

Green Fluorescent Protein (GFP): A fluorescent marker frequently used in molecular 

biology. Spectral variants in several different colors also exist. 

Flow Cytometry: A technique to count and characterize (measure gene expression of) 

microscopic particles (including yeast cells) suspended in liquid 

Promoter: A region of DNA that activates transcription of a particular gene, its typically 

located upstream of the gene.  

Pulse-Width Modulation (PWM): A widely employed technique in electronics in which 

an analog signal is controlled digitally.  Here the duty cycle, or width, of a square wave (an 

all-or none phenomenon) is modulated to encode a specific analog level. This phenomenon 

has been co-opted to localization dynamics. In this case, the all or none phenomenon is a 

burst and its duty cycle, or width, is the duration of the burst.  

Static Heterogeneity: When cells burst, they can do so independently of other cells around 

them. As a result, only a small percentage of cells burst at any given time; this dynamic 

phenomenon creates creating population heterogeneity. However, it is also possible to 

create such heterogeneity without any dynamics. In this case, cells respond with nuclear 

localization and that localization remains constant over time, but only a fraction of cells 

respond as several cells remain cytoplasmic.  
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1 
I N T R O D U C T I O N  

One of the most striking aspects of biology is in the diversity of cellular life. Although 

much of this variability has been attributed to genetic and environmental factors, recent 

studies have shown4 that genetically identical organisms in the same environment exhibit 

heterogeneity in gene expression. This phenomenon, gene expression noise, has been 

observed and measured across species as divergent as prokaryotes and mammalian cells.
1-4

   

 We have been keenly interested in understanding more about the origin of this 

heterogeneity as well as wondering what potential functional consequences it may have. 

We have begun addressing these questions with a suite of experiments described in the 

following chapters. 

 In Chapter 1, we examine the effects selection may have on gene expression noise 

in silico. We find that under fairly general conditions, directional selection for the value of 

a quantitative phenotypic trait can yield an increase in the noise in that trait.  

 In Chapter 2, we begin to look experimentally at the effects cis-regulatory 

mutations have on gene expression noise. Through the creation of promoter mutant 

libraries, we look for mutations that change noise; furthermore, by also looking at how 

these same mutations affect mean levels of gene expression noise, we test the independence 

of these two parameters. By measuring mean and noise levels of gene expression in three 

mutant yeast promoter libraries, we see that the two parameters are independent in some 

cases. More importantly, we see a wide variety of mean and noise values, suggesting that 

cis-regulatory mutations can control gene expression noise independently of mean. 

 Upon finding out that specific promoter mutations can impact gene expression 

noise, we were interested in finding out if the binding and unbinding of transcription 

factors to promoter regions had a similar impact. In Chapter 3, we observe the localization 

dynamics of a calcium-responsive yeast transcription factor, Crz1. We find that it localizes 

to the nucleus in short coherent bursts in response to calcium. The frequency, but not 

duration, of Crz1 localization bursts increases with extracellular calcium. This frequency-

modulated nature of the bursts enables proportional control of target genes. Interestingly, 

these localization bursts also lead to transcriptional bursts of target genes, leading to noisy 
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gene expression. This is especially intriguing because it suggests a trade-off of sorts. The 

bursts lead to noisy gene expression but they also lead to proportional regulation. Hence the 

localization dynamics of a yeast transcription factor provide a mechanism to increase gene 

expression noise and provide proportional control of a regulon of target genes.  

 Since the strategy of looking at protein localization dynamics had yielded such 

interesting results, we decided to take a more comprehensive look at protein dynamics in 

yeast. In Chapter 4, we describe a screen in which we take movies of all available tagged 

proteins in yeast. We find that there are a few other fast bursting proteins, like Crz1. 

However, several other types of localization behavior exist, including slow bursts, 

amplitude modulation, and static heterogeneity. Amongst the other fast bursting proteins, 

we have found two transcription factors, Msn2 and Mig1, which burst in response to 

glucose deprivation. When observing both proteins in the same cell, it is clear that their 

bursts are not completely independent, as seen in the cross-correlation function. We hope to 

use chemical perturbations to track down this lack of independence and measure expression 

levels of combinatorial target genes, hoping it will help uncover mechanistic insights into 

the observed fast bursts and their downstream consequences. 

 To summarize, we have looked at different potential mechanisms for generating 

gene expression noise, namely selection, cis-regulatory mutations, and the localization of 

trans-acting factors. All appear as if they could contribute to gene expression noise; most 

notably, the bursting of transcription factors in and out of the nucleus, in addition to leading 

to increased amounts of gene expression noise, also yields proportional control of a suite of 

genes. These results also provide a mechanism for proportional control, a phenomenon 

which may be important in several contexts and may even provide a rationale for some of 

the gene expression noise that we observe. We anticipate that further investigation of the 

functional consequences of noise will continue to provide insights into cellular behavior. 



 

 

3 
C h a p t e r  1  

EFFECTS OF EVOLUTIONARY SELECTION ON NOISE 

Motivation  

Many biological traits are quantitative: levels of gene expression, sizes of appendages, and 

abundances of cellular components can vary over a wide range. Mean values of such 

phenotypes are generally genetically encoded; therefore, they are subject to the forces of 

selection. Recently, it has become clear that such phenotypes are fundamentally noisy: that 

is, genes specify a distribution of possible values for the trait, rather than a precise value.  

More significantly, the variance of this distribution, like the mean, is under genetic control,
5
 

and the variance, at least in stress response genes, may be genetically independent of 

mean.
1,3

 This data suggests that both the mean and variance of a quantitative phenotype are 

influenced independently by selective pressures that act on the phenotypes expressed in 

individual cells. However, an individual in a population is subject to selection only on its 

particular phenotypic value, not on the mean and variance that specify its phenotypic 

distribution. Here we ask how positive directional selection affects variance in a simple 

quantitative trait.   

 A notable feature of this question is that there are only three possible outcomes. The 

variance can increase, decrease, or stay the same. Conceptually, one might expect that as 

you continue to select for a specific phenotype, you select against other phenotypes, 

decreasing the variance in the population
6
 (Fig.1A). Conversely, one can imagine a 

scenario in which selection on the tail end of a distribution can yield an extremely 

heterogeneous population. Here the initial population is very unlikely to pass the selection 

threshold unless there is a large variance (Fig. 1B). Finally, it is possible that as the 

selection increases the mean, the phenotypic variance remains the same (Fig. 1C). To 

distinguish between possibilities, we conducted an in silico experiment. 
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In Silico Result 

We considered a phenotype x, whose distribution is a Gaussian, parameterized by two 

genetically determined independent values ( , )  (other distributions, including log-normal 

and gamma, work as well):  

P(x)
1

2
e

(x )2

2 2

. 

 Here, μ and σ represent the mean phenotypic level, and variance, respectively. 

Either can vary under mutation. We asked how the population means of these parameters, 

µ  and σ , change under rounds of mutation, selection, and growth (Fig. 2B). The 

number of cells, or potentially organisms, was kept large to minimize any effects of genetic 

drift. The initial population was left homogeneous, i.e. both genetic traits were identical in 

all cells, for simplicity. During mutation, the σ and μ for a given cell are assigned new 

values from a distribution centered on their previous values. During selection, we assume 

that only a certain percentage of cells with the highest phenotypes can survive. For 

example, under tight selection, the threshold may be chosen to allow only the highest 

phenotypes, e.g., the top 5%, to survive, while weak selection permits the top 55% to 

survive. After selection, surviving cells replicate to restore the original population size, 

completing one cycle of directional selection (Fig. 2B).  

 The result, shown in Fig. 2C, indicates that tight selection favors increasing 

variance while weak selection favors decreased variance. This result can be understood 

qualitatively by considering two individuals with different values of μ and σ, as shown in  

Fig. 1. How does Selection Affect 

Variance?  There are three possibilities: 

Variance can decrease (A), increase (B), 

or stay the same (C), in response to 

directional selection.  
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Fig. 2. Phenotypic Selection  

A) A flow-chart of the in silico experiment. 

An isogenic population (µ,σ) is mutated so 

that now each cell has a different genotype 

(µn,σn), giving a broader distribution of 

expression levels than the original 

population. A threshold selection is 

imposed (green dashed line). Cells are 

grown to the original population size. The 

selected cells are then mutated again and 

the cycle continues. B) In a simulation, 

20,000 isogenic cells with a mean of 1000 

and a variance of 300 have been mutated 

and selected such that the top 5% (left) or 

55% (right) of phenotypes are allowed to 

survive for 100 selection rounds. Strong 

selection favors increasing <σ> (red lines) 

while weak selection favors decreasing 

<σ> (blue lines). <μ> increases in both 

scenarios. Error bars indicate one standard 

deviation over the population. C) Two 

individual distributions, one with a high 

mean and low variance (blue) and one with 

a lower mean and higher variance (red) are 

shown. If strong selection, (cells with the 

top 5% of all phenotypes are selected, 

(green dashed line)) is imposed on both 

distributions, the red distribution will be 

favored. However, if weak selection (the 

top 55% of all cells will be selected, shown 

with the magenta dashed line) is imposed, 

the red distribution will be favored. 
 

Fig. 2C. The tighter selection (dotted green line) favors the longer “tailed,” or high variance 

individual, despite its lower mean level. Meanwhile, the weaker selection (dotted purple 

line) favors the individual with the higher mean and lower variance. 

  This finding has several insights. As expected, the mean phenotype, µ , always 

increases under directional selection, irrespective of the strength of selection, and the rate 

of increase is proportional to the mutability, the amount that the mean can increase in each 

round of mutation. More interestingly,  behaves differently depending on the strength 
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of selection. When more than half the cells survive selection, variance increases, but when 

less than half survive, phenotypic variance decreases to a basal level.  

            In summary, assuming that a phenotypic distribution is the product of two 

independent genes, computational analysis predicts that directional selection in which less 

than half of all cells survive, yields an increase in phenotypic variance.  

 

Analytic Model 

Although the intuitive diagram shown in Fig 2c explains the aforementioned in silico 

result, it does not explain the precise effect of selection strength. Why is it that selection 

pressures in which <50% of cells yield an increase in variance while those in which >50% 

of cells yield a decrease in variance? What is so special about 50%? We constructed an 

analytic model hoping to resolve this question.   

We assumed the quantitative phenotype (x) controlled by two independent genetic traits, 

has a  phenotypic response is given by ),( . Hence, for a given value of genetic traits the 

phenotype distribution is given by: 

 

(1) 
2

2

2

)(

2

1
)(

x

exP  

 

The genotype distribution function ),(t
 is defined as the probability to find the 

genotype ),(  within the population at generation t. (In more formal terms, the 

probability is given by ddt ),( ). 

 

The goal here is to obtain an expression for ),(t
 after many generations of mutation, 

selection, and growth. More specifically, we are interested in what happens to  and 

, defined as the mean and variance of the phenotype, respectively, after many 

generations under the influence of different types of selection. 
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In order to do that, we need to write the dependence of ),(1t
 on ),(t

. The 

process which occurs in each generation is as follows: 

 

(2) ),(),(),( 1t

m

tt , 

 

where ),(m

t  is the distribution after the mutation phase. The first arrow in (2) 

corresponds to the mutation phase and the second arrow corresponds to the selection phase. 

 

Mutation phase 

 

In the mutation phase, we allowed the values of   and   of each genotype to change a 

little. We can define a mutation function: 

(3) 
2

2

2

2

2

1

2

1
),;,( eeM , 

where  and  are fixed parameters that correspond to mutation ranges in  and  

in each generation. 

 

To obtain ),(m

t , one needs to convolve ),(t  with the mutation function: 

(4) ''),,','()','(),( ddMt

m

t . 

 

(Please note that one can also write the continuous version of that with a free diffusion 

equation.) The new genotype distribution is broadened by the convolution with mutation. 

 

Selection Phase 

 

In the selection stage, we essentially look at the total phenotypic distribution and apply a 

phenotypic selection function S(x) to select for the surviving population. So: 
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(5)  
x

m

tt dxxSxP ),;(),;(),(),(1 , 

Let‟s assume, for example, that we select by introducing a threshold T which is defined 

such that only a fixed fraction of the population T remains after the selection. Equation (5) 

then becomes 

 

(6)  
22

1
),(),;(

1
),(),(1

T
erfcdxxP

T

m

t

TxT

m

tt . 

Note that the term on the right hand side was normalized by T . This corresponds to letting 

the population grow back to its original size after selection. The threshold T is defined by 

requirement that ),(1t
should be normalized, i.e, 

 

(7)  1
22

1
),( dd

T
erfc

T

m

t . 

 

The relation between selection rounds 

 

Substituting Eq. (4) into Eq. (6) provides the required relation between two consecutive 

generations:  

(8)  ''),,','()','(
22

1
),(1 ddM

T
erfc t

T

t . 

 

The right hand side is just a mutated distribution (in square brackets) multiplied by a term 

we‟ll describe as the selection function. The function erfc(z) is the complementary error 

function: 

 

(9) 
z

t dtezerfc
22

)( . 

The selection function becomes  
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(10) 
2

T
erfc . 

From the analysis of this expression, we have learned several important lessons. First, if the 

variance, or , is small and the mean phenotype, , is less than the selection threshold, T, 

there is no chance that individual will be selected. However, if the mean phenotype stays 

the same and the variance increases, that individual has some chance of being selected. The 

50% selection threshold, at least in a Gaussian distribution is the point where the mean and 

the threshold are equal. Here the selection expression automatically becomes erfc(0)= 1. 

There is no longer any dependence on the variance in the expression.Next, in the cases 

when selection is stringent ( T <<1) and only a few cells pass selection, it is typical for 

most of the mean phenotypes to be less than the threshold value. Here it appears that the 

optimal strategy to pass selection is to have a large variance. In fact, the high variance 

might even act as an insurance policy, enabling cells to withstand mutations that lower their 

means and still pass selection.  Finally, when selection is lenient, ( T >0.5) individuals with 

higher means and lower variances outcompete those with higher variances. High variance 

populations also have some very low phenotypic values far below the threshold, making 

them less fit than their low variance counterparts.   

Discussion 

 This result is general; it applies to any quantitative phenotype under selection.  For 

many selection experiments, the effects of variance generally have not been measured. 

However, for those experiments, in which distributions are plotted, it seems as if the 

variance does increase. For example, in 1957 Clayton and Robertson selected for increased 

and decreased abdominal bristle number in Drosophila melanogaster.
7
 The resulting 

phenotypic distributions from their selection appear to be broader than their initial 

population (Figure 3). 
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 Additionally, Peter and Rosemary Grant have been measuring several quantitative 

phenotypes in Darwin‟s finches on the Galapagos Islands for almost 40 years. They have 

found that after one drought, during a single monsoon season, the beak depth of the finches 

increases. After just one generation, they found that the distribution of beak depths 

broadened.
8
  

 In a long-term evolution experiment with E. coli, Richard Lenski and colleagues 

found that while only a few mutations evolved at first, 6 of 12 replicate cultures 

independently mutated a DNA replicase creating hypermutable strains.
9
 Due to selection 

pressures, this hypermutable mutation was only allowed to survive because it had the same 

fitness, or mean phenotype, as non-hypermutable strains. However, in half of the cell lines 

evolution selected for this increased ability to mutate, or higher variance in fitness.  

 Although these long-term evolution experiments are incredibly complicated 

because of the variety of selection pressures, the fact that we still see variance increasing in 

response to directional selection reiterates the potentially generality of our result. 

Furthermore, it shows that in the examination of how selective pressures affect phenotypes, 

it is important to consider how both the mean and variance of a given phenotype are 

affected.  

 

 

Fig. 3. A Selection Example. 

Clayton and Robertson selected 

for high and low abdominal 

bristle number in flies. They 

showed that flies under 

directional selection, exhibited 

higher variance than the base 

population, consistent with the 

proposed computational model. 
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Future Directions  

As discussed in the introduction, our interest lies in gene expression noise and its potential 

causes and consequences. Using gene expression as a quantitative phenotype, we can apply 

our computational and analytic results towards noise. Specifically, we predict directional 

selection may provide a mechanism that can explain high levels of biological fluctuation. 

This seems even more plausible in lieu of recent computational
10

 and experimental work.
11

 

Most notably, Kaneko and colleagues used stringent selection (top 0.1%) of a specific GFP 

to increase expression noise.
12

  

 Furthermore, we have designed a forward experiment to verify the strong 

evolutionary prediction: strong and weak directional selection for high expression level will 

select for high or low noise, respectively.  One can take two clonal populations of cells with 

overlapping gene expression distributions and artificially impose different types of 

selection using flow cytometry. After several rounds of selection and re-growth, the library 

should be enriched for the clone with low or high noise in the weak or strong threshold 

cases, respectively (Fig 4). The only potential drawback of such an experiment is the 

inability to account for other types of selection that could potentially interfere with the 

resulting data. For example, before and after every flow cytometry-imposed selection, there 

would be ample time for the populations to grow. During this interim period, when both 

clonal populations of cells would have to be cultured together, any small growth 

differences between the populations could have a tremendous impact on the experiment. To 

account for such errors, one could conduct a similar experiment without the flow 

cytometry-based selection. Ideally, in this experiment, both clonal populations would be 

tagged with a specific fluorophore, one with a CFP and one with a cherry.  This way, one 

could use a plate reader or flow cytometer to measure the fraction of cells that are labeled 

with each color and determine the impact, if any, growth had on the ratios of the two 

populations. If there was an impact, its measured value could be used to deconvolve its 

effects from the flow cytometry imposed selection. Combined, both experiments could be 

used to measure the effect of directional selection on phenotypic distributions and, 

specifically, on phenotypic variance. We anticipate that such selection experiments can 
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yield insight into the role different selective pressures play in causing phenotypic variance 

in gene expression and other quantitative phenotypes. 

 

 

Fig. 4. How selection affects phenotypes.  

We propose to impose artificial selection on gene 

expression via flow cytometry on pooled promoter 

mutant libraries. If we impose strong selection, we 

expect both the mean and cv of the pooled 

population to increase. If we impose weak 

selection, we expect the mean to increase, but the 

cv to decrease. 
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C h a p t e r  2  

EFFECTS OF CIS-REGULATORY MUTATIONS ON NOISE 

Background 

It is well established that levels of gene expression are quantitative and noisy.
13

 Although 

cis-regulatory regions of DNA, called promoters, are known to control mean levels of 

expression, it is unclear whether these same regions affect gene expression noise. Here we 

randomly mutate promoter regions of a few genes to determine the impact, if any, they 

have on gene expression noise.  

 Gene expression noise has been operationally defined as the standard deviation 

divided by the mean of expression levels in a population of genetically identical cells 

grown in the same environment. Furthermore, noise can be subdivided into two 

components, extrinsic and intrinsic noise. The best way to understand these terms is to 

think of the case where a single promoter is controlling the expression of two genes, each 

of which expresses a spectrally distinct color. If a factor were to affect the noise expression 

of both colors in the same way, due to fluctuations in upstream signaling or cell cycle 

times, it is extrinsic. However, if the factor were intrinsic, it would only affect the 

expression of one of the colors. Such factors include promoter kinetics and mRNA 

turnover.
2,14

 

 Previous work analyzing gene expression levels in yeast showed that (1) variance is 

under genetic control
2,5

 and (2) that there appears to be a scaling relationship between mean 

and variance across most yeast proteins.
1,3

 More specifically, mean expression levels are 

approximately inversely proportional to expression variance levels across all genes in yeast. 

Furthermore, the proportionality constant appears to be the same irrespective of gene or 

condition in which the gene was measured. Given that the noise in several genes is affected 

similarly, this suggests that the predominant source of noise is extrinsic and that a common 

extrinsic factor is responsible for the observed scaling behavior. Interestingly, there are 
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many proteins, including those involved in stress response, metabolism, and/or chromatin 

remodeling that do not exhibit this scaling.
1,15

  

Motivation 

 This scaling phenomenon suggests that the abundance of a protein is sufficient 

information to determine its noise; in other words, both μ and σ are not necessary to 

determine the distribution of expression of a given gene. However, there are certain subsets 

of genes that do not scale. Do the promoters of these genes have special properties that 

enable scaling-independent expression? Is it because mutations in their promoters affect 

both μ and σ in an uncorrelated fashion? To address this question, we have characterized μ 

and σ in random promoter mutants of three genes who did not observe the scaling effect.  

 

 From random promoter mutagenesis, we expect two limiting results; in one case all 

mutant promoters exhibit the scaling effect (Fig 1a) and lie on the same line. This is 

interesting in that it means promoters are restricted to a single line on the μ-σ axes. This 

would mean that all mutations affect both parameters in the same way. Moreover, it would 

imply that gene expression in yeast is determined by one parameter irrespective of whether 

the gene exhibits the scaling affect or not. Perhaps in the latter case, there are other 

extrinsic factors affecting gene expression noise, thus, changing the scaling affect, but 

maintaining the single parameter-dependence on expression.  

Fig. 1. Potential Mutagenesis Results. 

A) If all mutants in the promoter mutant 

library exhibit a scaling effect between 

µ and σ, that means mutations affect 

both parameters in a correlated fashion. 

However, if the mutants are 

uncorrelated as depicted in B) then the 

parameters are uncorrelated.  



 

 

15 

 In the other case, the mutant promoters would be uncorrelated, forming a cloud of 

points on the same graph (Fig. 1b). This result would suggest that both parameters can be 

controlled independently, at least in certain mutations in certain promoters. If this were true 

of promoters that did observe the scaling effect, it would imply that evolution is selecting 

for promoter architectures in which most noise sources are suppressed. As a result, wild-

type promoters would be controlled by a single extrinsic factor, yielding the scaling effect.  

 Of course, it is also possible to see a mixture of the two limiting cases, in which 

some mutations appear correlated in both μ and σ while others do not. 

Methods/Results 

 We created 3 promoter-YFP reporter genes in yeast, starting with the relatively 

noisy genes Tim17, Pir1 and Gal1.  These promoter fusions were cloned into low-copy 

plasmids (YCp) and the entire plasmid was mutagenized by transformation into an E. coli 

mutator strain (XL1-Red, Invitrogen).
16

 Mutagenesis was tuned by varying the number of 

cell cycles the plasmids spent replicating in this cell line. After plasmid purification, the 

entire plasmid library was transformed into yeast. Single yeast colonies were inoculated 

and mean and variance of YFP expression was assayed in a flow cytometer. Each dot in 

Figure 2 represents a clonal population of at least 10,000 cells with the depicted μ and σ. 

The statistics were calculated as depicted in Appendix B Figure 13. As shown in Fig. 2, the 

3 genes show diverse behaviors after 24 hours in the mutator cell line. For Tim17, μ and σ 

are generally uncorrelated. On the other hand, Pir1 mutants show an anti-correlation.  

Finally, Gal1 shows two sub-populations with different μ-σ relationships.  These results are 

a combination of the two limiting cases described in Fig. 1. It is noteworthy though, that 

the fact that some mutations have independent effects on μ and σ provides a proof-of 

principle for the future experiments proposed in Chapter 1. 

 A critical part of the model described in chapter 1 is the distribution of mutational 

effects on mean expression level, μ and noise, σ. Although distributions of mutational 

effects have been measured systematically for protein coding sequences
17

 a corresponding 

analysis of regulatory mutations has not been reported. This information is necessary both 

in the context of the evolutionary model and more generally as the basis for understanding 

how quantitative levels of gene expression can evolve. Furthermore, the data collected here 
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will allow us to answer which sequence elements contribute to noise and expression level 

in these promoters? 

 Additionally, these data show that mutations generally tend to decrease mean 

expression levels; however, when mutagenesis is tuned to lower levels, it is possible to 

increase mean expression levels.  

 

 

 

 

 

  The mutational load depicted in Figure 2 was chosen for the large change in  

expression levels and noise. This was not the case at lower levels of mutagenesis (Figure 3) 

where most mutant promoters, grown in the mutator strain for 12 hours, were very similar 

to the wild-type promoter. Generation of similar μ-σ datasets at varying levels of 

mutagenesis for a larger collection of reporter strains as well as large-scale sequence 

analysis of interesting mutant promoters can yield useful insight into yeast promoter 

architecture. Here the hope would be to understand the phenotypic effects single mutations 

have on both μ and σ. 

  

Fig. 2. Promoter Mutagenesis Results. After 24 hours of growth in a mutagenesis 

cell line, three promoter mutant libraries show some intriguing results. Mutants of Pir1 

seem to scale while mutants of Tim17 are fairly uncorrelated. Meanwhile, Gal1 

mutants fall into 2 categories, those that are uncorrelated and noisy and those that 

scale and are less noisy.  
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Discussion and Future Experiments 

 The results described above reveal the effects of mutation on promoters in the 

absence of selection. Although the most exciting result for us is the potential independence 

of  μ and σ in determining gene expression, there are several fundamental gene regulatory 

questions that can be addressed with this experimental system. 

 First, a fundamental aspect of mutations is their interactions.  Depending on the 

mechanism by which regulatory mutations influence expression and noise, they could 

interact in a neutral (additive), aggravating, or alleviating fashion.  As a simple example, 

consider a mutation that increases expression level and one that reduces it.  If they are 

combined, what will the new expression level be?   

 

  

 To answer this fundamental question, we can select individual mutants with high 

expression level or high noise from the mutant libraries.  We will subject these individual 

clones to additional rounds of random mutagenesis (Fig. 4). Alternatively, we will use site-

directed mutagenesis to combine specific mutations with known effects (as determined 

Fig. 3. Mild Promoter Mutagenesis 

Results. After 12 hours of growth in a 

mutagenesis cell line, the Gal1 mutant 

promoters (blue dots) are remarkably 

similar to that of the wild-type promoter 

(blue star). In fact, the figure is displayed on 

a linear plot to accentuate the minor 

differences. 

Fig. 4. Epistatic Affect of Mutations. 

From our initial dataset we can pick a 

mutant clone with high mean and/or high 

noise and subject it to a second round of 

mutangenesis. If the mutations are additive, 

the mutant clone will continue increasing in 

mean and/ or noise (blue). If they are not 

additive, they will cluster around the wild-

type promoter (green star) similarly to the 

mutants after the first round of mutagenesis 

(red).  
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from the dataset in Fig. 2).  The resulting clones will be analyzed by flow cytometry so that 

epistasis in both mean expression level and noise phenotypes can be determined  

An integral part of the aforementioned experiments is to sequence the mutant 

promoters in an effort to determine the molecular determinants of gene expression noise 

and changing expression levels. Using well-annotated promoters, such as the ones 

described in Fig. 2, we will be able to use the location of these mutations (e.g. in known 

binding sites) to generate hypotheses for the mechanism by which they operate.  These 

hypotheses will be tested by site-directed mutagenesis and analysis of epistatic 

interactions with other sequenced mutations.  With these experiments we hope to 

determine the molecular origins of the individual mutations and epistatic interactions 

identified above. But even before we begin to do that, we can already make predictions 

from the datasets we already have.  

Although our model of gene expression implies a normal distribution with two 

parameters, other models have predicted that the distribution is better fit by the gamma 

distribution.
17

 With this model, the two parameters controlling expression are 

transcriptional bursts size (a) and transcriptional bursts frequency (b). Plotting mutant 

promoters on the a/b axis (Fig. 5) shows that the Pir1 mutants all seem to have the same 

smaller bursts size while many of the Gal1 mutants have the same amount of less 

frequent transcriptional bursts. In these cases, there might be specific dominant mutations 

that cause the changes in burst size and/or frequency; presumably these same mutations 

also have a dominant impact on gene expression mean and noise. Meanwhile, the Tim17 

mutants seem to vary in both burst size and frequency.  
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 This result, showing the potential dominance of certain mutations, suggests that 

specific mutations can restrict promoter landscapes. For example, by measuring 

expression levels across varying mutational loads, one can get a sense of the dynamic 

range of a promoter. However, upon a specific mutation, does the promoter retain that 

dynamic range or is it limited? Does this depend on the mutation? How so? With the 

current set of mutants and assay conditions, such experiments can begin to tell us about 

promoter architecture, its evolution and how it translates into gene expression noise.  

However, it is worth nothing that there are some problems with the proposed 

experimental setup, namely that the mutagenesis is not restricted to the promoter and that 

the copy number variation from the plasmid can also affect our measurements. To correct 

for these flaws, we envision adding a strong constitutive RFP to the plasmid which can be 

used to normalize for plasmid copy number. Furthermore, after each round of 

mutagenesis, the promoter will be amplified and ligated into the wild-type plasmid, 

ensuring that the mutations are relegated to the promoter region. With these minor 

Fig. 5. Transformed Promoter Mutagenesis Results. After 24 hours of growth in a 

mutagenesis cell line, the promoter mutant library data shows interesting mechanistic 

results.  Mutants of Pir1 have a lower burst frequency than wild-type promoters which 

most Gal1 mutants have a burst size smaller than their wild-type counterpart. 

Meanwhile, Tim17 mutants vary in both parameters.  
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adjustments, the sets of experiments described and proposed in this chapter can help 

disentangle how promoter mutations affect gene expression noise. 

 

Acknowledgements 

The work described in this chapter benefitted from several discussions with various 

members of the Elowitz lab.  

 

 

 

 

 

 

 

 

 



 

 

21 
C h a p t e r  3  

FREQUENCY-MODULATED NUCLEAR LOCALIZATION BURSTS 

PROPORTIONALLY REGULATE GENE EXPRESSION  

Chapter Overview 

In yeast, the transcription factor, Crz1, is dephosphorylated and translocates into the 

nucleus in response to extracellular calcium.  Using time-lapse microscopy, we found that 

Crz1 exhibited short bursts of nuclear localization (~2 minutes) that occurred stochastically 

in individual cells and propagated to the expression of downstream genes.  Strikingly, 

calcium concentration controlled the frequency, but not duration, of localization bursts.  

Using an analytic model, we found that this frequency modulation (FM) of bursts ensures 

proportional expression of multiple target genes across a wide dynamic range of expression 

levels, independent of promoter characteristics.  We experimentally confirmed this theory 

with natural and synthetic Crz1 target promoters.  Another stress response transcription 

factor, Msn2, exhibits similar, but largely uncorrelated, localization bursts under calcium 

stress.  These results suggest that FM regulation of localization bursts may be a general 

control strategy utilized by the cell to coordinate multi-gene responses to external signals. 

Introduction 

Cells sense extracellular signals and respond by regulating the expression of target 

genes.
18,19,20

  This process requires two stages of information processing: First, cells encode 

extracellular signals internally, in the states and localization of transcription factors.  

Second, transcription factors activate the expression of downstream genes that will 

implement cellular responses.
18,19,20

 Although many signal transduction systems have been 

studied extensively, it often remains unclear how signals are encoded dynamically in 

transcription factor activities at the single-cell level.  In addition, cellular responses often 

involve many proteins acting in concert, rather than individually.  But it is not known in 

general how the expression levels of target genes are coordinated, allowing them to be 

regulated together, despite diverse promoter architectures.
3
  Here we investigate how signal 

encoding and protein coordination are achieved in individual cells. 
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Results 

We examined the calcium stress response pathway in Saccharomyces cerevisiae, or 

budding yeast.   Cellular response to extracellular calcium is mediated by Crz1, the 

calcineurin-responsive zinc finger transcription factor.
21

 The activity of Crz1 is modulated 

by phosphorylation and dephosphorylation, resulting in changes in Crz1 nuclear 

localization
21

 (Fig. 1a), rather than changes in its protein abundance (Appendix B,  Fig. 1). 

To understand how Crz1 phosphorylation dynamics respond to calcium and regulate the 

more than 100 different targets necessary for calcium adaptation,
22

 we acquired time-lapse 

movies of Crz1 localization dynamics, using a strain in which the Crz1 protein was tagged 

with GFP.
23

 In each movie, we tracked the response of Crz1 localization in individual cells 

to step changes in extracellular calcium concentration. We find that Crz1 dynamics connect 

the encoding of signals and the coordination of target gene expression. 

 In the absence of calcium, Crz1 was cytoplasmic in all cells.  Upon the addition of 

calcium, individual cells exhibited a rapid, synchronized burst of Crz1 nuclear localization, 

similar to behavior observed by the yeast osmosensor Hog1.
24,25

 However, unlike Hog1, 

this initial burst was followed by sporadic unsynchronized localization bursts, typically 

lasting about 2 minutes (Fig. 1 b-d) and persisting throughout the course of the movie (up 

to 10 hours). Moreover, these single-cell Crz1 dynamics are consistent with micro-array 

studies performed on cell populations:
22

 After a step change in calcium, an initial overshoot 

in mRNA levels of Crz1 target genes results from the initial synchronous burst of Crz1, 

while the subsequent elevated average expression levels are due to sustained 

unsynchronized bursts in individual cells (Fig. 1c-e).  

 We next addressed how the amount of calcium affects the dynamics of nuclear 

localization. We observed that the fraction of cells with nuclear-localized Crz1 increased 

with calcium concentration.  Because Crz1 localizes in bursts, this calcium-dependence  

could in principle result from increases in burst frequency or duration.   
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Strikingly, analysis of the movies revealed that only the burst frequency increased (Fig. 2a), 

while the distribution of burst durations remained constant at all calcium concentrations 

(Fig. 2b). This distribution was consistent with two rate-limiting stochastic steps, each with 

a timescale of ~70 seconds (Fig. 2b).  Thus, cells use stereotyped Crz1 localization bursts 

in a frequency-modulated fashion to encode and respond to extracellular calcium.  This 

contrasts with amplitude-modulation control, in which the fraction of Crz1 molecules 

found in the nucleus would change with calcium, but remain constant over time. 

The movies also revealed two modes of nuclear localization bursts: isolated 

individual bursts and clusters of bursts, analogous to spike trains in neurons (Fig. 1c,d).  At 

calcium concentrations less than 100 mM, only isolated bursts were observed and the 

averaged autocorrelation function of the localization trajectories from individual cells was 

well-fit by a single exponential.  However, as clustered bursts emerged at calcium 

concentrations greater than 100mM (Fig. 1c,d), the averaged autocorrelation function was 

Fig. 1. Crz1 undergoes bursts of nuclear localization in response to calcium. a. In the presence of 

extracellular Ca
2+

, Crz1 is dephosphorylated and translocates into the nucleus.  b. Filmstrip showing 

yeast cells with Crz1-GFP before and after addition of 200mM extracellular calcium (yellow square).  

Frames displayed here are separated by 4.5 minutes, but actual time resolution is higher. c,d. Two 

single cell time traces showing Crz1 localization behavior of the two cells in b.  Note that there is a 

synchronized initial burst of nuclear localization followed by subsequent unsynchronized isolated and 

cluster bursts of localization. Individual burst duration, τburst, and cluster duration, τcluster, as well as the 

delay between calcium addition and the initial response, τdelay, are defined on the traces. Averaged 

localization trace shows how single-cell burst dynamics yield partial adaptation across a population of 

cells. 
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better fit by a sum of two exponentials, whose timescales matched the typical durations of 

isolated bursts and burst clusters, respectively (Fig. 2d).  Higher levels of calcium led to an 

increasing proportion of bursts occurring in clusters (Fig. 2d inset).  Eventually, at the 

highest calcium levels, Crz1 nuclear localization trajectories appeared more similar to 

sustained oscillations
26

 than to the isolated stochastic bursts seen at lower calcium 

concentrations.   

 

 

 

 

 

 

 

 

 

 

Fig. 2. Calcium modulates the frequency, but not the duration, of Crz1 nuclear 

localization bursts. a. Frequency of bursts increases with calcium concentration (error bars 

calculated by using different thresholds for burst determination). b. Burst duration is 

independent of calcium concentration. Normalized histograms, h(t), of total burst duration at 

two calcium concentrations are both well-fit by h(t) = t e
−t/τ

, with τ = 70 seconds (black line). 

c. The proportion of cells that respond rapidly to extracellular calcium increases with the 

calcium concentration. Bars represent the fraction of cells with nuclear-localized Crz1 within 

15 minutes of addition of calcium. d. Average auto-correlation functions of localization 

trajectories (N=58 and 85 cells respectively) from a population of cells at two calcium 

concentrations. At low Ca
2+

 concentrations (blue, 50mM), the auto-correlation can be well-fit 

by a single exponential with timescale τburst≈60 seconds, whereas at high Ca
2+

 concentrations 

(red, 200mM), two time scales of fluctuations emerge, τburst≈ 60 seconds and τcluster≈ 720 

seconds, corresponding to isolated and clustered bursts, respectively. Inset shows the relative 

weight of the clustered bursts, which appear at Ca
2+

 concentrations greater than 100mM and 

increase in frequency as calcium increases. Error bars are estimated from bootstrap. 
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 An additional level of quantization emerged in the initial response to a change in 

calcium, which exhibited an all-or-none response at the single-cell level.  At calcium 

concentrations ≥ 100 mM, most cells displayed a synchronous initial burst of Crz1 nuclear 

localization.  This resulted in a sharp histogram of values of τdelay, defined as the time 

interval between calcium addition and the first burst of Crz1 nuclear localization (Fig. 1c). 

In contrast, at lower calcium levels of about 10mM, no synchronous initial response occurs, 

as reflected in the much broader distribution and larger mean of τdelay. Intermediate calcium 

concentrations produced a mixture of the two discrete behaviors (Appendix B, Fig. 2).  

Thus, rather than controlling the amplitude of the initial response, calcium modulates the 

proportion of fast-responding cells (Fig. 2c). Critically, in both the initial response and the 

subsequent bursts, we never observed persistent intermediate levels of localization.  Taken 

together, these results reveal that Crz1 burst activity is „quantized‟ at multiple levels in cells 

and that only the frequencies of burst events are modulated by extracellular calcium. 

Since nuclear localization bursts occurred stochastically in single cells and were 

unsynchronized within a population on the same slide, they could not be driven by 

fluctuations in external conditions.  These bursts also cannot be explained simply by 

independent fluctuations in the phosphorylation or localization state of individual Crz1 

molecules because each burst involves coherent translocation of a large fraction of the 

~1000 copies of Crz1 present per cell.
3
 In order to gain insight into these dynamics, we 

next asked whether Crz1 bursts were related to, or driven by, other dynamic cellular 

phenomena.   

First, we acquired movies of cells expressing both the G1 cell cycle phase marker 

Whi5-GFP
27

 and Crz1-mCherry.  We found no evidence for cell cycle regulation of Crz1 

localization bursts, nor were bursts in daughter cells correlated with those in corresponding 

mother cells (Appendix B, Fig. 5).     

Second, we examined the role of intracellular calcium, which in other cell types has 

been shown to exhibit spike-like dynamics.
28

  We acquired movies of yeast cells expressing 

both a FRET-based calcium sensor
29

 and Crz1-mCherry.  We observed sporadic transient 

spikes in intracellular calcium lasting about 38 seconds (Appendix B, Fig. 7).  These spikes 
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coincided with some Crz1 localization bursts (Fig.  3a and Appendix B, Fig. 6).  However, 

Crz1 localization bursts also occurred without corresponding calcium spikes, indicating 

that localization bursts may be stimulated by calcium spikes, but are not exclusively 

determined by them. 

Third, we asked whether Crz1 bursts were driven by fluctuations in calcineurin, the 

upstream phosphatase that initiates Crz1 nuclear localization.
30

 We analyzed a Crz1 

mutant
31

with higher affinity to calcineurin, GFP-Crz1
high

, together with Crz1-mCherry 

simultaneously in the same cell.  If Crz1 bursts were just passive readouts of spikes in 

calcineurin activity, one would expect both types of Crz1 to burst simultaneously, with 

amplitudes related to their relative calcineurin affinities.  Instead, we observed that Crz1
high 

exhibited an increased burst frequency.  Wild-type Crz1 bursts were a subset of these 

Crz1
high 

bursts (Fig. 3b).  Similarly, sub-saturating concentrations of the calcineurin 

inhibitor, FK506,
32

 reduced the frequency of bursts, but did not affect their amplitude 

(Appendix B, Fig. 8).  As the calcineurin-Crz1 interaction controls only the frequency of 

burst initiation, Crz1 localization dynamics do not simply follow upstream fluctuations in 

calcineurin activity.     
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Fig. 3. Crz1 localization bursts are partially independent of other cellular processes 

and affect downstream gene expression. a. Time traces of Crz1-mCherry localization 

(blue) in arbitrary units and FRET ratio changes (black), indicating intracellular calcium 

levels.  Arrows indicate spontaneous calcium spikes coincident with Crz1 localization 

bursts.  b. Single-cell time traces of Crz1-mCherry (blue) and the Crz1
high

-GFP mutant 

(green) with increased affinity to calcineurin. Both Crz1 proteins are expressed and 

measured simultaneously in the same cell. c. Single-cell traces of Crz1-mCherry and 

Msn2-GFP in the same cell. Note that the two proteins exhibit statistically similar burst-

like behavior, but only weak correlation.  d. Crz1-mCherry localization (blue) increases 

expression of the Crz1 target synthetic promoter (2X CDRE) (red).  Transcriptional 

bursts in p2XCDRE-venus are preceded by corresponding Crz1 localization bursts.   Inset 

shows positive cross-correlation (n=9 cells) between the promoter activity and Crz1 

localization with a delay corresponding to target protein maturation. Error bars are 

estimated from bootstrap.  
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Finally, to investigate the generality of localization bursts, we examined Msn2, a 

general stress response transcription factor that was previously reported to exhibit nuclear 

localization oscillations.
33,34,35

  We found that Msn2-GFP localization is induced by 

calcium stress.  Like Crz1, it localized in short bursts on the timescale of 1.5-2 minutes, and 

also exhibited clustered bursts (Fig. 3c and Appendix B, Fig 9). However, despite these 

statistical similarities, bursts of the two proteins were largely uncorrelated when observed 

simultaneously in the same cells under calcium stress (Fig. 3c and Appendix B, Fig. 10).  

18.4±2.0% of Msn2-GFP bursts coincided with Crz1-mCherry bursts, a fraction only 

slightly higher than the 14.0±1.2% of overlapping events expected by chance if the two 

proteins burst independently (Appendix B).  Furthermore, bursts of Msn2 nuclear 

localization can occur in the absence of calcium, while Crz1 bursts cannot.  Similarly, we 

observed that the glucose-responsive repressor Mig1 exhibited bursts of nuclear 

localization at low glucose concentrations.  These results suggest that cells operate multiple 

transcription factor localization burst systems in a largely independent manner.   

What effect do FM-regulated Crz1 localization bursts have on downstream genes?  

We analyzed the transcriptional activity of a synthetic Crz1-dependent promoter containing 

calcineurin-dependent response elements (2X CDRE),
36

 driving expression of the 

fluorescent protein Venus. We also monitored Crz1-mCherry localization simultaneously 

in the same cell (Fig. 3d). We found that the promoter was expressed in transcriptional 

bursts that followed Crz1 localization bursts (Fig. 3d). Interestingly, not all Crz1 

localization bursts resulted in observable transcriptional bursts, suggesting that 

transcription initiation is probabilistic.  Nevertheless, the rate of Venus production (time 

derivative of fluorescence) was correlated with Crz1-mCherry bursts with a time-delay 

comparable to the maturation time of the Venus fluorophore, as expected (Fig. 3d inset and 

Appendix B, Fig. 12).   We observed similar results with a natural Crz1 target gene, Cmk2 

(Appendix B, Fig. 11).
22

  Thus, transcription factor localization bursts propagate to 

downstream targets, and represent a general mechanism for generating “transcriptional 

bursting” 
37,38,39

 in downstream gene expression.
2
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Standard models of gene regulation involve amplitude modulation, or analogue, 

changes in transcription factor concentration in response to external signals. What 
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biological functions could the frequency modulation form of regulation observed here 

provide for the cell?  Crz1 regulates more than 100 different target genes,
22

 including Ca
2+

 

pumps and structural proteins necessary for calcium adaptation. The target promoters of 

these genes may differ in their input functions, defined as the dependence of transcription 

rate on the concentration of transcription factor in the nucleus. Input functions vary widely 

in their minimal and maximal levels of expression, the concentration of transcription factor 

at which they reach half-maximal activity, and in the sharpness, or cooperativity, of their 

response.
45

 We used an analytic model to show that frequency-modulation regulation of 

nuclear localization bursts could allow transcription factors to modulate the expression of 

multiple target genes in concert, keeping their relative abundances fixed over a wide 

dynamic range, regardless of the shapes of their input functions.  
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Fig. 4. Frequency-versus amplitude–modulation regulation of two hypothetical target 

genes, labeled A and B (schematic).  a. In the amplitude-modulation regulation system, the 

fraction of nuclear Crz1 (Crz1nuc) changes with calcium, but remains constant over time. b. As 

such, the histogram of Crz1nuc yields single peaks at calcium-dependent positions.  Target gene 

expression level is proportional to the input functions at these peak positions.  c. Because their 

input functions differ, the normalized rates of A and B expression vary differently with nuclear 

Crz1, and hence with calcium, yielding different (uncoordinated) expression profiles as a 

function of calcium.  d. In frequency modulation, where Crz1 molecules collectively move 

between nuclear and cytoplasmic compartments,  Crz1nuc is either high or low, during or 

between bursts, respectively. This graph depicts the limiting case of rapid and complete 

transitions between two states, but results do not depend on this assumption (see Supplementary 

Information).  e. This yields a bimodal histogram in which the height, but not the position, of the 

peak is calcium-dependent.  f. Consequently, the expression levels of A and B are each 

proportional to burst frequency, and hence to each other, yielding coordinated expression, as 

shown.  
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This hypothesis can be understood by comparing the effects that amplitude-  and 

frequency-modulation regulation systems have on two hypothetical target promoters, 

labeled A and B, with different input functions (Fig. 4b, e, gray dashed curves).  In the AM 

regulation system, the fraction of Crz1 molecules in the nucleus, Crz1nuc, would increase 

with calcium, but remain constant over time (Fig. 4a, b).  Accordingly, histograms of 

Crz1nuc would exhibit a single peak whose position is calcium-dependent (Fig. 4b).  The 

expression level of each gene would be proportional to its input function evaluated at this 

peak position.  Because it is expected that these input functions would, in general, differ in 

shape, the normalized rates of A and B expression would vary differently with Crz1nuc, and 

hence their ratio would vary with calcium (Fig. 4c).  Thus, in the amplitude modulation 

model, A and B would be expressed in an „uncoordinated‟ fashion. 

In contrast, frequency-modulation regulation (Fig. 4d) would control the fraction of 

time that Crz1 is nuclear, rather than the concentration of nuclear Crz1. In the limiting case 

of fast switching between two localization states, this would cause Crz1nuc to be either high, 

during a burst, or very low, between bursts, but rarely in between, resulting in a bimodal 

Crz1nuc histogram (Fig. 4e).  The expression level of each target promoter would be 

determined mainly by the value of its input function near the location of the higher 

histogram peak, and by the fraction of time Crz1 spends in the localized state, which 

determines the height of the peak.  In frequency modulation regulation, higher levels of 

calcium would increase the relative height of this peak by increasing the frequency of 

bursts, but would not change its position (Fig. 4e).  The expression levels of the two genes 

would therefore be individually proportional to the burst frequency, and consequently 

remain proportional to each other, as calcium is varied.  Thus, A and B would be 

coordinated, expressed at a constant ratio at all calcium levels, regardless of the shapes of 

their input functions (Fig. 4f).  

 This regulatory strategy is general:  It does not require bursts to saturate target 

promoter input functions, nor does it require that the Crz1nuc histogram be bimodal (see 

Appendix B for a more detailed treatment).  Thus, it functions with bursts, such as those 

observed here, that span a range of localization amplitudes, giving rise to a non-bimodal 

histogram. Finally, this strategy is more general than FM regulation; it can also work by 
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varying the duration, rather than the frequency, of localization bursts. We refer to this 

principle as FM-coordination. 

To test the FM-coordination hypothesis experimentally, we first analyzed three 

synthetic promoters containing one, two, and four CDREs.  These promoters were 

previously shown to exhibit Crz1-dependent expression in response to calcium.
36

  We used 

flow cytometry to analyze strains containing each of these three promoters fused to yellow 

fluorescent protein (YFP).  The promoters varied in their expression strength over two 

orders of magnitude, in the ratio of 1:15:450, respectively (Fig. 5a inset).  Nevertheless, 

they exhibited identical dependence on calcium, collapsing onto a single curve when 

normalized, as predicted by FM-coordination (Fig. 5a).  
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Fig. 5. Frequency-modulated bursts coordinate gene expression.  a.  Measured expression levels 

of synthetic Crz1 target promoters containing one, two and four CDREs.  In each case, expression 

levels are normalized by their maximum.  Note similarity of curves to each other and to burst 

frequency.  Bottom inset shows expression at 200mM calcium normalized by expression of the 1x 

CDRE. b, Expression profiles of natural target promoters (solid lines) exhibit similar inductions as 

the Crz1 burst frequency (dashed line).  Only ten are plotted here for clarity.  Error bars indicate 

standard error from repeated experiments. c, Expression level of synthetic target genes at wild-type 

versus overexpressed levels of Crz1.  Each promoter is normalized by the maximum expression in 

wild-type Crz1 levels.  Thus the normalized expression levels of one, two and four CDREs at 

[Crz1]wt each equal 1.  If all promoter input functions were identical, then their normalized 

expression should increase by the same factor when Crz1 is overexpressed.  However, the data 

show a range of fold changes in expression levels, excluding identical input functions as an 

explanation for proportional regulation.  d. Same as c. for the natural promoters in b. 
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Natural eukaryotic promoters exhibit more diverse architectures than these pure 

synthetic promoters.  Therefore, we also investigated whether FM-coordination could 

explain the behavior of natural Crz1 target genes.  A previous microarray study identified 

163 potential Crz1 target genes,
22

 83 of which were available as fluorescent protein 

fusions.
23

  Of these, 40 showed a measurable and predominantly Calcineurin-dependent 

response to calcium under our media conditions (Appendix B, Fig. 15).  These natural 

promoters, like their synthetic counterparts, exhibited a broad distribution of expression 

levels (Appendix B, Figs. 14 and 17).  Notably, a large subset of these target genes (34 out 

of 40) exhibited normalized calcium response curves identical to each other and to those of 

the synthetic promoters.  They were thus regulated in proportion to burst frequency, in 

accordance with FM-coordination (Fig. 5b and Appendix B, Fig. 14a).  

In principle, target promoters could respond proportionally because they share 

identical input functions.  If so, increasing total Crz1 concentration would increase the 

expression of all promoters by the same factor (Fig. 5c, d).  Conversely, if the expression 

levels of the promoters change by different factors when Crz1 concentration is increased, 

then their input functions must differ in shape.  This is what we observed when we 

compared the expression of both the synthetic and natural promoters in wild-type strains to 

their expression in a Crz1-overexpressing strain.
46

 The increase in expression varied 

between one-fold and seven-fold over this set of promoters (Fig. 5c, d), confirming that 

synthetic and natural promoters are proportionally regulated by the FM-coordination 

mechanism, despite non-identical input functions. 

Discussion 

Diverse perturbations including calcium, pharmacological inhibitors, and genetic mutations 

vary mean Crz1 activity across a broad dynamic range exclusively by affecting the 

frequency of localization bursts, rather than their duration or amplitude.  Thus, Crz1 

activity is quantized both in its initial response to a step change in calcium, which is all-or-

none at the single-cell level, and also in its sustained response, which is composed of 

stereotyped bursts of localization.  These data suggest that eukaryotic cells can encode 

information about the extracellular environment in the frequency of stochastic intracellular 
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events, rather than in the concentrations of molecular species. This contrasts with canonical 

signal transduction pathways, in which concentrations of activated proteins are used to 

convey information to the nucleus. Using localization as a single-cell reporter for post-

translational modifications, we observed qualitatively similar, but largely uncorrelated, 

behavior in the Msn2 stress response transcription factor and the Mig1 glucose repressor, 

suggesting that localization bursts are broadly employed in the cell. 

In engineering, frequency modulation appears in diverse signal processing and 

control applications such as broadcasting
47

 and rocket thruster control,
48

 where transfer 

characteristics may be uncertain.  Spike frequency control, or rate coding, is also 

fundamental to neural computation,
49

 where it may overcome noise background for signal 

propagation, among other functions.
50

 In genetic networks, frequency-modulation 

regulation solves a fundamental problem, allowing cells to co-regulate proportionally a 

large set of target genes with a diverse range of input functions. Note also that these results 

represent a complementary mode of regulation compared to previous observations of 

calcium oscillation frequency-dependent gene expression.
51

  FM-coordination connects the 

dynamic behavior of a single protein to the expression of large regulons, and may thus 

provide insight into genome-scale expression patterns.  Furthermore, at the evolutionary 

level, FM-coordination enables promoter mutations to alter the level of expression of 

individual genes without disrupting their coordination.  In contrast, to achieve coordinate 

regulation using amplitude modulation would require „fine-tuning‟ of target promoter input 

functions, severely constraining promoter architecture and regulatory evolution.  In light of 

previous observations of transcription factor pulsing in p53,
52

 NFκB,
53

 and SOS stress 

response systems,
54

 and because of its potential utility in protein and metabolic, as well as 

transcriptional networks, we anticipate that frequency-modulated regulation may represent 

a general principle by which cells coordinate their response to signals. 
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C h a p t e r  4  

SIGNAL PROCESSING ACROSS THE YEAST PROTEOME 

Motivation  

In our previous investigation, we observed that the yeast transcription factor Crz1 

exhibits frequency-modulated bursts of nuclear localization in response to its stimulus, 

calcium. This behavior enables proportional regulation of Crz1 target genes in response 

to calcium.  Because this regulatory strategy is very general, it could be employed more 

generally by cells in order to optimally tune expression levels of groups of promoters 

(regulons). Moreover, cells may employ other dynamic regulatory strategies to enable 

other functional behaviors.  Based on these considerations, we performed a systematic 

screen for dynamic regulatory behaviors in yeast.  

Screen Methods/Results   

Since we were unable to determine which proteins would be most appropriate to observe, 

we decided to look at as many as we could. Taking advantage of the yeast GFP library,
23

  

we used multi-well time lapse microscopy to systematically search for dynamic and/or 

heterogeneous localization behaviors.  Cells were imaged in one of 4 media conditions: 

Standard synthetic complete or wild-type, carbon-limited, nitrogen-limited, or high salt.  

The screen involved two stages: First, we acquired low time-resolution (~51 min/frame) 

movies of each protein in each condition. These movies were inspected visually to detect 

heterogeneous localization patterns in one or more media conditions.  This screen 

suggested a few candidate genes, but, because of its low time resolution, left ambiguity in 

many of these cases.  We classified each protein based on the likelihood that we observed 

real heterogeneity in any one of four conditions. Interestingly, almost all protein 

localization patterns were independent of condition. 
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 In the second stage, heterogeneously localized protein strains were re-analyzed  at 

higher time-resolution movies (~3 minutes between frames).  If they still showed dynamic 

or heterogeneous localization patterns we examined them further in several ways: 

 Focal drift exclusion:  Several strains showed dynamic patterns of non-nuclear 

localization to regions smaller than a cell nucleus.  To test for possible effects due 

to 3-D diffusion of a localized spot, we re-acquired movies of these strains with 

multiple z-slices.  In all cases, fluctuations in fluorescence intensity in these strains 

could be explained by movement of a localized sub-cellular spot, rather than 

fluctuations in the intensity of the spot (fraction of proteins localized).  

 Cell cycle exclusion: We excluded proteins whose localization patterns were 

principally determined by cell-cycle phase. To investigate cell-cycle dependence, 

we grew up all the proteins on our list and synchronized the cell cycle with 

hydroxyurea. After releasing the synchrony , we added the appropriate stimuli to 

the media and took movies.  (In some cases, because the hydroxyurea does not 

work perfectly, we also took very long movies where we could observe several 

cellular divisions and checked by eye to see whether there was any correlation 

between cellular division and burst occurrence). From these results, we were able to 

erase several proteins off our list.  

 The remaining proteins exhibited dynamic and/or heterogeneous localization 

dynamics not principally correlated with cell cycle.  These proteins consisted almost 

entirely of transcription factors.  

 Based on these results, we undertook a final additional screen, which focused 

specifically on transcription factors. For each transcription factor, we recorded a series of 

movies with varying levels of factors or conditions known to induce its transcriptional 

activity.  The results of the final screen are tabulated in table 1.  

 The validated dynamic/heterogeneous proteins consisted exclusively of 

transcription factors.  Several conclusions emerged from this dataset: First, most 

transcription factors are constitutively nuclear. Second, except for a two cases that require 

special media conditions (alpha pheromone), our original proteome-wide screen identified 
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10 out of the 12 bursting proteins. Third, we observed distinct timescales of localization 

bursts. We found five rapid-bursting proteins (τ<30 min), and seven with slower dynamics 

(τ~30 min to 2 hour), most of which appear to be involved in metabolism in some way. 

Note that these slower proteins were not cell cycle correlated in phase. Fourth, some 

proteins exhibited heterogeneous patterns of nuclear localization that did not involve 

dynamic bursts. Rather, stimuli appear to control the fraction of cells which exhibit strong 

nuclear localization.  In these “fractionally heterogeneous” proteins, the number of cells 

with fully localized protein increases with the level of stimulus. Finally, we identified 

“amplitude-modulated (AM)” transcription factors, in which the fraction of total protein 

localized to the nucleus increased with stimulus level.  We identified no additional proteins 

resembling Hog1, which has been shown to adapt perfectly to osmotic stress.
24

 

Localization Behavior  Protein (Media Condition)  

I. Fast Bursting   Crz1 (Calcium), Msn2 (salt, rapamycin, 

calcium, glucose deprivation), Mig1 

(glucose deprivation), Dot6 (wild-type), 

Rtg1 (wild-type)  

II. Slow Bursting  (no Modulation)  Nrg2 (Glucose Deprivation), Mig2 (Glucose 

Deprivation), Kar4 (alpha pheromone), 

Tos1 (alpha pheromone),  Arg81 (Arginine), 

Leu3 (Leucine), Tea1 (Arginine)  

III. Statically Heterogeneous  Dig1 (alpha pheromone), Dig2 (alpha 

pheromone),  Pci8 (alpha pheromone), Sch9 

(salt),  Ino2 (lithium acetate), Sfl1 (salt)  

IV. Constitutive but Amplitude Abf1 (glucose deprivation), Cin5 (salt), Cti6 

(no glucose, galactose titration), Mcm1 
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Modulated  (alpha pheromone), Put3 (Nitrogen 

deprivation) , Ste12 (alpha pheromone), 

Xbp1 (glucose deprivation),  

V. Perfect Adaptation  Hog1 (salt) 

 

 

 As a nice positive control, Crz1 came up in our screen; as previously stated, it 

exhibits FM bursts in response to calcium. Msn2 and Mig1 had also been previously 

identified as fast bursting proteins.
55

 Msn2 is a general stress response protein that 

undergoes nuclear localization to a wide variety of stresses.
56,57

 Our screen results suggest 

that Msn2 responds to several stresses similarly, with fast bursts. Mig1 is a carbon 

utilization transcriptional repressor
58,59

 that exhibits both FM and pulse width modulation 

(PWM) in response to glucose deprivation; both burst duration and frequency increases as 

you decrease the amount of glucose. Dot6 is not a well-characterized protein, but has been 

implicated in transcriptional silencing.
58,59

 Without any stressful stimuli, Dot6 exhibits 

bursts. Similarly, Rtg1, a transcription factor implicated in nitrogen stress,
58,59

 bursts 

without any provocation.  

 The second class of localization behavior observed is that of the slow bursting 

proteins. These proteins exhibit bursts with a timescale of approximately one hour. 

Interestingly, all these transcription factors are involved in sensing nutrient availability but 

none of them show any sort of modulation. For example, Nrg2 and Mig2 are both 

transcriptional repressors that respond to glucose.
58,59

 However, their localization appears 

to remain consistent across all concentrations of glucose. Similarly, Arg81, Leu3, and Tea1 

respond to amino acid deprivation and Kar4 and Tos1 respond to alpha pheromone,
58,59

 but 

the localization of all these proteins show slow bursting across various concentration of the 

stimulus.  

Table 1. Modes of Signal Processing in Yeast. The different types of localization 

behavior from the transcription factor screen are summarized.   
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 At any given time during a movie of a bursting transcription factor, the 

heterogeneity in localization is quite striking as some cells are nuclear while others are 

cytoplasmic. Of course, one can imagine a far simpler mechanism to generate such 

heterogeneity, if only a fraction of the cells respond to the stimulus and localize. This is 

precisely the behavior we observe in the third class of proteins, the statically heterogeneous 

ones. The interesting aspect of these proteins is that their localization is modulated by stress 

also. As the amount of stress increases, the fraction of cells that respond via nuclear 

localization also increases. These proteins, Dig1, Dig2, Ino2, Pci8, Sch9, and Sfl1, respond 

to various stresses including alpha pheromone, salt, and lithium acetate.
58,59

 

 Finally, we also observe amplitude-modulated (AM) proteins. These proteins are 

constitutively nuclear, but their intensity increases with stress, yielding an AM phenotype, 

as described in Figure 4 of Chapter 3. From the movies, it appears that the intensity 

increase is from direct or indirect transcriptional regulation of the transcription factor and 

not from increased nuclear import. The transcription factors that behave in this manner are 

Abf1, Cin5, Cti6, Mcm1, Put3, Ste12 and Xbp1. 

 In other work,
24

 the localization dynamics of Hog1 have been characterized as 

being perfectly adapted in response to salt, i.e. upon salt stress, cells respond with a quick 

pulse of localization before redistributing back to their basal pre-stressed cytoplasmic state. 

We reconfirmed Hog1 behavior but did not find any other proteins that behaved similarly 

in our screen. 

  

Integration of Multiple Bursting Regulatory Systems 

 

These data show that multiple bursting systems are active simultaneously in the yeast cell.  

In at least some cases, multiple burst systems co-regulate common target genes.  These 

observations provoke the questions of (a) how multiple burst systems combine to regulate 

target genes and (b) what additional signal encoding and regulation capabilities are 

provided by such combinatorial burst systems.  

 We chose to investigate Msn2 and Mig1, two bursting transcription factors that 

both respond to carbon deprivation. This pair has several ideal features for this analysis: (a) 

both factors can be induced to burst in the same conditions, (b) both factors can be induced 
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by the same condition (glucose) allowing analysis of a combinatorial response to a single 

stimulus, and (c) they regulate both separate and common sets of target genes, allowing 

analysis of co-regulation. Interestingly, Msn2 also responds to several other stimuli, 

making it unique amongst the hits in our screen. 

 Mig1 represses genes involved in metabolism of alternate carbon sources when 

glucose is present.
56

 At high concentrations of glucose it is constitutively nuclear while at 

lower concentrations, it exhibits bursting behavior. Under similar conditions, Msn2 bursts 

as it senses insufficient carbon in the media. In the dual-color strain, it is apparent from the 

traces that both proteins can burst coincidentally (Fig. 1a- at 50 min) but there do appear to 

be signs of an anti-correlation (Fig reference).  

 This is different than what we observed in a previous experiment where we 

measured the cross-correlation of Msn2 and Crz1 in response to calcium.
60

 Here we found 

two largely uncorrelated bursting systems.
60

 With Msn2 and Mig1, we find two timescales 

of correlation. There is a positive correlation between the bursts of both proteins on the 

timescale of an hour; however, at shorter timescales a lack of correlation becomes evident 

(Fig. 1b). This lack of correlation is reproducible in several low-glucose conditions, but it is 

difficult to quantify its effect due to its subtle nature.  

  

 One interpretation of the data is that this lack of correlation suggests an While the 

correlations suggest some sort of interaction between Mig1 and Msn2, there is not data to  

 

Fig. 1. Correlations amongst Bursting Transcription Factors. A strain tagged for both Msn2 

(black) and Mig1(red) is imaged at limiting amounts of glucose (.025%). In a, the sample trace 

shows that both proteins bursts on a fast timescale. In b, the average cross-correlation of 27 cells 

shows a positive correlation with a timescale of ~ 1 hour and an anti-correlation with a timescale 

of ~ 1 minute.  
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 It is unclear whether this correlation function suggests that such an interaction 

affects localization bursts in any meaningful way.  Because there are several similarities 

between the two proteins: nuclear import of Msn2 and Mig1 are dephosphorylation-

dependent and the cytoplasmic redistribution of these proteins is dependent upon 

phosphorylation by several kinases, one of which is Snf1,
58,59

any interaction between the 

two may simply be due to utilizing similar enzymes. Furthermore, there are several 

conditions in which only one of the two proteins exhibits localization bursts. In these cases, 

the fact that one of the proteins is not bursting does not appear to change the behavior of 

the other, showing that neither protein is necessary for the other to burst nor does one 

protein modulate the other‟s burst statistics. 

 One possible explanation for this lack of correlation is that the export machinery 

used by both Msn2 and Mig1to leave the nucleus can be saturated when both proteins leave 

the nucleus simultaneously. Although this seems unlikely given the typical load these 

export enzymes are known to carry, the only way to disprove this hypothesis would be to 

find conditions in which the lack of correlation disappears from the cross-correlation 

function. After screening through different carbon sources, we have been unable to find 

such a condition. 

 We now have two bursting regulatory systems with common target genes. Without 

understanding the molecular mechanisms responsible for generating the observed cross-

correlation function, we can still generate a toy model to understand the potential 

consequences this can have on downstream combinatorial target genes. Suppose a target 

gene promoter has binding sites for an activator and a repressor; but neither protein can 

bind to the promoter simultaneously. If only a repressor were bound, expression would be 

downregulated significantly while if only an activator were bound, expression would be 

increased significantly.  However, if both an activator and repressor were bound, the 

change in expression would be tempered. By inhibiting the binding of both factors, the 

system enables the target promoter to experience the full range of repression and activation 

(Fig. 2).  
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Future Directions 

As with any genome-wide experiment, there are always several small-scale follow-up 

experiments. For the purposes of the screen, our first priority is to take higher time-

resolution movies of the proteins classified as bursters to try to quantify their bursts 

statistics. Additionally, we would like to do more in-depth bioinformatic analysis to 

understand what properties, if any, distinguish bursting transcription factors from their non-

bursting counterparts.  

 In terms of our analysis of Msn2 and Mig1, there are three important sets of 

experiments that we will conduct. First, we will continue taking more low glucose movies 

to get better statistics and quantify the lack of correlation observed at time lag 0. Next, we 

will screen pharmacological inhibitors of kinases and phosphatases involved in Msn2 

and/or Mig1 nuclear localization to see how they affect the cross-correlation between the 

proteins. These inhibitors have very specific targets, enabling direct mechanistic 

hypotheses from any observed effects. Finally, we will experimentally verify the 

combinatorial target gene expression prediction (Fig. 3). Here we will create synthetic 

promoters with binding sites for both Mig1 and Msn2, integrate them into yeast cells, grow 

the cells in low glucose +/- glycerol and measure expression of the target promoters. We 

expect that the dynamic range of the combinatorial promoters is higher in just glucose 

when compared to cells grown in glucose and glycerol.  

Discussion 

Examination of dynamic localization behavior reveals that yeast cells can process signals in 

a variety of ways, including modulating the properties of localization bursts, the intensity 

Fig. 2. Model of Combinatorial gene 

Regulation. A target gene (red) is controlled by 

an activator (A) and a repressor R. If only the 

activator were present, expression would 

increase. If only the repressor were present, 

expression would be suppressed. If both were 

present, expression would not change much. By 

limiting the DNA occupancy on the promoter to 

only of the two transcription factors, the 

dynamic range of the combinatorial target gene 

is increased.  
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of localization events, or the fraction of cells that localize in response to a stimulus. 

Interestingly, the majority of transcription factors in yeast appear constitutively nuclear. 

Clearly, in all these cases, signal processing still occurs but cannot be observed through our 

assay. Perhaps bursting is occurring on promoters as transcription factors are binding and 

unbinding to DNA binding sites. This is what one would expect in bacteria where nuclei do 

not exist, but such dynamic regulation can still occur. Emerging optical techniques such as 

super-resolution may enable characterization of such phenomena. 

 In-depth analysis of two bursting transcription factors, Msn2 and Mig1, reveals an 

atypical cross-correlation function in which a mild correlation exists on a long timescale of 

~1 hour but is damped at a time-lag of 0 minutes. This lack of correlation is reproducible in 

several media conditions but disappears in the presence of glycerol. We predict that this 

lack of correlation enables a higher dynamic range in downstream combinatorial target 

promoters and plan to experimentally verify this prediction. Such analysis will yield 

fundamental insight into combinatorial gene regulation as we connect environmental input 

(carbon source) to transcription factor interaction (Msn2 and Mig1) to understand 

combinatorial expression. Not only can environmental inputs influence expression affect 

the interplay between transcription factors, changing the mode of regulation cells employ to 

control regulons of combinatorial target genes.  
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A p p e n d i x  A  

EPIGENETIC VARIABILITY: YEAST PRIONS 

Being interested in different types of heterogeneity in cells, we were intrigued by yeast 

prions, proteins that change into a self-perpetuating form.
61

 The most notable yeast 

prion is that of Sup35, a translation termination factor (Figure 1).
62

 In the prion state, 

Sup35 can no longer carry out its function with high fidelity and as a result, stop codons 

are skipped, generating long proteins that may have trouble folding appropriately. The 

variability that results from this state manifests itself morphologically in genetic 

background-dependent fashion.
61

 Furthermore, this state is reversible chemically, as 

excess amounts of guanidium hydrochloride revert cells back to the wt non-prion 

state.
61

  We were interested in determining the impact the prion state had on gene 

expression in single cells, specifically on gene expression noise.  
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 We mated in six different reporters into a prion strain and measured gene 

expression in a flow cytometer, both in prion and non-prion states. The measurements were 

taken as described in Appendix B, specifically in Figure 13. In two cases, we found large 

gene expression changes in the prion state and were very encouraged by the results (Figure 

2). We thought it might be worthwhile to measure gene expression on a larger scale and 

began doing bioinformatics to see if we could generate any predictions about the genes we 

expected to change expression in the prion state.  

Fig. 1. The Sup35 protein can self-aggregate and form a reversible prion 

state. a. This figure, adapted from Partidge and Barton,
58 

depicts how Sup35 

normally forms a translation termination complex with Sup45, enabling 

translation to appropriately terminate at stop codons. However, in the prion 

state, Sup35 aggregates such that the appropriate translation termination 

complex can no longer form. As a result, stop codons are skipped, creating 

longer, potentially misfolded proteins. b. This state yields morphological 

changes in yeast strains and is reversible through the addition of excess 

amounts of guanidium hydrochloride.   
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Fig. 2. Prion and normal expression 

patterns. The normalized expression 

histograms of six different genes are 

plotted in prion (or Psi) and normal yeast 

cells. YFP reporters were mated into a 

prion strain and subsequently cured with 

guanidium hydrochloride. YFP expression 

was measured through flow cytometry and 

cells are normalized by their maximum 

value. Amongst the six genes, 4 of them 

show no discernible differential 

expression across the two epigenetic 

states. However, normal Gal1 expression 

is bimodal while the Psi state shows a 

single peak in expression. Furthermore, 

Pho5 shows a 40-fold increase in 

expression when in the Psi state. These 

results indicate that there certainly are 

some expression changes in the prion 

state.  
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  Given the function of the prion state is to generate longer than average proteins, we 

decided to calculate the extra length of the protein, what we term the stub length. Suppose 

in the prion state every protein is extended until it meets the next in-frame stop codon. If 
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this is true, we can calculate the lengths of these “stubs” for every protein. Presumably, 

proteins with longer stubs, or proteins that interact with proteins with longer stubs, are 

more likely to have differential gene expression in the prion state. We plotted stub lengths 

across the yeast proteome (Figure 3) and found most stubs to be incredibly short with an 

average stub length of 50 nucleotides. Given that we expect these stubs to be functional, we 

then looked for sequence conservation of the stubs across strains of Saccharomyces 

cerevisiae. Unfortunately, due to high sequence conservation within species, it is very 

difficult to determine whether 50 nucleotide stubs are more or less conserved than proteins 

themselves.  

  

 As we were unable to determine whether our gene expression results were simply 

due to random chance from our choice of genes or whether they were indicative of a 

broader pattern of gene expression differentiation in an epigenetic state, we decided to stop 

pursuing this project. It is, however, worth noting, that recently, several other proteins, 

including general transcriptional activators and repressors, have been identified as forming 

prions in yeast.
58

 Perhaps their cumulative effects are influencing gene expression. Either 

way, prions remain an intriguing source of variability.     

Fig, 3. Stub length in 

yeast. Stubs are defined 

as the length between the 

original stop codon and 

the next in-frame stop 

codon in a protein. In 

yeast, most stubs are 

extremely short and on 

average are only about 50 

nucleotides long.  
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A p p e n d i x  B  

SUPPLEMENTARY MATERIALS: CRZ1 LOCALIZATION  

Methods 

Strain construction: All GFP strains were obtained from the GFP C-terminal protein fusion 

library (Invitrogen).
23

 All other strains were constructed similarly to the library: 

Polymerase chain reaction (PCR) was used to amplify cassettes with yeast codon-

optimized fluorescent proteins tagged to an auxotrophic marker.
63

 These amplified 

cassettes were made with primers containing 40 bp homology towards the C-terminus of 

the protein of interest. The cassettes were then transformed into the w303a lab strain of 

yeast using standard protocols.
64

 Transformants were selected using standard yeast media.
65

 

Plasmid pGW845, a vector containing the FRET cameleon pair under the control of the 

ADH1 promoter, was provided by Jochen Stadler
29

 and p30, the Crz1
high

 mutant with 

altered calcineurin affinity, was provided by Martha Cyert.
31

  Both were transformed 

directly into a yeast strain containing Crz1-mCherry (Fig. 3b). K. Cunningham provided a 

Crz1 overexpression plasmid, pLE66,
46

 which was transformed into each of 83 Crz1 target 

strains from the GFP library. A BamHI fragment of yeast codon-optimized Venus-YFP, cut 

from pKT103,
63

 was ligated into pAMS342, pAMS363 and pAMS366, and thus contained 

provided 1x, 2x, and 4x CDRE‟s respectively.
36

 This, too, was provided by Martha Cyert. 

 

Media: Yeast were grown in synthetic complete or the appropriate drop-out media made 

using low-fluorescence yeast nitrogen, adapted from previous work.
63

  This media is yeast 

nitrogen base without riboflavin, folic acid, or calcium chloride: 2 g/l (NH4)2Cl2, 1 g/l 

KH2PO4, 0.5 g/l MgCl2, 0.05 g/l NaCl, 0.5 mg/l H3BO4, 0.04 mg/l CuSO4, 0.1 mg/l KI, 0.2 

mg/l FeCl3, 0.4 mg/l MnCl2, 0.2 mg/l Na2MoO4, 0.4 mg/l ZnSO4, 2 µg/l biotin, 0.4 mg/l 

calcium pantothenate, 2 mg/l inositol, 0.4 mg/l niacin, 0.2 mg/l PABA, 0.4 mg/l pyridoxine 

HCl, 0.4 mg/l thiamine, 20 g/l dextrose. 
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Time-lapse microscopy:  Cells were attached to glass bottom dishes (Willco) functionalized 

with Concanavalin-A (Sigma).  Fluorescence images were taken at room temperature on an 

Olympus IX81 with the ZDC autofocus option and an Andor Ikon (DU-934) camera.  

CaCl2 was added during movies to nominal concentrations using a 2X stock solution. 

Images were acquired at 10 second intervals for single color movies and at 30 second 

intervals for two-color and FRET movies.  Automation was controlled by Andor IQ 

software. Two-color movies of Crz1 and downstream target genes were taken at 30° to 

ensure fast maturation of the Venus fluorophore. 

Flow cytometry: Yeast cells were grown overnight in 96-well plates and diluted. CaCl2 was 

added to nominal concentrations with a 2x stock solution. Cells were regrown in the 

calcium for 4-6 hours, diluted 5-fold, and gene expression was measured using a Beckman 

Coulter Cell Lab Quanta SC MPL. To identify cells, all particles were triggered and gated 

during acquisition. As shown in Figure S13, particles were triggered if their Coulter 

volume measurements were within a specified range. Either 5000 particles or 30 µl sample 

volume were acquired. These particles were then excited by a 22mW 488nm laser and side-

scatter and fluorescence were measured. A polygon gate was drawn on the Coulter 

volume/Side-scatter two-parameter plot to identify cells. If more than 500 cells were found, 

mean fluorescence was calculated. Quanta Photomultiplier tube settings were 3.5 for Side-

scatter, 8.00 for GFP measurements, and from 4-6 for synthetic promoter-YFP 

measurements.  

Image analysis:  Fluorescence cell images were segmented using a Hough transformation 

algorithm in Matlab, provided by Sharad Ramanathan.
66

  Localization score was 

determined by the difference between the mean intensity of the 5 brightest pixels in the cell 

and mean intensity of the rest of the pixels in the cell.  Bursts were identified by 

thresholding traces at >1 standard deviations above background noise, estimated from the 

lowest 20% of values.  Subsequent data analysis used the resulting traces with standard 

routines in Matlab and Mathematica. 
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Characterization of Crz1-GFP. 

Crz1-GFP abundance.  Total abundance of Crz1-GFP remained approximately constant 

during the course of the movies (Fig. S1).  Thus, the dynamic features we observe are 

based entirely on changes in localization.   

Crz1-GFP is functional.  We verified that the induction of target gene Cmk2 was similar 

between wild-type Crz1 and Crz1-mCherry strains, suggesting that the fluorescent protein 

fusion has minimal effect on the transcriptional activities of Crz1.  Furthermore, in cells 

under calcium stress, addition of FK506, a Calcineurin inhibitor, suppresses Crz1-GFP 

localization bursts (Fig. S8), suggesting that the bursting behavior of Crz1 localization 

depends on Calcineurin activity. Finally, we grew strains containing either (a) wild-type 

Crz1, (b) Crz1-GFP, or (c) ΔCrz1 on rich media with 0.8M NaCl and 4mM MnCl2.
31

 We 

found that Crz1-GFP complemented the growth defects found in Crz1Δ. These results 

suggest that growth and stress response are not compromised by the C-terminal GFP 

protein fusion.    

Characterization of Crz1 bursts. 

Distribution of burst number.  The total number of bursts per single cell trace is not Poisson 

distributed (Fig. S4), as determined by the ratio of variance and mean. However, the two 

distributions of isolated bursts and burst clusters were each individually Poisson 

distributed, as shown by the close match of their cumulative distribution to that of the 

Poisson distribution and the low Kolmogorov-Smirnov (KS) scores, whereas the total 

bursts are less well-fit by Poisson distributions and have higher KS scores (Fig. S4).    

Relative frequencies of burst types.  Single-cell localization trajectories were thresholded 

using the mean and standard deviation of fluorescence level in the cytoplasmic state, which 

is estimated from the lowest 20% of values in a trace.  The threshold is the mean plus or 

more standard deviation of intensity fluctuation in the cytoplasmic state.  Errorbars of Fig. 

2a indicates the error in estimating the frequency of bursts due to ±30% variations in 

threshold level.    Fluorescence values below threshold are set to the mean intensity of the 

trace to avoid spurious correlations from low-amplitude fluctuations in the absence of 

bursting. The autocorrelation function was computed from the thresholded traces and 

provided an unbiased estimate of the size of the isolated bursts and clusters, which 
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corresponded to the two time scale of the exponential decay in the fit (Fig. 2d).   The 

relative frequencies of the two types of bursts can be estimated from the relative weights of 

the two exponential components of the autocorrelation function (Fig. 2d).   At 

concentrations of calcium below 100mM, the average correlation function can be well-

described by a single exponential, while at higher calcium levels, two exponentials are 

needed.   In the latter case, the faster of the two timescales matched that obtained in the 

single exponential fit at low [Ca
2+

], suggesting that this time-scale corresponds to that of 

individual bursts.  The slower time scale at higher [Ca
2+

] appears to occur when there is an 

increase in the frequency of the clustered bursts.  Both the value of the slow time scale and 

its relative weight in the bi-exponential fit increase with [Ca
2+

], indicating that both the 

frequency and duration of cluster bursts increases with [Ca
2+

].  This does not affect FM 

coordination, as the individual localization bursts that make up the clustered bursts retain 

the same profile across calcium concentrations.  Thus, the non-zero portion of the [Crz1]nuc 

histogram remains the same shape, satisfying Eq. 5 below. 

Amplitude variation.  In addition to the variability in burst durations, we also found 

variability in burst heights within a single cell.  This variability is unlikely to be due to 

imaging differences between cells, such as fluctuations in the position of the nucleus with 

respect to the imaging plane of the microscope, because there is little variability in peak 

intensity of the initial burst. This is usually one of the strongest localization events in a 

trajectory, but would be expected to exhibit similar amplitude variability during the initial 

response if variation in imaging conditions were responsible for amplitude variations.  With 

the characteristic burst duration of ~120 seconds and an acquisition interval of 15 seconds, 

sampling is sufficiently frequent to capture burst profiles.   

Localization score definition.  The localization score is not normalized on a 0 to 1 scale 

because it is difficult to ascertain when full nuclear localization occurs, which is 

complicated by cytoplasmic autofluorescence and variability in the expression levels of 

Crz1-GFP in individual cells.  Consequently, for simplicity, localization score is shown as 

extracted from raw data, without normalization. 

Crz1 mutants. As shown in Fig. S8 and discussed in the main text, the localization burst 

frequency is modulated by Crz1 mutations with different affinities for Calcineurin.
31

  GFP-
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Crz1high exhibits a much higher burst frequency than Crz1-mCherry, while Crz1-mCherry is 

comparable in burst frequency to a mutant with slightly lower affinity for Calcineurin, 

GFP-Crz1
low

 (Fig. S8 a,b).  It seems that GFP-Crz1wt has a slightly higher burst frequency 

than Crz1
wt

-mCherry (Fig S8 c,d), but the effect is much weaker than that of the difference 

between GFP-Crz1high and Crz1
wt

-mCherry.  In all three cases, it is exclusively the 

frequency of bursts that is affected, and never the burst amplitude.  FK506 affected burst 

dynamics in a manner similar to the calcineurin affinity mutations.  Frequency modulation 

of Crz1 bursts is further supported by results showing that expression from 1x, 2x and 4x 

CDRE promoters remains proportional (coordinated) with respect to FK506 concentration 

at 100mM Calcium (Fig. S8g). 

Cell cycle dependence and daughter cells 

To monitor the cell cycle dependence of the Crz1 bursts, we observed Crz1-GFP and 

Whi5-mCherry, a cell cycle marker, simultaneously  As described previously, Whi5 is 

nuclear localized during late G1 phase and relocalizes again at end of mitosis in both the 

mother and daughter cells,
67

 thus serving as a high resolution cell cycle phase indicator.  

When we cross-correlated the localization events between Whi5 and Crz1 (Fig. S5), we 

observed only a weak correlation (<10%) between Whi5 and Crz1 activities, indicating that 

Crz1 bursts do not occur preferentially at particular points in the cell cycle, especially not 

around the end of mitosis.  In addition, we found little correlation (<10%) of the Crz1 

bursting events between mother cells and daughter cells, suggesting that after division, 

Crz1 activity becomes completely independent between the mother and daughter.   

FRET measurement of calcium fluctuations 

Calcium oscillations have been observed in many mammalian systems, but have not to our 

knowledge been previously observed in yeast.
29

  We measured yellow Cameleon 

YC2.12,
68,29

 developed by R. Tsien and colleagues, and Crz1-mCherry simultaneously in 

the same cell.  We observed both isolated calcium spikes occurring on the timescale ~20-60 

seconds and also more prolonged spike trains (Fig. S6).  Using 2-second acquisition 

intervals, we found that the majority of spikes occur on timescales longer than 30 seconds, 

indicating that our sampling rate is sufficient to capture most calcium spikes (Fig. S7).  

Every calcium spike coincides with a Crz1 localization event, but not vice versa.  However, 
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due to low signal-to-noise ratio of the FRET reporter, we are unable to determine if low 

amplitude calcium fluctuations contribute to localization bursting activities.  When we 

looked at the calcium spike dynamics as a function of calcium concentration, we found that 

the number of calcium spikes per trace does not follow the Crz1 burst frequency curves 

(Fig. S7c).    

Msn2 Bursts 

Msn2-GFP exhibits nuclear localization bursts under calcium stress (Fig. S9).  After the 

addition of 200mM [Ca
2+

], Msn2-GFP localized in a synchronized manner across a 

population and then exited the nucleus in ~10 minutes.  Sustained bursting of Msn2 

occurred in a manner similar to Crz1.  The burst statistics of Msn2 (Fig. S9) shows that the 

nuclear residence time of Msn2-GFP is approximately 1-2 minutes, similar to that of Crz1. 

Furthermore, Msn2 also exhibits clustered bursts.  However, other than the initial burst in 

response to calcium addition, the localization events were only weakly correlated between 

Msn2 and Crz1.  As Msn2 bursts occur more frequently under calcium stress than those of 

Crz1, for each Msn2 burst, there is an 18.4±2.0% chance of a Crz1 burst occurring at the 

same time, whereas for each Crz1 burst, there is a 29.7±3.5% chance of coinciding with an 

Msn2 burst.  In contrast, if the two proteins were localized entirely independent, the 

coincidence probability would have been 14.0±1.2% and 22.6±1.8% respectively (error bar 

determined by bootstrap).  This is consistent with the weak but non-zero cross-correlation 

between Crz1 and Msn2, showing that while two types of bursts are predominantly 

independent of each other, there is a statistically significant correlation. Note that Crz1 

initial localization was observed at 750mM, but not at 300mM of NaCl.  Under these 

conditions, Msn2 shuttles in and out of the nucleus, indicating that Msn2 is also capable of 

nuclear localization bursts without being driven by calcium spikes.   

Cmk2 in Crz1Δ strain 

Cmk2-Venus does not induce in the presence of extracellular calcium in a Crz1Δ strain.  

The lack of induction is consistent with previous microarray results, where Cmk2 and other 

Crz1 target genes were not induced in the presence of the calcineurin inhibitor FK506.
22,32

 

We repeated this experiment at the single-cell level to select appropriate target genes (see 

below). The Cmk2 FK506 data is specifically plotted in Fig. S15a.   
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Crz1 Localization, Target Promoter Cross Correlation Analysis 

The cross-correlation between the Cmk2-Venus production rate and the Crz1-localization 

trajectories shows a positive correlation with a peak amplitude of 0.2 and a time-delay of 

15 minutes corresponding to the maturation time of the Venus fluorophore.  This does not 

mean that only 20% of transcriptional noise is due to localization dynamics.  Consider a 

scenario in which maturation time profile is a square pulse lasting 10 times longer than the 

localization bursts.  Assuming the localization bursts are essentially delta functions, the 

cross-correlation follows the same profile as the maturation time profile.  However, the 

peak amplitude of the correlation is not 1. By definition, the cross-correlation is normalized 

by the standard deviation of each component.  Consequently, the correlation amplitude is 

the square root of the duration of the maturation, .  Thus, the 0.2 cross-correlation 

between the Cmk2 promoter activity and the Crz1 localization trace should be re-

normalized by the maturation time distribution, resulting in a higher correlation coefficient 

(>50%) between the two dynamic variables.  Incomplete correlation could also result from 

the observation that not all Crz1 localization bursts result in corresponding transcriptional 

bursts (Fig. S11).  The probabilistic nature of transcriptional initiation would further lower 

the correlation amplitude, again by the square root of the average number of Crz1 

localization bursts that occur per expression event. 

Maturation time of the Venus fluorophore. 

We measured the maturation time of the Venus fluorophore at 30
o
C on a 

spectrophotometer (TPI).  A 2 ml culture of Hsp12-Venus yeast cells in SC media was 

induced with 400mM NaCl for 7 minutes and cycloheximide (Sigma) was added to a final 

concentration of 100 ug/ml to stop translation.  Fluorescence traces are shown in Fig. S12.  

Maturation time was calculated from the derivative of the fluorescence trace, starting from 

the point of cycloheximide addition, producing a mean value of 15 min.    

FM- Coordination 

Consider two Crz1 target promoters, A and B, whose normalized rates of 

expression are Hill functions of nuclear Crz1 concentration, denoted : 

(1) .   
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Each promoter is thus characterized by half-maximal activation level  and Hill 

coefficient  (  Here we show that in FM-coordination, the mean promoter 

expression levels, , are regulated proportionally: , where k is a constant, at all 

calcium levels, regardless of  and .  In the AM model, on the other hand,  and  in 

general depend differently on calcium concentration.   

  To proceed, consider the histogram of at different calcium levels,  (Fig. 

4). In the AM model, the center of the histogram varies with calcium concentration.  In the 

FM model, on the other hand, the histogram has two components: a peak at high x due to 

bursts, and a region at low x in the resting state between bursts.  Only the relative amplitude 

of the two peaks, but not their positions, varies with calcium.  More generally, if the 

histogram is not bimodal, it is only important that the shape of the nuclear localization 

histogram remain the same while its amplitude change relative to the “off” cytoplasmic 

state.  We assume that only the higher peak contributes to expression.  As a result,  

(2) ,        

where  is the burst frequency as a function of extracellular calcium, and  is the 

histogram during bursts.  

The mean expression level depends on the product, or overlap, between the rate of 

expression and the histogram of nuclear Crz1: 

(3) .       

In AM regulation, the expression ratio of the two promoters, denoted , may depend in a 

different way on calcium and hence their ratio is calcium-dependent: 

(4)  .     

In FM regulation, on the other hand, the calcium-dependence appears only in the burst 

frequency, and factors out of the expression ratio, producing a constant expression ratio, 

: 

(5)  .      

The result is easiest to see in the extreme limit, when Crz1nuc saturates both target 

promoters during each localization burst ( ).  In this case,  and  are each 

proportional to the fraction of time Crz1 spends in the nucleus, and hence proportional to 
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each other and to the frequency, , of Crz1 bursts.  Hence their expression ratio  

remains fixed as extracellular calcium varies. 

Frequency modulation of Crz1 bursts is not the only mechanism to ensure 

coordinate regulation of downstream targets.  FliCR requires the shape of the localization 

histogram be independent of calcium (Eq. 2), but this could be achieved, for example, by 

varying the duration of localization bursts, rather than the frequency, similar to Pulse Width 

Modulation (PWM) in engineering.  Furthermore, the clustering of bursts does not affect 

FliCR, as the cluster is simply an aggregate of individual bursts.  Finally, we note that the 

argument does not depend on the Hill function itself, and FM coordination can work for 

more complex promoter response functions.   

Flow Cytometry Selection Criterion 

Of 163 genes previously shown to be Crz1-dependent,
22

 83 had GFP-fusions available.
23

 

Of these, 19 were excluded because of low-induced dynamic range and the resulting 

difficulty of distinguishing calcium-dependent induction from cellular autofluorescence.  

We tested the Crz1-dependence of the remaining genes by comparing their response to 

high concentrations of extracellular calcium with and without FK506, a calcineurin 

inhibitor (Fig. S15).  The induction of 40 genes was completely suppressed by FK506, 

suggesting their expression is predominantly controlled by Crz1.  We measured the 

expression level of each of these 40 genes under 8 concentrations of extracellular calcium 

(0, 25, 50, 100, 150, 200, 300, 400 mM) using flow cytometry.  In the main text, we only 

show traces up to 300mM for consistency with other experiments.  We repeated the 

experiments measuring the calcium induction of these genes on four separate days.  The 

runs with low cell density (<500 cells per run) were discarded.  The remaining runs were 

normalized according to the following procedure: Each induction curve was fit by least 

squares (Mathematica) to the CDRE induction curve with two free parameters: offset 

(minimum expression) and gain (induction range).  All normalized curves thus extended 

from 0 at 0mM [Ca
2+

] to 1 at 400mM [Ca
2+

].  For each gene, the means and error bars of 

the normalized expression levels were computed from replicate experiments on days with 

sufficient cell counts.   
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Out of the 40 genes that passed the FK506 test, 34 showed induction (Fig. S14a) 

curves that closely match those of burst frequency and CDRE dependence on calcium.  The 

remaining six (Fig. S14b) showed different induction profiles.  Note that other regulatory 

mechanisms on the target promoter, such as indirect regulation, can interfere with 

coordination. 

We observed 24 genes whose expression under calcium stress was not completely 

suppressed with FK506 (>10% induction is independent of calcineurin).  In general, the 

induction curves for these genes depart from the Crz1 burst frequency curve (Fig. S14c).  

This is most likely due to contributions that are calcium-dependent, but not Crz1-

dependent.  Despite this, Crz1 still plays a significant role in the induction of these genes, 

as reflected in the similarity of some of these induction curves to the CDRE curves.  The 

difference in target gene sets was due to the fact that our FK506 selection criteria were 

more stringent than that used in the previous microarray study,  that had identified the 

larger set of target genes initially.  

Finally, we examined genes that were independent of Crz1, but are induced in the 

presence calcium.  As expected, they showed different induction profiles compared to pure 

Crz1 target genes (Fig. S18) 

Over-expression of Crz1 rules out “fine-tuned” promoter hypothesis 

In principle, coordination could be achieved by „fine-tuning‟ of promoter input functions: If 

all target promoters had input functions that were exactly proportional to each other across 

Crz1nuc levels, then the target genes would be trivially coordinated. This possibility can be 

ruled out by considering the response of promoters to changes in the total Crz1 

concentration in the cell (Fig. S16). 

The 1x, 2x and 4x CDRE promoters exhibit different absolute induction values, but 

maintain the same normalized induction profiles.  Given that all three constructs are driven 

by the same Cyc1 promoter and differ exclusively in the number of CDRE binding sites,
36

 

it is unlikely that the increase in expression level occurs without changes in the effective 

affinity of the promoters.  To prove that this is indeed the case, we performed the same 

induction experiment while overexpressing Crz1.
46

  Crz1
over

 also exhibited localization 

bursts in the presence of calcium (Fig. S16b).  Synthetic promoters induced with the same 
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induction profile at wild-type levels Crz1 and when Crz1 was overexpressed (see below).  

However, their absolute expression levels differed (Fig. S16). When Crz1 is overexpressed, 

the histogram of [Crz1]nuc during a burst shifts to a higher level, resulting in higher overall 

expression from the promoters.  If all three synthetic promoters have the same response 

function to Crz1, then the induction ratios between the Crz1
over

 and Crz1
wt

 would be 

identical for all three constructs. However, if the response functions differ among the 

promoters, the fold change of the overlaps between the Crz1nuc histogram and the response 

function would be different for the different promoters in overexpressed vs. wild-type Crz1 

abundances.  This is what we observe experimentally (Fig. S16 c,d,e,f): different synthetic 

promoters depend differently on total Crz1 concentration.  The observed induction is 7-fold 

for 1x and 2-fold for 4x promoters.   

Furthermore, note that the larger fold change observed for the 1x promoter may be 

explained by the following argument.   Since the 1x CDRE promoter presumably has a 

lower affinity to Crz1 than the 4x promoter, the input function for the 1x promoter saturates 

at a higher concentration of Crz1 than the 4x function.  As a result, the wild-type 

concentration of Crz1 may already be close to saturating the 4x promoter, but not for the 1x 

promoter, possibly accounting for the larger fold of induction of the 1x promoter. 
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Fig. 1.  Total Crz1-GFP fluorescence in two cells over the course of a 6 hour movie.  

150mM calcium was added at frame 20.  Interval between each frame is 10 seconds. 
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Fig. 2. Histogram of delay times between addition of calcium and the initial Crz1 

localization burst, τdelay.   
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Fig. 3.Timescales, τburst and τcluster, of isolated (black), and clustered (green) bursts, 

respectively, at varying calcium concentration.  Values were determined by a fit of the 

autocorrelation function to .   Error bars represent sampling 

errors were calculated using bootstrap.  
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Fig. 4. Distributions of number of bursts per trace.  Histograms and cumulative 

distributions of numbers of bursts from a Crz1-GFP movie at 150mM Calcium. Total 

number of burst per trace is not well-fit by a Poisson distribution, but the numbers of 

isolated and clustered bursts each fits well to Poisson distribution.  Fano factor is the ratio 

between the variance and the mean of the distribution.  The statistics is determined by the 

Kolmogorov-Smirnov test with the null hypothesis that the data distribution and Poisson 

distribution are dissimilar.  
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Fig. 5. Cell cycle and daughter cell analysis. a. A time-trace of a mother cell and 

daughter cell (black and red) and their b. cross-correlation. c. A time-trace of a cell 

containing cell cycle reporter Whi5-GFP (red) and Crz1-mCherry (black) and their d. 

cross-correlation.   
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Fig. 6.  Crz1 localization (red) and FRET ratio (black) traces in single cells at 200 mM 

extracellular Ca
2+

.  Time is on the x-axis in frames, separated by 30 seconds.   
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Fig. 7. a. Typical FRET trace acquired with a 2 second frame rate showing a calcium spike 

of ~40 second duration. b.  Distribution of calcium spike durations from movies like the 

one shown in (a).  Note that mean duration is ~38 seconds, and the distribution is peaked 

around this value.  c.  Frequency of calcium spikes as a function of extracellular calcium 

concentration.  y-axis units are number of spikes per hour.  Error bars denote standard 

deviation in the number of bursts in one trace.  
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Figure 8 
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Fig. 8 (continued). a,b. Sample traces of Crz1-mCherry and GFP-Crz1
low

 in the same cell. 

Note that the amplitude differences between the two colors are due to differing fluorophore 

brightness.  c,d. Sample traces of Crz1-mCherry and GFP-Crz1
wt

 in the same cell e,f. 

Sample traces of calcium-induced Crz1-GFP after the addition of sub-saturating amounts of 

FK506. Note that spikes of similar amplitude and duration still occur. G. Flow cytometry 

analysis of the three synthetic promoters induced with 100 mM Calcium and varying 

amounts of FK506. Note that the three curves collapse onto each other, consistent with 

frequency-modulation, rather than amplitude modulation, of bursts by FK506. 
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Fig. 9.  Msn2-GFP bursts in presence of C=calcium.  The histogram of Msn2 burst duration 

is similar to that of Crz1, with the majority of the bursts lasting between 0.5 to 2 minutes.  

Autocorrelation shows two timescales of exponential decay representing isolated bursts and 

clustered bursts.  Data is shown in black with two exponential fit shown in red. 
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Fig. 10.  a,b. Sample traces of cells containing Msn2-GFP and Crz1-mCherry. c. The 

cross-correlation of Msn2-GFP and Crz1-cherry at 150mM calcium. Note weak correlation 

(<0.1) peak at 0 time lag. 
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Figure 11.  Propagation of Frequency-Modulated localization bursts. a. Sample trace of 

Crz1 localization (blue) and Cmk2 fluorescence (red). b. Cross-correlation of Crz1 

localization events with Cmk2 expression. c. Sample traces of Crz1 localization and 2x 

CDRE expression.  
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Fig. 12.  Measurement of maturation time of HSP12-Venus at 30
o
C.  Bottom figure is the 

time derivative of the top figure, beginning with the time point corresponding to the 

addition of cycloheximide.  A population of cells was measured in a cuvette with a 

spectrophotometer. 
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Fig. 13. Flow cytometry methods. a-c. Acquisition, trigger and gating of yeast cells on the 

Beckman Cell Lab Quanta Flow cytometer.  EV refers to Coulter volume, or capacitance, 

measurement of particles. SS refers to side-scatter. d-f. Acquisition, trigger and gating of 

bleach control (no cells). 
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Figure 14a. 
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Figure 14b.  

 
Figure 14 (continued).  Flow cytometry induction curves of Crz1 target genes. a,b. 

Data is plotted in black, with normalized expression levels as a function of calcium 

concentration, with the fitted synthetic promoter induction curves in red. Error bars are 

standard errors from repeated measurements.  (a) Based on these data, 34 genes fit the 

synthetic curve very well.  (b) APE2, ARO10, MLF3, YDR319C, CUP2, MET14 do not 

seem to be coordinated, perhaps because of indirect interactions, or errors with our FK506 

tests.  
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c. 

 
Figure 14 Flow cytometry induction curves of 24 genes that did NOT pass the FK506 

test. c. Note that even though these genes did not pass the stringent FK506-dependence test 

(Fig. S15), which requires >90% dependence on Crz1, they can still exhibit significant 

Crz1-dependence, and in fact many of them also fit the CDRE induction curve quite well.   

For example, in the case of Ark1 (Fig. S15), Calcineurin-dependent activation accounts for 

>50% of the induction in calcium.  Crz1 still contributes a significant fraction of its 

induction, despite additional contributions to its induction.  
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Figure 15. Selection Criterion for target genes.  All 83 genes were grown in 0 mM 

calcium, 200 mM calcium and 400 mM calcium. Furthermore, cells grown in 200 and 400 

mM calcium were also treated with saturating amounts of FK506 (1ng/ml), a Calcineurin 

inhibitor. In the case of Cmk2, negligible induction by calcium is observed in the presence 

of FK506, indicating that Cmk2 calcium induction is dependent on the Calcineurin/Crz1 

pathway.  Thus Cmk2 is a target gene that is strongly dependent on Crz1, whereas Ark1 is 

not: the 400mM Calcium + FK506 data point is not repressed all the way back to basal 

levels.  Twenty-four genes with behavior similar to Ark1 were not considered pure Crz1 

targets and were eliminated from the list of target genes. 
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Figure 16 
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Fig. 16. Increasing total Crz1 expression level can exclude identical promoter input 

functions as an explanation for coordinated regulation.  a. Schematic: Increased total 

nuclear Crz1 concentrations should cause proportional increases in the expression of 

promoters with identical input functions, causing them to exhibit identical fold changes 

between wild-type and overexpressed levels of Crz1.  However, if the promoters have 

different input functions, this fold change should vary, producing a distribution of fold 

changes (top right).  b.  In a strain that overexpresses Crz1, Crz1-GFP continues to burst as 

shown in these sample trajectories.  c,d. Expression profiles at wild-type and overexpressed 

levels of Crz1 for the synthetic and natural promoters.  Each promoter activity is 

normalized by their activity at wild-type Crz1 levels.  The diversity of fold changes plotted 

here shows that target promoters are coordinated despite input function differences (see 

text). e. To more clearly see the differences in expression ratio at the two Crz1 levels, we 

plot the expression level of each promoter.  If the promoters had identical input functions 

the resulting points would all lie on a diagonal line; note instead the scatter in ratios. f. The 

histogram of ratio of the absolute dynamic range in overexpression vs. wild-type.  If 

promoters have identical input functions, the histogram would have only a single peak.
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Fig. 17. Dynamic range of Crz1 target genes. a. Calcium induction curves, each 

normalized to its maximum, shown for 10 natural target genes. b. The induction curves for 

the same 10 genes are shown without normalization.  Note the range of the absolute 

expression levels of Crz1 target genes.  
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Fig. 18. Crz1 non-targets. To ensure that coordinated expression was Crz1-target-specific, 

we measured the expression of genes which are known to be induced by calcium but not in 

a Crz1 dependent manner. Their expressions do not match the synthetic CDRE induction 

curve (red).  
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