FREQUENCY-MODULATED NUCLEAR LOCALIZATION BURSTS PROPORTIONALLY REGULATE GENE EXPRESSION ## **Chapter Overview** In yeast, the transcription factor, Crz1, is dephosphorylated and translocates into the nucleus in response to extracellular calcium. Using time-lapse microscopy, we found that Crz1 exhibited short bursts of nuclear localization (~2 minutes) that occurred stochastically in individual cells and propagated to the expression of downstream genes. Strikingly, calcium concentration controlled the frequency, but not duration, of localization bursts. Using an analytic model, we found that this frequency modulation (FM) of bursts ensures proportional expression of multiple target genes across a wide dynamic range of expression levels, independent of promoter characteristics. We experimentally confirmed this theory with natural and synthetic Crz1 target promoters. Another stress response transcription factor, Msn2, exhibits similar, but largely uncorrelated, localization bursts under calcium stress. These results suggest that FM regulation of localization bursts may be a general control strategy utilized by the cell to coordinate multi-gene responses to external signals. #### Introduction Cells sense extracellular signals and respond by regulating the expression of target genes. ^{18,19,20} This process requires two stages of information processing: First, cells encode extracellular signals internally, in the states and localization of transcription factors. Second, transcription factors activate the expression of downstream genes that will implement cellular responses. ^{18,19,20} Although many signal transduction systems have been studied extensively, it often remains unclear how signals are encoded dynamically in transcription factor activities at the single-cell level. In addition, cellular responses often involve many proteins acting in concert, rather than individually. But it is not known in general how the expression levels of target genes are coordinated, allowing them to be regulated together, despite diverse promoter architectures.³ Here we investigate how signal encoding and protein coordination are achieved in individual cells. #### **Results** We examined the calcium stress response pathway in *Saccharomyces cerevisiae*, or budding yeast. Cellular response to extracellular calcium is mediated by Crz1, the calcineurin-responsive zinc finger transcription factor.²¹ The activity of Crz1 is modulated by phosphorylation and dephosphorylation, resulting in changes in Crz1 nuclear localization²¹ (Fig. 1a), rather than changes in its protein abundance (Appendix B, Fig. 1). To understand how Crz1 phosphorylation dynamics respond to calcium and regulate the more than 100 different targets necessary for calcium adaptation,²² we acquired time-lapse movies of Crz1 localization dynamics, using a strain in which the Crz1 protein was tagged with GFP.²³ In each movie, we tracked the response of Crz1 localization in individual cells to step changes in extracellular calcium concentration. We find that Crz1 dynamics connect the encoding of signals and the coordination of target gene expression. In the absence of calcium, Crz1 was cytoplasmic in all cells. Upon the addition of calcium, individual cells exhibited a rapid, synchronized burst of Crz1 nuclear localization, similar to behavior observed by the yeast osmosensor Hog1.^{24,25} However, unlike Hog1, this initial burst was followed by sporadic unsynchronized localization bursts, typically lasting about 2 minutes (Fig. 1 b-d) and persisting throughout the course of the movie (up to 10 hours). Moreover, these single-cell Crz1 dynamics are consistent with micro-array studies performed on cell populations:²² After a step change in calcium, an initial overshoot in mRNA levels of Crz1 target genes results from the initial synchronous burst of Crz1, while the subsequent elevated average expression levels are due to sustained unsynchronized bursts in individual cells (Fig. 1c-e). We next addressed how the amount of calcium affects the dynamics of nuclear localization. We observed that the fraction of cells with nuclear-localized Crz1 increased with calcium concentration. Because Crz1 localizes in bursts, this calcium-dependence could in principle result from increases in burst frequency or duration. *Fig. 1.* Crz1 undergoes bursts of nuclear localization in response to calcium. a. In the presence of extracellular Ca²⁺, Crz1 is dephosphorylated and translocates into the nucleus. b. Filmstrip showing yeast cells with Crz1-GFP before and after addition of 200mM extracellular calcium (yellow square). Frames displayed here are separated by 4.5 minutes, but actual time resolution is higher. c,d. Two single cell time traces showing Crz1 localization behavior of the two cells in b. Note that there is a synchronized initial burst of nuclear localization followed by subsequent unsynchronized isolated and cluster bursts of localization. Individual burst duration, $τ_{burst}$, and cluster duration, $τ_{cluster}$, as well as the delay between calcium addition and the initial response, $τ_{delay}$, are defined on the traces. Averaged localization trace shows how single-cell burst dynamics yield partial adaptation across a population of cells. Strikingly, analysis of the movies revealed that only the burst frequency increased (Fig. 2a), while the distribution of burst durations remained constant at all calcium concentrations (Fig. 2b). This distribution was consistent with two rate-limiting stochastic steps, each with a timescale of ~70 seconds (Fig. 2b). Thus, cells use stereotyped Crz1 localization bursts in a frequency-modulated fashion to encode and respond to extracellular calcium. This contrasts with amplitude-modulation control, in which the fraction of Crz1 molecules found in the nucleus would change with calcium, but remain constant over time. The movies also revealed two modes of nuclear localization bursts: isolated individual bursts and clusters of bursts, analogous to spike trains in neurons (Fig. 1c,d). At calcium concentrations less than 100 mM, only isolated bursts were observed and the averaged autocorrelation function of the localization trajectories from individual cells was well-fit by a single exponential. However, as clustered bursts emerged at calcium concentrations greater than 100mM (Fig. 1c,d), the averaged autocorrelation function was better fit by a sum of two exponentials, whose timescales matched the typical durations of isolated bursts and burst clusters, respectively (Fig. 2d). Higher levels of calcium led to an increasing proportion of bursts occurring in clusters (Fig. 2d inset). Eventually, at the highest calcium levels, Crz1 nuclear localization trajectories appeared more similar to sustained oscillations²⁶ than to the isolated stochastic bursts seen at lower calcium concentrations. *Fig. 2.* Calcium modulates the frequency, but not the duration, of Crz1 nuclear localization bursts. a. Frequency of bursts increases with calcium concentration (error bars calculated by using different thresholds for burst determination). b. Burst duration is independent of calcium concentration. Normalized histograms, h(t), of total burst duration at two calcium concentrations are both well-fit by $h(t) = t e^{-t/\tau}$, with $\tau = 70$ seconds (black line). c. The proportion of cells that respond rapidly to extracellular calcium increases with the calcium concentration. Bars represent the fraction of cells with nuclear-localized Crz1 within 15 minutes of addition of calcium. d. Average auto-correlation functions of localization trajectories (N=58 and 85 cells respectively) from a population of cells at two calcium concentrations. At low Ca²⁺ concentrations (blue, 50mM), the auto-correlation can be well-fit by a single exponential with timescale τ_{burst} ≈60 seconds, whereas at high Ca²⁺ concentrations (red, 200mM), two time scales of fluctuations emerge, τ_{burst} ≈60 seconds and $\tau_{cluster}$ ≈720 seconds, corresponding to isolated and clustered bursts, respectively. Inset shows the relative weight of the clustered bursts, which appear at Ca²⁺ concentrations greater than 100mM and increase in frequency as calcium increases. Error bars are estimated from bootstrap. An additional level of quantization emerged in the initial response to a change in calcium, which exhibited an all-or-none response at the single-cell level. At calcium concentrations ≥ 100 mM, most cells displayed a synchronous initial burst of Crz1 nuclear localization. This resulted in a sharp histogram of values of τ_{delay} , defined as the time interval between calcium addition and the first burst of Crz1 nuclear localization (Fig. 1c). In contrast, at lower calcium levels of about 10mM, no synchronous initial response occurs, as reflected in the much broader distribution and larger mean of τ_{delay} . Intermediate calcium concentrations produced a mixture of the two discrete behaviors (Appendix B, Fig. 2). Thus, rather than controlling the amplitude of the initial response, calcium modulates the proportion of fast-responding cells (Fig. 2c). Critically, in both the initial response and the subsequent bursts, we never observed persistent intermediate levels of localization. Taken together, these results reveal that Crz1 burst activity is 'quantized' at multiple levels in cells and that only the frequencies of burst events are modulated by extracellular calcium. Since nuclear localization bursts occurred stochastically in single cells and were unsynchronized within a population on the same slide, they could not be driven by fluctuations in external conditions. These bursts also cannot be explained simply by independent fluctuations in the phosphorylation or localization state of individual Crz1 molecules because each burst involves coherent translocation of a large fraction of the ~1000 copies of Crz1 present per cell.³ In order to gain insight into these dynamics, we next asked whether Crz1 bursts were related to, or driven by, other dynamic cellular phenomena. First, we acquired movies of cells expressing both the G1 cell cycle phase marker Whi5-GFP²⁷ and Crz1-mCherry. We found no evidence for cell cycle regulation of Crz1 localization bursts, nor were bursts in daughter cells correlated with those in corresponding mother cells (Appendix B, Fig. 5). Second, we examined the role of intracellular calcium, which in other cell types has been shown to exhibit spike-like dynamics.²⁸ We acquired movies of yeast cells expressing both a FRET-based calcium sensor²⁹ and Crz1-mCherry. We observed sporadic transient spikes in intracellular calcium lasting about 38 seconds (Appendix B, Fig. 7). These spikes coincided with some Crz1 localization bursts (Fig. 3a and Appendix B, Fig. 6). However, Crz1 localization bursts also occurred without corresponding calcium spikes, indicating that localization bursts may be stimulated by calcium spikes, but are not exclusively determined by them. Third, we asked whether Crz1 bursts were driven by fluctuations in calcineurin, the upstream phosphatase that initiates Crz1 nuclear localization. We analyzed a Crz1 mutant higher affinity to calcineurin, GFP-Crz1 high, together with Crz1-mCherry simultaneously in the same cell. If Crz1 bursts were just passive readouts of spikes in calcineurin activity, one would expect both types of Crz1 to burst simultaneously, with amplitudes related to their relative calcineurin affinities. Instead, we observed that Crz1 high exhibited an increased burst frequency. Wild-type Crz1 bursts were a subset of these Crz1 high bursts (Fig. 3b). Similarly, sub-saturating concentrations of the calcineurin inhibitor, FK506, 2 reduced the frequency of bursts, but did not affect their amplitude (Appendix B, Fig. 8). As the calcineurin-Crz1 interaction controls only the frequency of burst initiation, Crz1 localization dynamics do not simply follow upstream fluctuations in calcineurin activity. *Fig. 3.* Crz1 localization bursts are partially independent of other cellular processes and affect downstream gene expression. a. Time traces of Crz1-mCherry localization (blue) in arbitrary units and FRET ratio changes (black), indicating intracellular calcium levels. Arrows indicate spontaneous calcium spikes coincident with Crz1 localization bursts. b. Single-cell time traces of Crz1-mCherry (blue) and the Crz1^{high}-GFP mutant (green) with increased affinity to calcineurin. Both Crz1 proteins are expressed and measured simultaneously in the same cell. c. Single-cell traces of Crz1-mCherry and Msn2-GFP in the same cell. Note that the two proteins exhibit statistically similar burst-like behavior, but only weak correlation. d. Crz1-mCherry localization (blue) increases expression of the Crz1 target synthetic promoter (2X CDRE) (red). Transcriptional bursts in p2XCDRE-venus are preceded by corresponding Crz1 localization bursts. Inset shows positive cross-correlation (n=9 cells) between the promoter activity and Crz1 localization with a delay corresponding to target protein maturation. Error bars are estimated from bootstrap. Finally, to investigate the generality of localization bursts, we examined Msn2, a general stress response transcription factor that was previously reported to exhibit nuclear localization oscillations. 33,34,35 We found that Msn2-GFP localization is induced by calcium stress. Like Crz1, it localized in short bursts on the timescale of 1.5-2 minutes, and also exhibited clustered bursts (Fig. 3c and Appendix B, Fig 9). However, despite these statistical similarities, bursts of the two proteins were largely uncorrelated when observed simultaneously in the same cells under calcium stress (Fig. 3c and Appendix B, Fig. 10). 18.4±2.0% of Msn2-GFP bursts coincided with Crz1-mCherry bursts, a fraction only slightly higher than the 14.0±1.2% of overlapping events expected by chance if the two proteins burst independently (Appendix B). Furthermore, bursts of Msn2 nuclear localization can occur in the absence of calcium, while Crz1 bursts cannot. Similarly, we observed that the glucose-responsive repressor Mig1 exhibited bursts of nuclear localization at low glucose concentrations. These results suggest that cells operate multiple transcription factor localization burst systems in a largely independent manner. What effect do FM-regulated Crz1 localization bursts have on downstream genes? We analyzed the transcriptional activity of a synthetic Crz1-dependent promoter containing calcineurin-dependent response elements (2X CDRE),³⁶ driving expression of the fluorescent protein Venus. We also monitored Crz1-mCherry localization simultaneously in the same cell (Fig. 3d). We found that the promoter was expressed in transcriptional bursts that followed Crz1 localization bursts (Fig. 3d). Interestingly, not all Crz1 localization bursts resulted in observable transcriptional bursts, suggesting that transcription initiation is probabilistic. Nevertheless, the rate of Venus production (time derivative of fluorescence) was correlated with Crz1-mCherry bursts with a time-delay comparable to the maturation time of the Venus fluorophore, as expected (Fig. 3d inset and Appendix B, Fig. 12). We observed similar results with a natural Crz1 target gene, Cmk2 (Appendix B, Fig. 11).²² Thus, transcription factor localization bursts propagate to downstream targets, and represent a general mechanism for generating "transcriptional bursting" ^{37,38,39} in downstream gene expression.^{2 1 13 17 40 41 42 15 43 4 44} Standard models of gene regulation involve amplitude modulation, or analogue, changes in transcription factor concentration in response to external signals. What biological functions could the frequency modulation form of regulation observed here provide for the cell? Crz1 regulates more than 100 different target genes, ²² including Ca²⁺ pumps and structural proteins necessary for calcium adaptation. The target promoters of these genes may differ in their input functions, defined as the dependence of transcription rate on the concentration of transcription factor in the nucleus. Input functions vary widely in their minimal and maximal levels of expression, the concentration of transcription factor at which they reach half-maximal activity, and in the sharpness, or cooperativity, of their response. ⁴⁵ We used an analytic model to show that frequency-modulation regulation of nuclear localization bursts could allow transcription factors to modulate the expression of multiple target genes in concert, keeping their relative abundances fixed over a wide dynamic range, regardless of the shapes of their input functions. Fig. 4. Frequency-versus amplitude–modulation regulation of two hypothetical target genes, labeled A and B (schematic). a. In the amplitude-modulation regulation system, the fraction of nuclear Crz1 (Crz1_{nuc}) changes with calcium, but remains constant over time. b. As such, the histogram of Crz1_{nuc} yields single peaks at calcium-dependent positions. Target gene expression level is proportional to the input functions at these peak positions. c. Because their input functions differ, the normalized rates of A and B expression vary differently with nuclear Crz1, and hence with calcium, yielding different (uncoordinated) expression profiles as a function of calcium. d. In frequency modulation, where Crz1 molecules collectively move between nuclear and cytoplasmic compartments, Crz1_{nuc} is either high or low, during or between bursts, respectively. This graph depicts the limiting case of rapid and complete transitions between two states, but results do not depend on this assumption (see Supplementary Information). e. This yields a bimodal histogram in which the height, but not the position, of the peak is calcium-dependent. f. Consequently, the expression levels of A and B are each proportional to burst frequency, and hence to each other, yielding coordinated expression, as shown. labeled A and B, with different input functions (Fig. 4b, e, gray dashed curves). In the AM regulation system, the fraction of Crz1 molecules in the nucleus, Crz1_{nuc}, would increase with calcium, but remain constant over time (Fig. 4a, b). Accordingly, histograms of Crz1_{nuc} would exhibit a single peak whose position is calcium-dependent (Fig. 4b). The expression level of each gene would be proportional to its input function evaluated at this peak position. Because it is expected that these input functions would, in general, differ in shape, the normalized rates of A and B expression would vary differently with Crz1_{nuc}, and hence their ratio would vary with calcium (Fig. 4c). Thus, in the amplitude modulation model, A and B would be expressed in an 'uncoordinated' fashion. In contrast, frequency-modulation regulation (Fig. 4d) would control the fraction of time that Crz1 is nuclear, rather than the concentration of nuclear Crz1. In the limiting case of fast switching between two localization states, this would cause Crz1_{nuc} to be either high, during a burst, or very low, between bursts, but rarely in between, resulting in a bimodal Crz1_{nuc} histogram (Fig. 4e). The expression level of each target promoter would be determined mainly by the value of its input function near the location of the higher histogram peak, and by the fraction of time Crz1 spends in the localized state, which determines the height of the peak. In frequency modulation regulation, higher levels of calcium would increase the relative height of this peak by increasing the frequency of bursts, but would not change its position (Fig. 4e). The expression levels of the two genes would therefore be individually proportional to the burst frequency, and consequently remain proportional to each other, as calcium is varied. Thus, A and B would be coordinated, expressed at a constant ratio at all calcium levels, regardless of the shapes of their input functions (Fig. 4f). This regulatory strategy is general: It does not require bursts to saturate target promoter input functions, nor does it require that the Crz1_{nuc} histogram be bimodal (see Appendix B for a more detailed treatment). Thus, it functions with bursts, such as those observed here, that span a range of localization amplitudes, giving rise to a non-bimodal histogram. Finally, this strategy is more general than FM regulation; it can also work by varying the duration, rather than the frequency, of localization bursts. We refer to this principle as FM-coordination. To test the FM-coordination hypothesis experimentally, we first analyzed three synthetic promoters containing one, two, and four CDREs. These promoters were previously shown to exhibit Crz1-dependent expression in response to calcium. We used flow cytometry to analyze strains containing each of these three promoters fused to yellow fluorescent protein (YFP). The promoters varied in their expression strength over two orders of magnitude, in the ratio of 1:15:450, respectively (Fig. 5a inset). Nevertheless, they exhibited identical dependence on calcium, collapsing onto a single curve when normalized, as predicted by FM-coordination (Fig. 5a). Fig. 5. Frequency-modulated bursts coordinate gene expression. a. Measured expression levels of synthetic Crz1 target promoters containing one, two and four CDREs. In each case, expression levels are normalized by their maximum. Note similarity of curves to each other and to burst frequency. Bottom inset shows expression at 200mM calcium normalized by expression of the 1x CDRE. b, Expression profiles of natural target promoters (solid lines) exhibit similar inductions as the Crz1 burst frequency (dashed line). Only ten are plotted here for clarity. Error bars indicate standard error from repeated experiments. c, Expression level of synthetic target genes at wild-type versus overexpressed levels of Crz1. Each promoter is normalized by the maximum expression in wild-type Crz1 levels. Thus the normalized expression levels of one, two and four CDREs at [Crz1]_{wt} each equal 1. If all promoter input functions were identical, then their normalized expression should increase by the same factor when Crz1 is overexpressed. However, the data show a range of fold changes in expression levels, excluding identical input functions as an explanation for proportional regulation. d. Same as c. for the natural promoters in b. Natural eukaryotic promoters exhibit more diverse architectures than these pure synthetic promoters. Therefore, we also investigated whether FM-coordination could explain the behavior of natural Crz1 target genes. A previous microarray study identified 163 potential Crz1 target genes, 22 83 of which were available as fluorescent protein fusions. Of these, 40 showed a measurable and predominantly Calcineurin-dependent response to calcium under our media conditions (Appendix B, Fig. 15). These natural promoters, like their synthetic counterparts, exhibited a broad distribution of expression levels (Appendix B, Figs. 14 and 17). Notably, a large subset of these target genes (34 out of 40) exhibited normalized calcium response curves identical to each other and to those of the synthetic promoters. They were thus regulated in proportion to burst frequency, in accordance with FM-coordination (Fig. 5b and Appendix B, Fig. 14a). In principle, target promoters could respond proportionally because they share identical input functions. If so, increasing total Crz1 concentration would increase the expression of all promoters by the same factor (Fig. 5c, d). Conversely, if the expression levels of the promoters change by different factors when Crz1 concentration is increased, then their input functions must differ in shape. This is what we observed when we compared the expression of both the synthetic and natural promoters in wild-type strains to their expression in a Crz1-overexpressing strain.⁴⁶ The increase in expression varied between one-fold and seven-fold over this set of promoters (Fig. 5c, d), confirming that synthetic and natural promoters are proportionally regulated by the FM-coordination mechanism, despite non-identical input functions. ### **Discussion** Diverse perturbations including calcium, pharmacological inhibitors, and genetic mutations vary mean Crz1 activity across a broad dynamic range exclusively by affecting the frequency of localization bursts, rather than their duration or amplitude. Thus, Crz1 activity is quantized both in its initial response to a step change in calcium, which is all-ornone at the single-cell level, and also in its sustained response, which is composed of stereotyped bursts of localization. These data suggest that eukaryotic cells can encode information about the extracellular environment in the frequency of stochastic intracellular events, rather than in the concentrations of molecular species. This contrasts with canonical signal transduction pathways, in which concentrations of activated proteins are used to convey information to the nucleus. Using localization as a single-cell reporter for post-translational modifications, we observed qualitatively similar, but largely uncorrelated, behavior in the Msn2 stress response transcription factor and the Mig1 glucose repressor, suggesting that localization bursts are broadly employed in the cell. In engineering, frequency modulation appears in diverse signal processing and control applications such as broadcasting⁴⁷ and rocket thruster control,⁴⁸ where transfer characteristics may be uncertain. Spike frequency control, or rate coding, is also fundamental to neural computation, 49 where it may overcome noise background for signal propagation, among other functions.⁵⁰ In genetic networks, frequency-modulation regulation solves a fundamental problem, allowing cells to co-regulate proportionally a large set of target genes with a diverse range of input functions. Note also that these results represent a complementary mode of regulation compared to previous observations of calcium oscillation frequency-dependent gene expression.⁵¹ FM-coordination connects the dynamic behavior of a single protein to the expression of large regulons, and may thus provide insight into genome-scale expression patterns. Furthermore, at the evolutionary level, FM-coordination enables promoter mutations to alter the level of expression of individual genes without disrupting their coordination. In contrast, to achieve coordinate regulation using amplitude modulation would require 'fine-tuning' of target promoter input functions, severely constraining promoter architecture and regulatory evolution. In light of previous observations of transcription factor pulsing in p53,⁵² NFkB,⁵³ and SOS stress response systems, ⁵⁴ and because of its potential utility in protein and metabolic, as well as transcriptional networks, we anticipate that frequency-modulated regulation may represent a general principle by which cells coordinate their response to signals. # Acknowledgements The work done in this chapter was a collaboration with Long Cai, a postdoctoral fellow in the Elowitz lab.