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C h a p t e r  1  

EFFECTS OF EVOLUTIONARY SELECTION ON NOISE 

Motivation  

Many biological traits are quantitative: levels of gene expression, sizes of appendages, and 

abundances of cellular components can vary over a wide range. Mean values of such 

phenotypes are generally genetically encoded; therefore, they are subject to the forces of 

selection. Recently, it has become clear that such phenotypes are fundamentally noisy: that 

is, genes specify a distribution of possible values for the trait, rather than a precise value.  

More significantly, the variance of this distribution, like the mean, is under genetic control,
5
 

and the variance, at least in stress response genes, may be genetically independent of 

mean.
1,3

 This data suggests that both the mean and variance of a quantitative phenotype are 

influenced independently by selective pressures that act on the phenotypes expressed in 

individual cells. However, an individual in a population is subject to selection only on its 

particular phenotypic value, not on the mean and variance that specify its phenotypic 

distribution. Here we ask how positive directional selection affects variance in a simple 

quantitative trait.   

 A notable feature of this question is that there are only three possible outcomes. The 

variance can increase, decrease, or stay the same. Conceptually, one might expect that as 

you continue to select for a specific phenotype, you select against other phenotypes, 

decreasing the variance in the population
6
 (Fig.1A). Conversely, one can imagine a 

scenario in which selection on the tail end of a distribution can yield an extremely 

heterogeneous population. Here the initial population is very unlikely to pass the selection 

threshold unless there is a large variance (Fig. 1B). Finally, it is possible that as the 

selection increases the mean, the phenotypic variance remains the same (Fig. 1C). To 

distinguish between possibilities, we conducted an in silico experiment. 
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In Silico Result 

We considered a phenotype x, whose distribution is a Gaussian, parameterized by two 

genetically determined independent values (,)  (other distributions, including log-normal 

and gamma, work as well):  

P(x) 
1

2
e

(x )2

22 . 

 Here, μ and σ represent the mean phenotypic level, and variance, respectively. 

Either can vary under mutation. We asked how the population means of these parameters, 

µ and σ, change under rounds of mutation, selection, and growth (Fig. 2B). The 

number of cells, or potentially organisms, was kept large to minimize any effects of genetic 

drift. The initial population was left homogeneous, i.e. both genetic traits were identical in 

all cells, for simplicity. During mutation, the σ and μ for a given cell are assigned new 

values from a distribution centered on their previous values. During selection, we assume 

that only a certain percentage of cells with the highest phenotypes can survive. For 

example, under tight selection, the threshold may be chosen to allow only the highest 

phenotypes, e.g., the top 5%, to survive, while weak selection permits the top 55% to 

survive. After selection, surviving cells replicate to restore the original population size, 

completing one cycle of directional selection (Fig. 2B).  

 The result, shown in Fig. 2C, indicates that tight selection favors increasing 

variance while weak selection favors decreased variance. This result can be understood 

qualitatively by considering two individuals with different values of μ and σ, as shown in  

Fig. 1. How does Selection Affect 

Variance?  There are three possibilities: 

Variance can decrease (A), increase (B), 

or stay the same (C), in response to 

directional selection.  
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Fig. 2. Phenotypic Selection  

A) A flow-chart of the in silico experiment. 

An isogenic population (µ,σ) is mutated so 

that now each cell has a different genotype 

(µn,σn), giving a broader distribution of 

expression levels than the original 

population. A threshold selection is 

imposed (green dashed line). Cells are 

grown to the original population size. The 

selected cells are then mutated again and 

the cycle continues. B) In a simulation, 

20,000 isogenic cells with a mean of 1000 

and a variance of 300 have been mutated 

and selected such that the top 5% (left) or 

55% (right) of phenotypes are allowed to 

survive for 100 selection rounds. Strong 

selection favors increasing <σ> (red lines) 

while weak selection favors decreasing 

<σ> (blue lines). <μ> increases in both 

scenarios. Error bars indicate one standard 

deviation over the population. C) Two 

individual distributions, one with a high 

mean and low variance (blue) and one with 

a lower mean and higher variance (red) are 

shown. If strong selection, (cells with the 

top 5% of all phenotypes are selected, 

(green dashed line)) is imposed on both 

distributions, the red distribution will be 

favored. However, if weak selection (the 

top 55% of all cells will be selected, shown 

with the magenta dashed line) is imposed, 

the red distribution will be favored. 
 

Fig. 2C. The tighter selection (dotted green line) favors the longer “tailed,” or high variance 

individual, despite its lower mean level. Meanwhile, the weaker selection (dotted purple 

line) favors the individual with the higher mean and lower variance. 

  This finding has several insights. As expected, the mean phenotype, µ, 

always increases under directional selection, irrespective of the strength of selection, and 

the rate of increase is proportional to the mutability, the amount that the mean can increase 

in each round of mutation. More interestingly,  behaves differently depending on the 

strength of selection. When more than half the cells survive selection, variance increases, 

but when less than half survive, phenotypic variance decreases to a basal level.  
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            In summary, assuming that a phenotypic distribution is the product of two 

independent genes, computational analysis predicts that directional selection in which less 

than half of all cells survive, yields an increase in phenotypic variance.  

 

Analytic Model 

Although the intuitive diagram shown in Fig 2c explains the aforementioned in silico 

result, it does not explain the precise effect of selection strength. Why is it that selection 

pressures in which <50% of cells yield an increase in variance while those in which >50% 

of cells yield a decrease in variance? What is so special about 50%? We constructed an 

analytic model hoping to resolve this question.   

We assumed the quantitative phenotype (x) controlled by two independent genetic traits, 

has a  phenotypic response is given by ),(  . Hence, for a given value of genetic traits the 

phenotype distribution is given by: 
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The genotype distribution function ),( t  is defined as the probability to find the 

genotype ),(   within the population at generation t. (In more formal terms, the 

probability is given by  ddt ),( ). 

 

The goal here is to obtain an expression for ),( t  after many generations of mutation, 

selection, and growth. More specifically, we are interested in what happens to   and 

 , defined as the mean and variance of the phenotype, respectively, after many 

generations under the influence of different types of selection. 

 

In order to do that, we need to write the dependence of ),(1  t  on ),( t . The 

process which occurs in each generation is as follows: 
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(2) ),(),(),( 1   t

m

tt , 

 

where ),(  m

t  is the distribution after the mutation phase. The first arrow in (2) 

corresponds to the mutation phase and the second arrow corresponds to the selection phase. 

 

Mutation phase 

 

In the mutation phase, we allowed the values of    and    of each genotype to change a 

little. We can define a mutation function: 
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where   and   are fixed parameters that correspond to mutation ranges in   and   

in each generation. 

 

To obtain ),(  m

t , one needs to convolve ),( t
 with the mutation function: 

(4) ''),,','()','(),(  ddMt

m

t   . 

 

(Please note that one can also write the continuous version of that with a free diffusion 

equation.) The new genotype distribution is broadened by the convolution with mutation. 

 

Selection Phase 

 

In the selection stage, we essentially look at the total phenotypic distribution and apply a 

phenotypic selection function S(x) to select for the surviving population. So: 

 

(5)  

x

m

tt dxxSxP ),;(),;(),(),(1  , 

Let’s assume, for example, that we select by introducing a threshold T which is defined 

such that only a fixed fraction of the population T remains after the selection. Equation (5) 

then becomes 
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Note that the term on the right hand side was normalized by T . This corresponds to letting 

the population grow back to its original size after selection. The threshold T is defined by 

requirement that ),(1  t
should be normalized, i.e, 
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The relation between selection rounds 

 

Substituting Eq. (4) into Eq. (6) provides the required relation between two consecutive 

generations:  
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The right hand side is just a mutated distribution (in square brackets) multiplied by a term 

we’ll describe as the selection function. The function erfc(z) is the complementary error 

function: 
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The selection function becomes  
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From the analysis of this expression, we have learned several important lessons. First, if the 

variance, or  , is small and the mean phenotype,  , is less than the selection threshold, T, 

there is no chance that individual will be selected. However, if the mean phenotype stays 

the same and the variance increases, that individual has some chance of being selected. The 
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50% selection threshold, at least in a Gaussian distribution is the point where the mean and 

the threshold are equal. Here the selection expression automatically becomes erfc(0)= 1. 

There is no longer any dependence on the variance in the expression.Next, in the cases 

when selection is stringent ( T <<1) and only a few cells pass selection, it is typical for 

most of the mean phenotypes to be less than the threshold value. Here it appears that the 

optimal strategy to pass selection is to have a large variance. In fact, the high variance 

might even act as an insurance policy, enabling cells to withstand mutations that lower their 

means and still pass selection.  Finally, when selection is lenient, ( T >0.5) individuals with 

higher means and lower variances outcompete those with higher variances. High variance 

populations also have some very low phenotypic values far below the threshold, making 

them less fit than their low variance counterparts.   

 

Discussion 

 This result is general; it applies to any quantitative phenotype under selection.  For 

many selection experiments, the effects of variance generally have not been measured. 

However, for those experiments, in which distributions are plotted, it seems as if the 

variance does increase. For example, in 1957 Clayton and Robertson selected for increased 

and decreased abdominal bristle number in Drosophila melanogaster.
7
 The resulting 

phenotypic distributions from their selection appear to be broader than their initial 

population (Figure 3). 

 

 

 Additionally, Peter and Rosemary Grant have been measuring several quantitative 

phenotypes in Darwin’s finches on the Galapagos Islands for almost 40 years. They have 

Fig. 3. A Selection Example. 

Clayton and Robertson selected 

for high and low abdominal 

bristle number in flies. They 

showed that flies under 

directional selection, exhibited 

higher variance than the base 

population, consistent with the 

proposed computational model. 
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found that after one drought, during a single monsoon season, the beak depth of the finches 

increases. After just one generation, they found that the distribution of beak depths 

broadened.
8
  

 In a long-term evolution experiment with E. coli, Richard Lenski and colleagues 

found that while only a few mutations evolved at first, 6 of 12 replicate cultures 

independently mutated a DNA replicase creating hypermutable strains.
9
 Due to selection 

pressures, this hypermutable mutation was only allowed to survive because it had the same 

fitness, or mean phenotype, as non-hypermutable strains. However, in half of the cell lines 

evolution selected for this increased ability to mutate, or higher variance in fitness.  

 Although these long-term evolution experiments are incredibly complicated 

because of the variety of selection pressures, the fact that we still see variance increasing in 

response to directional selection reiterates the potentially generality of our result. 

Furthermore, it shows that in the examination of how selective pressures affect phenotypes, 

it is important to consider how both the mean and variance of a given phenotype are 

affected.  

 

Future Directions  

As discussed in the introduction, our interest lies in gene expression noise and its potential 

causes and consequences. Using gene expression as a quantitative phenotype, we can apply 

our computational and analytic results towards noise. Specifically, we predict directional 

selection may provide a mechanism that can explain high levels of biological fluctuation. 

This seems even more plausible in lieu of recent computational
10

 and experimental work.
11

 

Most notably, Kaneko and colleagues used stringent selection (top 0.1%) of a specific GFP 

to increase expression noise.
12

  

 Furthermore, we have designed a forward experiment to verify the strong 

evolutionary prediction: strong and weak directional selection for high expression level will 

select for high or low noise, respectively.  One can take two clonal populations of cells with 

overlapping gene expression distributions and artificially impose different types of 

selection using flow cytometry. After several rounds of selection and re-growth, the library 

should be enriched for the clone with low or high noise in the weak or strong threshold 

cases, respectively (Fig 4). The only potential drawback of such an experiment is the 
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inability to account for other types of selection that could potentially interfere with the 

resulting data. For example, before and after every flow cytometry-imposed selection, there 

would be ample time for the populations to grow. During this interim period, when both 

clonal populations of cells would have to be cultured together, any small growth 

differences between the populations could have a tremendous impact on the experiment. To 

account for such errors, one could conduct a similar experiment without the flow 

cytometry-based selection. Ideally, in this experiment, both clonal populations would be 

tagged with a specific fluorophore, one with a CFP and one with a cherry.  This way, one 

could use a plate reader or flow cytometer to measure the fraction of cells that are labeled 

with each color and determine the impact, if any, growth had on the ratios of the two 

populations. If there was an impact, its measured value could be used to deconvolve its 

effects from the flow cytometry imposed selection. Combined, both experiments could be 

used to measure the effect of directional selection on phenotypic distributions and, 

specifically, on phenotypic variance. We anticipate that such selection experiments can 

yield insight into the role different selective pressures play in causing phenotypic variance 

in gene expression and other quantitative phenotypes. 

 

 

Fig. 4. How selection affects phenotypes.  

We propose to impose artificial selection on gene 

expression via flow cytometry on pooled promoter 

mutant libraries. If we impose strong selection, we 

expect both the mean and cv of the pooled 

population to increase. If we impose weak 

selection, we expect the mean to increase, but the 

cv to decrease. 
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