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Abstract

In attempting to understand the nature of a chemical reaction,
the theoretical chemist is severely limited. Exact quantum mechanical
(EQM) 3-D calculations of all but the simplest chemical systems are
prohibitively expensive. In addition, accurate potential surfaces are
not available for most reactions. Finally, because the cost of compu-
tation increases with the collision energy, 3-D investigations are
restricted to low energies. To circumvent these difficulties, one might
develop approximate theories, or do exact calculations on model
systems. The first method permits one to calculate cross sections for
real chemical reactions, but it leaves one wondering if the results are
correct, since experimental work is often not sophisticated enough to
verify (or disclaim) them. The second method has the disadvantage of
being "unreal''. Cross sections for model systems nmay exhibit proper-
ties not found in the real system, while hiding or distorting properties
which actually exist. However, EQM calculations on model systems
are useful for testing approximate theories.

In this thesis we present two calculations on model systems.
The first is for the collinear collision of H and H, using a realistic
potential surface. Although other investigations have calculated
reactive and nonreactive cross sections for atom-diatom collisions,
their results have been restricted to low energies and have not included
dissociation as a possible reaction pathway. We present a gengral
method for calculating reactive, nonreactive and dissociative cross

sections for an atom-diatom collision and apply it to the Hy surface.

I'd



In part II we present transition probabilities for the nonreactive
collinear collision of two identical diatoms. We use a model potential
surface, but are able to compare our results to those of other investi-

gators who used an approximate theory.



PART 1

1. Introduction

There have been several efforts1 to calculate exact quantum
mechanical cross sections for collinear reactions. Usually these

reactions are of the form
A+ BC— AB + C, A + BC.

In general the calculated wavefunctions have not included contributions
from the continuum, i.e., dissociation. In order to achieve conver-
gence, only collision energies significantly smaller than dissociation
energies have been used. |

Three questions immediately arise. What are the cross sections
for higher energie's ? Does the continuum affect reactive and non-
reactive cross sections, and to what degree? What are the cross
sections for dissociation? In sections 2 and 3 we present a general
method to calculate reactive, nonreactive and dissociative cross
sections for the collinear collision of A and BC. The effects of the
closed (or open) continuum states are included naturally. In section 4
we examine the unusual nature of some of these cross sections.
Finally, in section 5, we present results for collinear H + H, using a

realistic potential surface.

2. Coordinate sttems and Matrix Eguations

Consider the collinear arrangement of A, B and C where ¢ A

(g and £q are the laboratory coordinates. The Hamiltonian for this




system is
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the Hamiltonian becomes
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where M =m, + Mg + M. The wavefunction is given by
HE = £V (3)

where 8 is the total energy. If we let TCm be the kinetic energy of

the center of mass and set
H = Ho -+ Hl ’ (4)

where
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we get
& _
‘I’(rnrz,R) = w(rurz)e R’ (5)
where
2,2
T - 8ok
cm ZM
and
H¥ = Tcm\If.
Now let
X, =T
“BC
and x; = 1, + g ry,
where
MmpMe
Hpe ~ rm
mB+mC

x, is the distance between A and the center of mass of BC. The new

Hamiltonian, H,, becomes

2 2 2 2
) jil 0

- + V(x,,X,)
ox2 2 ox2 bk ’

. H
2
Ha, BC

H, =

where



mA(mB + mC)

RA,BC ~ M
We now apply a coordinate transformation first proposed by Delves?‘
and Hirschfelder and Jepsen, 3 Let
, kA, BC .7
% = (—=) x
“BC
" 1
4
and %, = (—BC ' x .
“A,BC
Then we have
o, 9 ?°
H, = - o (axiz + axé2) + V(x;,%5) (6)
where
1
2
T (uA,BC bpe)
1
2
= (kaB, cHap
1
= [(mAmBmC)/M] 2,

The Hamilitonian, as developed, is well suited for the arrangement
channel A + BC, because one of the coordinates, x}, is a measure of
the internuclear distance of BC. To describe the other arrangement

channel we need a new set of coordinates z;, z, such that
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and z; = ian C
B,

Z, .

The Hamiltonian now becomes

2

ﬁ"‘(a

HO =" 2“ 62212

az
+ azzég ) + V(Z;JZ;) 2 (7)
where p is the same reduced mass as before.
Because the reaction is collinear, the order of the atoms does
not change, and the only part of configuration space of interest is the
first quadrant in x;, x, space. Not all of the first quadrant is of

interest either. Let us define the polar coordinates p,a by

p = (&7 +xp) (8a)
?
and o = tan™ 22 | (8b)
%
)
The limits of @ areat r; =0 and r, = 0. At r, =0 we have tane = —,
1}

and at r, = 0, tane =0, so that for H,, @ _. =0 and a__=7/3.

min m
Figure 1 shows the Porter and Karplus6 (PK) H, surface inr,, r,

coordinates, while Figure 2 shows it in x{, X, coordinates.



In the polar coordinates the Hamiltonian is

1 8 13

oF 3t 3pr  p ap) + V(p,a), (9)

and the corresponding Schridinger equation at energy E is
How} (p,a) = EW] (p,a), (10)
where j is an eigenfunction label. If we let

. (p,a)

i
¥ (p,a) = p ZG]

the Schridinger equation becomes

2 azG'(p’a) i azG.(p,a) 2
- % (——L——apz + 5 )+ [Vip,@) - ———gzpzlcjm,a)
- EGi(p,a). (11)

]

Now let us define a complete, discreet orthonormal set of basis
functions Yi("p", a), such that
dY.(p,a) _
B2 P o — _ — -
35 —agr— * P VBa)Yy(p.a) = p*EPY.(p,0),  (12)
where Yj(ﬁ,a) is parametrically dependent on p. The boundary

conditions are Y.(p,0) = Y,( =0. An example of V(p,a)

p? anﬁx
(p = 5.0 bohr) for the PK H, surface is given in figure 4. A corre-
sponding basis function, Yi(ﬁ,a) (i ="7) is also plotted. It is important

to note that even at énergies above dissociation the eigenfunctions



and eigenvalues are discreet. In other words, we now have a discreet
(albeit infinitely large) representation of the continuum. The Yi's and
Ei’s are found numerically by a finite difference method, specifically
the Givens-Householder9 method for real symmetric matrices.

If we expand y(p,a) in terms of these basis functions, we get

G, (p,a) 12 _ _
Yi(p, @) = —J;—%— =p ° ;471 SHENRACHOR (13)

where the 83; 's must depend parametrically on p, although zpj does not.
Rigorously, the number of terms is infinite, but in practice only a
sufficient number are included to achieve a preset degree of convergence.

Substituting (12) and (13) into (11) gives

2 ng( 7_.) 52 — ) - -
- ;iu 213 U2 vi(pa) + B e 255 (p,P) [E} - V(5,0)] Y;(5,)

2 p2 1

dp

+[V(p,a) - 82;2 ] ?gij(p,E)Yi(a) = E?e:ij(p,"ﬁ) Y;(p, ).

(14)
If we left-multiply this equation by Yi('p',a) and integrate over

a, we get the Schridinger equation in the single variable p,

2 — — 2
B w = p- P _ H -~
B o L_E - - E)g..

25 i (o,p) + (pz i T B ) 85 (0sp)

" ‘?[Vii' (p,p) - -g-g- Viyr (P)] gy (0,0) = 0, (15)
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where o
max

Vii'(p’ﬁ) = f Yi(—ﬁ,a) V(p)Yil(E,‘Ot)da.

0

In matrix notation this is written

gll - I’ng (16)
where
_ bo2 - b5 1
Y =DbY¥(p,p) - == V(pp) + =5 E - (5 +DE)1 (7
_ 2p
and b =
ﬁZ

3. Method of Solution

An efficient method to solve coupled equations of the form of

(16) has been developed by Gordon.4

Given g and g’ at p =py, the
method will find g and g’ at p = p,- The accuracy is determined by
the nature of the potential between p ¢ and Py and the step size Pr = Pg-
Reducing the step size will improve the accuracy. Briefly, the method
approximates 2 (p) by an analytical reference potential

dUiiI

(Yo ()]s = [0350(p0) + (0= p0) !p:pc}aﬁ, (18)

where p, is the midpoint of p, and p,. The solutions to

g"(p) = Us(p)g(p) (19)

Pa
o~



11

are Airy functions. Other approximations to the potential could be used;
a quadratic approximation has parabolic cylinder functions for solutions;
a constant has trigonometric solutions. The linear approximation was
chosen as a compromise between efficiency and accuracy. The exact

solutions to (16) can now be written as

g = Aa + Bb (20a)
and
g'=A'a + BD (200)

where A and B are the Airy functions solutions of (19) and a and b are
slowly varying functions of p. Because they are slowly varying, a and

b are accurately found by the first order expansions

s

i

2 (py) = 2(py) + (py - py){da/dp) (21a)

and

b(py) = 2o + (pp - pg) {db/dp) (21D)

At very small p, ¢ = 0, which implies that g= 0. We may take g’'=1
at this p. Using these initial conditions we alen propagate the so;ution
towards larger p. When Ip - Ei is small fewer states are required to
describe W than when the difference is large. In order to keep the
number of basis functions to a minimum the basis set is changed
periodically as 4/} is propagated radially. This involves a trans-

formation of the matrix function g and its derivative g’. Suppose we

wish to change basis sets at a point p. Because ‘p]? and its derivative
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s
—4 are both continuous,

f; old old E ’
85 (Pe) Yy (pgq,@) = g " (o, p)Y (pnew,a)
and

[+ o]
old, —. _old _ new new
‘“i—?l gl] (p?p) Yl (,Dold’ a) = ?1 g:,l] ( ) Y (pneW’a).

If we left-multiply both sides of each equation by Y}r;ew (Bnew’

integrate over o and recall that the Yi's are orthonormal, we get

a),

fre) o
old - — — new -

i=1 4
and

by o0

- _rold new

iz=;1 g.. (psp) Ok1 (pnew’pold) Z}l 1] (p,p) 6k1

where
new Old
Oki - fYk (pnew’a) (pold’a) da .

In matrix notation

old —
Og (p,p) = g Y(p,p)
e —
Qg'om(p p) =g (p,p)

To avoid loss of particle flux, O should be orthogonal, which is
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rigorously satisfied if both the Y(p ;, @) and Y(p .., @) form
complete sets, but is approximately satisfied otherwise. The smaller
Z)newnﬁold , the closer O will be to satisfying this orthogonality
condition. R

If we examine zpj at large p, we may expect that is can be

written as a sum of three distinct types of functions,

o0
. N 2 .. Y.(p
%(psa)pwwizl 8;; Yi(p, @)

N M o0
I, —yol/= o, — I, IO, . I ,—
= :431 g35(0,0)Y; (p, @) + Z‘lgij (p,0)Y; (p ) + ?::lgil' (p,p) Yy (p, ).

(22)

The first finite sum describes the system in the A + BC arrangement
channel, the second describes the AB + C arrangement channel and
the infinite sum describes the dissociated states. A discussion of this
partitioning of the wavefunction is in Appendix A.

When the arrangement channels become decoupled (i.e., the
elements in the potential matrix coupling different channels become
sufficiently small), we switch from the polar coordinates (p,a) to the
rectangular coordinates (x,x’) and (z!,z!) for A + BC and AB + C,
respectively. For the dissociative channels we remain in polar coordi-
nates. We perform the change of coordinates because the potential in
the bound arrangement channels remains relatively constant, allowing
the propagator to take large steps, and reducing, thereby, the computing
time. To do this, we must project the wavefunction and its derivative

onto a new basis set of the coordinate x; (z,). Because the wavefunction
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and its derivative must be continuous, we have

? h% xl,xmb (%/,%5) = 2; g3 (p,p)Y (0, @) | (23)

where h% is a solution of
T (I N SR ) = R
& bt (%) + (B - E)hy, (R +§/[Vﬁ, (1, %) - Vi (®)]hy 6,
(24a)
and is to be propagated in the coordinate x; . ¢>§ is a basis function

which is g solution of

e

2 Xl -
53 G $1LR) + V(LR 6] (R, %) = By 0] (R, %), (24b)
Solving for h% we get
0D = [ 2 g (0,5) Yy (p, @) 67 () dx; (25)

where p,a are related to x; by equations 8a and 8b. Similarly the

derivative of the wavefunction must be continuocus,

I _ I =
B Y
gﬁj(p p) Q(p,a)

Ehli <! I, _ 0
- ﬂj(l)%(xz) o

=

Solving for hi i gives

by &) = [1Z g o, 5) <5 Yi(ﬁ,angg (p,D) Y] (@ >§ ¢ () dx;

(26)
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Similar equations hold for arrangement channel AB + C.

For large p, equation (15) takes on the form of a RJ‘Lca’!:’t:i.»-Bessel5

equation. The jth solution ‘j”jﬁ is

N I 3 ) M I , . I,
. k: 2 ik>x . ki 5 ikz
I n*t I,., 5 oI 2 n t I, ,
sy () e T el < sy () e M ol
n - n
o0 1 ) I 7
< xS s m X Fom k% 1
2 ; 3 ’
where
] T A
n'— ﬁ.—?( = n)} bl
kﬁ _rlu E - EH“E%
8} "ﬂ.%:gmi n} 3

and q’:aia ci)i;? ¢g1 are the basis functions for A + BC, AB + C and

A + B + C, respectively. d’j represents the final scattered system
which began in state j of molecule BC and scattered to all other states.
The § nj 's are the scattering matrix (S-matrix) elements, and they are
calculated in the usual way (see Appendix B).

It is important to note that we have discretized the continuum

the continuum is represented by an infinite sum. The scattering matrix,
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although infinite in size, is not continuous. If we make the approxima-
tion that the sum can be truncated, we will be able to calculate cross
ections for dissociation.
The cross section for reactive and nonreactive scattering is

given by

I(¥)

where J_ (Jj} is the total outgoing (incoming) flux in vibrational state

n{j) and in direction Y, (¥]). In physical coordinates x,, x, the flux is

given by
j0,m) = mtlmlyt - B mnimy 2 2T
“A,BC BC %
(28)
)= lim ) j&,%) o xdx,
b e
then
) kg SRV ’ y
T = 1 [y - w YT ax (29
., k=
= L I =0}

Tt = syl = (31)
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fik!

Since Jj (incoming) = 1 , the nonreactive j-n cross section from
v
A + BC collisions is given by

I 2
0o = lsnj : (32)

Similarly for reaction to arrangement channel II,

oIl 2
0in = ISEI" (33)

For dissociation from an initially bound state, the cross sections are

complicated. First we will show that the distribution of energy among

2b

the dissociated atoms A, B and C is a function of a. Let v, be the

relative velocity of atom A to the center of mass of BC (x,,x, coordinates).

Because
X .V -
-X—é = fV; as r o0
and
i
U
tang = (-»—1—35-—— }2 ;;?— ,
A, BC !
we get
U 1
2
tane = ( BC E(asr“"’o)a
Ha,BC Wi
where
2 9,
ro= (X +X)%.

From this it follows that



my, mp
m m
A C
Ve =V, (=) = V, { ) | (34b)
B Y M 2 Mp+ M~
and that
My, + M
Vp ==Yy BM € , (34c)

where M =m, + Mg + M and Vas Vg and Ve are the center of mass

velocities of atoms A, B, and C, respectively. Because
-1 2 2
Ep = Z(mAvA + vazB + vaC)
1y ' S 2
= 2(v ka BC* V2 MBC%

the center of mass kinetic energies of atoms A, B and C are given by

B m.,+m
EA - B € cos? o, (35a)
T M
R m m, = m
B _ B E A)Z cos C
= ( @ - (—W)Z sina]? (35b)
Ep mgtleo M Mg
and
EC mC My 1 m 1
= P22 cosa+ =~——v—-25n 2 35¢

respectively. Graphs of these ratios versus @ are shown in Figure 5.



As one might expect, EB/ET is a symmetric function and

Eyn . Eg
T 8) = 5 {-8)
T T

that V{a) = 0 for all @. This assumption is valid in the limit p = «.

where § = o - 30°, The derivations have assumed

2

Because energy distribution is a function of o, it is useful to
find the probability of going from a bound state j to an angle @ at p = .

The radial flux beteen & and @ + do is given by
il % 0
2 im [y 2] pde
1 i 9p

:Ek.mﬁ%

"k, 2; o5 @) ¢ (o) ST sf?j ldo. (36)

n J

The cross section is

DA |1 AP 1 ] il STEE 4
RGE ‘fj {’-;/ (bn {ar) be;"” (ox) tﬁnj*gnﬁj Ed& . @7)}

For a given total energy ET? only one of E A EB and EC is independent.
We can, therefore, find the cross section for a particle A having energy

between E , and E,~dE,. From (35a)

w4+ I
o - B, B ~C

A J o Iy ’
max T R - Y

which implies that

B / . =] / 1
A = cos’a or @=cos” (E,/E, )E.

E
Ama,zr
max
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Therefore, the cross section to go from a bound state j to three dissoci-

ated atoms with atom A having energy between E A and E A dE A is

i 31 IO , 2100 I
Re{?%} ks [EA/EAmaX) ] ¢ [cos (EA/EAmaX) IS+ Sy T 4B,

[

2 [EA@AmaX- E,)]

5. Application to the H, System

SN NN S N

In principle, this method of calculating cross sections is
applicable to any collinear atom-diatom system, if the potential surface
is known. In choosing a suitable system, we examine several factors.
First, the system should be simple, A difficult system, one with a
large exothermicity or a deep diatomic potential, might require an
excessive number of basis functions for convergence, making it difficult
to assess the limitations of the method. Second, for testing this new
method, a system for which previous exact results are available should
be chosen. Agreement between the results of different methods is a
necessary condition for their validity. Third, although it is not essen-
tial, it might be useful to use a realistic potential surface. The results
might have some physical meaning, particularly if the "'true' reaction
is dominated by collinear collisions. Finally, it would be very helpful
if there are inherent symmetries in the reaction, since such symmetries
help us to locate errors and to reduce the computing time. The H,
surface fits all of the above criteria. In addition, the small masses

involved will make the quantum effects more marked.
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7 we have chosen

Although more accurate surfaces are available,
the Porter Karplus one because this surface is reasonable accurate, is
easy to calculate and has been used by previous investigators., The
potential does show an anomaly at very small internuclear distances
which is, however, easily resolved.*

Before examining the results, it should be noted that in the
collinear world, cross sections are dimensionless and equal to proba-
bilities. We will let R denote a reactive transition and N denote a non-
reactive transition. For any numerical calculation there are a number
of adjustable parameters. Among these are the number of basis
functions, the number of points used in calculating the basis functions,
and the beginning and end points of the integration. All of the results
presented here are converged with respect to these parameters. For
example, adding more basis functions does not change the results.

(All of the results presented here were calculated using between ten and
fourteen basis functions per arrangement channel.) Anocther criterion
of reliability is found in the unitarity condition, S?S =1, We required
that the sum of the squares of the absolute values of any column or row

of the S matrix be within 1% of unity.

3
For p<2.0 bohr and @ <3§° (Delves' coordinates) a deep (~ 25 eV)

£S)

]

well appears, In fact the potential should be strongly repulsive, and

it just set to +30 eV.
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First we will compare the values obtained for pH with those of

<00
R

other workers. In Figure 6, P,

is plotted as a function of energy. The
X's are cross sections calculated by Schatz and Kuppermann, the circles
are from this work. For low energies (<.65 eV) the agreement is
excellent. Between the first and second resonances there is some dis-
crepancy. To resolve this, the work by Schatz and Kuppermann was
repeated using a finer grid, to calculate the basis functions, and more
basis functions (12 instead of 10). The results were invariant with
respect to the parameter changes. It was felt that the major difference
between the method of reference (1d) and the present work was that Schatz
and Kuppermann assumed the dissociative region to be infinitely high |
while we considered it to have finite value. To examine this difference
we allowed Schatz's method to include more of the dissociative region.
Again the results were iavariant. At present we are unable to resolve or
understand this difference in cross sections. For energies above the
second resonance,; the agreement between the two methods is fair.
Overall, one can see that the shapes of the two curves are very similar.
There is some interest in cross sections at very low translational
energies. Figure 7 gives a semilog plot of Pzg for the results of
reference (1d) and the present work. It can be seen that the agreement
between them is very good. Using these results we have calculated rate
constanis for the reactive 0 — 0 transition. The rate constants are given
by the formula
o0 “Ei/ kT

R
f P (Ei) e dE,
9 v -

i
ML

where
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b= BA BCT
k is Boltzmann's constant.

T is the temperature in degrees Kelvin,
Ei is the translational energy of the system with BC in

vibrational state v = i.

R

Pij (Ei) is the reactive probability from state i to state j.

The range of Ei used in calculating the integral was 0.003 eV to 1.0 eV.
Using energies outside of this range did not change the rate constants.
They are presented in Table I for a range of temperatures. In Figures
8-13 we present all of the transitions within the range of energies con-

sidered (0-1.5 eV translational energy). In the transitions P, PY

Pﬁ, PX, PE and PX we note the strong resonances which occur at the
opening of excited vibrational states of H,.

From the above comparisons, we conclude that this method of
calculating collinear transition probabilities is satisfactory and promises
to be useful for dissociative collisions., With the general validity of this
method established, we will be able to ascertain the importance of closed
dissociative eigenfunctions for bound to bound transition probabilities.

In addition, we can consider collinear systems which have only a few

(3 or 4) bound states, and quickly calculate dissociative cross sections.
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APPENDIX A

In this appendix we will discuss the validity of equation (22), i.e

20

Yilp, @) = g 8;; Y;(p, @)

M

;Zi 1;(0) YE(ﬁ,anggﬁ(mY p,a)+2gu (P Y (5, @)

(A-1)

The decoupling of the bound states is relatively straightforward.
We expect that because of the nature of the double well in V(p, @) (see
Fig. 1), there will be zero spatial overlap between different types of
eigenfunctions for sufficiently large p. For a nonsymmetric well, this
is the case, As p — «, the bound state eigenfunctions become localized
in one well or the other (see Fig, 3). For a symmetric potential, there
is no localization at finite p. The eigenfunctions are either symmetric
or antisymmetric (Fig. 4) and at small p (shallow wells) the eigen-

alues are not degenerate. As p — « (deep wells, wide barrier), the
eigenvalues become pairwise degenerate. We can then take linear

combinations of the basis functions which are localized. Indeed, since

we can define Y 9 and YIE by
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11 ‘ .

Yy = ) (Y5 + ¥y (A-2)
m1

Yﬂ - E (Yi ” Yi+1) 5 ; (A‘?’)

where ¢ =i+ 4. Note that Yg and Y? are still eignefunctions of H with

eigenvalues Ei‘ They are localized in the region of arrangement
channels A + BC and AB + C respectively. In this way symmetric and
antisymmetric eigenfunctions are localized (i.e., decoupled) in the
different arrangement channels.

To show that dissociative eigenfunctions decouple from bound

eigenfunctions, we must use a different approach. We want to show that
Vii’ (p,0) - ‘;%2' Viil (p) (A-4)

[see equation (15)] vanishes. We have shown this to be true for bound
eigenfunctions, Because there is no spatial overlap, each of the terms
vanishes separately. However, dissociative and bound eigenfunctions do
overlap spatially. For simplicity we will consider the matrix element
formed by the integral of a symmetric bound function, a symmetric
dissociative function and the potential. These will be denoted by Y(S>,

D)

Y< and V, respectively. Let us assume that g is always within a

neighborhood € of p. That is, p =p + €, where {€|< € max
If we expand Vﬁi {p,p) in a Taylor's expansion we get (neglecting

higher other terms)

Viif (p+¢e,p) = Vﬁi (p) + V'ii (p) - € . (A-5)
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-2

Likewise expanding % gives
Y

—[l-e/p+e/pi-... 1" =1-2¢/7 . (A~6)

‘cwl"clJ

Substituting (A-5) and (A-6) into (A-4) gives
Vﬁ_' (p) + Véi’ (p) - €- Vi (o) +2¢/p Vii' (p)

= Vii! (p) - €

as p — «. Therefore, to show that (A-4) vanishes, we need only show

that V., (o) becomes constant asymptotically.

Now o
V() = [ v®vEe) YD da .

¢

We will simplify the analysis by considering a symmetric well of the form

Vip,a) = = a<0,oz>ozmax

Vi{p,a) = V, o< a<a, amaxa’<0z<amax
and vV, <0

Vip,a) =0 elsewhere.

The integral now becomes
I

o ®*max @

4 y®y, yDag 4 [ -2v, [ v® yDlgy

0 ‘o ~a o

max



27

since V; is constant and the integrand is symmetric. As p becomes
very large, the range of the integral becomes smaller and smaller.
When o' becomes sufficiently small, Y©) will have no oscillations
within the range of the integral. The function will become a constant
within this range. Meanwhile, the function Y must have oscillations
of increasingly larger amplitude. This is because Y(S) is normalized
to unity. However, as long as we are using a finite number of dissocia-
tive functions, they will become constant before the bound functions
become delta functions and we can factor out Y(D )o The integral now

becomes

4

a
c” f Y(S> do
k4]

where C” is a constant. For the potential we have chosen,
©) _ 4 e e
YV = Asinfoa, 0<a<a', where

2y(E - Vo)}%

2
1

=1

Thus we have, as p — «,

@i

Vi (p) = C' [ sinfado
(]

i

CcosBa’.

This does not diverge or oscillate wildly as a’— 0. In fact it converges
to a constant C, which is what we wanted to show. Because the integral

goes to a constant, we know that
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pz

Vig 0.5) - & Viy ()

vanishes, that the dissociative part of the wavefunction decouples from
the bound part of the wavefunction and therefore that equation (22) is

justified.
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APPENDIX B

Very far from the origin the general numerical solution will be

¥ }E g3; (D) ] x2>+E ALAIC >+pZE g (o) ¢1 (@), (B-1)

where the g's have the form

gI = s,i\.nk}zx BI + €08 KIX;_ AI
gH = s/i\nkH M @H cos kHz’ AH (B-2)
N cos KL Am

and sin il X1, cos il x; etc. are diagonal matrices of the form

2 E f ™5

7

sinklx (B-3)
241

| " sin "@{%ﬁ

Because there are K = L, + M + N solutions, gE is a M X K matrix, gﬂ is

I

a NX K matrix and g is 2 I, X K matrix. We can define square K X K

matrices as follows

[sinklx] 0 \\

sinkp= . 0 Smkﬂ 1 \@
L0 0 sin g ol

A

(B-4)
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209
I
~
» m’;"ﬂi nos_
™

>>C‘leq
=
5 N
S
=
k“s‘—« B ’

Analogous matrices exist for coskp, g’ and B. We can now write
= N

g
2
s

g = sinkpB + coskpA (B-8)
and

g' = kcoskpB - ksinkp

.
oy

N

(B-6)

o~

where ;lg is the diagonal matrix

7 E S
#f k1 1 \\,
LK |
Ll |
kg 11 |
i Ky i
|

23
=
=

Solving for A and B gives

b))

A = coskpg - k  sinkpg' (B-T)
B = sinkpg + k "coskpg' . (B-8)
P -~ =3 PN e =~

But the physical wavefunction has the form
g = k ° {coskp + sinkp R) (B-9)
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If we take linear combinations of (B-5) to fit it to (B-9) we get

g = (sinkp B + coskpA) P

which implies that

=

1
=2

AP = x°, BP - K°R
1 L
and R = kKEBAT'kK 7.

The scattering matrix is given by

S - (L+1B) (L- B

P
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TABLE I

RATE CONSTANTS k,, (T) (cm/molecule-sec)

TEMPERATURE, K REFERENCE (1d) THIS WORK
100 4,88 (-4) 5.36 (-4)
200 9.42 (-1) 9. 86 (~1)
300 3.16 ( 1) 3.25 (1)
400 2.23 ( 2) 2,27 ( 2)
500 7.73 ( 2) 7.83 ( 2)
600 1.83 ( 3) 1.85 ( 3)
700 3.47 ( 3) 3.50 ( 3)
800 5.66 ( 3) 5.70 { 3)

(
200 8.37 ( 3) 8.42 ( 3)
1060 ( 4) 1.16 ( 4

[N
P
&1
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Fi antio:
Figure Captions

Figure 1,

=2

3]

=t

gure 2,

b

Figure 3.

~=q 3

k)
1<

gure 4.

Figure b,

The lines are equipotentials of the collinear Porter Karplus
H, surface in (r,,1,) coordinates. The origin of measurement
is the dissociated configuration. The dashed lines represent
values of the potential for energies below the dissociation

energy, while the solid lines are for values above dissociation.

The lines are equipotentials of the collinear PK H, surface in
(%), %,) coordinates. Units and labeling are indentical to

Figure 1,

A cut of the collinear PK DH, potential V(p,®) is plotted at
p = 5.0 bohr, with an associated eigenfunction Y, (o,a). The
abscissa is measured in units of @ . = 50. 77°. The solid
horizontal line indicates the position of the corresponding

energy.

A cut of the collinear PK H, potential V(p,a) is plotted at
p = 5.0 bohr, with an associated eigenfunction ¥, (g,a). The
solid horizontal line indicates the position of the correspond-

ing energy,

Plot of the relative kinetic energy among the dissociated

atoms A, B and C, as a function of configuration space in the

Iimit p = <o, for the collinear PK H, system.
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Figure 6. Plot of the 0 — 0 reactive probability r(‘Pfi) calculated by two

Figure 7.

Figure 8.

Figure 9,

Figure 10.

Tl
i

1S o = &
Figure 12,

igure i1,

methods. The x's are from reference (la)., The circles are
from the present work. The abscissa is translational energy

in eV,

Compares the results from reference (1a) and the present
work at low energies, on a semilog scale. The abscissa is

translational energy in eV.

Plot of Pgi; from the present work. The units are the same
as in Figre 6. The arrows denote the opening of first and

second excited vibrational levels in H,.

Plot of PM and PE“ from the present work. The units are the

same as in Figure 6

R - ~. . .
Plot of E 5 P% and pﬁ from the present work, The units

are the same as in Figure 6,

]

Plot of P;é from the present work, The units are the same a
in Figure 6. The arrows denote the opening of the first and

second excited vibrational levels in H,.

R A e f’\?\h 3 o "‘“I
Plot of JP'@{ and P @ﬁj from the present work. The unils a

same as in Figure 6.

Plot of BY, BY and BY from the present work. The units are

g

the same as in Figure 6.
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We have assumed that the potential consists of three parts. The first
two depend on the internuclear distances of molecules AB and CD
respectively; the third depends on the nearest end atom separation.

i we let

«
1
N

@)

H

N
Y

R= (mpyz, +mBzB+mCzC+szD)/M ,
where M =My +Mp + M+ My,

we can factor out the center of mass coordinate ¢. We now introduce

harmonic oscillator potentials., That is,
Vip = 2K, pn(x-x_)°
AB 2™AB eq
- 1 2
V{?D = ZKCD (.V - qu) 9

where KAB and KCB are the force constants and x__ and yeq are the

eq
equilibrium distances of AB and CD respectively. If we define
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™l
N

where

HAB = i, v g

Mo My
HCD = m g
y . ULAB
AB Mgy
v feis
Ch ~ m ~

(mA+ mB) (mc+ mD)

“ -

M

the Schridinger equation becomes

5
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2

L3 0 =2 1 3% | =2
['EﬁwCD(" —_a_.y..g +y°) - zﬁwAB (- ——-—8'}22 +X")
n° 9 - _ _ -
+ :2: 3rE + VI(I‘ '?’ABX*"VCDY) -Ejy(x,¥,r) = 0.

The interaction between B and C is chosen as

-|zg-2z~|/L
VI(IZB-ZC|):e B °C

2

where L is a characteristic length. We now define

E = ZE/ﬁwCD m = ——y
C

m / L, (BT
W= w w @ = =YV )

AB’“CD . Ycp R

Hep S ep
;.1 (Meptepyi ,_ YaB  PcpFep)®
2
Yop B YcD kapKap

The final form of the Schrodinger equation becomes

a2 2
(2549 + ot 25+ X)) -

1
ay2 m grz2

+ exp{-a(r -y - Bx)} - E]ly(x,y,r) =0,

Note that the bars on all variables have been dropped for simplicity.
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Let
2 2

2 :
Ho(®,9) = =555 + ¥ + 0l 5g +%) .

The eigenfunctions of H, (x,y) are given by

H, (x,y)<I>ij x,y) = Wij <;[>ij x,y) 1,j=0,1,2,... ,
where

oy (5,9) = $;0) ;)
and

Wij = Qi+ +w@j+1).

The complete wavefunction is given by

N-1 M-1
V', y,1) = EO }_‘0 £ @, (), ®

where n’ and m’ are the initial quantum numbers and N and M are the
number of eigenstates in the expansion for coordinates y and x respec-
tively. This is an exact wavefunction for all energies as N,M — ,
However, for numerical calculations, N and M are chosen to be finite,
say N=n, M =m. The transiton probabilities are considered to be

converged when N =n + 1 and M = m + 1 produce no significant change.
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3. Parameters
Following Riley and Kuppermann and Clarke and Thiele we have

chosen the following values for the parameters w, 8, m, a:

=1
=1

i

-5 (from m, = mBsz=mD=1)

w
B
m
a =0.2973

All other parameters (starting point of integration, etc.) were identical
to those of reference (4). m, =Mp=ma~=mp means that AB and CD
are identical homonuclear diatomics. 8 =1 and w = 1 imply that the

internal potentials are identical.

4, Method

We have used Riley's method and program (DRILL) to calculate
transition probabilities at various energies. Briefly, the method is an
integration of the Schriodinger equation with reorthogonalization of the
radial wavefunction. This reorthogonalization is necessary because
some columns of the radial function (which is a matrix) become linearly
dependent. If f(r) is the radial matrix wavefunction, then the function

and its derivative after reorthogonalization are given by

fnew(r) _ /f\old (r) i

o~ -~
o~ —~

f\new (r) - £01d (r) (}/\9’

-~
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The obvious choice for € is £ (r). This procedure is used at regular
intervals. In his expansion Riley used M = N = 3 for all energies
considered. In order to prove convergence we have used four-, five-

and six-state expansions.

5. Resulis and Discussion

The results for five and six state expansions are presented in
Tables I and II for a variety of energies. Included are the results of
Riley and Kuppermann (M = N = 3) and Clarke and Thiele. In their
paper Clarke and Thiele present a partial decoupling scheme which
reduces the problem to a pseudo atom-diatom collision. Although they
used approximate methods to calculate transition probabilities, they

showed rigorously that

Poow 11 - 2.
= :

GO == 02

where Pij ~ki is the probability of going from the ij state to the k2
state. On the basis of this result they were able to conclude that

certain of the transition probabilities calculated by Riley and Kuppermann
are incorrect. Table II lists this ratio for various M, N. First note
that the results in Tables I and II are nearly identical for N=M =5 and
N =M = 6. The largest discrepancy is 1 part in 2000. In addition

Table I shows that the ratio P, .. ,/P

Poo— gz Nas converged to 2 as

predicted by Clarke and Thiele. From this we conclude that our results

are correct. At the lowest energies (4.1, 4.5) the adiabatic results are
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accurate to about 1% or better. At those transitions for which 6.1 is
the lowest energy, the agreement is still excellent. For all but the
highest energy, the accuracy is better than 10%.

For V-V transition the results of Riley and Kuppermann are in
good agreement with ours for the lowest transition (01 -~ 10). As
expected the agreement is somewhat worse for higher transitions
except at E = 6.1, For T-V transitions, the agreement is good only for
the lowest energies (4.1, 4.5, 5.0, 5.5) of the lowest transition.

Although direct integration of the Schrédinger equation is not
an entirely satisfactory method of solving quantum problems, it does
Provide an opportunity to test approximate methods. 1In fact we have
seen that the adiabatic method of Thiele and Katz gives results in good
agreement (error less than 10%) for all but the highest collision
energies. In addition, one should note the importance of the theorem
of Clarke and Thiele, which predicts the ratio of two of the transition
probabilities. This theorem, which we have numerical ly verified,
gives one a measure of the reliability of the calculated results.
Without such a test, one might incorrectly conclude that the calculated

transition probabilities are accurate.
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Table III. Too—u

POO"’OZ

Riley and N N N
E Kuppermann M=N=4 M=N-= M=N-=
6.1 4,314 1.998 2.000 2. 000
7.0 11 .84 2.012 2.001 2.000
7.9 21. 96 2.185 2.000 2.000
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