# **Chapter 3**

# Combinatorial Doping of TiO<sub>2</sub> with Platinum (Pt), Chromium (Cr), Vanadium (V), and Nickel (Ni) to Achieve Enhanced Photocatalytic Activity with Visible Light Irradiation

The text of this chapter has been accepted for publication in *Journal of Materials Research* Choi, J.; Park, H.; Hoffmann, M.R. July 2009.

### Abstract

Titanium dioxide (TiO<sub>2</sub>) was doped with the combination of several metal ions including platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni). The doped TiO<sub>2</sub> materials were synthesized by standard sol-gel methods with the doping levels of 0.1 to 0.5 atom-%. The resulting materials were characterized by the X-ray diffraction (XRD), BET surface-area measurement, Scanning Electron Microscopy (SEM), and UV-Vis diffuse reflectance spectroscopy (DRS). The visible-light photocatalytic activity of the co-doped samples was quantified by measuring the rate of the oxidation of iodide, the rate of degradation of methylene blue (MB), and the rate of oxidation of phenol in aqueous solutions at  $\lambda > 400$  nm. 0.3 atom-% Pt-Cr-TiO<sub>2</sub> and 0.3 atom-% Cr-V-TiO<sub>2</sub> showed the highest visible-light photocatalytic activity with respect to MB degradation and iodide oxidation, respectively. However, none of the co-doped TiO<sub>2</sub> samples were found to have enhanced photocatalytic activity for phenol degradation when compared to their single-doped TiO<sub>2</sub> counterparts.

# Introduction

Titania (TiO<sub>2</sub>) is the most widely used photocatalyst for the purification of water, air, and other environmental application because of its high photocatalytic activity, excellent chemical stability, relatively low price, and its lack of any known toxicity. Redox reactions of environmental interest are initiated on the TiO<sub>2</sub> surface with trapped electrons and holes after band-gap excitation. However, because of its wide band gap energy of ~3.2 eV, TiO<sub>2</sub> is active only in the ultraviolet portion of the solar spectrum. As a consequence, significant efforts have been made to develop modified forms of TiO<sub>2</sub> that are active under visible-light ( $\lambda > 400$  nm) irradiation. Several different strategies have been employed to extend photoactivity into the visible region. They include (i) doping with anions (e.g., nitrogen,<sup>1-3</sup> sulfur,<sup>4</sup> iodine,<sup>5-7</sup> and fluorine<sup>8</sup>), (ii) doping with metal ions,<sup>9-18</sup> and (iii) functionalizing TiO<sub>2</sub> with photo-sensitizers that absorb visible-light.<sup>19,20</sup>

The most actively pursued strategy has been to increase the photoactive wavelength range and to enhance the photocatalytic activity under UV irradiation by metal ion-doping of  $TiO_2$ .<sup>21-23</sup> Numerous metal ions have been investigated as potential dopants while several metal ions such as iron,<sup>9-11</sup> vanadium,<sup>12-14</sup> chromium,<sup>15,16</sup> nickel,<sup>17</sup> and platinum<sup>18</sup> have been reported to show visible-light photocatalytic activity.

In addition, efforts have been made to improve the visible-light photocatalytic activity of TiO<sub>2</sub> by co-doping with two metal ions.<sup>24-28</sup> Ahmad et al. reported that Sc and Nb codoped TiO<sub>2</sub> nanoparticles are relatively more photoactive for 2-chlorophenol degradation under visible-light than the particles doped with Sc or Nb alone.<sup>25</sup> Kato and Kudo showed that TiO<sub>2</sub> co-doped with Sb<sup>5+</sup> and Cr<sup>3+</sup> ions showed higher activity than TiO<sub>2</sub> doped only with Cr<sup>3+</sup> ions alone for O<sub>2</sub> evolution because of the charge compensation achieved with Sb<sup>5+</sup> doping.<sup>26</sup> Furthermore, TiO<sub>2</sub> co-doped with Ni<sup>2+</sup> and Ta<sup>5+</sup> (or Ni<sup>2+</sup>and Nb<sup>5+</sup>) and TiO<sub>2</sub> co-doped with Rh<sup>3+</sup>and Sb<sup>5+</sup> were also shown to improve photocatalytic activity for O<sub>2</sub> evolution under visible-light irradiation.<sup>27,28</sup> However, there have been relatively few studies reported for double metal ion co-doping of TiO<sub>2</sub>, while TiO<sub>2</sub> co-doped with two nonmetallic elements (e.g., N and F co-doping,<sup>29,30</sup> N and S co-doping<sup>31,32</sup>) or with metal ions and nonmetallic elements<sup>33-39</sup> (e.g., Cr and N co-doping<sup>35</sup> Pt and N co-doping,<sup>36</sup> V and N co-doping,<sup>37</sup> and Bi and S co-doping<sup>38</sup>) have been widely investigated.

In order to examine the efficacy of double-doping with metal ions, we have prepared co-doped TiO<sub>2</sub> with Pt<sup>4+</sup> (or Pt<sup>2+</sup>), Cr<sup>3+</sup>, V<sup>3+</sup>, and Ni<sup>2+</sup> ions and characterized their physicochemical properties and photocatalytic activities for the bleaching and degradation of methylene blue (MB), the oxidation of iodide to tri-iodide, and the oxidative degradation of phenol in aqueous solution under visible-light irradiation ( $\lambda > 400$  nm).

# Experimental

#### **Sample Preparation**

 $TiO_2$  nanoparticles were prepared by standard sol-gel methods. 5.0 mL of titanium tetraisopropoxide (TTIP, Aldrich) was dissolved in 50 mL of absolute ethanol (Mallinckrodt) and then added dropwise to 50 mL of distilled water adjusted to pH 1.5 with nitric acid under vigorous stirring at room temperature. After 24 hours, the resulting transparent colloidal suspensions were evaporated using a rotary evaporator at 45 °C and dried in the oven (70 °C) overnight. The resulting powders were calcined at 400 °C for 1 hour under air. Single or double-doped TiO<sub>2</sub> samples (M-TiO<sub>2</sub> or MM-TiO<sub>2</sub>) were

prepared by adding one or two metal precursors to the distilled water prior to the hydrolysis of TTIP to give a doping level from 0.1 to 0.5 atomic % (at.%). Platinum (Pt<sup>4+</sup> and Pt<sup>2+</sup>), chromium (Cr<sup>3+</sup>), vanadium (V<sup>3+</sup>), and nickel (Ni<sup>2+</sup>) were selected as metal-ion dopants in this study. PtCl<sub>4</sub> (Aldrich), Pt(NH<sub>3</sub>)<sub>4</sub>(NO<sub>3</sub>)<sub>2</sub> (Alfar Aesar), Cr(NO<sub>3</sub>)  $_{3}$ ·9H<sub>2</sub>O (Aldrich), VCl<sub>3</sub> (Aldrich), and Ni(NO<sub>3</sub>)  $_{2}$ ·6H<sub>2</sub>O (Alfar Aesar) were used as precursor reagents. Six different TiO<sub>2</sub> samples were synthesized and co-doped with (i) Pt<sup>4+</sup> and Cr<sup>3+</sup> ions (Pt(IV)-Cr-TiO<sub>2</sub>), (ii) Pt<sup>2+</sup> and Cr<sup>3+</sup> ions (Pt(II)-Cr-TiO<sub>2</sub>), (iii) Cr<sup>3+</sup> and V<sup>3+</sup> ions (Cr-V-TiO<sub>2</sub>), (iv) Pt<sup>2+</sup> and V<sup>3+</sup> ions (Pt(II)-V-TiO<sub>2</sub>), (v) Pt<sup>2+</sup> and Ni<sup>2+</sup> ions (Pt(II)-Ni-TiO<sub>2</sub>), and (vi) Cr<sup>3+</sup> and Ni<sup>2+</sup> ions (Cr-Ni-TiO<sub>2</sub>). In addition, a control sample without doping was prepared along with singly-doped TiO<sub>2</sub> (i.e., Pt(IV)-TiO<sub>2</sub>, Pt(II)-TiO<sub>2</sub>, Cr-TiO<sub>2</sub>, V-TiO<sub>2</sub>, and Ni-TiO<sub>2</sub>) for comparison with co-doped TiO<sub>2</sub>.

#### Characterization

We used X-ray diffraction (XRD) to examine the crystal structures of synthesized TiO<sub>2</sub> particles by using a Philips diffractometer (X'pert Pro) with Cu-Kα radiation. Brunauer-Emmett-Teller (BET) surface area measurement was carried out by using N<sub>2</sub> as the adsorptive gas (Micromeritics Gemini series). Scanning electron microscopic images (SEM, LEO 1550VP model) were taken to investigate the morphology of TiO<sub>2</sub> particles and analysis of elemental composition was also performed with EDS (Energy Dispersive X-ray Spectroscopy). Diffuse reflectance UV-Vis absorption spectra (DRS) of powder samples were obtained using UV-Vis spectrometer (Shimadzu UV-2101PC) equipped with a diffuse reflectance accessory.

#### **Photocatalytic Activity Measurements**

Photocatalytic activities of the synthesized TiO<sub>2</sub> samples were quantified with respect to rates of photo-bleaching and degradation of Methylene Blue (MB), the rates of oxidation of iodide ( $\Gamma$ ), and the rates of oxidative degradation of phenol (PhOH). The individual photocatalyst powders were dispersed in distilled water to give a mass concentration of 1 g L<sup>-1</sup>. An aliquot of the target substrate stock solution was then added to the catalyst suspension to give the specific substrate concentration (e.g., [MB]<sub>0</sub> = 10  $\mu$ M, [ $\Gamma$ ]<sub>0</sub> = 50 mM, and [PhOH]<sub>0</sub> = 50  $\mu$ M). The reaction suspension pH was circumneutral. Before irradiation, the suspension was stirred in the dark for 30 min to obtain a state of sorption equilibrium of the specific substrate on TiO<sub>2</sub>.

A high-pressure Hg(Xe) Arc lamp (500 W) was used as the light source. The light beam emitted from the arc lamp was passed through an IR water filter and a UV cut-off filter ( $\lambda > 400$  nm) before being focused onto a cylindrical Pyrex reactor through a quartz window. The reactor was open to ambient air during most experiments. Time-sequenced sample aliquots were collected from the reactor during the illumination for analysis and filtered through a 0.45 µm PTFE syringe filter to remove the TiO<sub>2</sub> particles. Multiple photolysis (and photocatalysis) experiments were performed under identical reaction conditions to determine reproducibility.

The degradation rates and rate constants for MB loss during photocatalysis were determined by measuring the absorbance of MB at 665 nm with a spectrophotometer (Shimadzu UV-2101PC). For the photocatalytic oxidation of  $\Gamma$ , tri-iodide (I<sub>3</sub><sup>-</sup>), which is the principal product of  $\Gamma$  oxidation in the presence of excess iodide ion, was spectrophotometrically determined by measuring the absorbance at 352 nm. The

degradation of phenol in aqueous solution was measured using high performance liquid chromatography (HPLC, HP 1100 series with C18 column).

# **Results and Discussion**

#### Characterization of Single Metal Doped TiO<sub>2</sub> (M-TiO<sub>2</sub>)

Singly-doped TiO<sub>2</sub> (M-TiO<sub>2</sub>) samples were prepared by sol-gel synthesis where M = $Pt^{4+}$ ,  $Cr^{3+}$ ,  $V^{3+}$ , and  $Ni^{2+}$ . In order to compare the effect of oxidation state of Pt dopant,  $TiO_2$  doped with  $Pt^{2+}$  ions was also prepared. Figure 3.1 shows the XRD patterns of the singly-doped M-TiO<sub>2</sub> samples at the doping level of 0.3 at.%. The XRD patterns were consistent with the standard crystal structure of  $TiO_2$  (i.e., a mixture of anatase and rutile phases) with no diffraction peaks associated with any of doped metals elements in the M-TiO<sub>2</sub> samples. This indicates that the doping process did not induce the formation of separate impurity phases and that the specific dopant could be considered to be fully incorporated into TiO<sub>2</sub> lattice.  $Pt^{4+}$ ,  $Cr^{3+}$ , and  $V^{3+}$  ions may be substituted into Ti site of TiO<sub>2</sub> because the ionic radii of dopants (Pt<sup>4+</sup>: 0.765 Å, Cr<sup>3+</sup>: 0.755 Å, and V<sup>3+</sup>: 0.78 Å)<sup>40</sup> are similar to that of Ti<sup>4+</sup> (0.745 Å).<sup>40</sup> However, Ni<sup>2+</sup> and Pt<sup>2+</sup> ions are possibly located in the interstitial position of the lattice rather than Ti site because of relatively large size difference between dopant ions (Ni<sup>2+</sup>: 0.83 Å and Pt<sup>2+</sup>: 0.94 Å)<sup>40</sup> and Ti<sup>4+</sup> ions. Undoped TiO<sub>2</sub> samples prepared by sol-gel synthesis and calcined at 400 °C (TiO<sub>2</sub>-SG) showed only the pure anatase phase. However, the rutile phase was apparent in some M-TiO<sub>2</sub> samples prepared and treated at the same temperature. This result suggests that metal-ion doping lowered relative temperature of the anatase-to-rutile phase transformation (A-R phase transformation). 0.3 at.% Cr-TiO<sub>2</sub> and 0.3 at.% Pt-TiO<sub>2</sub> (both Pt(IV)-TiO<sub>2</sub> and

Pt(II)- $TiO_2$ ) exhibited a characteristic rutile peak whereas 0.3 at.% V- $TiO_2$  appeared to have a smaller fraction of the rutile phase. 0.3 at.% Ni- $TiO_2$ , by contrast, showed pure anatase phase, as in the case of undoped  $TiO_2$ . Therefore, we conclude that doping  $TiO_2$ with Cr, Pt, and V ions modifies the temperature dependence of the A-R phase transformation.

Figure 3.2 shows the UV/vis diffuse-reflectance spectra for the various M-TiO<sub>2</sub> samples. Undoped TiO<sub>2</sub> exhibited a sharp absorption edge at about 400 nm ( $E_{bg} \sim 3.1$ eV). However, the M-TiO<sub>2</sub> samples showed absorption spectra extended into the visible region over the range of 400 ~ 700 nm. Thus, visible-light activation and photocatalytic activity could be expected from these M-TiO<sub>2</sub> samples. As shown in Figure 3.2a, 0.3 at.% Ni-TiO<sub>2</sub> gave a relatively small absorption between 400 and 500 nm while 0.3 at.% V-TiO<sub>2</sub> exhibited a more substantial and broader absorption shoulder up to 700 nm. 0.3 at.% Cr-TiO<sub>2</sub> also showed extended absorption spectra over the 400~500 nm range with an additional absorption peak near 650 nm; this may be due to the d-d transitions of  $Cr^{3+}$ ions.<sup>26,41</sup> Figure 3.2b shows the difference between the absorption spectra of 0.3 at.% Pt(IV)-TiO<sub>2</sub> and 0.3 at.% Pt(II)-TiO<sub>2</sub>. Pt(II)-TiO<sub>2</sub> gave a broad absorption over most of the visible region similar to 0.3 at.% V-TiO<sub>2</sub>. In contrast, 0.3 at.% Pt(IV)-TiO<sub>2</sub> gave a smaller absorption peak between 400 and 550 nm; this indicates that the origins of the absorption spectra were different in the two different Pt-TiO<sub>2</sub> samples. The extended absorption of the M-TiO<sub>2</sub> into the visible region has been explained in terms of the excitation of electrons of dopant ion to TiO<sub>2</sub> conduction band (i.e., a metal to conduction band charge-transfer) according to their respective energy levels.<sup>12,13,42,43</sup> However, recent proposals suggest that the absorption spectra of modified TiO<sub>2</sub> in the visible region

most likely originate from defects associated with oxygen vacancies that give rise to colored centers.<sup>44,45</sup> Kuznetsov and Serpone pointed out the similarities of the spectra in the range of 400~600 nm shown among different types of visible-light-active TiO<sub>2</sub> samples.<sup>44</sup> It was also reported that similar absorption spectra in the visible region was found in reduced TiO<sub>2</sub> samples with observed absorption spectra being the sum of overlapping absorption bands with the maxima at 2.81 eV and 2.55 eV, which correlate with oxygen vacancies.<sup>46,47</sup> The metal-ion dopants used in this study have different valence states than Ti<sup>4+</sup>, and as a consequence, may induce the generation of oxygen vacancies during synthesis. In addition, some of the M-TiO<sub>2</sub> samples (e.g., Ni-TiO<sub>2</sub>, V-TiO<sub>2</sub>, Pt(II)-TiO<sub>2</sub>) exhibited similar absorption in the range of 400~600 nm, even though the absorption intensities were different. Therefore, both the generation of new energy levels due to the injection of impurities within the bandgap energies range and the generation of oxygen vacancies by metal doping may contribute to the observed visible light absorption of M-TiO<sub>2</sub> samples.

#### Characterization of metal co-doped TiO<sub>2</sub> (MM-TiO<sub>2</sub>)

The properties of 0.3 at.% MM-TiO<sub>2</sub> samples are summarized in Table 3.1. The doubly-doped MM-TiO<sub>2</sub> samples exhibited a variety of colors; TiO<sub>2</sub> samples doped with Cr or Ni are green; Pt doped samples are brown; and V doped samples are orange. The BET surface area of the sol-gel synthesized, undoped TiO<sub>2</sub>, which was calcined at 400 °C, was determined to be 104 cm<sup>2</sup>/g, whereas surface area of Degussa P25 TiO<sub>2</sub> was measured at 50 cm<sup>2</sup>/g, indicating that the TiO<sub>2</sub> particles synthesized by sol-gel methods have substantially higher surfaces areas and adsorption capacities per unit weight than

Degussa P25. The surface areas of 0.3 at.% M-TiO<sub>2</sub> samples were found to be slightly larger than the undoped TiO<sub>2</sub> (106 ~ 132 cm<sup>2</sup>/g). However, there were no significant increases in the surface areas of doubly-doped samples (~110 cm<sup>2</sup>/g).

XRD patterns of 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> and 0.3 at.% Cr-0.3 at.% Ni-TiO<sub>2</sub> are shown in Figure 3.3 with XRD patterns of each singly-doped TiO<sub>2</sub>. Crystal structures of all MM-TiO<sub>2</sub> samples are also listed in Table 3.1 along with the BET surface areas. Figure 3.3a shows that a rutile phase of Cr or Pt singly-doped TiO<sub>2</sub> was well maintained in doubly-doped Pt(IV)-Cr-TiO<sub>2</sub> samples. In Figure 3.3b, however, 0.3 at.% Cr-0.3 at.% Ni-TiO<sub>2</sub> sample appeared to lack evidence for a rutile phase that was clearly shown in singly-doped 0.3 at.% Cr-TiO<sub>2</sub>. Similarly, 0.3 at.% Pt(II)- 0.3 at.% Ni-TiO<sub>2</sub> appeared to be a pure anatase phase material in spite of 0.3 at.% Pt(II) doping. Therefore, we suggest that co-doping with Ni ions may inhibit the A-R phase transformation in Cr-TiO<sub>2</sub> or Pt-TiO<sub>2</sub>.

For comparison, the fraction of rutile,  $X_R$ , was calculated from the respective peak intensities using the following equation:<sup>48</sup>

$$X_{R}(\%) = \{1 - (1 + 1.26I_{R}/I_{A})^{-1}\} \times 100$$
(3.1)

where  $I_R$  and  $I_A$  are the X-ray intensities of the rutile (101) and anatase (110) peaks, respectively. These relative rutile fractions are listed in Table 3.1. These results show that the fraction of rutile (X<sub>R</sub>) in MM-TiO<sub>2</sub> was not higher than that for each of M-TiO<sub>2</sub> samples. For example, X<sub>R</sub> of 0.3 at.% Pt(IV)-Cr-TiO<sub>2</sub> was estimated to be 32% while X<sub>R</sub> of 0.3 at.% Pt(IV)-TiO<sub>2</sub> and 0.3 at.% Cr-TiO<sub>2</sub> were estimated as 26% and 34%, respectively. Furthermore, 0.3 at.% Pt(II)- 0.3 at.% V-TiO<sub>2</sub> and 0.3 at.% Cr-0.3 at.% V- TiO<sub>2</sub> had similar or lesser  $X_R$  values than those of 0.3 at.% Pt(II)-TiO<sub>2</sub>, 0.3 at.% V-TiO<sub>2</sub>, or 0.3 at.% Cr-TiO<sub>2</sub>.

Figure 3.4 shows SEM images of 0.3 at.% Pt-0.3 at.% Cr-TiO<sub>2</sub>. In Figure 3.4a, 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> particles were aggregated together and showed rough morphologies. 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub> (Figure 3.4b) and other MM-TiO<sub>2</sub> (images were not shown here) also showed SEM images similar to 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub>. Niishiro et al. reported that doping with Sb<sup>3+</sup> ions in TiO<sub>2</sub> suppressed sintering due to the difference in size between  $Sb^{3+}$  (0.90 Å) and  $Ti^{4+}$ , which resulted in the formation of finer and smoother crystalline particles.<sup>28</sup> However, in our case, the doping of 0.3 at.%  $Pt^{2+}$  (0.94 Å) did not significantly change either the size of particle or their morphologies (Figure 3.4b). This may be due to relatively low doping level (0.3 %)vs. 0.5~2 %) and a lower calcination temperature (400 °C vs. 1150 °C). In addition, the EDS spectrum of 0.3 at.% Pt(II)- 0.3 at.% Ni-TiO<sub>2</sub> (Figure 3.4c) shows that no apparent signals for Pt and Ni; only those of Ti and O were observed. This indicates that metal ions with larger ionic radii than Ti<sup>4+</sup> such as Pt<sup>2+</sup> or Ni<sup>2+</sup> ions are well incorporated into the TiO<sub>2</sub> lattice and not located in the surface region; these results are consistent with XRD results.

There were no significant differences between 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> and 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub> in terms of the XRD pattern, BET surface areas, morphology, or element analysis as determined by EDS. However, UV/vis DRS results clearly show the difference between two samples, as shown in Figure 3.5. 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> shows an enhanced absorption compared to 0.3 at.% Pt-TiO<sub>2</sub> or 0.3 at.% Cr-TiO<sub>2</sub>. The spectral response of 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> appears to

be an additional spectrum of the singly-doped 0.3 at.% Pt-TiO<sub>2</sub> combined with that of 0.3 at.% Cr-TiO<sub>2</sub> (Figure 3.5a). On the other hand, the absorption of 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub> was almost identical to 0.3 at.% Cr-TiO<sub>2</sub> (Figure 3.5b). Therefore, we could expect that absorption of visible light is more efficient in the 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> samples than the singly-doped 0.3 at.% Pt(IV)-TiO<sub>2</sub> samples.

Figure 3.6 shows UV/vis DRS results for other doubly-doped MM-TiO<sub>2</sub> materials. The absorption spectra of the 0.3 at.% Pt(II)- 0.3 at.% V-TiO<sub>2</sub> sample (Figure 3.6a) and the 0.3 at.% Pt(II)- 0.3 at.% Ni-TiO<sub>2</sub> sample (Figure 3.6b) were the same as those of the 0.3 at.% singly-doped V-TiO<sub>2</sub> and Ni-TiO<sub>2</sub> samples, respectively. In all the cases of Pt(II)-M-TiO<sub>2</sub>, the Pt(II) did not attribute to the absorption spectra of the co-doped TiO<sub>2</sub>. In contrast, Pt(IV) was the only effective co-dopant for enhanced visible-light absorption in the Cr-M-TiO<sub>2</sub> samples. For example, 0.3 at.% Cr-0.3 at.% Ni-TiO<sub>2</sub> (Figure 3.6c) and 0.3 at.% Cr-0.3 at.% V-TiO<sub>2</sub> (Figure 3.6d) did not show enhanced absorption compared to the sum of singly-doped TiO<sub>2</sub>, while 0.3 at.% Cr-0.3 at.% Pt(IV)-TiO<sub>2</sub> has a significantly enhanced absorption in the visible region (Figure 3.5a).

#### Visible-light Photocatalytic Activity

Figure 3.7 shows visible-light photocatalytic activities of various M-TiO<sub>2</sub> and MM-TiO<sub>2</sub> preparations for the degradation of methylene blue (MB) in aqueous solution. The degradation and bleaching reaction followed apparent first-order kinetics. Under visible-light irradiation at  $\lambda > 400$  nm, direct photolysis of MB was observed in the absence of TiO<sub>2</sub> particles since MB molecules can absorb visible-light and become photolyzed without the photocatalyst. The measured first-order rate constant,  $k_{\text{MB}}$ , was increased

slightly in the presence of undoped TiO<sub>2</sub>. This increase may be due to additional light absorption above 400 nm by the TiO<sub>2</sub> particles or by an enhanced electron transfer from MB to the conduction band of TiO<sub>2</sub>. All the singly-doped M-TiO<sub>2</sub> preparations showed visible-light photocatalytic activities for MB degradation while the 0.3 at.% Pt(II)-TiO<sub>2</sub> samples gave the highest values for  $k_{\rm MB}$ . Among doubly-doped MM-TiO<sub>2</sub> samples, only 0.3 at.% Pt-0.3 at.% Cr-TiO<sub>2</sub> (both Pt(IV) and Pt(II)) and Pt(II)-Ni-TiO<sub>2</sub> showed higher  $k_{\rm MB}$  values than those measured for the singly-doped TiO<sub>2</sub> samples. Therefore, co-doping with Pt appears to be effective for enhancing the visible-light degradation of MB degradation. On the other hand, the doubly-doped Pt-V-TiO<sub>2</sub> samples had lower photocatalytic activity, which may be due to the effect of V doping.

0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub>, which has enhanced visible-light absorption (Figure 3.5a), proved to be less photo-active than 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub>. On the other hand, 0.3 at.% Cr-0.3 at.% V-TiO<sub>2</sub> and 0.3 at.% Pt(II)- 0.3 at.% V-TiO<sub>2</sub> had significantly decreased  $k_{\rm MB}$  values compared to their singly-doped TiO<sub>2</sub> counterparts. In comparison to the 0.3 at.% Cr-0.3 at.% Ni-TiO<sub>2</sub> and 0.3 at.% Pt(II)- 0.3 at.% Ni-TiO<sub>2</sub> samples, V co-doping of Cr-TiO<sub>2</sub> and Pt-TiO<sub>2</sub> showed a net negative effect on photocatalytic activity. However, these samples still showed better photocatalytic activity than undoped TiO<sub>2</sub>.

The photocatalytic oxidation of iodide ions ( $\Gamma$ ) can also be used to compare the visible-light photocatalytic activities of various MM-TiO<sub>2</sub> preparations. Iodide in aqueous solution is readily oxidized to tri-iodide ( $I_3^-$ ) according to the following reaction:

 $I^- + h_{vb}^+ \longrightarrow I^- \xrightarrow{+I^-} I_2 \xrightarrow{+I^-} I_3^-$ 

Figure 3.8 shows the production of  $I_3^-$  ions from  $\Gamma$  oxidation under visible-light irradiation in the presence of doubly-doped MM-TiO<sub>2</sub> materials. As a control measurement, no  $I_3^-$  was produced in the absence of TiO<sub>2</sub> particles at  $\lambda > 400$  nm. Undoped TiO<sub>2</sub>, 0.3 at.% V-TiO<sub>2</sub>, and 0.3 at.% Pt(II)-TiO<sub>2</sub> showed little photo-catalytic activity with respect to the net photooxidation of  $\Gamma$  to  $I_3^-$ . However, 0.3 at.% V-0.3 at.% Cr-TiO<sub>2</sub> and 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub> had higher photoactivities. Therefore, Cr is clearly an effective co-dopant with respect to  $\Gamma^-$  photo-oxidation in the visible.  $I_3^$ production is very fast during the initial phases of the reaction, but it slows noticeably as irradiation continues. This is due to the back photo-reaction of  $I_3^-$  with conduction band electrons to reform  $\Gamma^-$  ions. The back reaction effectively competes with the forward reaction of iodide with valence-band holes or surface hydroxyl radicals as the concentration of  $I_3^-$  increases with time.

In Figure 3.9, the photo-catalytic activities of the singly-doped M-TiO<sub>2</sub> samples and the doubly-doped MM-TiO<sub>2</sub> samples are compared in terms of total amount of  $I_3^-$  ions produced during 15 min of irradiation. Similar to MB degradation, all the M-TiO<sub>2</sub> samples improved the  $\Gamma$ oxidation rates; 0.3 at.% Pt(IV)-TiO<sub>2</sub> and 0.3 at.% Cr-TiO<sub>2</sub> showed the highest activity. However, 0.3 at.% Pt(II)-TiO<sub>2</sub>, 0.3 at.% V-TiO<sub>2</sub>, and 0.3 at.% Ni-TiO<sub>2</sub>, which had comparable activities to 0.3 at.% Pt(IV)-TiO<sub>2</sub> or 0.3 at.% Cr-TiO<sub>2</sub> in terms of MB degradation, showed only slightly enhanced  $\Gamma$  oxidation rates. Most of MM-TiO<sub>2</sub> samples also showed some enhanced photocatalytic activity. 0.3 at.% Pt(II)-0.3 at.% V-TiO<sub>2</sub> had the least visible-light activity among the doubly-doped MM-TiO<sub>2</sub> samples. The doping level of each dopant in Pt(II)-Cr-TiO<sub>2</sub> was also optimized. Table 3.2 shows photocatalytic activities of Pt(II)-Cr-TiO<sub>2</sub> with different concentration of Pt and Cr over the range of 0.1~0.5 atom-%. The optimal concentration for increased photocatalytic activity was found to be 0.3 at.% Pt(II) and 0.3 at.% Cr, respectively. It was also observed that photocatalytic activity with respect to  $\Gamma$  oxidation strongly depended on Cr concentration.

The photocatalytic degradation of phenol under visible-light irradiation is shown in Figure 3.10. Phenol was degraded effectively with Pt-TiO<sub>2</sub> (both Pt(IV)-TiO<sub>2</sub> and Pt(II)-TiO<sub>2</sub>) and totally degraded within 2 hr with 0.3 at.% Pt(IV)-TiO<sub>2</sub>. However, 0.3 at.% Pt-0.3 at.% Cr-TiO<sub>2</sub> did not exhibit any enhancement in the photo-degradation of phenol (Figure 3.10a). Phenol degradation with 0.3 at.% Pt(IV)-TiO<sub>2</sub> was slightly decreased by Cr co-doping. Moreover, the resultant photocatalytic activity of 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub> proved to be much less than 0.3 at.% Pt(II)-TiO<sub>2</sub>. Similarly, there was no advantage shown by the doubly-doped Cr-V-TiO<sub>2</sub> samples (Figure 3.10b). The other doubly-doped MM-TiO<sub>2</sub> samples, which are not shown here, also had negative co-doping effects with respect to phenol degradation. These results clearly indicate that the codoping effects on  $TiO_2$  photo-catalytic activity are substrate-dependent. Several doublydoped MM-TiO<sub>2</sub> samples showed enhanced photocatalytic activities for MB degradation or I<sup>-</sup> oxidation. For example, 0.3 at.% Pt(II)- 0.3 at.% Cr-TiO<sub>2</sub> and 0.3 at.% Cr-0.3 at.% V-TiO<sub>2</sub> showed the highest visible-light photocatalytic activities for MB degradation and  $I^-$  oxidation, respectively. However, there was no apparent enhancement observed for doubly-doped TiO<sub>2</sub> materials for phenol photo-degradation.

It is worth mentioning that photocatalytic activities of MM-TiO<sub>2</sub> were observed substrate-dependent and were not correlated with any physicochemical property of MM-TiO<sub>2</sub>. Neither absorption spectra in the visible region nor the crystal structures (anatase and rutile) of MM-TiO<sub>2</sub> appeared to play an important role in the visible-light induced photocatalytic reactions. For example, Pt(IV)-Cr-TiO<sub>2</sub>, which was expected more efficient absorption of visible-light than Pt(II)-Cr-TiO<sub>2</sub>, showed less photocatalytic activities than Pt(II)-Cr-TiO<sub>2</sub> for both MB degradation and  $\Gamma$  oxidation. However, Pt(IV)- $Cr-TiO_2$  showed higher photocatalytic activity than Pt(II)- $Cr-TiO_2$  for phenol degradation. In addition, Pt(II)-V-TiO<sub>2</sub> that has larger visible-light absorption than Pt(II)-Ni-TiO<sub>2</sub> were less photo-active for MB degradation and  $\Gamma$  oxidation, as well. Similarly, structure (i.e., the fraction of rutile) in MM-TiO<sub>2</sub> did not affect to visible-light photocatalytic activities of MM-TiO<sub>2</sub>. Pt(IV)-Cr-TiO<sub>2</sub> with a high relative rutile content and Pt(II)-Ni- $TiO_2$  with no rutile at all showed comparable photocatalytic activities for MB degradation. For I<sup>-</sup> oxidation, Pt(II)-Ni-TiO<sub>2</sub> and Cr-Ni-TiO<sub>2</sub> also showed comparable photocatalytic activities to Pt(II)-Cr-TiO<sub>2</sub>.

# Conclusions

Two metal ions co-doped TiO<sub>2</sub> was prepared by adding Pt (Pt<sup>4+</sup> and Pt<sup>2+</sup>), Cr<sup>3+</sup>, V<sup>3+</sup>, and Ni<sup>2+</sup> ions during sol-gel synthesis. The metal-ion dopants used in this study were effectively incorporated into TiO<sub>2</sub> lattice either in Ti(IV) sites or in interstitial sites. Single and double-ion doping changed some of the physicochemical properties such as the reactive surface area and photophysical response of pristine TiO<sub>2</sub>. 0.3 at.% Pt-0.3 at.% Cr-TiO<sub>2</sub> (both Pt<sup>4+</sup> and Pt<sup>2+</sup>), 0.3 at.% Cr-0.3 at.% V-TiO<sub>2</sub>, and 0.3 at.% Pt-0.3 at.%

V-TiO<sub>2</sub> samples lowered A-R phase transformation temperature, since the individual dopant used for co-doping also had enhancing effect on A-R phase transformation. However, 0.3 at.% Pt-0.3 at.% Ni-TiO<sub>2</sub> and 0.3 at.% Cr-0.3 at.% Ni-TiO<sub>2</sub> remained strictly in the anatase phase due to Ni co-doping although doping with Pt and Cr alone accelerated A-R phase transformation. All co-doped TiO2 materials gave extended UVvis absorption between 400 and 700 nm, but only 0.3 at.% Pt(IV)- 0.3 at.% Cr-TiO<sub>2</sub> enhanced visible-light absorption compared to singly-doped  $TiO_2$ . Visible-light photocatalytic activities were evaluated for the degradation of MB, phenol and the oxidation of  $\Gamma$  in aqueous solution. The photocatalytic activities of co-doped TiO<sub>2</sub> strongly depended on the nature of the electron-donating substrate and were not correlated with any physicochemical property of the co-doped TiO<sub>2</sub>. Pt-Cr-TiO<sub>2</sub> and Pt-Ni-TiO<sub>2</sub> enhanced the rate of MB degradation while Pt-Cr-TiO<sub>2</sub>, Cr-V-TiO<sub>2</sub>, Pt-Ni-TiO<sub>2</sub>, and Cr-Ni-TiO<sub>2</sub> showed enhanced activity for  $\Gamma$  oxidation. However, none of the codoped samples showed enhanced photocatalytic activity for phenol degradation compared to their singly-doped  $TiO_2$  counterparts. All co-doped  $TiO_2$  samples exhibited some enhancement in photo-catalytic activity for all three reactions compared to undoped nano-particulate TiO<sub>2</sub>.

# Acknowledgement

We are grateful to the Hydrogen Energy Research & Development Center and 21<sup>st</sup> Century Frontier Research and Development Program of the Ministry of Science and Technology of Korea for research support.



**Figure 3.1.** X-ray diffraction (XRD) pattern measured for  $0.3 \text{ at.}\% \text{ M-TiO}_2$  prepared at 400 °C. (A: anatase phase, R: rutile phase)



**Figure 3.2.** UV/vis diffuse reflectance spectra (DRS) for 0.3 at.% M-TiO<sub>2</sub> samples: A) undoped TiO<sub>2</sub>, Cr-TiO<sub>2</sub>, Ni-TiO<sub>2</sub>, and V-TiO<sub>2</sub>. B) Pt(IV)-TiO<sub>2</sub> and Pt(II)-TiO<sub>2</sub>





**Figure 3.3.** X-ray diffraction (XRD) pattern measured for 0.3 at.% Pt-Cr-TiO<sub>2</sub> and Cr-Ni-TiO<sub>2</sub>. (A: anatase phase, R: rutile phase)



**Figure 3.4.** SEM images of (a) 0.3 at.% Pt(IV)-Cr-TiO<sub>2</sub>, (b) 0.3 at.% Pt(II)-Cr-TiO<sub>2</sub> and EDS spectra of Pt(II)-Ni-TiO<sub>2</sub> (c) that clearly shows dopants signals (i.e., Pt and Ni) other than Ti and O signals were not observed.



**Figure 3.5.** UV/vis diffuse reflectance spectra (DRS) for 0.3 at.% Pt-Cr-TiO<sub>2</sub>: A) Pt(IV)-Cr-TiO<sub>2</sub>, B) Pt(II)-Cr-TiO<sub>2</sub> samples



**Figure 3.6.** UV/vis diffuse reflectance spectra (DRS) for A) 0.3 at.% Pt(II)-V-TiO<sub>2</sub>, B) 0.3 at.% Pt(II)-Ni-TiO<sub>2</sub>, C) 0.3 at.% Cr-Ni-TiO<sub>2</sub>, D) 0.3 at.% Cr-V-TiO<sub>2</sub>



**Figure 3.7.** The comparison of degradation rate constant ( $k_{\text{MB}}$ ) of MB for various singledoped or co-doped TiO<sub>2</sub> samples (0.3 at.% doping)



**Figure 3.8.** The production of tri-iodide by iodide oxidation ( $[\Gamma]_0 = 50 \text{ mM}$ , total volume = 30 mL) with selected MM-TiO<sub>2</sub> (0.3 at.% doping level, 1 g/L) under visible-light irradiation (500 W, > 400 nm)



Figure 3.9. The comparison of various single-doped or co-doped TiO<sub>2</sub> samples (0.3 at.% doping) for  $I^-$  oxidation



**Figure 3.10.** The degradation of phenol ([phenol]<sub>0</sub> = 50  $\mu$ M, 1 g/L of 0.3 at.% singledoped or co-doped-TiO<sub>2</sub>, > 400 nm): A) Pt-Cr-TiO<sub>2</sub>, (B) Cr-V-TiO<sub>2</sub>

| Sample                     | Color       | Surface Area  | Crystal structure   |
|----------------------------|-------------|---------------|---------------------|
|                            |             | $(m^2g^{-1})$ | $(X_R\%)$           |
| TiO <sub>2</sub> (SG)      | White       | 104           | Anatase (0)         |
| Pt(II)-TiO <sub>2</sub>    | Light brown | 111           | Anatase/Rutile (22) |
| Pt(IV)-TiO <sub>2</sub>    | Light brown | 106           | Anatase/Rutile (26) |
| Cr-TiO <sub>2</sub>        | Green       | 115           | Anatase/Rutile (34) |
| V-TiO <sub>2</sub>         | Orange      | 132           | Anatase/Rutile (13) |
| Ni-TiO <sub>2</sub>        | Green       | 112           | Anatase (0)         |
| Pt(II)-Cr-TiO <sub>2</sub> | Dark green  | 112           | Anatase/Rutile (30) |
| Pt(IV)-Cr-TiO <sub>2</sub> | Dark green  | 108           | Anatase/Rutile (32) |
| Cr-V-TiO <sub>2</sub>      | Brown       | 115           | Anatase/Rutile (28) |
| Pt(II)-V-TiO <sub>2</sub>  | Brown       | 118           | Anatase/Rutile (24) |
| Pt(II)-Ni-TiO <sub>2</sub> | Light green | 110           | Anatase (0)         |
| Cr-Ni-TiO <sub>2</sub>     | Green       | 115           | Anatase (0)         |

TABLE 3.1. Characterization of MM-TiO<sub>2</sub> photocatalysts at 0.3 at.% doping level

| Sample            | $[I_3]_{prod.}$ (µM) after 15 min |  |
|-------------------|-----------------------------------|--|
| 0.3 % Pt(II) with |                                   |  |
| 0 % Cr            | 16                                |  |
| 0.1 % Cr          | 19                                |  |
| 0.2 % Cr          | 21                                |  |
| 0.3 % Cr          | 36                                |  |
| 0.5 % Cr          | 32                                |  |
| 0.3 % Cr with     |                                   |  |
| 0 % Pt            | 29                                |  |
| 0.1 % Pt          | 31                                |  |
| 0.2 % Pt          | 28                                |  |
| 0.3 % Pt          | 36                                |  |
| 0.5 % Pt          | 32                                |  |

**TABLE 3.2.** Photocatalytic activities of Pt(II)-Cr-TiO<sub>2</sub> with different doping level for I<sup>-</sup> oxidation under visible-light irradiation (> 400 nm)

# References

- (1) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. *Science* **2001**, *293*, 269.
- Mrowetz, M.; Balcerski, W.; Colussi, A. J.; Hoffman, M. R. J. Phys. Chem. B
  2004, 108, 17269.
- (3) Sauthier, G.; Gyorgy, E.; Figueras, A. J. Mater. Res. 2008, 23, 2340.
- (4) Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K. *Chem. Lett.* **2003**, *32*, 330.
- (5) Su, W. Y.; Zhang, Y. F.; Li, Z. H.; Wu, L.; Wang, X. X.; Li, J. Q.; Fu, X. Z. *Langmuir* **2008**, *24*, 3422.
- (6) Liu, G.; Chen, Z. G.; Dong, C. L.; Zhao, Y. N.; Li, F.; Lu, G. Q.; Cheng, H. M. J. *Phys. Chem. B* 2006, *110*, 20823.
- Hong, X. T.; Wang, Z. P.; Cai, W. M.; Lu, F.; Zhang, J.; Yang, Y. Z.; Ma, N.;
  Liu, Y. J. *Chem. Mater.* 2005, *17*, 1548.
- (8) Zhou, J. K.; Lv, L.; Yu, J. Q.; Li, H. L.; Guo, P. Z.; Sun, H.; Zhao, X. S. J. Phys.
   *Chem. C* 2008, *112*, 5316.
- (9) Zhang, X. W.; Lei, L. C. Mater. Lett. 2008, 62, 895.
- (10) Zhang, X. W.; Zhou, M. H.; Lei, L. C. Catal. Commun. 2006, 7, 427.
- (11) Teoh, W. Y.; Amal, R.; Madler, L.; Pratsinis, S. E. Catal. Today 2007, 120, 203.
- (12) Iketani, K.; Sun, R. D.; Toki, M.; Hirota, K.; Yamaguchi, O. *Mater. Sci. Eng.*, B2004, 108, 187.
- (13) Klosek, S.; Raftery, D. J. Phys. Chem. B 2001, 105, 2815.
- (14) Wu, J. C. S.; Chen, C. H. J. Photochem. Photobiol., A 2004, 163, 509.
- (15) Borgarello, E.; Kiwi, J.; Gratzel, M.; Pelizzetti, E.; Visca, M. J. Am. Chem. Soc.
  1982, 104, 2996.

(16) Anpo, M.; Ichihashi, Y.; Takeuchi, M.; Yamashita, H. Sci. Technol. Catal. 1999, 121, 305.

- (17) Kim, D. H.; Lee, K. S.; Kim, Y. S.; Chung, Y. C.; Kim, S. J. J. Am. Ceram. Soc.
  2006, 89, 515.
- (18) Kim, S.; Hwang, S. J.; Choi, W. Y. J. Phys. Chem. B 2005, 109, 24260.
- (19) Park, H.; Choi, W.; Hoffmann, M. R. J. Mater. Chem. 2008, 18, 2379.
- (20) Bae, E.; Choi, W. Environ. Sci. Technol 2003, 37, 147.
- (21) Choi, W. Y.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669.
- (22) Chen, J. H.; Yao, M. S.; Wang, X. L. J. Nano. Res. 2008, 10, 163.
- (23) Di Paola, A.; Garcia-Lopez, E.; Ikeda, S.; Marci, G.; Ohtani, B.; Palmisano, L.*Catal. Today* 2002, 75, 87.
- (24) Srinivasan, S. S.; Wade, J.; Stefanakos, E. K.; Goswami, Y. J. Alloys Compd.
  2006, 424, 322.
- (25) Ahmad, A.; Shah, J. A.; Buzby, S.; Shah, S. I. Eur. J. Inorg. Chem. 2008, 948.
- (26) Kato, H.; Kudo, A. J. Phys. Chem. B 2002, 106, 5029.
- (27) Niishiro, R.; Kato, H.; Kudo, A. Phys. Chem. Chem. Phys. 2005, 7, 2241.
- (28) Niishiro, R.; Konta, R.; Kato, H.; Chun, W. J.; Asakura, K.; Kudo, A. J. Phys. Chem. C 2007, 111, 17420.
- (29) Huang, D. E.; Liao, S. J.; Quan, S. Q.; Liu, L.; He, Z. J.; Wan, J. B.; Zhou, W. B. *J. Mater. Res.* 2007, 22, 2389.
- (30) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005, 17, 2588.
- (31) Yu, J. G.; Zhou, M. H.; Cheng, B.; Zhao, X. J. J. Mol. Cat. A: Chem. 2006, 246, 176.

- (32) Liu, H. Y.; Gao, L. J. Am. Ceram. Soc. 2004, 87, 1582.
- (33) Sakatani, Y.; Ando, H.; Okusako, K.; Koike, H.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. *J. Mater. Res.* **2004**, *19*, 2100.
- (34) Sakatani, Y.; Nunoshige, J.; Ando, H.; Okusako, K.; Koike, H.; Takata, T.; Kondo, J. N.; Hara, M.; Domen, K. *Chem. Lett.* **2003**, *32*, 1156.
- (35) Pan, C. C.; Wu, J. C. S. Mater. Chem. Phys. 2006, 100, 102.
- (36) Kim, S.; Lee, S.-K. J. Photochem. Photobiol. A-Chem. 2009, 203, 145.
- (37) Zhao, Z. Y.; Liu, Q. J. Catal. Lett. 2008, 124, 111.
- (38) Wang, Y.; Meng, Y. L.; Ding, H. M.; Shan, Y. K.; Zhao, X.; Tang, X. Z. J. Phys. *Chem. C* 2008, 112, 6620.
- (39) He, Z. Q.; Xu, X.; Song, S.; Xie, L.; Tu, J. J.; Chen, J. M.; Yan, B. J. Phys. Chem.
  C 2008, 112, 16431.
- (40) Shannon, R. D. Acta Crystallogr., Sec. A 1976, 32, 751.
- (41) Serpone, N.; Lawless, D.; Disdier, J.; Herrmann, J. M. Langmuir 1994, 10, 643.
- (42) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. J. Phys. Chem. Solids 2002, 63, 1909.
- (43) Kudo, A.; Niishiro, R.; Iwase, A.; Kato, H. Chem. Phys. 2007, 339, 104.
- (44) Kuznetsov, V. N.; Serpone, N. J. Phys. Chem. B 2006, 110, 25203.
- (45) Serpone, N. J. Phys. Chem. B 2006, 110, 24287.
- (46) Lisachenko, A. A.; Kuznetsov, V. N.; Zakharov, M. N.; Mikhailov, R. V. *Kinet*.*Catal.* 2004, 45, 189.
- (47) Kuznetsov, V. N.; Krutitskaya, T. K. Kinet. Catal. 1996, 37, 446.
- (48) Spurr, R. A.; Myers, H. Anal. Chem. 1957, 29, 760.