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ABSTRACT 

     Semiconductor photocatalysis has been intensively studied in recent decades for a 

wide variety of application such as hydrogen production from water splitting and water 

and air treatment.  The majority of photocatalysts are, however, wide band-gap 

semiconductors which are active only under UV irradiation.  In order to effectively utilize 

visible solar radiation,  this thesis investigates various types of visible-light active 

photocatalysts including metal ion-doped TiO2, nanocomposites of potassium niobate 

(KNbO3) and CdS with Ni co-catalyst, and a mixed-phase CdS matrix interlinked with 

elemental Pt deposits.  

     Thirteen different metal ion-doped TiO2 nanoparticles are synthesized.  I compare the 

effects of individual dopants on the resulting physicochemical properties and 

corresponding photocatalytic activities with respect to the catalysis of several reactions 

under visible-light irradiation.  I found several metal ion-doped TiO2 nanoparticles such 

as Pt, Cr, and V had visible-light photocatalytic activities and the presence of rutile phase 

in these metal ion-doped TiO2 may affect their photoreactivities.  In addition, visible-light 

photocatalytic activities of TiO2 are enhanced by co-doping with two metal ions.   

     Hybrid nanocomposite photocatalysts based on CdS nanoparticles (e.g., Ni(0)/NiO/ 

KNbO3/CdS, Zeolite/CdS, and nanocomposites of Q-sized cubic phase CdS and bulk-

phase hexagonal CdS interlinked with elemental Pt deposits) are also studied.  Different 

types of CdS nanocomposite photocatalysts are synthesized, optimized, and characterized 

using various analytical techniques.  It is shown that these nanocomposites can enhance 

inherent photocatalytic activity of bulk-phase CdS for hydrogen production via effective 
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charge separation of photogenerated electrons and holes in CdS under visible-light 

irradiation.   

     Additionally, a sub-pilot size hybrid electrochemical system with Bi-doped TiO2 

anodes and SS cathodes for the degradation of organic pollutants and simultaneous 

hydrogen production has been developed to make the electrochemical system more 

economically viable.  This system degrades a variety of organic pollutants and real 

wastewater with simultaneous production of hydrogen at the current efficiencies of 50~70%.  

Furthermore, it is demonstrated that this electrochemical system can be driven by a 

photovoltaic (PV) cell.  
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