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Abstract

There are two basic approaches to robustness analysis. The first is
Monte Carlo analysis which randomly samples parameter space to gener-
ate a profile for the typical behavior of the system. The other approach is
fundamentally worst case, where the objective is to determine the worst
behavior in a set of models. The structured singular value, u, is a powerful
framework for worst case analysis. Where % is a measure of the distance
to singularity using the co-norm.

Under the appropriate projection, the uncertainty sets in the standard
u-framework that admit analysis are hypercubes. In this work, u and the
computation of the bounds is extended to spherical sets or equivalently
measuring the distance to singularity using the 2-norm. The upper bound
is constructed by converting the spherical set of operators into a quadratic
form relating the input and output vectors. Using a separating hyperplane
or the S-procedure, a linear matrix inequality (LMI) upper bound can be
constructed which is tighter than and consistent with the standard p upper
bound. This new upper bound has special structure that can be exploited
for efficient computation and the standard power algorithm is extended
to compute lower bounds for spherical y. The upper bound construction
is further generalized to more exotic regions like arbitrary ellipsoids, the
Cartesian product of ellipsoids, and the intersection of ellipsoids. These
generalizations are unified with the standard structures. These new tools
enable the analysis of more exotic descriptions of uncertain models.

For many real world problems, the worst case paradigm leads to overly
pessimistic answers and Monte Carlo methods are computationally expen-
sive to obtain reasonable probabilistic descriptions for rare events.

A few natural probabilistic robustness analysis questions are posed
within the p-framework. The proper formulation is as a mixed proba-
bilistic and worst case uncertainty structure. Using branch and bound
algorithms, an upper bound can be computed for probabilistic robust-
ness. Motivated by this approach, a purely probabilistic i problem is



posed and bounds are computed. Using the existing machinery, the branch
and bound computation cost grows exponentially in the average case for
questions of probabilistic robustness. This growth is due to gridding an
n-dimensional surface with hypercubes.

A motivation for the extensions of u to other uncertainty descriptions
which admit analysis is to enable more efficient gridding techniques than
just hypercubes. The desired fundamental region is a hypercube with a
linear constraint. The motivation for this choice is the rank one problem.
For rank one, the boundary of singularity is a hyperplane, but the conven-
tional branch and bound tools still result in exponential gridding growth.

The generalization of the p-framework is used to formulate an LMI
upper bound for p with the linear constraint on uncertainty space. This is
done by constructing the upper bound for the intersection of an eccentric
ellipsoid with the standard uncertainty set. A more promising approach
to this computation is the construction of an implicit y problem where
the linear constraints on the uncertainty can be generically rewritten as
an algebraic constraint on signals. This may lead to improvements on
average to the branch and bound algorithms for probabilistic robustness
analysis.
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Chapter 1

Introduction

Nearly all of the modelling of phenomenon in engineering systems is
based in the language of mathematics. There is a limitation in the preci-
sion with which this language is able to describe reality. Real phenomenon
are extremely complex and much of the microscopic phenomenon and dy-
namics must be ignored or lumped together to construct useful low order
tractable engineering models. For example, thermodynamics is an average
case description of microscopic phenomenon described more precisely by
statistical mechanics. Thermodynamics provides a description of system
level phenomenon while ignoring the fine scale details. These details are
generally not of engineering interest and have little or no impact on sys-
temn performance. As a result of the number particles involved and the
scale of the fine dynamics is that thermodynamics provides an accurate
and simple model of various aggregate phenomenon.

The problem is even worse for systems which do not admit useful first
principles models and the models are based upon black box identification
methodologies. The models are forced to be imprecise because they are
based on finite observation, noisy data, and are restricted to a particular
mathematical language like finite dimensional linear time invariant sys-
tems. The benefit of this approach is there is a strong connection with
reality and can provide low order models for engineering without a deep
understanding of the underlying dynamics. The success of this type of
modelling depends on the predictive power of the constructed models.
For systems that operate in a linear regime, it is much easier to explore
and predict the behavior of the system using black box methodologies.
This is a major limitation to this paradigm for modelling. If the system is
linear and the model is constructed in this manner, then it is less likely to
predict spurious phenomenon because of the connection with the physical
world.

These simplified models are the basis for system design and prediction.
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As systems become more complex, there is an increased reliance upon a
synthetic or virtual environment to reduce the cost and time associated
with prototypes and physical testing. Although these are necessary stages,
the advances in computation and algorithm development shifts the focus
of research and development (R&D) towards computer based experiments.
An example of this is the interplay between computational fluid dynamics
(CFD) and wind tunnel testing. The advances in CFD and computation have
outpaced the developments in wind tunnels. Which leads to more of the
design and testing stages occur in the synthetic environment rather than
physical wind tunnel models. Although the synthetic will not replace the
physical for R&D, it plays an increasingly important role.

One of the reasons that the synthetic prototype hasn't replaced the
physical prototype is that synthetic experiments can produce erroneous
results which are artifices of the mathematical model and not behavior of
the actual system. Additionally, physical prototypes are a powerful valida-
tion of synthetic predictions. The physical experiments are also useful tool
for improving synthetic experiments. Further, physical tests can explore
various environments which are not computationally tractable like actual
flight testing which may involve aeroelastic phenomenon during radical
maneuvers. For this problem there is no hope to make accurate synthetic
predictions.

In some disciplines, the synthetic environment has been tremendously
successful and essential to the engineering process. The quintessential ex-
ample is digital VLSI design. Using the Mead-Conway design rules, amaz-
ingly complex integrated circuits have been designed with relative ease.
Fundamental to the success of digital circuit design is the decoupling of
the dynamics of the underlying analog phenomenon for the subcircuits,
which extends the predictive power of the simple high level digital models
used in design. This synthetic approach hasn’t been nearly as successful
in analog VLSI where the analog phenomenon are to be exploited. Ana-
log VLSI is not nearly as complex as its’ digital counterparts, but there is
still great difficulty in getting the designed circuit to perform the desired
function. The main problem in predicting the system behavior is the un-
certainty in the transistor parameters. By adopting the digital protocol,
digital VLSI is relatively insensitive to such variations.

Within the discipline of control design, the fundamental principle is
feedback. Feedback is a very powerful and sensitive tool with which a
system can achieve performance levels that are otherwise impossible. For
complex systems, feedback almost generically drives the system unstable.
Great care must be taken when designing controllers to exploit the real
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dynamics of the system rather than artifices of the mathematics; other-
wise system performance may be degraded or even destabilized by the
application of feedback.

For most disciplines approximate models are good enough. When using
feedback there is a strong coupling of the dynamics of the system with the
dynamics of the controller. This strong coupling is both a blessing and a
curse because of the potential for significant modification to the system’s
characteristics. As a result of the strong coupling, the performance of
the controlled system may be sensitive to the gap between the model and
reality if the controller is designed poorly. Engineering judgement and
experience are critical in guiding the design of controllers.

It is not uncommon for a controller to work in simulation, but fail mis-
erably in practice. This is due to inaccuracies of the model, from sensor
and actuator limitation to unmodelled dynamics. If a plant has an unstable
pole and the controller is designed for an unstable pole-zero cancellation
as the method to stabilize the system, then the stability of the controlled
system is infinitely sensitive to the location of the unstable pole. An ar-
bitrarily small error in the location of the unstable pole will result in an
unstable system. This is a classic example of poor controller design. There
is too much faith in the model which is fundamentally imprecise. For a
complicated system, these issues aren’t so obvious and a rigorous mathe-
matical approach is required.

These sensitivity issues are at the heart of robust control theory. The
general philosophy is to design the controller for a set of plants rather
than a specific plant. If the controller works for every system within the
set, and the real system is in the set, then the controller will work. Even
if the actual system is not in the set, one is more inclined to believe the
robustly designed controller will “work” rather than one designed for a
single model.

A simpler problem is that of robustness analysis. Given a controller
and a set of models, does the controller stabilize and/or meet the perfor-
mance requirement for every model in the set. This is a simplification of
the robust design problem. If this question cannot be answered, then how
does one know if the controller designed meets the performance require-
ment? A further simplified but equivalent robustness analysis problem
is: Given a set of models, determine whether the entire set is stable and
meets the performance requirement. It turns out that the robustness anal-
ysis problem is hard in general but a great deal of progress has been made
in the computation of some mathematical formalizations of robustness
analysis questions.



In order to ask a robustness question there is a need for a precise
mathematical description for a set of models. This set should be rich
enough to include real systems. For the classical approaches to robustness
analysis, these sets have very simple descriptions. For example, the small
gain theorem [49] guarantees stability for the feedback interconnection of
two systems if both are stable and the loop gain is less than one. If the gain
of the nominal system is y and the uncertainty is written as a feedback
interconnection with the nominal system, then for all stable perturbations
with gain less than % the system is stable. This is a very crude description
for a set of models. This set is likely to be much larger than necessary to
cover the real system.

From an engineering perspective, the uncertainty in a system has a
remarkable amount of structure. Given a resistor in a circuit, there is
uncertainty in the nominal value of the resistor and the associated para-
sitics because of the imprecision of the manufacturing process. Further,
the properties of this resistor may vary as the environment changes like
sensitivity to temperature and aging of the component. If the uncertainty
of a system was just parametric variation, then the standard small gain
approach would provide a very conservative estimate to the robustness
properties of the system.

The structured singular value, u or equivalently ﬁ introduced by
Doyle [16] and Safonov [40], respectively, is a generalization and unifica-
tion of the spectral radius and maximum singular value for matrices. The
u-framework has proven to be a powerful setting for robustness analysis.
The p-framework is sufficiently general to include other robustness analy-
sis approaches as special cases. Further there is enough inherent structure
to the framework to admit computation for a variety of uncertainty types.
The p-framework is a powerful and useful generalization and unification
of the small gain theorem and state space representations. Further this
extension of state space representations provides a natural and powerful
language for the description of uncertain systems.

Although computing u is NP-hard [10], computationally tractable up-
per and lower bounds exist [47, 30, 34, 45, 48, 6]. NP-hardness of the
computation is a property of the problem and not the algorithm. It is a
fundamental question that is open in the field of computational complex-
ity to determine the computational consequences of a problem being NP-
complete. For a thorough treatment of the subject the reader is referred
to Garey and Johnson [19]. It is generally accepted that if a problem is NP-
complete, then it cannot be computed in polynomial time as a function of
the problem size. Usually the computation time grows exponentially. In
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practical terms, the exact computation of u is not tractable in the worst
case and practical computation will have to rely upon bounds which are
computationally tractable.

For some problems, the gap between the upper and lower bounds may
be large. Strategies for reducing the gap are based upon branch and bound
(B&B) techniques [32]. The B&B algorithm involves dividing a y problem
into two u problems and repeating this process until the gap between the
bounds is acceptable. Critical to success of these techniques is preventing
exponential growth in the number of active u problems, which is not pos-
sible in the worst case. Practical experience indicates that this refinement
of the bounds is reasonable for the average case.

The standard p-framework is a fundamentally worst case paradigm,
and the robustness analysis questions that can be answered are also worst
case formulations. The resulting answer either guarantees performance
for every model in the described set or says that at least one model in
the set doesn’t meet the performance requirement. Although this worst
case paradigm provide interesting theoretical and tractable computational
formulations for robustness analysis, ultimately the problems to be ad-
dressed are grounded in engineering reality where the worst case view of
the world is not necessarily a viable option and forces over engineering,
waste, and inefficient design.

Often, real world problems cannot be satisfactorily answered with guar-
antees; this will lead to overly conservative results. If it is unlikely that
the set of destabilizing parameter choices would occur in the age of the
universe, then it is good enough from an engineering perspective.

Many robustness analysis questions are probabilistic in nature. Trying
to determine the probability of failure of a system or the yield of a manu-
facturing process are fundamentally probabilistic. Two natural questions
arise. First, what is the probability that the system is stable? Second, what
is the distribution of performance. Monte Carlo methods can be used to
answer these types of questions.

Monte Carlo methods work well for determining the distribution of
average events, but do not provide useful information about the tails of
the distribution and bounding rare events without excessive computation.
The number of Monte Carlo trials necessary to describe rare events is in-
tractable, and even then there are only probabilistic guarantees in the form
of confidence levels. For rare events a large number of Monte Carlo simu-
lations are necessary to get reasonable statistical significance for the com-
puted probability for these rare events.

The p-paradigm is designed for the guaranteed analysis of extremely
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rare events, the u framework can be extended to “probabilistic u,” which
is not strictly worst case. The strength of this probabilistic formulation of
p is in bounding the tail of the distribution for rare/bad events.

In Chapter 2, probabilistic formulations of y are motivated from the
system context. These formulations are inherently a mixture of proba-
bilistic and worst case uncertainty descriptions. This is a manifestation
of guaranteeing performance and/or stability of a system for a particu-
lar choice of parameters. Answering nominal stability and performance
questions fall within the worst case u paradigm. From a computation and
representation perspective, probabilistic distributions are only permitted
for real parametric uncertainty. These formulations will be simplified to
a “purely probabilistic u” problem, for which a y function is defined and
upper and lower bounds on this probability distribution are computed.

In the process of applying branch and bound (B&B) algorithms to u, ad-
ditional local information can be extracted about the system. Specifically
regions of parameter space can be classified as stable or a bound on the
performance can be computed, and a system has a probability of being in
this region of parameter space. This results in a bound on the probability
that the system is stable or meets a certain performance level. By extend-
ing the B&B algorithm, one arrives at a guaranteed bound of a function on
parameter space as presented by Zhu [50]. The function presented in [50]
1s an approximation to probabilistic i as defined in this work.

An extension of the B&B algorithm leads to bound computation for
probabilistic ¢ . Probabilistic y seems to be computationally intractable
even for low dimensional random problems (> 4); the bounds are very
conservative for any reasonable computation time. Even though the B&B
and probabilistic y algorithms are trivial to parallelize, there are still fun-
damental improvements that can be made in the algorithms. The basic
problem is dealing with the exponential growth associated with gridding
the boundary of singularity.

In an effort to deal with the generic exponential growth of the B&B com-
putation, it is necessary to develop a richer class of worst case uncertainty
descriptions for which bounds analogous to the bounds for standard i can
be computed. Traditionally, the enriching of the uncertainty description
has meant adding to the possible uncertainty structures, like real param-
eters and repeated scalars.

The main contribution of this work is the development of mathematical
machinery to guarantee non-singularity for regions which are more exotic
than hypercubes. Structures like spheres, ellipses, hypercubes with a cor-
ner removed, and so on. These tools may be useful in addressing some
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of the computation barriers encountered in applying B&B to probabilistic
robustness analysis.

Chapter 3 addresses spherically described regions. Given a matrix and
a block structure for the uncertainty, % defines a distance to singularity
of (I — MA) in the space of allowable A. For the standard p problem this
distance is measured using the o-norm. It turns out that an analogous
upper bound can be derived if the distance is measured using the 2-norm.
This will be referred to as spherical u. The upper bound is constructed
by converting the spherical uncertainty constraint into a quadratic sig-
nal constraint and applying a separating hyperplane or S-procedure [27]
argument. This basic construction is the foundation for the ensuing gener-
alizations. The consistency of the standard and spherical ¢ upper bound
is proven. Additionally, a small gain interpretation to the bound is devel-
oped.

Chapter 4 presents a number of generalizations of spherical y for
which the upper bound also generalizes. These generalizations include
the standard p constructions like repeated scalars, real parameters, and
full blocks. It is further extended to ellipsoidal regions, Cartesian prod-
ucts of spheres, inverse spheres, and the intersection of regions. The end
result is a generalization of the y framework for which the standard py and
generalized u [29] are special cases.

Chapter 5 addresses some computational issues associated with the
upper and lower bound computations for spherical y. The structure of
the upper bound computation is very special. Making use of this struc-
ture using a generalization of the Perron-Frobenius theory, it is possible
to compute this upper bound efficiently without using the standard nu-
merical LMI solver.

Additionally, the necessary conditions for optimality associated with
the lower bound are derived. This is to show that much of the work that
has been done on the lower bound can be extended but it is not sufficiently
interesting to warrant further investigation. It is straightforward to extend
to the generalizations of Chapter 4, but is not done here.

Chapter 6 investigates the operator description of the inverse prob-
lem for which the spherical ¢ upper bound is exact. The motivation for
this investigation is to understand the gap between two possible methods
for constructing upper bounds for spherical constraints on full blocks.
These bounds are based upon two different but equivalent u construc-
tions. For the case where the original full block problem consists of only
scalar blocks, one upper bound reduces to the spherical g upper bound
and the other reduces to the standard py upper bound. This gap is ex-
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plained using the relaxation of the uncertainty set for which the upper
bound is exact.

Chapter 7 is areturn to the problem of exponential growth due to grid-
ding the boundary of singularity which was one of the motivations for the
generalizations of p in the earlier chapters. The goal is to develop new
tools for the analysis of regions which are not axially aligned hypercubes,
specifically, hypercubes with a linear cut. These regions are motivated
by the rank one probabilistic case. Three methods for computing upper
bounds are presented, the first is using the spherical ¢ and the extensions,
the second is based upon the implicit formulation of u, and the third uses
a change of variables to construct a conservative y problem.

Chapter 8 addresses the hierarchical modelling endeavor from a re-
ductionist approach. The motivation for hierarchical modelling is that the
model for a system depends on the question it will be used to answer or
equivalently, to what it is interconnected. Some of the issues addressed
are the distribution of the hierarchy, mathematical language for such mod-
elling, uncertainty representations, and choosing a model from such a hi-
erarchy. Some of the drawbacks, difficulties, and flaws associated with
this approach are addressed.

Chapter 9 presents an approach for implicit identification of a system
where it is not possible to actively drive any of the interconnection vari-
ables. The interconnection point can be driven passively by attaching a
known system. In order to construct a model general enough to predict
the model of the system for a known arbitrary system attached, it is nec-
essary to have information about half of the interconnection variables.

1.1 Notation

The notation is largely standard. If a and b are real numbers such that
a < b, then (a, b) is the open interval, [a, b] is the closed interval, and
{a, b} is a set of two elements containing a and b. The set of real numbers
is denoted by R, the set of complex numbers is denoted by C, and the set
of integers is denoted by Z.

The adjoint £* of a linear operator £ is the unique linear operator that
satisfies (x, L(y)) = (L*(x), y), for all x and 7. For the special case when
L(x) = Mx where M is a matrix, M* is the conjugate transpose of M. MT
is the transpose of a matrix. The n x n identity matrix will be denoted by
I,, and I is used when the dimension follows from the context. 1, is an
n X n matrix of 1's. diag[A;,- - -, A,] is a block diagonal matrix with A;
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being the it" block on the diagonal. vec(M) is the columns of a matrix M
stacked into a vector.

p(L) is the spectral radius of a finite dimensional linear operator £
and is defined to be the nonnegative number p(£) = max{|A| : L(x) =
Ax,x * 0}. The largest real eigenvalue and the largest magnitude real
eigenvalue for a matrix are denoted by A, (M) and p,(M), respectively.
The maximum and minimum singular values of a matrix M are denoted
by (M) and g (M) respectively.

Tr(M) is the trace of M. det(M) is the determinant of M. The Frobe-
nius norm of a matrix M is defined as [[M|F £ 3, |m;[%. A Hermi-
tian matrix M(= M* ¢ C**") is said to be positive (semi) definite if
x*Mx > 0(= 0) for all x(# 0) € C".

The Kronecker product of two matrices, A and B, is denoted by A ® B.
The Hadamard (or Schur) element by element product of two compatibly
dimensioned matrices A = [a;;] and B = [b;;] is denoted by A o B 2
[a;;bi;]. In this paper the Hadamard product is sometimes used to specify
matrix structure. For example, to specify that a matrix D is diagonal, the
notation I o D = D is used.

The Hilbert space of square summable vector-valued signals over Z is
denoted I3*, with associated inner product (u,v) = >,.__,u*[nljv[nl.
The norm of a signal v is defined as ||v] = (v, v). The outer product is
defined as A(u,v) = 3,__, u[n]v*[n] and is a matrix.

1.2 Mathematical Machinery

When dealing with the Hadamard product of matrices, the standard
matrix manipulation intuition often fails. Two useful properties of the
Hadamard product are presented in Lemmas 1.1 and 1.2.

Lemma 1.1 If A = diagla,,- - - ,an] and B = diag|b;, - - - ,by], then
AXB = X o (ab").

Lemma 1.2 (Schur Product Theorem [22]) If X; > (=)0 and X = X; o X>,
then X > (=)O0.

The following is a well known result that is useful for converting vari-
ous nonlinear (convex) optimization problems into linear problems.
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Lemma 1.3 (Schur Complement) [8] The matrix inequality,

Q S
[S* R]>O (1.1)

with Q = Q* and R = R* is equivalent to
Q-SR'S*>0, R>0. (1.2)

Solving a problem often entails converting a new problem to a collec-
tion of problems which are considered to be solved. The notion of solved
has changed in time from closed form solutions to include numerical solu-
tions. Within optimization and control, many problems can be reduced to
linear matrix inequalities (LMIs) [8]. The LMI framework is a powerful gen-
eral optimization tool. Rather than developing unwarranted specialized
solvers for problems, general solvers are adequate for proof of concept
and algorithm development. Further, if a problem can be reduced to an
LM]I, it is considered solved. An LMI is defined as

m
F(x) £ Fo+ Y x:Fi >0,

i=1

where x € R™ is the variable and F; € R®*" are given symmetric matrices.
The existence of a feasible solution can be interpreted as the nonempty
intersection of the set given by the affine function F(x) and the self-
dual cone of positive definite matrices. A generalized eigenvalue problem
(GEVP) takes the form

an{A :AB(x) — A(x) > 0,B(x) > 0,C(x) > 0} (1.3)

where A, B and C are symmetric matrices that depend affinely on x. This
is a quasi-convex optimization problem.

LMIs are convex optimization problems that can be solved efficiently
in polynomial time. The most effective computational approaches use
projective or interior-point methods [28] to compute the optimal solution.

1.3 Linear Fractional Transformation

Within every robust control paradigm there is a class or set of models
that are associated with the system being investigated. This set has to be
sufficiently rich to cover the behavior of the actual system. The associated
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Figure 1.1: Linear Fractional Transformation

mathematical description must be simple and admit computational anal-
ysis for the framework to be useful. In this treatment, the set of models
are described by a linear fractional transformation (LFT).

A LFT is shown in Figure 1.1. This block diagram representation is
equivalent to the equations

Yy = Mpx+Mpu
Z M21x +M22u
x = Ay.

In solving for the map from u to z, x and 7y are eliminated and the map
can be expressed in terms of M and A. The resulting map is given by

z = (M + Moy A(I — M1; A) Mo u. (1.4)

(1.4) is denoted z = (A » M)u as a shorthand notation. Similarly a lower
LFT is defined bYM * A= My + MpA( - Mng)_1M21.

The LFT A » M is said to be well-posed if and only if there is a unique
solution to the loop equations shown in Figure 1.1. Well-posedness re-
duces to the invertibility of (I — M;;A). If A x M is well-posed, then the
only solution to (I — M;;A)y = 0and (I - AM;))x =0isx =y = 0.
If the system is not well-posed, then there are infinitely many solutions
to the loop equations with || x| and |y | arbitrarily large. In some sense
the system is unstable. This is the motivation for the analysis of the loop
. shown in Figure 1.3. Investigations into this loop are the main emphasis
of this work.

Typically, A is an element of a set, and guaranteeing that the map is
well-posed for the entire set implies some notion of stability and/or ro-
bustness. If A is the delay operator z~!I, then the system shown in Fig-
ure 1.1 reduces to the standard discrete time state space representation.
Guaranteeing that the LFT is well-posed for the closed unit disk ¢ C is
equivalent to p(M;;) < 1 which is the standard stability result.
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LFT systems are a natural generalization of state space representations.
By allowing A to represent more general structures, the LFT system for-
mulation provides a convenient framework to add various types of uncer-
tainty operators, like arbitrary bounded operators, nonlinearities, linear
time varying systems, linear time invariant systems, time varying parame-
ters, and static parameters [34] [46] [14], for which essentially all the major
state space results can be generalized [5].

The standard additive and multiplicative uncertainty are special cases
of the LFT framework. The interconnection of LFT systems can be rewrit-
ten as a single LFT system which lends to the generality of the framework.
The nature of constructing a single uncertainty block for a LFT model and
the distributed nature of uncertainty leads to a block diagonal structure
for A (see [34] and [49] for examples). In addition to the structure, the
uncertainty is also described by a norm constraint which limits the size of
the perturbation.

Implicit LFT

An implicit LFT system is described by 0 = (A * M)w as shown in Fig-
ure 1.2, where w contains all the system variables. There is no distinction
between inputs and outputs. Implicit LFT systems are a generalization of
the behavioral framework proposed by Willems [44].

A

0 M, M w
M, M;;

Figure 1.2: Implicit LFT System

Any LFT system can be converted into an implicit LFT system by rewrit-
ing z=M;;x + Mu as

0=M21X+[M22 —I][gjl

The motivation for the behavioral approach is from first principles
modeling. For example F = Ma, neither F nor a is assumed to be an
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input or an output. Once either F or a is defined, both are defined. There
is no notion of signal flow. These interconnections can get awkward for
input-output models when the signal space of two systems are partitioned
into inputs and outputs incompatibly for interconnection. The choice is
to avoid the partitioning until necessary.

Interconnection of Implicit LFT Systems

Within the implicit LFT framework, the interconnection of systems is
simple. The implicit description of a system describes the equations a
system must satisfy,

— . . . ) — Ai Bi
0 = (A; x M;)w; where M; = [ C. D ] ;

So if two systems are connected, then they still satisfy the same equa-
tions, and the interconnection must be defined (T3 w; + Tow; = 0) which
defines the intersection of behaviors [44]. So the implicit LFT model of the
interconnected system is given by 0 = (A x M)w where:

A, O B O
0 A 0 B

M=|cG 0 D 0 (1.5)
0 G 0 D
0 0 T, T |
Ar 0
A= [ o A, } (1.6)

Implicit representations can be interconnected, manipulated and reduced
without committing to a particular input-output form, which is only rele-
vant to certain applications, and can be derived a posteriori if necessary
as shown by D’Andrea and Paganini [13].

Integral Quadratic Constraints

The implicit LFT framework also allows our model to include inte-
gral quadratic constraints (IQCs)[27]. IQCs are inequalities involving a
quadratic form in signal space:

21
(Mw,w) = w(w)*TTw(w)dw <0 (1.7)
0
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where IT is a self adjoint LTI operator. IQCs can be used to define sets
in which signals must exist, like defining sets of allowable noise. Given
[I(e/*) = M(e/?)* € Lo = 3k > 0 kI + II > 0. By doing a spectral
factorization [49] of kI + I1, we find a Q : Il = kI — Q*Q. Defining P =
k2] = I1 = P*P — Q*Q. Equation 1.7 becomes || Qw [,>|| Pw |,. This
can be written as an uncertain implicit equation of the form (P+A.Q)w =
0 where A is an arbitrary contractive operator [35].

1.4 p-Framework

The fundamental picture in the u-paradigm [34] is shown in Figure 1.3.
This is motivated by the question of well-posedness of LFT systems. For
the purposes of this treatment, M is a matrix and A is a matrix in a set
of allowable matrices. M can be generalized to a linear operator between
signal spaces. Similarly, A can be extended to include nonlinearities, arbi-
trary operators, linear time invariant operators, time varying parameters,
and static parameters. The set of allowable A is described by block di-
agonal structure, and a size constraint, (A) < 1. For the standard u
problem description, a block of A can be full, a repeated complex scalar,
or a repeated real scalar. These structures readily admit computation and
are commonly encountered as uncertainty descriptions for real systems.
The fundamental question in the y-paradigm is: Are there any nontrivial
solutions to the loop equations shown in Figure 1.3 or equivalently is the
LFT system well-posed? u(M) answers that question.

A

M e

Figure 1.3: Standard Interconnected System

Definition 1.4 The uncertainty structure is defined by

A {diag[érllkn, " 6rnRIka ’ 5C11kcls "y 6CHCIkCnC! Afl; *y Afn}:] :

A= Sri €R, 60 € C, and Ag; € CUixnsi) 08
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and
BAS{A: AcAT(A) <1}, (1.9)

With the appropriate projection the uncertainty set in (1.9) defines a hy-
percube of dimension ng + nc + ng.

Definition 1.5 [49] For M € CY", ua (M) is defined as

A 1
Ha(M) = min{g(A) : A € A,det(I - MA) = 0} (1.10)

unless no A € A makes I — MA singular, in which case pa(M) 20.

Alternatively (1.10) can be written as

Ha(M) = sup p, (MA) = sup A, (MA) (1.11)
AEBA AEBA

For special structures of A, the following commonly used properties of
matrices follow as special cases:

A =0l = pa(M) = p(M) (1.12)

A = 6,1 = pa(M) = p, (M)

A =Afr = us(M) =0(M), (1.13)

hence the name, structured singular value.
Given two uncertainty structures A; and A,, then a new structure can
be defined as

A
Aﬁ{[ ! A ]:AleAl,AgeAg}. (1.14)
2

Theorem 1.6 (Main Loop Theorem [49])

Ha,(M1) <1

M <le
He { SUPA,epa, Ha, (A1 * M) < 1

Imagine that A, is used to parameterize a set whose elements are uncertain
models, BA; x (A; x M). Every model in all of the sets is well-posed if and
only if ua,(M) < 1. Nominal stability is a y problem (1.12). As a result
of Theorem 1.6, u exactly answers the problem of robust stability which
addresses the guaranteed stability for a set of models.
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The problem of robust performance is to guarantee that a set of models
achieve a certain level of performance. Looking back at Figure 1.1, assum-
ing the system is well-posed and the I-induced gain from u to z is less
than one, this is equivalent to saying

(A *xM)<1VA e BA.
Using (1.13) this can be rewritten as

Sup pa, (A = M) < 1.
A€EBA

Combining this with the well-posedness assumption and using Theorem
1.6, this robust performance question can be converted to the following

standard u problem:

Robust Performance < pi (M) < 1

as[*, ]
Ar )

u exactly answers a number of robustness questions, but a tractable
method to compute y is not obvious from the definition (1.10). However,
it is easy to construct crude bounds,

p(M) < pua(M) <O (M). (1.15)

where

These bounds can be refined.

Computing pa (M) is NP-hard, but computationally tractable upper and
lower bounds exist [47, 30, 34, 45, 48, 6). The lower bound computation is
based upon the spectral radius definition of u (1.11). A necessary condi-
tion for optimality can be derived [34]; this necessary condition is a system
of algebraic equations. The standard power algorithm [29] is an iterative
approach to finding a solution to these algebraic equations. The problem
is nonconvex, and there are no convergence guarantees for this iteration.
Even if the iteration converges, it may converge to a local maximum.

An LMI upper bound can be constructed by refining (1.15). Assume
that A € BA and DA = AD VA € BA; it follows that

p(AM) 0 (AM)

O(D'DAM)
o(D'ADM)
T(ADMD™1)
o(DMD™).

A A A A

IA
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Finding the D that minimizes (DM D™!) is a GEVP and is constructed as

follows:
o(DMD™1) <y

& |[DMD 'x||5 < y?lIx]|3 Vx # 0
< D*M*D*DMD™ ! - y’I <0
o M*XM -y’X <0, X=D*D >0

The last expression is an LMl in X, and finding the infimum for y for which
the LMI is feasible is a GEVP (1.3). A tighter bound that exploits the special
structure of real parameters [48] can be constructed and the associated
LMI follows:

Ha(M) < Tis (M)

>

inf {y:M*DM + j(GM - M*G) - y°D < 0}
DeAGeG (1 16)

is a convex optimization problem where

D é {Dlag [Drl: o JDTTLR’DCI’ e ;Dcnc;dllnflu Tt 1danIan] > 0}
(1.17)

and

G2 (Diag[Gy1, - ,Gyny,0, - - ,0]: Gyi = G* }. (1.18)
rt

1.5 Skew u, [1

If i is less than one, then the system achieves the robust performance
specified. If u is greater than one, then there is a model in the set which
doesn’t achieve the performance specified. A more natural question is:
Given a set of models, what is the performance level achieved? This can be
answered by asking an iterative set of u problems where the performance
weight is being adjusted until u is exactly equal to one.

Alternatively, {i can be defined to answer the question more directly.
Implicit in the above procedure is that the set of models described by the
LFT does not change and only the performance block is scaled. This is the
motivation for the following definition.

Definition 1.7 For M € C™*" and using (1.14) to define A;, ta, (M) is de-
fined as

1
min{g(A;) : A € A3, A; € BA;,det(I - MA) = 0}

>

[lA3 (M)
(1.19)
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A
unless no A = [ ! A } € [ Ba, A ] makes I - MA singular, in which
2 2

case fia, (M) £ 0.
The associated upper bound is identical to the standard upper bound

1
(1.16) with y? replaced by [ VI J

1.6 Implicit u

The fundamental question is still the existence of nontrivial solutions,
but an additional constraint is added. The loop equations are shown in Fig-
ure 1.4. The loop equations are identical to Figure 1.3, but the constraint

A

M -
C

b

Figure 1.4: Standard Implicit System

that Cx = 0 is added to the possible outputs of A.
A simplified definition of the implicit ¢ and the upper bound presented
in [35] follow.

Definition 1.8 For the implicit system in Figure 1.4, the structured singular
value u(C, M) is defined as
1

min{'(T(A) : AeA,Ker[ I-aM ] #0} (1.20)

p(C,M) &
C

C

Let C, be the matrix whose columns form a basis for the kernel of C.
Then the following is an upper bound of u(C, M),

H(C,M) £ nf {y:CY(M*DM - y’D)C. <0}. (1.21)

unless Ker [ ] =0, VA € A, in which case u(C,M) 2.
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This bound can be generalized to the structures presented for standard u
like real parameters.
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Chapter 2

Probabilistic Robustness Analysis
(PRA)

Robustness analysis in the y-framework is a worst case paradigm, and
p answers a particular type of robustness analysis question. If u is less
than 1, then the set of models contained in the uncertainty description are
guaranteed to be stable and meet the performance requirement specified.
On the other hand, if yu is greater than 1, then there is a model in the set
which does not meet the performance specified.

For many problems the worst case paradigm is overly conservative.
What if the expectation that a system coming off an assembly does not
achieve the desired performance is a once in the age of the universe event?
From a practical real world perspective, the product and the manufac-
turing process should not be redesigned because the end result is good
enough. Additionally, some robustness analysis questions are fundamen-
tally probabilistic in nature. To assess the risk of a particular mission, or
approximate the yield of a fabrication process, the desired analysis ques-
tion is a question of probability or distribution.

Traditionally, these probabilistic robustness analysis questions have
been “answered” using Monte Carlo methods by sampling parameter space
to approximate the probability [38, 42]. To mix the probabilistic formu-
lation with the worst case uncertainty in a unified framework, it is conve-
nient to extend the u-framework to include probabilistic uncertainty de-
scriptions. The natural extension of the Monte Carlo methods presented
in [38] is to perform a Monte Carlo analysis over y problems as parame-
terized by the probabilistic parameters.

The drawback with Monte Carlo methods is that a large number of
Monte Carlo samples are required to get an accurate description of rare
events. Monte Carlo methods are good for approximating the left part of
the cartoon in Figure 2.1. The bounds for u are useful for describing the
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Figure 2.1: Monte Carlo vs. Worst Case Methods

right most non-zero point on the curve in Figure 2.1. In order to describe
the region in between, the y formulation will be extended to probabilistic
u, and ultimately leveraging this extension with Monte Carlo methods will
provide a better description of the curve for rare events. Actually, prob-
abilistic pu can be used to answer questions that are traditionally in the
realm of Monte Carlo methods but would not be computationally efficient
by comparison.

In this development, probabilistic formulations of u are motivated from
the system context. These formulations are inherently a mixture of prob-
abilistic and worst case uncertainty. This is a manifestation of guaran-
teeing performance and/or stability of a system for a particular choice of
parameters as well as incorporating unmodeled dynamics and time vary-
ing parameters for which there seems to be no convenient probabilistic
extension but are natural in the u-framework. The static parameters can
be characterized by a probability distribution and admit analysis.

In the process of applying branch and bound algorithms to u, addi-
tional information can be extracted about the system. Specifically regions
of parameter space can be classified as stable or a bound on the perfor-
mance can be computed, and a system has a probability of being in this
region of parameter space. This results in a bound on the probability that
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the system is stable and/or a bound on the distribution of achievable per-
formance.

These formulations will be simplified to a “purely probabilistic u” prob-
lem, for which a p-function is defined and upper and lower bounds on the
probability distribution of the p-function are computed using a modifi-
cation of the standard branch and bound algorithm developed by Newlin
[32]. The function presented by Zhu in [50] is an approximation to purely
probabilistic u as defined in this paper.

For the mixed probabilistic and worst case formulation, it is easy to
extend the branch and bound algorithm to construct an upper bound to the
distribution of p-function. Further, Monte Carlo methods can be leveraged
with this upper bound information to construct a more efficient Monte
Carlo approximation of the distribution. This is the same idea as the “soft”
lower bound presented in [50].

2.1 Branch and Bound (B&B)

The fundamental idea of B&B optimization methods is to divide and
conquer. Given a region over a finite parameter space, an objective func-
tion whose optimum is to be computed, and computationally tractable
bounds for this optimization problem: the optimization problem can be
solved. If the gap between the bounds is too large, then the problem can
be divided into two subproblems by splitting the parameter space. The
bounds for the two new problems can be used to construct better bounds
to the original optimization problem.

This process can be repeated for each subproblem until the gap be-
tween the bounds is acceptable. This methodology can result in exponen-
tial growth of the number of problems to be solved as a function of the
dimension of the parameter space. Therefore, pruning the set of subprob-
lems is an important step of the algorithm. In the process of creating
subproblems and computing bounds, some regions of parameter space
can be ruled out for the location of the optimum. If the upper bound on a
region is less than the lower bound on another, there is no reason to con-
tinue dividing such regions because it increases computation cost without
improving performance.

In the y context, branching improves the quality of the bounds, but the
computational complexity of the bounds on the subdivided region is the
same as the original problem. Although pruning is critical to the compu-
tational effectiveness, computing real/mixed p is NP-hard so in the worst
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case there is still exponential growth in the computation required. The
B&B approach has been applied to the computation of real/mixed u. The
reader is referred to [32], [1], and [48] for specific details.

2.2 PRA Background

In order to discuss a distribution for u, a py-function must be defined
on the space of A. This p-function combined with a probability distribu-
tion in A-space results in a probabilistic definition of y, hence the term
“probabilistic 4.” Some investigations in this direction were made in [50];
the approach taken by Zhu was using

u(M,A) £ A, (MA) (2.1)

as the definition of the y-function. Although not explicitly defined in this
manner, that was the spirit of the work. This function is motivated by
(1.11) and the fact this is the same function that is used in the B&B al-
gorithms presented in [32]. As a result, the existing B&B methodologies
can be extended to computing an upper bound to the tail of the distribu-
tion for the u function in (2.1). This extension is presented in [50]. Some
other worst-case work on probabilistic robustness analysis has been done
by Barmish in [3]. This work investigates the worst-case distribution of
uncertain paramters.

The idea here is to use local information which has been extracted while
applying the B&B methods to obtain guaranteed bound on the distribution
of u(M,A). If ua(M) < yo for a region A in A-space, then region A can
be ignored. No useful information about rare events will be obtained by
further dividing A or doing Monte Carlo analysis with sample points in
A. Further, the probability that u(M,A) > y, is less than 1 — p(A4). This
would be a hard upper bound to the tail of the function. If Monte Carlo
methods are applied to the regions for which u, (M) is not guaranteed to
be below yj, a better approximation to probabilistic u can be determined
for a specified number of Monte Carlo samples. This is the soft lower
bound presented in [50].

The B&B algorithm in [32] is good for computing y. From a system
context, the exact value of y is not important but rather is y < 1. In an
effort to address probabilistic robustness analysis from a system context,
it is necessary to modify the B&B algorithm and define a new u-function
which is useful for answering these probabilistic robustness questions.



25
2.3 Definition of Probabilistic u

This development will not use (2.1) as the definition for the u func-
tion. Some preliminaries are needed to motivate the definition used in
this presentation.

There are two natural problems in the domain of probabilistic y: Com-
puting the probability of stability and the distribution for guaranteed per-
formance for an uncertain system. The resulting formulation is a problem
of the u loop form shown in Figure 1.3. Where

A O
A= [ 0 A ]
and A; may have additional structure. There is a probability distribution
on A;, and A; is a worst case block. So for the above problems for which
probabilistic y is appropriate, A, = z~!I for probabilistic stability in dis-
z
0

y for probabilistic performance in the discrete time case.
For the stability problem, the probability to be evaluated is given by

crete time and A, = AO ] where Aj is full and norm bounded by
3

P(Ua,(By * M) < 1), (2.2)

which is the probability that the system is stable. For the performance
problem, the distribution to be evaluated is given by

I O
P (qu ([ 0 1 ] (A *M)) < 1) vy > yo, (2.3)
Y

which is a probabilistic skew-u problem. The idea in this formulation, is
that the cumulative distribution function for guaranteeing stability and
achieving a performance level y(> y,) is to be computed. This is the
motivation for the following definitions.

" Definition 2.1 The set

2

Smya = (A1 € A1t Ua, (A * M) < y}

The definition of probabilistic y is based upon Definition 2.1.

Definition 2.2 The Probabilistic u-function, u,(M,A, k) is defined as the
value of y for which the probability that A € Sy ya, = 1 — k.



26

From the system context, the distribution function means nothing. Ulti-
mately the concern is where u < 1, so for the generalization to probabilis-
tic y, the question is: what is the probability that g, < 1? The distribution
function only makes sense if it is the distribution of performance. From
a practical point of view, it only makes sense from the system context to
consider the skew version of Definitions 2.1 and 2.2 where only the per-
formance block scales with y. This is exactly analogous to answering the
question: Given an uncertain system, what is the guaranteed performance?
This question is addressed by skew .

Within this presentation, only the computation of the purely proba-
bilistic case will be explored, rather than the mixed probabilistic/worst
case formulation. For purely probabilistic u, A, = [ ]. It is easy to extend
some of the basic instruments for the computation of purely probabilistic
u to the mixed formulation; some ideas become easier to implement and
some do not extend at all. This will be described during the development.

In the purely probabilistic case, there is no notion of stability and
Ha,(A; = M) means nothing because there are no loop equations asso-
ciated with A,. The only issue is the existence of nontrivial solutions to
the loop equations for A; * M or equivalently the singularity of I — MA,.
For the purely probabilistic case, A, is divided two regions by the surface
of singularity of I — MA; around the origin. The style of branching useful
for computing bounds to the mixed case motivates the following definition
for purely probabilistic 4 for which (2.1) is an approximation.

Definition 2.3 The set Sy, for M € R*™*" is the largest connected region
containing the origin in A-space (= R") for which (I — MA) is invertible,

Sm.y 2{AeA: det(yl - MA) + 0, 3 path fromA — 0 :
det(yl — MA,) + 0 along the path.} (2.4)

The definition for purely probabilistic ¢ used in this development is given
in Definition 2.2 using S, instead of Su,y a,.

To simplify the accounting, only uniform distributions over [-1, 1]
will be considered for A. Additionally for the remainder of this chapter,
the term probabilistic ¢ will be used for purely probabilistic p.

It follows immediately that us (M) = u, (M, A,0). As a result, comput-
ing probablistic y is NP-hard because computing one of the points on the
curve is NP-hard. It is not clear how to approximate u,(M, A, k) by using
Monte Carlo analysis; this is because there is no nominal notion of sta-
bility for a randomly chosen point in A-space for the purely probabilistic
formulation.
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It is conceptually easy to extend the basic methods of probabilistic u
to the mixed case. To extend the probabilistic formulation to the mixed:

1. Assume the problem is purely probabilistic.

2. Compute Syy,,.

3. Do some accounting and find the worst case over some parame-
ters/full blocks.

4. Compute bounds on the probability of stability (2.2) or for a point
on the performance curve (2.3).

In practice, this will not be the algorithm used. The first problem is that
for actual problems, M is not necessarily real. As aresult, Sy, is the entire
space excluding a set of measure zero. Additionally, the method of com-
puting Sy, involves B&B algorithms; applying B&B algorithms to complex
and particularly full blocks results in tremendous growth in the dimen-
sion of the problem without significant performance improvements and is
also an accounting nightmare. A better way to perform the computation
for the mixed is to apply the B&B algorithm to Definition 2.1 directly and
branch only on the probabilistic and static parameters.

Additionally, computing Sy, exactly is NP-hard, and like other ¢ com-
putations it is necessary to compute upper bounds to y, or equivalently,
sets contained within Sy ,. If the problem formulation has only one com-
plex stability block and one full performance block in A,, as the regions
in A,-space become arbitrarily small. The resulting problem converges to
a p-problem with one full block, and one complex repeated scalar block
in A;-space. For this uncertainty structure, u is equal to the upper bound
[49]. It would not be necessary to reduce every region in A, to be arbitrar-
ily small, for some larger blocks the upper bound would be sufficient to
guarantee the performance required.

2.4 Another Look at u

¢ can be interpreted as the supremum of a function, A,(MA), on a
region in A. This is the motivation for using (2.1) as the y-function, but
this isn’t consistent with the mixed probabilistic framework. There is no
clear way to extend (2.1) to determine stability for a particular pointin A,;.
Ultimately singularity of I — MA is the primary issue. Using (1.10) leads to
the interpretation that uA% 77 1S the distance to singularity of I - MA. Where
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the distance is measured using || - |« in A-space. So HAZM) can be used to
construct a hypercube on which I - M A is guaranteed to be invertible. This
hypercube is defined by A € Box (0, ﬁ,—)) Where Box (A, v) is used to
denote the axially aligned hyper-rectangle centered at Ay and the vector
v, v; > 0, is the half length of the sides of the hyper-rectangle.

Using Figures 2.2 and 1.1, Ay can be wrapped into M to create a new u
problem with

M 2 Ag(I = MAy)~! and A. (2.5)

Computing fiz (M) is no more difficult than for the original problem, and
Box (Ao, ﬁ}ﬁ) defines a region in the A-space of the original problem for
which the original problem is guaranteed to be nonsingular. This follows

from Theorem 2.4.

1A
Ag —O

M

Figure 2.2: Construction of M

For example, let

8309 9677
M= [ 2.7697 -1.0533 ] (26)

Figure 2.3 shows the boxes in A on which I — MA is guaranteed to be
invertible. These boxes were constructed by chosing random points Ao in
BA and computing the u upper bound for M. This upper bounds defines
the associated nonsinuglar box. Notice that the regions in gray do not
intersect the regions in black. In fact, the surface on which I — MA drops
rank defines the boundary between these regions.
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Figure 2.3: Squares in A on which I — MA is invertible for the entire inte-
rior. The centers are chosen randomly and the size is determined by the
distance signularity.

2.5 Bounds on Probabilistic u

In order to compute bounds for u, (M, A, k), bounds must be computed
for Sm,y. Assuming (I — MAo)~! exists, define

M £ Ag(I - MAy)‘diag(v)~\.
Theorem 2.4 Assuming i(M) < 1 then
Ag € SM.] =4 BOX(A(),U) C SM,I

and
Ao € (A —Sum,1) @ Box(Ap,v) C (A—Sp)

Proof: By contradiction, assume Ay € Sy,; and Box(Ag,v) ¢ Spy. =
JA, € Box(Ap,v) such that det(I — MA;) = 0. = 3A, = (A —
Ao)diag(v) € Box(0,1) and (I — MA;) is singular. = p(M) > 1,
contradiction. The arguments for the other cases are similar. O
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The black regions in Figure 2.3 are guaranteed to be in Sm. 1, and the gray
regions are guaranteed to be in A — Syy,;.

Bounds at a Point

The results shown in Figure 2.3 could be used to compute bounds for

k such that
up(M’Al k) = lv

but computing the volume of a union of hypercubes is intractable. A Sys-
tematic method consistent with standard B&B algorithms is chosen in-
stead.

A sufficient test for whether Ay € (A —Syy;) is if the number of positive
real eigenvalues greater than 1 of MA is odd. This follows for the sim-
plified version of the y paradigm presented. A sufficient test for whether
Ao € Sy, isif A, (MAg) < 1. Otherwise, it can be tested/checked if any ad-
jacent regions have been classified. If there is such a region, then if there
exists a Box(A¢, €) in A-space that contains a subset of both adjacent re-
gions such that I - M A is invertible on the entire box, then the unclassified
region should be assigned to the same region as its neighbor. This will be
referred to as similarly classifiable neighbors. This follows from Theorem
2.4

The algorithm for probabilistic ¢ B&B to be presented is inherently re-
cursive. There exists three types of regions: undecided, unclassified, and
classified. The undecided are regions which might straddle the bound-
ary of singularity. The unclassified are regions which do not straddle the
boundary, but it is not known whether they belong to Sy ; or its comple-
ment. The classified are regions for which it is known to be in Sm, or its
complement. All the regions are hyperrectangles.

The algorithm:

1. Choose an undecided region to be active.

2. Divide the active region into 2 active regions, chopping on the longest
edge.

~

3. Test: (M) < 1 for both active regions. If false, then deactivate
region and assign to undecided.

4. Apply Sufficient Tests to active regions.

5. If the active region is not classifiable, check for an adjacent classified
region. If there are none then deactivate and assign to unclassified;
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otherwise the region is classifiable with the same classification as the
adjacent classified region.

6. If the active region is classifiable, look for adjacent regions among
the unclassified regions. If one is found, then activate these new clas-
sifiable regions and repeat step 6. If none are found, then deactivate
classifiable regions and assign to the set of classified regions with
classification information.

7. Is the desired classification accuracy achieved? No = Goto Step one,
Yes = Stop.

The checking of neighbors is an artifice of the purely probabilistic for-
mulation. The interpretation of this assignment in the system context is
determining whether the nominal system is stable and achieves the desired
performance. This follows from Definition 2.1. If the nominal system is
unstable and/or doesn’t meet the performance requirement, then it is not
possible to assign the entire region to being in the complement of S. As a
result only any upper bound can be computed for the mixed case.

Applying the above algorithm to M from (2.6) results in Figure 2.4.
Where the construction of the boxes is identical to Figure 2.3 except Ag are
chosen systematically and the regions of nonsingularity may be rectangles
rather than squares. The resulting bounds are

gray volume = .1873 < {k: u,(M, A, k) = 1} <.2192 = 1 — black volume.

The black boxes are classified to Sy 1, and the gray boxes are classified to
the complement. The regions in between are undecided, and there were
no unclassified regions.

One way to construct bounds for other points on the curve would be
to replace M by % and repeat the above algorithm. The resulting bounds
would apply to u, (M, A, k) = y. This is an inefficient method for comput-
ing bounds on u, (M, A, k), because there is information in the boundary
that has been computed that can be recycled. A more efficient method for
computing bounds on the curve follows.

Bounds for the Curve

Suppose that we wish to compute bounds of the curve relating k and
y in
Hp(M,A k) =y
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Figure 2.4: Computing Bounds of Sy ;

for y = yo, using Definition 2.2. This problem is equivalent to computing
bounds of the curve relating k and y in

Hp (M,A,k) =y (2.7)
Yo

for y > 1. To convert from one bound to the other only requires a scaling
by Yo.

Using the algorithm presented in Section 2.5, upper and lower bounds
can be computed for the value of k at y = 1 for (2.7). In the process of
doing this computation, Box (0, 1) has been carved into a region contained
within Sy, and a region contained in its complement as shown in black
and gray, respectively, in Figure 2.4 for example. To compute bounds for
the value of k and y > 1 for (2.7), it is necessary to compute bounds on
Sm.y- Using Definition 2.3, bounds for Sy, can be computed by drawing
Box (0, %) on Figure 2.4. Computing the gray volume contained in the box

and the black volume contained in the box and multiplying both by (?21) n,
where n is the dimension of A-space, determine guaranteed bounds for k
at y. This can be done for all y > 1, hence generating guaranteed bounds



33

for parts of the curve.
This method is applied to the following example:

Ao [ 4155 4838
~ | 13849 -.5266 |

which is just (2.6) scaled by a factor of 2. The resulting curve is shown
in Figure 2.5. The lower curve in Figure 2.5 is the lower bound of u,,

0.95F

09|

0.85|

08

>=0.75

T

0.651

06

0.551

05 L L
107 107 107 10 10
Pu(M,A)»>Y)

Figure 2.5: Upper, Lower, and Soft Bounds of u,

the upper curve is the upper bound, and the middle curve is the “soft”
lower bound and is computed by applying the sufficient conditions for
assignment from Section 2.5 to the centers of the unassigned regions. The
results of the sufficient conditions are used to assign these regions with no
guarantee on the resulting curve. This would be a Monte Carlo technique
leveraged with the guaranteed bounds as no Monte Carlo points are placed
in regions for which the answer has been guaranteed.

This trick for computing the curve will not extend to the mixed case
where a probabilistic description of the achieved performance is desired.
The problem is that the variation of y is in the worst case block, so we
are not branching over that parameter. Scaling by y would describe a
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conservative region for which the system is not singular. This can be used
as a starting point for carving parameter space because some regions can
be excluded.

2.6 Combining Monte Carlo and u

The Monte Carlo methodology can be leveraged with the information
from the B&B schemes for the mixed case. In the purely probabilistic, it
is much harder because there are only sufficient conditions for assigning
a point to being inside or outside of S and finding a path in Definition 2.3
for each Monte Carlo point is out of the question. On the other hand the
Definition 2.1 indicates that the assignment of a point is a 4 computation.

The method for combining these two methodologies is essentially the
same as “soft” lower bound presented by Zhu [50]. The B&B guaranteed
analysis identifies regions of A;-space that are benign and further analysis
is not necessary, so it would be a waste to carry out Monte Carlo analysis
on these regions. This elimination increases the statistical significance
of the resulting Monte Carlo simulations for assessing the likelihood of
rare events. If 99 percent of the A;-space is benign and all of the Monte
Carlo simulations come from the remaining regions, each simulation is
equivalent to 100 simulations had the simulations been chosen from all
of A

2.7 Computational Issues

The B&B techniques work well for computing u. In the worst case the
problem is still NP-hard, but in the average case the methodology works
well. In applying the B&B techniques for computing bounds to the prob-
abilistic formulation of u results in bad dimensional growth not only in
the worst case but also in the average case. The fundamental problem is
the need to grid the boundary of singularity. This problem is the moti-
vation for the analysis of more exotic regions in uncertainty space in the
following chapters.

For the 2-d problem presented here, this algorithm works reasonably
well. Applying to same methodology to slightly larger problems, (4-d)
leads to tremendous increases in computation. To the point where com-
putation on a Sun Ultra 1 is not practical. The gridding problem is shown
in Figure 2.6. So it is necessary to grid the region on one side of the curve
to an accuracy of € for the general PRA problem. Where € is the volume
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Figure 2.6: Gridding the Boundary

left uncovered by the gridding. The number of regions required grows like
(n-1)
(l) """ Where n is the dimension of the space to be gridded. As a result

trie computation time grows exponentially as a function of the dimension
of the problem.

Intuition and Figure 2.6 hide the problems that are generically encoun-
tered in high dimensions. In high dimensions, nearly all of the volume of
a hypercube is near the boundary. The volume of the unit hypercube is 1,
and the volume of a hybercube with side length y is y™. Fory < 1, y" - 0
as n — . If a hypercube is found that is on one side of a separating
surface then the volume of that hypercube is minuscule compared to the
total volume isolated by the surface.

In high dimensions, the B&B approach carves up the unit hypercube
into extremely small volumes. In fact, even small increases in the size of
the gridding elements would lead to large increases in their volumes which

would drastically reduce the number of required regions.
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Chapter 3
Spherical u

Fundamentally, % defines the distance to singularity for a matrix over a
space of perturbations. The natural choice for the distance measurement
is the co-norm. This is based on engineering motivation. The problem of
guaranteeing the nominal l,-gain for a system is less than 1 isa u problem

I
forM = A B and A = Oc where A, B, C, and D are the state
CcC D Af

space representation of the system. It follows that pa(M) < 1 <« the [>-
gain is less than 1. Further, if there are independent uncertain parameters
contained within an interval and bounded unmodeled dynamics and the
performance is to be guaranteed in the presence of this uncertainty, then
the problem is naturally extended to a p problem using the Main Loop
Theorem 1.6. This independence of uncertain, stability, and performance
blocks in A makes the oo-norm the natural choice for measuring distance
to singularity.

For the probablistic formulations of y, these hypercubic regions in A-
space lead to generic exponential growth in the computation. It is neces-
sary to describe more exotic regions to grid the boundary of singularity.
To be of use these exotic regions must admit computationally tractable
bounds. In particular, the goal is to describe standard regions with linear
cuts which is further investigated in Chapter 7.

More generally, it is also important to know how the u-framework can
be generalized and still admit tractable analysis. An extension of the y-
framework is generalized u as posed by Chen [11]. For this generalization,
Chen [12] presents a closed form solution for generalized u for when M
is rank one.

So as an initial foray into more exotic regions, what happens if the 2-
norm is used to measure the distance to singularity in A-space? This is a
special case of Chen’s generalized p. Can the upper bound be extended?
The lower bound will be addressed in Chapter 5. Note that the standard
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measurement in A-space, o (A) for block diagonal A is an cc-norm over
induced 2-norms.

3.1 Definition of Spherical u, u;

For simplicity in derivation and presentation it is assumed that the
uncertainty consists of only complex scalars. There are no full blocks,
repeated scalars, or real parameters, and the uncertainty set is described
by a Frobenius norm constraint rather than an induced norm constraint

like 7 (A) < 1.
Definition 3.1 The default uncertainty structure is
As: ={diag[61,-- - ,04]: 0, € C}. (3.1)

The level curves of ||Allr are defined by
n
D 16:1* =K, (3.2)
i=1

which describes hyperspheres in As space, hence the name spherical u
(Us)-

Definition 3.2 For M € C"*", Spherical u, u; is defined as

A 1
Hs(M) = min{||Allf: A € Ag,det(I — MA) = 0} (3.3)

unless no A € A makes I — MA singular, in which case u;(M) 2.

Alternatively, (3.3) can be written as

us(M) = sup p(MA) (3.4)
AE€Ag,lIAlIF<]

Much like the standard u problem, computing spherical py exactly seems
to be intractable. As a result, one is resigned to computationally tractable
upper and lower bounds as in the standard p case. Computing the exact
value of ys (M) is NP-hard in the case where A is restricted to be real. This
follows from the bounds relating p and y; in [24] and the approximability
results in [17]. The implication is that except for special cases, like rank
one analyzed in [9] where an explicit solution is given, obtaining the exact
value is computationally infeasible especially for medium to large sized
problems.
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Naturally there are simple bounds relating ¢ and u;; this is based on
the equivalence of || - || and || - ||o. The graphical intuition is show in
Figure 3.1. The relationship is presented in Theorem 3.3.

Theorem 3.3 u;(M) < u(M) < /nu,(M)

Proof: The statement follows immediately from

{A: A e IAlF <1} {A: A € A, T(A) < 1} (3.5)

{A:A € As,0(A) <1} € {A: A € Ay, |AllF < V1) (3.6)

and the associated spectral radius definitions for y, and y, (3.4) and
(1.11) respectively. O

-
N

Figure 3.1: Cube, Inscribed, and Superscribed Spheres

As a consequence of Theorem 3.3, any upper bound of u(M) is also an
upper bound of y,(M), additionally, any upper bound of y, can be scaled
to determine an upper bound of u. In general, these would be conservative
bounds which scale badly with dimension.

3.2 An Upper Bound to Spherical u

As is the case for u, an upper bound to y; is a lower bound on the
distance to singularity, because i defines the distance. As a result, the T,
specifies a region in uncertainty space for which det(I — MA) # 0 on the
interior of the region as shown in Figure 3.2.
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Figure 3.2: Guaranteed Region of Non-Singularity

The traditional derivation of the u upper bound is based upon small
gain arguments. If the gain of MA is guaranteed to be less than 1, it fol-
lows that the associated loop equations cannot have a non-zero solution.
A set of scalings, which do not change the existence of non-zero solutions
to the loop equations, are used to find an equivalent system with a smaller
loop gain. These scalings are analogous to the similarity transformation
for state-space representations. Finding the optimal scaling and the asso-
ciated loop gain is a convex optimization problem.

Using this methodology, it is not clear how to proceed in deriving an
analogous upper bound. The formulation here is based on converting the
spherical constraint on the operator A into a signal constraint on x from
the standard u loop in Figure 1.3, and a separating hyperplane argument.

A (M), which is not necessarily an upper bound of y(M), can be
computed by solving an LMI similar to the standard g upper bound (1.16).
The derivation of the LMI follows, but first a critical tool is presented.

The following Lemma is used in a separating hyperplane argument to
construct a sufficient LMI condition for there being no nontrivial solutions
to a quadratic form or equivalently no nontrivial solutions to the loop
equations.

Lemma 3.4 IfA >0 andB > (=)0 then Tr(AB) > (=)0.
Proof:
Tr(AB) = Tr(ABZB?) = Tr(B2AB?)

= (BZ)* = BZAB? > ()0 = Tr(B2AB?) > (=)0

-

B
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The converse of Lemma 3.4 is the separating hyperplane or S-procedure
[27] argument. If Tr(AB) < 0 and A > 0 it follows that B is not positive

semidefinite.
If B is an element of a set of matrices, B and a matrix A > 0 is found

so that Tr(AB) < O for all values of B, then the intersection between the
set B and the set of positive matrices is empty. The matrix A defines
a hyperplane that separates the cone of positive definite matrices from
the set B. This condition for separating B from the positive cone is only
sufficient.

Theorem 3.5 (Spherical u Upper Bound)

us (M) <T,(M) 2 inf{y: M*(I>D)M - y’D <0} (3.7)

Proof: x and y are the output and input vectors of A, respectively.

D 16i? <y (3.8)
i=1
o 6*6<y?2for6=1[6,6:---6n1" (3.9)
Y_Z 5*
o [ s 1 ] > 0 Applying Lemma 1.3 (3.10)

Using x; = 6;y; = y;6; and a congruence transformation with
1
Yy
C= b , (3.11)

Yn

-2 *
= [ Y * ] > 0 Applying Lemma 1.1

Io *
X (yy™*) (3.12)
e Jo (yy*) — y’xx* = 0 Applying Lemma 1.3
(3.13)
us (M) < yif y = x = 0 is the only solution (3.14)

to the quadratic form (3.13) with y = Mx.
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Using the converse of Lemma 3.4,

If 3D > 0: Tr(D{ o (yy*) - y°xx*)) <0,Vx € C",
then the quadratic form (3.13) has no nontrivial solutions.

Using v = Mx,
Tr(D(I o (Mx)(Mx)*) — y?xx*)) <0,Vx(# 0) e C"
Using Tr (AB) = TR(BA),
e x*M*(I1 e D)Mx — y?°x*Dx < 0,Vx(#0) e C"
(3.15)
o M*(IeD)M - y?D <0 (3.16)
O

The separating hyperplane argument can be used to derive the stan-
dard p upper bound. The main difference between this derivation and the
(M) formulation is in deriving the quadratic form in (3.13). Rather than
have 1 large quadratic form, the result is n independent scalar quadratic
constraints.

3.3 Properties of [,

The LMI optimization in Theorem 3.5 can be solved by using general
purpose LMI solvers, but it can be solved more efficiently,

; . * ° — 2 — o *
zl)rlfo{y' M*(IoD)M - y°D <0} =+/p(MT o M*). (3.17)

The reader is referred to Chapter 5 for more details.

The spherical ¢ upper bound LMI in (3.7) is related to the standard u
upper bound LMI, but it is unclear whether the new LMI is consistent with
the standard LMI. Corollary 3.6 and Theorem 3.8 are presented to prove
that the two bounds are in fact consistent.

Corollary 3.6 (M) = (TMT ') wherel o T =T >0

Proof: Replacing M by TMT-! and assuming that the associated y; upper
bound LMI is feasible for a value y, then LMI in (3.16) becomes

T *M*T*(I - D)TMT ! —y’D <0 (3.18)
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and is feasible. The following construction shows that for the same
value of y, then, by construction, the u; upper bound LMI is feasible
for the original matrix M.

M*T*(IoD)TM - y°T*DT < 0
Let T* = diaglt,,- - - ,txnl,
M*(I oD o (tt*))M — y?>(D o (tt*)) < 0 Applying Lemma 1.1

Let E = D ° (tt*)!

M*(IoD)M -y*D <0
D > 0 follows from Lemma 1.2 = for a given y; if the LMI in (3.18)
has a solution, then the LMI in (3.16) has a solution.

=> U, (M) <A (TMT™ ) < (T'TMT'T) = u, (M)

O

In Corollary 3.6, T enters in the same manner as the D-scales from
the standard yp upper bound. This implies that 7i,(M) has exploited all of
the structure in the uncertainty set that z7(M) has and that the additional
freedom in the @, (M) LMI is related to the structure which results from
the Frobenius set description. In the standard case, the hypercube does
not provide additional structure to exploit.

The following lemma is a useful tool in relating 1, (M) and z(M).

Lemma 3.7 D <nleD forD >0
Proof:
O(ly)=mand g(nl) =n
>nli-1,=20
(nleD)-D=MNI-1,)D

Applying Lemma 1.2,
(nleD)-D=0

g

Theorem 3.3 presents a relationship between y and y;. Theorem 3.8
shows that the LMI upper bounds share the same relationship.



44

Theorem 3.8 i, (M) < u(M) < /nu,(M)

Proof: The standard upper bound (1.16) and the spherical upper bound
(3.16) can be rewritten as

H(M) = inf {y: M™(I e D1)M < y*(IoDy)}

and
Us(M) = inf {y: M*(I o D,)M < y°D,}
D>>0

respectively. Setting D, =T oD, =10 D,

Applying Lemma 3.7:
M*(I o D;)M < (T, (M) + €)2D; < n(A, (M) + €)>(I e D;) Ve > 0
Setting D; = D; and taking the limit as € — O:

> T(M) < A, (M)

O

Theorems 3.3 and 3.8 indicate further consistency between the spheri-
cal y upper bound, the standard p upper bound, and the set containment
shown in Figure 3.1. If the relationship between u;(M) and u(M) was not
the same as the relationship between their respective upper bounds, then
there would be instances where one of the upper bounds could be trivially
improved. For example, assume that the relationship from Theorem 3.8
was replaced by u, (M) < (M) < nu,(M). If both of these upper bounds
were computed with (M) = 1 and (M) = n, tHen latter bound would
be useless, because the former implies u;(M) < 1. This in turn implies
that u(M) < /n from Theorem 3.3, which would be a tighter upper bound
for u(M).

u(M) is equal to the upper bound in the rank one case. The exactness of
the upper bound for the rank one case is a direct consequence of convexity.
In fact, in this case the determinant is linear in the uncertain parameters.
The same properties hold for (M) in the rank one case.

Theorem 3.9 (M) = u, (M) forrank(M) =1
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Proof: Consider the rank one matrix M. Applying the explicit solution
given in (3.17), the optimal value of y is T(M) = />, [m;;|2. An
explicit perturbation that makes (I - MA) singularis A = (IoM*)/y2.
Since the Frobenius norm of A is 1/y, then y is also a lower bound
for p,. Therefore, us; = i in the rank one case. O

This is consistent with Chen’s results [12] which show that the rank one
problem is easy for a larger class of uncertainty descriptions. So an easy

problem is still easy.

The computation presented here is an upper bound. A question critical
to assessing the quality of this upper bound is: how large can the gap
between u; and u; be? The worst ratio between (M) and 7, (M) is at
least /n. This ratio is achieved by

01
M=[I 0], (3.19)

for which u,(M) = % and @, (M) = 1.
Corollary 3.10 If n < 3 (3 scalar blocks), then -Ej% <Jn

Proof: For n = 3 it has been shown that
p(M) =[(M)
by Packard in [34]. Applying Theorems 3.3 and 3.8,
H(M) < p(M) = p(M) < nu,(M)

7, (M)
> won <V

(3.19) shows that this bound is tight. O

3.4 Small Gain Formulation

Note the similarity between the y and u, upper bound LMIs. This hints
that there may be a small gain interpretation for the y; LMI upper bound
in (3.16). By reversing the operations in the standard construction of the
g LMI upper bound from the small gain condition, the LMI upper bound
for for p, can be converted to the following gain condition:

s (M) < gg}{y . T(I=D)IMD?) < y} (3.20)
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If this gain condition is satisfied, why does it imply that there are no non-
trivial solutions to the canonical loop equations for any uncertainty in a
particular spherical set?

For the standard y LMI upper bound, the D-scales are added because
they can change the gain of the loop, but the existence of a non-trivial
solution is invariant to these D-scales because they are constructed to
commute with the uncertainty structure.

For the spherical u LMI upper bound, there is additional freedom in the
D-scales interpreted from (3.20). Nominally, the standard D-scales could
be chosen, but in this problem there is additional structure to exploit. The
spherical constraint on A is not an induced norm constraint from | - ||, to
Il - ll>. In other words, the elements on the boundary of the unit ball in A-
space do not have the same induced 2-norm. So this uncertainty structure
can also absorb scalings Q that preserve [[QA|; < 1, for this sort of scaling
the resulting small gain upper bound would be

Hs(M) < T(MQ™). (3.21)

Note that structure and the set of allowable Q has not been specified.

The small gain derivation for the spherical y upper bound is a combi-
nation of these two types of scaling. This combination is represented as a
single scaling.

Alternate Proof to Theorem 3.5:
6*6 < y?
yiI-686*=0
Apply Lemma 1.2:
(y’I -86*)oD =0forD >0
Using Lemma 1.1:
y?1 oD = ADA*
Y2l > (I o D)"2ADA*(I o D)%)
= G((IoD)":AD?) <y VD > 0

Using a small gain argument and setting X*X = D, there are no
nontrivial solutions to the loop equations if:
3X > 0: 7 (I X*X)IMX 1) < %

< 3dD > 0: M*(ID)M - y’D <0
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Although the upper bound can be derived in this manner, it is less clear
how to begin. There is a little black magic involved in knowing where to
get started, which is the hard part of the derivation. In this case, reverse
engineering the answer makes this derivation straightforward.

This bound can be derived without using the additional freedom from
(3.21). An alternate derivation is based on the fact that the spherical con-
straint is an induced norm constraint. The sets described by {A: A €
A, Ao < 1 and {A: A € Ay, ||All21 < 1 are the same as the set de-
scribed by the spherical constraint. Alternate upper bounds for us (M)
are |[DMD7 1|, . and [[DMD™!|;, where D has the standard commuting
structure. Although these bounds are different for a particular D, the infi-
mum over all D for both gains is the same, and this optimization problem
can be converted to the same spherical 4 upper bound (3.16).

The natural LMI upper bound formulations which are derived from the
alternate induced norm formulations do not extend to some of the critical
generalizations presented in Chapter 4.

Using the separating hyperplane formulation, the difficulty resides in
finding a quadratic signal space description for the operator constraint,
where the small gain formulation addresses the operators directly and im-
plicitly addresses the signals satisfying the loop equations. Conceptually,
the small gain formulation is easier to understand, but adding structure
like real uncertainty and the intersection of regions are straightforward
using the more abstract separating hyperplane argument. These construc-
tions will be covered in more detail in Chapter 4.
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Chapter 4

Generalizations of L

The particular formulation for spherical u from Chapter 3 is very re-
strictive and many of the uncertainty structures of interest within the gen-
eralized y formulation by Chen [11] are more general but fall within a
special class with ellipsoidal descriptions. These ellipsoidal uncertain pa-
rameter descriptions are obtained from parameter estimation procedures
[25]. The problems that have been investigated are for the rank one case,
because of tractability of the computation [9].

It is easy to define new formulations of u, but those of interest are the
ones that admit computable tight bounds. By extending the computational
tools to the non rank one ellipsoidal g problem, more general analysis can
be performed for systems with such uncertainty representations.

Another reason to extend the machinery from spheres to ellipses is
for the purpose of gridding the boundary of singularity. Spheres are not
appreciably better than cubes for gridding a boundary. The advantage of
ellipses is that by choosing them to be highly eccentric and aligned with the
boundary, the act of gridding a hyperplane doesn’t result in exponential
growth.

The LMI upper bound computation for spherical y (3.16) can be gen-
eralized from an uncertainty constrained to lie within a hypersphere to a
‘hyperellipsoid. Further, the upper bound can be generalized to include
other traditional uncertainty structures like repeated scalars, real param-
eters, and full blocks. These generalizations can be mixed and matched to
form additional generalizations of the LMI in equation (1.16). Further, this
new formulation will be unified with the standard u formulation and gen-
eralized p as developed by Newlin [31]. Further, there are some insights
on the relationship between the non-repeated and repeated scalar upper
bounds.
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Figure 4.1: Ellipsoidal Region of Guaranteed Non-Singularity

4.1 Off-center HyperEllipsoids

The natural generalization of the hypersphere is the hyperellipsoid cen-
tered at some arbitrary point in space,

(6 —60)*P(6 —60) <1,P > 0. (4.1)

¢ for an off-center hyperellipsoid is defined by

1
min{y/(8 — 6p)*P(é — 8g) : A € Ag, det(I — MA) = 0}

e (M) £
(4.2)

The graphical implication of this formulation of y is shown in Figure 4.1.

It is trivial to generalize 1, equation (3.7), when P is a diagonal matrix
to compute an upper bound, f1, (M), of elliptical y, u. (M). For this case, the
principle axes of the hyperellipsoid are aligned with the coordinate axes
in A-space. As a result, the uncertainty and the matrix M can be rescaled
and a linear fractional transformation performed so that the uncertainty
satisfies a spherical constraint and is centered at the origin; the rescaling
formulation follows. Assume that V is a diagonal matrix that has the asso-
ciated radii of the hyperellipsoid as each diagonal element. It follows that
V1A satisfies a spherical constraint. This implies that u, (M) = u,(MV)
and that the LMI upper bound for y; can be used to compute an upper
bound for p, if the hyperellipsoid is axially aligned.

For the general hyperellipsoid (4.1), the proof in Theorem 3.5 immedi-
ately extends and an upper bound LMI solution can be constructed. The
main modification to the proof of Theorem 3.5 is to replace the spherical
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description (3.9) by the hyperellipsoid description (4.1). The implications
of this modification is to replace § by § — 8y, I by P!, and x by x — Agy
in each of the subsequent lines of the proof.

The GEVP for an upper bound for y, for the general hyperellipsoid is
given by

H.(M) 2 inf{y : M*(P™' e D)M — y*(I - AoM)*D(I ~ AgM) < O}.
4.3)

For (M), P = P! = I and Ay = 0 and (4.3) reduces to the spherical g up-
per bound (3.7) as would be expected from the derivation. Theorems 3.3,
3.8, and 3.9 and Corollaries 3.6 and 3.10 can be appropriately generalized
for the elliptical formulation. Additionally, the structure of the GEVP in
(4.3) can be cast as a cone-preserving LMI, and Theorem 5.4 can be applied
to solve this GEVP efficiently.

4.2 Repeated Scalars

Often it is necessary to have multiple copies of a parameter in the LFT
representation of a system. For example, if the square of the parameter is
necessary or the parameter enters in two independent parts of the system,
then two copies of the parameter are required. From a linear systems
perspective, this is analogous to the need for a state vector for a system
rather than a single scalar.

Within the standard p-framework an uncertainty structure which ad-
mits analysis is the repeated scalar, where A contains repeated copies of
0; on the diagonal. A fundamental block in the uncertainty structure is
ol

Ars £ {diag (611, - - ,6nl., ] : 6; € C). (4.4)
This uncertainty structure can be fit into a spherical y context. The only
6,
change to Definition 3.2 is that ||A || is replaced by 6*§ where & = :
On

For this formulation, the LMI upper bound extends. The derivation
from Theorem 3.5 must be modified to include this generalization. Re-
member that the spherical operator constraint (3.8) must be converted to
a signal constraint. The repeated uncertainty structure means that mul-
tiple copies are needed in an inequality like (3.10) to properly apply the
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congruence transformation which converts the set of operators into a sig-
nal space description of the uncertainty.

The solution to this problem is to embed the operator matrix inequality
into a larger space. By applying the following to (3.10),

-2 *
K*[Ya 51 ]KZO, (4.5)
and choosing
1
K = ]llXC1
]llxcn
implies that (4.5) becomes
-2 £x
[ ”5 (Zz ] > 0, (4.6)

where 6 is the vector containing the main diagonal of A meaning that it
contains the appropriate number of repeated copies of each §; and

Q &diag(l,,,- - ,1,). (4.7)

After replacing (3.10) by (4.6), the remainder of the derivation of the upper
bound is unchanged.
The resulting upper bound GEVP is given by

Hsars (M) < T4, (M) £ inf{y : M*(Q°D)M < y*D}. (4.8)

In the repeated scalar upper bound (4.8), Q is not an invertible matrix. Q
enters the LMI as a term of a Hadamard product; as a result the invertibility
of Q is irrelevant.

For[i; (M), ¢; = 1 implies that Q = I and subsequently the upper bound
(4.8) reduces to (M) (3.7). Theorems 3.3, 3.8, and 3.9 and Corollary 3.6
can be appropriately generalized for the repeated complex scalar formu-
lation. Additionally, the structure of the GEVP in (4.8) can be cast as a
cone-preserving LMI and Theorem 5.4 can be applied to solve this GEVP
efficiently.

Investigating the obvious similarity of the (4.3) and (4.8) when Ay = 0,
Q is the limit of a sequence of P, !’s. In fact, P~! can be thought of as a
relaxation of the repeated structure in A-space as shown in Figure 4.2. As
one of the axes of P,;! tends to 0, the M and A can be rescaled to construct
an equivalent elliptical ¢ problem with a repeated scalar.
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Figure 4.2: Ellipsoid to Repeated Parameter

4.3 Real Parameters

For real systems, representing parameters as being only norm bounded
is conservative. If the parameter is physically motivated as a mass or a
spring constant, it has the additional structure of being real. To reduce the
conservatism of the analysis, this additional structure must be exploited
as is done in the standard p formulation.

The uncertainty structure for purely real non-repeated parameters is
described by

Arp = {diag(8y, - ,8,]: 6, € R}

The definition of y; is trivially extended.

The upper bound derivation in Theorem 3.5 can also be extended. The
first observation is that spherical description for A, (3.9) and (3.10), de-
scribe a larger set than those of interest. They do not specify that the
uncertainty is real. The constraint that

A= A* (4.9)

must be added to the quadratic form (3.10) and remains an additional con-
straint. Much like for the basic problem, this constraint must be converted
to a signal constraint. Using

1

Yn
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it follows that (4.9) is equivalent to
Y*(A-A%")Y = 0VY
@Io((yT)*xT—(xT)*yT) = 0
< Jo(yx*-xy*) = 0
o o (Mxx* — xx*M) 0

The operator constraint due to the real structure of the parameters (4.9)
has been converted to an equivalent signal constraint above. The sep-
arating hyperplane argument needs to be modified, because the signal
constraint is an equality constraint rather than an inequality.

To apply the separating hyperplane argument appropriately to this
problem, it is necessary to generalize Lemma 3.4. Specifically, algebraic
constraints must be added to exploit the new equality constraint quadratic
form. A trivial corollary of Lemma 3.4 follows.

Corollary 4.1 Given Ay; > 0,B >0 then Tr (A [ g 8 ]) > 0.

Applying the converse of Corollary 4.1 to

(Io(Mx)(Mx)* — y2xx*) 0
0 Io(Mxx* — xx*M) |’

Az and Ay, have no effect and can be set to 0 without loss of generality.
Setting D = Aj; and G = Aj;; results in the following upper bound to

IJS,A” (M),

Hsa,, (M) 2 inf {y : M*TeD)M + j((IoG)M - M*(1-G)) < y’D}.
D>0,G=G* (4.10)

The additional freedom in the construction of the standard y upper
bound LMI in (1.16) associated with the G-scales corresponds to the con-
straint that ¢; is real and that the input and output signals of the block
must be aligned in C. The G-scales are independent of the magnitude
and relationship between separate blocks. This observation will become
clearer when the intersection of regions are considered.

4.4 Full Blocks

The uncertainty structure for only full block uncertainty is

Ap: =1{diag[Agn,, - -+ ,Apn.] 1 Afp € CHXNY
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Computing an upper bound for u with spherical constraints on T (A;)
which includes non-scalar A;, with

BAf = {A D > oA < 1}, (4.11)

i=1

is not a natural extension of the LMI for diagonal uncertainty. For diagonal
uncertainty in the standard u problem, the structure of the D-scales can be
specified by Q o D where D is full. For full blocks the resulting structure in
the D-scales cannot be specified using the Hadamard product of a constant
matrix and a full D matrix.

Reduction

One method to construct an upper bound is to convert the original
spherical ysa,(M) problem with full blocks into a new problem, p; (M)
where ps a (M) < ps(M). M is constructed from M. M must be partitioned
into M;; which are compatible with the block structure of the uncertainty.
What is meant by this is that M;; maps the output of the jt* block of A
to the input of the i*? block of Ay. M can be constructed as

M;; = O(M;;).
The new uncertainty representation has a diagonal complex scalar struc-
ture which is the same as (3.1) with spherical level sets. The new problem
has a smaller dimension matrix than the original problem and the upper
bound has a closed form expression, but this bound may be conservative
because p;a,(M) < us(M) and a gap will introduce additional conserva-
tiveness.

Expansion

Another method is to construct a larger problem, with twice the matrix
dimension and twice as many blocks in A, for which , /us,Af (M) = Uy a0 (51
and an LMI upper bound to the augmented problem, fi, 4,,, (M), can be
constructed. The original problem is given by the standard p loop in Fig-
ure 1.3, and has a spherical constraint on A. This is equivalent to the
problem shown in Figure 4.3, where

Al = {dlag(611N1) e ,6nINn),5i € C}
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Figure 4.3: Expanded System

with the standard hypercube constraint that

|6;| <1, Vi (4.12)
and

A? = BAs.

The spherical constraint can be moved from A? to A! to form an equivalent
system. So the hypercube constraint (4.12) is replaced by

Z léilz <1
i=1

and the structure of BA is unchanged but the spherical constraint (4.11)
is replaced by
T(A?) < 1Vi.

The system shown in Figure 4.3 can be put into the standard y loop form
using M and A in (4.13) and (4.14). Let

A Al 0 . 1 1 2 2
A—{[O AZ].A eAl,A’eA (4.13)
and
- 0 I
M:[M O]' (4.14)

By construction,

HgAM) = \Jtisa (M), (4.15)
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To compute an upper bound for (4.15), the separating hyperplane argu-
ment can be extended to this construction. The end result is that full
blocks with the standard constraints induce the standard D-scales for full
blocks, and the spherical constraint on the repeated scalars induce the
D-scales associated with (4.8). The resulting upper bound of ug'A(M ) is
given by

. g« @eDv 0 |0 5] Dt 0 }
inf : M* M -
D1>0,D26€D5 {y [ 0 D, ] Y 0 D (4.16)

where Q is similar to (4.7), and D is the standard u D-scales for full blocks:
it consists of d,I,,, blocks for d; > 0.
Using simple manipulation, (4.16) can be rewritten as

inf . QoD; <y’D;,
Dpé,DzeDz y: M*D,M < y?D;

If A2 consists of only scalar blocks and Q = I, then (4.16) is a cone-
preserving LML It follows that at the infimum I - D, = y2D,, so D, can be
eliminated and the spherical y upper bound is recovered. See Chapter 5
for details.

4.5 Spheres in A~ !-space

Generalized p, as coined by Newlin [31], has the same fundamental
picture as standard p as shown in Figure 1.3. What changes is the descrip-
tion of the set of A; for some i. Rather than a small gain constraint like
O (A;) < 1, there is a minimum gain constraint like g (A;) > 1. Mg < 1if
and only if there are no non-zero solutions to the loop equations for the
generalized set of allowable A.

The natural generalization of this new uncertainty construction to the
spherical context is a sphere in A™'-space,

To construct an upper bound for this problem, the derivation from The-
orem 3.5 is largely unchanged. & is replaced by 6! which denotes the
element by element inverse. This forces the congruence transformation
of (3.11) to be modified; specifically y; is replaced by x; and largely x and
2y swap roles in the remainder of the proof.

l
5;
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The resulting upper bound is
Hs a1 (M): =Li)n%{y:IoD—y2M*DM<O}. (4.17)
>

An alternate way of looking at the problem is to reverse the direction of
signal flow around the loop in Figure 1.3. The sphere in A™!-space becomes
a sphere in A-space, and M is replaced by M~!. If M is not invertible, it
immediately follows that y,(M) = « by choosing x,(# 0) in N (M) which
is a non-zero solution to the loop equation for all y > 0. Hence the loop
equations always have a non zero solution. The upper bound (4.17) verifies
this by
x3(IeD—y*M*DM)xo >0 Vy.

4.6 Cartesian Product of Spheres

The central idea with new definitions of y involve defining level sets in
A-space. Again the definition of y is trivially extended to ., » for which
the level sets of interest are the cartesian product of h hyperspheres.

Associated with a spherical constraint in A-space there is a quadratic
form. If there are multiple independent spherical constraints, then it fol-
lows that it can be represented as one large quadratic constraint. Subse-
quently, an LMI upper bound can be constructed.

The construction for the two independent spheres follows, and the
extension to an arbitrary number of spheres is straightforward. Assume
that A-space is partitioned into two subspaces so that

6
(1]
and there is a spherical constraint on each subspace
55 <y? 6% <y
Converting this into two sets of signal constraints and rewriting it as a one
signal constraint leads to the following quadratic form,
Io (") - y’xx* 0
[ 0 Lo (P9%) — Y222 > 0. (4.18)
Applying the separating hyperplane argument, and generalizing for h hy-
perspheres yields the following GEVP,
1y,

Hepn(M): =inf yy: M*(I e D)M - y? oD <0
' D>0
L, 4.19)
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The standard u level sets described by hypercubes is the cartesian prod-
uct of n 1-d spheres. This formulation recovers the standard g LMI upper
bound when the uncertainty consists of only scalar blocks. This construc-
tion immediately generalizes to other uncertainty structures.

4.7 General Quadratic Descriptions

Some of the LMIs derived, for spherical u (3.16), elliptical u for Ag = 0
(4.2), repeated scalars (4.8), spheres in A™! (4.17), and cartesian products
of spheres (4.19), have a similar structure involving the Hadamard product.
This structure is exploited in making the connection between elliptical u
and repeated scalars in Section 4.2. More generally, this similarity can be
used to morph between a much larger class of problems.

The feasibility LMIs for the problems listed above are special cases of

M*(PoD)M < (Q ° D). (4.20)

For the form in (4.20), the only restriction is that P and Q are symmetric.
By reversing the construction of the LMI, an uncertainty description can be
constructed for which (4.20) is a sufficient condition for testing if y < 1.
This can be extended to an upper bound GEVP with the appropriate scaling
of y inserted into (4.20).

The reverse constructed uncertainty set description is

P = AQA*. (4.21)

This quadratic description requires that A be strictly diagonal and com-
plex, which may include repeated scalar blocks. The uncertainty sets for
spherical p4 and the generalizations which fall into this class aren’t ini-
tially written in this form, but they are equivalent to constraints that can
be written in this form.

P = Q = I corresponds to the standard formulation of the upper bound
for u with non-repeated scalar uncertainty. P = I and Q = 1 corresponds
to the spherical p upper bound. As Q is relaxed from I to 1 and using the
continuum from spheres to repeated scalars in Figure 4.2, a continuum
of problems is formulated from standard u to standard p with repeated
scalars for which the upper bound extends. The level curves of the uncer-
tainty sets associated with the relaxation from Q = I to 1 are shown in

Figure 4.4 with
1l €
o-[ et
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fore =0, .1, .4, .7, .9, andl. Alternatively, the hypercube can be directly
morphed to repeated scalars as shown in Figure 4.4 for which P = Q using
the values of Q from above.

Figure 4.4: Morphing Hypercubes

Although more general quadratic descriptions for A-space can be de-
fined, it is not always possible to convert these descriptions to quadratic
forms on the signals x and y. This is necessary to apply the separating
hyperplane argument to construct a sufficient LMI condition.

4.8 Intersection of Regions

The construction of a large quadratic form from smaller quadratic
forms is an intersection of constraints. The construction presented in
Section 4.6 for the cartesian product of spheres is the intersection of in-
dependent constraints. For the real parametric uncertainty construction
in Section 4.3, the constraints are not independent in terms of the signals
involved but do exploit independent aspects of the structure.

Representing the signal constraint as a single matrix inequality and the
construction of the LMI upper bound does not require the independence of
the constraints. So given two elliptical sets parameterized by y as shown
in Figure 4.5, an LMI upper bound can be constructed that is tighter than
the bounds associated with each elliptical constraint separately.

First, y must be defined for the intersection of off center hyperellipsoid
regions, and it will be called p;.(M) as a shorthand notation. Note that the
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R,y
det(I - MA) =0

g

R;

Figure 4.5: Intersection of Regions

regions haven’t been specified in the notation. u for the intersection of off
center ellipsoid regions is defined by

1
min{y: (6 — 6o,)*P;i(6 — 8p,) < y? Vi,det(] - MA) = 0}

4.22)

pn(M) &

It follows that the upper bound using any one of the ellipses, i, (M), is
also an upper bound for u, (M) because by construction p~(M) < p.(M),
but a tighter LMI upper bound can be constructed.

The method of construction is essentially the same as those previ-
ously presented. The quadratic forms are written as a single structured
quadratic form like the generalization of 4.18. The separating hyperplane
argument is applied and an LMI upper bound can be constructed. The
constructed LMI can be specified using the LMIs from each constraint in-
dependently.

Associated with y and each off center ellipse is a feasibility LMI,

{Di (S D,’Z Li(Di, )’2) < 0}, (423)

where L; is a matrix valued linear function of a matrix D;. For each value of
Y an LMI can be constructed whose feasibility guarantees no solutions to
the loop equations over the space of A specified by the intersected regions.
To compute the infimum of the value of y for which the LMI is feasible is
a GEVP. The upper bound GEVP associated with the intersection of the
regions is given by

A(M) £ inf {y: S Li(D;, y?) < 0}. (4.24)
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Note that the LMIs in (4.23) must be compatibly constructed for (4.24) to
be a valid upper bound.

For the purpose of constructing the LMI upper bound, the compati-
ble construction requires that the same signals x and y are used in con-
structing the signal constraints. Otherwise the signals constraints are in-
compatible for applying the separating hyperplane argument. This forces
each constraint to use the same A-space or equivalently M is the same
for relating x and y for all of the constraints. This is the motivation for
originally considering off-center hyperellipsoids of Section 4.1.
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Chapter 5

Computation of the Bounds of
Spherical u

In a previous chapter, an upper bound for . is derived. This bound is
a convex optimization problem in the form of an LMI, specifically a GEVP.
For problems of this form there exist numerical solvers that perform the
optimization in polynomial time. These solvers are general LMI solvers
and do not exploit all the special structure of a problem to optimize the
numerical efficiency. It turns out that the upper bound LMI for u, has
special structure that can be exploited. This structure converts the LMI
optimization problem into the spectral radius of an associated linear op-
erator.

Additionally, it was stated that a lower bound computation for y, could
be constructed that is analogous to the standard p lower bound compu-
tation. This computation involves the non-convex optimization problem
from (1.11). This optimization is intractable, so in practice one must settle
for local optimization. For u,, an alignment condition associated with a
local extremum and the modification to the standard power algorithm are
presented. This is a natural extension of the standard power algorithm u
lower bound computation.

5.1 Upper Bound Computation

The upper bound for p, derived is in the form of an LMI. The LMI for-
mulation is a powerful tool; if a problem can be converted to an LMI, then
computational cost of the optimization has polynomial growth and is gen-
erally considered tractable. The idea is that the problem has been reduced
to a known “solved” problem.

An observation that can be made is that general LMI solvers are not the
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most computationally efficient methods for all LMI problems. Often there
exist reformulations of the problem that offer more computationally algo-
rithms. In some sense, one can view these algorithms as exploiting special
structure of an LMI to construct computationally efficient numerical solu-
tions to a special class of LMIs.

An example of this is the LMI associated with solving the spectral radius
of a matrix,

p(M) = inf {y : M*DM - y?D < o} . (5.1)
D>0

For this example, D is a full matrix and the answer to this optimization
problem is the spectral radius of M. D being full means that there are
n(n + 1)/2 free variables in the LMI optimization, and the resulting opti-
mization is much slower than computing the spectral radius using more
specialized methods. There is a connection between the spectral radius
computation and the structure of the LMI in (5.1); presumably there is spe-
cial structure in this LMI that can be exploited in the computation to make
the problem easier to compute.

An exact solution for the GEVP upper bound for elliptical y (4.3) with
Ap = 0 is presented. The formulation presented immediately extends to
include repeated scalar blocks (4.8). In the remainder of this chapter, this
class of problems will be referred to as elliptical u or p,. By using a gen-
eralized version of the classical Perron-Frobenius theorem, the optimal
value is shown to be equal to the spectral radius of an associated linear
operator. This enables more efficient computation of the optimal solution,
using other algorithms like the power iteration method. For a more thor-
ough treatment of a broader class of cone-preserving LMIs for which the
computation simplifies, the reader is referred to [36).

Background

All of the elements of a nonnegative matrix are real and nonnegative.
Let § ¢ R", and define S¢ as the set of all finite nonnegative scalings of
the elements of S. Then, a set X is a cone if X = XS. The dual of a
set Sis $* = {y e R" : x € S = (x,¥) = 0}. A cone X is pointed if
X n (-X) = {0}, and solid if the interior of K is not empty. A set S is
convex if x1,x; € S implies Ax; + (1 ~A)x, € S VA € [0, 1]. A cone that
is convex, closed, pointed and solid is called a proper cone.

In the vector space of symmetric real matrices, it is easy to show that
the set of positive semidefinite matrices,

PE£(D: DeR™,D=DT,D >0l
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defines a proper cone. The inner product of two matrices is given by
(A,B) = Tr(AB).

This purpose of introducing this vector space is to think about LMIs as
linear operators which act on matrices. These matrices are the variable
over which to optimize. Additionally, this formulation makes it easier to
exploit the special properties of the linear operators of interest, rather
than a baroque description for the structure of the LMIs. 2 is crucial
to describing the special structure of the LMIs which will be exploited to
simplify the computation.

Problem Statement

The basic structure of the problem to be addressed is as follows: the

LMI upper bound for elliptical 4 can be written as
vo=inf {y: L) 2 M*(@=D)M <D}, (5.2)

where Q > 0. Note that the spectral radius LMI (5.1) is a special case of
the above operator with Q = 1.
A linear operator £ preserves the proper cone P if

D>0= £(D)>0. (5.3)

L satisfies the cone-preserving structure described in (5.3) as shown in
Lemma 5.1.

Lemma 5.1 Let Q be positive semidefinite. Then, the proper cone P of posi-
tive semidefinite matrices is preserved by the operator L(D) = M*(QoD)M.

Proof: £ is the composition of the two operators £,(D) = Q o D and
L>(D) = M*DM. The first operator is cone-preserving by Lemma
1.2. The second operator has the same property, because D > 0

=>y*Dy >=0Vy
choosing y = Mx,
= X*M*DMx >0Vx = L(D) > 0.
Therefore,

D=20= Li(D)=20= L(D) = L,(L;(D)) =0.
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Perron-Frobenius

Thus far the LMI upper bound for g, has been modestly altered and the
cone-preserving property of £ has been identified. The purpose of verify-
ing the cone-preserving structure of £ is to exploit the spectral properties
of such operators.

The motivation for the study of cone-preserving operators arose from
Investigations of nonnegative matrices. A matrix is nonnegative if it is
square and each element is real and nonnegative. This nonnegative struc-
ture to matrices arises in Markov chains, Leontief economic models, as
well as other domains. For a matrix M with nonnegative structure, the set
of all vectors in the nonnegative orthant is a proper cone that is preserv-
ing under multiplication by M. This is the setup for the classical Perron-
Frobenius theorem [22]. The implication is that the spectral radius of M is
an eigenvalue, and there is a nonnegative eigenvector associated with the
eigenvalue p(M). The classical Perron-Frobenius theorem has been gener-
alized significantly. For the problem at had, a particular finite dimensional
version is stated which is sufficient for the GEVP problems of interest.

Theorem 5.2 (Perron-Frobenius [7]) Assume that the linear operator [
maps the proper cone X into itself. Then

1. p(£) isan eigenvalue.
2. X contains an eigenvector of L corresponding to p(£).

3. X* contains an eigenvector of L* corresponding to p(L).

Solving Cone-Preserving GEVPs

In the following, the optimal solution for the GEVP (5.2) and an asso-
ciated optimal D are recharacterized, meaning the GEVP is converted to
another optimization problem which readily admits more efficient com-

putational techniques.
The GEVP problem (5.2) is relaxed by allowing the LMI variable D to be

semidefinite. The new problem is
¥o £ inf{y : M*(Q°D)M < y?D}. (5.4)

For this problem, Lemma 5.3 defines a lower bound to yo.
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Lemma 5.3 The optimal solution of (5.4) has as a lower bound

Ye = p(L). (5.5)

Proof: L preserves the proper cone P, so Theorem 5.2 can be applied. Let
Y = O be the eigenvector of £* associated with the eigenvalue p([).

It follows that
y*D
y*(D,Y)

L(D)
= (L(D),Y)
= (D, L*(Y)) y*(D,Y)
= (D, p(L)Y) y’(D,Y)
= p(L)(D,Y) < y*(D,Y)
= p(L) < yi

AN N ANA

Therefore, y? has to be strictly greater than the spectral radius of £
for (5.2) to have a feasible solution. O

For a particular value of y, if D is a feasible solution to the original
problem (5.2), then D is a feasible solution to the relaxed problem (5.4).
This implies that yg > yq.

Theorem 5.4 The optimal solution of (5.2) has
Y6 = p(L). (5.6)

Proof: I preserves the cone P, so Theorem 5.2 can be applied. Let X > 0
be the eigenvector of £ associated with the eigenvalue p([).

Case 1: , X > 0: Using Lemma 5.3, y? > p(L).
Claim: There exist solutions for y? > p(L)
choose D = X > 0,

YD - L(D) = (y*-p(L))D >0
= y2 < p(L) =y =p(L).

Case 2: , X € boundary P: This case corresponds to the concept of cone-
preserving operators not being irreducible [7]. Using Lemma 5.3,
Ye = p(L).
Claim: There exist solutions for y> > p(L).
If there exists a solution to

L(D)-y’D =-R <0, (5.7)
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then y, < y. For y* > p(L), the system of linear equations in (5.7)
has a unique solution.

cn=LtB*R_p
Y
p (L}(f)) < 1= Dyy1 = (L(Dy) + R)/y?

with Dy = 0 is a convergent iteration.
R )
D; > — > Ovix>1
Yy

= D = lim Dy > O satisfies (5.7)

k—o00
=>y? <p(L) =y =p(L)
0

An example of an operator which is not irreducible is the operator as-
sociated with the spherical 4 upper bound when

[3]

The spectral radius of the operator is 1 and the associated eigenvector is
D = 1. This eigenvector is only semi-definite and the construction of Case
2 is needed.

All of the “vectors” in the preceding setting are matrices. Note that the
matrix representation may result in a more compact representation and
more efficient computation than the standard vector notation. It is a way
of taking advantage of the underlying structure of the linear vector space.

For the case where Q is the identity which corresponds to the spherical
H upper bound, the result from Theorem 5.4 can be simplified. First, an
equivalent problem is constructed.

Lemma 5.5 There exists a D,(# 0) = 0 such that
M*(IoD)M = y?D, (5.8)
if and only if there exists a D, (# 0) = 0 such that

Io(M*D;M) = y?D; and I o D, = D,. (5.9)
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Proof: = : Assume 3D, 2 O satisfying equation (5.8), by choosing D, =
I o Dy, it follows that D, > 0 and it satisfies equation (5.9).
< : Assume 3D, > 0 satisfying equation (5.9), choosing D, = M—*fﬂ
it follows that I - D, = D,, D; > 0, and it satisfies equation (5.8). O

Using the equivalent formulation (5.9), a new but equivalent LMI upper
bound for y; can be constructed. The linear operator, L, (D) = [o (M*DM),
preserves the proper cone of positive semidefinite diagonal matrices. As
a result, this formulation can be used to construct a lower-dimensional
linear operator for solving the u; LMI upper bound. The following corollary
describes this construction.

Corollary 5.6 Let y, be the optimal solution of the GEVP:
Yo =Ii)n{){y : M*(I1-D)M - y?D < 0}.
>

Then,
Yo = p(MT o M*).

Proof: Using Lemma 5.5 and the cone-preserving structure of L,(D) =
I-(M*DM) defined over the linear vector space of diagonal matrices,
it follows that y¢ = p(L,). L, can be rewritten as a matrix N operating
on R™ where the basis vector ¢; is chosen to be the matrix of 0’s with
a1l as theii-entry. As a result

N =CT(MT e M*)C,

where
C = [Cll' .t ,Cn]

and
ci = (n(i-1) + i)** column of I,,..

C acts like a sieve on M7 @ M*, and N = MT o M*. It follows that
p(N) = p(L,); therefore, y5 = p(MT o M*). O

So for the particular structure of the p, LMI upper bound, the opti-
mization problem can be converted to computing the spectral radius of
n-dimensional matrix. This is a far simpler computation than the original
n-dimensional matrix inequality with 22! free variables. Also note the
structure of N. All of the elements of N are real and nonnegative. This is
the form of the problem for the original Perron-Frobenius Theorem. The
eigenvector associated with the spectral radius is in the nonnegative or-
thant. This is the D matrix in the proper cone of positive semi-definite
diagonal matrices.
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Computation

In Theorem 5.4, the solution to elliptical 4 upper bound was shown to
be equivalent to the spectral radius of a related finite dimensional cone-
preserving linear operator. In some sense the problem has been simplified,
but this spectral radius still must be computed efficiently.

One possible method to compute the spectral radius is to construct a
matrix representation of the operator and compute the eigenvalues. This
solution computes more information than is necessary, and as a result it
is inefficient for the optimization problem at hand.

Under the mild hypothesis of primitivity, which is a subset of irre-
ducibility, it is possible to use power iteration-type methods to compute
the spectral radius. Primitivity is equivalent to requiring the spectral ra-
dius of £(-) to be strictly greater than the modulus of any other eigenvalue
[7]. It is always possible to obtain a primitive operator by arbitrarily small
perturbations of a non primitive operator.

Under this assumption, the simple iteration

L(D
Dy = (D)

=120l (5.10)

Is guaranteed to converge to the eigenvector associated with the spectral

radius and its norm to the optimal value, for every initial value Dy > 0. If

primitivity is not satisfied, then this iteration will not necessarily converge.
An example of a non-primitive operator associated with £ is given by

w[03]

for spherical y. For this operator, 1 and —1 are eigenvalues. The associated
eigenvectors are I and
1 0
o 5

In fact, the spectral radius of £ can be computed using a power iteration
method even if the primitivity assumptions are eliminated. The solution is
similar to the proof for the second case in Theorem 5.4. A cone-preserving
operator is constructed such that the spectral radius of the new operator
is related to the original and the new operator satisfies the primitivity
assumption.

A possible choice for the new cone-preserving operator is

£(D)E £(D)+DforD > 0,
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the eigenvalues of £ are the eigenvalues of £ with real part increased by
one and the associated eigenvectors are unchanged. As a result, p(£) =
p(L) + 1 and p(£) is only achieved by the eigenspace associated with the
eigenvalue p(L). So, if £ is used in the iteration (5.10), then the iteration
converges and p(f) is computed.

There exist more sophisticated versions of the power iteration method-
ology, that result in faster convergence, as well as upper and lower bounds
on the optimal value. This power iteration procedure is similar to the
power-type algorithms usually used in computing py lower bounds in 5.2,
but is a much simpler problem because the problem is convex. Although
the problems are similar, what is being computed is very different. The
spectral radius computed for the y; upper bound is unrelated to the posi-
tive real spectral radius computed for the y; lower bound. They are eigen-
values of different operators.

Suboptimal solutions of LMIs

The cone-preserving requirement for the LMI is strict, since the impli-
cation is that in the limit the optimal solution actually satisfies an equality.
The LMIs appearing in control problems are not necessarily satisfied by an
equality at optimality. An example is the standard g upper bound LM]I,
where the IMI variable D is not full, but structured. In other words, the
partial order induced by the inequality is not the order induced by the
variable D.

However, the methodology presented above can be used as an efficient
method for computing suboptimal feasible solutions for certain problems.
These suboptimal values can often be used as starting points for more
general LMI solvers.

For example, for the standard p upper bound LMI (1.16)

M*(IeD)M — y*(I o D) < 0, D >0,

it is possible to compute an approximate solution by using the following
procedure:

1. Compute the exact solution y?, D, of the spherical ¢ upper bound
LMI (3.7).

2. Compute the smallest n that satisfies (5.11)

D, < n? e D). (5.11)
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This is a generalized eigenvalue problem that can be reduced to the
computation of the maximum eigenvalue of a hermitian matrix. Be-
cause D is positive definite, it follows that n? < n from Lemma 3.7.

3. A suboptimal solution of the LMI is given by I o D;, and the optimal
value is y = ny; < /ny;:.

Effectively, we have
M*(IoDy)M < y?D; < n?yi(I o Dy).

Itis possible to get arbitrarily close to the worst case gap of /7 between the
optimal and suboptimal solutions for the upper bound of y. For example,
for the matrix

'3
6 g " e w E

M = ’
6 E ‘e E

with ¢ arbitrarily small, the optimal value of the LMI (1.16) is 1, but the
fast upper bound approaches /7 as € — 0. Note that for € = 0, the fast
upper bound is in fact exact (equal to 1). This is a consequence of the
discontinuity of the generalized eigenvalue problem (5.11).

Another procedure for computing fast solutions of the g LMl is the one
developed by Osborne [33]. A preliminary comparison made with random,
normally distributed matrices gives a slight advantage to the Osborne pro-
cedure. However, the algorithm proposed can give better upper bounds
(the opposite is also possible), as the following example shows. For the
matrix

0 -9 -4
M = 2 6 6
-3 -1 6

the u upper bound computed by Osborne preconditioning is 10.321, and
the bound of the proposed procedure is 9.69 (the value of the LMI upper
bound is 9.6604, and is in fact equal to u since there are three blocks).

Computational Advantage

As a simple example of the computational benefit of the proposed com-
putation, the time required to compute the solution of the spherical y LMI
upper bound (3.7) is compared for a given problem.
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Choosing M to be a 16 x 16 complex matrix, randomly generated, the
computation of the optimal value of the LMI (3.7) with a general purpose
LMI solver for MATLAB [18] and a tolerance set to 10~4 requires (on a Sun
Ultra 1 140) approximately 160 seconds. Using the procedure presented
here, either by power iteration or explicitly computing the eigenvalues, the
answer can be obtained in less than one second.

5.2 u; Lower Bound

For standard u, a lower bound is essential to assess the quality of the
upper bound for a particular problem. The situation is no different for
spherical u. In the development presented here, the Standard Power Algo-
rithm (SPA) [34] [29] with be extended to spherical constraints in A-space.
The basis of SPA is in the conditions for local optimality of p(MA). As a
result the extension of the SPA to computing a lower bound to y; hinges
on the optimality condition for a different BA. In fact, this condition for y;
is a natural extension for the standard condition. The other lower bound
power type algorithms (SIA, WRA, ROA) presented in [29)] are designed to
improve the computation for the real and mixed u. These algorithms can
be extended to spherical u, but these extensions are not interesting and
will not be developed further.

Optimality Conditions

The local solutions of the optimization problem in (3.4) are to be char-
acterized. This characterization of the necessary conditions for a local
maximum will be key in the formulation of the iterative algorithm.

The following lemma is useful in the derivation for necessary condi-
tions for optimality.

Lemma 5.7 Leta,b,x € C*. Assume that Re(x*b) < 0 for every x satis-
fving Re(x*a) < 0. Then b = na, for some n = 0.

Proof: Given that Re(x*b) < O for every x satisfying Re(x*a) < 0, it
follows that Re(x*b) = O for every x satisfying Re(x*a) > 0. There-
fore, 3n which is a nonnegative real valued function of x such that

Re(x*b) = n(x)Re(x*a) Vx e C".

Using
* + *Z
)=yz Y

Re(y* ,
e(y*z >
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it follows that
x*b+b*x = n(x)(x*a+a*x) Vx e C",
which can be rewritten as
x*(b - n(x)a) + (b -n(x)a)y*x =0 Vx € C".

>b-nx)a=0
= n(x) = constant > 0.
O

The optimization problem (3.4) is in general nondifferentiable at cer-
tain points. As usual, some generic nondegeneracy conditions are im-
posed. Specifically that the maximum eigenvalue of MA has multiplicity
one at optimality, this ensures differentiability. Under these assumptions,
Theorem 5.8 presents a necessary condition for local optimality.

Theorem 5.8 Let A = diag(6),6 = (61, 682,...,64), 6; € C satisfy

Z 16:1° < 1,

i=1

and x and y be the right and left eigenvectors of MA,, with the normal-
ization condition y*x = 1. Then if p(MA) has a local maximum at A,, the
following conditions are satisfied:

(MAp)x = Ax (5.12)
Y¥(MA) = Ay* (5.13)
yixi = |6;° (5.14)

Proof: (5.12) and (5.13) follow immediatedly. Consider any curve A(t) €
BA Vt, with A(0) = A¢. By assumption, the maximum eigenvalue of
MA(t) is simple at t = 0, so differentiating with respect to t yields:

A(0) = y*MA(0)x = y*Mdiag(v)x

where v satisfies Re(v*4) < 0. Since the eigenvalue has maximum
absolute value at Ay,

Re(y*M diag(v)x) = Re(y*M diag(x)v) < 0.
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Apply Lemma 5.7 to obtain
y*Mdiag(x) = né*,
for some n > 0. Postmultiplying by é to construct

y*Mdiag(x)s = y*MAox = Ay*x = A = né*é = n.

Postmultiply by Ay = diag(6) to obtain

y*Mdiag(x) Ay né*Ag
y*MA, diag(x) né* Ao
Ay*diag(x) = Ad*Ag

or equivalently, v} x; = |6;|2. O

The problem has been reduced to an algebraic nonlinear system. The
approach is to solve this system of nonlinear equations by an iterative (or
fixed point) procedure.

Changing variables, (5.12)-(5.14) (assuming ||@ - w|| = 0) can be rewrit-
ten in the form:

weoa

Ba=Mb, Z=m0w (5.15)
Bw=M*z, b= ”Z—z’}—” oa. (5.16)

where x = (aT)* or equivalently the element by element complex conju-
gate. The equations have been written in this particular form for several
reasons. First, they are similar to the those in [34, (7.14)]. More impor-
tantly, they can be used to define an iteration procedure to obtain candi-
date solutions of the optimization problem.

In particular, given initial values for b and w, a and z can be obtained
from (5.15), and then update b and w using (5.16) (these vectors can be
constrained to have unit norm). The repetition of this process gives rise
to a sequence of vectors ay, by, Wy, zx; hopefully this iteration converges.

If the algorithm converges to a solution, a lower bound is obtained.
Letting

A0:=djag( arw )

laowl
it follows that (I - M %AO) is singular, and the associated u, lower bound

is B.
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Computational considerations

It is important to remark the fact that the characterization of candi-
date optimal solutions (i.e., that satisfy the alignment conditions), and the
existence of an iteration that has those solutions as fixed points, does not
imply anything about the convergence properties of the iterative proce-
dure.

Ideally, the optimal solution would be a stable fixed point of the itera-
tion, and would have a large basin of attraction. However, these properties
depend strongly on the exact details of the procedure employed.

Numerical tests with the proposed iteration, starting from random ini-
tial conditions, usually give very fast convergence to a local maximum
for most matrices. The computational requirements are very reasonable,
since the algorithm only performs matrix and vector multiplications.

However, it has been observed that the algorithm does not perform
satisfactorily in the class of matrices which have a strong antidiagonal
component.
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Chapter 6

Spherical u Upper Bound - the
Inverse Problem

In understanding the relationship between a y computation and the
associated upper bound, it is useful to determine the inverse problem for
the upper bound. The term inverse problem refers to a u problem which
is a relaxation of the original problem for which the upper bound is exact.
By a relaxation it is meant that A C A,y

Within the standard py-framework and the Integral Quadratic Constraint
(IQC) framework, there have been a number of important results and in-
sights regarding inverse problems, [41], [26], [35], and [37] in describing
the uncertainty for which the standard u upper bound in (3.7) is exact.

Using the results of Shamma [41], Megretski [26], and the extensions
by Paganini [35], the u upper bound, H,, is exact if A is relaxed from a
structured constant matrix operating on a vector to a structured operator
acting on a vector valued signal y[n]. The matrix induced norm, G (A), is
relaxed to the operator induced norm Al - ina-

To better understand the relationship between spherical u (3.3) and
the associated upper bound (3.16), these relaxation ideas are extended to
spherical ¢ and are connected to observations regarding the spherical full
block uncertainty upper bound construction in Section 4.4.

6.1 Motivation

In the extension of spherical u to include full blocks as developed in
Section 4.4, there is a spherical constraint on the norms of the full block
matrix operators. The expanded upper bound presented in Section 4.4
relies on the construction of a related augmented Uy problem and moving
the spherical constraint from the full blocks to the new repeated scalar
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blocks as shown in Figure 4.3.
Figure 6.1. Alternatively, the order of A' and A? can be reversed to

Z

Al A2

M k

Figure 6.1: Another Expanded System

construct another equivalent y, problem as shown in Figure 6.1. Both of
these new representations can be rewritten as Mg problems and used to
construct an upper bound LMI. With both of the uncertainty descriptions
in Figures 4.3 and 6.1, it is possible to swap the spherical and standard con-
straints without altering the admissible relationships between the vectors
x and . Using A from (4.13), BA is defined with a spherical constraint on
A' and a standard constraint, [|A?|| < 1, on A? to define new equivalent
uncertainty representations.

BA in the new uncertainty descriptions are equivalent to the unit ball
in the original uncertainty description as shown in Lemma 6.1.

Lemma 6.1

Ua-= U aal= U ataz

A€BAy diag(A',A2)eBA diag(Al,A%)eBA

Proof: By construction, if A € BAy then choose §; = [|A;|| and A? = Il—ifﬂ'
If |A;]| = O then set A? = 0. This implies that the left-hand set above
is contained within the other two sets. Similarly, if diag(A!, A?) e
BA, then choose A; = 'A%, which implies that the right two sets
above are contained within the left set. The right equality follows by
transitivity. O

So rather than the canonical g loop as shown in Figure 1.3, a new Hg
problem has been constructed as shown in Figures 4.3 and 6.1. These
problems can be converted to a canonical u loop as shown in Figure 6.2.
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5] M H
y Al 0 z | | 2 Al 0 x
0 A? 0 A2
0 I 0 M
M 0 I 0
(a) (b)

Figure 6.2: Conversion to Standard Interconnection

Theorem 6.2 The original loop has a nontrivial solution on BAy if and only
if the loops shown in Figure 6.2 have a nontrivial solution on BA.

Proof: This follows immediately from Lemma 6.1 and the respective equiv-
alence of Figures 6.2, 4.3, and 6.1. O

The relationship between y; for the original problem and Mg for this new
constructions is given by

([ 4 )) e[ 4]

The square root is needed to relate the uncertainty descriptions as pa-
rameterized by the scale factor acting on the associated unit balls. The
uncertainty in the original problem has been described by the product of
two new uncertainties, and the square root is used to counteract the ef-
fect of how the product scales with y. This is the correction needed to
generalize Lemma 6.1 for all balls (not just the unit ball) in A-space.
' Using the LMI upper bound for u, which follows from the results in
Chapter 4, an LMI upper bound can be constructed for the problems shown
in Figure 6.2. For the first equivalent construction in Figure 6.2a, the re-
sulting upper bound is given by

0 I , _ PoD; < y2D,
Hod ([M O:I)SDp(%EGDZ{y. M*D,M < y2D, } 6.
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where D, is the standard u D-scales for full blocks,

S11n,
D2 = '.. s
671]1171

and P is the commuting structure associated with the repeated structure
of A!,
1k,
P =
Ik

n

For the second equivalent construction shown in Figure 6.2b, the re-
sulting upper bound is given by

0 M - ) D2 < yle
Hg,a2 ([ I 0 :l) 5D1>&%f2€p2 {y " M*(PoD)M < y’D, }’ (6.2)

with P and D, being the same as for the first construction. What is the
relationship between (6.1) and (6.2)?

To investigate this relationship, choose A ¢ to be composed of n non-
repeated complex scalar blocks. For this case, the original problem re-
duces to spherical u from Definition 3.2, and an upper bound is given by
(3.7). For this choice of Ay, (6.1) becomes

) . 1 oD; < )/21 0D2
VHsa (M) <, T o {y " M*(ID,)M < y?D, }

This is a cone-preserving LMI as introduced in Chapter 5, so at optimality
for the infimum the inequality is satisfied by an equality. The resulting
upper bound is

; 2. M (T o — 4
us(M) < min_{y*: M*(I o D2)M = y*Ds},

which results in exactly the same solution as the spherical ¢ upper bound
from (3.7). On the other hand, (6.2) becomes

r . ) IoD; < y*D,
uS(M) = D1>1g,1£2>0 {Y ) M*(IODl)M < },21 oDy }

This reduces to

: . * ° ° 2
s (M) 5D1>1g3£2>0{y : M*(IsD\)M < yI oD, < ¥?Di} .

(6.3)
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In the following, this upper bound (6.3) will be shown to be equivalent
to the standard y LMI upper bound (1.16). Choosing

D, = )’IODl anle =]oD,
it follows that
{y: M*I DM < yIoD; < yDi} <

inf
D1>0,D,>0
H(M).

. . * ° 2 °
D1]n>f0{y.M (IeDy)M < y*I o Dy}

Alternatively, if

X > IoY
2Jo(X-IoY) > 0 using Lemma 1.2
2>JoX > JoY

Applying this to the inequality yI o D, < yD,, it follows that

. . * ° ° 2
nggpo{y' M*(IeD))M <yl <D, < y°Di} =

inf {y : M*(IoD))M < yZIoDl}.

Dy1>0

Hence,

inf {)’Z M*(IODl)M<}’I°D2<}’D1}=7,I_(M).
Dy>0,D,>0
Therefore, this LMI upper bound (6.3) is equivalent to the standard y upper
bound in (1.16).

Why does commuting A? and A! result in a different upper bound?
The implication of the above observation is in the proper relaxation of the
problem which makes the upper bound exact; Lemma 6.1 does not hold.
For the scalar block case presented, the left equality holds, but the set on
the right is the standard ball in A-space as defined by | - | «.

6.2 The Inverse Problem

In trying to understand the reason for the difference between the two
upper bounds developed (6.1) and (6.2), it is necessary to know for what
problem is the spherical y upper bound exact. The problem for which the
upper bound is exact is of the standard y loop form as shown in Figure 1.3.
M is still a matrix, but A will be relaxed from an element in a set of constant
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matrices to an element of a set of operators on signals. Subsequently, x
and y switch from vectors to vector valued signals. The solution of the
inverse problem is a description of the set of operators for which the upper
bound is exact.

For the standard p formulation without spherical constraints, the up-
per bound inverse problem for full blocks was answered by Shamma and
Megretski in [41] and [26], respectively. This was extended to the repeated
complex scalar case by Paganini [35]. For the standard case, the solution to
the inverse problem is to replace |[A]l < 1 by ||A]| 1m-ina < 1. Additionally,
if A is constrained to be a nonlinear time-varying (NLTV) operator or linear
time varying (LTV) operator, the upper bound is still exact. The reason is
that the signal space description of the uncertainty is unchanged with this
added structure.

Leveraging off the results of [26] and [35] for IQCs and matrix valued
IQCs, the upper bound can be shown to be exact for the integral version
of the quadratic form associated with the spherical uncertainty set (3.13).
The difference between this construction and those of Megretski and Pa-
ganini is that for 1 quadratic form their LMI upper bounds are exact for
the vector form. As a result, the methodology used to close the gap for
multiple quadratic forms is used to close the gap for the one quadratic
form in this presentation. The extension to the generalizations in Chapter
4 is straightforward.

The possible values of the quadratic form are given by

S = JI°AMx,Mx) - Alx,x) (= Q(x)). (6.4)
xeX

If X = C" then S is a cone. If the LMI upper bound is feasible, then there
is a hyperplane which strictly separates, except for the x = 0, S from the
cone of positive semi-definite matrices. For this case § is not necessarily

convex, which leads to the gap between u; and its upper bound.
If X is relaxed to the set of all I} signals, then the closure of S, S, is
convex. The construction that follows is identical to that presented in [35].

Given
Q(x;) and Q(x2)e S

then it follows that

-n n
Q(z xlgzxz)eSVn
d -n n (
n];mQ(z x12+z xz) _ Q xl);Q(xg) cS
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where z7! is the standard shift operator. If there is a non-trivial inter-
section between the cone of positive semi-definite matrices and S, then
there is still an intersection if X is further restricted to ||x||;, < 1 because
without this restriction § is a cone. With this choice of X, § is convex and
compact. The set of positive semi-definite matrices is convex. It follows
that the separating hyperplane defined by the LMI variable D in (3.16) is
necessary and sufficient for the infimum [39].

The spherical uncertainty quadratic form (3.13) is a signal based de-
scription of the uncertainty operator BA for which the upper bound is
exact. The following theorem relates the signal space description to the
operator space description.

Theorem 6.3 The set of input-output signals consistent with

1 1
[(e0:2) - (entnz,)

is exactly the set described by the following IQC:

<1Vc¢; € Cwhered;y; = x;
l;‘,lé—md (6 5)

IToA(y,y) —A(x,x) 20 (6.6)
Proof:
H(cléll) e (cnén—l—) <1Vc, eC
C1 Cn/ i Bb—ind
by definition:
I3 cibi 12
< sup G100 Y <1V¢eC

yeir it 1712
n 1 1 n
< sup z C;ij <(5i_?i, 6j_57j> - 2 ”71“2 <0 Ve, e C
yeli \ij=1 Ci € i=1
applying a change of variables: y; = C%_?,-;
n n
< sup ( D cfei {6y diy) — > (CiJ’i,CiJ’i)) <0Vc¢ eC
yely \i,j=1 i=1
using x; = 6;y;

e Sihiackci(xixj) = S (civi,civi) <0
V¢; € C, V admissible signals x; and y;
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using ¢T = [c1,- -+ ,cal;
& cC*(A(x,x) —T1oA(y,¥))c <0Vc, eC
< IoA(y,y) —Alx,x) = 0.
(]

In the LTV case, the operator description for the uncertainty can be
simplified.

Corollary 6.4 |61, - - ,0n Iz p-ing <1 foré; € é1rv where 8;y; = x;

< ToA(y,y) - Alx,x) 2 0.

Proof: Theorem 6.3 holds if §; is restricted to be LTV. For LTV uncertainty,
¢ibig- = &, this simplifies [[(c;6:2) - - - (Cnbnz) gy ina <1 Veito
”61 e 611”1;1._1%_1'7“1 <1 d

If the operator conditions in Theorem 6.3 and Corollary 6.4 are re-
stricted to matrices, the result is the vector constraint

161+ bnll2 <1

which is equivalent original spherical constraint from (3.2).

6.3 Revisiting Full Blocks

With the conditions for exactness of the upper bound, the full block
problem is revisited. To understand the gap between the two bounds for
the spherical full block structured uncertainty case, only the signal rep-
resentation of the uncertainty is used. Referring back to Figure 4.3 for
the case where all the full blocks are scalar, the set of matrix valued IQCs
describing the uncertainty in signal space are

ToA(x,x)=210A(z,2) 2 A(y,y).
By choosing x = z, this reduces to
IoA(x,x) 2 Aly,y),

which is exactly the IQC associated with spherical uncertainty or the inte-
gral version of (3.13).
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For Figure 6.1, the set of matrix valued IQCs describing the uncertainty

are

ToA(x,x) = A(z,2)
IoA(z,2) = ToA(y,y).

(6.7)

The relationship between x and y is not clear. Theorem 6.5 shows that this
relationship is equivalent to the IQC related to the standard p uncertainty

description.

Theorem 6.5 The constraint on allowable signal pairs x,y imposed by (6.7)

is equivalent to the constraint imposed by

IToA(x,x)=210oA(y,y).

Proof:
<:
Choose

LN

0 l+kn+i,VkeZ
zi[l] =

( (k+1)n

S xFLxaljl)’ 3keZ: l=nk+i

For this choice of z:

(2.2, = 0 ]
P (e xi) i=j

Given:
ToA(x,x)=1A(y,y)

Using the above construction for z,

> 3dz: ToA(x,x) =A(2,2) =1A(z,2) =21 A(y,y)

IToA(x,x)=2A(z,2) @ o A(x,x) 210A(2,2)

2 ToAlx,x) 21 A(y,y)

The signal space description

ToA(x,x) 210A(y,y)



86

is the signal space description for the standard y upper bound inverse
problem. So the representation shown in Figure 6.1 with the spherical
constraint on the left uncertainty is equivalent to A with a standard un-
certainty structure in the operator case.

By solving the inverse problem, it is clear why there is a gap between
the upper bounds for the problems shown in Figure 6.2. Conceptually,
what is happening is that the admissible signals for the spherical uncer-
tainty structure are almost the same as the standard case, but there are
additional constraints on the output of the spherical block from terms like
(zi,zj). When the output of the spherical uncertainty goes directly into
a standard uncertainty, only the energy into the various channels of the
standard uncertainty are important. So with a particular choice of the sig-
nals z;[n], the additional constraints are not active. If the output of the
spherical uncertainty directly enters M, then there is no way to get around
the constraints on (z;, z;). Hence the apparent inconsistency between the
two formulations has been resolved.
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Chapter 7
u with Linear Cuts

Although the ellipsoidal regions may be sufficient to deal with the
generic exponential growth encountered in the probabilistic formulation
of u presented in Chapter 2, the accounting involved in tracking the result-
ing regions in uncertainty space and the associated probability computa-
tion become intractable. The natural choice for the fundamental region
or unit ball in A-space is the standard hypercube with an additional linear
constraint. This linear constraint need not be axially aligned and should
be chosen to be aligned with the boundary of singularity to efficiently grid
this boundary.

Further motivation for linear cuts is from the probabilistic y problem
when M has rank-one. For this problem the boundary of singularity is
a hyperplane. Armed with the knowledge that M is rank-one, it is easy
to answer the probabilistic y problem. Using the approach in Chapter
2, this computation still experiences exponential growth in computation
generically, because of the need to grid the boundary of singularity. The
B&B algorithm isn’t exploiting the special structure of the problem.

For the purposes of the upper bound computations presented here,
the linear constraint is given a priori and need not be chosen to be aligned
with the boundary of singularity.

Three different methods for constructing y LMI upper bounds for hy-
percubic regions with a linear cut are developed. One of the methods is
based upon the generalizations of spherical g and the associated upper
bound computations presented in Chapter 4, specifically elliptical g and
the intersection of regions.

The next method involves constructing an equivalent implicit u prob-
lem; by equivalent it is meant that implicit problem generically has a non-
trivial solution if and only if the originally linear cut problem has a nontriv-
ial solution. Effectively, the signal constraints of the implicit framework
are used to enforce the linear cut in A-space.
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The final method converts the linear cut problem to a standard y prob-
lem for which u is greater than or equal to u for the linear cut problem.
It follows that the standard upper bound for this problem is also an up-
per bound for y with a linear cut. The conversion involves a change of
variables in A-space and the associated matrix M is higher dimensional.

The quality and computational complexity of each method is discussed.
Exact bounds are achieved for rank-one problems with all the methods un-
der certain assumptions. Comparison of the three approaches for random
matrices are given through numerical examples.

7.1 p with Linear Cuts

Only nonrepeated scalar uncertainty structures are considered here.
Ultimately branching is only intended for real scalar uncertainties, and it
is easy to extend the results to the repeated scalar case. The standard y
region of a hypercube is generalized by the addition of a linear constraint
on the real uncertain parameters to the level sets in uncertainty space.
These level sets define the unit ball BA in A-space. The non-axially aligned
constraints are of the form

lco+cTél <y, (7.1)

where ¢ = [¢1,¢2,- -+ ,cx]T € R, and § = [6,,82,- - - ,6,]7T corresponds
to the parameters in A. This constraint defines the set in R" between the
two hyperplanes {6 : co+cTé = +1}. If 37, [¢;| > 1, then this is an active
constraint in shaping BA.

Definition 7.1 For M € R™", u with linear cuts is defined as

1
min {max{(co + cTé|, |All}: A € A,det(] - MA) = 0}

>

Hic,a (M)
(7.2)

unless det(I — MA) # 0, VA € A, in which case pea(M) 2 0.

For application to probabilistic robustness analysis, specifically grid-
ding the boundary of stability, this formulation for linear cuts is not very
useful. The problem is that the entire region in A-space is scaling with
y. For this to be a practical gridding methodology, the region must have
a fixed hypercubic substrate and allow the boundary of the non-axially
aligned constraint to be chosen to maximize the region of non-singularity.
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The resulting reformulation is similar to skew u, 1 from Section 1.5.
The basic idea is that for the GEVP associated with the upper bound com-
putation to remain convex, y must parameterize a nested family of regions
in A-space. Associated with each value of y is an LMI. The nesting insures
that if the LMI associated with yj is feasible, then all of the associated LMIs
are feasible for y > y,. Similarly, if the LMI associated with yq is infeasible,
hen all of the associated LMIs are infeasible for y < y,. For skew u, only
one of the uncertainty blocks scales by y. The remaining blocks have the
standard unity gain constraint. Assuming y only scales the final block of
A, the result is that y? only scales the part of the LMI variable D associated
with the last block scales, and the upper bound becomes

I 0O
y ; . M¥ _
u(M)sl%rg){y.MDM [0 yz]D<0}.

For the problem of probabilistic robustness analysis and the gridding
of the boundary of singularity, the appropriate modification of u is to only
scale the linear cut with y. The remaining constraints are fixed.

Definition 7.2 For M € R™™", [i;. is the skew version of u with linear cuts
and is defined as

- A 1
HieaM) = {inico + c76] A € BA,detT —MAa) =0 Y

unless det(I — MA) 2 0, VA € BA, in which case i o(M): = 0.

7.2 ;. Upper Bounds

Much like in the spherical case, it is easy to formulate new variations
of . These variations are normally computationally intractable and their
potential utility depends upon the existence of computationally tractable
bounds. The primary concern here is the computation of an upper bound.
Note that it is simple to extend the following upper bound formulations
and equivalent constructions to yca.

Ellipsoidal Cut

The linear constraints defined in (7.1) are the limit of a sequence of
off-center hyperellipsoids in parameter space as the eccentricity tends to
infinity. Using the upper bound for the intersection of regions presented
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in Chapter 4 and the appropriate modification for the skew nesting of
uncertainty sets, an LMI upper bound for fi;.» can be computed. The
construction fol%ows.

c .
Let T = cr | where c is the vector normal to the hyperplanes to
4

be approximated, |c|| = 1, and C, is the matrix whose columns form an
orthonormal basis for the kernel of ¢7. Then T is a unitary matrix. Let

1
1
P=TsT=T71| o T. (7.4)
e

o
Then the level set L, = {5 :VOTPS = %} describes the hyperellipsoid with
TR , 2 being the lengths of the axes. When 0; — (i = 2,...,n), L,
approaches the hyperplanes {§:c76 = i%}. To account for the asymme-
try due to co, the center of the ellipse must be moved. The appropriate
shift is Ag = —codiag[c]. This y and A, are the same as in the elliptical U
upper bound LMI (4.3). Combine this bound with the standard u feasibility
LM], which is the standard upper bound and can guarantee that y < 1 or
equivalently that det(I - MA) # 0 on BA, to construct an upper bound on
Ha,1c (M) using Section 4.8,

inf {y:M*(D,+ P 'oDy)M <Dy + y*(I - AgM)*D>(I — AgM) }.
D1€D,,D2>0 (7 5)

For the construction with nonrepeated real scalars and M € R**", the G-
scales for exploiting the real structure of the uncertainty do not improve
the bounds. For more general problems, (7.5) should include the G-scales.

However, with the high eccentricity of the ellipsoid, the upper bound
achieved is very conservative. And the conservativeness decreases when
the eccentricity is reduced, at the cost of worse approximation of the hy-
perplanes. The method implemented intersects a high eccentricity ellipse
with a less eccentric ellipse to try to improve the performance. As a result,
this optimization is not convex, because of the freedom in the choice of
the ellipses. There do exist schemes for finding a local optimum. This
leads to even more potential conservativeness.

Implicit Method

Within the implicit framework shown in Figure 1.4, the new feature in
this framework is the freedom to add algebraic constraints to the standard
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loop equation. Specifically, the signal constraint that Cx = 0 is added. For
u with a linear cut, (7.1) represents a constraint in the operator space A.
This operator must be converted to a signal constraint to cast fi;. as a
standard implicit y problem.

As one of the alternatives to the elliptical method, the following im-
plicit system in Figure 7.1 can be constructed to perform linear cuts on
BA. The construction is similar to the implicit formulation for spherical u
presented in [24].

Theorem 7.3 For generic k,

fica(M) <1 e (13(C,M) < 1,

where
A -
A= A : A€ A, by e R,
60 J
M 0 0]
M= K 0 0 |,C=[cok™ cT 1].
kT 0 0 |
kT
Where kT € C™ is an arbitrary row vector, and K = : e Cmxn,
kT

Proof: The structure of the implicit system in Figure 7.1 is the graphical
construction associated with M, €, and A. This construction imposes
the following relationship in addition to the original interconnection
between A and M, using v; = kTx:

(%1 (Sl‘Ul

V) 5nv1

The imposed algebraic constraint on the signal is

n
601}1 = cTu = (Z Ciél') Vi-
i=1
Generically, v; # 0 over the space of possible choices for k, hence,
Z Ci6i
i=1

1> |50] = = |CT5|-
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A € BA, < A € BA.

The remainder of the proof follows from the definitions of fi;. (M)

and ji; (C, M). O
Yy X
v A u
A
. 50
M 0 O
KT" K 0 0
kX1 kT 0 0
[_ CokT CT -1
0

Figure 7.1: Implicit System Constructed for Linear Constraints

Figure 7.1 is the block diagram formulation for the construction in Theo-
rem 7.3.
The computation of the upper bound involves the following issues:

o Permutations on the rows and columns of M are needed such that A
consists of n 2 x 2 repeated real scalar blocks and one real scalar.
The upper bound formula actually used in the computation is a bit
more involved than (1.21) due to the existence of the repeated scalar
blocks. The proper generalization involves the G-scales to exploit
the structure of the real uncertainty.

e The scalar y? in the upper bound (1.21) should be replaced by the

IZn

matrix S, = [ )2 jl Then only the linear constraint |co+c7 6| <

% is scaled, while the unit ball for the original parameters remain
fixed during the y iteration.
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e The quality of the upper bound depends largely on the choice of
the vector k in M. The optimization problem including k is non-
convex, which is also an interesting research problem. Right now as
a heuristic we pick k to be the input vector of M corresponding to
its maximum singular value to make M more like a rank-one matrix,
due to the fact that the upper bound is exact when M is rank-one.
And the performance of the upper bounds achieved is much better
than those with random chosen k.

« It may be useful to have redundant constraints for the upper bound
computation.

Parallelogram Method

To simplify the presentation of the third method, it is assumed the
co = 0. When ¢y # 0 the construction is even more conservative and the
numerical experience indicate that this isn’t the approach to take. For the
examples presented ¢y = 0.

The parallelogram method is similar to the implicit formulation, in that
both convert the linear constraint |cTé| < 1 into a norm constraint on a
scalar éo, and the matrix dimension is increased in both cases. In this
method, only the standard y upper bound computation is involved. The
cost is some extra regions outside BA;. have to be included when checking
for nonzero solutions. This may lead to conservativeness and forces u for
this new problem to be an upper bound for ..

ép is defined to be

60 = C1(51 + C262 + -+ cnén.

Therefore
1cTé| <1 e |6y < 1.

Let A = diag[éo, 02,05, - ,0n,0n], then

A = P APy, (7.6)
where ~
[ 1 - 0 -c3 0 --. -, O
0 0 1

P = 0 1 ,
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and
1 7
C11
EO
0 1
1
= 0
— | a
Pr=179
1
5] O
| 0 L |

But the unit ball BA doesn’t map to BA,. using (7.6). The mapping of BA
contains BA..

Setting M = PgMP;. Then the skew u upper bound on fiz (M) is also
an upper bound on i 4 (M). This follows from the definition of y and the
existence of non-zero solutions. As the simple example, Figure 7.2 shows
mapping of the unit norm bounded set in A to the left, while the region
for a linear cut is the one to the right. The potential conservativeness of
this bound is obvious.

Figure 7.2: BA and BA

The reason for the conservativeness is in performing the change of
variables the norm constraint on §; no longer exists in the reformulation.
&1 is not in A and has been replaced by 8, which is used to define the linear
cut. Alternatively, a different §; can be left off. By leaving out a different
61, the associated added regions are different. If the &; with the maximum
¢; is chosen, the volume of the extra region is minimized, and this will
be a heuristic used to, hopefully, minimize the conservativeness of the
bound. This heuristic is supported by the results of numerical experience.
The excess regions can be excluded by adding an implicit constraint as
presented in Section 7.2 but will not be pursued.
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7.3 Numerical Examples

Rank-one problems are the motivation for doing linear cuts. So ran-
dom rank-one matrices were used to test the effectiveness of the above
methods. It turns out, just like the standard y upper bound, the upper
bounds achieved on fi;. (M) with all the three methods are exact when M
is rank-one, which is not surprising because essentially the elliptical cut
and implicit methods are just extensions of the standard u upper bound,
and the parallelogram method employs the standard u computation di-
rectly, and the conservativeness caused by extra regions doesn't exist in
the rank-one case, assuming the cuts are appropriately aligned with the
level sets. If the level sets aren’t appropriately aligned with the cut, then
the parallelogram method will be conservative.

For general random matrices where each element is random, the rela-
tive performance of the different methods varies with the problem. Fig-
ures 7.3 and 7.4 show the results for two random matrices. For Figure 7.3,
the elliptical cut method works better than the implicit method, while the
parallelogram method doesn’t achieve any bound because of its conserva-
tiveness.

For Figures 7.3 and 7.4, {i = 2, ¢y = 0 and the normal vector c is chosen
to be the gradient of the maximum real eigenvalue function at the vertex
p where the worst case is achieved. The curve marked by “x™s is the
boundary where the singularity of I — MA occurs.

solid: elliptical
dashed: impilicit |

Figure 7.3: Example 1
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In Figure 7.4, both the implicit method and the parallelogram method
achieve the exact bound while the performance of the elliptical cut is very
poor.

«N 0

-0.5

-1+

1.5 f- sohdelhptlcal ..... ............ P AU, \\\

dashed lmpllcn&p aIIeIogram
22 15 -1 -05 g 05 1 1.5 2

Figure 7.4: Example 2

The table in Figure 7.5 shows the results of applying the three methods
for computing upper bounds to 25 random matrices of dimension 2,3,and
4. The problems are constructed so that 1 is a guaranteed lower bound to
Hic.a (M), but the actual value is unknown. For some problems, the paral-
lelogram and ellipsoid method are unable to find any bound to Hica(M).
The entries in the column labeled # indicate the number of problems for
which that method was able to compute an upper bound. The entries in
the column labeled CPU indicate the CPU time in seconds on a Sun Ultra
1 using SDPSOL for solving LMIs. The entries in the column labeled avg.
bnd is the average upper bound computed for the problems that the as-
sociated method was able to compute a bound. The CPU time is left blank
for the ellipsoid method because the bounds computed used methods to
try to solve the nonconvex optimization problem which resulted in signifi-
cantly longer computation time. The implicit method gives by far the best
bounds, especially as the dimension increases. Additionally the implicit
and parallelogram methods are almost identical in terms of computation
time. The implicit is hands down the best of the three methods.
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Dimension n=2 n=3 n=4
Method # | avg. bnd CPU # | avg. bnd CPU # | avg. bnd CPU
Implicit 25 1.0163 7572 | 25 1.2559 2.5392 | 25 1.5963 2.904

Parallelogram | 25 1.1534 7864 | 25 1.5031 2.5324 | 23 2.0485 2.900
Ellipsoid 25 1.0811 14 1.5137 12 5.7061

Figure 7.5: Numerical Upper Bound Results for Random Problems

7.4 Choosing the Linear Cut

To use the linear cut formulation for computing S for purely prob-
abilistic u from Definition 2.3, the normal vector ¢ must be computed.
What is desired is a vector normal to the boundary of singularity at the
singular point closest to some point in A-space. From a practical point of
view, there are a number of approximate methods to compute this linear
constraint to be aligned with the boundary of singularity.

A possible method to compute this gradient is from power algorithm
methodologies [29] for computing the u lower bound. If the algorithm
finds a local minimum rather than a global minimum, then the associated
gradient would yield a conservative non-singular region and doesn’t help
the cause against exponential growth. Alternatively, a pseudo-gradient can
be constructed by computing upper bounds for a number of u problems.
The different ¢ problems are closely related:; they use the same M and
uncertainty structure A but use different points in A-space as the origin.
There are no guarantees on the quality of the pseudo-gradient. These
issues will not be addressed further.
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Chapter 8

Hierarchical Uncertain Modelling

For the modelling of complex systems, the natural reductionist ap-
proach is to divide a system into subsystems and model each subsystem
separately. The traditional reductionist view is that if the model of each
component is accurate, then the behavior predicted by the interconnection
of the subsystem models will accurately predict the behavior of the real
composite system.

One of the lessons from control theory is that the above statement is
not true. The problem is feedback. For a poorly designed system, the
performance of the conglomerate system will be highly sensitive to the
gap between reality and the subsystem models. Often subsystems are
buffered from each other to restrict the coupling of the dynamics of the
subsystems which simplifies the design process to just component issues
rather than system issues. It is a protocol of sorts. This has been highly
successful in digital VLSI. The downside of this overhead is conservatism
in achievable performance.

There is a tradeoff between model fidelity and complexity. Ultimately,
the model used to answer a question should be the least complex model
which is sufficient to answer the question at hand. For a complex system,
it is unlikely that a single model will suffice. What is needed is a family of
models from which to choose an appropriate model. Robustness analysis
presents a powerful tool not only for making predictions about the per-
formance of complex systems, but also determining if an uncertain model
is sufficient to guarantee performance.

A possible modelling paradigm is to have a single high order best model
and perform systematic model reduction with different weights as neces-
sary. This formulation for hierarchical modelling brings up the issue of
uncertain model reduction in a behavioral setting, which is a hard problem
and some work has been done by Beck in [4]. Although further progress
may be made in behavioral model reduction, it is unlikely that the com-
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putation will progress to the point where it is tractable to mode] reduce
the interconnection of phenomenon described by partial differential equa-
tions (PDEs). As a result, it is necessary to use hand crafted family of pre-
constructed uncertain models within the paradigm presented here. These
points will not be addressed further.

The issues which will be addressed are the choices made and a flaw of
the reductionist approach.

8.1 Choices

A modelling framework involves choices. The hierarchical modelling
paradigm chosen is a byproduct of reductionist approach to modelling. In
the case of an automobile, at the simplest level it may be appropriate to
think of the vehicle as a rigid body. If further detail is necessary, it may
be appropriate to model the car as the interconnection of springs, rods,
beams, dampers, and so on. Each of these parts could be further described
by finite element models.

The second choice made is the inclusion uncertainty in the models. For
a real system, there is a gap between reality and a mathematical model.
Hence, finding an exact model is impossible and characterizing the inex-
actness is critical for making guarantees on system performance using the
mathematical model. In the case of a resistor, there is uncertainty on the
exact value of the resistance and the parasitics. When a model is reduced,
the eliminated dynamics must be covered by uncertainty. This is useful
when cruder models with more uncertainty are sufficient for answering a
particular question which may lead to reduced computation.

The next choice made is a tree structured hierarchy. This hierarchy de-
fines a partial ordering of all the models for a system. The partial ordering
is necessary because different phenomena should be modelled at different
levels of accuracy depending on the question to be answered. The model
needed to predict the emissions for a car would be quite different than
one useful for passenger comfort.

This hierarchy also follows from the reductionist point of view of the
subdivision of a system. For example, modelling all the facets of a car is
quite a task, but the natural approach is to break up the car into more
tractable components and model them individually. So rather than mod-
elling the entire car, a car is an interconnection of an engine, transmission,
exhaust system, cooling system, suspension, etc., and each of the compo-
nents is modelled separately.
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A benefit of the tree structure is the connection with the object oriented
philosophy. The tree defines how the components interact with each other,
which simplifies future modifications, because if a system is modified,
only the modified component and the models which depend upon this
component needs to be remodelled, and the other component models will
remain intact.

Another choice is that the model will be constructed, implemented and
used on a computer. As a result, the data structures should be conve-
nient and tractable for computer implementation as opposed to writing
them out by hand. The reason for this choice is that as more complicated
systems have more and more detailed models and are to be analyzed or
simulated, it is intractable to do them any other way.

The proposed framework is defined by a hierarchical tree structure
of the components, an interconnection structure of the components, and
a fundamental data type for a component. Throughout this paper, an
inductor is used to demonstrate the features of the framework.

8.2 Component Modelling

In the same way that a system has many different models, so does a
component; after all, the component is a system itself. For the component,
there are a number of composite models representing the entire system.
These models would have their own hierarchy. Imagine that the compo-
nent consists of a discrete switch which trades of complexity and fidelity.
This switch may be multidimensional to be compatible with the partial
order of models. If none of the component models are satisfactory, then
the component is described by the subcomponents which make it up.

Hence the component model has two modes. The first mode is when the
switch points to a particular model. In the second mode the switch points
to the reticulation, and the component model defines the interconnection
of subcomponents, which may also be modelled by subcomponents.

First Mode

Consider the ideal inductor shown in Figure 8.1 with behavior described
by
a .
E(Ll) =V
with inductance L, where v is an input, i is an output, and ¢ is the flux in
the inductor. The resulting LFT model (Figure 1.1) of the system is given
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Figure 8.1: Inductor

A | B 0 1
byu=v,x=¢,y=i,A=f,and[CIID]=[1/L||0]. As a

result of choosing this model of an inductor, two problems arise. First,
if the effects of uncertainty in L, nonlinearities and parasitics, are to be
investigated, there is no convenient way to do this without starting over.
Second, by assuming that v is an input and i is an output, our model may
be incompatible with other components with which it is interconnected as
shown in Figure 8.2. Figure 8.2 represents an input/output interpretation
of two inductors connected in series (i; = i,). The connection of the two

X1
0 1
i1 L v
1 I 0| 1
X
0
il L 0 V2
L» '

Figure 8.2: Series Interconnection of Inductors

outputs is not properly defined within the input/output framework. These
two problems are addressed next.
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Problem 1: Uncertainty

The solution to the first problem is easily addressed in the LFT frame-
work. For the inductor example in Figure 8.1, the modelled equations
should be replaced by d¢p/dt = v and ¢ = L(I) = Ly(1 + &)i, where L,
is a constant which represents the nominal value of the inductor and §
Is an unknown operator. The model of the uncertain inductor is given by

AlB 0 0 |1
y=1ix=[¢,x],u=v, [T’—D-:, =) 1/Lp -1/Lo |0 [, and A =
1/Ly -1/Lo |0

[ (f) s |- x 1s not a state in the conventional sense but the output §

[5]. 6 could represent time variation in the inductance due to saturation,
variations in the core geometry, magnetic links to other components, non-
linearities, and so on.

Problem 2: Interconnection Compatibility

LFTs provide a flexible modelling framework for incorporating uncer-
tainty descriptions, but the input-output assumption is not desirable for
the modelling of interconnected systems. It is not a priori known which
variables should be treated as inputs and which should be treated as out-
puts [44].

For tree structured hierarchical models, at the interconnections there
isn’ta notion of signal flow. The interconnection variables become internal
variables to the system rather than inputs or outputs. So it is more natural
to not make the distinction between inputs and outputs in modelling.

To address the second problem, systems will be represented in an im-
plicit LFT form where 0 = (A » M)w as shown in Figure 1.2. There is no
issue of compatibility between implicit LFT models of components because
no input-output partition has been made.

For the inductor example, the implicit model of the inductor is given
byde/dt = v, Lo(1+6)(i) = ¢, w = [v, i],

;0
s |

0 Lo

0 Lo
[+? 5]2 0 01 0 ,andA=[
-1 01 O

O &a
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Generality

For the fundamental components in this modelling system, the model
must be general enough to describe any situation which may occur. The
model should have some information about the component, so that each
component isn’t just an arbitrary operator. The information is contained
in the nominal value of the component. There should be no irreversible as-
sumptions made. For example, the standard circuit equation for an induc-
torisV = L-di/dt. If this were the fundamental model of an inductor, the
assumption has been made that L is a constant. If L were blindly replaced
by L(t), the resulting model would be incorrect. The actual equations for
an inductor are given in equations 8.1 and 8.2.

¢=Li (8.1)

kv = de/dt (8.2)

Once the model is constructed and analysis, synthesis, or simulation is
the next step, then any assumptions can be made about our uncertainty
like A; is a real parameter, a bounded operator, etc., but this is after the
modelling process and a part of the identification process.

The weakest possible assumptions about the inductor (L,k) are to be
made, so that wide variety of uncertainty assumptions can be made at the
analysis level. L and k are assumed to be a non-commuting indeterminates
(NClIs), i.e., it could be an arbitrary nonlinear, time-varying operator. For a
real inductor, its nominal value is of use in describing its operation. For
modelling, L := Lo+ A; and k := 1 + A,, where A; and A, are NCIs and Ly
is a “place holder” for the nominal inductance. L, is used to describe the
ideal model of an inductor. NCI's act as “place holders” for uncertainty
descriptions. Itis important to note that by setting L := Ly+A; we have not
committed to anything. This can be undone by defining A; := —Lo+ A pew.
The L, term is added because the nominal value is presumably useful in
describing the operation of the system.

Second Mode

In the second mode the component describes the interconnection of
subcomponents. Given that the leaves of the model tree are implicit mod-
els and it is the nodes in the second mode which connect the system to-
gether and form the composite model. It follows that the second mode
models are themselves implicit systems which only describe an algebraic
constraint on the signals that are routed through the associated node.
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8.3 Component Data Type

There is no fundamental difference between modes 1 and 2. Mode 1
is a special case of mode 2 with only one subcomponent. The distinction
is useful for the problem of model choice 8.4. It is natural to have more
than one possible model available in mode 1. Often a number of high
level models for a component are desirable. Similarly, it is possible to
have multiple decompositions available in mode 2, but this is somewhat
inconsistent with the reductionist philosophy, and this flexibility will not
be exploited here.

Each component is modelled as a switch as shown in Figure 8.3. This
Parent Switch
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Switch qu)
)

=

WA

® o) —
«b]

=

—

o

Leaf Leaf Leaf Leaf

Figure 8.3: Component Model

switch is connected to other switches or up to one other switch (to no
other switches if it is the root component) and one leaf model.

The hierarchical structure of a system modelled using this framework
is a tree (Figure 8.4). At each component node of the tree there is a com-
ponent model. Each leaf node is associated with a leaf model.

Both the leaf and component models are represented by implicit LFT
systems. For the component models, the generalized state dimension is
zero. The system variables w for such models are partitioned as:

w=[wm lm].
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Figure 8.4: Hierarchical Structure

Wpm are the manifest variables or the signals of interest for the outside
world. l,, are the latent manifest variables or the signals needed to inter-
connect the subcomponents and connect them to the outside world or to
connect the leaf node to the outside world. In mode 1, it follows that the
dimension of w,, is equal to the dimension of 1,,. In mode 2, it is expected
that the dimension of w,, is less than the dimension of [,, because of the
extra signals need to describe the interconnection of the subcomponents.

The implicit system used to model the switch or component model is

given by
0=[T T |w.
The switches only contain interconnection information. The dynamical
and uncertainty information is contained within the leaf models.

The system variables for the leaf models, w, are just the manifest vari-
ables wy, (interconnection variables from the switch). The dynamics at the
leaf node are given by 0 = (M * A)w where

A =diag (%I,qll,--- Anl, Ay, - - - ,An) (8.3)
q; are arbitrary constants. A; are noncommuting indeterminates and can
be used for unmodeled dynamics or nonlinearities to be specified later. A
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is used to describe the dynamics and uncertainty of the nominal compo-
nent. Within A the standard dynamic element is diit— instead of the standard
J. The reason for this choice is that technically f is not an operator be-
cause an initial condition must be specified. Ultimately all that is being
done is writing differential equations in a distributed way. Hopefully this
effort is distributed in a way that is useful for the engineering endeavor.

8.4 System Refinement/Model Choice

So far an elaborate framework for representing hierarchical uncertain
models has been presented. Assuming that such a construction exists and
all of the NCIs have been refined to have a specific description, there is still
the issue of choosing a model from this hierarchy given the question to
be answered. Putting this into a robustness analysis context, what is the
simplist model which is good enough to answer a particular question with
sufficient accuracy. One solution is to compute all models which are good
enough and choose the simplist, but this is computationally intractable as
you get combinatoric growth with all the leaf models.

The approach proposed is a scheme for choosing which leaf model
to refine. Associated with each leaf is an uncertainty structure. Presum-
ably, as that component is refined, the uncertainty will be reduced. This
is assuming that the partial ordering of the models is consistent with the
associated behaviors. By finding the uncertainty to which the model’s pre-
dictive performance is most sensitive, then refinement of that component
should lead to improved model performance. If this process is started
from the simplist high level model, then the model will be systematically
refined until a satisfactory model is found. In general, this approach will
not yield the simplest model but may be good enough. If the robustness
analysis formulation for the question and associated performance can be
cast as a y problem, then the sensitivity computation can be cast as n-skew
H problems where 7 is the number of leaf models in the system model.
The component for which skew-u is the greatest would be a heuristic for
“the component to which our current model is most sensitive and whose
refinement would help the predictive power of the model the most.

8.5 Flaw

In this proposed reductionist approach to hierarchical modelling, there
is a flaw. The assumption is made that the leaf models can be refined inde-
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pendently and they will still be compatible. The big problem is incorporat-
ing continuum phenomenon described by PDEs which are interconnected
along a boundary. From a computation and representation standpoint, al-
though these phenomenon may be from different domains like fluids and
structures in the case of aeroelastic instabilities (flutter), the modelling
and the models must be linked so that the discretizations are compati-
ble. At the lowest level, essentially all models are linked in this manner
and there is no distribution to the hierarchy. It becomes a strict ordering
rather than a partial ordering. In trying to deal with these sorts of linkages
between subcomponents, the reductionist approach breaks down.
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Chapter 9

Implicit Identification

In the process of modelling the interconnection of systems, the inter-
connection is described by a constraint on a set of signals or intercon-
nection variables. For example, if two masses are bolted together so that
the interconnection can be considered rigid, then the resulting constraint
is that the position and orientation of the masses at the interconnection
point are the same. Additionally, the forces and torques at the intercon-
nection are equal in magnitude but in opposite direction. For building
system models from component models, the component models must in-
clude the interconnection signals.

Often the natural choices for inputs and outputs for a subsystem do
not contain the interconnection variables. This arises when applying black
box identification methodologies. Within these methodologies, the system
is excited by sending a known signal to the actuators of a system and
a model is constructed from the data from the sensors. If the system
does not have actuators and sensors at the interconnection point then
a model appropriate for interconnection cannot be constructed using a
traditional black box methodology. In this presentation, this problem will
be addressed by the use of passive excitation to identify the system. By
passive excitation, it is meant that the interconnection point is not driven
by an actuator but a separate but known system.

For this problem it is assumed that for the system to be identified, the
interconnection point cannot be driven, meaning that there are no actu-
ators at the interconnection point. Additionally, the system will be con-
nected to known system. The desire is to construct a sufficiently general
model of the original system, so that when the system is interconnected
with a known system the new input-output model can be determined with-
out repeating the identification procedure for the aggregate system. When
the term input-output model is used, it is referring to the model relating
the input of the actuators to the output of the sensors for a particular
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attached structure.

If a black box identification of the system is carried out with a known
system attached at the interconnection point, the resulting model is not
general enough to predict the model for any known system at the attach-
ment. Presumably there is partial information in this input-output model
and the associated attached system which would be useful in constructing
a general model for predicted input-output models.

The following questions arise naturally: what additional information
needs to be known to construct a general model? How many input-output
models are needed to construct a general model? What sorts of systems
should be interconnected with the system? Can everything about the sys-
tem be determined?

The motivation for this sort of modelling is that a system can interact
with the outside world via more than just the inputs and outputs defined
by the sensors and actuators on a system. For example, a car is affected not
only by the surface of the road, but also by how it has been loaded (people,
luggage, toys). The “manifest” variables, or signals of interest, of our more
general model are the inputs, outputs, and the relevant interconnection
variables. These would be all the signals that come from or relate to the
world outside of our original system.

A natural framework for describing this model is the behavioral frame-
work. Although this problem can be considered in other frameworks, the
behavioral framework provides a convenient and systematic method for
interconnecting systems, especially when it is not known to what the sys-
tem might be connected. It also simplifies the issue of partitioning the
interconnection variables into inputs and outputs; this partition is not
necessary so it isn’t done.

9.1 Behavioral Framework

For a detailed description of the framework, the reader is referred to
Willems [44]. Further the behavioral framework is a special case of the
implicit LFT framework presented in Section 1.3. In the behavioral frame-
work, all of the external variables are on equal footing. There is no dis-
tinction between inputs and outputs, much in the same way as models are
constructed from first principles. From first principles, only the pertinent
equations are written. There is no distinction between inputs and outputs;
they are merely system variable or potential boundary conditions. This
formulation is natural for defining interconnections. Determining which
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signals are inputs and which are outputs depends on what the system is
interconnected with. For example, the flexible structure to be discussed
later has manifest variables of inputs and outputs, and accelerations and
forces for an interconnection point on the structure. If nothing is attached
to the structure, then the forces at the interconnection point are exactly
0. This would lead to the interpretation that the forces are inputs and
the accelerations are outputs. The system could also be connected to a
rigid point in which case the accelerations are exactly 0. The forces at the
interconnection are then whatever they must be to satisfy this condition,
hence the forces would be interpreted as outputs. Thus, if a framework is
chosen such that the interconnection variables aren’t on an equal footing,
then one would have to alter the model and algorithm, depending on how
the variables were initially partitioned.

The behavioral model of a system defines the set of allowable trajec-
tories for the system. A trajectory is a time evolution of all the manifest
variables. For example, a point mass (=m Kg) with manifest variables of
force (=F Newtons) and acceleration (=a M/s?) satisfies:

F(t) = ma(t)

If either F(t) or a(t) is defined, then the remaining variables are defined.
Obviously not all trajectories are allowable, that is both F(t) and a(t) can-
not be defined arbitrarily. The representation used here is the implicit LFT
representation for A = 11,

9.2 Problem Statement

For the development presented here, it is assumed that the signals

can be partitioned like the ON model, which includes the interconnection
variables, shown in Figure 9.1.
t is the actuated inputs, 6 is the measured outputs, ¢ is the first set of
interconnection variables which are difficult to actuate, and « is second
set of interconnection variables which could be sensed. The purpose of
partitioning the interconnection variables is that a particular system that
relates ¢ and o will be used. It is assumed that (A, B) is controllable and
[C2 D] isrightinvertible. If this is not true then the identification problem
is hopeless. The first condition is obvious and the second condition says
that & can essentially be driven arbitrarily by t.

The goal is to determine the ON model of a system from the Input-
Output models associated algebraic relationships between ¢ and . There
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Figure 9.1: ON Representation of an Interconnection System

are a number of reasons for choosing algebraic relationships between ¢
and «. First, it has the same flavor as using differential-algebraic rela-
tionship between ¢ and «, in that it leads to the same conclusions. Sec-
ond, the differential-algebraic formulation is not an interesting extension
and only serves to worsen the algebra involved. Third, for some physical
problems an algebraic relationship corresponds to simple elements like
a masses and moment of inertias to a mechanical structure, where ¢ are
the interconnection forces (and torques) and « are the interconnection
accelerations (and angular accelerations).

Note that for physical reasons, it isn’t always possible to implement
any algebraic relationship between ¢ and «. The relationship is restricted
to a block diagonal structure with repeated elements similar to the y un-
certainty structures; this constraint is chosen based on the mechanical
motivation of attaching masses to a known structure. It isn’t possible to
have different masses for translation in the x and y directions without
resorting to an elaborate physical setup.

The motivation for this sort of identification is to avoid attaching actu-
ators and sensors to obtain the interconnection signals to determine the
behavioral model.

9.3 No Information Problem

It is assumed that only the inputs can be driven by an arbitrary signal
and only the outputs can be measured, that is to say there is no information
about the interconnection. How much information about the general ON
mode] can be extracted from the various I/0 models and the associated

attached systems?
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Claim: A unique solution up to an equivalence transformation for the
structured ON model (Figure 9.1) consistent with the I/0 data does not
exist.

Argument: The basic idea is to assume there exists a unique solution
and construct another solution that is consistent with all of the 1/0 data.
Another realization of the interconnected system is shown in Figure 9.2,
where M defines the algebraic constraint associated with the interconnec-
tion system. There is an algebraic loop in this block diagram. The physical

0| Hyy Hp fe—"

X | Hy Hyp P

[; M j
Figure 9.2: System Interconnected with an Algebraic Relation on Intercon-
nection Variable

interpretation of the algebraic loop for the case of mechanical systems is
equivalent to a mass being bolted with a mass which is a part of the original
system, where the interconnection variables are forces and accelerations.

The reason for this switch in realizations from an ON model to a trans-
fer matrix model form is to motivate the argument graphically rather than
algebraically, making the following argument easier to understand. H; j are
transfer matrices which are equivalent to the assumed unique solution of
the ON model for a particular partitioning of the interconnection variables
and M is the algebraic constraint associated with the test interconnection.
Physically there may be some restrictions on the possible M. For example,
M € Q, where ) is the set of realizable mass matrices. Hence Q has no
negative masses and no masses that accelerate perpendicularly to applied
forces. The elements of Q must be constant and may have structure. Ad-
ditionally, with particular choices of the accelerations and forces, M € Q
is a diagonal matrix which may have relationships between the elements
on the diagonal.

Assuming that K commutes with all M €  (KM=MK) then Figure 9.3
is consistent with all of the I/0 data and what is inside the dashed box is
indistinguishable for the set of all K. Therefore, at best the general model
can be solved up to the set of systems parameterized by K by doing 1/0
models only with algebraic constraints. Figure 9.4 describes the set of
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Figure 9.3: Interconnected with Algebraic Constraint and Commuting K

all consistent models. If the attached system commutes with all possible

—~———] H11 H12K_1 fe———

® e |  KHy KHpK'! | @

Figure 9.4: Consistent Models Defined by Commuting K's

K’s, then any consistent model will predict the correct I/0 model, but in
general, where M is not a scalar, it is easy to construct more complicated
systems which violates the structure assumed for M and doesn’t commute
with all K’s.

9.4 ,’ Half Information Problem

In this problem, it is assumed that half of the interconnection signais
are available. Specifically, « is measured. Either the system was originally
designed so that there are appropriate sensors at this point, or they have
been added to the original system. For the case of mechanical systems
this would be the addition of accelerometers.

If the system is identified with the interconnection constraint b =0,
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then the state space I/0 model from Figure 9.1

Al B
G | Dy
Gy | Dy

is obtained. Because o can be measured, they can be considered a part
of the set of outputs for when the structure is [/0 modeled. So the entire
ON model of the system (Figure 9.1) is determined except for B 7, Dy, and
Dg¢;.

Next the system is identified with a known interconnection constraint,

Disdp = —cx. (9.1)

The identified model is:

(9.2)

The 1/0 model predicted by the ON model of the system with the known
Interconnection constraint in (9.1) can be constructed. The ON model (Fig-
ure 9.1) is interconnected with the ON model of the algebraic constraint,

0= Dy I][ZZ]

The interconnection variables for the mass are o, and ¢, where the in-
terconnection is defined by (Using (1.5))

0071 0]
TI:[OOOIJ

and

001 0]
Tzz[oooqj'

The choice of & = a; and ¢ = —¢b, is motivated from mechanical systems,
where the forces are opposite and the accelerations are equal. The ON
representation of the interconnected system is: This can be simplified to
determine the predicted 1/0 model of the system by solving for 0 and «
in terms of x and ( only:

A+BfTC, | B+ BsTD,
C1 + Df1 TCZ Dy + Df1 TDZ (93)
—-DiTC, —DifTD,
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Figure 9.5: ON Rep. of a Structure Connected to D;}

where
T2 —(Dif + Dg)"" (9.4)

Now the predicted I/0 model of the interconnected system (9.3) is
equated with the identified I/0 model (9.2) of the interconnected system.
The state space models may differ by a similarity transformation-S and
still be equivalent:

Unknown: S,Bf,T,Ds1, Dy,

Given: A,B,Ci,C»,D1,D2,A,B,Cy,Ca,D1,D,, Dy

(C1+Df1TC2)S D, +Df1TD2
—(DifTGC) S ~DifTD;,

—

S (A+BfTC,)S S~ '(B+BsfTD,) A B
=|C, D
C, D; | (9.5)

Using algebraic manipulations, (9.5) can be converted into

AS — SA - BfD;}C; 0
SB+BD}D B
FEif 2 = = (9.6)
CiS — Dp1DFC C,
DsD}D; D, - D,

which is linear in the unknowns. There exists a unique least squares so-
lution to this system of linear equations under mild conditions. The only
remaining unknowns are: T and Dy;

T[CZS Dz]=—D;fl[Ez 52]
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T =-D;} [ C, D, ]R 9.7)

where R is defined by
I=[ GS D; |R

and from the definition of T (9.4),
Df2 =-T1 —Dif. (9.8)

Now all of the terms in the ON model have been found. The ON model of
the system has been determined from two I/O models of the system with
different attached systems, no attachment and a mass.

9.5 Concluding Remarks

This development is a possible methodology for doing the behavioral
identification of a flexible structure when some of the signals cannot be
actuated actively. The methodology would be the attachment of a known
system for passive excitation and the addition of sensors to measure some
of the interconnection information. Accelerometers are easy to add to a
structure, where trying to drive this interconnections and measuring the
driving forces (strain gauges) is much more difficult. This lends to the
formulation of the half information problem.

The solution/computation presented in (9.6), (9.7), and (9.8) is a proof
that there is sufficient information from the two black box identification
procedure to reconstruct the model. The linear system of equations is
overconstrained and for a real problem there is no solution. The least
squares approach to construct a solution would minimize the error in the
state space terms, which is not the desired minimization of the gap [20, 43]
between the behaviors. This computation should be reformulated.
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Chapter 10

Conclusions and Future Directions

The probabilistic formulation for p is a natural extension of the u-
framework can be used to describe probabilistic sets of model. This in
turn can be used to address probabilistic robustness questions. A simple
approach to this problem is to extend the branch and bound methodolo-
gles to perform an advanced method of gridding of parameter space to
obtain local information. This local information can be used to compute
bounds to the probabilistic robustness questions.

This approach has a significant limitation in the growth of the compu-
tation cost as a function of problem size. The linear cut approach should
improve the-cost associated with gridding the boundary of singularity and
make the computation for small sized problems tractable. This is a nat-
ural direction for future extensions of the work presented. It is unlikely
that the exotic gridding techniques will be useful for problems with a large
number of parameters unless the problem is sensitive only to a few param-
eters. In which case, identifying these parameters would be crucial to the
success of the methodology.

Although the formulation of spherical u and its extensions are not use-
ful for the linear cut problem that motivated their development, they do
increase the richness of the set of uncertain models in the LFT framework
that admit analysis. The connection between ellipsoidal uncertainty and
parameter estimation procedures would result in tighter analysis for a
broader class of robustness questions than are currently being addressed
in the literature.

In order to apply the separating hyperplane argument to construct an
upper bound for a u problem, it is necessary to convert the operator de-
scription of A to a quadratic signal space description. For many operator
descriptions this is not possible. Generalizing the implicit construction
for computing an upper bound to g with linear cuts, tractable LMI upper
bounds for very exotic set descriptions for BA can be computed.
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The machinery developed for the fast computation for the spherical u
upper bound can be extended to a broader class of LMIs and even further to
general linear order inequalities. The contribution of this work is describ-
ing special structure that can be exploited for the purpose of improved
computation, and describing a class of “easy” LMIs. It may be possible
to extend the computational benefits to problems that don’t strictly sat-
isfy the cone-preserving structure, but “part” of the problem satisfies this
structure.

A promising future direction which incorporates a number of the tools
and ideas developed in this presentation is the probabilistic robustness
analysis of systems with a large number of probabilistic parameters. Al-
though this problem is computational death using the obvious extensions
to the gridding approach presented, but using another approach it may
admit computationally tractable “tight” bounds. The motivation for this
approach is Paganini’s typical set modelling of white noise [35]. The same
autocorrelation set description can be applied to the probabilistic param-
eters. One of the autocorrelation constraints is exactly the spherical con-
straint. The remainder cannot be converted to signal space descriptions,
but by using the implicit construction to apply constraints on the opera-
tors the other autocorrelation constraints can be exploited. The result is a
big implicit u problem with the intersection of a hypercubic and spherical
region.
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