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Abstract

The applicability of a dynamical systems approach to the analysis of gearbox vibration
signatures is investigated. The signal acquired from a standard one-step helical gearbox is
analyzed and the existence of the low-dimensional nonlinear and chaotic behavior is exam-
ined. For this purpose, the criteria of broadband spectrum, sensitivity to initial conditions,
positive Lyapunov exponents, and short-term dynamical predictability are applied. The
largest Lyapunov exponent is also used to quantify the predictability of the measured time
series and a surrogate data test is performed to confirm that the analyzed signal is unlikely
to correspond to a linear stochastic time-invariant model. To confirm the applicability of a
dynamical systems approach, forecasts of the gearbox time series are produced, using vari-
ous predictors in the state space. Several methods of dynamical signal separation are also
discussed. Finally, a family of statistics is proposed, on the basis of geometric features of the
system dynamics in the state space, to serve as dynamical monitoring tools for observing
changes in the operating conditions. These are tested using several models of dynamical
systems which exhibit behavior similar to that observed in the actual gearbox. The most

promising monitoring statistics are recommended for additional studies of gearboxes.
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Chapter 1

Introduction

Why study gearbox vibration signatures?

A very large percentage of all industrial maintenance costs involves mechanical systems.
Since gearboxes are a basic component of almost any power transmission system, their
condition monitoring and fault detection is of primary interest to any system maintenance
engineer. To monitor the condition of gears in an operating machine, a vibration signal is
usually acquired from the gearbox casing. This signal is later analyzed in hope of finding

information describing the gear condition and detecting early signs of possible damage.

Why nonlinear dynamical approach?

In gearboxes the existence of the modulation sidebands which appear in the spectrum near
the meshing frequencies is often attributed to local tooth defects [34, 31, 6]. Similar side-
bands occur also in the spectra of good gears due to nonlinearities and errors inherent
in their construction, i.e., transmission errors, non-identical teeth, imperfect involute form
of gear-tooth profiles, etc. The modulation is usually assumed in the form of amplitude
and phase (or frequency) modulation functions approximated by their finite-length discrete
Fourier series [34]. Since there are many sources of nonlinear behavior in gearbox vibrations
(e.g., contact and stiffness forces, backlash), the hypothesis that the modulation sidebands
result from a dissipative nonlinear dynamical (possibly chaotic) system is examined. An
affirmative result would have some very important implications. It would suggest, for ex-
ample, that different modulations of different harmonics of the meshing frequency result
from (or rather, can be modeled by) a low-dimensional nonlinear dynamical system. In
this case, in addition to looking for linear, spectral features, one should benefit from an-
alyzing the problem using multivariate methods that utilize the knowledge of the system
dimensionality and the structure of the underlying attractor. It is known that nonlinear,

and particularly chaotic systems, are often extremely sensitive to even the slightest changes
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in the operating conditions. There are many proven tools to quantify such behavior (e.g.,
Lyapunov exponents or entropy) and these can be particularly useful for the purposes of
system diagnostics and condition monitoring.

The dynamical time-delay embedding approach differs from traditional univariate anal-

ysis in two fundamental aspects:

e It provides information about the degrees of freedom in addition to the one that is
directly measured, although it may not capture all the degrees of freedom that are of

importance in the underlying mechanical system [48].

e Since the dynamics has been modified by an unknown change of coordinates, only the
quantities that are invariant under such transformation can be used to characterize

the analyzed system.

The first aspect refers to perhaps the biggest advantage of this approach over all other
methods of time series analysis. From the measurement of a one-dimensional time series,
it is possible to infer information about the degrees of freedom other than the one directly
observed. This method, however, also has its restrictions, which should be kept in mind,
especially in those cases where a dynamical approach does not produce results that were
expected. It should be also noted that the numerical implementation of the analysis in the
reconstructed state space very often proves to be difficult. Therefore, one should not jump
to an early conclusion that the dynamical approach is inapplicable only because a particular
statistic failed one’s expectations.

The second aspect pertains to a restriction which is vital if the results of performed
analyses are to be meaningful. Fortunately, this restriction is not very difficult to satisfy.
A significant number of system invariants is available and can be used to produce many

powerful analytic tools.

Previous work

The characterization of irregular broadband signals, typical of nonlinear dynamical systems,
and the extraction of useful information from such signals, has been a topic of extensive
research over last fifteen years [2]. Much of the work in this field, known as dynamical time
series analysis, has rested on powerful computational tools supported by some underlying

rigorous mathematics. Most of the attention has been paid, however, to applications in
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classical physics. There exist a relatively small number of references, [21, 24, 46, 35, 36,
in which a possibility of chaotic behavior in some mechanical engineering devices (also
gearboxes) is investigated. Unfortunately, in most of these contributions, the conclusions
about the actual investigated devices were drawn from the mathematical models and not
from the experimental data. One of the exceptions (and inspirations for this work) was a
paper by Frison [18], in which he analyzed the vibration data from a spur-gear gearbox and
concluded that it came from a chaotic system, whose embedding dimension was not smaller
than 12. Despite the claim that the analysis presented there was just a prelude to gear fault
prediction, further results have not yet been published.

In this contribution, we perform analyses using tools similar to those used by Frison
but apply them to a one-step helical gearbox. We also go further than just to state our
“beliefs” about the nature of the “underlying system.” We present a model of system
dynamics which is typical of nonlinear chaotic systems. We also propose a set of dynamical
and probabilistic tools that can be applied to the analysis and condition monitoring of a

class of gearbox signals.

Objective and overview

The main objective of this work is to present a combined dynamical and probabilistic
methodology which can be applied to the analysis of a certain class of engineering problems.
The main task of this contribution is to describe an alternative way to produce working
models of the system dynamics in its state space. These models are used later for various
purposes like forecasting, signal separation, and condition monitoring.

The main body of this work can be divided into two parts. The first part, composed
of Chapters 2-4, discusses the dynamical approach to identification and verification of a
general dynamical model of the gearbox system inferred from its one-dimensional vibration
signal. The way in which the experimental time series was acquired from the gearbox is
described in Chapter 2. In Chapter 3, we discuss methods of determining the embedding
parameters of the reconstructed state space, which is similar to deciding the “model or-
der” in system identification. Next we impose some structure on the proposed dynarmical
model in the state space. The notions of recurrent dynamics, periodic orbits, sensitivity of
response to initial conditions, Lyapunov exponents, and probabilistic measures in the state

space are introduced using the example of the gearbox data. In Chapter 4, the gemeral
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model of dynamniics introduced thus far is described in more detail. The initial estimates
of the embedding parameters, i.e., embedding dimension and time-delay, are refined using
a measure of system predictability. Various types of prediction schemes are discussed and
two nonlinear predictors are introduced.

The second part of this work discusses the applicability of the dynamical state space
methodology to the problems of signal separation and system condition monitoring. Chap-
ter 5 introduces three methods of signal separation which take advantage of the information
provided in the reconstructed state space of the system. In Chapter 7, three new methods of
condition monitoring are proposed and their performance investigated for the data obtained
from the mathematical models introduced in Chapter 6.

Dynamical time series analysis is a young, vast, and vibrant field, which has already
produced many important contributions to our understanding and treatment of complex
signals. We are concerned, however, that further progress in this area is impossible without
a significant input from engineering circles. It is our hope that this work, aimed mainly at
these circles, will encourage engineers to experiment with the dynamical and probabilistic

methodology presented here and to include it in their analytical toolboxes.



Chapter 2

Experiment

“Jacta est alea”

In order to investigate the applicability of a dynamical approach to the problem of
gearbox condition monitoring, we conducted an experiment in which we tested a typical
one-step helical gearbox with 49 teeth on the pinion and 109 teeth on the gear, giving a
ratio 2.224. The gearbox was not modified for the purpose of the experiment and was tested
under its typical operating conditions. The input shaft was driven by an electric motor at
various speeds and under constant load provided by a water pump. A stroboscope was used
to verify that no torsional oscillations were transmitted from the motor to the input shaft.

As shown in Fig. 2.1, we placed a measuring accelerometer on the top of the casing of the
statically mounted gearbox and acquired its vibration signal at a sampling rate of 71 kHz.
The transducer used was a piezoelectric accelerometer, ENDEVCO 7701A-100, with the
amplitude response in the range of 1 Hz - 5 kHz and charge sensitivity of 100 pC/g. This
signal was stored temporarily on a notebook PC with a data acquisition board and later
analyzed on an IBM RS-600 workstation and a Pentium PC running Linux.

In order to observe the effect of vibration of the casing on the experiment, we identified
its natural frequencies from impact-induced vibrations. As shown in Fig. 2.2, the dominant
natural frequencies appear beyond 3 kHz. Since the range of the most stable performance
of the controller of the driving motor was about 600 rpm (as measured on the output shaft),
which corresponds to the meshing frequency of 490 Hz, the dominant natural frequencies
of the casing were not excited (in our setup) by the meshing frequency or its dominant
harmonics. This is important because we wanted to capture the dynamics of the meshing
gear teeth rather than that of the more complex system including the casing. We man-

aged to obtain a relatively.weak contribution of the dominant modes of the casing to the



Figure 2.1: Photograph of the investigated one-step, helical gearbox.
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Figure 2.2: Natural frequencies as measured on the gearbox casing.
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Figure 2.3: FFT computed for gearbox signal obtained at 600 rpm. The meshing frequency
fm = 490Hz.

acquired signal thanks to the appropriate location of the accelerometer. Even though, in
principle, only one transducer is needed to recover all the active degrees of freedom of the
analyzed system when the dynamical analysis is used, the quality of analysis depends on
the positioning of the transducer.

An FFT of a typical gearbox vibration signal possesses certain characteristic features
which can be observed in Fig. 2.3, created for the gearbox signal acquired in our experiment
at 600 rpm. One can notice there the presence of dominant peaks corresponding to the
meshing frequency and its harmonics. The other feature, which is of particular importance
to us, is that these peaks are accompanied by modulation sidebands. In recent years,
more and more researchers have expressed their beliefs that those sidebands contain more
information about the state of the system than can be extracted from the linear discrete
component!. In Chapter 6 we will suggest three models which have certain qualitative
features resembling those exhibited by our experimental signal. One of the required features

will be that the Fourier spectrum is qualitatively similar to that shown in Fig. 2.3.

'especially if the problem of condition monitoring is the main goal of analysis



Chapter 3

Nonlinear Analysis of Vibration Signature and

Identification of Underlying Dynamics

“Res ipsa loquitur?”

Techniques of extracting information about the system from experimental data are com-
monly known in engineering as system identification. The equivalent methods in physical
sciences are known under the name of time series analysis or, if applied to dynamical
systems, as dynamical time series analysis. The technique which distinguishes dynamical
analysis from others and forms its conceptual backbone is the phase space reconstruction.
This method allows the experimenter to approximate the multi-dimensional, and directly
unobservable, state of the physical system based only on scalar-valued measurements. The
purpose of this reconstruction is not only to gain information about the number of active
degrees of freedom of the system but also to look for its geometric features which can be
used for noise reduction, forecasting, system condition monitoring and many others [2, 11].
Note that this concept is very general and in principle can also be applied to linear finite
dimensional systems. However, in this case (and also for some weakly nonlinear systems)
existing linear methods of analysis are usually very efficient and the phase space approach
is often not worth its computationally intensive application. That is why dynamical time
series analysis becomes a preferred approach only when the underlying system is strongly
nonlinear, or high accuracy and/or sensitivity is required from the applied statistics. We
will now explain what we mean by a dynamical system and try to clarify briefly the above

mentioned concepts (for more details on theory of embedology see [48]).



3.1 State space embedding

In this work, by a dynamical system we understand a mechanical system that can be

modeled by a following set of autonomous nonlinear differential equations:
= G(u) (3.1)

with the initial condition u(tg) = ug, where u = u(t) € R? is a state vector and G : U — R?
is a smooth function defined on some compact subset U C RY. Under assumption of a
dissipative system, even if originally the system has a high (possibly infinite) dimensional
phase space, its long term behavior will be eventually limited to some compact subset, U, of
relatively low dimension. The trajectory of the differential equation (3.1) initiated at ug can
be written as u(t) = f(ug). In order to make the physical process accessible to an observer,
one needs to perform a measurement. Since the measurements are performed along an orbit
f! at discrete time intervals, ¢ = 7, (called later the sampling time or the time step), it
is convenient to use a unit-time map to transform (3.1) into a discrete dynamical system
synchronized with the observation process. Define a measurement function g : R¢ — R that

results in a scalar time series

y(k) = g(u(krs)) = g(f*(u0)) = g(F*(uo)); y€R, k=1,2,...,n (3.2)

where F is the discrete dynamic map F(u) = f™(u), F¥(u) = f¥7(u). Hence one obtains

the following discrete dynamical system
y(k) = g(F* (uo)) (3.3)

describing a composite process which is not directly accessible to the experimenter. The
scalar time series, y, is thus the result of an experiment. The classical system identification
approach to non-parametric modeling would look for meaningful system features in the
spectrum of y. If the vector field G is nonlinear, however, the spectral analysis will often
fail to provide any meaningful information. This is because many nonlinear (in particular
chaotic) systems exhibit a broadband spectrum and the spectral analysis is not sensitive

enough to detect changes in the system behavior reliably. Dynamical analysis has proven
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to be particularly useful under these circumstances.

Time-delay embedding

The concept of the phase space reconstruction is based on Takens embedding theorem [50].
The theorem states that if one performs a “correct” time-delay embedding of the time series
(3.3) one can construct an m-dimensional space which inherits many of the properties of
the original d-dimensional space corresponding to the system (3.1) even though neither the
dynamics of the original system nor the measurement function is known. For each state

u € U of the system (3.1), one can define the m-dimensional vector

l‘(k?) = D‘r(y)
= (y(k),y(k+7),... ,y(k+ (m —1)7))
= (9(F"(u0)), g(F**"(ug)), .., g(F** ("D (ug))) (34)
where kK = 1,2,... ,n — (m — 1)7. This vector is called the delay coordinate vector, and T

is the reconstruction time-delay, which is an integer multiple of the sampling time 75;. The
dimension of the reconstructed phase space, m, needs to be chosen in such a way that the
dynamical structure of the orbits in the original u-space is preserved in z-space, and the
mapping from one space to the other is one-to-one. This can be achieved if m is greater
than twice the “box-counting dimension” of U, and the measurement function g is chosen
generically [48]. The process of mapping the time series into its embedding space is shown
schematically in Fig. 3.1.

We can relate all the above to the general problem of modeling a mechanical input-

output system:

2k +1) = fla(k) +

y(k) = g(z(k)) +ex (3.5)

where z € RYE is the state vector for the system, f : R4 — R?® models the dynamics of
the system, and g : R’ — R models the relationship between the system state and output
(in our case g is simply an approximation of the measurement function g in (3.2)). Z; and

ek correspond to the embedding model and measurement errors.
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The process of reconstructing the embedding space and building local or global maps
z — F(z,a), which evolve every trajectory point z(k) — z(k + 1), is equivalent to defining
a class of possible models of the system, known under the name of specification in system
identification [5]. Using the information about how neighborhoods of trajectory points
evolve in the state space, we can fit the parameters a of the chosen class of models. An
example of this type of modeling would be using a variation of a local autoregressive model’
in which instead of fitting the model parameters with sequences of points that are close in
time, one uses neighborhoods of points that are close in the state space. This general
geometric model of system dynamics will be described in more detail in Section 4.2.3 where
it will be used to make predictions and to verify the applicability of the phase space approach
to the analysis of the experimental gearbox signal.

The typical second step in system identification is estimation of the model parameters
from available measurements or, in other words, determining the “best” model in the pre-
viously defined class of models. In dynamical time series analysis, this step corresponds to
finding the appropriate embedding parameters, i.e., time delay and embedding dimension.
The choice of the parameters of the predictive model, as defined above, will be postponed
until Section 4.2. Before we proceed to estimate the embedding parameters, however, we

will present two extensions of the simple time-delay embedding introduced above.

SVD embedding

The idea of filtering the delay coordinates was first introduced by Broomhead and King [9].
They suggested replacing raw delay coordinates with the dominant modes obtained from
the singular value decomposition (SVD), which eliminates the need for an arbitrary choice
of the time-delay parameter. The procedure starts with a trajectory matriz, X, whose rows

are created from N trajectory points, z € R™, initially embedded in a conventional fashion,
X = N"2[27(1),27(2),..., 2T (\V))T (3.6)

The dimension m is chosen high enough so that the Whitney embedding theorem is satisfied.
The time-lag is chosen as 7 = 1. Next a real symmetric covariance matriz, = = X1 X, is

decomposed using the singular value decomposition into ZC' = C'¥?. Finally, the trajectory

'For a short discussion of linear prediction schemes, see Section 4.2.2.
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matrix, X, is projected on the vectors of the orthogonal matrix C' chosen so that they
correspond to the singular values (entries of the diagonal matrix X) which are larger than
an arbitrary noise level.
The main advantages of this method are that it eliminates the need for an arbitrary
choice of the embedding parameters and that it provides initial filtering of the data. The
main disadvantage is that the value of 7 is not fixed across the trajectory, which complicates

further analysis and forecasting of the data.

Filtered embedding

The idea behind this method is to merge the useful filtering techniques, known from con-
ventional signal processing, with the geometrical approach of dynamical time series analysis
[47]. Rather than using the conventional lag vectors z(i) € R?, they are first multiplied by
a “filtering” matrix, whose rank is larger than or equal to the desired embedding dimension.
An interesting choice for that matrix is suggested by Sauer in [47], where it is produced by a
composition of three linear operators: discrete Fourier transform, low-pass filter, and inverse
Fourier transform. The vectors z(i) are usually embedded in the space whose dimension
is higher than necessary which allows to “intelligently” downsample the data. This type
of filtered delay coordinate embedding, called by Sauer a “low-pass embedding,” removes
noise but preserves embedding of the reconstruction. In the absence of noise, there is no
advantage of this approach over just downsampling the time series. There is, of course, a

large number of possible linear filters that can be applied to this procedure [38].

3.1.1 Initial choice of time-delay

According to Takens embedding theorem, the quality of the phase space reconstruction
does not depend on the choice of the time-lag 7. In practice, however, since all signals
are contaminated with noise, selection of the “proper” time-delay becomes very important.
For the first choice of the optimal time-delay, we use the method of the average mutual

information [2]. The value of the average mutual information, I(7), expressed in bits,

R ()l + 7))
1(7) = 3 atoth) otk + 7)o (LG0T (37
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Figure 3.2: Average mutual information computed for a gearbox signal obtained at 600
rpm. The “optimal” value of time-lag was found to be 7 = 11.

is found for all possible pairs of measurements y(k) and y(k + 7). p(y(k)), p(y(k + 7)), and
p(y(k),y(k+7)) are the probabilities of measuring y(k), y(k+7), and both y(k) and y(k+7),
respectively. The probabilities are estimated as frequencies of occurrence as shown in [16].
We compute the values of I(7) for some interval of 7. Then we plot the resulting points
(I vs. 7) and choose the value of 7 for which the average mutual information reaches its
first minimum. This prescription for choosing 7 reflects the case in which y(k + 7) is nearly
independent, on average, from y(k) (I = 0 if exactly statistically independent). Fig. 3.2
shows the mutual information function for the gearbox signal (compare with results for a
spur pinion gearbox in [18]). Its first minimum occurs for the value of 7 = 11 which is
temporarily chosen as the optimal time-delay and will be used as such until it is verified
in the forthcoming sections. Another interesting feature visible in Fig. 3.2 is the presence
of equidistant peaks in the average mutual information function. These local maxima are
separated by the distance equal to the reciprocal of the meshing frequency (about 145

[time steps] at a sample interval of 7, = 1.41 - 107° sec).
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3.1.2 Initial choice of embedding dimension

Both Takens theorem and Sauer prevalence theorem specify the lower bound on the value
of the embedding dimension. Both theorems, however, establish only a sufficient condition
for the correct embedding. In many cases it is possible to unfold the dynamics of (3.3) in
a lower dimensional space. This means that one can find a dg-dimensional space in which
the trajectory will not intersect itself and whose dimension is lower than that given by both
of the above mentioned theorems. This reduction in dimensionality leads to significant
improvements in computation time for all numerical methods of analysis.

In our work we applied a method which uses the concept of false nearest neighbors?,
which are generated when the orbit is projected on a too low dimensional space. Two
points are considered false neighbors if they are close to each other in R™ but not in R™*!
(for any m). To find false neighbors, one starts with a reasonably small m and examines
the change in Euclidean distance for all pairs of nearest neighbors, as m is increased by
1. If for some pair this change is significant (we considered significant an increase in the
initial distance by at least 15 times), those points are qualified as the false neighbors. One
can plot the percentage of the false nearest neighbors with increasing dimension. The
minimum embedding dimension, dg, is chosen to correspond to the first point for which
this percentage drops below the value of 1%. Fig. 3.3 shows the percentage of false nearest
neighbors for various values of m used to embed the gearbox signal. From this graph one
can conclude that the minimum embedding dimension can be as low as dgp = 5. As one
can see, the number of false neighbors does not drop to zero. This may be caused by the
noise contamination introduced by the motor controller and the measurement process. It
is very common to observe such behavior of this statistic whenever the analyzed signal is
contaminated with noise®. For a finite-dimensional deterministic system, the number of
false nearest neighbors should become saturated as soon as the embedding dimension of the
system is reached. However, if the analyzed data is contaminated with noise (which can be
interpreted as a signal whose dimensionality is significantly higher than that of the signal of
interest), then, after reaching an apparent plateau, the statistic starts to rise again. As it is
demonstrated for the well known Lorenz system [32] in Fig. 3.4, the rate at which the curve

drops or grows and the level of the plateau it reaches depend on the signal-to-noise ratio in

*For a comprehensive discussion of this method, see [2].
3For details about our interpretation and treatment of noise in dynamical analysis, refer to Chapter 5.
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Figure 3.3: Embedding dimension estimated for gearbox data obtained at 600 rpm. The
percentage of false nearest neighbors is computed for increasing embedding dimension, m.
The lines connecting points have no physical meaning and are shown only to emphasize the
trend.

the analyzed signal. The figure illustrates how the length of the plateau becomes shorter
with the decreasing signal-to-noise ratio and how it finally disappears for the pure noise
signal (uniformly distributed noise obtained from a pseudo-random number generator). It
can also be seen how the noise contamination can be estimated with this statistic.

Note that the false nearest neighbor statistic was computed for the gearbox signal for
the value of 7 = 11 estimated in the previous section. It is always a good idea to verify the
stability of the embedding dimension estimation by computing the false nearest neighbors
statistic for various values of time-delay. The result of such computation is shown in Fig. 3.5
from which it can be concluded that the obtained value of d is stable over a range of time-
delays. We use dp = 5 and 7 = 11 as the initial estimates of the embedding parameters

until they are verified in Section 4.2.3.

3.2 Recurrent dynamics and periodic orbits

Characterizing time series through its periodic orbits is an old and well established pro-
cedure. It is commonly used to analyze linear systems, where peaks on the frequency

spectrum imply system modes. In chaotic systems which result in broadband spectra it
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might be difficult to extract periodic orbits this way. Simply because clear peaks might not
be present in the spectrum does not mean that periodic orbits are useless as a feature to
characterize a nonlinear, chaotic, system. Poincaré was the first to point that out in 1899
[43]. An inverse is also true. As observed by Auerbach et al. [4], a chaotic trajectory can be
successfully used to locate periodic orbits. Existence of the recurrent regions in the phase
space allows one to define a global cross section of the flow and associate with it a return
map, called a Poincaré map?. The dynamics of the Poincaré map is often easier to study
than dynamics in the original phase space. It also reduces dimensionality of the problem
from dg to dg — 1. For systems embedded in R?, it also provides an interesting graphical
representation of the dynamics. Unfortunately, Poincaré maps are difficult to compute for
experimental time series. Fortunately, there exist other, relatively new, methods which are

as useful as Poincaré maps but much easier to implement.

3.2.1 Recurrence plots

In 1987, Eckmann et al. [14] introduced a very informative, graphical tool, called a recur-
rence plot>, which can be easily applied to experimental data. Given a trajectory {a:(z)}fil,
let us define the following set of integers, Z,, = {0,1,2,... ,m — 1}, composed of indexes
corresponding to the trajectory points, {z(0),z(1),z(2),...,z(m — 1)}. Consider the Eu-

clidean distance, §(¢,j) : Zm X Z, — R+, between two trajectory points z(i), z(j) € R
6(i,3) = ll=(2) — z(i + 7))l (38)

where m +n < N. Now, we define a function p : R — Z, as a linear function of
0 with a constant k/e, where k corresponds to the number of shades of grey chosen for
the map, and € is a suitably chosen cutoff value. In our work we used & = 100, i.e.,
p(6(2,7)) =01if 6(¢,7) > €, and p(8(z,7)) = 1 if §(4,7) < €/100, where 0 denotes white, and
1 black. The choice of the cutoff value, €, is somewhat arbitrary. In our work, we used
e = max||z(i) — z(j)|| for all possible values of 7 # j. Finally, a recurrence plot is defined

as the graph of the composition [26]

po0 Ly X Ly — 2y, (3.9)

“For a detailed discussion of Poincaré maps, see, e.g., [55].
®See also [26].
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Figure 3.6: Recurrence plot for a harmonic signal embedded in R? using time-lag value
T =5,

From the above definition, we can conclude that the m xn recurrence plot array is symmetric
with respect to its diagonal ¢ = j. Fig. 3.6 shows a recurrence plot produced for a harmonic
signal, which was embedded in R?. There can be observed features of the recurrence plot
which help identify certain types of system behavior [26]. A complete classification of
line-type patterns within a recurrence plot can be summarized in seven possible values of

line-segment slopes®:

e slope 0; these line segments correspond to trajectory points which become close and
stay close for an interval of time. In particular, evenly spaced, horizontal line segments
denote periodic recurrence (see Fig. 3.6.) Length of these segments quantifies the local

rate of divergence.

o slope —2; denotes a segment of successive trajectory points which reappear in the

state space reversed in time (see Fig. 3.6).

e slope —1 and vertical; corresponds to a particular trajectory point which remains close

to an earlier (in time) trajectory segment.

For a detailed description and classification of possible features in recurrence plots, see [26].
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o slope smaller than —2; these line segments correspond to trajectory sections which

reappear reversed and dilated in time.

o slope between —2 and —1; indicates sequences of trajectory points which reappear

reversed and contracted in time.

o slope between —1 and 0; denotes trajectory segments which reappear contracted in

time.
e positive slope; corresponds to trajectory segments which reappear dilated in time.

The most clearly visible feature is usually a collection of black horizontal line segments,
which correspond to periodic orbits. To see this, denote the horizontal axis by ¢ and vertical

axis by j. The horizontal segment of length [ can be expressed as the following set
{G@,5), G+ 1,5),...,(i+1-1,5)} (3.10)
which, in turn, corresponds to the set of distances

{lz(@) — 2@+, [lz(i+ 1) —z(i+ 7+ D,z +1-1) —z(i+j+1- 1)}
(3.11)

Thus, these line segments correspond to the sequences of the data which result in trajectory
points coming close to one another and remaining close for an interval of time. Fig. 3.7,
which shows a recurrence plot made for the gearbox signal embedded in R?, clearly indicates
recurrent sequences of successive trajectory points. Note that some of the horizontal line
segments are longer than others. The short ones correspond to the areas of the phase
space with relatively high rate of local divergence. The longest horizontal segments are
vertically repeated about every 145 time steps, which corresponds to the gear meshing
frequency. Harmonics of the meshing frequency and other recurrences can also be identified
from Fig. 3.7. Thus, recurrence plots can also be used to extract periodic orbits from
experimental data or to construct such orbits in certain regions of the state space.

A different type of the recurrence plot, suited particularly well to identify periodic orbits
(in this case of period 7" = 145), is shown in Fig. 3.8. It is constructed by plotting §(i,7T")

vs. ¢ for a fixed value of T'. Fig. 3.8 illustrates how a periodic orbit can be identified in the
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vicinity of the 4270-th trajectory point. The period of the meshing frequency is also visible
as a “pseudo-period” of the fluctuations in values of . Of course, this technique requires
a separate plot for every value of 7. Sometimes, for data obtained with a large number of
samples per period, one can observe that some recurrent points’ tend to become clustered,
i.e.,, not only (i) is a recurrent point but also z(i + 1),z(i + 2),..., etc. Such clusters
signify the near periodicity over several complete periods in the corresponding trajectory
segment.

Since various periodic orbits create a “topological skeleton” for strange attractors, one
should be able (at least in principle) to recover the qualitative features of the underlying
dynamics by superimposing extracted periodic orbits. The methodology which seeks to
express averages over the regions of the state space in terms of short unstable periodic
orbits is known as the cycle expansions [13]. If the dynamics is low-dimensional (dg < 3),
there exist techniques to extract a topological signature of the dynamical system by treating
every periodic orbit as a knot, and quantifying the patterns in which they are interwoven
[54]. Cycle expansions partition the trajectories into groups, where longer trajectories are
approximated by the shorter ones. This leads to simpler representation of complex dynamics
and to significantly more efficient computation. Fig. 3.9 shows an example of a periodic
orbit decomposition for the Réssler system. A very deep analogy can be made between cycle
expansions and the Riemann (-function from number theory: just as with the ¢-function,
the prime numbers are used to create other numbers, in cycle expansions the “primitive
orbits” are used to re-create other orbits. The main tool of this approach is the cycle

expansion of the dynamical (-function [3]
1/¢ =TI - t,) (3.12)
2

into p primitive cycles ¢,. The main problem with this approach is that it is still unclear
when, and if, the cycles suffice for the complete characterization of a dynamical system.
Since this area has experienced very rapid progress in the last few years, it is a common
belief that also this problem will be soon resolved. In Chapter 7, we put emphasis on

practical applications of a small number of cycles (usually insufficient to reconstruct the

"A recurrent point is understood here as an approximation of a trajectory point belonging to a periodic
orbit.
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system dynamics). That is why we shall refer those seeking more details and mathematical
rigour in the treatment of cycle expansions to [4, 13, 3].

There is an interesting way in which unstable periodic orbits help to understand short
term predictability in chaotic systems. One can achieve good short-term predictability for
a segment of a chaotic trajectory in which it approaches an unstable periodic orbit along its
stable manifold. Then the trajectory is ejected along the unstable manifold which results in
a significant drop in its predictability. This behavior is responsible for a sudden diversion
of the true and predicted signals shown in Fig. 4.7. The short-term predictability is again
possible as soon as the trajectory is captured by the stable manifold of another periodic

orbit.

3.2.2 Extraction of periodic orbits

As it was mentioned in the above section, periodic orbits (also called cycles) can be crudely
located using recurrence plots. If there is interest, however, in using some quantitative mea-
sures which are defined for the periodic orbits, a more accurate method of orbit extraction
is needed. Before we discuss the issue of extraction of periodic orbits, however, we shall
briefly explain why these orbits are so interesting. The first reason for this is that they
provide an invariant characterization of a deterministic dynamical system. The invariant
character of a periodic orbit is reflected in the fact that it remains a periodic orbit under any
smooth change of coordinates (in any representation). This is of paramount importance,
because, as mentioned in Section 3.1, we cannot observe the system dynamics directly, but
only through some measurement function, g, defined as in equation (3.2-3.3). Under the
assumption of smoothness of g, the cycles are not only topologically invariant, but their
stability is also invariant. In other words, eigenvalues of the Jacobian matrices computed
for the system orbits are invariant, and vary slowly with smooth parameter changes, re-
gardless of whether the time series is a long transient, a long cycle, or truly ergodic (for
more details see [13]). Furthermore, only a finite, usually small number of periodic orbits
are necessary for a good approximation of system dynamics. Short orbits contribute more
to this “cycle expansion” than the long ones, and the error which comes from neglecting
the long cycles can be bounded. The last statement is generally true for systems whose
dynamics is restricted to a hyperbolic attracting set. It does not follow, however, that only

such systems can be effectively approximated with periodic orbits. It just means that in a
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nonhyperbolic case, the exponential decrease in importance of the long cycle contributions
to the expansion needs to be verified. Note that this is very important for cases where one
seeks to replace analysis of the experimental trajectory with analysis of its cycle expansion.

Since in this work we are only interested in certain measures defined for at most a few
cycles, the exponential convergence of the cycle expansion is not necessary for successful
application of our condition monitoring methodology. That is why we are particularly
interested in two features of the representation by periodic orbits: first, short cycles can
be accurately extracted from experimental data, and second, they are robust in terms
of local dynamics in the neighborhood of the periodic orbits. The accurate extraction
of periodic orbits is possible for relatively low dimensional systems, but only when the
experimental time series is long enough to visit all neighborhoods of every periodic orbit
of interest. Another important limitation on extraction of a cycle can be its stability. In
general, the more unstable the orbit, the more difficult it is to observe and extract. Finally,
contamination of data with noise® can become a serious limitation as well. All methods of
extraction of periodic orbits require computation of distances in the phase space, and hence
are susceptible to noise.

To summarize, the periodic orbits have a potential to become a very powerful tool
in many areas of dynamical time series analysis. They can be effectively extracted from
experimental data, although their accurate extraction can sometimes be difficult.

We will now describe how we extract periodic orbits from experimental data. Let us
suppose that we are interested in finding a cycle of period T'. We start with the trajectory
{z(i)}™, € R? embedded in its phase space using the methods described in Section 3.1.
We follow the time evolution z(i + 1),z(i + 2),..., for every trajectory point z(7), until
we encounter such a point, z(k), for which ||z(k) — z(k + T)|| < €;. We call such a point
a period-T" cycle (or recurrent) point. All these points are then grouped into sequences
representing periodic orbits. The recurrence threshold, €1, is chosen large enough to include
several such sequences. In our work we found, that the value of ¢ = 0.020, where o is the
standard deviation of the time series, works well. For higher order, as well as for higher
dimensional orbits, however, this value might need to be increased.

Notice that if a point x(4) is a period-T cycle point, it is quite likely that z(z+1) is also a

8Noise is understood throughout this work as a signal coming from a very high dimensional, possibly
infinite dimensional, dynamical system.
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period-T cycle point, as well as, possibly, z(i+2),. .. , etc. All these points correspond to the
same periodic orbit, as a result of the trajectory approaching the cycle from its attracting
direction. One way of approximating a periodic orbit is to choose it to correspond to the
point with the closest recurrence in the set. This will eliminate redundant cycle points from
the interval [z(i),z(i + T')). There is another problem, however. How shall we classify the
periodic point (i + 7"+ 1) or z(i + T + 2)? There will also be other period-T" cycle points
in the neighborhood of z(i). In order to decide whether two nearby nearly periodic orbits
correspond to the same periodic orbit, the relative distances of all corresponding pairs of
points of the two orbits need to be computed. Only if all such pairs of points are located
within the distance ez, we conclude that they represent the same periodic orbit and put
them into the same set. The position of a point representing the “best” estimation of the
periodic orbit is chosen to be at the center of mass of all corresponding points in the above
set. This procedure seems to be more robust, because it involves averaging in the phase
space. The value of the second recurrence threshold, €5, was chosen to be €3 = 5¢7, which

seemed to work well for our data.

3.3 Lyapunov exponents and sensitivity of response to initial

conditions

One of the most interesting features of the chaotic dynamics is its sensitive dependence on
initial conditions. This phenomenon can be easily visualized by comparing the time evolu-
tion of two nearby passes of the trajectory in the phase space. To do that one needs to find a
pair of nearest neighbors in the reconstructed phase space, called here z(j), 2V (j) € R?=,
that belong to two nearby trajectory segments. Then, while observing the time evolution
of z(j), one needs to update the search for its nearest neighbor (belonging to the same
trajectory segment as V7V (5)) to make sure that the evolution of distance between two tra-
jectory segments is computed correctly. Sensitive dependence on initial conditions will be
manifested by a rapid increase in the distance between initially close trajectories (averaged
over the attractor). Such behavior can be seen in Fig. 3.10 created for the gearbox signal.
Another interesting way of identifying this phenomenon is to create a scattergram. In-
stead of computing a distance function, one can also project the time continuation of two

initially nearby stretches of trajectory on a real line, thus creating two time series. Any
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Figure 3.10: Time evolution of the average distance between two initially close trajectory
points in the phase space. The distance was computed with respect to the estimated
attractor size for the 600 rpm gearbox signal.

particular choice of projection should work. One could, for example, choose to project the
trajectories on the direction corresponding to the largest singular value, or just take the
first components of the two trajectories. The latter choice would result in two time series:
{y(),y(G+1),...} and {g™V(5),y" V(i +1),...}, where y(4) and yVV(5) denote the first
coordinate of z(j) € R% and of the nearest neighbor to the point z(j), respectively. The
derived series can now be plotted, one against the other, which will result in the scattergram
(see Fig. 3.11.) If the system is not sensitive to initial conditions, the two series will be
highly correlated and the points on the scattergram will lie on a smeared line y = 7/4 z,
as in Fig. 3.11(a). If the system exhibits sensitive dependence, however, one will notice a
cloud of scattered points, as it is shown for the gearbox data in Fig. 3.11(b), resulting from
two initially close segments of trajectory which rapidly diverged in the phase space.
Divergence of nearby orbits can also be quantified by Lyapunov exponents, which can be
thought of as generalized eigenvalues averaged over the attractor. There are two commonly
used definitions of the Lyapunov characteristic exponent (LCE). One definition describes the

asymptotic behavior of the fundamental solution matrix, X (¢), of the analyzed dynamical
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Figure 3.11: Scattergram plots for a) harmonic system response with added noise, and
b) the 600 rpm gearbox signal. Horizontal axis corresponds to the time evolution of first
components of points on one trajectory, and the vertical axis to the time evolution of the
corresponding components of their nearest neighbors on the other trajectory.

system, in the direction specified by the vector w and as t — oo,

1 X
Az, w) = lim sup — log, X ()uw] (3.13)

too [Jwl]

The other, better suited for computation, refers to the long-term evolution of an infinitesimal
n-sphere (which becomes an n-ellipsoid due to the locally deforming flow in the phase space)

of initial conditions,

A = lim S 1o pf(t) (3.14)

where p; (t) is the length of the principal axis of the n-ellipsoid at time ¢, and \; are numbered
in descending order. In both formulas LCEs are expressed in bits per time unit.

Lyapunov exponents represent the average rate of divergence of initially close trajectory
segments. Since the trajectory is embedded in the phase space, the number of Lyapunov
exponents is equal to the dimension of the phase space. Negative exponents correspond
to the directions along which two trajectory segments converge to each other and positive

exponents to the directions along which they diverge exponentially. Every nontrivial, cor-



29

rectly embedded trajectory’ should also possess a zero Lyapunov exponent. Since all of
real world physical systems are dissipative and their dynamics confined to a globally finite
region of the space, the exponential divergence has to be compensated by stretching and
folding of the trajectory, and that is responsible for the Smale Horseshoe scenario leading
to chaos. This is why in the dynamical time series analysis community, it has been agreed
that the existence of a positive Lyapunov exponent, for a system whose trajectories are
bounded to a finite attracting set, implies that the system dynamics is chaotic. There are
many interesting theoretical and computational aspects involving Lyapunov exponents that
are worth discussing (like the existence of the limits in equations 3.13 and 3.14 or how to
compute all of the LCEs from a time series), but since our space is limited here, we will
only refer the reader seeking more details to [2, 58] and references therein.

To verify the sensitive dependence on initial conditions and assess the predictability
of the gearbox data, we computed a full set of global Lyapunov exponents. We obtained
one zero, two positive, and two negative Lyapunov exponents. The largest exponent, \; =
0.0163 [bits/time step|, quantifies the approximate average maximum length of a reasonable
prediction horizon. In our case this length is about 1963 time steps, which means that after
that many steps, prediction essentially looses all 32 bits of information. Note, however,
that this is just an average number. Depending on the location of the predicted trajectory
segment in the phase space, the resulting predictability can be significantly higher or lower.

This result can also be verified by fitting y = 2°*+7 to the increasing part of the curve
in Fig. 3.10, and the value of « obtained this way can be considered a crude estimate of
the largest Lyapunov exponent. In our case we obtained o = 0.0169 [bits/time step], which
is in good agreement with the previously estimated value of A1, and hence confirms our

conclusions about the system’s sensitive dependence on initial conditions.

3.4 Kolmogorov-Smirnov test

We have already shown that the gearbox signal exhibits features that justify application of
dynamical analysis. On the other hand, it is possible that a noisy signal which comes from
a hypothetical linear system might also exhibit similar features. In recent years there has

been considerable attention devoted to the problem of determining whether the nature of the

By a nontrivial trajectory we understand an orbit which does not contain a fixed point.
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“underlying system” is chaotic or “random” (e.g., [52, 25]). Since, in our understanding,
the randomness is a measure of one’s lack of knowledge about the system rather than a
definition of an abstract physical system, the meaningfulness of such tests is somewhat
questionable from this point of view. Most of the suggested algorithms, from which one
is supposed to infer presence of nonlinear structure in time series, are based on statistical
hypothesis testing. An alternative model (null hypothesis), that is used for that purpose,
is usually defined in the form of artificially created (surrogate) data. Unfortunately, all of
these methods suffer not only from problems of “philosophical” nature (typical of statistical
hypothesis testing) but also from their limited reliability. Even if one believes that the
underlying physical system, modeled by (3.1), can be reliably characterized that way, few
would probably believe that its nature is indeed linear. Since there seems to be a strong
tendency, within the community of dynamical time series analysis, to perform these tests
anyway, we use here the Kolmogorov-Smirnov test with forecasting error as a discriminating
statistic. This choice of statistic seems to have the highest relevance in our case.

The null hypothesis that we use states that the data comes from a linear “stochastic
process” and there is no nonlinearity either in the dynamics or its observation. The surrogate
data is created from the original time series by randomizing its phases but preserving its
spectrum [52]. To do that we first need to compute the Discrete Fourier Transform, Y'(f),
of the time series y(k) and then randomize its phases Y7(f) = Y (f)e’*Y), where ¢(f)
is uniformly distributed in [0,27]. Note that the created j-th surrogate data set has the
same spectrum as the original time series and hence complies with our null hypothesis.
For this analysis to be statistically meaningful, we need to create an ensemble of 10-100
surrogate data sets. Before inverting Y'(f), we also need to ensure that the resulting time
series is purely real. This can be done by requiring the following equality of the imaginary
components to hold: (Y7 (f)) = —S(Y7(n — f)). Now the actual testing can be applied
to the set containing the original and surrogate time series. The prediction statistic we use
is specifically designed to emphasize the deterministic character of the data. A prediction
algorithm similar in spirit but a little simpler than the one described in Section 4.2.3 is
employed. To eliminate the artificial increase in predictability that results from short-
time correlations, a “decorrelation interval” of 50 time steps is used [25]. We compute the
prediction 10 steps ahead in the reconstructed phase space for all data points whose true

continuation we know. Since the Kolmogorov-Smirnov test requires the data samples to
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Figure 3.12: Kolmogorov-Smirnov test computed for gearbox data, 600 rpm, prediction
horizon T = 10 sampling intervals. The 99% (solid) line corresponds to the 99% confidence
level of the rejection of the hypothesis that the signal is a linearly correlated noise.

be independent, we decimate the set of prediction errors by a factor corresponding to the
autocorrelation time of the predictor errors [25]. Next we save the results in two files, one
corresponding to the original time series and one to all of the surrogate data sets. Now we
can compute the Kolmogorov-Smirnov test and repeat the whole process for various values
of the embedding parameters 7 and dg. The result of this procedure is shown in Fig. 3.12.
It indicates superior predictability of the original time series (compared with the surrogate
series) over a range of time-delays, provided the embedding dimension is higher than 4.
Rejection of the null hypothesis implies that the dynamical features of the prediction model
are unlikely to correspond to the surrogate data. Nonetheless, one still cannot assert from

this test the evidence for a low-dimensional chaotic behavior.

3.5 Statistical measures of dynamics

The purpose of defining statistical measures in the system phase space is to identify quan-
tities that are invariant under changes in initial conditions. These measures are particu-
larly informative whenever a system state is altered by unknown perturbations and/or it

is chaotic. In the latter case, different orbits differ almost everywhere in the system phase
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space. Therefore, in order to identify the system that produced the observation, one has to
implement measures which produce the same results for all, sufficiently long, observations

of the same system.

3.5.1 Probability density function and its estimation

The probability density function (later also referred to as pdf) is one of the fundamental
concepts in probability theory and statistics. It has proved to be very powerful in analyzing
complex systems where it is used both as an independent tool and as an intermediate step in
computation of its functionals, e.g., mutual information, characteristic function, expected
value and other moments, etc. Given a data set of measurement results, {z; € Rd}, i =
1,..., N, its density function, p(x), provides a natural description of the data distribution

in R?, and is usually defined with the following relation
x2
Py <z <z9) = / p(z)dz (3.15)
1

which quantifies the probability of finding an observation z inside an interval (z1, 2], for
any 1 < Zo.

The purpose of density estimation is to construct an estimate, p, of the density function,
p, from the available observations. There are many known methods of density estimation
(for more details about density estimation see Silverman [49].) The most commonly used
density estimator is the histogram. Since it is the oldest known density estimator, all other
such estimators are usually tested by comparing their performance to that of the histogram.
The main drawback of the histogram is that its quality of estimation depends not only on a
choice of the discretization bin width (which controls the amount of smoothing) but also on
a choice of an origin and, in multi-dimensional spaces, the coordinate directions of the grid
of cells. Moreover, the discontinuity of histograms make them inapplicable to cases where
derivatives of the density function are required.

A different approach to density estimation is derived from an “empirical” model of the

probability density function

]\7
p(x) =Y pid(z — ;) (3.16)
i=1
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where for every trajectory point x; there is associated a probability p;, and the Dirac delta
function is applied in RY. In this work we assign equal probability to all N trajectory points;
therefore, the p; symbol will be replaced by the value 1/N in the forthcoming formulas. This
definition is very useful if a smooth function needs to be integrated over the region weighted
by the density function. Integration can then be replaced by a summation. In this case,
however, eq. (3.16) is not very useful for pdf estimation at discrete points, because it results
in infinite values at the observations and zero values everywhere else. This problem can be
solved by replacing the delta function with a weight function which has a non-zero width.

In the naive estimator method, the estimate is constructed by placing a “box” of width
2h and height (2Nh)~! over each observable and then summing over the entire data set.

The estimator is defined as

N .
pa) = 5 3 w(ET) (3.17)
i=1

where the weight function, w(z) = 1/2 if |z| < 1 and w(z) = 0 otherwise. The main
advantage of this method, over the histogram, is that it frees the estimation from a particular
choice of bin positions. The estimated pdf, however, is still not continuous.

There is another parametric method of density estimation which is also often used in
data analysis. In this method, one assumes an underlying model for the density function,
e.g., a normal pdf, and then estimates the model parameters, e.g., mean and variance.

In the method we discuss in more detail below, we consider the generalization of the naive
estimator, known as the kernel estimator. This method overcomes some of the difficulties
associated with both histogram and naive estimators. The density computed with the kernel
estimator is continuous and it also allows easy implementation of adaptive kernel width size.
It is important, because fixed-bin methods often fail to approximate accurately highly non-
uniform distributions, and the density functions obtained from analysis of chaotic data
are often found to be discontinuous, multimodal, and nonuniform [23], as it is shown in
Fig. 3.13 (these pdfs are discussed later). Even if the adaptive scheme is used to vary
bin sizes across the attractor, the result can still be significantly improved (particularly in

higher dimensions) when using kernel estimators.
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Figure 3.13: Kernel estimation of multimodal probability density function for: a) Lorenz
system, and b) Rossler system. Note that since both of the mentioned systems are embedded
in R3, the above figures represent two-dimensional projections of their respective three-
dimensional density functions.

Kernel density estimation

For convenience, we will normalize the trajectory, for which the density function needs to
be estimated, to have zero mean and unit RMS norm (or unit standard deviation, for one-
dimensional systems.) The general multivariate kernel density estimator with kernel K and

window width h is defined by

N
1 T — x;
h(x) = 3.18
The kernel function K (z) is a function defined for any = € R?, such that

K(z)dxr =1 (3.19)
Rd

and is usually chosen to be a radially symmetric unimodal pdyf.

Kernel density estimation approximates a multi-dimensional pdf surface by superposing
the kernel functions centered at every observed data point, as it is schematically shown in
Fig. 3.14. The important issue now is the choice of a kernel function, K, and a window

width, h.
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Figure 3.14: Kernel estimation of a one-dimensional bimodal density function. Estimate is
computed by superposing the kernels placed on every observable. Height of the individual
kernels, shown here to illustrate the principle of estimation, is exaggerated.

Choice of kernel

It turns out that the choice of the shape of the kernel function does not significantly effect
the quality of the approximation (for more details see [49]). Only two of the most popular
kernels will be shortly discussed here. One of them is the normal kernel, K,, which is just

the standard multivariate normal density function, N (0, 1),

K,(z) = ! exp (—-;—.Z‘T.’IZ‘) (3.20)

(2

This kernel is important obviously because of the role the normal distribution plays in

statistical analysis. Another possible kernel is the multivariate Epanechnikov kernel

201 —2Tz) faTz <1

Ke(z)={ % (3.21)
0 otherwise
where Vj is the volume of the unit d-dimensional sphere
\/d
Vv, = —" (3.22)

r'¢+1)
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e.g., V1 =2, Vo =m, V3 =4x/3, etc., and I is the gamma function, I'(a) = [ t* e ldt.
This kernel has some major advantages over the normal kernel. First, it minimizes the
“mean integrated square error” [49] of the approximation over the set of possible kernels
(which is nice, but as it was already mentioned, not that important.) Secondly, it has a
finite support, which turns out to be very useful for correct approximation of the tails of the
distribution in higher dimensional spaces. Finally, the Epanechnikov kernel is significantly

faster to compute.

Choice of smoothing parameter

The choice of the window width is as important to the problem of density estimation as it is
difficult and there are still no rigorous methods of its selection. There are a few well tested
rules-of-thumb, though. One of them suggests choosing a value of A which minimizes the
“mean integrated square error” of the approximation. Unfortunately, the expression thus
obtained contains the value of the pdf which one is trying to estimate. This problem can be
resolved only by substitution of some reference density function to the formula. The most
common choice for the reference pdf is the normal density function. Eq. (3.23) shows the

optimal value of the window width evaluated with respect to the normal distribution
hopt = A(K)/NY/ (@) (3.23)

where A(K) is a constant depending on type of the used kernel. For the Epanechnikov

kernel
A(K.) = (%(d + 4)(2y/m) )1/ (@) (3.24)
d

e.g., for d = 2, A(K.) = 2.40; d = 3, A(K.) = 2.49; etc. Because hgy refers to normal
distribution, one should be careful using the formula (3.23) for an unknown distribution. In

most cases, it will be appropriate to use a smaller value, say ohep, for the window width.

> \/ﬂ (3.25)

A possible value for o might be
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where s;; are elements of the sample covariance matrix of the data which makes o? the
average marginal variance. For the purpose of analysis of chaotic distributions, however, it
is safer to use about (0.05 to 0.5) of the value of hop given by equation (3.23).
In conclusion, the choice of the optimal value of the smoothing parameter is rather
arbitrary and its effectiveness depends on the experience of a person performing the analysis.
Fortunately, thanks to some of the adaptive methods, there are ways to make this process

more automatic and efficient.

Adaptive kernel estimates

The adaptive kernel estimator is a modification of the standard kernel estimator which
allows the smoothing parameter to vary at every center of the kernel function. The window
width is chosen to be narrower in highly populated regions of the attractor, so as to capture
the local character of the pdf, and wider in less populated regions to avoid undersmoothing.
This approach is similar in spirit to the nearest neighbor method, but turns out to be much
more accurate. The adaptive kernel approach applies a three-stage procedure. In the first
step, an initial estimate of the pdf is obtained using one of the standard kernel methods.
Estimated in this way, the density, called a pilot estimate, p, is then used to evaluate a set
of local bandwidth factors, \;, for every observation. These factors are then used, in the

third step, to construct the final estimator p. This procedure can be outlined as follows:
Step 1 Compute a pilot estimate p which satisfies p(x;) > 0 for every observation x;.

Step 2 Define local bandwidth factors X\; by

A= =L (3.26)

p(z;)

where ¢ is the geometric mean of the p(z;)
1 N
logg = i Z log p(z;) (3.27)
=1

Step 3 Define the adaptive kernel estimate p by

(3.28)
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Table 3.1: Sample size required to estimate a standard multivariate normal density function
using a normal kernel.

Dimension | Required sample size
1 4
2 19
3 67
4 223
5] 768
6 2,790
7 10, 700
8 43,700
9 187,000
10 842,000

where K is the kernel function and & is the window width used to compute the pilot

estimate.

This approach seems to be a very successful combination of features of the kernel and
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