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Abstract

The applicability of a dynamical systems approach to the analysis of gearbox vibration
signatures is investigated. The signal acquired from a standard one-step helical gearbox is
analyzed and the existence of the low-dimensional nonlinear and chaotic behavior is exam-
ined. For this purpose, the criteria of broadband spectrum, sensitivity to initial conditions,
positive Lyapunov exponents, and short-term dynamical predictability are applied. The
largest Lyapunov exponent is also used to quantify the predictability of the measured time
series and a surrogate data test is performed to confirm that the analyzed signal is unlikely
to correspond to a linear stochastic time-invariant model. To confirm the applicability of a
dynamical systems approach, forecasts of the gearbox time series are produced, using vari-
ous predictors in the state space. Several methods of dynamical signal separation are also
discussed. Finally, a family of statistics is proposed, on the basis of geometric features of the
system dynamics in the state space, to serve as dynamical monitoring tools for observing
changes in the operating conditions. These are tested using several models of dynamical
systems which exhibit behavior similar to that observed in the actual gearbox. The most

promising monitoring statistics are recommended for additional studies of gearboxes.
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Chapter 1

Introduction

Why study gearbox vibration signatures?

A very large percentage of all industrial maintenance costs involves mechanical systems.
Since gearboxes are a basic component of almost any power transmission system, their
condition monitoring and fault detection is of primary interest to any system maintenance
engineer. To monitor the condition of gears in an operating machine, a vibration signal is
usually acquired from the gearbox casing. This signal is later analyzed in hope of finding

information describing the gear condition and detecting early signs of possible damage.

Why nonlinear dynamical approach?

In gearboxes the existence of the modulation sidebands which appear in the spectrum near
the meshing frequencies is often attributed to local tooth defects [34, 31, 6]. Similar side-
bands occur also in the spectra of good gears due to nonlinearities and errors inherent
in their construction, i.e., transmission errors, non-identical teeth, imperfect involute form
of gear-tooth profiles, etc. The modulation is usually assumed in the form of amplitude
and phase (or frequency) modulation functions approximated by their finite-length discrete
Fourier series [34]. Since there are many sources of nonlinear behavior in gearbox vibrations
(e.g., contact and stiffness forces, backlash), the hypothesis that the modulation sidebands
result from a dissipative nonlinear dynamical (possibly chaotic) system is examined. An
affirmative result would have some very important implications. It would suggest, for ex-
ample, that different modulations of different harmonics of the meshing frequency result
from (or rather, can be modeled by) a low-dimensional nonlinear dynamical system. In
this case, in addition to looking for linear, spectral features, one should benefit from an-
alyzing the problem using multivariate methods that utilize the knowledge of the system
dimensionality and the structure of the underlying attractor. It is known that nonlinear,

and particularly chaotic systems, are often extremely sensitive to even the slightest changes
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in the operating conditions. There are many proven tools to quantify such behavior (e.g.,
Lyapunov exponents or entropy) and these can be particularly useful for the purposes of
system diagnostics and condition monitoring.

The dynamical time-delay embedding approach differs from traditional univariate anal-

ysis in two fundamental aspects:

e It provides information about the degrees of freedom in addition to the one that is
directly measured, although it may not capture all the degrees of freedom that are of

importance in the underlying mechanical system [48].

e Since the dynamics has been modified by an unknown change of coordinates, only the
quantities that are invariant under such transformation can be used to characterize

the analyzed system.

The first aspect refers to perhaps the biggest advantage of this approach over all other
methods of time series analysis. From the measurement of a one-dimensional time series,
it is possible to infer information about the degrees of freedom other than the one directly
observed. This method, however, also has its restrictions, which should be kept in mind,
especially in those cases where a dynamical approach does not produce results that were
expected. It should be also noted that the numerical implementation of the analysis in the
reconstructed state space very often proves to be difficult. Therefore, one should not jump
to an early conclusion that the dynamical approach is inapplicable only because a particular
statistic failed one’s expectations.

The second aspect pertains to a restriction which is vital if the results of performed
analyses are to be meaningful. Fortunately, this restriction is not very difficult to satisfy.
A significant number of system invariants is available and can be used to produce many

powerful analytic tools.

Previous work

The characterization of irregular broadband signals, typical of nonlinear dynamical systems,
and the extraction of useful information from such signals, has been a topic of extensive
research over last fifteen years [2]. Much of the work in this field, known as dynamical time
series analysis, has rested on powerful computational tools supported by some underlying

rigorous mathematics. Most of the attention has been paid, however, to applications in



3

classical physics. There exist a relatively small number of references, [21, 24, 46, 35, 36,
in which a possibility of chaotic behavior in some mechanical engineering devices (also
gearboxes) is investigated. Unfortunately, in most of these contributions, the conclusions
about the actual investigated devices were drawn from the mathematical models and not
from the experimental data. One of the exceptions (and inspirations for this work) was a
paper by Frison [18], in which he analyzed the vibration data from a spur-gear gearbox and
concluded that it came from a chaotic system, whose embedding dimension was not smaller
than 12. Despite the claim that the analysis presented there was just a prelude to gear fault
prediction, further results have not yet been published.

In this contribution, we perform analyses using tools similar to those used by Frison
but apply them to a one-step helical gearbox. We also go further than just to state our
“beliefs” about the nature of the “underlying system.” We present a model of system
dynamics which is typical of nonlinear chaotic systems. We also propose a set of dynamical
and probabilistic tools that can be applied to the analysis and condition monitoring of a

class of gearbox signals.

Objective and overview

The main objective of this work is to present a combined dynamical and probabilistic
methodology which can be applied to the analysis of a certain class of engineering problems.
The main task of this contribution is to describe an alternative way to produce working
models of the system dynamics in its state space. These models are used later for various
purposes like forecasting, signal separation, and condition monitoring.

The main body of this work can be divided into two parts. The first part, composed
of Chapters 2-4, discusses the dynamical approach to identification and verification of a
general dynamical model of the gearbox system inferred from its one-dimensional vibration
signal. The way in which the experimental time series was acquired from the gearbox is
described in Chapter 2. In Chapter 3, we discuss methods of determining the embedding
parameters of the reconstructed state space, which is similar to deciding the “model or-
der” in system identification. Next we impose some structure on the proposed dynarmical
model in the state space. The notions of recurrent dynamics, periodic orbits, sensitivity of
response to initial conditions, Lyapunov exponents, and probabilistic measures in the state

space are introduced using the example of the gearbox data. In Chapter 4, the gemeral
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model of dynamniics introduced thus far is described in more detail. The initial estimates
of the embedding parameters, i.e., embedding dimension and time-delay, are refined using
a measure of system predictability. Various types of prediction schemes are discussed and
two nonlinear predictors are introduced.

The second part of this work discusses the applicability of the dynamical state space
methodology to the problems of signal separation and system condition monitoring. Chap-
ter 5 introduces three methods of signal separation which take advantage of the information
provided in the reconstructed state space of the system. In Chapter 7, three new methods of
condition monitoring are proposed and their performance investigated for the data obtained
from the mathematical models introduced in Chapter 6.

Dynamical time series analysis is a young, vast, and vibrant field, which has already
produced many important contributions to our understanding and treatment of complex
signals. We are concerned, however, that further progress in this area is impossible without
a significant input from engineering circles. It is our hope that this work, aimed mainly at
these circles, will encourage engineers to experiment with the dynamical and probabilistic

methodology presented here and to include it in their analytical toolboxes.



Chapter 2

Experiment

“Jacta est alea”

In order to investigate the applicability of a dynamical approach to the problem of
gearbox condition monitoring, we conducted an experiment in which we tested a typical
one-step helical gearbox with 49 teeth on the pinion and 109 teeth on the gear, giving a
ratio 2.224. The gearbox was not modified for the purpose of the experiment and was tested
under its typical operating conditions. The input shaft was driven by an electric motor at
various speeds and under constant load provided by a water pump. A stroboscope was used
to verify that no torsional oscillations were transmitted from the motor to the input shaft.

As shown in Fig. 2.1, we placed a measuring accelerometer on the top of the casing of the
statically mounted gearbox and acquired its vibration signal at a sampling rate of 71 kHz.
The transducer used was a piezoelectric accelerometer, ENDEVCO 7701A-100, with the
amplitude response in the range of 1 Hz - 5 kHz and charge sensitivity of 100 pC/g. This
signal was stored temporarily on a notebook PC with a data acquisition board and later
analyzed on an IBM RS-600 workstation and a Pentium PC running Linux.

In order to observe the effect of vibration of the casing on the experiment, we identified
its natural frequencies from impact-induced vibrations. As shown in Fig. 2.2, the dominant
natural frequencies appear beyond 3 kHz. Since the range of the most stable performance
of the controller of the driving motor was about 600 rpm (as measured on the output shaft),
which corresponds to the meshing frequency of 490 Hz, the dominant natural frequencies
of the casing were not excited (in our setup) by the meshing frequency or its dominant
harmonics. This is important because we wanted to capture the dynamics of the meshing
gear teeth rather than that of the more complex system including the casing. We man-

aged to obtain a relatively.weak contribution of the dominant modes of the casing to the



Figure 2.1: Photograph of the investigated one-step, helical gearbox.
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Figure 2.2: Natural frequencies as measured on the gearbox casing.
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Figure 2.3: FFT computed for gearbox signal obtained at 600 rpm. The meshing frequency
fm = 490Hz.

acquired signal thanks to the appropriate location of the accelerometer. Even though, in
principle, only one transducer is needed to recover all the active degrees of freedom of the
analyzed system when the dynamical analysis is used, the quality of analysis depends on
the positioning of the transducer.

An FFT of a typical gearbox vibration signal possesses certain characteristic features
which can be observed in Fig. 2.3, created for the gearbox signal acquired in our experiment
at 600 rpm. One can notice there the presence of dominant peaks corresponding to the
meshing frequency and its harmonics. The other feature, which is of particular importance
to us, is that these peaks are accompanied by modulation sidebands. In recent years,
more and more researchers have expressed their beliefs that those sidebands contain more
information about the state of the system than can be extracted from the linear discrete
component!. In Chapter 6 we will suggest three models which have certain qualitative
features resembling those exhibited by our experimental signal. One of the required features

will be that the Fourier spectrum is qualitatively similar to that shown in Fig. 2.3.

'especially if the problem of condition monitoring is the main goal of analysis



Chapter 3

Nonlinear Analysis of Vibration Signature and

Identification of Underlying Dynamics

“Res ipsa loquitur?”

Techniques of extracting information about the system from experimental data are com-
monly known in engineering as system identification. The equivalent methods in physical
sciences are known under the name of time series analysis or, if applied to dynamical
systems, as dynamical time series analysis. The technique which distinguishes dynamical
analysis from others and forms its conceptual backbone is the phase space reconstruction.
This method allows the experimenter to approximate the multi-dimensional, and directly
unobservable, state of the physical system based only on scalar-valued measurements. The
purpose of this reconstruction is not only to gain information about the number of active
degrees of freedom of the system but also to look for its geometric features which can be
used for noise reduction, forecasting, system condition monitoring and many others [2, 11].
Note that this concept is very general and in principle can also be applied to linear finite
dimensional systems. However, in this case (and also for some weakly nonlinear systems)
existing linear methods of analysis are usually very efficient and the phase space approach
is often not worth its computationally intensive application. That is why dynamical time
series analysis becomes a preferred approach only when the underlying system is strongly
nonlinear, or high accuracy and/or sensitivity is required from the applied statistics. We
will now explain what we mean by a dynamical system and try to clarify briefly the above

mentioned concepts (for more details on theory of embedology see [48]).



3.1 State space embedding

In this work, by a dynamical system we understand a mechanical system that can be

modeled by a following set of autonomous nonlinear differential equations:
= G(u) (3.1)

with the initial condition u(tg) = ug, where u = u(t) € R? is a state vector and G : U — R?
is a smooth function defined on some compact subset U C RY. Under assumption of a
dissipative system, even if originally the system has a high (possibly infinite) dimensional
phase space, its long term behavior will be eventually limited to some compact subset, U, of
relatively low dimension. The trajectory of the differential equation (3.1) initiated at ug can
be written as u(t) = f(ug). In order to make the physical process accessible to an observer,
one needs to perform a measurement. Since the measurements are performed along an orbit
f! at discrete time intervals, ¢ = 7, (called later the sampling time or the time step), it
is convenient to use a unit-time map to transform (3.1) into a discrete dynamical system
synchronized with the observation process. Define a measurement function g : R¢ — R that

results in a scalar time series

y(k) = g(u(krs)) = g(f*(u0)) = g(F*(uo)); y€R, k=1,2,...,n (3.2)

where F is the discrete dynamic map F(u) = f™(u), F¥(u) = f¥7(u). Hence one obtains

the following discrete dynamical system
y(k) = g(F* (uo)) (3.3)

describing a composite process which is not directly accessible to the experimenter. The
scalar time series, y, is thus the result of an experiment. The classical system identification
approach to non-parametric modeling would look for meaningful system features in the
spectrum of y. If the vector field G is nonlinear, however, the spectral analysis will often
fail to provide any meaningful information. This is because many nonlinear (in particular
chaotic) systems exhibit a broadband spectrum and the spectral analysis is not sensitive

enough to detect changes in the system behavior reliably. Dynamical analysis has proven
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to be particularly useful under these circumstances.

Time-delay embedding

The concept of the phase space reconstruction is based on Takens embedding theorem [50].
The theorem states that if one performs a “correct” time-delay embedding of the time series
(3.3) one can construct an m-dimensional space which inherits many of the properties of
the original d-dimensional space corresponding to the system (3.1) even though neither the
dynamics of the original system nor the measurement function is known. For each state

u € U of the system (3.1), one can define the m-dimensional vector

l‘(k?) = D‘r(y)
= (y(k),y(k+7),... ,y(k+ (m —1)7))
= (9(F"(u0)), g(F**"(ug)), .., g(F** ("D (ug))) (34)
where kK = 1,2,... ,n — (m — 1)7. This vector is called the delay coordinate vector, and T

is the reconstruction time-delay, which is an integer multiple of the sampling time 75;. The
dimension of the reconstructed phase space, m, needs to be chosen in such a way that the
dynamical structure of the orbits in the original u-space is preserved in z-space, and the
mapping from one space to the other is one-to-one. This can be achieved if m is greater
than twice the “box-counting dimension” of U, and the measurement function g is chosen
generically [48]. The process of mapping the time series into its embedding space is shown
schematically in Fig. 3.1.

We can relate all the above to the general problem of modeling a mechanical input-

output system:

2k +1) = fla(k) +

y(k) = g(z(k)) +ex (3.5)

where z € RYE is the state vector for the system, f : R4 — R?® models the dynamics of
the system, and g : R’ — R models the relationship between the system state and output
(in our case g is simply an approximation of the measurement function g in (3.2)). Z; and

ek correspond to the embedding model and measurement errors.
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The process of reconstructing the embedding space and building local or global maps
z — F(z,a), which evolve every trajectory point z(k) — z(k + 1), is equivalent to defining
a class of possible models of the system, known under the name of specification in system
identification [5]. Using the information about how neighborhoods of trajectory points
evolve in the state space, we can fit the parameters a of the chosen class of models. An
example of this type of modeling would be using a variation of a local autoregressive model’
in which instead of fitting the model parameters with sequences of points that are close in
time, one uses neighborhoods of points that are close in the state space. This general
geometric model of system dynamics will be described in more detail in Section 4.2.3 where
it will be used to make predictions and to verify the applicability of the phase space approach
to the analysis of the experimental gearbox signal.

The typical second step in system identification is estimation of the model parameters
from available measurements or, in other words, determining the “best” model in the pre-
viously defined class of models. In dynamical time series analysis, this step corresponds to
finding the appropriate embedding parameters, i.e., time delay and embedding dimension.
The choice of the parameters of the predictive model, as defined above, will be postponed
until Section 4.2. Before we proceed to estimate the embedding parameters, however, we

will present two extensions of the simple time-delay embedding introduced above.

SVD embedding

The idea of filtering the delay coordinates was first introduced by Broomhead and King [9].
They suggested replacing raw delay coordinates with the dominant modes obtained from
the singular value decomposition (SVD), which eliminates the need for an arbitrary choice
of the time-delay parameter. The procedure starts with a trajectory matriz, X, whose rows

are created from N trajectory points, z € R™, initially embedded in a conventional fashion,
X = N"2[27(1),27(2),..., 2T (\V))T (3.6)

The dimension m is chosen high enough so that the Whitney embedding theorem is satisfied.
The time-lag is chosen as 7 = 1. Next a real symmetric covariance matriz, = = X1 X, is

decomposed using the singular value decomposition into ZC' = C'¥?. Finally, the trajectory

'For a short discussion of linear prediction schemes, see Section 4.2.2.
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matrix, X, is projected on the vectors of the orthogonal matrix C' chosen so that they
correspond to the singular values (entries of the diagonal matrix X) which are larger than
an arbitrary noise level.
The main advantages of this method are that it eliminates the need for an arbitrary
choice of the embedding parameters and that it provides initial filtering of the data. The
main disadvantage is that the value of 7 is not fixed across the trajectory, which complicates

further analysis and forecasting of the data.

Filtered embedding

The idea behind this method is to merge the useful filtering techniques, known from con-
ventional signal processing, with the geometrical approach of dynamical time series analysis
[47]. Rather than using the conventional lag vectors z(i) € R?, they are first multiplied by
a “filtering” matrix, whose rank is larger than or equal to the desired embedding dimension.
An interesting choice for that matrix is suggested by Sauer in [47], where it is produced by a
composition of three linear operators: discrete Fourier transform, low-pass filter, and inverse
Fourier transform. The vectors z(i) are usually embedded in the space whose dimension
is higher than necessary which allows to “intelligently” downsample the data. This type
of filtered delay coordinate embedding, called by Sauer a “low-pass embedding,” removes
noise but preserves embedding of the reconstruction. In the absence of noise, there is no
advantage of this approach over just downsampling the time series. There is, of course, a

large number of possible linear filters that can be applied to this procedure [38].

3.1.1 Initial choice of time-delay

According to Takens embedding theorem, the quality of the phase space reconstruction
does not depend on the choice of the time-lag 7. In practice, however, since all signals
are contaminated with noise, selection of the “proper” time-delay becomes very important.
For the first choice of the optimal time-delay, we use the method of the average mutual

information [2]. The value of the average mutual information, I(7), expressed in bits,

R ()l + 7))
1(7) = 3 atoth) otk + 7)o (LG0T (37



14

f=4
i<l
£ ! 1
5 144.89
g 08 < — B> il
3
£
[}
g
g °fy 1
1 1 1 1
200 300 400 500 600 700

time delay [time steps]

Figure 3.2: Average mutual information computed for a gearbox signal obtained at 600
rpm. The “optimal” value of time-lag was found to be 7 = 11.

is found for all possible pairs of measurements y(k) and y(k + 7). p(y(k)), p(y(k + 7)), and
p(y(k),y(k+7)) are the probabilities of measuring y(k), y(k+7), and both y(k) and y(k+7),
respectively. The probabilities are estimated as frequencies of occurrence as shown in [16].
We compute the values of I(7) for some interval of 7. Then we plot the resulting points
(I vs. 7) and choose the value of 7 for which the average mutual information reaches its
first minimum. This prescription for choosing 7 reflects the case in which y(k + 7) is nearly
independent, on average, from y(k) (I = 0 if exactly statistically independent). Fig. 3.2
shows the mutual information function for the gearbox signal (compare with results for a
spur pinion gearbox in [18]). Its first minimum occurs for the value of 7 = 11 which is
temporarily chosen as the optimal time-delay and will be used as such until it is verified
in the forthcoming sections. Another interesting feature visible in Fig. 3.2 is the presence
of equidistant peaks in the average mutual information function. These local maxima are
separated by the distance equal to the reciprocal of the meshing frequency (about 145

[time steps] at a sample interval of 7, = 1.41 - 107° sec).
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3.1.2 Initial choice of embedding dimension

Both Takens theorem and Sauer prevalence theorem specify the lower bound on the value
of the embedding dimension. Both theorems, however, establish only a sufficient condition
for the correct embedding. In many cases it is possible to unfold the dynamics of (3.3) in
a lower dimensional space. This means that one can find a dg-dimensional space in which
the trajectory will not intersect itself and whose dimension is lower than that given by both
of the above mentioned theorems. This reduction in dimensionality leads to significant
improvements in computation time for all numerical methods of analysis.

In our work we applied a method which uses the concept of false nearest neighbors?,
which are generated when the orbit is projected on a too low dimensional space. Two
points are considered false neighbors if they are close to each other in R™ but not in R™*!
(for any m). To find false neighbors, one starts with a reasonably small m and examines
the change in Euclidean distance for all pairs of nearest neighbors, as m is increased by
1. If for some pair this change is significant (we considered significant an increase in the
initial distance by at least 15 times), those points are qualified as the false neighbors. One
can plot the percentage of the false nearest neighbors with increasing dimension. The
minimum embedding dimension, dg, is chosen to correspond to the first point for which
this percentage drops below the value of 1%. Fig. 3.3 shows the percentage of false nearest
neighbors for various values of m used to embed the gearbox signal. From this graph one
can conclude that the minimum embedding dimension can be as low as dgp = 5. As one
can see, the number of false neighbors does not drop to zero. This may be caused by the
noise contamination introduced by the motor controller and the measurement process. It
is very common to observe such behavior of this statistic whenever the analyzed signal is
contaminated with noise®. For a finite-dimensional deterministic system, the number of
false nearest neighbors should become saturated as soon as the embedding dimension of the
system is reached. However, if the analyzed data is contaminated with noise (which can be
interpreted as a signal whose dimensionality is significantly higher than that of the signal of
interest), then, after reaching an apparent plateau, the statistic starts to rise again. As it is
demonstrated for the well known Lorenz system [32] in Fig. 3.4, the rate at which the curve

drops or grows and the level of the plateau it reaches depend on the signal-to-noise ratio in

*For a comprehensive discussion of this method, see [2].
3For details about our interpretation and treatment of noise in dynamical analysis, refer to Chapter 5.
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Figure 3.3: Embedding dimension estimated for gearbox data obtained at 600 rpm. The
percentage of false nearest neighbors is computed for increasing embedding dimension, m.
The lines connecting points have no physical meaning and are shown only to emphasize the
trend.

the analyzed signal. The figure illustrates how the length of the plateau becomes shorter
with the decreasing signal-to-noise ratio and how it finally disappears for the pure noise
signal (uniformly distributed noise obtained from a pseudo-random number generator). It
can also be seen how the noise contamination can be estimated with this statistic.

Note that the false nearest neighbor statistic was computed for the gearbox signal for
the value of 7 = 11 estimated in the previous section. It is always a good idea to verify the
stability of the embedding dimension estimation by computing the false nearest neighbors
statistic for various values of time-delay. The result of such computation is shown in Fig. 3.5
from which it can be concluded that the obtained value of d is stable over a range of time-
delays. We use dp = 5 and 7 = 11 as the initial estimates of the embedding parameters

until they are verified in Section 4.2.3.

3.2 Recurrent dynamics and periodic orbits

Characterizing time series through its periodic orbits is an old and well established pro-
cedure. It is commonly used to analyze linear systems, where peaks on the frequency

spectrum imply system modes. In chaotic systems which result in broadband spectra it
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might be difficult to extract periodic orbits this way. Simply because clear peaks might not
be present in the spectrum does not mean that periodic orbits are useless as a feature to
characterize a nonlinear, chaotic, system. Poincaré was the first to point that out in 1899
[43]. An inverse is also true. As observed by Auerbach et al. [4], a chaotic trajectory can be
successfully used to locate periodic orbits. Existence of the recurrent regions in the phase
space allows one to define a global cross section of the flow and associate with it a return
map, called a Poincaré map?. The dynamics of the Poincaré map is often easier to study
than dynamics in the original phase space. It also reduces dimensionality of the problem
from dg to dg — 1. For systems embedded in R?, it also provides an interesting graphical
representation of the dynamics. Unfortunately, Poincaré maps are difficult to compute for
experimental time series. Fortunately, there exist other, relatively new, methods which are

as useful as Poincaré maps but much easier to implement.

3.2.1 Recurrence plots

In 1987, Eckmann et al. [14] introduced a very informative, graphical tool, called a recur-
rence plot>, which can be easily applied to experimental data. Given a trajectory {a:(z)}fil,
let us define the following set of integers, Z,, = {0,1,2,... ,m — 1}, composed of indexes
corresponding to the trajectory points, {z(0),z(1),z(2),...,z(m — 1)}. Consider the Eu-

clidean distance, §(¢,j) : Zm X Z, — R+, between two trajectory points z(i), z(j) € R
6(i,3) = ll=(2) — z(i + 7))l (38)

where m +n < N. Now, we define a function p : R — Z, as a linear function of
0 with a constant k/e, where k corresponds to the number of shades of grey chosen for
the map, and € is a suitably chosen cutoff value. In our work we used & = 100, i.e.,
p(6(2,7)) =01if 6(¢,7) > €, and p(8(z,7)) = 1 if §(4,7) < €/100, where 0 denotes white, and
1 black. The choice of the cutoff value, €, is somewhat arbitrary. In our work, we used
e = max||z(i) — z(j)|| for all possible values of 7 # j. Finally, a recurrence plot is defined

as the graph of the composition [26]

po0 Ly X Ly — 2y, (3.9)

“For a detailed discussion of Poincaré maps, see, e.g., [55].
®See also [26].
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Figure 3.6: Recurrence plot for a harmonic signal embedded in R? using time-lag value
T =5,

From the above definition, we can conclude that the m xn recurrence plot array is symmetric
with respect to its diagonal ¢ = j. Fig. 3.6 shows a recurrence plot produced for a harmonic
signal, which was embedded in R?. There can be observed features of the recurrence plot
which help identify certain types of system behavior [26]. A complete classification of
line-type patterns within a recurrence plot can be summarized in seven possible values of

line-segment slopes®:

e slope 0; these line segments correspond to trajectory points which become close and
stay close for an interval of time. In particular, evenly spaced, horizontal line segments
denote periodic recurrence (see Fig. 3.6.) Length of these segments quantifies the local

rate of divergence.

o slope —2; denotes a segment of successive trajectory points which reappear in the

state space reversed in time (see Fig. 3.6).

e slope —1 and vertical; corresponds to a particular trajectory point which remains close

to an earlier (in time) trajectory segment.

For a detailed description and classification of possible features in recurrence plots, see [26].
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o slope smaller than —2; these line segments correspond to trajectory sections which

reappear reversed and dilated in time.

o slope between —2 and —1; indicates sequences of trajectory points which reappear

reversed and contracted in time.

o slope between —1 and 0; denotes trajectory segments which reappear contracted in

time.
e positive slope; corresponds to trajectory segments which reappear dilated in time.

The most clearly visible feature is usually a collection of black horizontal line segments,
which correspond to periodic orbits. To see this, denote the horizontal axis by ¢ and vertical

axis by j. The horizontal segment of length [ can be expressed as the following set
{G@,5), G+ 1,5),...,(i+1-1,5)} (3.10)
which, in turn, corresponds to the set of distances

{lz(@) — 2@+, [lz(i+ 1) —z(i+ 7+ D,z +1-1) —z(i+j+1- 1)}
(3.11)

Thus, these line segments correspond to the sequences of the data which result in trajectory
points coming close to one another and remaining close for an interval of time. Fig. 3.7,
which shows a recurrence plot made for the gearbox signal embedded in R?, clearly indicates
recurrent sequences of successive trajectory points. Note that some of the horizontal line
segments are longer than others. The short ones correspond to the areas of the phase
space with relatively high rate of local divergence. The longest horizontal segments are
vertically repeated about every 145 time steps, which corresponds to the gear meshing
frequency. Harmonics of the meshing frequency and other recurrences can also be identified
from Fig. 3.7. Thus, recurrence plots can also be used to extract periodic orbits from
experimental data or to construct such orbits in certain regions of the state space.

A different type of the recurrence plot, suited particularly well to identify periodic orbits
(in this case of period 7" = 145), is shown in Fig. 3.8. It is constructed by plotting §(i,7T")

vs. ¢ for a fixed value of T'. Fig. 3.8 illustrates how a periodic orbit can be identified in the
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vicinity of the 4270-th trajectory point. The period of the meshing frequency is also visible
as a “pseudo-period” of the fluctuations in values of . Of course, this technique requires
a separate plot for every value of 7. Sometimes, for data obtained with a large number of
samples per period, one can observe that some recurrent points’ tend to become clustered,
i.e.,, not only (i) is a recurrent point but also z(i + 1),z(i + 2),..., etc. Such clusters
signify the near periodicity over several complete periods in the corresponding trajectory
segment.

Since various periodic orbits create a “topological skeleton” for strange attractors, one
should be able (at least in principle) to recover the qualitative features of the underlying
dynamics by superimposing extracted periodic orbits. The methodology which seeks to
express averages over the regions of the state space in terms of short unstable periodic
orbits is known as the cycle expansions [13]. If the dynamics is low-dimensional (dg < 3),
there exist techniques to extract a topological signature of the dynamical system by treating
every periodic orbit as a knot, and quantifying the patterns in which they are interwoven
[54]. Cycle expansions partition the trajectories into groups, where longer trajectories are
approximated by the shorter ones. This leads to simpler representation of complex dynamics
and to significantly more efficient computation. Fig. 3.9 shows an example of a periodic
orbit decomposition for the Réssler system. A very deep analogy can be made between cycle
expansions and the Riemann (-function from number theory: just as with the ¢-function,
the prime numbers are used to create other numbers, in cycle expansions the “primitive
orbits” are used to re-create other orbits. The main tool of this approach is the cycle

expansion of the dynamical (-function [3]
1/¢ =TI - t,) (3.12)
2

into p primitive cycles ¢,. The main problem with this approach is that it is still unclear
when, and if, the cycles suffice for the complete characterization of a dynamical system.
Since this area has experienced very rapid progress in the last few years, it is a common
belief that also this problem will be soon resolved. In Chapter 7, we put emphasis on

practical applications of a small number of cycles (usually insufficient to reconstruct the

"A recurrent point is understood here as an approximation of a trajectory point belonging to a periodic
orbit.
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system dynamics). That is why we shall refer those seeking more details and mathematical
rigour in the treatment of cycle expansions to [4, 13, 3].

There is an interesting way in which unstable periodic orbits help to understand short
term predictability in chaotic systems. One can achieve good short-term predictability for
a segment of a chaotic trajectory in which it approaches an unstable periodic orbit along its
stable manifold. Then the trajectory is ejected along the unstable manifold which results in
a significant drop in its predictability. This behavior is responsible for a sudden diversion
of the true and predicted signals shown in Fig. 4.7. The short-term predictability is again
possible as soon as the trajectory is captured by the stable manifold of another periodic

orbit.

3.2.2 Extraction of periodic orbits

As it was mentioned in the above section, periodic orbits (also called cycles) can be crudely
located using recurrence plots. If there is interest, however, in using some quantitative mea-
sures which are defined for the periodic orbits, a more accurate method of orbit extraction
is needed. Before we discuss the issue of extraction of periodic orbits, however, we shall
briefly explain why these orbits are so interesting. The first reason for this is that they
provide an invariant characterization of a deterministic dynamical system. The invariant
character of a periodic orbit is reflected in the fact that it remains a periodic orbit under any
smooth change of coordinates (in any representation). This is of paramount importance,
because, as mentioned in Section 3.1, we cannot observe the system dynamics directly, but
only through some measurement function, g, defined as in equation (3.2-3.3). Under the
assumption of smoothness of g, the cycles are not only topologically invariant, but their
stability is also invariant. In other words, eigenvalues of the Jacobian matrices computed
for the system orbits are invariant, and vary slowly with smooth parameter changes, re-
gardless of whether the time series is a long transient, a long cycle, or truly ergodic (for
more details see [13]). Furthermore, only a finite, usually small number of periodic orbits
are necessary for a good approximation of system dynamics. Short orbits contribute more
to this “cycle expansion” than the long ones, and the error which comes from neglecting
the long cycles can be bounded. The last statement is generally true for systems whose
dynamics is restricted to a hyperbolic attracting set. It does not follow, however, that only

such systems can be effectively approximated with periodic orbits. It just means that in a
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nonhyperbolic case, the exponential decrease in importance of the long cycle contributions
to the expansion needs to be verified. Note that this is very important for cases where one
seeks to replace analysis of the experimental trajectory with analysis of its cycle expansion.

Since in this work we are only interested in certain measures defined for at most a few
cycles, the exponential convergence of the cycle expansion is not necessary for successful
application of our condition monitoring methodology. That is why we are particularly
interested in two features of the representation by periodic orbits: first, short cycles can
be accurately extracted from experimental data, and second, they are robust in terms
of local dynamics in the neighborhood of the periodic orbits. The accurate extraction
of periodic orbits is possible for relatively low dimensional systems, but only when the
experimental time series is long enough to visit all neighborhoods of every periodic orbit
of interest. Another important limitation on extraction of a cycle can be its stability. In
general, the more unstable the orbit, the more difficult it is to observe and extract. Finally,
contamination of data with noise® can become a serious limitation as well. All methods of
extraction of periodic orbits require computation of distances in the phase space, and hence
are susceptible to noise.

To summarize, the periodic orbits have a potential to become a very powerful tool
in many areas of dynamical time series analysis. They can be effectively extracted from
experimental data, although their accurate extraction can sometimes be difficult.

We will now describe how we extract periodic orbits from experimental data. Let us
suppose that we are interested in finding a cycle of period T'. We start with the trajectory
{z(i)}™, € R? embedded in its phase space using the methods described in Section 3.1.
We follow the time evolution z(i + 1),z(i + 2),..., for every trajectory point z(7), until
we encounter such a point, z(k), for which ||z(k) — z(k + T)|| < €;. We call such a point
a period-T" cycle (or recurrent) point. All these points are then grouped into sequences
representing periodic orbits. The recurrence threshold, €1, is chosen large enough to include
several such sequences. In our work we found, that the value of ¢ = 0.020, where o is the
standard deviation of the time series, works well. For higher order, as well as for higher
dimensional orbits, however, this value might need to be increased.

Notice that if a point x(4) is a period-T cycle point, it is quite likely that z(z+1) is also a

8Noise is understood throughout this work as a signal coming from a very high dimensional, possibly
infinite dimensional, dynamical system.
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period-T cycle point, as well as, possibly, z(i+2),. .. , etc. All these points correspond to the
same periodic orbit, as a result of the trajectory approaching the cycle from its attracting
direction. One way of approximating a periodic orbit is to choose it to correspond to the
point with the closest recurrence in the set. This will eliminate redundant cycle points from
the interval [z(i),z(i + T')). There is another problem, however. How shall we classify the
periodic point (i + 7"+ 1) or z(i + T + 2)? There will also be other period-T" cycle points
in the neighborhood of z(i). In order to decide whether two nearby nearly periodic orbits
correspond to the same periodic orbit, the relative distances of all corresponding pairs of
points of the two orbits need to be computed. Only if all such pairs of points are located
within the distance ez, we conclude that they represent the same periodic orbit and put
them into the same set. The position of a point representing the “best” estimation of the
periodic orbit is chosen to be at the center of mass of all corresponding points in the above
set. This procedure seems to be more robust, because it involves averaging in the phase
space. The value of the second recurrence threshold, €5, was chosen to be €3 = 5¢7, which

seemed to work well for our data.

3.3 Lyapunov exponents and sensitivity of response to initial

conditions

One of the most interesting features of the chaotic dynamics is its sensitive dependence on
initial conditions. This phenomenon can be easily visualized by comparing the time evolu-
tion of two nearby passes of the trajectory in the phase space. To do that one needs to find a
pair of nearest neighbors in the reconstructed phase space, called here z(j), 2V (j) € R?=,
that belong to two nearby trajectory segments. Then, while observing the time evolution
of z(j), one needs to update the search for its nearest neighbor (belonging to the same
trajectory segment as V7V (5)) to make sure that the evolution of distance between two tra-
jectory segments is computed correctly. Sensitive dependence on initial conditions will be
manifested by a rapid increase in the distance between initially close trajectories (averaged
over the attractor). Such behavior can be seen in Fig. 3.10 created for the gearbox signal.
Another interesting way of identifying this phenomenon is to create a scattergram. In-
stead of computing a distance function, one can also project the time continuation of two

initially nearby stretches of trajectory on a real line, thus creating two time series. Any
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Figure 3.10: Time evolution of the average distance between two initially close trajectory
points in the phase space. The distance was computed with respect to the estimated
attractor size for the 600 rpm gearbox signal.

particular choice of projection should work. One could, for example, choose to project the
trajectories on the direction corresponding to the largest singular value, or just take the
first components of the two trajectories. The latter choice would result in two time series:
{y(),y(G+1),...} and {g™V(5),y" V(i +1),...}, where y(4) and yVV(5) denote the first
coordinate of z(j) € R% and of the nearest neighbor to the point z(j), respectively. The
derived series can now be plotted, one against the other, which will result in the scattergram
(see Fig. 3.11.) If the system is not sensitive to initial conditions, the two series will be
highly correlated and the points on the scattergram will lie on a smeared line y = 7/4 z,
as in Fig. 3.11(a). If the system exhibits sensitive dependence, however, one will notice a
cloud of scattered points, as it is shown for the gearbox data in Fig. 3.11(b), resulting from
two initially close segments of trajectory which rapidly diverged in the phase space.
Divergence of nearby orbits can also be quantified by Lyapunov exponents, which can be
thought of as generalized eigenvalues averaged over the attractor. There are two commonly
used definitions of the Lyapunov characteristic exponent (LCE). One definition describes the

asymptotic behavior of the fundamental solution matrix, X (¢), of the analyzed dynamical
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Figure 3.11: Scattergram plots for a) harmonic system response with added noise, and
b) the 600 rpm gearbox signal. Horizontal axis corresponds to the time evolution of first
components of points on one trajectory, and the vertical axis to the time evolution of the
corresponding components of their nearest neighbors on the other trajectory.

system, in the direction specified by the vector w and as t — oo,

1 X
Az, w) = lim sup — log, X ()uw] (3.13)

too [Jwl]

The other, better suited for computation, refers to the long-term evolution of an infinitesimal
n-sphere (which becomes an n-ellipsoid due to the locally deforming flow in the phase space)

of initial conditions,

A = lim S 1o pf(t) (3.14)

where p; (t) is the length of the principal axis of the n-ellipsoid at time ¢, and \; are numbered
in descending order. In both formulas LCEs are expressed in bits per time unit.

Lyapunov exponents represent the average rate of divergence of initially close trajectory
segments. Since the trajectory is embedded in the phase space, the number of Lyapunov
exponents is equal to the dimension of the phase space. Negative exponents correspond
to the directions along which two trajectory segments converge to each other and positive

exponents to the directions along which they diverge exponentially. Every nontrivial, cor-
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rectly embedded trajectory’ should also possess a zero Lyapunov exponent. Since all of
real world physical systems are dissipative and their dynamics confined to a globally finite
region of the space, the exponential divergence has to be compensated by stretching and
folding of the trajectory, and that is responsible for the Smale Horseshoe scenario leading
to chaos. This is why in the dynamical time series analysis community, it has been agreed
that the existence of a positive Lyapunov exponent, for a system whose trajectories are
bounded to a finite attracting set, implies that the system dynamics is chaotic. There are
many interesting theoretical and computational aspects involving Lyapunov exponents that
are worth discussing (like the existence of the limits in equations 3.13 and 3.14 or how to
compute all of the LCEs from a time series), but since our space is limited here, we will
only refer the reader seeking more details to [2, 58] and references therein.

To verify the sensitive dependence on initial conditions and assess the predictability
of the gearbox data, we computed a full set of global Lyapunov exponents. We obtained
one zero, two positive, and two negative Lyapunov exponents. The largest exponent, \; =
0.0163 [bits/time step|, quantifies the approximate average maximum length of a reasonable
prediction horizon. In our case this length is about 1963 time steps, which means that after
that many steps, prediction essentially looses all 32 bits of information. Note, however,
that this is just an average number. Depending on the location of the predicted trajectory
segment in the phase space, the resulting predictability can be significantly higher or lower.

This result can also be verified by fitting y = 2°*+7 to the increasing part of the curve
in Fig. 3.10, and the value of « obtained this way can be considered a crude estimate of
the largest Lyapunov exponent. In our case we obtained o = 0.0169 [bits/time step], which
is in good agreement with the previously estimated value of A1, and hence confirms our

conclusions about the system’s sensitive dependence on initial conditions.

3.4 Kolmogorov-Smirnov test

We have already shown that the gearbox signal exhibits features that justify application of
dynamical analysis. On the other hand, it is possible that a noisy signal which comes from
a hypothetical linear system might also exhibit similar features. In recent years there has

been considerable attention devoted to the problem of determining whether the nature of the

By a nontrivial trajectory we understand an orbit which does not contain a fixed point.
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“underlying system” is chaotic or “random” (e.g., [52, 25]). Since, in our understanding,
the randomness is a measure of one’s lack of knowledge about the system rather than a
definition of an abstract physical system, the meaningfulness of such tests is somewhat
questionable from this point of view. Most of the suggested algorithms, from which one
is supposed to infer presence of nonlinear structure in time series, are based on statistical
hypothesis testing. An alternative model (null hypothesis), that is used for that purpose,
is usually defined in the form of artificially created (surrogate) data. Unfortunately, all of
these methods suffer not only from problems of “philosophical” nature (typical of statistical
hypothesis testing) but also from their limited reliability. Even if one believes that the
underlying physical system, modeled by (3.1), can be reliably characterized that way, few
would probably believe that its nature is indeed linear. Since there seems to be a strong
tendency, within the community of dynamical time series analysis, to perform these tests
anyway, we use here the Kolmogorov-Smirnov test with forecasting error as a discriminating
statistic. This choice of statistic seems to have the highest relevance in our case.

The null hypothesis that we use states that the data comes from a linear “stochastic
process” and there is no nonlinearity either in the dynamics or its observation. The surrogate
data is created from the original time series by randomizing its phases but preserving its
spectrum [52]. To do that we first need to compute the Discrete Fourier Transform, Y'(f),
of the time series y(k) and then randomize its phases Y7(f) = Y (f)e’*Y), where ¢(f)
is uniformly distributed in [0,27]. Note that the created j-th surrogate data set has the
same spectrum as the original time series and hence complies with our null hypothesis.
For this analysis to be statistically meaningful, we need to create an ensemble of 10-100
surrogate data sets. Before inverting Y'(f), we also need to ensure that the resulting time
series is purely real. This can be done by requiring the following equality of the imaginary
components to hold: (Y7 (f)) = —S(Y7(n — f)). Now the actual testing can be applied
to the set containing the original and surrogate time series. The prediction statistic we use
is specifically designed to emphasize the deterministic character of the data. A prediction
algorithm similar in spirit but a little simpler than the one described in Section 4.2.3 is
employed. To eliminate the artificial increase in predictability that results from short-
time correlations, a “decorrelation interval” of 50 time steps is used [25]. We compute the
prediction 10 steps ahead in the reconstructed phase space for all data points whose true

continuation we know. Since the Kolmogorov-Smirnov test requires the data samples to
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Figure 3.12: Kolmogorov-Smirnov test computed for gearbox data, 600 rpm, prediction
horizon T = 10 sampling intervals. The 99% (solid) line corresponds to the 99% confidence
level of the rejection of the hypothesis that the signal is a linearly correlated noise.

be independent, we decimate the set of prediction errors by a factor corresponding to the
autocorrelation time of the predictor errors [25]. Next we save the results in two files, one
corresponding to the original time series and one to all of the surrogate data sets. Now we
can compute the Kolmogorov-Smirnov test and repeat the whole process for various values
of the embedding parameters 7 and dg. The result of this procedure is shown in Fig. 3.12.
It indicates superior predictability of the original time series (compared with the surrogate
series) over a range of time-delays, provided the embedding dimension is higher than 4.
Rejection of the null hypothesis implies that the dynamical features of the prediction model
are unlikely to correspond to the surrogate data. Nonetheless, one still cannot assert from

this test the evidence for a low-dimensional chaotic behavior.

3.5 Statistical measures of dynamics

The purpose of defining statistical measures in the system phase space is to identify quan-
tities that are invariant under changes in initial conditions. These measures are particu-
larly informative whenever a system state is altered by unknown perturbations and/or it

is chaotic. In the latter case, different orbits differ almost everywhere in the system phase
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space. Therefore, in order to identify the system that produced the observation, one has to
implement measures which produce the same results for all, sufficiently long, observations

of the same system.

3.5.1 Probability density function and its estimation

The probability density function (later also referred to as pdf) is one of the fundamental
concepts in probability theory and statistics. It has proved to be very powerful in analyzing
complex systems where it is used both as an independent tool and as an intermediate step in
computation of its functionals, e.g., mutual information, characteristic function, expected
value and other moments, etc. Given a data set of measurement results, {z; € Rd}, i =
1,..., N, its density function, p(x), provides a natural description of the data distribution

in R?, and is usually defined with the following relation
x2
Py <z <z9) = / p(z)dz (3.15)
1

which quantifies the probability of finding an observation z inside an interval (z1, 2], for
any 1 < Zo.

The purpose of density estimation is to construct an estimate, p, of the density function,
p, from the available observations. There are many known methods of density estimation
(for more details about density estimation see Silverman [49].) The most commonly used
density estimator is the histogram. Since it is the oldest known density estimator, all other
such estimators are usually tested by comparing their performance to that of the histogram.
The main drawback of the histogram is that its quality of estimation depends not only on a
choice of the discretization bin width (which controls the amount of smoothing) but also on
a choice of an origin and, in multi-dimensional spaces, the coordinate directions of the grid
of cells. Moreover, the discontinuity of histograms make them inapplicable to cases where
derivatives of the density function are required.

A different approach to density estimation is derived from an “empirical” model of the

probability density function

]\7
p(x) =Y pid(z — ;) (3.16)
i=1
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where for every trajectory point x; there is associated a probability p;, and the Dirac delta
function is applied in RY. In this work we assign equal probability to all N trajectory points;
therefore, the p; symbol will be replaced by the value 1/N in the forthcoming formulas. This
definition is very useful if a smooth function needs to be integrated over the region weighted
by the density function. Integration can then be replaced by a summation. In this case,
however, eq. (3.16) is not very useful for pdf estimation at discrete points, because it results
in infinite values at the observations and zero values everywhere else. This problem can be
solved by replacing the delta function with a weight function which has a non-zero width.

In the naive estimator method, the estimate is constructed by placing a “box” of width
2h and height (2Nh)~! over each observable and then summing over the entire data set.

The estimator is defined as

N .
pa) = 5 3 w(ET) (3.17)
i=1

where the weight function, w(z) = 1/2 if |z| < 1 and w(z) = 0 otherwise. The main
advantage of this method, over the histogram, is that it frees the estimation from a particular
choice of bin positions. The estimated pdf, however, is still not continuous.

There is another parametric method of density estimation which is also often used in
data analysis. In this method, one assumes an underlying model for the density function,
e.g., a normal pdf, and then estimates the model parameters, e.g., mean and variance.

In the method we discuss in more detail below, we consider the generalization of the naive
estimator, known as the kernel estimator. This method overcomes some of the difficulties
associated with both histogram and naive estimators. The density computed with the kernel
estimator is continuous and it also allows easy implementation of adaptive kernel width size.
It is important, because fixed-bin methods often fail to approximate accurately highly non-
uniform distributions, and the density functions obtained from analysis of chaotic data
are often found to be discontinuous, multimodal, and nonuniform [23], as it is shown in
Fig. 3.13 (these pdfs are discussed later). Even if the adaptive scheme is used to vary
bin sizes across the attractor, the result can still be significantly improved (particularly in

higher dimensions) when using kernel estimators.
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Figure 3.13: Kernel estimation of multimodal probability density function for: a) Lorenz
system, and b) Rossler system. Note that since both of the mentioned systems are embedded
in R3, the above figures represent two-dimensional projections of their respective three-
dimensional density functions.

Kernel density estimation

For convenience, we will normalize the trajectory, for which the density function needs to
be estimated, to have zero mean and unit RMS norm (or unit standard deviation, for one-
dimensional systems.) The general multivariate kernel density estimator with kernel K and

window width h is defined by

N
1 T — x;
h(x) = 3.18
The kernel function K (z) is a function defined for any = € R?, such that

K(z)dxr =1 (3.19)
Rd

and is usually chosen to be a radially symmetric unimodal pdyf.

Kernel density estimation approximates a multi-dimensional pdf surface by superposing
the kernel functions centered at every observed data point, as it is schematically shown in
Fig. 3.14. The important issue now is the choice of a kernel function, K, and a window

width, h.
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Figure 3.14: Kernel estimation of a one-dimensional bimodal density function. Estimate is
computed by superposing the kernels placed on every observable. Height of the individual
kernels, shown here to illustrate the principle of estimation, is exaggerated.

Choice of kernel

It turns out that the choice of the shape of the kernel function does not significantly effect
the quality of the approximation (for more details see [49]). Only two of the most popular
kernels will be shortly discussed here. One of them is the normal kernel, K,, which is just

the standard multivariate normal density function, N (0, 1),

K,(z) = ! exp (—-;—.Z‘T.’IZ‘) (3.20)

(2

This kernel is important obviously because of the role the normal distribution plays in

statistical analysis. Another possible kernel is the multivariate Epanechnikov kernel

201 —2Tz) faTz <1

Ke(z)={ % (3.21)
0 otherwise
where Vj is the volume of the unit d-dimensional sphere
\/d
Vv, = —" (3.22)

r'¢+1)
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e.g., V1 =2, Vo =m, V3 =4x/3, etc., and I is the gamma function, I'(a) = [ t* e ldt.
This kernel has some major advantages over the normal kernel. First, it minimizes the
“mean integrated square error” [49] of the approximation over the set of possible kernels
(which is nice, but as it was already mentioned, not that important.) Secondly, it has a
finite support, which turns out to be very useful for correct approximation of the tails of the
distribution in higher dimensional spaces. Finally, the Epanechnikov kernel is significantly

faster to compute.

Choice of smoothing parameter

The choice of the window width is as important to the problem of density estimation as it is
difficult and there are still no rigorous methods of its selection. There are a few well tested
rules-of-thumb, though. One of them suggests choosing a value of A which minimizes the
“mean integrated square error” of the approximation. Unfortunately, the expression thus
obtained contains the value of the pdf which one is trying to estimate. This problem can be
resolved only by substitution of some reference density function to the formula. The most
common choice for the reference pdf is the normal density function. Eq. (3.23) shows the

optimal value of the window width evaluated with respect to the normal distribution
hopt = A(K)/NY/ (@) (3.23)

where A(K) is a constant depending on type of the used kernel. For the Epanechnikov

kernel
A(K.) = (%(d + 4)(2y/m) )1/ (@) (3.24)
d

e.g., for d = 2, A(K.) = 2.40; d = 3, A(K.) = 2.49; etc. Because hgy refers to normal
distribution, one should be careful using the formula (3.23) for an unknown distribution. In

most cases, it will be appropriate to use a smaller value, say ohep, for the window width.

> \/ﬂ (3.25)

A possible value for o might be
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where s;; are elements of the sample covariance matrix of the data which makes o? the
average marginal variance. For the purpose of analysis of chaotic distributions, however, it
is safer to use about (0.05 to 0.5) of the value of hop given by equation (3.23).
In conclusion, the choice of the optimal value of the smoothing parameter is rather
arbitrary and its effectiveness depends on the experience of a person performing the analysis.
Fortunately, thanks to some of the adaptive methods, there are ways to make this process

more automatic and efficient.

Adaptive kernel estimates

The adaptive kernel estimator is a modification of the standard kernel estimator which
allows the smoothing parameter to vary at every center of the kernel function. The window
width is chosen to be narrower in highly populated regions of the attractor, so as to capture
the local character of the pdf, and wider in less populated regions to avoid undersmoothing.
This approach is similar in spirit to the nearest neighbor method, but turns out to be much
more accurate. The adaptive kernel approach applies a three-stage procedure. In the first
step, an initial estimate of the pdf is obtained using one of the standard kernel methods.
Estimated in this way, the density, called a pilot estimate, p, is then used to evaluate a set
of local bandwidth factors, \;, for every observation. These factors are then used, in the

third step, to construct the final estimator p. This procedure can be outlined as follows:
Step 1 Compute a pilot estimate p which satisfies p(x;) > 0 for every observation x;.

Step 2 Define local bandwidth factors X\; by

A= =L (3.26)

p(z;)

where ¢ is the geometric mean of the p(z;)
1 N
logg = i Z log p(z;) (3.27)
=1

Step 3 Define the adaptive kernel estimate p by

(3.28)
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Table 3.1: Sample size required to estimate a standard multivariate normal density function
using a normal kernel.

Dimension | Required sample size
1 4
2 19
3 67
4 223
5] 768
6 2,790
7 10, 700
8 43,700
9 187,000
10 842,000

where K is the kernel function and & is the window width used to compute the pilot

estimate.

This approach seems to be a very successful combination of features of the kernel and

nearest neighbor methods.

Some computational considerations

Note that equations (3.18) and (3.26)-(3.28) require the kernel function to be evaluated N?
times because p(z) must be evaluated at each x;. There is a way, however, to significantly
decrease this number. The use of a finite support kernel reduces the number of summed
elements in (3.18) from N to N, where zy, is the most distant neighbor of z satisfying
(%52)T(2521) < 1. Therefore, for a fixed width kernel, one needs to consider only these
neighbors that are located within the circle of radius h from the point z. The most efficient
way to do that is to construct a d-dimensional binary tree [17], in R?, which contains all
elements of {z;}. Search for nearest neighbors, using a d-dimensional tree, requires then
only O(N log N) operations and seems to be the most efficient choice for this purpose.
Another factor one has to consider is the sample size N required to ensure the assumed
accuracy of estimation. It turns out that this size becomes very large in high dimensional
spaces. To illustrate that, let us consider the case where the true density p is the unit
multivariate normal pdf and that we use a normal kernel for the estimation. In Table 3.1
(taken from [49]) the displayed values of sample size N were computed so as to minimize

the relative mean square error of the approximation at z = 0. This is obviously just an
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example, but this kind of rapid increase of required sample size with dimension should be
expected for any form of density function estimation. This observation reemphasizes the
importance of dimension estimation before statistical analysis can be undertaken.
Fig. 3.15 illustrates the convergence and the accuracy of the kernel estimation of the

stationary pdf computed for the nonlinear Duffing oscillator excited with Gaussian noise,
i+ 2wt — w4 ex® = V2Dn(t) (3.29)

with parameter values: w = 1, ( = 0.25, ¢ = 0.5, D = 1, and n(t) denoting Gaussian
noise. The two-dimensional stationary pdf for the system (3.29) was computed analytically
using the Fokker-Planck equation [10] and estimated with the Epanechnikov kernel from the
samples of £ and Z obtained by numerical integration. The figure shows one-dimensional
slices of the two-dimensional stationary pdf obtained for # = 0. From the comparison
between the estimated and the exact values of the pdf in Fig. 3.15(d) it can be concluded
that a sample of at least 10,000 data points should be used if stationary measures of the
dynamics are to be observed. A good quality of the pdf estimation is also evident from the

figure.

3.5.2 Characteristic function

The characteristic function for a probability distribution of a delayed vector z € R? is

defined as [41]:
o(k) = / p(z)e** D dy (3.30)

¢(k) can be interpreted as the Fourier transform of the density function p(z). If the Laplace
transform is used instead, ¢ (k) is called the moment generating function of x. Since p(z) >
0, the modulus of ¢(k) has its maximum at the origin. If the characteristic function is
known, each moment can be calculated by evaluating the corresponding coefficient in the
Taylor expansion of ¢(k).

This statistic has another useful property: the characteristic function for a sum of
two independent signals is equal to the product of the separate characteristic functions.

This factorization property of the characteristic function makes it a useful tool for signal



40

pix)

p(Y)
° °
8 8
—

012 | (d)

p(x)
PO

Figure 3.15: Convergence of the kernel estimation of the two-dimensional bimodal pdf for
the Duffing oscillator (3.29). A one-dimensional slice of the estimated pdf is shown for
(a) 1000-point sample, (b) 5000-point sample, (c) 8000-point sample, and (d) 10, 000-point
sample. The pdf shown with the dashed line in (d) represents the exact value obtained
analytically.
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separation and possibly also condition monitoring (for more details about both applications

refer to [57, 56]).

3.5.3 Mutual information

Mutual information, I(x,y), is one of the basic functionals introduced in information theory.
It is usually defined through entropies. The entropy of the distribution of a single random

variable, x, is defined as

H(w) = - [ pla) loga(p(e)do (3.31)

For discrete-time observations, the integral in the above formula can be replaced by a sum
over all admissible values of z, i.e., over the entire data set {z;}~ ;. The entropy quantifies
the average number of bits required to describe a single observation. If z is the only possible
value, then H(z) = 0. If all observed values are equally probable, then the full resolution of
{z;}l¥, is necessary to describe x, and hence H(z) = log, N. The joint entropy of variables

x and y is defined as

H@w%=—/p@wﬂ%AM%wMﬂw (3.32)

The average amount of information one can learn from the variable « about the variable y

is quantified by the mutual information, I(z,y),
I(z,y) = H(z) + H(y) — H(z,y) (3.33)

This definition implies that I(z,y) = 0 only if p(z,y) = p(z)p(y), i.e., if z and y are
statistically independent. After substituting expressions (3.31) and (3.32) into (3.33), we

obtain another form of I(z,y), [19]

_ by L
Ia.v)= [ pla,y)log, 50 drdy (334

From this expression, one can notice that the average mutual information can be interpreted
« : : b : :
as a “nonlinear extension” of the correlation function.

In nonlinear time series analysis, mutual information is often used to select an “appro-
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priate” time delay necessary for the phase space reconstruction (as we did earlier in this
chapter). In this work, another application of mutual information is suggested. It comes
from an observation that there is predictive power in I(z,y). This application will be fully

developed in Chapter 4.
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Chapter 4

Verification of Dynamical Model

»”

“Fide, sed cui vide

The last step in classical system identification is evaluation of whether the chosen model
adequately serves its purpose, i.e., represents the underlying system for the purpose in
hand. In dynamical time series analysis, this problem corresponds to determining whether
the underlying system is best modeled as nonlinear, and maybe even chaotic. It is possible
to verify applicability of nonlinear dynamical models to the given set of data and perform
certain “sanity checks” which, when used with caution, can reduce the danger of making
unnecessary or unreasonable assumptions about the system dynamics. Since we have con-
firmed that the behavior of the gearbox (at least for some set of operating conditions) is well
described by a nonlinear dynamical system, we shall now use this knowledge for the purpose
of forecasting and condition monitoring. It is worth noting that the “dynamical approach”
can be successfully used for other purposes, e.g., noise reduction and signal separation [11].
A monitoring statistic proposed in Section 7.1, which seems to be “natural” for a nonlin-
ear dynamical system, takes advantage of its short term predictability in the reconstructed
state space. If the system has explored the state space, i.e., statistics computed from the
time series converge, or in other words, the time series is long enough, and a reasonably
good predictor has been constructed, then significantly and consistently higher prediction
errors would indicate that there is a change in the system operating conditions, or an error
occurred during the data acquisition process. As already mentioned above, this statistic
can only be applied provided the acquired time series allows a faithful reconstruction of the

system dynamics.
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4.1 Stationarity of reconstructed system

Statistical analysis is yet another way of exploring dynamical systems quantitatively [57].
Since the long term predictability of chaotic signals is impossible, the best one can do is to
find some statistical measure of the dynamics which is independent of the initial conditions
and to which the system with an attractor always converges. For example, one can estimate
the stationary probability density function, or its functionals, for the trajectory in the
reconstructed state space. This information can later be used for diagnostic or prediction
purposes. Before that, however, one should confirm that the dynamical properties of the
system can be modeled as stationary over some reasonable time frame (they are not “truly”
stationary because of slowly occurring deterioration). If both statistical and dynamical
measures on the attractor converge within the sample size, one can assume that the sample
adequately represents the behavior of the underlying system. If the system is less than
three-dimensional, one can graphically display the time evolution of the pdf in the system
state space as the length of the sample size is increased, as demonstrated on the example of
the Rossler system, in Fig. 4.1. To verify stationarity for the gearbox signal, we computed
a two-dimensional projection of the estimated five-dimensional probability density function
in the reconstructed state space and confirmed its convergence as the number of data points
was increased. A two-dimensional projection of the density function, approximated using
kernel estimators (see Section 3.5.1), is shown in Fig. 4.2. We also doubled the length of
the analyzed time series and repeated the calculations of the time-delay and embedding
dimension. The results we obtained were the same as previously shown in Fig. 3.2 and
Fig. 3.3, which means that the pdf derived from the acquired time series can be successfully

used for the purpose of dynamical forecasting and condition monitoring.

4.2 Forecasting

In signal processing, forecasting is very often a goal in itself. In this work, however, we
perform short-term prediction using the acquired time series not only to demonstrate the
effectiveness of the dynamical approach but also to use the estimated predictor to quantify
changes in the system’s operating conditions.

The invention of the autoregressive technique by Yule in 1927 marks one of the mile-

stones in the history of time series forecasting. Before that, prediction was attempted by
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Figure 4.2: 2-dim projection of the probability density function estimated for a gearbox
signal obtained at 600 rpm. The variables  and y correspond to the first two coordinates
of the state vector.

extrapolating time series through a simple polynomial fit. Yule proposed a model in which
the predicted value of the time series is computed as a weighted sum of previously observed
values. This method and its variations are still the backbone of engineering time series
prediction. Another milestone appeared in early 1980s, when time series generated by a
chaotic system was first analyzed in its reconstructed phase space. The method which made
such analysis possible, and became known as time-delay embedding, opened new possibili-
ties, especially for investigation of apparently complicated signals whose broadband power
spectrum caused a breakdown of linear methods. The main advantage of this nonlinear ap-
proach is that it uses information about the state space structure which, in turn, quantifies
the underlying dynamics. This information can be used to identify the parameters for an
applied local or global, linear or nonlinear, adaptive or non-adaptive input-output model,
like the one in equation (3.5).

In local models, we are considering local dynamics of the system. This can be done
by, for example, applying polynomials or other natural basis functions to the model (3.5)
to represent the time evolution of neighborhoods of trajectory points in the phase space.
Global models, on the other hand, provide a closed functional representation of the dynamics

in the whole attracting set. They usually approximate the dynamical vector field f(z) by
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expanding it in a set of basis functions in the phase space. The number of data points
used to fit the model parameters is always very large in global models, which is both their
strength and weakness. The latter is manifested in large computation time. The strength
comes from the fact that the global approach does not rely on accurate determination of the
geometry of local neighborhoods, which makes it more robust against contaminated data
[2].

The choice between adaptive vs. non-adaptive prediction is strongly related to selection
of the length of the prediction horizon. It seems that the choice of the short prediction
horizon and an adaptive scheme is an obvious one, especially for chaotic systems where long
time prediction may not even be possible. Note, however, that in the adaptive approach we
use the predicted time series continuation as input data. That requires a lot of confidence
in the applied prediction model and its results. The problem here is that we build a
predictor which is based on the points which are known and some that are unknown, i.e.,
predicted. This may not be a major consideration for non-chaotic, or weakly chaotic!
systems, but if the signal is contaminated with “noise” and its predictability decreases,
using the earlier predicted continuation to fit the prediction model often proves inferior to
limiting the training data set to known data. If the length of the required prediction horizon
exceeds its maximum admissible value, as estimated using the largest Lyapunov exponent,
then the only possibility is an adaptive scheme. One should, however, proceed with extreme

caution and be very skeptical about predictions obtained in such a case.

4.2.1 Predictability and its measures

The “statistical pair” observation-prediction, (y(t),9(t)), where y(t) is the system output
and ¢(t) is the model output, characterizes not only the properties of the chosen prediction
model but also the properties of the observed physical process. Its time evolution can be
observed and on the basis of this information, the system can be classified as predictable,
unpredictable, or partially predictable [29]. Denoting the prediction error by £(¢) = y(t) —
9(t), the general character of the behavior of the probability density function [5]

p:p(é,t|p(t0),/\/{) (41)

!By a weakly chaotic system, we understand a chaotic system with positive, but relatively small Lyapunov
exponents.
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p(e)

Figure 4.3: Evolution of the conditional probability density function (4.1) quantifying pre-
dictability of the system.

can be schematically depicted as in Fig. 4.3 for a one-dimensional case. As shown in the
figure, in the limit ¢ — ¢ the density function degenerates into a Dirac delta function. As
the length of the prediction horizon increases, the initial density function spreads out, which
indicates that the quality of prediction deteriorates. Notice that the quality of prediction
depends on the available data, D(ty), and on the class of prediction models M. The former
dependency will be used in Section 7.1 for the purpose of monitoring changes in the system
operating conditions.

The prediction accuracy of the chosen method can be evaluated in many ways. The
most commonly used measure of the model accuracy is the variance of the prediction error,
g, averaged over the attractor. Its normalized version is known as the normalized mean

squared error,
1 T
NMSE = —— t) 4.2
77 2 (42)

where o is the standard deviation of the known system output throughout the prediction
horizon in the training set. Values of N M SFE close to zero correspond to high predictability,

while NMSFE = 1 to simply predicting the mean. We decided to use also a more interesting
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measure, rich in information, called the degree of predictability [29, 51], which is defined as,

<ylt+T)y(t+T) >

B V<Pt +T)><g?(t+T) > (4.3)

D(T

where the angle brackets denote the average over all values of ¢ for which data is available.
For this measure, values of D close to 1 correspond to high degree of predictability, while
those close to zero to poor predictability. The case D = 1 can also be interpreted as a
measure which qualifies the physical system as predictable or “deterministic,” and D = 0
as unpredictable, or “random.” In cases where 0 < D < 1, we classify the system as
a partially predictable. Notice that this classification is made purely from the point of
view of an experimenter. On the basis of this approach, determinism or randomness of
the analyzed system depend on the class of models M used for prediction of its response.
According to this concept, one can define a threshold value of the degree of predictability,
D(T), say 1/2, which can then be used as a quantitative measure of the system randomness
[29]. One needs to be very careful with such conclusions, however, because of the conditional
dependence of D(T') on the class of selected prediction models, which is hidden in equation
(4.3). For more details on this very interesting and important issue, see [5].

Another interesting feature of the degree of predictability, D(T), is that it also provides
information about the length of the prediction horizon for which good forecasting is possible
(like Lyapunov exponents, but much easier to compute).

We will return to the notion of the degree of predictability, as defined above, in Sec-

tion 7.1, where it will be used for condition monitoring of response of dynamical systems.

4.2.2 Linear prediction

Since there is vast literature available on linear prediction methods (e.g. [12, 7]), we will
review very briefly only their most basic features and discuss why they usually fail when
applied to signals from nonlinear or chaotic systems. The biggest advantages of linear
models are that they are very well understood, easy to implement, and in many cases, prove
to be very successful. The most popular family of globally linear models is known under
the name of ARMA models. Two special cases within this family are the autoregressive and
moving average models.

The m-th order autoregressive model, denoted by AR (m), for a time series y(t) is defined
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as

y(t) = > ay(t—i)+e (4.4)

i=1

where t denotes discrete time and e; can represent either controlled input or noise. Some-
times this model is also called an infinite impulse response (IIR) filter, because the output
of a stable system to any impulsive input theoretically takes an infinite amount of time to
decay away. Note that the input term e, is crucial for the performance of the autoregressive
model. Without it, the model is only capable of reproducing three basic types of linear be-
havior (periodic solution, or exponential decay or growth to stable or unstable fixed points,
respectively).

The n-th order moving average model, denoted as MA(n), is defined as
y(t) = bier (4.5)
i=0

According to this model, the present value of time series is influenced only by the present
and n past values of the input series e. It is also called a finite impulse response (FIR) filter,
because the output to any impulsive input ceases n + 1 time steps later.

The combination of these two models is called an ARMA (m,n) model
m n
y(t) = aiy(t —i)+ Y bies (4.6)
i=1 i=0

Application of an ARMA model is thus reduced to fitting its coefficients and deciding on
the order of the model. A good model should be able to represent the signal faithfully, using
a small number of coefficients and some residual random input. There exist standard tech-
niques for fitting the coefficients for all of the above models (see, e.g., [7].) Unfortunately,
there is no unique best choice for the order of an ARMA model. A commonly used strategy
is to increase the order of the model as long as it significantly improves the forecasts beyond
the training set.

From the early stages of research in the field of dynamical time series analysis, it has
been noted that linear models often fail to represent nonlinear (and chaotic in particular)
dynamics. In such cases, the errors of the estimation of the coefficients in a linear model

(that are chosen on the basis of the best, in the least-squares sense, fit to the observed
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data) are often comparable with the size of the attracting set. Even if one uses a more
sophisticated approach, like linear neural networks, the results are usually poor. For time
series whose FFT is composed of a discrete and a broadband component, linear methods
can sometimes be used successfully. Even in those cases, however, nonlinear prediction
schemes usually produce better results. It is impossible, of course, to compare efficiency of
linear and nonlinear methods in general. Even when two particular classes of models, one
linear and the other nonlinear, are chosen and their performance rated, one has to be very
careful in concluding that the better predictions of, say, the nonlinear model imply that
the underlying dynamical system is nonlinear. Given a prediction scheme one can, in most
cases, present another scheme which suits the purpose on hand better. We are stating this
apparently simple observation because in many papers published in recent years, claims of
the nonlinear character of analyzed systems were made on the basis of observing superior
performance of certain classes of nonlinear models. It is true that nonlinear systems can
be better analyzed with nonlinear tools but so can some linear systems. In spite of this
ambiguity, we decided to compare an average performance of a linear neural network and
that of the nonlinear prediction schemes introduced in the next section. We employed a
five-layer linear neural net with 100 delayed inputs to predict the future continuation of
400 [time steps] ahead for an ensemble of signals acquired from the analyzed gearbox. An
example of the performance of the scheme is shown in Fig. 4.4. We compared the normalized
mean squared error (N M SE) obtained by using the neural net with that obtained with the
nonlinear methods and found it to be significantly (50 —80%) higher for the linear approach.

Another deficiency of a linear approach is also typical of the ARMA-family models.
The coefficients of ARMA models can be determined from the signal power spectrum or its
autocorrelation coefficients. This means that all of these three methods of characterization
of the system features contain the same information (or lack of thereof.) This is the main
reason why ARMA models fail when applied to systems and cases where the power spectrum
is not a very useful measure. This problem is of primary importance to state monitoring.
It is possible to observe two time series with very different properties but very similar
broadband spectra. Also, if there exist changes in the system operating conditions which
are not visible in its spectrum, diagnostic methods implementing linear models will not be

able to detect these changes. This problem will be discussed in more detail in Chapter 7.
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Figure 4.4: Prediction of the gearbox signal using a linear neural network.

4.2.3 State space prediction

The first nonlinear prediction method was suggested by E. Lorenz in 1969. It was also the
first method which used information about local structure of a trajectory in its phase space.
The proposed method assumed that two trajectory points which were initially close at time
to will stay close for at least some elapsed time, ¢;. Then, the predicted evolution of the
trajectory point z(N) which is ¢ time steps ahead, (N + t), is equal to the corresponding
time evolution of the nearest neighbor of z(N) in the state space.

Another historically important step beyond linear prediction models was the threshold
autoregressive model (TAR) introduced by Tong and Lim in 1980 [53]. This globally nonlin-
ear model was composed of two local linear autoregressive models evaluated for the system
state. It opened the door to a new family of methods which use a set of local linear models
for various regions of the state space.

Forecasting in the system state space can be interpreted as a special form of the Yule’s
original idea for predicting the future state by using previous values of the signal, as in
equation (4.6). The order of the autoregressive model corresponds here to the dimension of
the state space. The main benefit from using dynamical prediction methodology is that it
replaces time series extrapolation with interpolation of the trajectory embedded in its phase

space. The method of prediction that we apply here is similar to the scheme suggested by
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Sauer in [47].

Let us refer now to the way we defined a mechanical system in eq. (3.5). This model
requires specification of two functions, f and g, and estimation of two types of errors, Z;
and e. To simplify the prediction process, we use a composition function of f and g,
denoted by P, which requires the estimation of only one prediction error, e. Note that e
contains both the model and the measurement errors, = and €. The general predictor, used

to extrapolate the time series t-time steps ahead, can thus be expressed in the form:
gk + 1) = P (x(k)) (4.7)

where §(t) denotes a predicted value of y(t).

We will now predict the short-term future behavior of the time series by fitting a linear
model in the state space in the neighborhood of the last given point of the reconstructed
trajectory. First, we need to find K nearest neighbors, xfx Y ,:L',ICVK, of the last known
trajectory point z(N), where N = n — (dg — 1)7 and n is the length of the time series,
subject to the condition that only one neighbor is chosen from each nearby trajectory
segment. According to this notation, xfc\f = z(k;); i = 1,...,K corresponds to the i-th
nearest neighbor of the point (), and the search for neighbors means a search for values
of k; (see Fig. 4.5). Since we know the complete time evolution of all thus found neighbors,
both in RYE and in R, we can define the prediction function, P; : R% — R, as the following

mapping which predicts the time series value ¢-time steps ahead,
P:xz(N)—»Yy=9(N+ (dg — 1)7 +t) (4.8)

Thus obtained values are used to estimate the future value y(n +t). The calculation of the
prediction function P;(xz(N)) can be summarized as follows. First, we find the “center of
gravity,” :civ =1/K Z]K:l :ckNj, of all the neighbors mfl, ,a:kNK in R . Then, we find a
linear projection space R! passing through the point ¥, for | < dg, which minimizes the
squared distances to the neighbors. To do that one can use the singular value decomposition
of the matrix whose rows are composed of vectors fo A ,x{fk — V. If we call this
matrix A, then its SVD will be of the form A = USVT, where U and V are orthogonal

matrices and ¥ is diagonal with non-increasing non-negative entries. The first [ columns
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Figure 4.5: Time evolution of the neighborhood of the last given trajectory point zn. Note
that the flow in the phase space does not preserve the nearest neighbors. This phenomenon
is responsible for serious limitations of all prediction methods based on the neighborhood
to neighborhood mapping of nearest neighbors.

of V span the desired space R!. The choice of the value of | is somewhat arbitrary (for
the gearbox data embedded in R® we used I = 3 because it resulted in best predictions).
In the next step, we project xﬁ —zN, ... ,a:,iVK — Y to R! (call it the projection function
II:R% — R and form a model Ly : R* — R which best fits the weighted data points
(H(mﬁ -z, Vi), (H(SU]QVK — 2N, Y%, ). The weights we use are inversely proportional
to the distance between the point z(N) and its neighbors. The purpose of the weights is

to emphasize the importance of those neighbors that are closer to (/N) in the phase space.

The model can be chosen as the simple affine model

Ln(Z) = aXz + by (4.9)

where ay,Z € Rl and by € R. Finally, we project z(N) — ¥ on R and evaluate the above

model there to obtain an estimate of y(n + t),
g(n+1t) = P(z(N)) = Ly(I(z(N) - z7")) (4.10)

The result of applying this procedure to a segment of the gearbox data is shown in Fig. 4.6.

One can see that the obtained prediction is reasonably faithful. The above scheme was
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Figure 4.6: Prediction of the gearbox signal using a local linear model in the 5-dim em-
bedding space reconstructed from the given 60,000 point data segment. The estimated
prediction error bars are shown on the predicted signal.

applied for various values of embedding dimension and time-delay in order to determine
their optimal values from the prediction viewpoint. The best prediction of the gearbox
signal was obtained for dg = 5 and 7 = 9 and hence these will be considered the final values

of the embedding parameters.

4.2.4 Prediction with mutual information

As already mentioned earlier, mutual information among measurements u and v drawn from

sets U and V of possible measurements is defined as [19]

I(u,v) =10g21—)‘%%—>- (4.11)

I(u,v) quantifies a number of bits of information one has about v having already observed u
(or vice-versa because I(u,v) = I(v,u).) If the observations are independent, then p(u,v) =
p(u)p(v), and as a result I(u,v) = 0, as expected.

The mutual information function can be used for forecasting the future evolution of a
trajectory in its phase space. In this case, u,v € R?® would be a pair of trajectory points,

the latter being a future evolution of the former. Suppose that we are interested (as in the
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previous section) in predicting a state of the system t time steps ahead of the last known
measurement (N ), or rather y(n). We need to set u = (N) and v = z(N+t), and estimate
the required densities p(z(N)), p(z(N+t)), and p(z(N), z(N+t)). The most probable future
system state can be found by maximizing the mutual information function (4.11) over all
admissible values of v. This would be a very difficult and time consuming task which would
involve looking for a global maximum of a function in a multi-dimensional space. Instead
of considering a pair of trajectory points in R® | we take the second point of the pair to be
a projection of (N +t) on R, ie., v = g(N + (dg — 1)7 + t) as in the dynamical scheme
in (4.8). There are two immediate benefits from using this approach. First, it significantly
simplifies the optimization process by reducing the range of the maximized function from a
subset of R to a subset of R. Second, it eliminates the need for projecting the final result
on the measurement space.

Probability density functions entering eq. (4.11) are computed using the Epanechnikov
kernel estimator, as described in Chapter 3. Note that p(z(NN)) is just a constant and will
remain unchanged during optimization. The prediction process can, therefore, be reduced
to finding a value of y which maximizes the ratio R(y;z(N)) = p(z(N),y)/p(y).

Before we attempt maximization, we initially bracket the maximum of R using our
knowledge of the system dynamics in its state space. The initial bracket is chosen as an
open interval y(k1 +(dg —1)7+t)+0/4, where k; is the number corresponding to the nearest
neighbor of 2(N) in R% and ¢ is the sample standard deviation. Choice of the length of the
initial bracket is somewhat arbitrary and reflects a balance between computation time and
the uncertainty in inferring the closeness between the future evolutions of initially nearest
neighbors. We chose this particular length of the bracket because it worked most consistently
in cases we considered. As in the dynamical prediction algorithm in the previous section,
the nearest neighbor, ;vfx , should be chosen from a nearby trajectory segment, closest to the
segment containing z(/N). In the next step, the length of the initial bracket is reduced by a
commonly used bracketing method implementing the golden section search [44]. Now, we
perform a function maximization (over all possible values of y in the final bracket) which
utilizes Brent’s method. Since this method is only capable of finding a local maximum, we
partition the final bracket into a set of sub-brackets and then look for “all” local maxima

of R. Finally, the value of the largest local maximum is chosen as the most probable value

of g(n +1t).
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Figure 4.7: Comparison of prediction results obtained for a “clean” Lorenz signal, using the
mutual information approach and a purely dynamical prediction scheme.

Because this approach implements both dynamical and statistical tools, it is more robust
than the purely dynamical prediction scheme introduced in the previous section. Since it is
hard to imagine any experimental data without noise, such robustness is a highly welcomed
feature. To illustrate this, we predicted evolution of a chaotic signal, generated by numerical
integration of a well known Lorenz dynamical system [2], using both prediction schemes.
In both cases, the trajectory was embedded in the phase space using the same embedding
parameters, dg = 3 and 7 = 20. Fig. 4.7 shows almost identical effectiveness of both
methods for the signal without noise. A big difference in performance appears when we
contaminate the signal with a uniformly distributed noise, whose amplitude is 10% of the

amplitude of the “clean” signal. From Fig. 4.8 and Fig. 4.9 we can see the benefit from using

the mutual information prediction. Fig. 4.10 and Fig. 4.11 show results of prediction for the

gearbox signal. Also, in this case, the combined dynamical and statistical approach (mutual
information function in the state space) proved to be more efficient (NMSE = 0.40, as

opposed to NMSFE = 0.46 for the dynamical scheme with the same embedding parameters

dp =5, and 7 =9).
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Chapter 5

Dynamical “Noise” Reduction

“Quis separabit?”

“Noise” reduction, or filtering, is a term commonly used for a class of problems in
which a time series is “cleaned” or, in other words, separated into “noise” and signal of
interest, on the basis of some objective criterion. From this description, one might conclude
that the unwanted or uninteresting part of the analyzed signal is referred to as “noise”
(at least this meaning of the term is most frequently adapted in engineering literature).
Another definition of “noise” is employed in experimental statistical literature where it is
understood as the unpredictable (“random”) part of the analyzed signal, or sometimes just
as a signal generated by a pseudo-random number generator. A different definition which
has been reasonably well established in the field of dynamical time series analysis (and
also will be used in this work), is that by “noise” we understand a signal resulting from
a high-dimensional dynamical system. How high-dimensional the system needs to be in
order to produce “noise” depends on the particular application. For example, if we wanted
to separate a signal which is of interest to us and which can be embedded in R®> from
another signal which can be embedded in R??, the latter signal would be considered “noise”
and might be characterized in some conventional statistical sense. It is worth emphasizing
that this distinction is caused strictly by practical (numerical) considerations. In most
cases, the benefits from analyzing a high-dimensional signal in its state space, as opposed
to using statistical methodology, do not justify time consuming computations required by
dynamical analysis. That is why it is easier and faster to characterize noise using well
established statistical tools.

Conventional noise reduction methods employ various types of linear filters. They all

work on the assumption that the broadband components of the spectra are related to “noise”
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while the sharp peaks relate to the “clean” signal. This assumption can be made for sources
which result in periodic or quasiperiodic signals. However, if the broadband spectrum is
an inherent feature of the pure analyzed system, as it is in chaotic systems, a linear filter
used to remove noise will also result in distorting the signal. There has been a number of
recently proposed dynamical noise reduction methods which use the fact that deterministic
chaotic motion takes place on attractors which are smooth submanifolds in the state space,
and therefore it can be analyzed as locally linear [15, 20].

When a deterministic signal is contaminated with noise, two cases of such contamination
are usually considered: additive measurement (or observational) noise and additive dynamic
noise [20]. We are presented with the first kind when the measured signal, y(t), is corrupted

by signal(s) independent of the system dynamics according to the formula
y(k) = g(F* (u0)) + n(k) (5.1)

where g denotes a measurement function, as in equation (3.3), and 7, the contamination.
Dynamic noise, on the other hand, influences the measurement process indirectly by acting

on the system dynamics, and can be represented as
y(k) = g(F(u(k — 1)) + n(k —1)) (5.2)

Most of the noise reduction schemes proposed in the literature on dynamical time series
analysis consider the former case and very few, also the latter one. Note, however, that if

the state embedding model

s(k+1) = F(a(k))

ylk+1) = Gz(k+1)) (5.3)

has a linear measurement function G (as it is in our case, where G is just a simple selection
of the first coordinate of z(k + 1)), both of the noise models (5.1)-(5.2) are essentially the
same.

In dynamical analysis of time series, the problem of appropriate reconstruction of system
dynamics in the presence of noise has attracted significant attention in the last few years.

It is because every experimental time series is contaminated with one or the other type of
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noise. If one is interested in accurate predictions or determination of system invariants, like
embedding dimension, Lyapunov exponents, or the pdf in the state space, one should first
decontaminate the analyzed data. On the other hand, whenever any type of noise reduction
scheme is used, some information about the system is lost. In cases where the observer is
not interested in very accurate estimation of the system invariants but, for example, only
in detecting their change, any attempt to separate signal from noise carries a danger of
potential decrease in the sensitivity of the applied condition monitoring method. Provided
a reasonably high signal-to-noise ratio (SNR) is achieved!, we found that it is safer for the
purpose of the system condition monitoring to use the observed time series without any
software filtering or preprocessing.

An important application where dynamical noise reduction schemes might play a signif-
icant role is in the field of acoustic noise control [11]. Many noise control problems can be
reformulated as signal separation problems. Even if the signal of interest is high- (possibly
infinite-) dimensional, the contaminating processes usually have a small number of active
degrees of freedom. Therefore, they can be treated as deterministic nonlinear dynamical
systems whose randomness is accounted for by chaotic dynamics. The noise control problem
can thus be reduced to the separation of the low-dimensional signal and background noise.

There are several methods available for reducing noise that are built into possible phase
space reconstruction schemes (like one proposed by Broomhead and King [9]). They usually
involve singular value decomposition, which is locally or globally performed on the matrix
constructed from the analyzed time series. More sophisticated methods are also available
that exploit the local behavior of the system in the phase space. Some of them attempt
to reduce noise by adjusting the analyzed data in the process of the estimation of local
linear models of the system dynamics [27, 20, 2]. The adjustments are performed so that
the resulting “data” is more consistent with the estimated dynamics than the original data.
Some of these schemes are performed in just one step and some can be iterated.

We will now discuss three methods of noise reduction which we found interesting and
useful for the purpose of noise reduction. The first method uses different predictability
of the composite signals as a distinguishing characteristic. It requires certain knowledge

about the prediction horizon of the signal one attempts to recover. The second method

'as it can be concluded on the basis of the false nearest neighbors statistic shown in Fig. 3.3 for the
gearbox data
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applies a simple iterative technique of trajectory smoothing in the phase space. The last
method is also iterative and uses an approach in which signals are separated on the basis
of the statistical properties of the observed dynamics. Both of these methods work best
when a sample of clean data is available. Their efficiency very strongly depends, of course,
on the length of the available reference time series. All three methods are superior to the
standard linear filters in the cases where the signals involved possess broadband spectra.
Even though they were designed primarily for nonlinear systems, they also perform well

when one or more of the signals that need to be separated correspond to linear dynamics.

5.1 Separation through prediction

Since this approach is described in detail in [51] and [11], we will only briefly summarize it
here. Suppose that the observed signal (k) is composed of the signal of interest, y1(k), and
other signals, y2(k), y3(k),. .., etc. We need to identify some distinguishing characteristic
for the above signals which will enable us to separate them. Then signal separation can be
attempted using nonlinear prediction methods. We restrict our analysis to the case where
at least some of the measurements, y;(k), are also available. These reference signals will be
used to establish the geometrical and statistical properties of the dynamical systems they
represent.

There are several possible ways of selecting the distinguishing characteristic (see for
example [2]). In our work we used the approach similar in spirit to that proposed by
Taylor [51] who applied the degree of predictability’ criterion to separate the signals. The
characteristic we employed could be called a local predictability measure and is based on
computation of the local Lyapunov exponents 3. This approach enables us to quantify the
short term predictability by specifying the time horizon in which the accuracy of prediction
is best for the signal of interest. The length of the prediction horizon is proportional to the
rate at which the local Lyapunov exponents converge to their global values. Then, if we can
establish the value of the prediction horizon, 7,, for which either of the signals, say y,(k),
is more predictable than the rest, this signal can be separated by iterating the nonlinear
prediction scheme 7, time steps into the future.

One needs to build a prediction model on the basis of the knowledge of y,(k) and by

2See Section 4.2.1.
3For detailed information about local Lyapunov exponents, refer to [1].
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working in its embedding space, say R%. As discussed in the previous chapter, there is a
large variety of prediction models that can be used here. From our experience, the local
neighborhood-to-neighborhood models defined in a subspace R! € R% work best also in this
case. After applying one of the schemes introduced in Chapter 4.2, the estimated process
Up(k) can be now subtracted, within its embedding space, from the composite signal and
the result projected back on the y(k) axis. If needed, this scheme can be iterated in order
to separate more signals and this way, hopefully, obtain the required noise reduction.

The biggest advantage of this method is that its application is not limited to any fre-
quency bandwidth of the contaminating signals. Unfortunately, it has many limitations.
The biggest limitation is that the length of the maximum prediction horizon has to be sig-
nificantly different for composite signals if one hopes to separate them with this method.
Even though theoretically this procedure can be used to separate more then two signals,
practically it is very difficult to achieve. One of the reasons for that is the limitation men-
tioned above. It is not very likely that one is presented with a set of mixed signals with
significant differences in their predictability. Another significant limitation is that this ap-
proach does not work for the case of dynamic noise. Finally, the efficiency of the method is

limited by the quality of the applied prediction scheme.

5.2 Smoothing in state space

In 1989, Kostelich and York [28] proposed a method of noise reduction based on the idea
that since dynamics on manifolds can be considered locally linear, noise in the signal can
be reduced by performing local linear approximations of the system dynamics in the neigh-
borhood of every trajectory point, and then finding perturbed orbits which best satisfy the
derived linear maps. In the first step of that method, a set of neighbors was found for ev-
ery trajectory point and used to compute a linear approximation of local system dynamics,
frx(i) = z(i+1). In the second step, the stored approximations to f(z) along a segment of
trajectory were perturbed in order to find a (“clean”) trajectory which was more consistent
with the dynamics. There are some problems with this approach, however. The most sig-
nificant difficulty is that in order to approximate Jacobians accurately, even in a relatively
low-dimensional phase space, one needs to find many close neighbors to every trajectory

point. This requirement is rarely satisfied. There can be at least two potential remedies for



65

this problem. One can project the dynamics on a lower-dimensional subspace, as we did in
Section 4.2.3, or replace the estimation of the Jacobian with a simpler method of trajectory
approximation. One way of performing such an approximation is to fit a multi-dimensional
polynomial to the sequence of trajectory points. This is what we do in the examples shown
below. We also replace the least squares problem proposed in [28] with a simpler one which
minimizes the Euclidean distance between a trial (perturbed) trajectory, {Z(7)}, and the
image of the trajectory under the polynomial approximation { f(z(7))}. We put a restriction
on the distance a point can be moved. The points which require particularly large adjust-
ments as a result of the minimization are, therefore, left unchanged. In what follows, we use
a simple quadratic polynomial, f(z) : ag+ a1z +azz? (a; for i = 0,1,2 can be made vectors
or scalars), which practically, in case when the coefficients are scalars, requires finding only
six near neighbors for every trajectory point [11]. We found that using the scalar coefficients
for low-dimensional systems lead to the same results as using the vector coefficients. The
neighbors are found with the restriction that they are all close in the phase space but not
close in time, as also required in Section 4.2.3 in the prediction scheme used there.

If a segment of clean data is available, it can be used to fit the local polynomials. If we
are presented with already contaminated data, f is first estimated directly from the noisy
data and then the procedure is iterated using the smoothed trajectory, until the results
cease to improve.

To illustrate this method, we applied it to the well known Lorenz system [32], whose
time series was contaminated with a uniformly distributed measurement noise obtained
from a pseudo-random number generator. The resulting time series had the signal-to-noise
ratio*: SNR= 14.54 dB. After one iteration of the noise reduction procedure, the SNR of
the resulting signal was raised to 18.43 dB. Fig. 5.1 shows the results of this procedure after
one, four, and five iterations were performed. After five iterations, we obtained a noise
reduction of 5.74 dB. Further iterations of this scheme did not result in significant noise
reduction.

The method of smoothing in the phase space is also applicable to linear systems. To

4We define SNR as

n n

SNR = 10log,, (Z yi(i)/ Z(yl (i) — y(i)>2>

=1 =1

where y; is the clean signal and y, the observed contaminated signal.
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‘Noisy‘ and ‘clean' data from Lorenz attractor
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Figure 5.1: Contaminated and clean (shown as smooth lines) signals illustrating the iterative
application of the trajectory smoothing technique in R®. The example used was the signal
acquired from the Lorenz system contaminated with uniformly distributed noise obtained
from a pseudo-random number generator.
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Superposition of sinusoidal waves: f=50, 100, and 200Hz and noise
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Figure 5.2: Noise reduction by applying the trajectory smoothing technique iteratively in
R5. The example used was a periodic signal composed of three superposed harmonic signals
that was contaminated with uniformly distributed noise obtained from a pseudo-random
number generator.

demonstrate that, we will use a periodic signal composed of three superposed harmonic
signals (f = 50,100, and 200 Hz) and contaminated with uniformly distributed (measure-
ment type) noise obtained from a pseudo-random number generator. The initial value of
SNR= 13.52 dB was increased by 7.43 dB after the noise reduction scheme was iterated

three times. Fig 5.2 shows the signals before and after single application of this procedure.

From our experience in the application of the method of smoothing in the reconstructed
state space, we conclude that it works well for low-dimensional nonlinear and linear sys-
tems, which are derived from a one-dimensional time series contaminated with noise. The
method seems to be suited particularly well for the purpose of reduction of high-frequency
measurement noise. Its effectiveness depends on the signal-to-noise ratio and on the choice
of dimension of the embedding space in which the smoothing is performed. For example,
for the periodic signal analyzed above, the change in the embedding dimension from 4 to

5 resulted in improvement of the noise reduction by about 2.5 dB. Further increase in the
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embedding dimension did not improve the results any further. This observation suggests
that smoothing in the reconstructed phase space can also provide information about the
appropriate choice of the embedding dimension for contaminated data. The power spectra
of the analyzed signals suggest that most of the high-frequency noise was eliminated. It is
impossible, however, to give a precise estimate of the noise reduction for a typical chaotic

experimental data.

5.3 Probabilistic cleaning

Probabilistic signal cleaning refers to a group of methods which, instead of trying to approx-
imate the dynamics of the system, take into account its statistical properties in the state
space [15, 33]. These statistical properties are reflected in the distribution of data points in
the state space and are evaluated using a clean or noisy reference signal, which was acquired
during earlier measurement. The approach we describe in this section is essentially the same
as that which was proposed by Marteau and Abarbanel [33]. The only difference is that
instead of the pdf kernel suggested in [33], we used the Epanechnikov kernel (as described
in Section 3.5.1). We will illustrate this method with an example involving measurement
noise and assume that a sample of clean reference signal is available to the observer. Notice
that, except for coming from the same source, the reference signal, y,., and the clean signal,
Y1, which is to be recovered, are uncorrelated, especially if they come from a chaotic system.
We will also assume that the contaminating signal is independent of the clean signal and
represents identical but statistically independent (iid) quantities at each time.

In the short description of the method below we will use the following notation. We will
denote the clean, the reference, and the observed signals reconstructed in the phase space by
r1, ., and = € R? respectively. We assume that the sequence of points Din = {xl(k)}iyzl

evolves in the state space according to
z1(k+1) = F(z1(k)), k=1,2,... N (5.4)

even though we neither know the map F nor try to estimate it. The same map governs
the dynamics of the system represented by the reference orbit {z,(k)}* ;. To simplify the

notation further, we denote the set of observations by 2y = {z(k)}_,. We are inter-
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ested in finding the most probable set of trajectory points that maximizes the conditional

probability of the state of the system being D y given the observations { x,

(5.5)

P( N|D1N)P(Dyn)
Prae(D1n[$1,n) = I |
(DN N) %ﬁf P(,n)

Only the two probabilities in the numerator need to be estimated for that maximization. Us-
ing the fact that the clean data satisfies the deterministic relationship (5.4), the probability

P(D;,nv) can be expressed as
P(Dy ) = P(z1(m)|z1(m — 1)) P(D1 m-1) (5.6)

Since we assumed the additive (measurement) and the iid type of noise, the conditional

probability P (€1 ,|D1,m) can be simplified to the following form
P(m|Drm) = P(z(m)|z1(m))P(Q1,m-1D1m-1) (5.7)
This leads to the recursion relation for the conditional probability [33]
P(D1m|®,m) = Pz(m)|z1(m))P(z1(m)]z1(m — D)) P(Drm-1|Qm-1)  (5.8)

which needs to be maximized over all possible values of the state D; ,,. Now, if we call the
product of the two last probabilities in equation (5.8) the forward probability, the optimal

forward probability ending at the state z1(m) can be recursively defined as

PF(ay(m)) = max [P(a(m)]a1(m — 1)P(a(m — Ve (m — 1) PF(1(m — 1))
(5.9)

Finally, the conditional probability maximized over all admissible trajectory locations at

time m is

Proz(D1,m|Q1,m) = m(ax [P(z(m)|xz1(m))PF(z1(m))] (5.10)

rim

Similarly, one can define the optimal backward probabilities as a recursion which starts at

time N and moves back to m. However, if one is presented with sufficiently long data,
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the application of the forward, backward, or hybrid of both probabilities leads to the same
results. In our work we used the forward probabilities only.

What now remains to be done is to estimate the probabilities entering the recursion
formulas, using both the analyzed and the reference signals. As we already mentioned
above, we estimate them in the same way as proposed by Marteau and Abarbanel, but use
the Epanechnikov kernel instead. For more details about this process, refer to [33].

To demonstrate this method of state estimation and signal separation, we applied it to a
mixture of two deterministic signals: one harmonic and the other obtained from the Lorenz
system. We used a segment of trajectory from the Lorenz system as a reference time series.
Another segment from the Lorenz system, obtained from a set of different initial conditions,
was then contaminated with a harmonic signal. Both the reference and the observed signals
were embedded in R® using the method of time delays, where the probabilistic cleaning
was attempted. The result is shown as the two-dimensional projection of the phase space
portrait for the sinusoidal signal and the composite signal in Fig. 5.3. The upper part of the
figure displays the phase space representation of the harmonic signal which, together with
the Lorenz signal, form the dynamics represented by the middle figure. The bottom figure
corresponds to the separated harmonic signal which was obtained after 30 iterations of this
procedure. Even though the time series from the Lorenz system was used as reference data,
we chose to illustrate the result by displaying the separated harmonic component. This was
done to demonstrate the effectiveness of this method more clearly.

The main limitation of this method is its dependence on the availability of a clean
reference signal, which is used to estimate the required probabilities. Even though, in
principle, a part of the contaminated signal can be used iteratively as a reference orbit, in
practice the performance of this scheme drops very significantly.

As demonstrated above, this method also allows the separation of two signals coming
from low-dimensional sources. It works when the signal-to-noise ratio is as low as 0 dB and
sometimes even lower [33]. It allows a gain in the SNR of even 30 to 40 dB, provided the
initial signal-to-noise ratio is sufficiently high. As with the other methods presented in this

chapter, this approach can be also applied to linear systems.
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Figure 5.3: Iterative signal separation applying the probabilistic cleaning in R>. The exam-
ple used was the signal obtained from the Lorenz system and a sinusoidal signal.
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Chapter 6

Analytical and Numerical Models of Gear

Dynamics

“Vox populi, vox Dei”

In recent years, a number of papers has been published whose goal was to explain chaotic
vibrations in various types of machinery, e.g., tool chatter, gear transmission rattling, and
contact problems [40]. In gearboxes, much attention has been paid to modeling and under-
standing the mechanisms causing their rattling behavior [22, 21, 24, 42, 35]. Among many
factors that contribute to the nonlinear behavior in gearboxes are the backlash, the contact
forces, and nonlinear and variable mesh stiffness.

Since vibration data for damaged gears was unavailable, we demonstrate the sensitivity
of the proposed condition monitoring methods using “synthetic” data obtained from the
models we present below. The first model is a nonlinear model of torsional vibrations of
the gear system subjected to a variable, nonlinear mesh stiffness, backlash, and harmonic
excitation. The second model describes the dynamics of the rolling motion of a smooth
rigid cylinder driving another flexible cylinder with a surface waviness. This waviness is
responsible for exciting the system vibrations. Nonlinearity in the model is introduced by
assuming the Hertzian type of the contact force. The last model is a well known Rossler
system, which constitutes a commonly used example of a mathematical model exhibiting
chaotic behavior. All of these models have certain qualitative features similar to those
typical of the gearbox vibration signal acquired during the experiment. The first feature
is the Fourier spectrum possessing distinct peaks (corresponding to the harmonics of the
meshing frequency for the experimental data) with modulation sidebands (Fig. 2.3). Sec-

ondly, dynamics of the underlying system has to be nonlinear and embedded in a relatively
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Figure 6.1: Schematic used to write equations of motion for the gear model (6.1).

low-dimensional phase space, dg < 5. Next, at least one of the Lyapunov exponents com-
puted for the time series obtained from the system has to be positive. Finally, the mutual
information function has to exhibit features which are recurrent with the model equivalent

of the meshing frequency.

6.1 Model with variable mesh stiffness and backlash

This model is based on a simple single degree of freedom torsional dynamic system with a
harmonic excitation similar to that proposed by Sato et al. [46], who suggested occurrence
of chaotically transitional phenomena in the gear system. The purpose of their model was
to demonstrate the bifurcation scenario leading to chaotic behavior. Since in this work we
are interested in a steady state chaotic response, reminiscent of that obtained from our
experiment, we introduced two significant modifications to the model suggested in [46].
Firstly, we propose to use a cubic term in the expression representing the tooth stiffness.
Secondly, we use a harmonic function which describes the variable mesh stiffness, k(7).
This choice seems to provide a better qualitative representation of the response of our
experimental system.

The equations of motion for a single pair of gears, as schematically shown in Fig. 6.1,
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in terms of their relative motion, can be written as

6 + 200 + K(1)g(@ + e (7)) = Tll%f?g (6.1)

where:
I, I> - moments of inertia of gears 1 and 2, respectively
1 - gear ratio
I, - equivalent moment of inertia of the gears in mesh, I. =1/ (% + ﬁ)
01,09 - angular gear displacements
T;n - input torque
Tout = output torque
k, - variable mesh stiffness
fs - angular displacement of the meshing teeth, 65 = %
© - relative, normalized angular gear displacement, ©® = (01 — ©2/1)
er - normalized transmission error
1 - normalized backlash
¢ - damping between the meshing teeth
¢ - damping ratio, ¢ = ¢,/2/I|[kr [|max
wp, = natural frequency, wn, = \/[[kr[[maz/Ie
7 = dimensionless time, T = w,t
Ty - dimensionless input torque, 71 = Tin /|| Tinllmaz
T, - dimensionless output torque, 7% = Toui /|| Tin|lmazx
w - dimensionless meshing frequency
k(t) - dimensionless variable mesh stiffness, k(t) = 0.8 + 0.2 sin(wt)
g(z,n) - nonlinear function representing gear teeth backlash!,

z + z°, ifz>0

g(z,n) = { 0, if -n<z<0 (6.2)
z+z34+n, ifzx<—n

!One might be concerned that the backlash function g(x,7) as defined in (6.2) suffers from a discontinuity.
This problem can be alleviated by substituting g(z,n) = « +n+ (z 4+ n)® for £ < —n. This change, however,
does not result in qualitatively different behavior of the system for our values of parameters. Even though
for all of the calculations performed for this model in Chapter 7, g(x,n) was assumed in the form of (6.2),
these results were also confirmed for the system with the continuous form of backlash function g(z,7).
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where || @ || ez denotes a maximum norm, and all normalized values were obtained through
dividing by the angular displacement of the meshing teeth 6. Assuming that the trans-
mission error and the external torques act at an integer multiple of the meshing frequency,
and substituting z = O + e,, equation (6.1) can be written as
d’x d

) + 2{—% + k(7)g(z,n) = Bcos(nwt + 6) + By (6.3)

where:
x - relative angular displacement for meshing gears,
B - amplitude of harmonic excitation,

By - static component of excitation.

We integrated the above system numerically, with the fixed time step of 75 = 7/40 in
the Runge-Kutta fourth-order algorithm, and used z(t) to investigate the system (6.3). We
found that the behavior of this model is richer than of that originally suggested in [46].
The response of the model changes from harmonic to poliharmonic, and finally chaotic,
as the value of the backlash parameter 7 is varied. The chaotic response also exhibits
various spectral characteristics, from possessing distinct, chaotically modulated peaks, to
completely broadband with no dominating discrete frequency modes.

Fig. 6.2(a) shows the frequency spectrum of the signal obtained for the following values
of parameters: n =1, ( = 0.01, w = 0.4, By = 0.1, B=4.0, n = 5.2, and § = 0. We chose
60000 data points for each sample time series to ensure the stationarity of the probability
density function and the stationarity of the eigenvalues computed for the dominant periodic
orbit?. The signal was embedded in R® using the time-lag corresponding to the first mini-
mum, 7 = 30 [time steps], of the mutual information function, shown in Fig. 6.2(c). Notice
the presence of the equidistant peaks, separated by the distance equal to the reciprocal of
the meshing frequency, T' = 200[time steps].

The Lyapunov exponents computed for this model using the Brigg’s method [8] are:
A1 = 0.381, X2 = 0.032, A3 = —0.388 [bits/time step]. The value of A\; was also verified by
fitting y = aztba’fc £ the curve illustrating sensitive dependence of the system dynamics

to the initial conditions, Fig. 6.2(b).

2See Section 7.2.
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Figure 6.2: (a) FFT computed for the z signal, obtained by numerical integration of the
model (6.3), (b) time evolution of the average distance between two initially close trajectory
points in the phase space, (¢) average mutual information function.



Figure 6.3: Two cylinders in rolling contact, subject to the Hertzian force.

6.2 Model with Hertzian force

Another important nonlinear phenomenon present in gearboxes is the contact force between
the meshing gear teeth®. The model introduced in this section describes the dynamics of
the rolling motion of a rigid cylinder driving another flexible cylinder. The equations of
motion are a generalized version of those derived by Nayak [37].

Consider a rigid cylinder, with mass mi, rolling on a flexible cylinder, with mass ma,
as in Fig. 6.3. The vibrations arise due to the surface waviness of one of the contacting
cylinders. The other cylinder, m1, is assumed to have a smooth surface. It is also assumed
that the cylinders are precompressed to a static load Py. The damping in the system is
assumed to be of the viscous type and the contact force between the cylinders is assumed

to be Hertzian, i.e.,

P.=cp(y1 +y2 + w)3/2 (6.4)

3 Apart from gearboxes, the problem of contact vibrations can be found in many other important engi-
neering applications like ball bearings or wheel-rail contact problems.
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where P, is the contact force, w the surface waviness of the cylinder 2 (measured radially
outwards), and ¢, is the Hertzian material constant. The equations of motion for the two

cylinders are given by
myi + ciyi + kiyi = Py — Pe, i=1,2 (6.5)

Assuming that ¢; /my = ca/mo = ¢/m, and k1 /mq = ko/ms = k/m, where m = mima/(mi+

mg), the equations (6.5) can be combined, resulting in
m(y1 + y2) + c(y1 + y2) + k(y1 +y2) = By — P (6.6)

Introducing the Hertzian deflection z = y; +y2+w, equation (6.6) can be further transformed

to
mi + ¢z + kz + cp2®? = Py 4+ mi + e + kw (6.7)

We will now convert equation (6.7) to its non-dimensional form by referring the displacement
variable, z, to the static deflection z, = (Py/cp)?/?, defining this way a non-dimensional
displacement z = 2/z;, and by using a non-dimensional time 7 = w.t, where w, =
(3Py/2mzs)"/? is the contact resonant frequency. Furthermore, substituting £ = w/z,,

2¢ = ¢/wem, and o = k/w?m results in
2
"+ 20" +az + g[H(x):t:?’/2 —1)=¢"4+2¢¢ + af (6.8)

where H(z) is the Heaviside unit step function (H(z > 0) = 1 and O otherwise). If we

approximate the surface waviness, w, of cylinder 2 by a harmonic wave,
&€ = & cos(wr) (6.9)
the equation of motion takes its final form

" +2¢z" + ax + g{H(x):cg’/Q — 1] = —&[(w? — @) cos(wT) + 2Cwsin(wT)]
(6.10)
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A special case of equation (6.10), with a = 0, was investigated by Narayanan et al. [36],
who found that for a certain set of parameter values the system undergoes bifurcations and
exhibits chaos through a familiar period doubling scenario. We found that the behavior of
the system (6.10) is a little richer, but essentially similar to that studied by Narayanan et
al. In our work, we are interested in changes in system behavior as the parameter & is
varied, as opposed to varying frequency w, as in [36]. Changes in &y can be thought of as
a simple model for changes in gear teeth profiles, which are usually caused by normal wear
mechanisms. If that kind of change lasts only for a relatively short time (short with respect
to the main orbital period), it may model a local change in a tooth profile?. System (6.10)
undergoes a series of bifurcations, for changing &g, and varies from exhibiting a harmonic, to
poliharmonic, and then chaotic response. The choice of & # 0 seems to be more adequate for
the purpose of qualitative modeling of the system response obtained from our experiment.

For our analysis, the model (6.10) was integrated numerically, using the fixed time step
of (15 = m/40) in the Runge-Kutta fourth-order algorithm. We chose 60,000 data points for
each sample of z(t) to ensure the stationarity of the probability density function and the
stationarity of the eigenvalues computed for the dominant periodic orbit®. The following
values of parameters were chosen for the forthcoming analysis: ( = 0.05, o = 0.045, w = 1.6,
and & = 1.1. The frequency spectrum for the generated time series is shown in Fig. 6.4(a).

The chaotic character of the modulation sidebands, visible in the spectrum, was con-
firmed by quantifying the sensitivity of the system response to the initial conditions, Fig. 6.4
(b), and by the calculation of the Lyapunov exponents, using the Briggs’ method [8]. Their
values are A\; = 0.198, Ao = —0.003, and A3 = —0.226 [bits/time step]. The value of \; was
also verified by fitting the function y = gaztba’+e o the curve in Fig. 6.4(b).

Finally, the average mutual information function was computed for the system and
plotted in Fig. 6.4(c). Its recurrent character is manifested in repetitive occurrence of
significant peaks at the rate of 7' = 50 [time steps|. This recurrence rate corresponds to
the period of the dominant cycle for the system (7" = 27/(w7s)). The average mutual
information function was also used to select the value of the time-delay for the purpose of
phase space reconstruction. The time-lag corresponding to the first minimum of the mutual

information function, 7 = 10 [time steps], was used to embed the time series in R.

1A detailed discussion of the way in which we model tooth defects will be given in Section 6.4.
®See Section 7.2.
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6.3 Rossler model

At first sight, this model does not appear to have anything in common with gear dynamics.
It was first introduced by Rdssler in 1976 as a simple and well understood example of

nonlinear dynamical system exhibiting chaotic behavior. It can be written as [45]
t=—(y+z2), y=r+ay, Z2=b+z(z—c (6.11)

where constants a = 0.15, b = 0.2, and ¢ = 10 correspond to the chaotic range for the above
system. The set of equations (6.11) is known to posses one positive Lyapunov exponent
A1 = 0.13 [bits/s] (the other two are A2 = 0.00 and A3 = —14.1 [bits/s]). This model was
numerically integrated, using the Runge-Kutta fourth-order algorithm with the fixed time
step of 7, = 0.0304, and the first coordinate, x(t), of the solution vector was used as the
time series. We chose 30,000 data points for each sample in an ensemble. This choice was
made again to ensure the stationarity of the probability density function and the eigenvalues
estimated for the extracted dominant periodic orbit.

The response of this model is used here to illustrate applicability of our methodology to
a general chaotic system with a broadband frequency spectrum, yet with dominant discrete
features, as shown in Fig. 6.5(a). This spectrum is qualitatively similar to that obtained
for an experimental gearbox signal (Fig. 2.3). The main spectral peak corresponds to the
period-one orbit for the Réssler attractor, with period about 7' = 200 [time steps].

The signal was embedded in R? using the time-lag corresponding to the first minimum of
the average mutual information function, 7 = 44[time steps], shown in Fig. 6.5(c). All of the
above mentioned features, together with the recurrent character of the peaks in the mutual

information function, qualify the Rossler system as a qualitative model for our analysis.

6.4 Modeling changes in operating conditions

On the basis of mathematical models described above, we will now introduce models of two
specific kinds of defects or changes in an operating parameter of the system, which will
be used in the next chapter to demonstrate the applicability of the condition monitoring
methods proposed there. The first type of the modeled defects, called type-I, is modeled

as a step function acting on one of the parameters and may be considered a qualitative
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representation of “global” tooth defects which are evenly distributed over surfaces of all
teeth and are caused by normal wear processes that are typical of kinematic mechanisms.
We implement the type-I defect by integrating the analyzed system numerically from time
to to t1, at which instant we change the value of the traced parameter, and then we integrate
the “new” system from the time ¢; on.

For the model with backlash, we chose to monitor the parameter 1, whose initial value
of 7 = 5.2 defined the so called “good,” or reference, operating state. The value of the
parameter which defines the type-I condition for this model was chosen as n = 5.6. Similarly,
for the Hertzian model (6.10) and the Rossler model (6.11), the “good” state was defined
by the values of §, = 1.0 and a = 0.15, and the type-I state, by & = 1.1 and a = 0.16,
respectively.

The second, “local,” type of change in the system operating conditions, denoted here
by type-II state, is modeled as a short impulse acting periodically on a system parameter.
It is numerically implemented in the following way. Suppose that the main orbital period
for the analyzed system is equal to T. Two parameters need to be chosen: the impulse
frequency of occurrence and its duration, 777. We take T as the impulse occurrence time
and some small fraction of T' as 77;. While the impulse lasts, the system is integrated with
one value of the traced parameter, while at any time before or after, the other value is used.
If we think of the frequency of the impulse recurrence as the tooth meshing frequency in
a gearbox, this type of the system change would correspond to local tooth defects, like a
chipped tooth head or a crack at the tooth base.

For the model with backlash, we associated the recurrence time of the impulse with the
meshing frequency T = 200 [time steps|, and set its duration as 777 = 10 [time steps]. We
took the same values for the Rossler model. The values of the corresponding parameters
which were used during the impulse are: n = 8.6 for the model with backlash and a = 0.18
for the Rossler model. For the Hertzian model we used, respectively: T' = 50, 777 = 3, and
£€=1.18.

Obviously, detection of a change in the system state strongly depends on the values of
parameters defining both “abnormal” stages. For example, the larger the value of 777, the
easier the type-II condition will be detected. Notice, however, that this does not necessarily
hold for the values of the observed system parameters. That is why a change of 10% in a

parameter, for either type-I or type-II, might be harder to detect than a change of, say, 3%.
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Therefore, analysis of nonlinear systems requires a different definition of “small” changes in
the system operating conditions.

Changes in parameter values in both types of modeled defects investigated here are
considered “small,” by which we mean that simple measures like Fourier spectrum, auto-
correlation function, phase space portrait, or one-dimensional probability density function
are not sensitive enough to detect them. It does not mean that nonlinear methods of anal-
ysis would not work well where the “classical” linear methods can be successfully applied.
It just seems difficult to justify application of often time consuming nonlinear methodol-
ogy where faster and easier to implement linear methods, familiar to all engineers, can
be effectively used. In order to verify that the analyzed data satisfies the above require-
ments, we compared the FFT for the “good” signals with those for the type-I and type-II
signals and found them indistinguishable up to the value of statistical fluctuations in the
ensemble. This observation can be made by comparing the Fourier spectra in Fig. 6.2(a)
and Fig. 6.6(a)-(b) created for signals with both types of modeled errors obtained from the
model with backlash. The same conclusions can be drawn from comparison of the spectra
in Fig. 6.4(a) and Fig. 6.7(a)-(b) for the Hertzian model, and of the spectra in Fig. 6.5(a)
and Fig. 6.8(a)-(b) for the Rossler model.

To further confirm the “smallness” of monitored changes, we computed the one-dimen-
sional pdf signature for all analyzed cases. After the probability density functions were
estimated, the alert zones were constructed for the ensemble of “good” signals. Each zone
is centered at the median value of the estimated pdf and is +30 wide, where o denotes the
standard deviation computed for a corresponding ensemble of reference data. This standard,
global, statistic was estimated for all analyzed models and their respective parameter values.
The result for the model with backlash is shown in Fig. 6.6(c)-(d) for the type-I and type-II
signals respectively. Only one sample pdf, which is representative of the entire ensemble, is
shown in each figure. The 30 alert zone, shown between the solid lines, is not intersected
by the pdf curve computed for the type-I signal and is only intersected in the tail® of the
density function for the type-IIsignal. Therefore, we can conclude that no significant change
in the state of the observed system was detected. Since the one-dimensional approach to
the pdf estimation suffers from the loss of information due to disregarding the meaningful

structure of the system in its state space, we expect that the methods which utilize the

Swhich is the region of pdf with the lowest significance for the purpose of condition monitoring
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phase space information (that will be proposed in the next chapter) should have a superior
sensitivity than the standard one-dimensional pdf statistic.

The results of using the one-dimensional pdf signature to detect changes in the Hertzian
model and the Rossler model are shown in Fig. 6.7(c)-(d) and Fig. 6.8(c)-(d), respectively.
The same conclusions can be drawn from these figures as described for the model with
backlash for the type-I and type-1I signals.

We also reconstructed the phase space portraits and extracted the first three periodic
orbits for all the analyzed signals. After comparing the resulting attracting sets and the
cycles corresponding to all the cases of interest, we found these signatures are also not
sensitive enough to detect the modeled defects imposed on the analyzed models. Fig. 6.9
illustrates how the extracted periodic orbits are almost identical for all the three cases of
the Rossler signal. Similar conclusions were also made for the other two models.

To summarize, in this chapter we proposed a simple way to model local and global (or
distributed) types of defects for three low-dimensional nonlinear dynamical systems, whose
FFT, average mutual information function, and the exponential divergence of nearby orbits,
qualitatively resemble those computed for the experimental data obtained from the gearbox
test rig. Furthermore, we imposed a condition which limited the size of the modeled defects

so that their detection was impossible using the standard, most commonly used techniques
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of the system condition monitoring, i.e., FFT and the one-dimensional probability density
function. This restriction was made not only to demonstrate the superiority of the proposed
methods, but also to reflect many potential practical situations where the analyzed system
is nonlinear and its behavior is manifested in the “noisy” broadband spectrum. In classical
linear analysis of time series, especially if the broadband spectrum appears together with
dominant discrete peaks, the common procedure is to treat the broadband component as
“noise” and to filter it out. In the proposed approach, the broadband component is treated
as an equally important source of information about the state of the system as the discrete
component. Since there are many possible explanations of nonlinear features in the gearbox
dynamics, we considered models with different types of nonlinearity. Even though they
model physical phenomena in different ways, their response is qualitatively similar and can
be used as a good testing ground for our purpose. In the next chapter, the detection of these

defects will be used to judge the performance of dynamical signatures proposed there.
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Chapter 7

Dynamical System Condition Monitoring

“Fxitus acta probat”

Modern engineering puts very high demands on the quality of structures, devices, and
machines, which have to operate with high accuracy and stability under heavy load and in
a great variety of conditions. With constantly increasing precision and working speed of
machines, an early detection of possibly catastrophic changes in their concealed operating
parameters becomes a very important and difficult task. To achieve this, the alarm levels
indicating a potential fault are set as close as possible to the “good” reference value of the
measured diagnostic, corresponding to measurements taken when the machine was operating
normally. There is an obvious trade-off between narrowing the alert zone and the number
of indicated false alarms.

Various methods of technical diagnostics and monitoring are based on the assumption
that the operating system is the best instrument for evaluating its own state, or in other
words, that its indicators (diagnostics) can be observed and a correct diagnostic decision
can be made based on these observations. To meet this assumption, the “correct” measure-
ment location and the “correct” transducer need to be selected. These two requirements
are often easily accommodated into the monitoring strategy. Another requirement is that
the operating condition for the machine is stable during the measurement process. This
sometimes can be more difficult to satisfy. A gearbox driving a pump, for example, may
work in only one state of operation, defined by its rotational speed. An automobile gearbox,
on the other hand, works at different running speeds and requires different alert zones for
measurement comparison to ensure that faults are automatically detected at an early stage
of development for all machine states and that this goal is achieved without triggering false

alarms. Similarly, changes in the other operating conditions of the machine, such as pres-
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sure, temperature, or flow of the lubricants, also affect its vibration characteristics. In this
work, we assume that these changes in the operating conditions can be inferred using other
monitoring systems, e.g., measuring temperature and the level of lubricants, monitoring the
rotational speed of the input and the output gearbox shafts, etc.

There are many signal processing algorithms that are used to determine the condition
of a gear pair in an operating machine. The most commonly used ones, however, are still
based on spectral analysis. In this chapter, we propose three new methods for monitor-
ing the state of a dynamical system. Instead of considering spectral features, we propose
to focus on geometric and probabilistic features present in the system state space. Their
main application is to an early detection of changes in system operating conditions, which
correspond to various wear mechanisms, before these changes become catastrophic. This
approach is expected to be most useful for dynamical systems that possess relatively broad-
band spectrum with some dominant discrete peaks, like those usually observed in vibration
signals acquired from gearboxes.

Data from the models introduced in Chapter 6 are used to investigate the effectiveness
of the proposed methods of condition monitoring. All of them employ invariant features
typical of nonlinear and/or chaotic dynamical systems, i.e., system predictability, stability
of orbits, and multi-modal nature of the stationary probability density function estimated
in the state space. The first method utilizes the fact that, even for chaotic systems, a
short term predictability is always possible and the estimated predictor can be used to
quantify changes in the system operating conditions. The other methods make use of
periodic orbits which are extracted from the system trajectory in its re-created state space.
The second proposed statistic uses stability of periodic orbits to characterize the system
state and to monitor its change. Instability of orbits is one of the characteristic features of
chaotic dynamics. It is usually quantified with Lyapunov exponents which are inherently
difficult to compute for experimental data. Replacing their time-consuming estimation with
calculation of eigenvalues corresponding to a set of chosen periodic orbits serves essentially
the same goal, but is significantly more efficient computationally. The last method can
essentially be classified as a new possible solution to the old statistical problem of projection
pursuit. This problem is particularly interesting in the context of chaotic dynamics, whose
trademark is a generically multi-modal probability distribution. The probability density

function is estimated in the system state space, and then slices along chosen periodic orbits



92
are taken. The question whether this approach is superior to taking an arbitrary slice or
to just evaluating the pdf for a one-dimensional time series and then projecting it to a
one-dimensional orbit is also addressed for all investigated models.

Throughout this chapter, the decision whether the system state has changed or not
is based on a simple statistical ensemble averaging. Every statistic is computed for an
ensemble of samples corresponding to the same system state. The alert zone is created for
the ensemble obtained for the system in the reference, “good,” state. The zone is centered at
the median value of the statistic and spans the area of £30, where o denotes the standard
deviation of the statistic evaluated across the ensemble. If the statistic crosses the alert
zone, it constitutes an alarm (true or false) which should correspond to a change in the
analyzed system. From the persistence of such events, we determine the quality of the used

condition monitoring tools and their applicability to the investigated type of system change.

7.1 Condition monitoring using system predictability

As already mentioned in Section 4.2, predictability of the system response is an important
feature which characterizes its properties. A measure of system predictability can also be
employed to identify the state of the system and to trace its possible changes [59]. Recall

the degree of predictability, previously defined in equation (4.3),

<yt+T)yt+17T) >

- V<Pt +T) ><g?(t+T) > (4.3)

D(T)

Since D(T) is such a valuable source of information about the system, it could be used
directly, in principle, to identify the state of the system. One might, for example, define a
diagnostic measure equal to the length of the prediction horizon corresponding to a certain
value of D, say D = 0.5, and use that to monitor changes in the system state. Unfortunately,
such a diagnostic tool is not sensitive enough to reliably detect small parameter changes (as
they were defined earlier in this chapter).

Another monitoring method is also possible when we notice that there is a hidden
conditional dependence of the degree of predictability on the available data D, as it was
denoted in equation (4.1). Having chosen a class of deterministic or probabilistic prediction

models, M, as in Section 4.2, we fit the model based on the available “training set” composed
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Figure 7.1: Change in the degree of predictability for two signals with a value of one param-
eter changed by a small amount. The measure is based on the predictor estimated for a
training set obtained from the first set of operating conditions. The area between the solid
lines defines the alert zone.

of the data acquired from the system in its reference state. The quality of the prediction
made with such a model should be, at least in theory, as good for any sample time series
as for the training data, provided the samples are large enough. Even small changes in a
system parameter, however, should be manifested by a drop of predictability of the model.
This idea is illustrated schematically in Fig. 7.1. Tt shows an alert zone which was created
for the signal acquired from the “good” system. For the examples that follow, we employed
30 alert zones, which were created for the ensembles consisting of 20 sample time series. The
zones were centered at the median value of the degree of predictability, D(T'), computed for
an ensemble corresponding to each value of the prediction horizon T'. Every forecast was
made using a direct prediction scheme, that was based on the same sample. The dashed line
in Fig. 7.1 and in figures that follow in this section, corresponds to a typical result curve,
obtained for the test runs. Since the prediction model is calculated only for the training
data set, any change of the system’s operating conditions is visible in a decrease in both
the degree of predictability and the length of the possible prediction horizon. We expect to

see the highest sensitivity of this method for the smaller values of the prediction horizon,
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which is in agreement with the scenario described earlier in Fig. 4.3. This is why it is not
always necessary to compute D(T') until its value drops to zero, particularly if our goal is

only to distinguish between different states of the system.

Rossler model

The geometry of the attractor for the Rossler system is simple enough to allow very good
prediction of its response. It can be seen in the size of the 30 alert zone in Fig. 7.2(a)-(b).
Predictability of the samples for the “good” system is almost perfect, D(0 < 7' < 1000) ~ 1
which makes the width of the alert zone almost negligibly small. Fig. 7.2(a) shows the
degree of predictability for a typical time signal of length 30,000 data points, acquired from
the Rossler model in its type-I state, as it was defined in Section 6.4. The first striking
observation that can be made is how such a small change in the system parameter is clearly
visible in the predictability of the observed signal. Another observation results from a very
good short term predictability of the Rossler model — even though the quality of predictions
made for the cases of changed system parameters is significantly lower than that for the
same state of the system as in the training data set, the average quality of prediction is still
relatively very high.

Altogether, we can conclude that both types of change in the system parameters are

detected very clearly and reliably for this model.

Model with Hertzian force

This simple model also allows excellent predictions to be made, as revealed in D(0 < T' <
1000) ~ 1, and as also seen in the very small size of the alert zone in Fig. 7.3. Notice
that predictability of the model response in type-I and type-II states based on the training
data for the reference state, although very good, is not as good as it was for the Rossler
model. There is no significant difference in the degree of predictability between the cases
shown in Fig. 7.3(a)-(b). It means that for this model, the proposed measure is equally
effective for both distributed and local types of parameter changes. Both types of changes
are detected very clearly and reliably. Since the detection of both types of changes in the
state of the system was so clear, there was no need to investigate the behavior of the degree
of predictability statistic for larger values of the prediction horizon, T

This allows significant savings in time needed for computation and decision making.
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Model with backlash

One might ask: if this method is so very effective, why should we bother with any other
condition monitoring methods? The reason is that this approach, as any other method,
has its limitations. The main problem, which can be encountered when using system pre-
dictability as a condition monitoring tool, is a possible poor quality of prediction. It is
usually caused by inadequacy of the prediction scheme used to model complex or highly
contaminated signals. To produce Fig. 7.2-7.3, we used the local linear predictor defined in
the system state space, as introduced in Section 4.2.3. We used the setup which we found
to work well for most of the low-dimensional chaotic systems we investigated. For both
systems, we initially embedded the trajectory in R® using the time-delay corresponding to
the first minimum of the average mutual information function. This reconstructed trajec-
tory was then projected on R? where the local linear predictors were estimated for every
considered neighborhood. It is evident from the results obtained for both of the models
analyzed above that this basic setup worked very well. To demonstrate that it does not
always have to be true, we also used the same setup for the signals obtained from the model
(6.3). Results of applying this procedure to detect the type-I and type-II states are shown
in Fig. 7.4(a)-(b). The first striking conclusion which can be drawn from these figures is
that the predictability of the analyzed system is very inconsistent. It is manifested by a
very large alert zone (in some cases reaching even beyond the [0, 1] interval) which makes it
almost impossible to apply the predictability criterion to detect small changes in the system
operating conditions. Notice that the inconsistency in predictability of the system response
does not necessarily imply its poor predictability. A wide alert zone can be obtained even
though the degree of predictability, D(7'), is higher than 0.5 for all of the samples in the
investigated ensemble and throughout most of the prediction horizon. As a result, the de-
gree of predictability signature was not sensitive enough to detect either type of modeled
defects in this particular case.

As it has already been mentioned above, another case where this signature may not
perform well is when data is highly contaminated with “noise.” Since this method depends
very strongly on accurate estimation of distances among neighbors in the phase space, it
is very susceptible to contamination of data. Sometimes, one can alleviate this problem by

using a better, more robust, prediction scheme, like the probabilistic scheme we proposed in
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Section 4.2.4. It is also possible that the analyzed system is strongly unpredictable, which
is manifested in high divergence of nearby orbits and large positive Lyapunov exponent(s).
In this case, the degree of predictability would drop very quickly, and the alert zone would
be too wide (just like in Fig. 7.4), or positioned too low to allow any meaningful conclusions
about changes in the state of the system. In the absence of “noise,” however, the quality of
the condition monitoring decisions that are made employing this statistic are not strongly
influenced by the type of the predictor used, as in the cases of the model systems we studied.
Using a statistical prediction scheme would not improve the quality of this method. In such
cases, after realizing that the signature reached its regime of low sensitivity, one should
attempt other possible methods of condition monitoring. Since the signatures proposed
below do not use system predictability but employ other features of system dynamics, they
constitute viable alternatives for the cases where the method proposed in this section might

not work well.

7.2 Stability of periodic orbits as a diagnostic measure

We have already discussed why periodic orbits are an important tool in identifying system
behavior. We also presented ways of extracting them from a given time series. We will now
use their stability as a measure which characterizes the state of the system.

Consider a periodic orbit which has been extracted from the data, for example the one
shown in Fig. 7.5. Condition monitoring of the dynamical system can be attempted by
observing changes in the stability of its periodic orbits. The larger the number of orbits
we observe, the more sensitive the monitoring process becomes. On the other hand not all
of the system periodic orbits need to be considered since the topology of an attractor is
usually well represented by only a relatively small number of them. We will now illustrate
the monitoring procedure for one periodic orbit, {m(z)}gﬂ”

Evolution of every trajectory point, (¢) (and therefore of every point on a periodic orbit

as well), is governed by a map, F', acting in the system phase space,
z(i+ 1) = F(z(i)) (7.1)

Small perturbations to this orbit, z(i) — z(i) + dz(¢), evolve according to the linearized
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Figure 7.5: Periodic orbit (with period 7" = 600 [time steps]) extracted from a time series
embedded in the reconstructed phase space and obtained by numerical integration of the
Rossler system.

System
dz(i+ 1) = DF(z(i))dz(7) (7.2)

where DF(z(i)) is the Jacobian matrix of the map F, evaluated at the point z(¢). Consider

now the evolution of the perturbation throughout the length of the orbit {:c(z)}j“”,

ox(j+k) = DF(x(j+k—1)DF(z(j+k—2))...DF(xz(j+1))DF(xz(j))ox(j)

= DF*z(j))d(x(5)) (7.3)

where DF¥(z(j)) denotes the product of k Jacobian matrices, starting at the point 2(j) on

the periodic orbit.

Stability of the orbit is determined by computing the eigenvalues (which we denote

exp(A;)) of the following real and symmetric matrix [39, 1]
[DF*(a(5))" DF*(x(4))) /M (7.4)

In order to estimate the Jacobian matrix at a trajectory point, z(7), the map F(x(1))
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is expanded into a Taylor series in the vicinity of that point. We need not assume that
the orbit is smooth in the state space. We must assume, however, that F(z) is smooth.
This allows us to compute the eigenvalues for periodic orbits which were estimated from
an experimental trajectory. The Jacobian matrix is extracted from the linear term of the
Taylor expansion. Since the numerical implementation of the procedure that we used in
this work is taken from [1] (where it was used to compute local Lyapunov exponents), we
will not describe it here in much detail. We start with the set of nearest neighbors found
for every point on the orbit and then observe its time evolution, one time step ahead. This
evolution defines a local neighborhood-to-neighborhood dynamics in the phase space, i.e.,
it corresponds to the map F. In order to make a Taylor expansion in the small deviations
from the center of the neighborhood, the variables are centered at x(i) and z(i+1). A least
squares fit is then used to determine the Taylor coefficients up to the second order terms
in the expansion. Even though only first order terms contribute to the Jacobian matrix,
the second (or even higher) order terms need to be computed to improve the quality of fit.
For most of the practical situations we encountered, the improvement in the results from
considering terms of the order higher than the second was so small that it did not justify a
significant increase in the computation time. For a more detailed discussion of the Jacobian
estimation and the application of the QR decomposition of the product of k matrices!,
see [1].

Since the spectrum of periodic orbits provides a measure of system dynamics and their
stability is a system invariant, we will now monitor changes in the eigenvalues, corresponding

to a set of extracted periodic orbits, in order to investigate their usefulness as a condition

monitoring tool.

Rossler model

Since in all our calculations we refer to the trajectory representing the system in its recon-
structed phase space, possible concerns may arise regarding the influence of the embedding
procedure on the condition monitoring process. As long as we use features of the system
which are invariant under smooth changes of coordinates, any change in the system pa-

rameters observed in the reconstructed state space represents a corresponding change in

!Direct multiplication of Jacobian matrices, even for a relatively short periodic orbit, usually results in a
severely ill-conditioned matrix DF*(z).
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the “real” system [48]. To demonstrate this, we perform condition monitoring using the
T = 200 [time steps] periodic orbit extracted from a three-dimensional signal corresponding
to the three coordinates, (z,y, z), of the Rossler model. Fig. 7.6 shows an absolute value
of the largest eigenvalue, A\;, as computed for two types of modeled defects. Fig. 7.6(a)
corresponds to the type-I and Fig. 7.6(b) to the type-II defect model. The units on the
horizontal axis correspond to the number of a subsequent time series sample, each 30,000
points long, obtained from the model. The 3o alert zone, shown between the solid straight
lines, was created from samples of the signal which proceeded those shown in the figure, and
were obtained for the parameter value a = 0.15 (corresponding to the “good” state). The
zone is centered at the median value of A;. After the 20-th sample was taken, the parameter
value in the model was changed according to the type-I (Fig. 7.6(a)) or type-II (Fig. 7.6(a))
of modeled system change. This change is reflected very well in the value of A\ leaving
and remaining outside of the alert zone for all of the subsequent samples in Fig. 7.6(a).
Although there seem to be some clear signs of a change in the system parameters visible in
Fig. 7.6(b), they are not as clear as for the type-I case.

One can observe that the mean behavior of the largest eigenvalue is quite different from
its counterpart before the 20-th sample time series was acquired. This ambiguity may have
at least three possible causes. The first cause may be an insufficient length of the analyzed
sample time series. The easiest way to verify that is to increase the length of the sample and
compare the results. We doubled the size of each sample used to produce Fig. 7.6 and found
that the resulting variations in A; were not significantly smaller. From this observation, we
concluded that the sample size of 30,000 data points is sufficiently large for our analysis.
The second possible reason might be a poor approximation of the periodic orbit, which
commonly results in large variations in eigenvalues across the ensemble. This suspicion
seems to be supported by an occurrence of a false alarm at the 17-th sample time series.
We will return to the problem of treating such “outliers” later in this section. In this case,
one can try to use different trajectory ensembles or more efficient methods for extraction of
periodic orbits. An inability to approximate periodic orbits faithfully is the main limitation
for this method. The third reason for an ambiguous monitoring result may be that the
change in the system occurred in the part of the state space which was not visited (or was
only locally visited) by the considered orbit, and hence remains difficult to detect. In such a

case, one should verify the suspected change in the system by computing the same statistic
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for different periodic orbits or by using other condition monitoring method(s) (for example
the one suggested in Section 7.1) for the controversial sample.

Let us now return to the analysis of one-dimensional signals. We acquired our one-
dimensional time series from the Rossler model, reconstructed the phase space, extracted
periodic orbits and again computed their eigenvalues. Since a faithful approximation of
periodic orbits is of paramount importance for this approach to condition monitoring, as
we already mentioned in Section 3.2.2, we usually use two methods of their extraction. The
simpler method looks for an orbit whose starting and ending points are closest in the phase
space, for a given period T'. Fig. 7.7(a) shows the largest-eigenvalue-statistic for the period
T = 200 orbit extracted this way for the system in “good” and type-I states, as in Fig. 7.6.
Fig. 7.7(b) shows the same statistic computed for the orbit of the same length but which is
constructed by averaging the nearby orbits, as described in Section 3.2.2. From comparing
these two figures, it is not immediately clear which method of extraction is superior in
this case. Although the difference in the statistic is much larger for the simpler extraction
method, it also suffers from producing a false alarm. A way to verify that this alarm is
indeed false is to notice that A; leaves the alert zone for only one, 16-th, sample, and then
returns back for the next few samples. Since no such behavior for this sample is visible in
Fig. 7.7(b), and because of a temporary character of this change, we can conclude that this
event is caused by an imperfect estimation of the periodic orbit and therefore constitutes
a false alarm. To support this conclusion, we also computed the orbital projection of the
probability density function statistic for the sample in question, as described in the next
section. As expected, it showed no sign of change in the system parameters. Obviously, this
simple check does not guarantee that the observed event constitutes a false error. Together
with the previous observations, however, it gives an observer a higher confidence in his
decision making. Since one of the first priorities of any condition monitoring scheme is to
minimize the number of false alarms and since they seemed to occur more often for the
method used to produce Fig. 7.7(a), in all cases which follow and which required periodic
orbits, we used the method of averaging as the method of their extraction.

As we already observed in Fig. 7.6(b), the local type of defects, modeled in our work
as the type-II state, is generally more difficult to detect than the distributed, type-1, state.
This observation can be confirmed by computing the orbital stability statistic for a one-

dimensional time series for the type-II state, as it was done above for the type-I state. In
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Fig. 7.8(a), we can see again large variations in the values of \;. As expected, the local, short
lasting changes in system parameters depend very strongly on the quality of the estimation
of periodic orbits. Observability of local defects depends on both their time duration and
their “strength.” In analogy to a local defect of a gear tooth surface, we could think of the
defect duration as corresponding to the ratio of the area of the worn tooth surface to the
area of the entire tooth surface in contact. “Strength” of the defect can be thought of as
corresponding to its depth. When the defect “grows,” it should be more visible, at least in
principle. This simple effect can be seen in Fig. 7.8(b).

Until now we have analyzed only a single, T' = 200 [time steps| periodic orbit. Let us
consider a couple more orbits. We estimated eigenvalues for the orbit 7" = 600 [time steps]
using the same ensembles as before. The distribution of the largest eigenvalue is shown in
Fig. 7.9(a). Here again we see a persistent change in the stability of the orbit, occurring after
the 20-th sample (after which the type-I state was inflicted), confirming good sensitivity of
this measure and its applicability to this case of the system condition monitoring.

As one can suspect, not all periodic orbits are equally susceptible to changes in system
operating conditions. If a change in the system dynamics is observable in a region of the
phase space which is not visited by the periodic orbit of interest, this change cannot be
detected by any measure computed for this orbit. Also, if a considered orbit is very long
and the part of the phase space affected by the change is explored for a short time (relative
to the length of the orbit), the averaging process used to estimate eigenvalues may cause
such an orbit to provide a poor diagnostic signature. Such a case is shown in Fig. 7.9(b),
created for the orbit with the 7" = 1000 [time steps] period. The signature in this case is
not statistically clear and creates an illusion of a false alarm in a place where the actual
change in the system occurred.

This raises a question of how many orbits one should observe. The answer is twofold.
In the case when no changes are detected, one should monitor all significant orbits, where
by “significant” we mean the periodic orbits which significantly contribute to the orbital
decomposition of the system dynamics in its phase space?. However, in the case of detecting
alarms, like these shown in Fig. 7.7-7.9, we do not need to go any further to conclude that

a change in the operating conditions did occur.
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Figure 7.10: (a) Periodic orbits (7" = 50,100, and 200 [time steps]) extracted from the
signal acquired from the model with Hertzian force. (b) Reconstructed phase space portrait,
projected on R2.

Model with Hertzian force

For this model, the proposed signature will be illustrated for three periodic orbits, with
periods 7" = 50, 100, and 200 [time steps]. These orbits are displayed in Fig. 7.10(a) next to
the phase space portrait reconstructed for the system and shown in Fig. 7.10(b). The \;-
signature computed for type-I and type-II states for the periodic orbit corresponding to the
frequency of the harmonic excitation, i.e., T' = 50 [time steps], is displayed in Fig. 7.11(a)
and Fig. 7.11(b), respectively. There are two alert zones visible in both figures. Depending
on the quality of the approximation of the periodic orbit, one can attempt to use the
narrower, 20, alert zone. This choice can only be made, however, if no false alarms were
generated for that zone during the test run. By a test run we understand the ensembles
generated for the system in the steady state after the alert zone was established. In Fig. 7.11,
the test run corresponds to the points up to the 20-th sample. Recall that the alert zones
are always created using ensembles preceding those shown in all the figures. For example,
the ensemble used to create the alert zones in Fig. 7.11 consisted of 20 samples, each 60, 000
points long, which were acquired before the first shown eigenvalue point was computed.
Since the variation in the value of A; is relatively small for this orbit and no false alarms
were indicated, we can try using the 20 alert zone. Fig. 7.11(b) indicates good detection of
the type-II state for the 20 alert zone, and a statistically little less significant result for the

30 zone.
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Fig. 7.11(a) shows the Aj-signature for two ensembles corresponding to the type-I state,
but generated with a different value of the parameter £. The samples from the interval
(20, 30] were generated for §y = 1.1 and the following samples for {y = 1.18, which can be
interpreted as a “more significant” defect. The interpretation of the result in Fig. 7.11(a) is
almost trivial: the larger the cause, the more significant the effect. In the language of this
statistic, it means that the increase in value of &y results in decrease of instability of the
employed periodic orbit. It is not hard to imagine cases where this relationship is not true.
Whether stability of the analyzed orbit increases or decreases depends on the location of
the parameter value in the system bifurcation tree.

A different scenario can be observed in Fig. 7.12(a) created for the period 7" = 100
[time steps] cycle. Here, the periodic orbit, after an increase in stability for & = 1.1,
undergoes an apparent increase in instability as the observed parameter is changed to § =
1.18. Since the variation in the value of \; is relatively large, only the 3o (or possibly larger)
alert zone can be used for this orbit. Another interesting conclusion from this figure is that
the smaller change in the parameter is detected less ambiguously than the bigger one. This
is not a surprising result for nonlinear systems. Fig. 7.12(b) is a good example of how a
longer orbit can reveal more structure in data and as a result provide a better condition
monitoring signature than a shorter orbit. The type-II system is detected very clearly in
this case, especially when compared with the Fig. 7.11(b).

Finally, Fig. 7.13(a)-(b) constitutes another case where making a condition monitoring
decision is somewhat difficult, this time for the cycle of the period T' = 200 [time steps].
Ambiguous results were obtained for both types of modeled parameter changes. For the
value of &y = 1.18, the A;-signature failed to detect any change in the system, as shown in

Fig. 7.13(a) for the values of the statistic following the 30-th sample.

Model with backlash

As for the Hertzian model in the previous section, we investigate the Aj-signature using
three periodic orbits, with periods T = 50, 200, and 400 [time steps|, which were extracted
from the time series obtained from the model (6.3). Recall that the periodic orbit T" = 200
corresponds to the gear meshing frequency in this model. All three orbits are shown in
Fig. 7.14(a) next to the phase space portrait of the system that was reconstructed using the

method of time delays and is shown in Fig. 7.14(b). The A;-signature computed for type-I
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Figure 7.14: (a) Periodic orbits (7" = 50, 200, and 400 [time steps]) extracted from the signal
acquired from the model with backlash. (b) Reconstructed phase space portrait, projected
on R?.

and type-II states using the T' = 50 periodic orbit is shown in Fig. 7.15. It can be concluded
from Fig. 7.15(a) that the distributed type of modeled defect, type-I, was not detected in
this case. It was also undetected using the cycle corresponding to the meshing frequency, as
shown in Fig. 7.16(a). Since essentially the same result was obtained for the other analyzed
periodic orbits, we will not present them here. This is the first case in which this signature
completely failed to give any warning about the type-I system change. As it has turned out,
this case seems to be a difficult one since none of the techniques used so far have succeeded.
Not only linear methods failed here but also both of the deterministic signatures employing
the predictability of the system and stability of its periodic orbits failed too. There remains
one more viable alternative for detection of this defect: the nonlinear statistical signature,
which will be explored and applied to this case in the next section.

Significantly better results were obtained when the Aj-signature was applied to detect
the local, type-II, system change. As can be seen in Fig. 7.15(b), the detection is quite
ambiguous using the period T' = 50 cycle, but it becomes clear when the period 7' = 200
orbit is employed (Fig. 7.16(b)).

Let us make a few final comments on the A\j-signature before we end this section. The
eigenvalues computed according to the algorithm described here correspond to Lyapunov
characteristic exponents evaluated along periodic orbits. An estimate of the global Lya-
punov exponents for the system can be obtained from a weighted average of the eigenvalues

corresponding to all the significant (for this representation) periodic orbits [30]. This process
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suggests a way to find a number of periodic orbits in the cyclic expansion which faithfully
represents the system dynamics. The values of the Lyapunov exponents need not be known.
It is enough to observe the last considered orbit which significantly contributed to the es-
timated value of the exponent. Such procedure should be undertaken when one builds a
“cyclic” model of a dynamical system. In a qualitative model like this, one uses extracted
periodic orbits, their stability and location in the state space in place of equations of motion.

As we already mentioned above, there is no need to observe all periodic orbits in order
to use their stability as a condition monitoring tool to detect defects. Provided the regions
of the state space where the change in dynamics can be observed are visited, only a small
number of orbits is necessary (as in Fig. 7.16(b)). On the other hand, if no statistically
significant change has been detected by a signature employing a number of orbits smaller
than that for which the estimate of the Lyapunov exponent converges, we cannot conclude
that a change did not occur (as it was shown in Fig. 7.15(a)-7.16(a)). In many practical
applications, however, engineers know certain characteristics of the failure processes they
are monitoring; for example, the frequency mode in which a catastrophic defect usually
occurs. Such information can limit the set of monitored orbits to only a few.

As it has been clear throughout this section, the main limitation of the A;-signature
is the accuracy with which periodic orbits are extracted from the experimental trajectory.
Among the most important reasons for this is a small “visibility” of an orbit. Strongly
unstable periodic orbits occupy areas of the state space which are infrequently visited by
other orbits, and this makes them hard to observe. A few more conclusions can also be
made. Shorter orbits are easier to extract than the long ones. The largest eigenvalue, i.e.,
the one representing the repelling direction of an orbit, is estimated most accurately. That
is why in all figures in this section we used only the largest eigenvalue as the condition
monitoring statistic (hence we also call this method the Aj-signature). The quality of the
approximation of a cycle can be assessed by observing the variation in its Aq-signature.
Even for the cases where this method is not very effective as a condition monitoring tool,
it provides very important information about the system. In our work, we found that the
small variations in the distribution of the orbital eigenvalues can be used as a good indicator
of a sufficient length of the analyzed sample. To decide the sample size, one of the measures
we employed for all analyzed signals was the \j-signature (together with stationarity of the

probability density function and of the FFT).
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7.3 Orbital density function and state monitoring

It was observed during early stages of work in the field of the analysis of experimental
chaotic signals that a statistic referring to the probability of finding a trajectory in a certain
area of the phase space may provide a very useful assessment of system dynamics. It is
clear that the probability density estimated in a multi-dimensional phase space is richer
in information than its one-dimensional counterpart. As pointed out by Kapitaniak [23],
density functions are inherently multi-modal for complex nonlinear and chaotic systems.
Observing a function in a multi-dimensional space can be troublesome, however. For many
purposes, like exploration and presentation of data, it is useful to reduce the dimensionality
of the analyzed signal by projecting it on a one- or two-dimensional subspace. The general
idea behind the projection pursuit is to define a criterion for such a projection which can
be then optimized in order to find the projection of most interest to the observer. A most
commonly used example of the projection pursuit is the principal component analysis, in
which the optimal projection is chosen as a subspace (usually spanned by the system eigen-
vectors) that maximizes the variance of the projected data. Another possible solution to
the projection pursuit problem is a marginal distribution.

In their recent papers, Wright and Schult [57, 56] suggested that arbitrary one-dimen-
sional slices of the probability density function and of its Fourier transform (characteristic
function) can be successfully used for classification and monitoring of nonlinear chaotic
signals. In this work, we propose a new approach in which the multivariate probability
density function is projected on a periodic orbit extracted from the system dynamics. The
projection is performed by estimating the values of the pdf for all the points that belong
to the periodic orbit in the state space. This approach is especially informative if applied
to periodic orbits which are significant to the observer. For example, a slice of the density
function, created along the cycle corresponding to the gear meshing frequency, provides
information not only about this particular spectral component but also about its modulation
sidebands. That is why, since certain periodic orbits carry very important information for
a condition monitoring engineer, they constitute a preferred projection that can be easily
interpreted.

All of the comments we made about periodic orbits and their extraction from an ex-

perimental trajectory in the previous section are, of course, valid here as well. Since this
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measure is statistical, we expect it to be a little less sensitive to the quality of the estimation
of periodic orbits. This should result in better effectiveness and robustness of this method

compared to the Aj-signature.

Rossler model

The probability density function used throughout this section to evaluate the condition
monitoring signature was computed in the system phase space employing the kernel es-
timators described in Section 3.5.1. We use the same periodic orbits here as we did for
the Ai-signature. For the sake of brevity, we will illustrate our results on the examples of
T = 200 and T = 600 [time steps] cycles shown in Fig. 3.9(a) and Fig. 7.5, respectively.
The probability density function (pdf) was estimated for signals obtained from the Rossler
model. In all the figures in this section, ensembles of 20 samples (30,000 points long each)
were used to compute the 30 alert zones at every point along the considered cycle by fit-
ting a normal distribution to each ensemble and finding its median and standard deviation
o. Similarly, as for the previously defined condition monitoring methods, the alert zone is
centered at the median value and its width is taken as 30 of the pdf at every point along
the orbit. Since the value of the pdf usually varies along the orbit, the lines bordering the
alert zones are no longer straight, as they were for the Aj-signature. The width of the zone
reflects the lack of stationarity of the estimated pdf.

The result of the projection of the pdf estimated in R® on the period 7' = 200 and
T = 600 orbits for the Rossler system, undergoing the type-I change in the values of the
parameter a (as specified in Section 6.4), is shown in Fig. 7.17. Two solid lines shown
in the figure correspond to the 3o alert zones created for the system with the parameter
corresponding to its reference (“good”) state. There are two important points that need to
be made here. First is that the proposed projection results in clear crossings of the alert
zone and, as a consequence, a clear detection of a change in the system. Secondly, it can
be noticed that for certain regions along the orbit, the probability density function curve
stays within the alert zone. It means that if an arbitrarily chosen one-dimensional slice of
the multivariate pdf happened to go through these regions, this change of the operating
condition would not be detected. This is a very important observation because it is a wide-
spread belief that an arbitrary slice, or a one-dimensional projection, of a density function

defined in the phase space should work. As it will be shown for other models, in many
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Figure 7.17: Projection of the probability density function on the period 7' = 200 [timesteps]
orbit, (a), and the period T' = 600 [time steps] orbit, (b), obtained from the Rossler system.
The 30 alert zone, shown between the solid lines, was created from the signal obtained for
the parameter value a = 0.15. The point lines correspond to the case where the parameter
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cases the regions of the poor or zero detectability are more common than those for which
a reliable fault detection can be made. In this light, it seems that taking slices of the pdf
along the system cycles is a safer and more sensitive monitoring method.

As can be noticed from Fig. 7.18(a), sensitivity of this method is unfortunately not
good for this particular case of the local type of defect, at least as monitored along this
particular orbit. It seems to be slightly better, even though still not acceptable, when the
“strength” of the local defect increases. Fig. 7.18(b) was created for the type-II defect of
the same duration, of 10 time steps, as in Fig. 7.18(a) but for the parameter value a = 0.30.
As we recall from Fig. 7.8, the Aj-statistic did not do well in this particular case either. In
all of the results presented so far, there was only one line representing a typical behavior
throughout the entire ensemble. The reason why there is a variety of lines in Fig. 7.18 is
that some of the samples in the ensemble intersected the alert zone, indicating a change in
the system, and some did not. We set a rule that it is only in the cases where all of the
samples intersect the alert zone in the same way that the result is presented as one line.

The reasons why this particular statistic failed in this case are similar to those already
mentioned in Section 7.2. Except for the problems with accurate estimation of periodic
orbits and with the choice of the informative periodic orbit, there is also the problem of
the estimation of the pdf. There is an interesting way in which the pdf estimation process
can be optimized for the purpose of this condition monitoring technique. In Section 3.5.1,
we devoted some time to the importance of the appropriate choice of the kernel smoothing
parameters. Another possibility for their selection is to choose those values which minimize
the width of the alert zone for a particular orbit. This local approach would allow different
values of the smoothing parameters across the attracting set and would have an advantage
of being streamlined for this particular application.

It is interesting to find out how much of the difficulties with the detection of the type-IT
state is caused by the process of reconstruction of the state space, similar to what we did
in Fig. 7.6 for the Aj-signature. Fig. 7.19(a) confirms the result obtained in Fig. 7.17 for
the type-I change. It also confirms our earlier conclusions that a change in the signature
observed in the reconstructed state space corresponds to the change in the original space
and is not a result of the trajectory projection or the embedding process. From Fig. 7.19(b)
and Fig. 7.20, we can conclude that when this signature is used in the original phase space,

the system change is also not clear even though it is much better than that observed for
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Figure 7.18: Projection of the probability density function on the period T = 200 [timesteps]
orbit, extracted from the Rossler system, for the type-II model defect of the same duration
but different “strength”: (a) a = 0.16, (b) a = 0.3. The 30 alert zone, shown between the
solid lines, was created from the signal obtained for the parameter value a = 0.15.
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Figure 7.19: Projection of the probability density function on the period T = 200 [timesteps]
orbit extracted from the z,y,z coordinates of the Rossler system. The 30 alert zone,
shown between the solid lines, was created from the signal obtained for the parameter value
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Figure 7.20: Projection of the probability density function on the period 7' = 200 [timesteps]
orbit extracted from the xz, y, z coordinates of the Rossler system. The point line corresponds
to the case where the parameter value was changed according to the type-II defect model,
(a = 0.30).

the reconstructed trajectory. We can conclude from this figure that the difficulties we
encountered are not only caused by the pdf estimation but also by the approximation of
the employed periodic orbit.

One can wonder how the proposed method would compare with its one-dimensional
counterpart. In order to find this out, we extracted (using the same method as before) the
T = 200,400, and 600 cycles directly from the one-dimensional time series, as opposed to
extracting it in the phase space. For the sake of brevity, we illustrate the results for only
one cycle, with the period 7' = 600 [time steps|. The time trace for this one-dimensional
approximation to the periodic orbit is shown in Fig. 7.21(a). We estimated one-dimensional
pdf for the time series along this orbit. The solid lines shown in Fig. 7.21(b) correspond
to the 30 alert zone obtained for the system with the parameter ¢ = 0.15. The point
line, which corresponds to the new, type-I, state, does not cross the alert zone, and as a
result fails to identify the change in the system operating conditions. The same conclusions
were made for the other periodic orbits. These observations confirm the superiority of the

multi-dimensional approach in this method of system condition monitoring.
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Model with Hertzian force

We will now investigate the orbital-pdf-signature for data from the Hertzian model for three
cycles, T = 50,100, and 200 [time steps], as we did in Section 7.2. The result for the case
when the pdf is projected on the T = 50 periodic orbit is shown in Fig. 7.22. Both global
and local modeled defects are detected very well by all samples in the analyzed ensembles.
The sample results, representative of their respective ensembles, are shown in the form of
single dashed lines for both cases. The first interesting conclusion that can be drawn from
Fig. 7.22 is a local (in the state space) character of both types of changes. This is a very
good example of the case (mentioned in Section 7.2), where it would be very difficult to find
a simple one-dimensional cut through the state space which would intersect this particular
region where the change in the pdf is observable. Another interesting observation can be
made when the sensitivity of this signature is compared with the sensitivity of the A;-
signature: from the comparison of Fig. 7.22 and Fig. 7.11 it is clear that for this case, both
types of defects are detected better by the orbital-pdf-signature.

The equivalent results for the period T" = 100 cycle are presented in Fig. 7.23. Here
again we notice that both types of changes were detected clearly. As it is also evident from
Fig. 7.12, this periodic orbit seems to be a better choice for monitoring of these particular
changes in the system parameters than the orbit with period T = 50.

Obviously, there are orbits which only partially explore the regions of the system phase
space where the change in the behavior can be detected. An example of such a case can
be seen in Fig. 7.24 created for the orbit T = 200. For the type-I change, presented in
Fig. 7.24(a), there are only two short segments of the cycle (near the 155-th and 180-th
samples) where the alert zone is crossed by all of the signatures in the observed ensemble.
Even though these events appeared consistently throughout the ensemble and therefore
imply a change in the system state, they are not as impressive as those obtained for the
shorter (7" = 50 and T = 100) orbits. For the type-II state, only a small, and therefore
statistically insignificant, number of samples shown in Fig. 7.24(b) intersect the alert zone.
From these samples we cannot conclude that the system changed, and as a result this
particular signature fails to detect the inflicted type-II change.

In order to compare the sensitivity of this method of condition monitoring to just moni-

toring the one-dimensional pdf, as before, we extracted the one-dimensional periodic orbits
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Figure 7.22: Projection of the probability density function on the period T" = 50 orbit for
the type-1, (a), and type-II signals obtained from the model with Hertzian force.
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and computed their signatures. The resulting signatures did not show any intersections of
the alert zones and therefore failed to detect all of the changes detected above by the pro-
posed orbital projection method. We demonstrate that on the example of the 7" = 100 orbit,
shown in Fig. 7.25(a). The signature obtained for this cycle is presented in Fig. 7.25(b).
The lower bound for the alert zone is not visible in the figure because it falls below the zero

probability level.

Model with backlash

Finally, we investigate the most difficult monitoring case introduced with the example of
the model with backlash defined by (6.3). Recall that the type-I change for this model was
not detected by any of the linear or nonlinear methods used thus far. We will now see
how the orbital-pdf-signature performs in this case. Fig. 7.26 shows the result of projecting
the probability density function, estimated in the phase space of this model, on the period
T = 50 periodic orbit. As we can see, both types of inflicted parameter changes are clearly
detected in this case. The same is true for the period T' = 200 orbit. As can be seen in
Fig. 7.27(a)-(b), multiple intersections of the 30 alert zone clearly indicate the modeled
defects.

Once again, we compare the sensitivity of this approach to just monitoring the one-
dimensional pdf projected on one-dimensional periodic orbits. The resulting signatures did
not show any intersections of the alert zones and therefore failed to detect any of the changes
detected above by the proposed orbital projection method. We illustrate that in Fig. 7.28
on the example of the T' = 50 orbit. The signatures obtained for the type-I and type-II cases
are presented in Fig. 7.28(b)-(c).

In conclusion, the condition monitoring method proposed in this section allowed correct
detection of the global, type-I, changes inflicted on all analyzed models. In some of the cases,
its effectiveness was better than that of the purely “deterministic” A;-signature and the
degree-of-predictability-signature. The localized types of defects, modeled in our analysis
as the type-II change, were detected in most of the cases and the quality of result strongly
depended on the choice of a periodic orbit used for the projection of the pdf. In the cases
where the modeled defects were not detected by this method, they were also not detected by
the \{-signature. This observation seems to indicate that the inadequacy in estimation of

the system periodic orbits is mainly responsible for failure in those cases. It is also possible
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Figure 7.25: One-dimensional periodic orbit (period 7" = 100 [time steps] extracted from
a time series obtained by numerical integration of the model with Hertzian force, (a).
Probability density function computed along this orbit is shown in (b). The 3¢ alert zone,
limited by the solid lines, was created from the “good” signal, and the point line for the
type-1 signal.
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that the changes in the geometry of the system behavior were so small, that the methods
employing geometrical features of dynamics were unable to observe them. Only the method
which quantifies predictability of the system was able to pass the test in all analyzed cases.

The other significant limitation of the orbital-pdf-signature is the estimation of the
probability density function in a multi-dimensional phase space. From our observations we
concluded that the obtained results depended on the choice of the smoothing parameters
used to fit a selected kernel. A possible way to alleviate this problem is to choose the
smoothing parameters in such a way that they minimize the size of the alert zones for a set
of significant periodic orbits.

The biggest strength of this method is that since its nature is statistical, its dependence
on the quality of the extraction of periodic orbits seems to be less important than for its
purely deterministic counterpart (the Aj-signature). This is one of the reasons why this
statistic was significantly better at avoiding false alarms than the A;-signature. Another
useful feature of this approach is that it allows localization of specific regions of the state
space (and to a much higher extent than the A;-signature) where the defect influences
the behavior of the trajectory in the system phase space. Finally, since this method is a
combination of statistical and dynamical approaches, it should be more robust than the

other two proposed methods of system condition monitoring.
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Chapter 8

Conclusions

“Veni, vidi, vici?”

In 1963, Lorenz observed aperiodic behavior in a three-dimensional dynamical system
which represented a crude approximation to the infinite-dimensional atmospheric model
described with the Navier-Stokes equations. Even though the simplifications in the sys-
tem proposed by Lorenz disqualified it from the point of view of quantitative analysis of
fluid flow, the main contribution of that work was that it suggested a possibility that the
“random”-looking behavior observed in an infinite-dimensional system might be caused by
finite-dimensional dynamics.

One of the features typical of the Fourier spectrum obtained from a gearbox signal are
modulation sidebands, which appear in the vicinity of the gear meshing frequency and its
harmonics. The “random”-looking sidebands are commonly attributed to various inherent
material and kinematic nonlinearities and imperfections in gearboxes. In our work, we
postulate that this apparently high-dimensional behavior can be modeled using a family
of deterministic and probabilistic analytical tools, which are employed in a relatively low-
dimensional state space reconstructed for the gearbox system from its one-dimensional
vibration signal.

In this contribution, our approach to signal analysis is different from what one would
typically find in literature on dynamical time series analysis. Our goal is similar to that of
conventional system identification and is focused on producing a working model of the state
of the system rather than on making claims about the “inherent features of the underlying
system.” This difference can be well illustrated, for example, in the problem of identification
of chaotic dynamics. The conclusion that most of the physicists would make from Chapter 3

about the analyzed gearbox signal is that it comes from a system which is “inherently
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chaotic”. We concluded, more humbly, that it can be modeled as such. In our opinion,
the approach we undertook here not only suffers from fewer “philosophical” difficulties, but
since it is closer to conventional system identification methodology, it should also make its
implementation more intuitive for the engineering audience (to which this work is primarily
addressed).

After the experimental vibration signal was acquired from the gearbox test rig, we used
a family of analytical tools to identify a dynamical model of the system dynamics. These
tools consisted of: mutual information function, false nearest neighbors statistic, recurrence
plots, and Lyapunov characteristic exponents. The analysis of the experimental time series
showed that the gearbox dynamics can be modeled as a nonlinear system embedded in R5.
The first choice of the embedding parameters, i.e., embedding dimension and time-delay,
was later verified (and in the case of time-delay adjusted from the initial value of 7 = 11
to 7 = 9) using the criterion of the predictability of the system response. The identified
embedding parameters of the model state space suggest that the complex behavior and the
modulation sidebands that vary for different harmonics of the meshing frequency may be
interpreted as a result of a relatively simple low dimensional system. The analysis also
showed that the system behavior is sensitive to initial conditions, which was confirmed by
the existence of the positive Lyapunov exponents.

Because of a strong tendency within the community of dynamical time series analysis to
use the surrogate data tests, we performed the Kolmogorov-Smirnov test of the prediction
errors, obtained for the acquired time series and the artificially produced surrogate data.
This test confirmed that the hypothesis that the observed time series comes from a linear
time-invariant model is unlikely.

Further, to confirm the applicability of a dynamical systems approach to the analysis
of gearbox vibrations, we attempted to predict the acquired time series using a nonlinear
dynamical predictor and a probabilistic predictor in the reconstructed state space. The
results presented in Section 4.2 confirmed that the short-term prediction of the gearbox
signal is possible. Since modeling of experimental data always involves uncertainties, the
probabilistic prediction scheme resulted in better forecasts of gearbox signal than its purely
deterministic counterpart, as expected. We also compared these predictions with those
obtained from a linear predictor employing a neural network. Both nonlinear predictors

produced superior results in this comparison. We do not conclude from this, however, that
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every nonlinear scheme would beat any linear scheme. It should also be pointed out that
there are ways in which all of the predictors we used can be improved. Besides, making
predictions is not the main goal of our analysis. It is a tool which we applied in Chapter 7
to perform system condition monitoring.

In many practical situations, engineers face the problem of signal separation. This
problem is the primary concern, for example, in the field known as acoustic noise control.
A large number of powerful linear filtering methods is available. They all work on the
assumption that the broadband component of the Fourier spectrum is related to “noise”
and therefore should be discarded. For many practical applications, this approach works
fine. However, if the broadband component caries information about the analyzed system
(as it does for chaotic systems), removing the “noise” also results in distorting the signal of
interest. We discussed three signal separation schemes which we argued can be successfully
used even when one (or more) of the composite signals can be modeled as chaotic. Their
common feature is that they all explore dynamics of the system in its reconstructed state
space and that is why they are superior to linear filters whenever the analyzed signals possess
broadband spectra. The main limitation of the discussed methods of signal separation is
that for high quality results they depend on the availability of a clean reference signal.
Fortunately, in many engineering applications, this requirement is easily met. From our
experience with the presented signal separation schemes, we concluded that the probabilistic
method applied in the system state space was most effective and provided the broadest range
of possible applications.

Since vibration data for damaged gears was unavailable, we presented three models
whose response resembles qualitatively that obtained from our experiment. We required
that all the models possess certain qualitative features typical of the analyzed gearbox
vibration signal. One of these features was the Fourier spectrum with dominant discrete
peaks and modulation sidebands. Another was that the model system had to be nonlinear,
low-dimensional, and possess at least one positive Lyapunov exponent. Finally, the mutual
information function had to exhibit features which were recurrent with the model equivalent
of the meshing frequency. We also proposed two models for local and distributed gear tooth
defects.

Data from these models introduced in Chapter 6 were later used to investigate the

effectiveness of the condition monitoring methods proposed in Chapter 7. All of the methods
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employ various features which characterize nonlinear dynamical systems, i.e., predictability,
stability of periodic orbits, and probability density function estimated in the state space.
The first of the proposed methods uses short term predictions to quantify changes in the
system operating conditions. If the acquired time series faithfully represents the dynamics
of the system, if a good predictor was constructed, and if the data acquisition process or the
external excitation has not changed, then consistently larger prediction errors obtained for
identical measurements acquired at later time suggest that the operating conditions have
changed. The main limitation of this method is that it depends on consistency of produced
forecasts. Even if the obtained degree of predictability is relatively high, inconsistencies
in predictions can result in a wide alert zone and, as a consequence, in poor sensitivity of
this signature. In cases like this it is recommended that a different approach be used, for
example, one of the methods utilizing periodic orbits.

The second proposed method, referred to as the Aj-signature, monitors changes in the
stability of cycles which were extracted from the trajectory in the reconstructed state space.
Performance of this method strongly depends on the accuracy of the estimation of the con-
sidered periodic orbits. From the comparison of the A;-signature with its one-dimensional
implementation, the superior sensitivity of the former was concluded. In the last proposed
method of condition monitoring, called orbital-pdf-signature, slices of the multivariate prob-
ability density function are taken along a set of extracted cycles. Even though its perfor-
mance also depends on the accuracy of the estimation of the used cycles, this dependency
seems to be less important than it was for the Aj-signature. Another useful feature of this
approach is that it allows localization of specific regions of the state space where the defect
results in significant changes in the system behavior. This method also proved to be more
sensitive in detecting both of the modeled types of defects than its one-dimensional im-
plementation and than the conventional one-dimensional pdf-signature. It is important to
emphasize that neither of the signatures employing periodic orbits require the system dy-
namics to be fully represented by its cycle ezpansion [3]. From our experience, we concluded
that a small number of cycles usually suffices to make correct decisions about a possible
change in the system operating conditions.

Even though most of the results presented throughout this work seem to be promising,
they need to be verified for a large number of various types of gearboxes. Since we do not

have the data obtained throughout the entire life of the gearbox until its failure, the above
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results should also be verified by generating such data. Apart from gearboxes, there are
other potential applications for this methodology, like the analysis of bearing vibrations.
Since this approach is very general, it can be also used for any type of observed signal, for
example an acoustic signal. One of the strengths of the state space reconstruction is that
it provides information about the degrees of freedom other than the one measured. It does
not mean, however, that it is restricted to analysis of univariate time series. One can think
of a possible situation when both vibration and acoustic signals are acquired. Provided the
multivariate mutual information function is used to reconstruct the state space, all of the
analysis presented in this work can be directly applied to such a case as well.

The interesting new field of cycle expansions seems to provide many new opportunities
for analysis of chaotic systems. Progress in this area should result in faster and more reliable
methods of estimation of system invariants. An interesting and important application might
be to use the cycle expansions for the purpose of probability density function estimation.
To make this possible, the development of more reliable methods of extraction of periodic
orbits from experimental time series is also necessary.

One of the conclusions that can be drawn from this work is that in many cases a hybrid
of dynamical and probabilistic methods produced best results. It seems that future research
in this area, including the application of Bayesian probabilistic methodology, should result
in further improvements of the existing tools and development of new tools of analysis,
forecasting, and system condition monitoring.

Last, but not least, a nonlinear state space approach clearly cannot replace the existing,
often very powerful, methods of analysis of gearbox signals, but it offers some new possibil-
ities to engineers and can prove to be of benefit in some difficult cases where nonlinear or
chaotic system behavior is present, as inferred in the presented analysis of gearbox vibration

signatures.
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