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Abstract

Part I

This study considers the three-dimensional run-up of long waves on a horizontally
uniform beach of vertically constant or variable slope which is connected to an open
ocean of uniform depth. An inviscid linear long-wave theory is first applied to obtain
the fundamental solution for a uniform train of sinusoidal waves obliquely incident
upon a uniform beach of variable downward slope without wave breaking. The linearly
superposable solutions provide a basis for subsequent comparative studies when the
nonlinear and dispersive effects are taken into account, both separately and jointly,
thus providing a comprehensive prospect of the extents of influences due to these
physical effects. These comparative results seem to be new.

By linear theory for waves at nearly grazing incidence, run-up is significant only for
the waves in a set of eigenmodes being trapped within the beach at resonance with the
exterior ocean waves. Fourier synthesis is employed to analyze a solitary wave and a
train of cnoidal waves obliquely incident upon a sloping beach, with the nonlinear and
dispersive effects neglected at this stage. Comparison is made between the present
theory and the ray theory to ascertain a criterion of validity for the classical ray
theory. The wave-induced longshore current is evaluated by finding the Stokes drift
of the fluid particles carried by the momentum of the waves obliquely incident upon
a sloping beach. Currents of significant velocities are produced by waves at incidence
angles about 45° and by grazing waves trapped on the beach. Also explored are the
effects of the variable downward slope and curvature of a uniform beach on three-
dimensional run-up and reflection of long waves.

When the nonlinear effects are taken into account, the exact governing equations
for determining a moving inviscid waterline are introduced here based on the local
Lagrangian coordinates. A special numerical scheme has been developed for efficient
evaluation of these governing equations. The scheme is shown to have a very high
accuracy by comparison with some exact solutions of the shallow water equations.
The maximum run-up of a solitary wave predicted by the shallow water equations
depends on the initial location of the solitary wave and is not unique in value because
the wave becomes increasingly more steepened given longer time to travel in the
absence of the dispersive effects; it is in general larger than that predicted by the
linear long-wave theory. The farther the initial solitary wave of the KAV form is
imposed from the beach, the larger the maximum run-up it will reach.

The dispersive effects are also very important in two-dimensional run-ups in its
role of keeping the nonlinear effects balanced at equilibrium, so that the run-ups
predicted by the generalized Boussinesq model (Wu 1979) always yield unigue values
for run-up of a given initial solitary wave, regardless of its initial position. The result
for the gB model is slightly larger than the wave run-up predicted by linear long-wave
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theory. The dispersive effects tend to reduce the wave run-up either for linear system
or for nonlinear system.

A three-dimensional process of wave run-up upon a vertical wall has also been
studied.

Part I1

This part is a study of nonlinear waves in a fluid-filled elastic tube, whose wall
material satisfies the stress-strain law given by the kinetic theory of rubber. The
results of this study have extended the scope of this subject, which has been lim-
ited to dealing with unidirectional solitary waves only (Olsen & Shapiro 1967), by
establishing an ezact theory for bidirectional solitons of arbitrary shape. This class
of solitons has several remarkable characteristics. These solitons may have arbitrary
shape and arbitrary polarity (upward or downward), and all propagate with the same
phase velocity. The last feature of wave velocity renders the interactions impossible
between unidirectional waves. However, the present new theory shows that bidirec-
tional waves can have head-on collision through which our ezact solution leaves each
wave a specific phase shift as a permanent mark of the waves having made the non-
linear encounter. The system is at least tri-Hamiltonian and integrable. An iteration
scheme has been developed to integrate the system. The system is distinguished by
the fact that any local initial disturbance released from a state of rest will become
two solitons traveling to the opposite direction, and shocks do not form if initial value
is continuous.
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Run-up of ocean waves on beaches



Chapter 1 Linear nondispersive theory

1.1 Introduction

Gravity waves and circulatory currents are of fundamental importance in coastal
dynamics. Surface gravity waves, either wind generated locally or arriving as long-
wave swells from distant storm and interacting with local beach topographies, can
give rise to a surf zone and drive the waves to run up on the beach. At oblique
incidence, the excess momentum of the incoming waves can generate strong longshore
currents which can induce local sediment suspension and transport to form sand
bars. This natural phenomenon is quite complex and intricate, involving a number
of key physical parameters dominating its appearance in various forms in different
parametric domains. These problems have been investigated for simple cases, mostly
in plane flows, with differing hypothesis. The state of the art, reflecting the underlying
difficulties involved, has led Galvin in his review (1967) to conclude, rightfully, that,
“A proven prediction of longshore current velocity is not available.” This situation
has not been much advanced in the intervening years.

Some plane problems of run-up and reflection of waves incident normally on a
sloping beach have been investigated by Carrier & Greenspan (1958), Carrier (1966),
and Tuck & Hwang (1972) based on Airy’s model. Numerical calculations have been
given by Pedersen and Gjevik (1983) using the nonlinear dispersive long-wave model
and Kim et al. (1983) based on the Euler model. For the case of three-dimensional
coastal dynamics, Carrier & Noiseux (1983) evaluated the oblique run-up and re-
flection of long waves on a plane beach connected to an open ocean based on linear
long-wave theory, assuming the nonlinear and dispersive effects negligible. With this
approach, one gains the advantage in providing a modal description of the resulting
motion and in deriving a spectral distribution of wave energy and its dependence on

the key parameters involved.
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The present study is a series of investigations of the coastal physics related to
the air-sea-land interactions. Here, linear nondispersive theory is adopted to evaluate
oblique run-up, refraction and reflection of long waves incident from an open ocean,
obliquely upon a uniform beach having an arbitrary variable downward slope, with the
sloping plane beach as a special case. The main objective is to have the first principles
of coastal physics well comprehended for this ideal case before the additional effects
of nonlinearity, dispersion, and dissipation (including wave breaking, bottom friction,
wind stresses, etc., as energy sources and sinks) are to be taken into account in
subsequent studies.

In this chapter, the fundamental solution is first sought in §1.2 for modelling three-
dimensional refraction, reflection and run-up of a train of sinusoidal waves obliquely
incident upon a uniform beach of variable slope. From this solution, the run-up of the
waterline and its phase lag behind that of the incident wave are deduced, in §1.2, to
yield specific functions of the two key parameters, namely the wave incidence angle
and the wave number scaled to the seaward length of the beach. For the case of
grazing incidence upon a plane beach discussed in §1.4, i.e., when the incident wave
propagates nearly parallel to the uniform beach, we obtain for the beach response a
set of eigenmodes of low-frequency coastal waves trapped on the beach. In §.1.5, the
solution for the oblique run-up and reflection of solitary wave is obtained by making
Fourier synthesis of the fundamental solution, and similarly in §1.6, for the oblique
run-up of a train of cnoidal waves. These numerical results afford a quantitative
comparison with the ray theory, as given in §1.7, where the criterion of their valid-
ity is sought. The longshore current induced by the balance of the mass-momentum
transport of obliquely incident waves is evaluated and predicted in §1.8. These results
are further discussed and concluded in §1.9. The effects of variable vertical curva-
ture (i.e., in the vertical plane) of a uniform beach are compared with some sloping
plane beaches concerning the run-up and reflection of obliquely incident, waves; the
result demonstrates existence of analogous beaches in the two categories that exhibit

equivalent effects in regard to wave run-up and reflection.
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1.2 Oblique run-up of sinusoidal waves upon a uni-

form sloping beach

We consider the specific case of three-dimensional run-up of long waves obliquely
incident upon a uniform beach of variable downward slope, which is connected to

an open ocean of uniform depth hq (figure 1.1), with the unperturbed water depth

distribution
h(x 0<z<], —co<y<oo
poo | M) (0ses y < o) (1)
ho (z > 1, ho = const.),
h(0) = 0, K(0)#0, and h(l) = h, (1.2)
where the depth z = —h(z) is a smooth, slowly varying function, but is otherwise

arbitrary. A train of waves is obliquely incoming from the ocean and incident on the
beach, interacting with the sloping beach, and is reflected back to the ocean. The
waves are assumed to be sufficiently small and long compared to hg, and the beach
slope h/(z) not exceedingly gradual so that the process can be assumed to go on
without wave breaking or having any other energy sinks, such as bottom friction, to
affect wave reflection. (For a review on the criteria separating the regimes with and
without wave breaking, see e.g., Mei 1983.) The problem is to determine accordingly
the wave motion in the flow field and the run-up on the beach.

For this class of problems, an appropriate theoretical model is the generalized

Boussinesq equations (Wu, 1979):

GAHV-[(h+Ou] = 0, (1.3)
u+u-Vu+V( = gV[V - (huyg)] — %QVQut , (1.4)

where ( is the wave elevation above the undisturbed water surface at z = 0, the time
¢ in subscript denotes differentiation, u = (u, v, 0) is the depth-averaged horizontal
flow velocity, V = (0,,0,,0) is the horizontal vector operator. Here, the length is

scaled by ho and the time by (hg/g)'/?, g being the gravitational acceleration. Its



validity is based on the assumptions that
a=a/hy < 1, e = (ho/A)? = O(a) , (1.5)

for waves of typical amplitude a, length A on water of depth h(z) (see, e.g., Peregrine
1967, Whitham 1974; Miles 1977, 1979; Wu 1981, 1994; Teng & Wu 1992, 1994). It
is on these scales that the effects of nonlinearity and dispersion are accounted for in
equation (1.3) and (1.4), jointly with the net linear effects for this family of wave
motion. These effects are thought to be of importance especially in a neighborhood
of the moving waterline where these effects are of comparable significance.

In this chapter, however, the two parameters @ and e are assumed to be so small
that the nonlinear and dispersive effects may be neglected and the motion may be

described by the linear, nondispersive long-wave model:

G+V-(hu) = 0, (1.6)
w+VEe = 0, (1.7)

which are the linearized version of equation (1.3) and (1.4). The effects of nonlinearity,
dispersion and dissipation are left to be examined in a subsequent work.

Upon eliminating u, equation (1.6) and (1.7) can be combined to give

(h(x)gw)z + h(x)ny - Ctt = O, (O <xr < l) R (18)
Coz + ny ~ G = 0 (55' > l) (19)

To assure continuity and smoothness of solutions, we require that
[(]=0 and [{]=0 (x =1), (1.10)

where [f] denotes the jump of f across z = [. In addition, we further require ¢ to be



bounded at the waterline,
1€(0,,2)] < o0 (1.11)
In the open ocean, we have the incident and reflected waves as

C — A(k)ei(k2y+k1(x-l)—kzt) _‘_B(k.)ei(kzy—kl($~l)—kt)’ (112)

ky = —k cos 3, ko =ksinf3 | (1.13)

where (3 is the wave incidence angle between the incoming wave vector k = (ki1, ko)
and the —z-axis (see figure 1.1), A is the given amplitude of the incident wave, B is
an unknown (complex) amplitude of the reflected wave, and the real component of
the complex expression is meant for physical interpretation. Here, A can, of course,
be normalized to unity, but will be retained for clarity.

For the region within the sloping beach (0 < z < I), the wave resulting from the

incident wave under interaction with the beach wiil assume the form
((z,y,t) = n(x)es (s=ysinf—1t, 0<z<lI), (1.14)
where 7(z), by equation (1.8), satisfies the following equation:

(h(z)12)s + E*(1 — h(z)sin® B)n =0 . (1.15)

1.2.1 Sloping plane beach

A special case of basic interest is the sloping plane beach,

h(z) = ax O<z<l, al=hy=1). (1.16)
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We recall that ho = 1 is taken for the length scale so that I = 1/a. For this case

equation (1.15) becomes:
Tlew + 1 + K2 (@™t —zsin? B)p =0  (0<z <) (1.17)

This is the model equation adopted by Eckart (1951) and Carrier & Noiseux (1983).

Using the transformation (here the variable z is not to be confused with the vertical

coordinate)
n(z) = e 2 f(2), z=2kzsinf3, (1.18)
we obtain for f(z) the Kummer equation:
2f"+(b—2)f' —af =0, (1.19)
where f'(z) = df /dz,
1
b=1, azi(l—fiCSCB), k=Kl . (1.20)

We note that in terms of x = kl and z, = /[, the beach slope « (or the beach width
[) is scaled out, leaving k and 3 as the only two parameters. Equation (1.19) has the

general solution
f(z) = CiM(a;b; 2) + CoU (a5 ; 2) (1.21)

where C; and C; are coefficients, M(a;b; z) and U(a; b; z) are the confluent hyperge-

ometric functions (Abramowitz & Stegun 1964),

M(a;b;z) = Y =l+-z+ =4, (1.22)

Ula;b;2) =

i { M(a;b;z) M1 +a—b2-b;z)
I'(

l+a-bI@) - T(a)T(2 - b) }’“2@
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f[aﬂ—l ala+1)(a+2) - (a+n—1), (1.24)

and likewise for b,. Since U is logrithmically singular at z = 0, we must have Cy = 0.

Thus, from equation (1.14), (1.18) and (1.21) we have for 0 < z < [ the solution
((z,8) = C(k)e ™V M (a; 1; 2kyz) | (1.25)
which has the derivative
Co = C(k)kae ™" [N (a;1; 2) — (1 + kese B)M (a;2; 2)] (1.26)

where ko = ksin 8 and z = 2k,z, as before.

Now, application of the matching conditions (1.10) yields

B(k) = A(k)e*2, C(k) = A(k)R(x, B)e®, (1.27)

R(k,B) =2(Mg + NO)™Y2,  A(k, B) = arg(My + iNy), (1.28)
My(k, B) = e7*s8B M (a; 1; 2ksl) (kol = ksing) , (1.29)
No(k,8) = e7*"8 [(1 4 wcsc f)M (a; 2; 2kal) — M(a; 1; 2k50) tan 5. (1.30)

This result shows that the incident waves are totally reflected, with the coefficient
|B/A| = 1, as should be expected since the present solution has no wave energy
sinks, such as wave breaking, in the flow field. However, the reflected wave has a
phase lag 2A(k, §) due to the wave interaction with the beach bathymetry. In the
beach region, the resulting wave propagates along shore with a phase lag A(k, 3),
which is the algebraic mean of the incident and reflected wave phases, and has the
relative run-up R(k,3) on the beach. Here, the run-up R(k, ) on the beach is
taken, after Keller (1961), as the wave height at the waterline which is extrapolated
horizontally to intercept the sloping beach. In this manner, Keller found, for the two-
dimensional case of plane waves running up a uniform sloping beach, the somewhat

surprising result that the nonlinear theory yields the same wave amplification as the



linear theory.

To exemplify the coastal dynamics for this simple beach-ocean configuration, let
us take 3 = 60° for the wave incidence angle, and k = (—1/1,+/3/1), (x = 2) to obtain
a = —0.6547, My = —0.4622, Ny = 0.2889, and hence the run-up and the phase lag as

R = 3.670, and A =2583 rad . (1.31)

As shown in figure 1.2, the perspective wave profile exhibits a superposed ‘pattern
of the incident and reflected waves which induce a quite pronounced run-up on the

sloping beach, with an amplitude about 3.670 times that of the incident wave.

1.2.2 Uniform beach with variable downward slope

Returning to the general case of uniform beach of variable slope, (1.15) can be written

as:

1 1
n" + ;p(x)n’ + ;q(m)n =0, (1.32)

where the prime denotes differentiation with respect to z, and

p(z) = = N (z)/h(z), - (1.33)
q(z) = K [h—(lagj — sin® ﬁ:’ T2 (1.34)

We shall assume that p(z) and ¢(z) are analytic, regular in 0 < z < [, hence
p(x) = > palz/D)"  q@) = qulz/D)" . (1.35)
n=0 n=0

Then z = 0 is a regular singular point. By Frobenius’ theory, (1.32) has a solution of

the form

oC

n(z) = >_ bu(z/)™ (1.36)

n=0
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where v satisfies the indicial equation
Vit (po—1)v+g =0, (1.37)

which has two roots, v; and v, say, with 1) +1v5 =1 — Po, V1V2 = qo. For the run-up
problem at hand, we are interested in those beach slopes of h(z) that make v; = 0,
for otherwise, if v; < 0, the run-up of (1.36) is singular at z = 0, and if v, > 0, the

run-up is always zero, a case of no physical interest. The root of v; = () requires that
9 =0, (1.38)

which we shall assume to hold, as for beaches of constant slope discussed above.

Under this condition, the other root of (1.37) is
vo=1—1py . ©(1.39)

For beaches of the class (1.2), po = 1, so the indicial equation (1.37) has a double
root vy = 0,1, = 0, inferring that the other solution is logarithmically singular at
z = 0, as is the case of the confluent hypergeometric function U (a,b,z) given in
(1.23). This general property of vy = v, = 0 is seen to hold for beaches whose slope
at the waterline does not vanish, as assumed. Accordingly, it follows that the solution

for the case of regular run-up is of the form
n(z) = Ci(k)F(z; s, B) = C1(k) Z by (/D)™ | (1.40)
n=0

where by = 1 by normalization, so that F(0;«,3) = 1, and b,, are determined by the

recurrence formula,

n—1

n? b, = — Z(T‘pn_T +Gpr)by, (n=1,2,--.). (1.41)
r=0
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Here, we observe that py = 1 and g, = 0, as explained above. Now, application of the

matching conditions (1.10) determines the coefficients B(k) and C(k) as

B(k) = 218 A(k) | (1.42)
Ci(k) = Ru(k, Bl 1P Ak) (1.43)

where

Ri(k, B) = 20M2+ N2, Ay(s, ) = arg(My +iNy),  (144)
1M1(K'7 /8) = F(la K;MB) = Z bn ’ (145)
n=0

1 o
b, . 1.46
Kcos 3 ;::On ( )

Ni(k,B8) = — F.(l;k,B) = —

kcos 3

The run-up function Ry (k, 3) gives the relative run-up and the phase function A, (s, 5),
the phase lag of the waves in the beach region and the phase lag 2A; for the waves
reflected.

This series solution therefore provides the result to the general family of uniform
beach with arbitrary, variable downward slope. In particular, for the beach of constant
slope, the function F(z; &, ) in (1.40) agrees with the previous solution M (a; b; 2kyx)
exp(—kqr).

Figure 1.3a shows the variation of the run-up function, R(k, (), versus k = kl
for waves incident upon the parabolic beach h(z) = 22/l — (/1) and plane beach
h(z) = z/l for a set of different incidence angles 3. Figure 1.3b shows the variation
of run-up function, R(k, = 0), at incidence angle 8 = 0, for different parabolic
beaches, h(z) = mz/l + (1 — m)(z/1)?, m = 0.6, 0.8, 1.0, 1.5, 2.0. The beach
becomes a plane for m = 1.0. These numerical results show that for the incidence
angle up to about 8 = 60°, the run-up on a parabolic beach is increased, or decreased,
relative to the plane beach, as m is decreased (m < 1, more concave downward), or
increased (m > 1, more concave upward) from m = 1. Within this range of 3, the

run-up appears to be heavily weighted by the beach slope near the waterline such
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that, roughly, as a rule, the parabolic beach run-up can be estimated by that on

a plane beach tangential to the parabola at the waterline. For greater values of (3,

especially near the grazing angle of § = 90°, the run-up function R remains small

except near a set of ‘eigenvalues of k’, as exemplified by the case of 8 = 89° shown

here and as will be discussed in detail in §4. These eigenvalues are shown to depend

on the beach slope and curvature.

1.3 Normal wave incidence

For waves at normal incidence upon a uniform plane beach, G = 0, we make use of

the following limit (Abramowitz & Stegun 1964 (13.3.2)) ,
lim M(a;b; —2/a) = T'(b) 2479/2 J,_1(2v/2) ,

laj—s00

where J,(z) is the Bessel function of the first kind, obtaining

lim M((1 = kese 8)/2;1; 2kam) = Jo(2kV/1x),
_.>

lim M((1 — kesc8)/2;2; 2koz) = Ji(2kV1z)/(K3z)Y? .

£—0

Thereby we have

Mo = J()(2K,), No = J1(2Ii) (K} = kl) y

and hence with s = ysin # —t = —¢, the wave system has the pattern:

A[e—ikz(m—l—i-t) -+ eik(:{:—l—t)—l—iQAo] (CL‘ > l)
((z,t) = .y
ARy(k)e#t+i80 1 (2k+/I) 0<z<l),

where

Ro(k) = 2[J3(2k) + J7(26)] 72,
Aog(k) = arg(Jo(2k) +iJ1(2K)) ,

(1.47)

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)
(1.53)
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which are the run-up and phase-lag functions of the two-dimensional waves at normal

incidence on the sloping beach.

As a numerical example, we take x = 2 and A(k) = 1, then
Ro(k) =4.968, Ay(k) = 3.306 rad. (1.54)

The corresponding wave profile, as shown in figure 1.4, displays a pattern with the
specified phase lag and a run-up which is somewhat greater than in the previous case

of # = 60°, by a margin of about 35%.

1.4 Grazing incidence; edge waves

As the incidence angle 3 tends to 7/2 (or —u/2), the incoming waves become nearly
along shore. This limit turns out to be of particular significance which we now consider
for the case of sloping plane beach. In this limit, the general solution becomes

(o s) = A[L + e%Ba]eths (z>1) (155)

AR, (r)e katitkst8e) M (q; 1; 2ka) O<z<l),

where the run-up coefficient R,(x) and phase lag A,(x) are given by the limit of
(1.27-1.30) as 3 — /2, ks — k. In this limit, we see from (1.30) that tan 3 — oo,
with Ny either becoming unbounded for arbitrary k or vanishing like (7/2 — 3) for
certain eigenvalues of k, since, as is easily seen, there are no values of k£ for which Ny
has a finite, nonzero limit as 8 — 7/2. In the first case, i.e., with x arbitrary, we
find that ¢ — 0 for all z > 0 (because Ny — 00) which is of no interest. The only

nontrivial case is therefore for certain k = k,,, k = k, = k,l, such that
No(kn, 8 — 7/2) =0 (n=1,2,--). (1.56)

This condition further implies by (1.28) that A(k, 8) = 0, signifying that the reflected

wave and the edge-wave on beach are both in phase with the incident wave. Under
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this condition, the first several x,’s have been calculated by applying the code of

Mathematica to give

Kn = knl = 2.5337, 4.5788, 6.5986, 8.6101, 10.6177, 12.6232, 14.6274,--- (1.57)
which seems to suggest the relation that

lim (Kpy1 — kn) =2 . (1.58)

n—00

Indeed, if we let I — oo for fixed h = az, our problem becomes that of edge waves
on an infinite sloping plane, for which case we obtain the eigenvalues for the trapped
wave modes

1
Kp = 2n + 5 (159)

from the limit of No(#n,0), as 6 — 7/2, given later by (1.88) asymptotically for
> 1 while satisfying (1.56), so that x,41 — K, = 2 for all n. With k = &, given by

(1.57), the solution may be written as

2 Aetrns/l (z>1)
C(xa 3) = . (1'60)
ARy (kp)e @B (1fn: 15 2,2)  (0<z <),

1—-«x
Ry(kn) = 26”‘"/]M(——2 2015 2k,)) (1.61)
In this case, the wave pattern in the open ocean is that of the simple harmonic waves
propagating along the shore and is connected to a longshore edge-wave along the
inclined beach with no phase lag. The run-up of the x,— mode wave is just Ry(ky)
of (1.61). As an example, if we take x; = 2.5337 and A = 1, then a = 0.7668, giving

a quite pronounced run-up of

Ry (k1) = 4.061. (1.62)
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The corresponding wave profile is shown in figure 1.5.

We note that on this linear theory, new solutions can be constructed by linear
superposition of the above solutions corresponding to different eigenmodes of K., 8,1 =
1,2,

In general, the run-up function R(x, ) and the phase lag A(x, () are functions
of k and the incidence angle 3. In figure 1.6, R is shown versus & for eight values of
B as listed. For 3 not too close to the grazing angle, 5 < 60° say, R increases with
increasing  from the value of R(0,8) = 2 at x = 0, with some slight undulations
as shown in figure 1.6. Within the grazing incidence range, 3 > 80°, we find the
remarkable feature that R remains small except in a narrow band of k centered about
the eigenvalues k = k,,n = 1,2,--- as illustrated in figure 1.6. These eigenvalues
also mark the narrow band in which the phase angle A(k, #) jumps by 7, as shown
in figure 1.7.

It is of basic interest to examine the mechanism underlying the phenomenon of
rapid rise-and-fall of the run-up function R as & varies across the eigenvalue x,, within
the grazing incidence range. The underlying mechanism is discovered by observing
that from (1.26) and (1.30), the condition of Ny(x,) = 0 with § = 7 /2 implies ¢, = 0
at « = [, which further infers, on account of (1.7), that the beach-ocean interface at
z = | will remain as a fixed vertical plane as long as & is kept at x = Kn, since by
(1.7), the normal velocity u = 0 at z = [ for all ¢. Physically, this indicates that the
waves within the beach region bounded by = = 0 and z = [ planes may be regarded
as being trapped, and being held at resonance by the exterior pressure field of the

waves at grazing incidence.

1.5 Oblique reflection of solitary waves from a slop-
ing beach

To simulate approximately the reflection of a solitary wave obliquely incident on a

sloping beach, we shall adopt the present linear theory and utilize Fourier synthesis
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to construct the desired solution. In other words, we shall take into account solitary
waves only to satisfy the linear long-wave equations (1.8,1.9), leaving the effects of
nonlinearity and dispersion on oblique wave run-up and reflection for further studies.
For simplicity, we shall confine the present analysis to the case of sloping plaxie beach
and give some discussion on the general case of beaches with arbitrary slope.

Suppose we have in the open ocean a solitary wave

Co(z, 8) = ag sech? \/?)4—70 [s — (x — ) cos 3] (x >1), (1.63)

which is incoming at incidence angle 3 toward the inclined beach of uniform slope
«. With the time properly rescaled in (1.8) and (1.63), this wave is a well-known
solution of the Korteweg-de Vries (KdV) equation

G+t ;4@ + %Cm =0 (1.64)

when the nonlinear and dispersive effects are operating in accordence with (1.5). But
with the nonlinear and dispersive effects both neglected at this stage, the ‘solitary
wave (1.63) also satisfies (1.9) in the open ocean where it can assume the Fourier

integral form as

Golz, 8) = Re / T Ag(k)eHe—Eest g1 (s ) (1.65)
0

wk )
\/30,0 ’

Ao(k) = élc csch(

. (1.66)

where Re denotes “the real part of”. Therefore, by Fourier synthesis of the simple
harmonic wave solutions (1.25)-(1.30), we obtain for the reflected solitary wave the

solution

G (2,5) = Re [ " Ag(k)eiet@heosBmagy oy (1.67)
0
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so that
C(x, s) = Co(z, 8) + ¢ (2, 8) (x>1). (1.68)
And for the longshore wave we have the integral expression, for 0 < z < [ :
¢(z,5) = Re /0 " Ao(k)R(s, B)e™ =58 M (g b: 20y ) ks, (1.69)

where k; = ksin 8 as before, R(x, §) and A(k, 8) are given by (1.28).

For the case of normal incidence, 3 = 0, we have

G(z,t) = Re /OOAO(k)e‘““(”E‘l“)dk (@>1), (1.70)
0

¢ (z,t) = Re /OoAo(k)ei[’“(x‘l‘mm“]dk (z>1), (1.71)
0

¢(z,t) = Re /OOOAo(k)Ro(n)e‘i"""*mOJl(ka)dk O<z<1), (1.72)

where Ag(k) is again given by (1.66), Ry(x) and Ag(x) by (1.52,1.53).

For this case of normal incidence, we present the following numerical results with
B =0,a =01, and o' = 1,2,3,4,5,6 for increasingly smaller slopes of the
beach. The wave profiles are numerically integrated from (1.70-1.72) and shown in
figure 1.8 for ((0,¢) at z = 0 and in figure 1.9 for the reflected wave ¢.(I,¢) at
x = [, both versus time ¢. It is of interest to note that at the waterline, the run-up
increases monotonically with decreasing a/(< 1) (see table 1.1) and there appears, after
reaching the maximum run-up, a negative run-down on the beach whose magnitude
also increases with decreasing . The increasing run-down is evidently playing an
active role in resulting in an increasing departure from the fore-and-aft symmetry for
the reflected wave, as depicted in figure 1.9, while giving rise to a dipped tail with its
magnitude increasing with decreasing «.

For oblique incidence of a (linear) solitary wave, we take o = 1/5 for the beach
slope, a9 = 0.1 for the incoming wave amplitude and obtain the numerical results

of the wave elevation ((0,0,¢) at z = 0,y = 0 as shown in figure 1.10 for incidence
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angle § = 0°,45°,60°, 75° and 85°. Here we note that the variation of the waterline
position with decreasing @ and fixed o has a similar feature as that shown in figure

1.8 for ¢ with decreasing a and fixed 3(= 0).

1.6 Oblique reflection of cnoidal waves from a slop-
ing beach

Another solution of the KdV equation (1.64) is the cnoidal wave (Whitham 1974)

(=a; cn?(ulm), (1.73)
u=k(z —ct), = ”Z%.Z—%’ (1.74)
c=%ﬂ+wn—§%% (co = 1/gho), (1.75)

which is a periodic nonlinear wave for iy > 0 and 0 < m < 1, of wavelength
2 2 2 2\1—1/2
A:EK@UZE/ja_mu—mm] dt, (1.76)
0 .

where m is a free parameter, K(m) is the complete elliptic integral of the first kind.

To evaluate the reflection of an infinite train of cnoidal waves obliquely incident
upon the uniform sloping beach on linear theory, we again adopt (1.8,1.9), with proper
rescaling of t, and make use of the Fourier synthesis (Abramowitz & Stegun 1964,

p575):

en(uglm) = i_o% y, COS Y, (1.77)
v = %?Ton)’ uy = ko(s—(x—1)cosp), ko= \/—3%,(1.78)

_ i =(=nm _ 7K'(m) o
ay = Wsech(nb), b = 2RK(m)’ K'(m)=K(1—-m). (1.79)
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With this Fourier expansion, (1.73 - 1.75) gives

Colz, 8) =y Z b, cos 2nv = Re Z 0y by e Els— (@ =l cos 8] (1.80)
n=0 n=0
where
1 & v 30&1
by = ~ il k= iy 1.81
2j:z_:ooa +30n=j K(m) \ 4m (181)

Thus, by Fourier synthesis, we have the reflected waves as

CT(Z,, S) = Re Z albneink[s+(z—l)cosﬁ]+2iA7 (182)
n=0
so that
C(x,s) = Co(z, s) + ¢ (z, 8) (z >1). (1.83)

And for the longshore wave we obtain, for 0 < z < [,

((z,s) =Re i a1, R(nkl, B)e ™mtinkst R r (g:1: 2nkyz), (1.84)
n=0

where the phase lag A has the arguments A = A(nkl, 3).
As a numerical example, figure 1.11 shows the main features of the incident wave,
Co, and the reflected wave, (., in the open ocean (z > [) for the case of uniform
plane beach of length [ = 5, with the wave-incident angle of § =7 /4, for an incident
cnoidal wave of amplitude oy = 0.1 and characterized by the parameter m-= 0.99.
The run-up ¢(0,0,t) at z = 0 and y = 0 is also shown in figure 1.11; it increases to
a height of 0.32 and falls, slightly faster than in rising, to a negative level of about
—0.1, describing the run-down along the beach. Both the reflected and longshore
waves exhibit marked skewness over the wave period. These main features are seen
to resemble those of a solitary wave obliquely incident upon the beach for nearly equal

wave amplitude and incidence angle, as can be seen by comparison with figure 1.10.
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1.7 Beach of mild slope — comparison with the

ray theory

It is of fundamental interest to compare the present beach wave theory with the
classical ray theory. The premise common to both is based on the geometric wave
approzimation assuming slow variations of water depth and wavelength based on the

wave scale, which is supposed to be very small by the beach scale, i.e.,
|d(log kh)/dz| < 1, K=kI>1. (1.85)

Accordingly, we seek the asymptotic expansion of M(a;b;z) for |a| and z both large
so that with 2b—4a > 2z > 1 and cos? § = z/(2b— 4a) (Abramowitz & Stegun (1964),

after the misprints are corrected in the formula 13.5.21),

M(a;b;2z) = T'(b) exp[(b— 2a)cos® 0] [(b— 2a) cos §]'° [W(%b — a)sin26] 2

{sinfor + (b — a)(20 — sin20) + 3+ Ofzb—al ™M} (156

For a train of sinusoidal waves obliquely incident on a plane beach of very mild slope
(see (1.85)), we proceed with using asymptotic formula (1.86) and some algebra to

obtain

. 1
Mo(k,B) = e " ™PM(a;1;26sin3), a= —(1 — kcse )

— (wrcosB)77 cos[(Bcsc B+ cos 52),@ - g] +O(x™Y), (1.87)

No(k, 8) = e P [(1+ kesc B)M(a; 2; 26 sin ) — M(a; 1; 2k sin 8)] tan 3
= (mrcosB)"3 sin[(Bcsc S+ cos )k — g] +O(xY, (1.88)
R(k,B) = 2(MZ+ N2)™V?=2(rrcos B)2 + O(xY), (1.89)

A(k,B) = arg(My+iNy) = (Besc+ cos Bk — g + O(k™1). (1.90)



21

With these asymptotic formulas of oblique run-up and phase lag for sinusoidal waves,

incident on a plane beach with mild slope, the wave elevation becomes

((z,5) = n(z) coslhs +A), s=ysinf—t, (1.91)
n(z) = 2 Ay coslkzcos B — rcosf+ Ak, B)]
= 2 Ay coslkzcos f + rBcsc B — g] +O(Y) (z>1);  (1.92)
n(z) = Ag R(k,B)e ™ 5V (a;1; 2k sin B)

= 2 A(z) cos(0(z) — Z) +O(™Y) (0<z<l), (1.93)
A(z) = Ay (cos §) [fl?a - %sin2 871, (1.94)

0(r) = kcscpf arcsin(\/?sin B) + /ﬂ/?(l - % sin? 3). (1.95)
On the beach, 0 < z < [, {(z,y,t) can be written as

C(y,t) = Alz) cos(Si(z,y,t)) + A(z) cos(S,(x,y,t)), (1.96)
Si(w,y,t) = —0(z)+ kysinB — kt + x(Besc S + cos B), (1.97)

Sr(@,y,t) = 0(x) + kysin 8 — kt + k(B csc B+ cos ) — E, (1.98)

where S; and S, are the phase functions of the incident and reflected waves, respec-
tively.

From the ray theory (e.g., Whitham 1974), the incident wave assumes on the beach
the form (;(z,y,t) = A(z) exp[iS(z,y,t)], with

_05 T _905 _ _ 05
kl_é;_— ki — k3, k:g—ég—const., w=-—a '(1.99)

where the circular frequency w = kbm = k’b\/m»/l = const.(= k), ky = k\/l/z =
m is the wave number on the beach, and ky =const. by virtue of dw /Oy = 0.
After integrating the equations in (1.99), we obtain the phase function S = S(z, y, t)
to be exactly the same as Sj(z,y,t) in equation (1.97). After integrating the equation
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dy/dz = ky/k1, we obtain the ray trajectory of the incident waves as

o
 sin?f3

Y — Yo [sinﬁ\/§(1 - %sinz g) — arcsin(ﬁsin B) — sin fcos f + 3|(1.100)

where y = yo at z = [. Following the ray, we can compute the wave amplitude by the
formula:

1

A(z) _ [(cg)odoo %: 1 cosfB |”
- { x/m/mx)} / (100

where do is the width of a ray filament and doy its value at £ = I. For our linear
nondispersive model, ¢; = ¢ = y/z/I on the beach. One can easily find that A(z)
given by (1.101) is the same as that of equation (1.94). Thus the ray theory gives the

incident wave on the beach as
Gi(z,y,t) = A(z) cos(S;i(z,y,1)). (1.102)

This result of ray theory is based on the “geometric wave approximation” ( 1.85),
and is supposed to hold for all angles of incidence. However, it only covers the
incident wave since the ray theory by itself is incapable of predicting the reflected
wave. The reason is because the ray theory does not possess the detailed structures
in the solution required for satisfying the boundary condition at the seabed effecting
the refraction and reflection of the waves. In contrast, the present linear theory in its
comprehensive form (without further expansion) predicts the resultant motion, which
is finite up to the waterline but is not explicit in separating the incoming and relfected
waves. Only when the asymptotic ray expansion is acquired from the linear solution
do we have the incoming and reflected waves separated. But we should note that
the expanasion is not uniformly valid since the wave amplitude diverges like 2~ /* as
z — 0. 1t is in this asymptotic expansion of the linear solution that the ray theory is
found in complete agreement with the incident wave component of the expansion, as

indicated by (1.102) and (1.91)-(1.96). We further note that the ray theory cannot
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predict the runup since it is singular at waterline.

Figure 1.12 shows 7 as a function of z /I for Ag = 1, § = 45° and k = 0.5, 2, 5, 10;
and figure 1.13is for k = 10 and 8 = 0°, 70°, 80°, 89°. The results of this comparative
study show that under condition (1.85), the asymptotic expansion is in excellent
agreement with the linear theory for k > 2 and 3 < 60° except in a small neighborhood
of waterline with 0 < /I < 0.02, and becomes poorer for smaller x and larger §.
The first of figures 1.12 demonstrates the margin of departure of the asymptotic
expansion from the linear theory at a x as small as x = 0.5. The discrepancy between
the linear theory and its ray expansion becomes greater, the closer the incidence
angle 3 approaches the grazing limit of 90°, this being apparently due to the singular
behavior of the trapped modes of waves at resonance. These comparative results
therefore imply that the criteria of validity for the ray theory will be the same as that
of the asymptotic expansion because of the complete agreement between the two on the
incident component of the wave system. These are the new conspicuous features that
now qualify the ray theory.

Figure 1.14 shows the phase lines of incident and reflected waves for S; = —2r,
0, 27, 4, 67,87, S, = 4m, 6m, 87, 107, 127, 147, and the incident and reflected rays
for k =10, B8 = 60°. It is of interest to note that at the waterline, the reflected wave

actually has a phase lead given by (1.96) as
Sy (0,y,t) — Si(0,y,t) = —7/2, (1.103)

as shown in the inset of figure 1.14. Physically, this phase lead indicates that the
incoming wave, being long, feels the bottom early and continues to undergo the

reflection process before reaching the waterline.
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1.8 Wave-induced longshore current

According to the present linear long-wave approximation, the horizontal projection

of the pathline of a fluid particle is given by the integral

x(€,1) =€+ [ uy (e, r)dr, (1.104)

where { = x(£,t = 0) is the initial position of the fluid particle at x = (z,y,t) at
time ¢, and u,(€,t) = (ug, v, 0) is the Lagrangian particle velocity, projected onto a
horizontal plane, of the particle designated by & = (&;,£,,0). The Lagrangian drift
velocity is related to the Eulerian field velocity, u(x,t), for small Af =x — &, by

u(§,t) =u(x,t) =ul§,t) + (/Otu(f,T)dT) -Vu(é,t) + O(AE)2. (1.105)

For the case of a uniform beach, with { expressed as in (1.14), integration of (1.7)

yields
0= (u,0,0) = (%gz,gsinﬁ,()), (0 <z < o0). (1.106)

To obtain the time average of uy, use may be made of the theorem that if f. = ge™t

and g = be™!, a and b being complex constant, then
R | X
(Ref)(Reg) = SRe(f g"). (1.107)

where the overhead bar denotes the time average and x indicates the complex con-
jugate. The mean current velocity is thus found from (1.104)-(1.107) to have the

I-component as

ur(z) = 2Re{uz(iku )+uy(ikv )} = 2]{Im{kz77;m77gﬁ + nyn* sin® G} = 0, (1.108)

which vanishes since the quantity in the bracket is purely real in view of using (1.12)

for > | and (1.14) for 0 < z < I. The longshore (y-component) current has the



25

mearn
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vn(z) = 2Re{vz(iku )+Uy(ikv )} = Q(kQImI + |n|*sin” B)sin B,  (1.109)

which is positive definite for 0 < 8 < 7/2 unless |n|*> = 0, and is symmetric about
B = 0. This formula holds for the general case of uniform beach of arbitrary downward
slope.

At waterline z = 0 of a sloping plane beach, use of (1.14), (1.27- 1.30), (1.89) and

(1.109) yields the current velocity
1
r(z = 0; 5, B)) = 5AE,RQ(,@Z + sin? 8) sin 3. (1.110)

where R = R(x, ) is the relative run-up function as before. For large x, substituting

the expansion (1.89) for R in (1.110) yields
(0 5, B)) = AZms® sin 283 + O(k*?). (1.111)

This aymptotic limit shows that v7(0) increases like x* for & large and reaches, for
fixed, its maximum at § = 45°. For the open ocean, z > I, use of (1.12) in (1.109)

yields the result:
v, = A’sin 8 {1 — cos 2B cos 2[k(x — ) cos § + A}, (1.112)

to which the incident and reflected waves each contributes one half of the total. For
sloping plane beach, the mean drift velocity can be calculated from (1.109) with 7
given by (1.25) and 7, by (1.26).

As a typical example, figure 1.15a shows the variations of 7, 7,, mean lo.ngshore
current Uz, and the longshore discharge flux ¢ = hvg, with increasing shore distance
z/l, for the case with 3 = 30°, Ay = 1 and & = 2. The longshore current increases
shoreward quite rapidly to 23.86 at the shoreline, whereas the longshore mass flux

has a maximum of 1.867 at /] = 0.205. Figure 1.15b shows the variations of mean
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longshore current o7 with increasing shore distance z/l1, for 4y = 1,k = 2, 8 =
10°, 20°, 45°. Figure 1.16ab shows the variation of mean longshore current function
v (z = 0; Kk, 3) at waterline with increasing & for different 5. From these results we
see that the longshore current velocity on the beach, Tz, increases with 3, for fixed K,
up to about 8 = 45°, and within this range of 3, increases with & like x3. In the range
45% < < 90°, the outstanding feature is that o7 is dominated by the eigenmodes of
the trapped waves. _

For a fluid particle, initially at (zo, —A/ks), its trajectory (z(t), y(t)) satisfies the

following equations:

%;E = %77:1: sin[k(ysin 8 —t) + A, (1.113)
% = nsinfcoslk(ysin g —t) + A, (1.114)
z(0) = zo, y(0)=—A/k,. (1.115)

Numerical results of pathlines are obtained by integrating (1.113,1.114) for k =
0.5, 8=160° 1 =4 and A = 0.05, on the beach

hz) =z, n(z)=0.1835 e"‘/gf”/4M(—O.6547, 1,v3z/2), 0<z<lI, (1.116)
and in the sea, with
h(z) =1, n(z)=0.1cos(z +2.583), z > 1. (1.117)

Figure 1.17 shows the horizontal projection of several trajectories of water par-
ticles at different places on the beach and in the sea, for @ = 1 /4, B =60° k =
0.5, and A = 0.05. This figure shows clearly how the coiling of pathlines traversed
by fluid particles becomes increasingly stretched out in both longshore and seaward
directions as the longshore current is amplified toward the waterline. This varying
pattern of pathlines is thought to play a basic role in the processes of sand suspension

and sandbar formation.
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1.9 Conclusion and discussion

In this study linear long-wave theory has been applied to obtain the fundamental so-
lution for a uniform train of sinusoidal ocean waves obliquely incident upon a uniform
beach of variable downward slope. This fundamental solution is applied with Fourier
synthesis to obtain analytical solutions to several problems including oblique reflec-
tions of solitary waves and cnoidal waves by sloping beaches, bringing forth salient
features of the wave field regarding the effects of wave incidence angle and variable
slope and curvature of a uniform beach.

An outstanding feature of the solution is the trapping of waves over a sloping beach
that arises when the incident wave becomes grazing to the coast and with the wave
number falling in a spectrum of eigenvalues characterizing the system at resonance.
This is a variation of the phenomenon previously found by Eckart (1951) for the edge
waves on an infinite slope as the sea floor. The impact of this phenomenon upon
coastal environmental quality is not yet in focus, but its effects should be of interest
on coastal ocean circulation and long term interactions between ocean and land.

Under the asymptotic limit admitting ray theory, the same asymptotic expansion
of the present solution based on beach wave theory provides a solution, in closed
form, describing the refraction and amplification of both the obliquely incident wave
on water of variable depth and the reflected wave as well as the phase shift of the
latter upon reflection. By comparison, this result has established a criterion, given
in §1.7, under which the classical ray theory is found in excellent agreement with the
asymptotic linear theory in predicting the evolution of incident wave, and beyond
which the ray theory becomes poor. Prediction of wave reflection and phase shift
generally requires certain detailed structures of the solution for satisfying the specific
boundary conditions, which the ray theory lacks.

The longshore current occurring in nature is a very complicated phenomenon.
The present result is basically built on the Stokes drift of the water resulting from
the waves obliquely incident on a uniform sloping beach, without wave breaking and

dissipation. (For a review on the criteria separating the regimes with and without
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wave breaking, see e.g., Mei 1983.) The remarkable magnitude of the longshore
current predicted here for the incidence angles near the optimum obliquity and for
the eigenmodes seem to have not been presented explicitly before. For the regime
without wave breaking, these current speeds may be regarded as to give an upper
limit which would be reduced when they are modified by the viscous effects involved.
In the presence of wave breaking, various formulas for evaluating longshore currents
have been proposed, e.g., by Longuet-Higgins & Stewart (1962) for predicting the
current velocity across the surf zone based on the radiation stress concept, and by
others proposing modifications of the model. It should be of interest to extend the
present theory to cover these general cases.

Improvement of the present theory can be attained by including the effects of
nonlinearity, dispersion and dissipation so far neglected, since these effects become
significant at least in a neighborhood of the moving waterline where the water depth
vanishes. An estimate of the importance of these effects on run-up of waves can be
inferred by the finding of J. B. Keller (1961) that for the case of normal incidence of
periodic waves on a sloping beach, the nonlinear theory yields the same amplification
as the linear theory. This lends a support to justifying that linear run-up theory has
validity, even though it cannot predict, equally accurately as nonlinear theory, the
transient wave profiles near the moving waterline and the time for reaching maximum
run-up. It is of great interest to find if the same implications can be said about the
general case with oblique incidence of waves upon such beaches horizontally curved

in configuration as what is common in nature.
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Table 1.1: Run-up predicted by linear nondispersive theory, for a solitary wave of
amplitude a/h = 0.1, running up from an ocean of depth h = 1 to a plane beach of
slope a = 1/1.

Beach length [ The maximum run-up R

0.0 0.2000
1.0 0.2163
2.0 0.2561
3.0 0.2981
4.0 0.3366
5.0 0.3717
6.0 0.4039
2 1 i
z y k =(ki, k2)
1.5 ; “o
1 0 et i
1 3 4 5
0.5 X
2A 1 k2
\.&
Ieﬂected W
| e
(a) Side view (b) Top view

Figure 1.1: A sketch of the ocean bathymetry.
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Figure 1.2: The wave profile on the beach (0 < 2/l < 1) and sea (z/l > 1) for
B =60k =2.

10
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Figure 1.3: (a) Variation of run-up function, R(x, 8), with increasing & = kl, for
parabolic beach A(z) = 2z/1—(x/1)*; ———— for plane beach h(z) = z/l; at incidence
angle 8 = 0°, 45°, 89°. (b) Variation of run-up function, R(x, 3 = 0), with increasing
# = kl for parabolic beaches, h(z) = mz /l+(1—m)(z/1)%, m = 0.6, 0.8, 1.0, 1.5, 2.0
(see the inset).



31

Xy T

fel
Y v
7

IR

Figure 1.4: The perspective wave profile on the beach and in the ocean for normal

incidence at 8 = 0° and wave number x = 2.

Figure 1.5: The perspective wave profile on the
at # = 90° for k = 2.5337.
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Figure 1.6: Variation of the run-up function R(x, ) with £ = kl = khy/c, — for
a list of § indicated; — — —— asymptotic formula (equation 1.89).

Figure 1.7: Variation of the phase lag function A(k, 8) with k = kl = khy/a,—
for = 0°, 45° and 89° — — —— asymptotic formula (equation 1.90).
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Figure 1.8: Time records of run-up, at z = 0, of a solitary wave with ag = 0.1 at
normal incidence (8 = 0°) on a sloping beach for 1/a = 1,2,3,4, 5, 6.
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Figure 1.9: Time records of reflected wave ¢, at z = [, from an incoming solitary wave
with ag = 0.1 at normal incidence (8 = 0°) on a sloping beach for 1 Ja=1, 3, 5.



34

= 00
4 i
0.3
60°
0.2
4 75°
0.1} G
85°
0
] W -
T10 5 0 5 10 15 20 25

Figure 1.10: Time records of oblique run-up, taken at z = 0 and y = 0, of a
solitary wave with ag = 0.1 on a beach with slope a = 1/5 at incidence angle
B =10°, 45°, 60°, 75°, 85°.

0.3
run-up
0.2¢
¢
0.1} Cn C.:r
—io —éo 0 2l0 4.0

—*

Figure 1.11: The incident wave (p, the reflected wave (, at z = I, and run-up at
z =0, y = 0 of a train of cnoidal waves with a; = 0.1, m = 0.99 at incidence angle
3 = 45° upon a beach of slope a = 1/5.
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Figure 1.12: Variations of the wave elevation 1 over a range of Jlfor A=1, 3 = 45°,
k=0.5, 2, 5, 10, present theory; — — —— asymptotic formula (1.93).
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Figure 1.13: Variations of the wave elevation 7 over a range of z Jlfor A=1, k =10,
B =0° 70°, 80°,89°, present theory; — — —— asymptotic formula (1.93).




Figure 1.14: ——, phase lines of incident and reflected waves for S; = -2, 0, 2,
dm, 6w, 8m, S, = 4w, 6m, 8m, 10w, 127, 14m; — — —— incident and reflected ray
tracks for £ = 10, § = 60°. The phase lag between the incident wave (point I) and
reflected wave (point R) at z = 0 is 7/2 (see equation 1.103), i.e., ygr — y; = 7/(2k,).
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Figure 1.15: a. Variations of 7, 7, mean longshore current o7, and longshore discharge
flux ¢ = hvy, with shore distance z /1, for 3 = 30°, Ay = 1 and k = 2. b. Distributions
of mean longshore current vz over shore distance z/l, for Ag = 1 and s = 2 and
8 = 10°, 20°,45°.
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Figure 1.16: Variations of the mean longshore current vy, at waterline with increasing

k for different 8, — — —— asymptotic formula (equation 1.111).
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Figure 1.17: Horizontal projections of pathlines of water particles at different places
on the beach and in the ocean, for « =1/4, = 60°, k = 0.5, and A = 0.05. These
tracks are the pathlines traversed by the water particles in five time periods except
for the one at the waterline which covers only about two periods.
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Chapter 2 The nonlinear effects in run-up of

waves on beach

The linear theory presented in Chapter 1 is based on the following assumptions
(h+¢)~h, and wu<1. (2.1)

They require that the wave amplitude be everywhere small compared with the water
depth. But this can not be true around waterline where h and (h + () are close to
zero, so linear theory is not a good approximation around waterline. Actually, it is
beyond linear theory to indicate how waves go across initial waterline point (z = 0,
and h = 0 in figure 1.1). This is because the wave speed from linear theory is v/h,
which approaches to zero when wave propagates from ocean to the waterline A = 0.
Finally the wave gets reflected at the point A = 0. There is no run-up and run-down
process on beach for linear theory. This is not a physical reality. The reason for this
nonphysical result is that we neglect the nonlinear effects. If we include the nonlinear
terms, the wave speed will be /i + C; it never reaches zero until at the real waterline
point A+ ¢ = 0. So we should be able to see wave running up and running down on
the beach, instead of stopping at z = 0.

There is a big difference between linear theory and nonlinear theory in regard to
run-up of waves. In linear theory, we may define (see, e.g., Keller 1961) the run-up

as the wave elevation reached at h =0 (i.e., x = 0),
R = (|p=o0- (2.2)

In nonlinear theory, we now define the run-up, on physical ground neglecting only
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the viscous effects, by the wave elevation at h + { = 0,
R = (lp+¢=o- (2.3)

It is thus clear that when we compare the run-ups predicted by linear and nonlinear
theories, we actually compare wave elevations at two different points, h = 0 and
h+¢=0.

A few technical terms are often used in this thesis, for which we define as following:
1. Linear run-up: run-up predicted by linear theory according to (2.2).
2. Nonlinear run-up: run-up predicted by nonlinear theory using (2.3).

3. Two-dimensional run-up: run-up of waves normally incident upon beaches. The
physical picture for this phenomenon is two-dimensional, z and z. The govern-
ing equations for this case have one space z and one time t. Some people call

it 1 + 1 dimensional.

4. Three-dimensional run-up: run-up of waves obliquely incident upon (uniform
or nonuniform) beaches. The physical picture for this phenomenon is three-
dimensional z, y and z. The governing equations for this case have two space

z, y and one time ¢. Some people call it 2 + 1 dimensional.

The case of two-dimensional nonlinear run-up is studied in this chapter. A brief
review of literature on nonlinear theories is given in §2.1. In §2.2 we present a new
numerical scheme for computing wave run-up on beaches, which is shown to have a
very high accuracy by comparison with some exact solutions of nonlinear theories. In
§2.3 we apply the scheme to compute a few cases for the run-up of solitary waves, for
which case we only have an approximate solution known in literature. Qur numerical
results, with its error estimate assessed, therefore provide a criterion to evaluate the

accuracy of this approximate theory.
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2.1 Nonlinear theories

Due to the difficulties of this nonlinear problem, only very few theoretical studies
have been presented over the last half century, of which Carrier-Greenspan’s theory
(1958) is classic. Other theories are more or less extensions of Carrier-Greenspan’s

theory.

2.1.1 The Carrier-Greenspan theory

Carrier and Greenspan (1958) presented a theory for wave run-up on a sloping plane

beach based on the shallow water equations, also known as Airy’s model,

G+ [(—az 4+ Qul, = 0, (2.4)

with h = —auz (see figure 2.1). Rescaling z, ¢, ¢, and u
o=z, t=+vat, (=(la, u=u/Va, (2.6)

converts (2.4, 2.5) into the following equations in terms of 2/, #, (', and «' (with

primes dropped) as

G+l(=z+Qu. = 0 (2.7)

u +uty, + G = 0, (2.8)

which means that we only need to study the case with beach slope o = 1. Solutions
for arbitrary slope a can then be constructed by similarity variables (2.6).
It is interesting to note that another rescalling can also transform equation (2.4,

2.5) to (2.7, 2.8)
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which is due to the group structure underlying the shallow water equations (2.4, 2.5)

(Olver 1986).

Introduce a new variable ¢

c=4/—z+,

(2.10)

which is local wave speed. Substituting {( = ¢* + z into (2.7, 2.8) yields the equations

2¢ + 2ucy, +cu, = 0,

Uy + Uty + 2cc, = —1.
Next we introduce two new variables o and A:
oc=4c, A=2u+2t,
in terms of which (2.11, 2.12) become

ot +uo, +ch, = 0,

M +ury, +co, = 0.
We then use the hodographic transformation
LUO-:At/J, ZE)\:—'O't/J, ta-:—)\z/J, t)\':O'z/-],

where

(o, \) Oy Oy

J= = == O-x)\t - Jt)\z

0(z,t) A A

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

is the Jacobian of the transformation, to interchange the dependent and independent
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variables, by which equations (2.14, 2.15) become

Ty —uty +ct, = 0, (2.18)

Ty —uty +cty = 0. (2.19)

z and t are dependent variables in these equations. Substituting ¢ = A/2 — u into

these equations, after some algebra, we have

o 1

1
(z+ EUZ),\ —gUo T U = 0, (2.20)
1 1 o)
(x + 5'(1/2 + IéO'z)o- - (ZU))\ = 0. (221)

Here, equation (2.21) is automatically satisfied by a new ‘potential’ variable (o, \)

such that

g

1 1 1
T+ -u+ o’ = Zqﬁ,\, —U = —¢,. (2.22)

1
2 16 4 4
Substituting (2.22) into (2.20), we finally have a linear equation for ¢(o, \)

(0¢s)s — aar = 0. " (2.23)

Based on this equation Carrier and Greenspan find an exact solution for ¢ (z,1) and

u(z,t), which is written in parametric form in terms of ¢ and X as

¢ = AJdo(o)cosA, (2.24)
1 1, A _ Ar 9

¢ = ZgbA QU= —ZJO(O') sin A — ﬁjl (o) cos® A, (2.25)
1 A

U = —¢,=-——J(0)cosA, (2.26)
o o

o? 1 1, a2 A . A )

T Z(/ﬁ,\ R = ZJO(O') sin A — 5;(]1 (0)cos® A, (2.27)
1 1 A

t = 5)\ —u= 5/\ + ;Jl(a) cos . (2.28)

This solution is a time-periodic wave on a sloping beach for 0 < 4 < 1 (as shown
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in figure 2.1). Each curve in figure 2.1 is for a fixed time instant, t = 47 /16, 57/16,
6m/16, 7m/16, 87 /16, 97 /16, 107 /16, 117/16, 12w /16. For fixed time ¢, given a o, A
can be solved numerically with iteration from (2.28). Substituting o and \ into (2.25,
2.26, 2.27) gives the solution for ¢, u and x. Changing ¢ we can get another set of

A, ¢, u, z, and so on. Thus we find for t =¢,, n=1,2, -,
(=C(z,t=t,), u=u(z,t=t,), (2.29)

which are the curves shown in figure 2.1. The wave is supposed to break when it
reaches its maximum slope of infinity at a position of the moving waterline during

the run-down period with A = 1. For A > 1, {(z,t) is multivalued.

2.1.2 The Tuck-Hwang theory

For a beach with constant slope, Tuck and Hwang introduce the following transfor-

mation

C=C+1iu? u=u, (2.30)

—*=—z+(, t"=t+u, (2.31)
and convert the nonlinear equations (2.7, 2.8) into their linearized version

G+ (—z*u)ps =0, (2.32)

Uy + (= 0. (2.33)
This set of equations has a solution given by

¢t = A(k)Jo(2kv/—z*) cos(kt*), (2.34)
u' = —j%h@kv—x*)ﬁn(kt*). (2.35)

The solution for ¢ and u is given by (2.30, 2.31).
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We notice that the Tuck-Hwang and the Carrier-Greenspan transformations are

related by

C=C+1iu? w=u (2.36)
* 0’2 *
- =%, tr=1ix (2.37)

With the new linear equations (2.32, 2.33) Tuck and Hwang (1972) studied a
particular problem of releasing an initial excess mass of water supported underneath
by a sloping plane seabed.

For this problem, the initial velocity is zero everywhere, while the initial wave

elevation ¢ is an implict function of z, given by
z = blog(¢/a) + ¢, (2.38)
corresponding to which the initial condition in the star variables is
C*(z*,0) = ae®/’ = /;oo 2abke " Jo(2kv/—z*)dr,  u*(z*,0) =0, (2.39)

for z* < 0. In the star coordinate, they use the Hankel transformation to obtain the

following solution for (* and u*

¢*(z*,t*) = 2ab /oo ke b Jo(26v/—z*) cos(kt*)dk, (2.40)
0
2ab oo
u (z*, ") = c ke ", (26 —z*) sin(kt*)dk. (2.41)

_\/—a:* 0

In the original physical coordinates, the solution of this initial value problem is there-

fore given by the inversion:

v = u (2.42)

( = ¢ — ()2, (2.43)
x = =5+ (7, (2.44)
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to= " —u (2.45)

With the integrals evaluated numerically, Tuck and Hwang gave results for a few

particular cases.
Spielvogel (1976) studied a similar problem of mass release based on a superposi-

tion of Carrier - Greenspan’s periodic wave solutions.

2.1.3 Run-up of solitary wave

Synolakis (1987) developed an approximate nonlinear theory for the run-up of solitary
waves. He introduced a matching condition at the junction of a sloping plane beach

and an exterior uniform ocean, i.e., at x = —1,

0.2

1 1 1 .
e *z— e *:—— o> = *:———, t:t*:"A 24
(=C=3b u=u==¢, s=0s"=-C A (246)

With these relations, one may see that ((z,t) and u(z,t) satisfy the linearized equa-

tions (2.32, 2.33). These matching conditions are valid under assumptions
(Jhgl, u<l, (2.47)

i.e., small wave amplitude. Once we admit the matching relations (2.46), it is very
straightforward to get solution for nonlinear equations. Simply changing (z,¢, ¢ ,U)
given by solution (1.72) to the linear equations (2.32, 2.33) for (z*,t*,(* u*), we
obtain the solution for run-up of a solitary wave from ocean of unform depth to a
beach of constant slope,

C*(z*,t*) = Re /0 ~ Ao(k)Ro(r)e ™ %0 1, (2kv/z*)dk (-1 <z <0),  (2.48)

where Ag(k), Ry, and Ay are given in Chapter 1. It is obvious that the maximum

nonlinear run-up, Ry, is equal to maximum linear run-up, R;, based on this solution,
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since at the run-up point,
* * 1 2
u=1u" =0, and hence R, =( :C+§u =(=R. (2.49)

Actually, this is true for any shape of incident wave. This has to be true under the
matching conditions (2.46) or small amplitude linear wave assumptions.
We recall that for solitary head-on collisions of a solitary wave of amplitude a with

a vertical wall, the maximum nonlinear run-up on the wall is (Wu 1994)
Ly 3
R, =2a + 20 + O(a®), (2.50)
whereas the corresponding linear maximum run-up is
R, = 2a. (2.51)

This tells us that the linear run-up is the leading order approximation of the nonlinear

run-up
R, = Ri(1+ 0(a)), (2.52)

and the next order term is of order aR;.

Run-up on a vertical wall is but a special case of run-up on a sloping beach, with
an infinite beach slope. So we may conjecture that for run-ups on a sloping beach,
equation (2.52) is also true. This is a reasonable conjecture, since it is true for the
special case of run-ups on a vertical wall.

It should be noted that Synolakis’ conclusion that “the maximum run-up predicted
by the nonlinear theory is identical with the maximum run-up predicted by the linear
theory” is made under (2.46), i.e., linear wave assumption. We will come back to this

point later.
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2.2 Numerical computation

In excecuting numerical computations of run-ups of waves on sloping beach based on
the shallow water model equation, the most difficult part is reckoned to be related
with how to handle the moving waterline, i.e., the place of zero total water depth in

motion or the boundary between land, water and air.

2.2.1 Other treatments of waterline

Hibberd and Peregrine (1979) studied the run-up of a uniform bore on a beach by
using the finite difference method to compute numerical solutions of the shallow water
equations (2.7, 2.8). The total water depth 7 = h+ ¢ and momentum m = nu (in our
notation) were used as the dependent variables in order to keep the conservation laws
of mass and momentum satisfied, which are very important to obtain correct wave
speed in computation of the shock wave propagation. The operation involves dividing
the momentum m by the total water depth 1 gives the velocity u. Consequently
near the waterline, errors in determining the water velocity can be magnified due to
the division of m by small values of total water depth 1. To avoid these difficulties,
Hibberd and Peregrine used the water velocity near waterline as a dependent variable,
and a lower bound, ¢ say (usually taken as 107*), of the water depth is set, below which
the water depth is considered to be zero. In general, the position of the waterline does
not coincide with a grid point and it is therefore the last underwater point, denoted
by subscript s, that requires special attention. In short, Hibberd and Peregrine’s
treatment of waterline for run-up is by assuming that all values are known at time
level nAt and it is required to solve explicitly for 7,41, Ns+1,n+1, Usnt+1 and Ug 1 pnt1

at the (n 4+ 1)At time step. The following procedure is followed.

1. Obtain values of (7, u) at grid index (s+1, n) by linear extrapolation from values

at grid points (s,n) and (s — 1, n).

2. Use the Lax-Wendroff scheme to obtain values of (n,u) at (s,n + 1).



48
3. Calculate the provisional values at grid point (s+1,n+ 1), denoted by u} lntl
and 17,4 11 by linear extrapolation from values at (s,n+ 1) and (s — 1,n 4 1).
I 7541041 > 0, final values at (s + 1,n + 1) are calculated. If 7}, < 4,

corrected values at (s,n + 1) are calculated.

In Hibberd & Peregrine’s treatment, they often use linear eztrapolation to get
information around waterline. This technique is not physical. Since this linear ex-
trapolation introduces some considerable error at the waterline point, making the
run-up computation, especially the local velocity, to be inaccurate, as can be attested
by their figure 5 for comparison of their numerical results with Carrier-Greenspan’s
exact solution.

Pedersen & Gjevik (1983), Zelt (1986) and Zelt & Raichlen (1990) used the La-
grangian description in order to avoid the moving waterline difficulty; however, this
approach brings forth some new nonlinear terms and makes the governing equations
very complicated.

Kim, Liu & Liggett (1983) studied the problem of two-dimensional run-up with
the BIEM (Boundary integral equation method) based on potential flow theory, for
which case the whole free surface becomes moving boundary. They used the Laplace
equation for velocity potential, and the free-surface boundary conditions on z =
((z,t), including the waterline point. Therefore, their treatment of the waterline is
very different from what we are using here.

Titov & Synolakis (1995) treated the waterline with the following relations:

h+(¢=0,
dr
at
Uy = 0.

The first two relations are correct, the same as our (2.53, 2.54). But the third one
is an artificial treatment, not physical. It could introduce some considerable error in

the computation of run-up.
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2.2.2 The present treatment of the waterline

We develop a new treatment of calculating a moving waterline to compute the run-up
problem in this section.
First we catch the waterline by employing a special scheme described below. At

waterline z = X (t), we have the following relations:

h(X (1)) + ¢(X(t),t) = 0, (2.53)
% =u(X(1),t) = U(?), (2.54)
dU

P (2.55)

These three relations are geometrical, in (2.53), kinematical, in (2.54), and dynamical
conditions in (2.55), for any waterline, noting that (2.55) is identical to (2.8). They
are the Lagrangian description of a waterline.

With these three conditions, we can compute position and velocity at waterline at
the (n+1)-th time step by the information at the n-th time step. Subject to this step,
we redefine the grid points with the new waterline position X (¢,,) to constitute the
same number of nodes. Then we compute the values of {(z,t,.1) and u(, tny1) at
each new node, followed by going to compute the next time step and so on. In this
way we keep the waterline captured by satisfying its Lagrangian equations.

For calculating the values of (¢, u) inside the domain, we still use the Euler de-
scription, since the Euler description is simpler than the full Lagrangian counterpart.
The only thing we need to take care of is to observe that the grid points are changing
with time. In this way, we actually compute the wave elevation and velocity at dif-
ferent places at different time instants. Of course we can alternatively compute the
wave elevation and velocity at the same spatial locations first, then use interpolation
to get the values at the new grid points in the next step. The interpolation has to be
done every time step. However, this may introduce errors. Because of this, we prefer

to use another approach, namely the following transformation approach.
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Introduing the transformation

r=(1+X/L)x' + X, (2.56)
t=1t, (2.57)

where X = X (t) is the waterline position as a function of ¢, and L is the total initial
length of the computation domain. We can see that the waterline at z = X (t) always
corresponds to x' = 0, and the other boundary x = —L corresponds to 2’ = —L. In
the z', t' coordinates, the grid points therefore never change with t.

With this transformation, we transform the computation domain from a moving
boundary problem to a fixed boundary problem. The cost is that we have to modify

our equations. The partial derivatives in the two systems have the following relations:

0 o 0z 0
o 0z 0

Taking the partial derivatives with respect to 2 and ¢ from equation (2.56) and (2.57)

gives
o' 1
o 1T XL (2:60)
or  1+4'/L
= — 2.
ot 1+ X/L7 - (261)
and substituting these relations into (2.58, 2.59) gives
d 0 14+4'/L__ 0
e R Sl S 2.62
ot ot 1+ X/L 0x’ (2:62)
0 1 0
(2.63)

9r 1+ X/Lor"

Substituting these relations between the two sets of partial derivatives into (2.7, 2.8),

we obtain the governing equations in the new coordinate system(dropping the primes)
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as
Ct — ClUC:E + C2[(h + C)’U;]w = 0, (264)
uy — ciUug + co(uu, + () = 0, (2.65)
where
1+a/L 1
Cp = Cl($,t) = m, Co = Cg(t) = m, (266)

are coefficients arising from the transformation. As we are not computing any shock
wave, we can compute ¢ and u from the above equations directly. If we should
compute a flow field involving shock waves, we need to use n = h + (¢ and m = nu as

our dependent variables.

2.2.3 The present scheme for the run-up computation

For numerical computation of the model equation
ur + fo(u) =0, (2.67)

the Richtmyer two-step Lax-Wendroff scheme reads

= S ) - ) ~ ) (2.68)
A n—4 L n+i
= = ) - ) (2.69)

If we take

f(u) = Au, (2.70)
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the scheme will become

If we assume

then from (2.71) we have
p=1—1iCsin(kAz) — 2C*sin*(kAz/2),
where C' = AAt/Az. In order to make |p| < 1, we require that
C <1

This is the stability condition for the scheme.

Scheme (2.71) can be written as

7

(2.71)

(2.72)

(2.73)

(2.74)

1 1 1
’I.L’-rH-1 = uZ” — AtA(Uz + ’6(Ax)2uzzx) + i(At)QAz(uwz + E(Ax)zuu’mmc) + hOt(275)

where h.o.t. means higher order terms. By Taylor’s expansion of u?*!, we have

1 1
U?H = u; + Atu, + g(At)zutt + E(At)guttt +h.o.t.

Subtracting (2.76) from (2.75) and dividing the difference by At gives

(2.76)

1
(1 SAH0, — A0,)] (o, + Au) = ~ S (AP — £ (AT Aty +hot. (277)

or

1 1
U + A’Um = —E(At)zum — -6-(ASL)2A’I,L$$$ + h.o.t.

(2.78)
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This is the modified equation for the Richtmyer two-step Lax-Wendroff scheme. This

scheme is second order in space and time.

For our problem, the first step of the Richtmyer two-step Lax-Wendroff scheme

reads
"+'21' n At n n
CH% = (C +¢) + ECIU( i1 —G)
At
‘ZQ@KMH+QLWﬂr*@r+GWﬂ, (2.79)
n+3 1 n n A n n
ui:; = §(uz +u )+ KQU(UZ—+1 —uy)
At 1 1, . "
_Z—A_xc2[2( m) - 5(“2’ )? = (s (2.80)

where ¢;U and c; are evaluated at grid points (i + %,n) The second step of the

Richtmyer two-step Lax-Wendroff scheme reads

At 1 1
G = <f+A—clv(<L?—<§_gﬂ)
At i bkl opad :
O s TR P R
At 1 1
ultt = u?—}—gclU (u?:f —u?jg)
At 1 + 1 41 +1
—562[5( 7+12 2+C Z(U?néz)z_cin_;]y (2.82)

where ¢;U and c; are evaluated at the grid points (i,7n).
At the waterline point (I,n + 1), we use the Beam-Warming scheme for the inte-
gration of velocity u,

(At)*
2(Az)?

At n n n n n n
'UJ;H—l = U? — “_2A:I; (3([ — 4(]_1 + CI——Q) + (CI - 2<I—1 + <I~2)7 (283)

and the trapezoidal integration for X,
X = x4 At( Tl - (2.84)

These schemes are second order in space and time.



94

2.2.4 Test on a few cases

The first test is for the case of run-up of periodic waves on a beach of constant slope.
We take A = 1.0 and the initial condition as posed at ¢ = 37/4 by Carrier-Greenspan
exact solution (2.24 — 2.28), which is

¢ = %JO(U), (2.85)
u=0, (2.86)
o2 1

For a given x, we can find the o by solving (2.87) numerically with iteration, then
compute ¢ from (2.85). The initial condition for wave elevation is defined by (2.85,
2.87). For the boundary condition on the left side boundary, say at z = zg, of the
region of computation, we have two choices: one is to find {(z = z, t) and u(z = zo, t)
numerically from the exact solution, and use these values as our boundary condition.
The other way is to compute ¢ and u over a larger domain, while the left boundary
of this larger domain could be a solid wall, but make sure that any disturbance
emanating from the left boundary does not reach the experimental domain within
the time period of the numerical experiment. We chose the latter approach.

Figure 2.2 shows the comparison between our numerical results and Carrier-
Greenspan’s exact solution. At the beginning, counting from ¢ = 37/4, the wa-
terline runs down slowly. It becomes faster and faster, then decelerates quickly, until
it stops at ¢t = 5m/4, while the velocity equals zero everywhere in the flow field at this
time instant. Then it reverses the procedure described above. We notice that the
flow described by the shallow water equations is reversible in time, since by changing
t to —t, and v to —u, the equations remain invariant.

Our numerical results are thus found to agree with Carrier-Greenspan’s theory
very well. Typically, with Az = 1/500, At = 7/500, the relative error of the wave
elevation is less than 1073 if we use single precision. And it takes one to two minutes

CPU on a sun station at the Caltech Campus Computer Organization for computation
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over a period from maximum run-up to run-down.

The second test is on the problem of mass release statically from the initial shape

ax log(¢/R) +¢. - (2.88)

_ H
- log(R/H)

Since Tuck & Hwang’s and Spielvogel’s results were calculated numerically and pre-
sented with figures. It is not so straightforward to reproduce their results. Figure 2.3
shows our numerical results for « = 1/20, R = 0.1 and H = 0.05, which corresponds
to Spielvogel’s figure 4 in his JFM paper. The time instant for the waterline to pass
through the origin is ¢ = 4 by Spielvogel’s numerical results, t = 3.94 by the present

scheme. The difference is less than 2%. They agree with each other very well.

2.3 Numerical solution to the run-up of a solitary
wave on a beach of constant slope

We now consider a specific case of two-dimensional run-up of solitary waves normally
incident on a uniform beach of constant slope o, which is connected to an opén ocean
of uniform depth h = 1.0 (figure 2.4). The shallow water equations are used to study
the problem.

In our first numerical experiment, we take an incoming solitary wave of initial
amplitude a = 0.1 in the open ocean and impinging on a beach of constant slope
a = 1/4. We pose the quiescent initial condition at ¢t = 0 and for the boundary

condition at o = —12 by the following relation

gzasechﬂ/?f(xo St +32), c—14a)2 (2.89)

for the wave elevation, which is an exact solution of the KdV equation ( 1.64), and

w= % 2.90)
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for the velocity at xy = —12, which is the first integral of the mass conservation law
for a solitary wave with speed c.

We carry out the computation with the scheme described in the previous section.
Figure 2.5 shows wave elevation during run-up at time ¢ = 20, 24, 27.28, 28.88, 30.48,
32.08, 33.68. The solitary wave reaches the maximum run-up R = 0.3666 at time
t = 33.68. Figure 2.6 shows the velocity during run-up at the same time instant as
listed in figure 2.5. The maximum speed during run-up is as high as 0.3706, which
occurs at the waterline at ¢ = 30.36.

Figure 2.7 shows the wave elevation during backwash at time ¢ = 33.68, 35.28,
36.88, 38.48, and figure 2.8 shows the velocity during backwash at the same time
instant as listed in figure 2.7. The maximum speed during backwash is as.high as
0.6103, which occurs at the waterline at ¢ = 38.16, and the velocity gradient u, at
this point is getting quite large. Based on this result, we may conjecture that it is
somewhere during backwash that the solution may violate the assumption invoked on

the shallow water model equations which requires

0
o <1, (2.91)

i.e., a steep wave may most likely first break near the extreme of a run-down.

Figure 2.9 shows the wave elevation as a function of ¢ at the waterline.

It is of importance to note that the shallow water equations do not have solutions
for travelling wave of permanent form, even in water of uniform depth. Actually, a
wave is always getting more and more steepened forward as time goes on, for lack of
the dispersive effects to balance out the wave steepening according to this model. It
followed that if we pose the boundary conditon (2.89) at different places for zo, we
should expect somewhat different run-up results.

In our second numerical experiment, we take the same a = 0.1 for the initial wave
amplitude and o = 1/4 for the beach slope as before, but pose boundary condition at
different places zo = —16, —12, —10, —8, —6, —4. We compute the maximum run-up

for each case. The results are shown in table 2.1. Figure 2.10 shows the maximum
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Table 2.1: Run-up of a solitary wave of amplitude a/h = 0.1, predicted by the shallow
water equations and linear theory (see Chapter 1), with the boundary condition posed
at zo as (2.89), running up from an ocean of depth h = 1 to a plane beach of slope
a=1/4.

Time to reach Time from beach

The maximum the maximum foot to the
T run-up R run-up maximum run-up
—16 0.3816 33.44
—14 0.3743 33.56
—12 0.3666 33.68
the shallow —10 0.3594 33.80
water equations -8 0.3526 33.96
—6 0.3464 34.12
—4 0.3408 34.24 7.57
linear theory —4 0.3366 33.43 6.76

run-up as a function of zy. The maximum run-up decreases with decreasing z.
Actually, if we stand at the point z = —4, we see different waves passing through
this point in the different cases due to the nonlinear steepening effect inherent to
the shallow water equations. The larger zy taken for imposing the same boundary
condition, the more steepened the wave becomes at the beach foot and therefore the
greater the maximum run-up.

We take Az =1/20, At = 1/100 in both numerical experiments. It takes one to
two minutes CPU for a sun station to compute one run-up case.

We can now draw the following conclusion: The mazmum run-up of a solitary
wave predicted by the shallow water equations depends on the initial position of the
solitary wave. It is not a fived value. The farther the initial solitary wave of the KdV
form is imposed from the beach, the larger the maximum run-up it will reach. Of
course it can not be too far from the beach, otherwise it may break before reaching

the beach. Therefore, nonlinear run-up is not identical with linear run-up, i.e.,
R, # Ry, (2.92)

which disagrees with Synolakis’ conclusion.
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The reason for having this result is because we have neglected the dispersive effect
in the governing equations. The solitary wave changes its shape when it propagates
from the ocean of uniform depth to the beach, which is not entirely a physical reality.
If we include the dispersive effect, i.e., by using the Boussinesq equations as our
model, we should expect to obtain a different result that would correct this specific

error. This is what we are going to study in the next chapter.



59

Figure 2.1: Carrier & Greenspan exact solution for run-up of periodic wave on a
beach with constant slope, A = 1.0.
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Figure 2.2: Comparison of our numerical results and Carrier- Greenspan exact solu-
tion for periodic wave on a sloping beach, A = 1.0 , —— exact solution,
scheme.

...... present

~-0.05F

Figure 2.3: Our numerical results for water release problem, o = 1/20, R = 0.1 and
H = 0.05 (corresponding to figure 4 in Spielvogel’s 1976 paper),
...... present scheme.

initial shape,
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water“n/

Figure 2.4: A sketch of the ocean bathymetry.
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Figure 2.5: Wave elevation as a function of z at time ¢ = 20, 24, 27.28, 28.88, 30.48,
32.08, 33.68, ...... present scheme.
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T 1=3048

Figure 2.6: Velocity as a function of z at time ¢ = 20, 24, 27.28, 28.88, 30.48, 32.08,
33.68, ...... present scheme.

0.4 .
t=33.68
0.3 S t=35.28
0.2
e S [ 1=736.88
0.
t=38.48
0.1 1o oy r3 ) 7 0 2 4

Figure 2.7: Wave elevation as a function of z at time ¢ = 33.68, 35.28, 36.88, 38.48,
...... present scheme.
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Figure 2.8: Velocity as a function of z at time t = 33.68, 35.28, 36.88, 38.48, ......
present scheme.
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Figure 2.9: Wave elevation as a function of ¢ at waterline, —— linear theory, ......
present scheme.
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Figure 2.10: Maximum run-up as a function of g, the place at which we pose bound-
ary condition of solitary wave.
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Chapter 3 The dispersive effects in run-up of

waves on beach

In Chapter 2, we find that the run-up of solitary wave predicted by the shallow water
equations depends on the initial position of the solitary wave, which is not entirely
a physical reality. This leads us to consider the dispersive effects for what they may
change the entire run-up process.

In §3.1, we will study the dispersive effects in the linear system. We will then eval-
uate the importance of the dispersive effects in Carrier-Greenspan’s exact solution for
periodic waves on a sloping beach in §3.2. In §3.3 we will perform numerical exper-
iments on two-dimensional run-ups of solitary wave with the generalized Boussinesq
model and compare the results with that predicted by the shallow water equations.
In §3.4, we will study the problem of two-dimensional run-ups of solitary wave on

beach with variable downward slope.

3.1 Linear dispersive model

In Chapter 1, we have developed a theory for three-dimensional wave run-up on beach

based on the linear nondispersive model
G+V-(hu)=0, (1.6)

ut-}—VC:O N ' (17)

which is valid for long waves of very small amplitude. If the wave amplitude is

small but with the wavelength getting shorter (yet still long), we should consider the
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underlying dispersive effects, i.e., we may use the linear dispersive model

Ct~I-V~(hu)=O,
2

h h
u; + VC = —Z-V[V . (hut)] — EVZLIt y

(3.1)
(3.2)

which comes from the generalized Boussinesq model (Wu 1979) by neglecting the

nonlinear effects.

We study the same problem as that in Chapter 1 by now using the linear dispersive

model. The bathymetry of the ocean and beach is again

. h(z) (0<z<], —c0o<y < o0),
R (x > 1),
h(0) =0, #(0)#0.

For slowly varying h(z), (3.2) can be written as

h 1 1

and by eliminating u from (3.1) and (3.5) we obtain for ¢ the equation:

1
Ctt - (wa)w - hgyy - th(Cmtt + nytt) - hthwtt = 0.

In the open ocean, h(z) = 1, equation (3.6) becomes

Cit — Cow — Cyy — %(Cxwtt + Gyyue) = 0,

(3.5)

(3.6)

(3.7)

which has an incident and reflected sinusoidal wave solution in the following form

(= A(k)ez‘(kzy—kl(a:—l)-wt) + B(k)ei(k2y+k1(1~z)_wt)’

(3.8)
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where (ki, k2) is the wave number vector, w is the frequency,

ky =kcosf, ky=ksing, (3.9)

w=Fk/\/1+k2/3. (3.10)

For the region along the inclined beach (0 < z < [), solution is assumed to have the

form
((z,y,t) = n(z)e® (s =ysinf—wt/k, 0 <z <) (3.11)
Substituting (3.11) into (3.6) gives for n(zx) the equation
(hng)z — %h2w277m — hhyw?n, + (w* — hk*sin® 8 + él—wszhz sin® B)n =0, (3.12)

which can be written as

1 1
"+ —p(a)n + —a(z)n =0, (3.13)
where
he(1 — w?h)
=g - 7 Y 3.14
z_hk,z tn 2 1 2k2h2 1 a2
o(z) = 2% sin [3—{; W sin® 3 (3.15)
For the present case, h < 1 over the whole field, so we have
1 1 1
1——w’h>1-20?= 1
g h2 3% 1+%k2>0’ (3.16)

for any wave number k. We shall further assume that p(z) and g(z) are analytic,

regular in 0 < z <, hence

p(z) = i pu(@/1)",  qlz) = i G/ (3.17)
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Then z = 0 is a regular singular point. By Frobenius’ theory, (3.13) has a solution

oo

(@) =D _ ba(z/1)"*, (3.18)

n=0

where v satisfies the indicial equation
V2 + (po — 1)v 4 qo = 0. (3.19)

Since py = 1 and g3 = 0, we have v; = 1, = 0.
We can define a beach function F(z;w,!,8) similar to that in Chapter 1 for the
root vy = 0 and discard the logarithmically singular solution corresponding to the

double root v = 0, so that we have

o0

1(z) = Ci(k)F(zyw, 1, 8) = Ci(k) D balz/D)", (3.20)

n=0

where by = 1 by normalization, so that F(0;w,l,3) = 1, and b, are determined by

the recurrence formula,

n—1

n’ bn = — Z(Tpn—r + Qn—r)bra (TL =1,2,-- ) (321)

r=0

Here, we observe that py = 1 and gy = 0, as explained above. We now have two pa-
rameters in w and [ in the case for dispersive waves, which is different from the nondis-
persive case treated in Chapter 1 for which we have only one parameter, x = kl = wl.
Now, application of the matching conditions (1.10) determines the coefficients B(k)
in (3.8) and Cy(k) in (3.20) as

B(k) = e¥AWbB) A(k) | (3.22)
Ci(k) = R(w, 1, B)e®@A A(k) | (3.23)
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where

R(w,l,8) = 2(M? + N?)~\/2, Aw,l,B) = arg(M +iN),  (3.24)

M(w,1,8) = F;0.,8) = 3 by (3.25)
n=0
N(@,1,8) = ———Fy(liw, [, B) = —— i nb,, . (3.26)

kcosf klcos B =

The run-up function R(w, !, 3) gives the relative wave run-up on the beach and the
phase function A(w, [, 3) gives the phase lag of the waves in the beach region and the
phase lag 2A for the waves reflected.

Figure 3.1 shows the variation of the run-up function, R(w,1,8), versus w for
waves incident upon a plane beach h(z) = z/l, [ = 10 for a set of different incidence
angles 3.

We have a sinusoidal wave with a given frequency propagating from the open
ocean of uniform depth A = 1 to the sloping plane beach. The maximum run-up of
this sinusoidal wave train predicted by the linear dispersive model is smaller than

that predicted by the linear nondispersive model. Dispersion reduces run-up.

3.2 The dispersive effects on Carrier-Greenspan’s
exact solution for periodic waves

The basic object in this section is to directly evaluate the dispersive effects on Carrier-
Greenspan’s exact solution to the shallow water equations.

The Generalized Boussinesq model, referred to as the gB model (Wu 1979), is
a weakly nonlinear and weakly dispersive model. For the two-dimensional case, gB

model reads

GHIh+Qule = 0 (3.27)
U +us, +¢ = D (3.28)
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where

h h?
(htt) er ~ —Ugas, (3.29)

D==
2 6

with error of order O(ae?, €*). Its validity is based on the assumptions that
e=ho /A K1, a=a/h, = O(e) (3.30)

for waves of typical amplitude a, length A on water of typical depth hq.

In order to use the model about a waterline, the dispersive term is modified as

1 1
D = §h2uxmt + hhzuzt + _hhxzut

2
= %(h + C>2umt + (h + ohzufct + %(h + C)hmut
= —%(h’ + C)zgmrz - (h + C)th$z - %(h + C)hmxgz; (331>

in which the modifications are made by using the lower order relations without chang-
ing the order of error estimate. We further assume the variation of h(x) to be very

small,
hy = O(€%),  hye = O(€%). (3.32)
Accordingly, the dispersive term is reduced to

D = =2 (h+ 0o (3.33)

In §2.1 we have introduced Carrier-Greenspan’s exact solution for a periodic train
of standing waves run-up and run-down on an inclined plane beach of infinite extent.
The solution is obtained from the shallow water equations, i.e., without the terms
representing the dispersive effects. Now we are going to evaluate the dispersive effects
D by using Carrier-Greenspan’s periodic wave solution, and compare the dispersive

effects D with the linear term —(,. Figure (3.2) and (3.3) show their values as a
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function of z at time ¢ = 37/4, n/4, which correspond to the end of run-up and
run-down time instants respectively. Slope of the beach is taken as 1 /4.
Compared with the linear term —(,, the dispersive term D is very small at ¢ =
3m/4. This result seems natural since the wave is very flat during the run-up time,
hence

0

But at ¢ = 7/4, i.e. the limit of run-down, the wave profile appears so much more
curved that ¢, — co at £ = —1, maximum run-down point, and (uzr — oo faster
than (;. The dispersive effect thus becomes very important around the waterline at
this time. It could be larger than the linear term —(, originally retained. This result
shows that dispersive effect is important in run-up, especially when wave becomes

relatively short.

3.3 Numerical solution of wave run-up by the gB
model

In this section, we use the gB model

GH+H[(h+QOul, = 0, (3.35)

to compute two-dimensional wave run-ups. Since
Dlps¢=0 =0, (3.37)

dispersive term vanishes at the waterline, we therefore have the same governing equa-
tions for waterline as that in equations (2.53 — 2.55). And we use the same scheme

for numerical computation of waterline (2.83, 2.84). After waterline transformation
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(2.56, 2.57), the governing equations for ¢ and w in (z/, ¢ ) becomes (after dropping

the primes)

G—alG+el(h+Quls = 0, (3.38)

1
u — Uug + co(uu, + ) = §(h + C)Zumt, (3.39)

which are valid with an error of order O(ae?; €*), and where

1+z/L 1
1 01(3% ) 1+X/L7 Ca 02() l—i—X/L’ (3 0)
are coefficients of the transformation.
The leapfrog scheme is used to perform the numerical computation
n — At At n n
G = = t A—ClU(CzH Gita) — A—wCQ{[(h + C)u]i—i-l —[(h+ Quli (3.41)
— CZ(h_+Cn)2un+1+ rl—i— 2 - ¢ (h +Cn) un+1
3(A3})2 2\ 4 §—1 [ (A )2 2
1 T n ’I'L— At n n
—3(Ax)2c2(h + Pt = up EclU(uiH — Ui ;)
_E’)A—xQ(UiH +u; + ui—l)(ui-i—l —u ) — A$C2( i1 — Gig) +
1 ‘'t n n— -
3(Az )202(h + ¢ ) (u 14-11 — 2u; ' +ui-11)' (3.42)

The scheme is explicit for ¢, and is implicit for u. They are second order in space
and time.

The first numerical experiment is to evaluate the propagation of a solitary wave
on shallow water of uniform depth (Figure 3.4). The amplitude of the solitary wave

is taken to be a = 0.1, scaled by the water depth, with the initial condition

((z,t=0)=a sechQ\/?’;a(x + 24), (3.43)
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for wave elevation, and

c=1+a/2 (3.44)

for velocity. For the numerical computation, we take At = 0.04, Az = 0.05, and use
the leapfrog scheme. Figure 3.4 shows that the scheme works very well for solitary
waves of permanent form. The amplitude of the solitary wave at time ¢ = 8.0 is
a = 0.1001, having increased only 0.1%, the speed of the solitary wave is ¢ = (24 —
15.687) /8.0 = 1.039 which is slightly smaller than the wave speed of the KdV solution,
namely 1.05. The solitary wave speed for the gB model is known to be smaller
than that for the KdV equation. This has been pointed out by Teng & Wu (1992).
Computation here reconfirms their result.

The second numerical experiment is to compare the wave run-up predicted by the
shallow water equations and the gB model, with an objective to investigate the role
which the dispersive effect plays during wave run-ups. Figure 3.5 shows the run-up
process of a solitary wave upon a sloping beach. Initial condition is the same as that
adopted in the former experiment, except we center the solitary wave at z = —16,

ie.,

((z,t=0)=a sechQ\/%Ta(:E + 16). - (3.45)

In order to deal with the dispersive term, which is a higher order derivative, we

smoothen the connection point between the ocean and beach by using

1
h(z)=1-— M log(1 + e'0/1+1)) (3.46)

as the depth function, where [ is the beach length. We notice that

h(z — 00) = —? h(z — —o0) =1, (3.47)

and h(z) has a smooth corner about z = —I. We take I = 4 in our computation.
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For the shallow water equations, the solitary wave is steepening as time goes on, and
tends to have a higher run-up. But for the gB model, the solitary wave maintains its
shape in the uniform depth region and has less run-up on a sloping beach than that
predicted by the shallow water equation. The dispersive effect plays an important role
in the evolution of solitary waves. One may notice that the wave starts to fluctuate
at ¢ = 14.4. We find that it will blow up at ¢ = 15.6. The reason for it to blow
up is the dispersive term. The wave becomes shorter around waterline at this time,
while the dispersive term becomes larger and larger, somehow to become dominant
in the run-up process. This is not a physical reality. Based on our assumption for
the gB model, the dispersive term is always in the same order as the nonlinear term,
and smaller than a single linear term. In order to make the numerical computation

convergent, we multiply the following factor
f(z) = tanh*(10 /1) (3.48)

to the dispersive term, where z is the new coordinate after waterline transformation.
This factor is almost 1 when z < —I, i.e., in the ocean. The factor is 0.95 at = = /4
(Figure 3.6). It suppresses the dispersive effect only near the region very close to
waterline.

Figure 3.7 shows the run-up of the solitary wave predicted by the gB model without
and with the suppression factor. We see that at ¢ = 15.6 the wave does not blow
up if we include the suppressing factor. In the following computation, we will always
include the factor as understood.

Figure 3.8 shows the wave elevation during run-up at time ¢ = 13.04, 14.64, 16.24,
17.84, 19.44. The solitary wave reaches the maximum run-up R = 0.3400-at time

= 19.44. Figure 3.9 shows the velocity during run-up at the same time instants
as listed in figure 3.8. The maximum speed during this run-up is as high as 0.2697,
which occurs at the waterline at ¢ = 15.88.

Figure 3.10 shows the wave elevation during the backwash at time t = 19.44, 21.04,

22.64, 24.24, and figure 3.11 shows the velocity during the backwash at the same time



75

Table 3.1: Run-up of a solitary wave of amplitude a/h = 0.1, predicted by linear
theory, the shallow water equations and the gB model, with the solitary wave centered
at T = —16 initially (see equation 3.45), running up from an ocean of depth h =1 to
a plane beach of slope o = 1/4.

Maximum Time to reach

Models run-up B maximum run-up
Linear theory 0.3366 18.76
Shallow water equation 0.3816 18.20
gB model 0.3400 19.44

instants as listed in figure 3.10. The maximum speed reached during backwash is as
high as 0.6972, which occurs at the waterline at ¢ = 24.40.

For a solitary wave of amplitude a = 0.1, initially centered at x = —16, the
maximum run-ups on a plane beach with slope 0.25, predicted by the linear theory,
the shallow water equation and the gB model, are in table 3.1.

The results show that both nonlinear and dispersive effects are important during
the wave run-up. Figure 3.12 shows the comparison of wave run-up predicted by the
three models. Figure 3.13 shows both the results of linear theory and the gB model
on run-up of a solitary wave of amplitude a = 0.1 on plane beaches with different
slopes o, 1/a = 1.

We have carried out a few more numerical experiments on the cases which have
appeared in publication, and made comparison between these results. For more com-

parison, see Appendix A.

3.4 Run-up of solitary wave on arbitrary beaches

Here, the first experiment is to calculate the run-up of a solitary wave of amplitude

a = 0.1, initially centered at = —16, on a beach with following geometry

h(z) = 1 — 0.1log(1.0 4 !00+2/1+03sin* (w2 /D)) (3.49)



76

Table 3.2: Comparison between numerical results of the present scheme and other’s
results. HH: Heitner & Housner (1970); KKL: Kim et al. (1983); PG: Pedersen &
Gjevik (1983). The laboratory experiments column shows results derived from the
interpolation of Hall & Watts (1953) data set, when possible.

Beach Other’s Results by Laboratory
Source length [ a results present scheme experiments
HH 10 0.05  0.180 0.2428 na
KLL 3.732 005 0.135 0.1783 0.173
KLL 3.732 0.1 0.308 0.3408 0.281
KLL 3.732 0.2 0.766 0.7502 0.599
HH 3.333 0.1 0.310 0.3245 na
PG 2.747  0.098 0.275 0.2866 0.252
PG 2.747 0.193 0.599 0.6441 0.552
PG 2.747  0.294 0.958 1.0309 0.898
KLL 1.0 0.2 0.504 0.4991 0.454
KLL 1.0 0.480 1.610 1.2909 1.270

The corresponding run-up and run-down results are shown in figures 3.14 and 3.15.
The maximum run-up R = 0.3408 occurs at time t = 17.84.
The second experiment is on the run-up of a solitary wave of amplitude a = 0.1,

initially centered at z = —16, on a beach with following depth variation
h(z) =1 —0.1log(1.0 4 !00+2/1=03sin*(mz/1)y (3.50)

The run-up results are shown in figure 3.16. The maximum run-up R = 0.3735 occurs
at time £ = 19.84.
The third experiment is on the run-up of a solitary wave of amplitude a = 0.1,
initially centered at x = —16, on a step beach given by
1 —0.1log(1.0 + e!00+2/0) 7z < @,

h(z) = (3.51)
—0.1 tanh(10z/1) z > 0.

The resultant wave elevations during the wave run-up are shown in figure 3.17.
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Figure 3.1: Variation of the run-up function, R(w, 1, 3), versus wl for waves incident
upon a plane beach h(z) = z/l, | = 10 for a set of different incidence angles, 8= 0°,
30°, 45°, 60°, 70°, 80°, 85°, 89°, from the top to the bottom. linear dispersive
model, - - - linear nondispersive model.
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__________________________________

Figure 3.2: Wave elevation , its derivatives —(,, (pa, Cons and the value of dispersive
term D = ——é—(h + {)*Cyae of Carrier - Greenspan exact solution at the maximum
run-up time t = 37/4 for A =1.0, | = 4.

Figure 3.3: Wave elevation (, its derivatives —(, and the value of dispersive term
D = —3(h+¢)*Cyqs of Carrier - Greenspan exact solution at the maximum run-down
time t = 7/4 for A= 1.0, | = 4.
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-35 ~30 ~25 -20 -15 -10 -5 0

Figure 3.4: Propagation of a solitary wave with amplitude a = 0.1 on shallow water
h =1, exact solution of KdV equation, ...... numerical solution by present

scheme, Az = 0.05, At = 0.04.

Figure 3.5: Comparison between run-up of a solitary wave predicted by shallow water
equations and that predicted by gB model, shallow water equation, ...... gB
model, Az = 0.05, At = 0.04.
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Figure 3.6: Dispersion suppressing factor f(z), for [ = 4.

Figure 3.7: Run-up predicted by gB model, —— with dispersion suppressing factor,
...... without the factor.
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Figure 3.8: Wave elevation of run-up predicted by gB model, maximum run-up is
0.3400, appears at ¢t = 19.44.
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Figure 3.9: Velocity of run-up predicted by gB model.
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Figure 3.10: Wave elevation of run-down predicted by gB model.

~0.3F
—0.af _ ]
e 1=22.64
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ol , ‘ i ‘ . t=24.24
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Figure 3.11: Velocity of run-down predicted by gB model.
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0.34
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Figure 3.12: Run-up of a solitary wave with a = 0.1, centered at different places x,
on a plane beach of slope 0.25.

1

Figure 3.13: Run-up of a solitary wave with amplitude a = 0.1 on plane beaches with
different slopes a, 1/a =1, linear theory, ...... gB model with present scheme.
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Figure 3.14: Run-up of a solitary wave with a = 0.1 on an arbitrary beach h(z) =
1 — 0.1log(1.0 + e!0U+a/1+03sin(mz/)) bredicted by gB model with present scheme,
maximum run-up R = 0.3408 appears at t = 17.84. :

Figure 3.15: Run-down of a solitary wave with a = 0.1 on an arbitrary beach h{z) =
1 — 0.11og(1.0 4 el0W+a/l+03sin*(me/D)y - hredicted by gB model with present scheme.
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Figure 3.16: Run-up of a solitary wave with a = 0.1 on an arbitrary beach h(z) =
1 —0.1log(1.0 + 610(1”/1_0'3Si“2(’m/l))), predicted by gB model with present scheme,
maximum run-up R = 0.3735 appears at £ = 19.84.

Figure 3.17: Run-up of a solitary wave with a = 0.1 on a step beach, predicted by
gB model with present scheme.
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Chapter 4 Three-dimensional run-up

In Chapter 2 and Chapter 3, we have studied the nonlinear and dispersive effects
during normal run-up, or two-dimensional run-up, of ocean waves on beaches. The
present treatment of the moving waterline, which we have developed in Chapter 2, is
shown to have a very high accuracy by comparison with some exact solutions of the
nonlinear shallow water equations.

In this chapter, we shall extend previous scheme for normal run-up to oblique
run-up, or three-dimensional run-up. We will study three-dimensional run-ups by

using the shallow water equations.

4.1 The governing equations

The shallow water equations for three-dimensional run-up reads

G+ (h+Quls +[(h+Qv], = 0, (4.1)
Up + Uy + Uy + (= 0, (4.2)
vt uvg Fovy + ¢ = 0. (4.3)

Here we have three unknowns, ¢, 4 and v, and three equations. The system is closed.

The governing equations for waterline are

MX,Y) + ((X,Y,t)=0, (4.4)
% = w(X,Y,t), (4.5)
e e) (4.6)
% = ¢, (4.7)
W e, (4.8)

dt
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where the first one is the geometrical equation, the second and third are kinematical
equations, and the last two are dynamical equations for the waterline. ¢, and Cy can
be determined by information inside the flow domain. From these five equations, we
can numerically solve the trajectory of waterline X = X(t), Y = Y (¢), and the wave
elevation at the waterline ((X,Y1).

Since the domain is changing with time, it is not easy to apply the finite difference
scheme to compute the problem for the points inside the domain. To overcome the

difficulty, we introduce the waterline transformation

z = (1-X/L)r + X, (4.9)
y = v, (4.10)
t o= ¢ (4.11)

where X = X (y,1) is the waterline at time ¢, and L is the computation domain. This
transformation transfers waterline to a fixed boundary 2’ = 0, and keeps the other

boundary unchanged at z’ = z = L. The partial derivatives in the two systems have

the following relations:

0 1 0

9z~ 1-X/Loz" (4.12)
g = i_,_@x'i_i__l_—_x—'/_li@_)(i (413)
oy Oy  Oyor Oy 1—X/L dy Oz’ '

9 0 00 8 1-4/LIX D (4.14)

ot ot ot dx' Y  1—X/L Ot 9z

The shallow water equations in (z',%/,t) coordinates are as follows (dropping the

primes):

G —alU + a(h+ Quls + [(A + v)y —crAl(h+ vl = 0,  (4.15)
uy — c1Uug + ca(ung + G) + vuy — g Avu, = 0, (4.16)

vy — aUv + couvg +vvy + ( — a1 Alvo, + &) = 0, (4.17)
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where ¢; = (1 —z/L)/(1 — X/L), ¢ = 1/(1 — X/L), and U = 0X/6t is the z-
component of the waterline speed, and A = 90X /9y is the inverse of the local slope
of the waterline. In the (2',y,t') coordinates, the computation domain is always a

fixed rectangle.

4.2 Numerical experiments

We compute the propagation of a solitary wave in a channel of uniform or variable
depth, and obliquely interacting with a vertical wall. Figure 4.1 shows the bottom
topography and the oblique end wall of the channel. In this numerical experiment,
the waterline is fixed with time, and X is only a function of y, i.e., X = X(y). Then
we do not, have to solve the waterline equations.

We use MacCormack’s scheme (4.19, 4.20) to do the numerical computation. For

a model equation of the form
ug + fo(u) + gy(u) =0, (4.18)

we have the following scheme

* n At n n At n kel
U5 = Uj; — Z—a;[f(uz—l—l]) - f(uz,j)} - ”A“&[g(ui,jﬂ) - Q(Ui,j)]7 (4.19)
Uz;rl = i(ui,j + U”) - 5‘&5[]0(“”) - f(ui—l,j)]
At . N
_é—_A_y[g(ui,j) - g(ui,j—l)]' - (4.20)

Following the same idea, we can construct the scheme for equations (4.15 — 4.17).

For the boundary conditions, we prescribe an incoming wave at the open boundary,
i.e., the right-hand side of the region of computation in our figures. For the two side
walls of the channel, we use

ou_, %

5y =" a =" (4.21)
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For the oblique end wall boundary, we invoke

un:Oa

Ou, %_

on on

0 0,

where 7 is the tangential direction along the end wall.

4.2.1 In a channel with uniform depth

" (4.22)

We numerically study the wave propagation in a channel with unform depth, i.e.,

hiz,y) = 1.

Our computation domain is a trapezoidal one:

0<y <10,

0.5y <z < 20.

The wave is located at x = 10 initially,

((z,t=0) =
u(z,t=0) =
v(z,t=0) =

0.1 sech®(+v/0.3(z — 10)),
~0.1 sech?(v/0.3(z — 10)),
0.

The wave will propagate from the right to the left.

(4.23)

(4.24)

(4.25)
(4.26)
(4.27)

The evolution of the “solitary wave” is shown in figures 4.2 — 4.7 for ¢t = 0, 5,

7.5, 10, 12.5, 15. Three-dimensional feature is very obvious in these figures. The

reflected waves will have two different fronts, of which one is the reflected wave from

the oblique end wall, the other one is the reflected wave from the side wall, i.e., y = 0

in our figures.
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4.2.2 In a channel with variable depth

We numerically study the problem of wave propagation in a channel with variable
depth,
0.5+0.1(x—-0.5y) 05y<z<5+05y, 0<y<10
Wz, y) = ( u) 05y iy . (4.28)
1 3+00y<x<20,0<y<10
We take the same initial condition as in (4.25 — 4.27). The evolution of the
“solitary wave” is shown in figures 4.8 — 4.13 for ¢t = 0, 5, 7.5, 10, 12.5, 15. The
“solitary wave” now travels slower than that in the former case, because in this case
the water is shallower, and consequently the wave velocity is smaller near the end

wall.
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Figure 4.1: Bottom topography and the oblique end wall of the channel.
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Figure 4.2: Variation of the wave elevation ¢ with z and y at t = 0; figures 4.2 — 4.7
are for wave propagation in a channel with uniform depth, h = 1.
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Figure 4.3: Variation of the wave elevation with = and y at ¢t = 5.
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Figure 4.4: Variation of the wave elevation with z and y at ¢t = 7.5."
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Figure 4.5: Variation of the wave elevation with = and y at t = 10.
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Figure 4.6: Variation of the wave elevation with z and y at ¢ = 12.5.

Figure 4.7: Variation of the wave elevation with = and y at ¢t = 15.
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Figure 4.8: Variation of the wave elevation ¢ with z and y at ¢ = 0; figures 4.8 — 4.13
are for wave propagation in a channel with variable depth, given by (4.28).
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Figure 4.9: Variation of the wave elevation with z and y at ¢t = 5.
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Figure 4.10: Variation of the wave elevation with z and y at t = 7.5.
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Figure 4.11: Variation of the wave elevation with = and y at t = 10.
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Figure 4.12: Variation of the wave elevation with z and y at t = 12.5.

Figure 4.13: Variation of the wave elevation with z and y at ¢t = 15.



98

Chapter 5 Conclusion

5.1 The conclusions from the first four chapters

In summary of the first four Chapters, we may draw the following conclusions:

1. A linear long-wave theory for three-dimensional run-up has been developed in
Chapter 1. By using this theory, we can evaluate oblique run-ups of ocean waves,
such as sinusoidal waves, solitary waves or other kinds of waves, on a uniform beach
with variable downward slope. In general, an oblique run-up is smaller than normal
run-up for the same incident wave. Interesting things happen for the grazing incident
waves, for which case the prevailing eigenmodes dominate the phenomenon. Nonlinear
effects will become very important for grazing incidence. We need more study for
this case. We have also developed a theory to evaluate the longshore current induced
by obliquely incident nonbreaking waves on beaches. The theory shows that the
maximum longshore current appears at the waterline, which is different from the
results for longshore current induced by breaking waves (Longuet-Higgins 1970).

2. The exact governing equations for determining a moving inviscid waterline
have been ascertained in Chapter 2 based on the local Lagrangian coordinates. A
special numerical scheme has been developed for efficient evaluation of these governing
equations. The scheme is shown to have a very high accuracy by comparison with
some exact solutions of the shallow water equations. The maximum run-up of a
solitary wave predicted by the shallow water equations depends on the initial location
of the solitary wave and is not unique in value because the wave becomes increasingly
more steepened given longer time to travel in the absence of the dispersive effects;
it is in general larger than that predicted by the linear long-wave theory in Chapter
1. The farther the initial solitary wave of the KdV form is imposed from the beach,
the larger the maximum run-up it will reach. This result disagrees with Synolakis’s

result, claiming that “the maximum run-up predicted by the linear theory is identical
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with the maximum run-up predicted by the nonlinear theory” (Synolakis 1987).

3. The dispersive effects are also very important in two-dimensional run-ups in
its role of keeping the nonlinear effects balanced at equilibrium, so that the run-
ups predicted by the generalized Boussinesq model (Wu 1979) always yield unique
values for run-up of a given initial solitary wave, regardless of its initial position.
The result for the gB model is slightly larger than wave run-up predicted by linear
long-wave theory. The dispersive effects tend to reduce the wave run-up either for
linear system or for nonlinear system. This disagrees with Carrier’s result, cited by
Liu, Synolakis & Yeh (1991), claiming that “For a typical tsunami, G. F. Carrier
showed that frequency dispersion is important in the propagation from the source
to the coastline, but unimportant in the evolution of the leading wave on a sloping
beach.”

4. A three-dimensional process of wave run-up upon a vertical wall is shown in

Chapter 4.

5.2 Further research problems

The following problems are of interest for further research:

1. Numerical study of three-dimensional run-up on non-uniform beaches predicted
by the generalized Boussinesq model (Wu 1979). Study of nonlinear and dispersive
effects in three-dimensional run-ups.

2. Three-dimensional run-up of grazing incident ocean waves upon a beach. It
is a Mach reflection for grazing incident ocean waves upon a vertical wall that was
found by Miles (1977). What will it happen for grazing incident ocean waves on a
sloping beach?

3. The eigenmode of edge wave predicted by the generalized Boussinesq model.
We have predicted the eigenmodes by linear long-wave model in Chapter 1. How do
the nonlinear and dispersive effects modify these eigenmodes?

4. The importance of nonlinear dispersion during the wave run-up. To study

this problem one needs a higher order nonlinear dispersive wave model (Wu & Zhang
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1996).
5. The idea of the treatment of the waterline can be extended to compute the

run-up of internal waves on a sea bed (Lin 1996).
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Part 11

Nonlinear waves in a fluid-filled

elastic tube
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Chapter 6 Nonlinear waves in a fluid-filled elastic

tube

6.1 Introduction

Fluid mechanics is believed by many to hold a key to exposing the basic mechanism
underlying some vascular disease. There have been many studies of fluid flow through
flexible tubes, motivated by the physiological problems of blood flow through arteries
and veins, and air flow through the lungs.

To model flow behavior in large arteries, one often assumes that the fluid is incom-
pressible and inviscid, that the flow is irrotational, and that all disturbances have a
long wavelength compared with the tube diameter. A salient feature of most flows de-
scribed by such long wave models is the steepening of nonlinear waves, i.e., formation
of elastic jumps or shocks, which has been pointed out by many authors (e.g., Skalak
1966). Cowley (1982) verified that the elastic balance of the tube can be expressed
in terms of a “tube law,” and derived conditions between up- and downstream flows
of a turbulent elastic jump. Moodie & Swaters (1989) investigated the propagation
of both finite amplitude and weakly nonlinear waves in hyperelastic tethered tubes,
and computed the time and location of first shock formation in tubes.

For a class of tube whose wall material satisfies the stress-strain law given by the
kinetic theory of rubber, Olsen & Shapiro (1967) presented a unidirectional traveling
wave solution, in which waves may have arbitrary shape. Due to the nonlinear ef-
fects involved, they concluded that “No general solution with waves of both families
(bidirectional) has been found except for small amplitude when the linear theory is
applicable.” This situation has not been much advanced in the intervening years. The
primary objective of the present study is to develop a nonlinear bidirectional theory

for large-amplitude waves of inviscid incompressible liquid in a long elastic tube with
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its wall properties belonging to the class above.

In this study, a mathematical model is developed in §6.2. Then one solitary wave
solution is given in §6.3. In §6.4, we give two solutions for head-on collision of two
solitary waves, the first being for weakly nonlinear waves (perturbation approximate
solution) while the second for fully nonlinear waves (an exact solution). It is shown
that the perturbation solution is only the first several terms of Taylor’s expansion of
the exact solution. The Hamiltonian structure of the evolution system is studied in
§6.5. The system is shown to be at least tri-Hamiltonian. It implies the complete
integrability of the system. In §6.6 we first show that any initial value imposed on
the model will become two solitary waves, separately travelling to the left and to the
right. Then we develop an iteration scheme to integrate the initial value problem.
Finally, we shall show that nonlinear waves never steepen according to this model,

i.e., shock does not form for the system if initial value is continuous.

6.2 The governing equations

We consider the wave motion of a fluid (water) confined in a longitudinal constrained
circular elastic latex tube. We assume that the flow is axisymmetric inside the elastic
tube whose radius varies along the axis with time in wave motion, and the confined
fluid is incompressible and inviscid. And we submerge the tube inside water in order
to cancel the gravitational effect. The transversal velocity can be neglected for long
waves since it is much smaller than the longitudinal velocity. After integrating the

Euler equation over the cross section once, we have the following equations:

s+ (us), = 0, (6.1)

1
Up + Uy + ;px = 0, (6.2)

where z is the tube axis along the longitudinal direction, s = s(x, ) is the area of the
tube cross-section, u = u(z,t) is the velocity averaged over the tube cross-section, p

is the density of water. p = p(z,t) is the pressure of water in the tube, it is assumed
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to be a constant over the cross-section.
For a longitudinally constrained tube made of a specific class of latex, the following

relation has been derived from the kinetic theory of rubber (Treloar 1958, Oslen &
Shapiro 1967):

L, 55
P = 5P ( - "9'2‘) , (6-3)

where s is the reference cross-sectional area of the tube in equilibrium at rest. Figure
6.1 shows the variation of pressure p with 1 — s2/s?, the solidline is from the kinetic

theory of rubber, and the dots are our lab data.

" sOp So
=/—-=— =ay—.
p O0s O

Substituting (6.3) into (6.1) and (6.2), we rescale s by sg, u by ag, z by L and ¢

The wave speed is

by L/ag, then the nondimensionalized equations are:

st + (us), = 0, (6.4)
+u, — ( = ) =0 (6.5)
Ut UU, 232 N = . .

This is the mathematical model for the wave propagation in a fluid-filled elastic tube.

We are going to study the solution of the model.

6.3 Unidirectional travelling wave

We now seek a solitary wave solution of equation (6.4) and (6.5) by assuming
s=s(x—ct), u=ulz—ct),

where ¢ is wave speed, which is functional yet to be determined. Substituting these

relations into (6.4) and (6.5), integrating once under the regular boundary conditions
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at infinity, namely,

s=1, u=0,
we have
—Cs +us = —¢,
1, 1 1
—cu+ U — —— =~

From these two equations it follows that

c = =+1, u=c(1—1>.
s

This means that we have solitary wave solution of the general form

s = 14 f(Ft+2), (6.6)
f(Ft +2)
Tr fF+ o) 01

where f = f(Ft 4 ) is an arbitrary function, the upper sign is for right-going wave
and the lower sign for left-going wave.

The above solution was first found by Olsen & Shapiro (1967) for unidirectional
solitary waves, either right- or left-going. But the problem of interaction between

right- and left-going waves remains unsolved.

6.4 Bidirectional waves interaction

6.4.1 Perturbation solution

For weakly nonlinear waves, we can solve the problem of interaction between right-

going and left-going waves by using the perturbation scheme:

s=1+es +esy+---,

U26U1+62u2—|—"',
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where € is a small parameter, representing the scale of wave amplitude. After substi-

tuting these expansions in equation (6.4) and (6.5) and collecting the terms in orders

of €, we obtain the leading order equations as

s tu, = 0,

Ui+ 81, = 0,
and for the second order equations,

Sot +Uze = —(u151)e,

Uzt + S22 = —(33% - u%)z

We introduce new variables &, and &_:
§+:—t+$, §_=t+l‘7

then
0,=0_—0y, 0,=0_+0,.

The equation for s; can be derived from (6.8) and (6.9) to give
814t — S1gz = —40.0,51 =0

and likewise for u,. Hence

s1= fr (&) + f-(&-),
ur = fi(§4) — f-(€-).

The equation for sy can be derived from (6.10) and (6.11) to give

Sott — Sz = —(ulsl)xt - ‘2"(3‘9% - u%)ﬂm

(6.8)
(6.9)

(6.10)
(6.11)

(6.12)

(6.13)
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Substituting the expressions for €, £_, s; and u, into the above equation yields
0_0485 = (- 4+ 04 )*(f+ f-)-

Similarly, we obtain equation for us:
O_0us = —(0% — B2)(f+ f-)-

We introduce ¢4 by 0r¢, = fi, and integrate the above two equations giving

se=¢40_f_ + &0, fr +2f+ f-, , (6.14)
Uy = —p10_f_+ ¢ 0y fy. (6.15)

Combining (6.12), (6.13), (6.14) and (6.15) yields

'S:1+f+($+¢~7t)+f—($+¢+7t)+2f+f—-7 (616)
u=fi(z+ -, t) = f(2+ ¢4 1), (6.17)

From these two formulas, we see that ¢_ and ¢, are the phase shifts for the right and
left going waves respectively. For two positive polarized waves in a head-on collision,
the phase shifts are backward for both, each by a magnitude of phase shift equal to
the area under the curve f of the other wave. Since for this model the solitary wave
function f(Ft+z) can be arbitarily given, the phase shift can therefore be backward,
forward and even null. This is quite different from free surface water wave, in which
case the phase shift resulting from interactions between two solitary waves on shallow

water is always backward after a head-on collision (Wu 1994).
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6.4.2 Exact solution

From the above perturbation solution, we can make an Ansatz solution for bidirec-

tional nonlinear wave interaction as follows:

A+ )+ 1)
= T (6.18)
_ J+— /-
Y= TF ) (6-19)
where  fi = f.(§), f-=f-(£&), (6.20)
G =—t+a+o_(E), & =t+z+ 9 (&), (6.21)
011 =fr, 0-¢_=f_. (6~22)

Substituting the above equations into the governing equations (6.4) and (6.5), one can
easily show this is the exact solution of the problem. The solution is for interacting
bidirectional waves of finite amplitude. One can see that the interaction between two
solitary waves is clean. All the solitary waves are therefore solitons.

Suppose f, and f_ are two solitary waves with the same amplitude a, then the

maximum amplitude for cross-sectional area s exactly equals

__1+a_ 2a

= 1 1 .2
m=1 g ~I_1—0,’ (a<1) (6.23)
and the phase shift is exactly equal to
Ay =20, = /_Oo fr dé. (6.24)

For small wave amplitudes, |fi| << 1, expanding (6.18) and (6.19) in Taylor
series, one will find that the pertubation solution (6.16) and (6.17) are indeed the
first several terms of the series.

Figure 6.2 shows a head-on interaction of two smooth solitary waves f, = f =
0.25 sech®z. The maximum amplitude for s is (1 4+ 0.25)/(1 — 0.25) = 5/3. Both
are positive polarized, so their phase shifts are backward. Figure 6.3 shows another

head-on interaction of two smooth solitons f, = —f_ = 0.25 sech?z. One is positive
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polarized, whereas the other is negative polarized, so the phase shift for the former
one is forward, and the phase shift for the latter one is backward. Figure 6.4 shows a
head-on interaction of triangle soltions f, = f_ = 0.125(|1 — |z|| + 1 — |z|). Both are
positive polarized, so their phase shifts are backward. Figure 6.5 shows still another

head-on interaction of square solitons f, = f_ = 0.125(1 + sign(1 — |z|)).

6.5 Hamiltonian structures of the system

In this section, the Hamiltonian method is used to study evolution equation system
(6.4) and (6.5) following Olver (1986). Our system is a special case of the polytropic
gas dynamics systems, which has been studied by Olver & Nutku (1988). It has three

first order Hamiltonian. The system can be written as
Ut == Dl 5?“[3 = DZ 57‘[2 = Dg 5%1, (625)

where D;, D,, D3 are Hamiltonian operators, H1, Ha, Hs are Hamiltonian function-

als, and 0H;, ¢ = 1,2, 3 are the variational derivatives of vector U (see Appendix).

u

U = , (6.26)
S
0 0 © 1 , 1

Dl = 5 0 ) y Hg = [m(-gsu - 58 ) dﬂf, (627)

0+ 0(s7%) (—3u)0+0 oo
D, — (s7%) (s7°) (=3u) ) / s do. (6.28)
O(—3u) + ud 50+ Os -0

Dy = (us™)0 + O(us?) (—§u? = 357%)0 + 8(3u* — §57%)
3 — )
D=4 — Ls) 1 (lu? — 15200 (u5)0 + O(us)
" = /oo s dz. (6.29)

The Hamiltonian operators Dy, D,, D3 are mutually compatible, leading to three

distinct Hamiltonian pairs. One can easily show that H;, H,, Hs are conserved
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quantities of the system. Furthermore, by Magris’s theorem (Appendix) a conserved

quantity H4 can be calculated from

1ud — 2572,
Dy 6Hy =Dy 0Hy=| 2 2
(Ssu? + 3s71),
© 1 , 3 _,
then Hy = [m(isu +58 u) de. (6.30)

And still another conserved quantity Hs can be calculated from the equation
Dy 6Hs = D3 6Hs;, (6.31)

and so on. We get infinite number of conservation laws in this way.
Our system is at least tri-Hamiltonian. This suggests that the system is completely

integrable.

6.6 Initial value problem

In this section, we are trying to integrate the system (6.4) and (6.5), i.e., to find a
solution to the initial value problem.

We make following transformation

1
F=u+-, G=u—-. (6.32)
s s

Substituting into equation (6.4) and (6.5), after straightforward algebra we have

F,+GF,=0, (6.33)
G,+F G, =0. (6.34)

So the characteristic relations are (figure 6.6):

on — =G, F = const., (6.35)
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on — =F, G =const. (6.36)

Let us inspect IVP of equation (6.4) and (6.5). Suppose an initial disturbance is at
rest except between x; < z < x5, so that outside this region © = 0 and s = 1, i.e.,
F =1 and G = —1. From the characteristic relations, F = 1 and G = —1 will hold
for the region 1, 4 and 5 (see figure 6.6). G = —1 will hold for region 2. F =1 will
hold for region 3. This means the solution has only left-going waves in region 2, and
right-going waves in region 3. There is no wave in region 1, 4 and 5. Region 6 is the
interaction region.

This result asserts that any initial disturbance will eventually become a left-going
wave train and a right-going wave train, each bearing no wake. And we have obtained
a bidirectional wave solution in §6.4.2. So solutions for any IVP of equations (6.4)
and (6.5) can be constructed with equations (6.18)-(6.22).

Now we shall develop a scheme to solve the two solitons resulting from arbitrary
initial conditions of F' and G. From §6.4.2 and equation (6.32), we have the following

relations for the initial data:

J- -1+ f1

F(z,0) = i—;f G(@,0) =57 7o (6.37)
with f, = fi(&), f-=fA(&), (6.38)
&G = z+¢-(§-), &-=z+9(&) (6.39)
Then we have
_ 1—F(z,0)
f-(€) = 3 n F(x o)’ (6.40)
fi(&4) = GE;: 0; (6.41)

Since the right-hand side of these two equations is given, we can solve f,(z) and

f-(z) by executing the following iteration scheme:

1. Let ¢+ (x) = 0, then {4 = z, and equations (6.40) and (6.41) will give fi(z);



116

then integrating fi(z) gives ¢4 (z) as the first iterate.
2. Substituting ¢, (z) into equation (6.39), we can solve (6.39) for &1 = &4 ().

3. Substituting this £, = &.(z) into equations (6.40) and (6.41), we can again

solve fi(z). Integrating fi(z) this time gives ¢.(z) as the second iterate.
4. The process could be repeated to completion when a certain criterion is satisfied.

Finally we can solve f,(z) and f_(z).

From equations (6.18)—(6.22) and (6.32), one can see that the necessary and
sufficient condition for u(z,t) and s(z,t) to be continuous are that f, and f_ are
continuous or, equivalently, F(z,0) and G(z,0) are continuous, or the initial values
u(z,0) and s(z,0) are continuous. This means that shocks will not form if initial

values are continuous. Shock exists if and only if it initially exists.
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Figure 6.1: Constitutional realtion of the latex elastic tube, pressure p as a function
of 1 — s3/s?, s being cross-section area. Solid line is from kinetic theory of rubber,
and dots are our lab data.
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Figure 6.2: Two soliton solution for f, = f_ = 0.25 sech?z.
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Figure 6.3: Two soliton solution for f, = —f_ = 0.25 sech®z.
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Figure 6.4: Two soliton solution for triangle waves f. = f_ = 0.125(]1—|z||+1—|z]).
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Figure 6.5: Two soliton solution for square waves f, = f_ = 0.125(1 +sign(1 — |z|)).
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Figure 6.6: Characteristics for the equations.
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Appendix A Comparison between results of the

present scheme and other’s

In Chapter 1, we have obtained the solution for solitary waves running from the ocean
of uniform depth to a sloping plane beach by using linear nondispersive theory. On

the beach, wave elevation is
¢(z,1) = Re / " Ao(B)Ro(k)e #1201, (2kvIZ)dk (0 <z < 1), (1.72)
0

where Ag(k) is given by (1.66), Ro(k) and Ag(k) by (1.52, 1.53). Then the run-up,

i.e., the wave elevation at x = 0, is
R(t) = Re / " Ag(k)Ro(r)e*t+io g (A1)
0

By using an asymptotic expansion method, Synolakis (1987) found an approximate

formula for the maximum run-up
R = Max R(t) = 2.831v1 a*/*, (A.2)

where 1/1 is the beach slope and a is the amplitude of the solitary wave. The formula

is given a range of validity for
a > (0.288/1)%. (A.3)

We numerically evaluate the maximum R of equation (A.1) and compare it with for-
mula (A.2) in table A.1 and figure A.1. For a = 0.1 and [ = 1, Synolakis’ approximate
formula has an error of about 25%.

We have carried out some numerical computation on the run-up of solitary waves

by using generalized Boussinesq model (Wu 1979) with our scheme developed in
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Chapter 2 and 3. We compare our numerical results attained from formula (A.2)
with experimental results available. The results are shown in table A.2, table A.3,
figure A.2 and figure A.3.

For the first case, [ = 19.85, formula (A.2) is supposedly correct when a > 0.0002
according to (A.3). The comparison is shown for amplitude @ in between 0.0052 and
0.0280. For this mild beach, our numerical results agree with formula (A.2) quite
well, the relative difference is less than 5%. Both are larger than experimental results
of Synolakis (1987).

For the second case, [ = 1, formula (A.2) is supposedly correct when a > 0.08 as
claimed by (A.3). We compare for amplitude a in between 0.2 and 0.5. For this steep
beach, The relative difference between our numerical results and the formula (A.2) is

around 20%. The agreement is poor.
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Table A.1: The run-up predicted by linear nondispersive theory, for a solitary wave
of amplitude a/h = 0.1, running up from an ocean of depth h = 1 to a plane beach
of slope a = 1/1.

Approximate formula (A.2) Numerical evaluation of
Beach length [ R = 2.831V1 a®/* the maximum run-up R by (A.1)
0.0 0.0000 0.2000
1.0 0.1592 0.2163
2.0 0.2251 0.2561
3.0 0.2757 0.2981
4.0 0.3184 0.3366
5.0 0.3560 0.3717
6.0 0.3900 0.4039

Table A.2: Run-up of non-breaking solitary waves predicted by the gB model with
present scheme, by an approximate formula and experimental results (Synolakis
1987).

Beach  Amplitude  Formula (A.2)  Results by gB with Laboratory

length ! a R = 2.8311 a%/* present scheme  experiments
19.85 0.0052 0.018 0.0187 0.019
19.85 0.0065 0.023 0.0245 0.022
19.85 0.0071 0.026 0.0272 0.026
19.85 0.0080 0.030 0.0315 0.029
19.85 0.0092 0.036 0.0373 0.036
19.85 0.0095 0.037 0.0388 0.041
19.85 0.0097 0.038 0.0398 0.038
19.85 0.0129 0.055 0.0564 0.048
19.85 0.0141 0.061 0.0629 0.052
19.85 0.0144 0.063 0.0646 0.049
19.85 0.0170 0.077 0.0792 0.063
19.85 0.0180 0.083 0.0849 0.074
19.85 0.0190 0.089 0.0908 0.077
19.85 0.0210 0.101 0.1029 0.075
19.85 0.0220 0.107 0.1091 0.098
19.85 0.0230 0.113 0.1155 0.087
19.85 0.0250 0.125 0.1289 0.100
19.85 0.0270 0.138 0.1435 0.108

19.85 0.0280 0.144 0.1514 0.123
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Table A.3: The run-up of non-breaking solitary waves predicted by the gB model with
present scheme in comparison with the approximate formula of Synolakis (1987).

Beach Amplitude  Formula (A.2) Results by gB
length [ a R =2.831y/1 a%* with present scheme
1.00 0.200 0.3786 0.4991
1.00 0.210 0.4025 0.5263
1.00 0.220 0.4265 0.5538
1.00 0.230 0.4509 0.5816
1.00 0.240 0.4756 0.6097
1.00 0.250 0.5005 0.6379
1.00 0.260 0.5256 0.6663
1.00 0.270 0.5510 0.6949
1.00 0.280 0.5766 0.7236
1.00 0.290 0.6025 0.7523
1.00 0.300 0.6285 0.7811
1.00 0.310 0.6549 0.8098
1.00 0.320 0.6814 0.8385
1.00 0.330 0.7081 0.8671
1.00 0.340 0.7350 0.8958
1.00 0.350 0.7621 0.9244
1.00 0.360 0.7894 0.9530
1.00 0.370 0.8169 0.9815
1.00 0.380 0.8446 1.0099
1.00 0.390 0.8725 1.0384
1.00 0.400 0.9006 1.0667
1.00 0.410 0.9288 1.0950
1.00 0.420 0.9572 1.1232
1.00 0.430 0.9858 1.1513
1.00 0.440 1.0145 1.1794
1.00 0.450 1.0434 1.2074
1.00 0.460 1.0725 1.2353
1.00 0.470 1.1017 1.2631
1.00 0.480 1.1311 1.2909
1.00 0.490 1.1606 1.3185

1.00 0.500 1.1903 1.3461
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Figure A.1: The Maximum run-up of solitary wave of amplitude a = 0.1 as a function
of | evaluated by linear nondispersive theory, solid line is our numerical results, dashed
line is formula (A.2).
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Figure A.2: The maximum run-up of solitary waves running from an ocean with
uniform depth up to a plane beach of slope a = 1/19.85, as a function of wave
amplitude a, solid line is our numerical results, dashed line is formula (A.2), dots are
experimental data (Synolakis 1987).
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Figure A.3: The maximum run-up of solitary waves running from an ocean with
uniform depth up to a plane beach of slope a = 1, as a function of wave amplitude a,
solid line is our numerical results, dashed line is formula (A.2), dots are experimental
data (Hall & Watts 1953).



128

Appendix B Definition of Hamiltonian for

evolution equation and Magri’s theorem

Let M C X x U be an open subset of the space of independent and dependent
variables z = (z!,---,2P) and u = (u',- -, u?). The algebra of differential functions
P(z,u™) = P[u] over M is denoted by A, and its quotient space under the image of
the total divergence is the space F of functionals P = [ Pdx.

A system of evolution equations can be written as
u = Klu] = K(z,u™) =D - 0H[u], KcA?, HecF, (A1)

where D is a differential operator.

Poisson bracket associated with operator D has the form
(P, L} = / 5P - DoL da, (A.2)

where P, L € F are functionals.
Definition A.1. A linear operator D : A9 — AY is called Hamailtonian if its

poisson bracket satisfies the conditions of skew-symmetry
{P,L} =—{L,P}, (A.3)
and the Jacobi identity
{{P,L},R} +{{R, P}, L} + {{L, R}, P} =0, (A.4)

for all functionals P, L, R € F.
Definition A.2. A pair of skew-adjoint ¢ X ¢ matrix differential operators D and

€ is said to form a Hamiltonian pair if every linear combination aD + b€, a,b € R, is
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a Hamiltonian operator. A system of evolution equations is a bi-Hamiltonian system

if it can be written in the form
ut:Kl[u] =D(SH1 :8'57‘[0, (A5)

where D, £ form a Hamiltonian pair.

Magri’s Theorem: (Magri 1978) Let (A.5) be a bi-Hamiltonian system of evolu-
tion equations. Assume that the operator D of the Hamiltonian pair is nondegenerate.
Let R = £-D~! be the corresponding recursion operator, and let Ky = DdH,. Assume

that for each n = 1,2, - - - we can recursively define
Kn=RKp1, n=1
meaning that for each n, K, _; lies in the image of D. Then there exists a sequence

of functionals Hq, Hq, Haz,- -+, such that

1. for each n > 1, the evolution equation
w=Kylul=D-H, =& - 0Hp1 (A.6)

is a bi-Hamiltonian system;

2. the Hamiltonian functionals #, are all in involution with respect to either
bracket:
{Hna Hm}’D =0= {Hn; Hm}ga n,m Z 07 (A7)

and hence provide an infinite collection of conservation laws for each of the

bi-Hamiltonian systems (A.6).

The proof of the theorem can be found in Olver’s book (1986).



