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Abstract 

  Although secondary organic aerosol (SOA) makes up a substantial fraction of the 

organic mass observed in tropospheric fine particulate matter, there remain significant 

uncertainties in the true impact of atmospheric aerosols on climate and health due to the 

lack of full knowledge of the sources, composition, and mechanisms of formation of 

SOA.  This thesis demonstrates how the detailed chemical characterization of both 

laboratory-generated and ambient organic aerosol using advanced mass spectrometric 

techniques has been critical to the discovery of previously unidentified sources (i.e., role 

heterogeneous chemistry) of SOA. 

The focal point of this thesis is given to the detailed chemical characterization of 

isoprene SOA formed under both high- and low-NOx conditions.  Until recently, the 

formation of SOA from isoprene, the most abundant non-methane hydrocarbon emitted 

into the troposphere, was considered insignificant owing to the volatility of its oxidation 

products.  In conjunction with the chemical characterization of gas-phase oxidation 

products, we identify the role of two key reactive intermediates, epoxydiols of isoprene 

(IEPOX) and methacryloylperoxynitrate (MPAN), that are formed during isoprene 

oxidation under low- and high-NOx conditions, respectively.  Increased uptake of IEPOX 

by acid-catalyzed particle-phase reactions is shown to enhance low-NOx SOA formation.  

The similarity of the composition of SOA formed from the photooxidation of MPAN to 

that formed from isoprene and methacrolein demonstrates the role of MPAN in the 

formation of isoprene high-NOx SOA.  More specifically, the further oxidation of MPAN 

leads to SOA by particle-phase esterification reactions.  Reactions of IEPOX and MPAN 
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in the presence of anthropogenic pollutants could be a substantial source of “missing 

urban SOA” not included in current SOA models.  

Increased aerosol acidity is found to result in the formation of organosulfates, 

which was a previously unrecognized source of SOA.  By comparing the tandem mass 

spectrometric and accurate mass measurements collected for both the 

laboratory-generated and ambient aerosol, previously uncharacterized ambient organic 

aerosol components are found to be organosulfates of isoprene, α-pinene, β-pinene, and 

limonene-like monoterpenes, demonstrating the ubiquity of organosulfate formation in 

ambient SOA.  We estimate that the organosulfate contribution to the total organic mass 

fraction in certain locations could be substantial (upwards of 30%).   
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