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Abstract 

Chelating phosphine ligands were used to enforce targeted coordination 

geometries onto complexes of iron and copper, thereby imparting molecular properties 

distinct relative to species studied previously in other geometries. The bulky 

bis(phosphino)borate ligand [Ph2B(CH2PtBu2)2]- was used to provide trigonal planar 

complexes of Cu. This structural motif provided a rare opportunity for a single 

framework to stabilize Cu complexes in three discrete oxidation levels and allowed for 

the study of unique ligands including diazoalkanes, a diphenylcarbene, diarylamides, and 

a diarylaminyl radical. In the latter case, physical measurements (multiedge XAS and 

multifrequency EPR spectroscopy) and theoretical methods (DFT) were used to 

quantitate the delocalization of spin density between the Cu center and the NAr2 unit, 

providing a comprehensive electronic structure picture for L2CuER2 (E = C or N) 

complexes in this system. In separate studies, trigonal bipyramidal Fe complexes were 

generated using the bulky, anionic tris(phosphino)silyl ligands [(2-R2PC6H4)3Si]- (R = Ph 

or iPr). Low-valent Fe species in this system were found to activate dinitrogen, providing 

labile N2 ligands trans to the silyl donor, including the first instance of a terminally 

bound N2 ligated to a paramagnetic Fe center. Subsequent reactions involving these FeI-

N2 species and organoazides provided entry to unusual catalytic N-N coupling reactions. 

These reactions were found to involve reactive FeNAr intermediates, destabilized by 

virtue of the trigonal bipyramidal coordination geometry, which subsequently coupled 

bimolecularly in the N-N bond-forming step. The effects of perturbing previously studied 

C3-symmetric pseudotetrahedral iron complexes to their trigonal bipyramidal analogues 

proved key to uncovering the chemistry of interest. 
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Chapter 1: Introduction 
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1.1 Opening Remarks 

 One theme unifying the various research projects presented in this dissertation is 

the use of coordination geometry to control the properties of transition metal complexes, 

in particular focusing on structure, spectroscopy, and chemical reactivity. 

Chapters 2 and 3 concern copper complexes with trigonal planar coordination 

geometries. Though copper(I) is known to be quite promiscuous with regard to its 

coordination number and geometry, classical complexes of copper(II) and copper(III) 

tend to require coordination numbers of 4 or higher and place themselves in tetragonal 

geometries. The results presented here involve the use of a bulky, chelating, anionic 

bis(phosphino)borate ligand to enforce trigonal planar geometries onto such oxidized 

copper complexes, allowing for studies of species with ligands such as carbenes (:CR2, 

Chapter 2) and aminyl radicals (·NR2, Chapter 3). 

Chapters 4 and 5 feature iron complexes with trigonal bipyramidal (TBP) 

coordination geometries. Previous studies in the Peters group have focused on iron 

complexes in pseudotetrahedral environments enforced by bulky, chelating, anionic 

tris(phosphino)borate (BP3) ligands. The design strategy utilized here involves replacing 

the non-coordinating borate anchor of the BP3 frameworks with a tightly coordinating 

silyl anchor while retaining threefold symmetry, thereby shifting the paradigm from 4-

coordinate, tetrahedral systems to 5-coordinate, TBP systems. This goal was achieved 

with tris(phosphino)silyl (SiP3) ligands. Chapter 4 presents the synthesis of these ligands 

and several corresponding Fe-containing complexes that served as precursors for N2 

activation and reduction. In Chapter 5, one of these low-valent iron-dinitrogen species is 

used as a precursor to study interactions of iron centers with organoazides, leading 
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eventually to studies of unusual catalytic N-N coupling reactions and the unique 

reactivity of high-energy iron-imido complexes (FeNR) that are destabilized by virtue of 

the trigonal bipyramidal geometry. In both chapters, subtle but important differences 

arising from the shift from tetrahedral to TBP iron centers contributed to the findings and 

are highlighted in this dissertation. 

The remainder of this introductory chapter will provide discussions of the 

importance of coordination geometry as it relates to these various topics, contextualizing 

them within larger problems of interest in inorganic chemistry. 

 

1.2 Electron Transfer at Copper-Containing Active Sites 

Transition metal active sites are found regularly in proteins for which rapid and 

efficient electron transfer (ET) processes are crucial. One such motif is the well-known 

set of iron-sulfur cluster structures.1 Other electron transfer sites contain either mono- or 

dicopper cores (Figure 1.1).1b For example, the dinuclear CuA site is a structural motif 

found in the enzymes cytochrome c oxidase and nitrous oxide reductase.2 The CuA sites 

contain highly covalent dicopper bis(μ-cystein) cores, often referred to as “diamond 

cores,” supported by additional Met and Gln residues. On the other hand, the type-1 

copper active sites are monometallic cores found in the “blue copper” family of proteins.3 

The common link between all of the type-1 active sites is a highly covalent His2Cys 

donor set conferring trigonal symmetry to the copper centers; the various proteins further 

stabilize the low-coordinate copper center with zero, one, or two additional residues at 

long (>2.6 Å) distances. Both the dinuclear CuA sites and the mononuclear type-1 sites 

are able to mediate electron transfer processes with extremely rapid rates. 
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Figure 1.1. Schematics of the (left) CuA and (right) type-1 active sites 

found in biological electron transfer proteins. 

 

A fascinating question is how Nature has been able to utilize these copper-

containing active sites for efficient electron transfer, considering that ET in non-

biological copper-containing systems is typically inefficient because it is accompanied by 

significant structural rearrangements and/or ligand redistributions. For example, cupric 

ions tend to reside in tetragonal geometries that distort severely to tetrahedral or trigonal 

geometries upon reduction to the cuprous state (Figure 1.2).4 Clearly, biological systems 

are able to minimize redox-induced structural change (and thus the reorganizational term 

λ)5 in order to maximize ET efficiency. Research from several research groups over 

several decades has established two main hypotheses concerning this phenomenon. 

One hypothesis involves the “entatic state,” wherein it is proposed that a protein 

matrix confers a strained (“entatic”) geometry that is intermediary between the two 

limiting structures (Figure 1.2).6 The ground state geometry therefore resembles the 

transition state geometry during ET, and thus λ is extremely small and ET rates are 
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 5 
extremely large. Several groups, most notably that of Rorabacher,4 have sought Cu model 

compounds that demonstrate this principle. 

 

Figure 1.2. Schematics representing (top) redox-induced structural 

reorganization in nonbiological Cu systems, and (bottom) the entatic state 

geometry of Cu centers. 

 

The second hypothesis concerns intimate electron structure, wherein metal-ligand 

covalency, as opposed to strained geometry, stabilizes electronic states. Solomon, in 

particular, has advanced this idea with detailed studies of the electronic structures of the 

type-1 and CuA sites,7 both of which contain short and highly covalent Cu-thiolate bonds 

(Figure 1.1). For example, a combination of spectroscopic and theoretical analyses have 

shown that the redox-active molecular orbital (RAMO) of CuA is highly delocalized, and 

that in fact the unpaired spin of the oxidized, formally Cu1.5Cu1.5 state resides to a larger 

extent on the two bridging S atoms (46%) than on the two Cu centers (44%).7b Dicopper 
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model complexes from the Peters group featuring Cu2(μ-XR2) diamond cores (X = N or 

P)8 exhibit similar covalency8c,9 (Figure 1.3) and match the efficiency of CuA during self-

exchange ET reactions.8a Highly covalent Cu2(μ-SR)2 cores also have been detailed by 

Tolman,10 though they do not mediate reversible redox chemistry. 

 

Figure 1.3. (left) Generalized drawing of the dicopper model complexes 

of the Peters group. (right) Spin density plots (top and side views) for a 

complex with X = N and L = di(iso-butyl)phosphino taken from ref 8c. 

 

 The collection of model compounds relevant to the trigonally symmetric type-1 

active sites is less well developed. Though large ET rate constants in the range observed 

for blue copper proteins have been achieved in certain synthetic monocopper systems 

using geometries distinct from trigonal environments,11 ET studies had yet to be 

conducted in synthetic systems featuring isolated, trigonally disposed copper centers 

prior to our work. The simplest such systems would contain trigonal planar geometries, 

and the dearth of model compounds results in part from the marked absence of three-

coordinate cupric ions in the literature. Tolman’s set of (β-diketiminate)copper(II) 
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complexes12 were the only three-coordinate, formally copper(II) complexes known prior 

to our work. 

 During our work with trigonal planar, copper(I) amide anions (see Chapter 2), we 

became interested in the possibility of 1-electron oxidation to provide access to neutral, 

formally copper(II) amides. Chapter 3 describes the properties of this reversible redox 

process. This synthetic L2CuX framework is related conceptually to the (His)2Cu(Cys) 

framework found in type-1 active sites, and so the electron structure of the Cu-N linkage 

in these complexes became the focus of our attention. 

 At this point it is useful to consider the possible electronic structures of the 

L2CuER2 fragment (E = C (Chapter 2) or N (Chapter 3)). Figure 1.4 depicts the two 

limiting conformations for the ER2 moiety relative to the L2Cu plane. Placing the R 

substituents in the L2CuE plane results in a destabilizing filled-filled dπ-pπ interaction 

that is perpendicular to the plane, resulting in a completely filled π* level and no net π-

bonding. On the other hand, placing the ER2 plane perpendicular to the L2Cu plane causes 

a E pπ orbital to mix with a dπ-orbital that is also destabilized by σ* interaction with the 

L donors. Thus, in this scenario the π* orbital is unoccupied (E = C) or partially occupied 

(E = N), resulting in some degree of net π-bonding. This more stable conformation is 

observed experimentally for known Cu=CR2 complexes13 and for the Cu-NR2 complex 

presented in Chapter 3. 
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Figure 1.4. (middle) Qualitative d-orbital splitting diagram for a trigonal 

planar Cu center considering only σ-symmetric interactions (E = C or N). 

Perturbations resulting from two different ER2 conformations: ER2 

substituents oriented (left) perpendicular to the L2Cu plane and (right) in 

the L2Cu plane. 

 

 The stabilized electronic structure depicted in the left portion of Figure 1.4 is a 

direct result of the coordination geometry enforced by the chelating ligand architecture 

and places the Cu-E π* level at high energy. This destabilized orbital is, as a result, 

highly redox active. Accordingly, it ranges from completely filled in the cuprous 

precursor species, to partially filled in the neutral copper aminyl of Chapter 3, and to 

completely empty in the copper carbene of Chapter 2. It is highly unusual for a single 

geometry to support three distinct oxidation levels for a mononuclear copper species, but 
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 9 
here the trigonal planar geometry enables it by delocalizing the RAMO across highly 

covalent Cu-E linkages (Figure 1.4). Chapter 3 describes in detail the physical 

measurements we have used to measure quantitatively the degree Cu-N bond covalency 

and the physical nature of the RAMO. 

 

1.3 Nitrogen fixation using iron 

 The Haber-Bosch process is arguably the most important reaction in synthetic 

chemistry. In this atom-economical, though energy-intensive process, gaseous N2 and H2 

are passed over a catalyst, usually consisting of iron, at high temperatures (400-500 °C) 

and high pressures (100-300 atm) to produce NH3 on scales of approximately 130 metric 

tons per year worldwide. The majority of this synthetic ammonia is devoted to making 

fertilizers. It has been estimated that, as a result, approximately 75% of all nitrogen in 

human dietary protein comes from synthetic ammonia, and furthermore that 

approximately half of the nitrogen atoms in the human body currently come ultimately 

from the Haber-Bosch process.14 In short, contemporary human population levels could 

not be sustained without the existence of the large-scale Haber-Bosch facilities we have 

today. The amount of energy devoted to this process worldwide is staggering. Because of 

the high temperatures and pressures required, the resulting elaborate reactor facilities, and 

the processes associated with obtaining the hydrogen feedstock, the Haber-Bosch process 

accounts for about 2% of the world’s total energy consumption.14 

Conversely, the bacterial nitrogenase enzymes are able to catalyze the reduction 

of dinitrogen to ammonia at ambient conditions (albeit at a large cost of 16 equivalents of 

the biological energy currency ATP). In the most common form of nitrogenase, substrate 
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binding and catalytic turnover occurs at a multinuclear cluster called the FeMo cofactor,15 

which consists of 7 Fe centers, 10 S atoms, a single Mo site, a homocitrate ligand, and a 

central unidentified (“X”) atom that is either C, N, or O (Figure 1.5).16 

 

Figure 1.5. The FeMo cofactor cluster at the core of nitrogenase that 

catalyzes the reduction of N2 to NH3 at ambient conditions. 

 

 Very little is known about the mechanism of N2 reduction at the FeMo cofactor, 

and so it is the source of copious discussion and has inspired model compounds for 

several decades.17 Yandulov and Schrock recently showed that catalytic N2 reduction can 

be achieved at a single Mo center at ambient temperature and pressure,18 and moreover 

that system likely follows the classical N2 reduction mechanism outlined by Chatt.19 
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Figure 1.6. (top) A putative Chatt cycle for N2 reduction at a single Fe 

center. (bottom) Possible coordination of N2 to a single trigonal pyramidal 

Fe center in the FeMo cofactor to produce a terminal, trigonal bipyramidal 

Fe-N2 moiety. This figure has been reproduced in part from reference 20. 

 

Considering the structure of the FeMo cofactor, another possibility is that N2 

binding and reduction occurs at one or more Fe centers. Studies of the enzyme itself 

under turnover conditions have implied that this is likely the case.16 If a single Fe center 

were involved in a Chatt-type mechanism, it would have to access several oxidation 

states and stabilize a wide variety of ligands ranging from strong π-acids to strong π-

bases (Figure 1.6). Though such rich redox chemistry traditionally has been considered 

unlikely for Fe, the recent literature of small-molecule Fe model compounds with 

multielecton redox properties and stable metal-ligand multiple bonding is growing.17b,21 
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 Were the N2 substrate to bind and/or get reduced at a single Fe center in 

nitrogenase, the initial species formed would contain a terminal Fe-N2 linkage. 

Considering both a FeI/FeIV Chatt cycle for N2 reduction (Figure 1.6) and also the fact that 

detectable substrate-bound intermediates in the enzyme are known to possess 

paramagnetic Fe-NxHy moieties,16 an intriguing target molecule is a terminally bound 

iron(I)-dinitrogen species. Though terminal N2 complexes of iron(0) and iron(II) are well 

known,17 prior to this work no terminal N2 complexes of iron(I) (or any paramagnetic iron 

center) were known. The Peters group has worked previously with pseudotetrahedral iron 

complexes supported by tris(phosphino)borate ligands, and the Holland group has studied 

trigonal planar iron complexes supported by β-diketiminate ligands.17 In both cases, 

bridging diiron(I) (μ-N2) species of were synthesized (Figure 1.7), but terminal FeI-N2 

complexes were not accessible.22 

 

Figure 1.7. Previous examples of dinitrogen complexes of iron(I) reported 

by the groups of Peters (left) and Holland (right). This figure ahs been 

reproduced in part from reference 17b. 
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The most accurate crystal structure of the FeMo cofactor features six “belt irons” 

that all possess trigonal pyramidal coordination geometries (Figure 1.6). Therefore, were 

an N2 ligand to coordinate one of these Fe centers, a trigonal bipyramidal Fe-N2 moiety 

would result (Figure 1.6). For this reason, we targeted a trigonal bipyramidal FeI-N2 

species, and Chapter 4 describes the successful synthesis and characterization of a set of 

such complexes. There is a timely need for the synthesis of such species, as their 

spectroscopic features are of tremendous utility for comparison to data being obtained for 

intermediates within the cofactor itself under turnover conditions.16 As is detailed in 

Chapter 4, subtle differences between pseudotetrahedral and trigonal bipyramidal 

coordination geometries cause the TBP complexes presented here to avoid dinuclear 

structures even though they are roughly isosteric with the tetrahedrally coordinated 

complex shown in Figure 1.7. 

 

1.4 Iron complexes with multiply bonded ligands 

 Complexes of iron with multiply bonded ligands are important in many biological 

contexts21,23 as well as for atom transfer and group transfer processes in synthetic 

catalysis.24 The Peters group has focused in particular on multiple bonds between iron 

and nitrogenous ligands. For reasons outlined in Section 1.3, such species are interesting 

in the context of biological process such as N2 fixation at the FeMo cofactor of 

nitrogenase.21 In addition, species such as iron-imido (FeNR) complexes are thought to be 

the key reactive intermediates in many catalytic reactions involving nitrene transfer to 

organic substrates.24a Therefore, understanding the underlying principles dictating their 

stability, reactivity, and physical properties is fundamentally important. 
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Figure 1.8. Structurally characterized iron-imido species. 

 

 During attempts to study iron-imido species, several groups have reported 

unobserved FeNR intermediates that are hypothesized to be unstable toward hydrogen 

atom abstraction and/or intramolecuar ligand oxidation. These systems span a wide 

variety of coordination numbers and geometries and include trigonal planar,25 

tetrahedral,25,26 octahedral,27 and trigonal bipyramidal28 systems. Stable, structurally 

characterized examples of terminal iron-imido linkages are represented in Figure 1.8. The 

first example of a terminal iron-imido species came from Lee,29 who reported the 

tetrairon cluster shown in Figure 1.8 that contains four bridging and one terminal imido 

group. The first mononuclear iron-imido species came from the Peters group and feature 

tetrahedral iron centers supported by bulky tris(phosphino)borate ligands.30 The 

collection of tetrahedral FeNR complexes has since grown to include complexes of 
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bis(phosphine)pyrazolylborate ligands from the Peters group31 and tris(carbene)borate 

ligands from Smith.32 Terminal arylimidoiron complexes with highly distorted square 

planar geometries subsequently were reported by Chirik,33 and recently a bis(imido)iron 

complex with trigonal planar geometry was synthesized by Power.34 

 The stability of the tetrahedral (BP3)FeNR complexes has allowed for detailed 

chemical, spectroscopic, and theoretical studies.30,31 Collectively, these analyses have led 

to a cohesive electronic structure picture. Key to the stability of these species is the fact 

that all frontier d-electrons (d4, d5, or d6) reside in non-bonding orbitals, while a 

degenerate set of orbitals with both σ*FeP and π*FeN character remain unoccupied (Figure 

1.9). As a result, these complexes contain formal Fe-N triple bonds. 

 

Figure 1.9. Qualitative d-orbital splitting diagrams for (left) a 

(BP3)FeIIINR complex and (right) a hypothetical (SiP3)FeNR complex. 

 

 Quite a different picture emerges when shifting from a tetrahedral to a TBP 

coordination environment. Due to the introduction of an axial ligand and the related shift 

of the Fe center into the P3 plane, the frontier orbitals of Fe d-orbital parentage are all 

antibonding in character (Figure 1.9). In addition, unlike stable, low-spin (BP3)FeIIINR 

complexes, a formal d5 configuration is expected to populate the degenerate π*FeN set, 
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thus obliterating a significant amount of Fe-N π-bonding and vastly destabilizing the 

FeNR moiety. A thorough discussion of this effect has been presented by Nocera in the 

context of TBP metal-oxo species.35 Therein, it is proposed that such an electronic 

structure, particularly for metal-oxo species that place unpaired spins in the π*M-O levels, 

could induce radical O-O coupling, which is an important elementary step of water 

oxidation but has not been understood on a fundamental level. 

 In this context, it is intriguing not only that the putative (SiP3)FeNR species 

described in Chapter 5 undergo N-N coupling, but also that they can do so catalytically 

when converting aryl azides into azoarenes. This unusual chemical reactivity has not 

been demonstrated with the previous iron-imido systems described above and presumably 

results directly from the TBP coordination geometry being enforced by the (SiP3) ligands. 
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2.1 Introduction 

 Metal-catalyzed carbene transfer from diazoalkanes to organic substrates has 

become a versatile technique in synthesis, and copper catalysts have been particularly 

well studied in this regard.1,2 Careful study of copper carbene complexes (Cu=CR2), the 

presumed reactive intermediates in these reactions, serves to deepen understanding of 

these copper-catalyzed transformations. Identifying factors that affect copper carbene 

stability, characterizing specific decomposition pathways, and understanding the nature 

of copper-diazoalkane interactions prior to copper-carbene bond formation are therefore 

issues of fundamental interest. 

 Whereas α-heteroatom stabilized copper carbenes are well known,3 only two 

examples of non-heteroatom stabilized copper carbenes have been reported. Both of these 

derivatives are stabilized by bidentate, monoanionic N-chelates. The first such example 

was reported by Hofmann in 2001 and assigned using spectroscopic data.4 Warren and 

co-workers later reported X-ray structural data for a β-diketiminato Cu=CPh2 complex.5 

Both of these systems mediate catalytic cyclopropanation reactions and employ 

diazoalkane precursors to generate the carbenes of interest. In this context we note that 

the presumed diazoalkane adduct intermediates en route to carbene formation were not 

observed, and to our knowledge no such species have been previously characterized for 

copper systems. 

 Our group has had an interest in exploiting (phosphino)borate ligands to stabilize 

mid-to-late first-row metals featuring metal ligand multiple bonds.6 In this chapter, we 

describe the utility of the bulky bis(phosphino)borate ligand7 [Ph2BPtBu
2] = 

Ph2B(CH2PtBu2)2 to generate unusual diazoalkane adducts of CuI. In addition, we 
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establish that N2CPh2 reacts to generate the copper carbene complex [Ph2BPtBu

2]Cu=CPh2 

as verified by NMR spectroscopy and group transfer of the carbene unit. This latter 

species is unstable in the presence of additional N2CPh2 in solution and as such generates 

the structurally novel azine adduct [Ph2BPtBu
2]Cu-N(CPh2)(NCPh2) as a side product. 

 

 

2.2 Results and Discussion 

 The synthesis of copper(I) species of the type [Ar2BPR
2]Cu-L (L = e.g., CH3CN, 

PR3, CO) was reported recently.8 Preliminary group transfer studies with diazoalkanes 

suggested the necessity of a [Ar2BPR
2]Cu-L precursor with a sufficiently labile L ligand 

to expose reactions of interest. The aniline adduct [Ph2BPtBu
2]Cu(NH2Mes) (Mes = 2,4,6-

trimethylphenyl) proved key in this regard. Its synthesis (Scheme 2.1) proceeded from the 

neutral pyridine adduct [Ph2BPtBu
2]Cu(pyridine) (2.1). Reaction of LiNHMes and excess 

12-crown-4 with yellow 2.1 provided the anionic colorless amido complex 

{[Ph2BPtBu
2]CuNHMes}{Li(12-crown-4)2} (2.2). Protonation of 2.2 with HBF4 (toluene,  
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-90 °C) produced the colorless aniline adduct [Ph2BPtBu

2]Cu(NH2Mes) (2.3). 

Recrystallization of 2.3 from a THF/petroleum ether mixture provided the THF adduct 

[Ph2BPtBu
2]Cu(THF) (2.4). The solid-state structures of 2.1 and 2.4 have been placed in 

Appendix 1.  

 

Figure 2.1. Solid-state structures of {[PhBPtBu
2]Cu(NH2Mes)}{Li(12-

crown-4)2} (2.2) (top) and [PhBPtBu
2]Cu(NH2Mes) (2.3) (bottom) as 50% 

ellipsoids. Only the anion of 2.2 is shown. N-H hydrogens are shown in 

calculated positions, and C-H hydrogens have been omitted for clarity. 

Selected bond distances (Å) and angles (°) for 2.2: Cu-N, 1.967(3); Cu-

P(1), 2.2806(14); Cu-P(2), 2.2806(14); P(1)-Cu-P(2), 105.04(5); P(1)-Cu-

N, 120.15(10); P(2)-Cu-N, 131.96(10); Cu-N-C(31), 136.3(3). For 2.3: 

Cu-N, 2.076(2); Cu-P(1), 2.2667(11); Cu-P(2), 2.2464(14); P(1)-Cu-P(2), 

107.89(5); P(1)-Cu-N, 120.17(8); P(2)-Cu-N, 131.81(8); Cu-N-C(31), 

118.46(19). 
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 The X-ray crystal structures of complexes 2.2 and 2.3, which are related by a 

proton transfer, are shown in Figure 2.1. The crystal structure of 2.3 features a longer Cu-

N distance  (2.0758(3) Å) and more compressed Cu-N-C angle (118.46(2)°) when 

compared to its conjugate base 2.2 (1.962(1) Å and 136.43(1)°, respectively). Gunnoe has 

recently reported that the structurally related but neutral complex (dtbpe)Cu(NHPh) 

(dtbpe = tBu2PCH2CH2PtBu2) has an appreciably shorter Cu-N distance of 1.890(6) Å.9 

 When either 2.3 or 2.4 were mixed with N2C(SiMe3)2 or N2CMes2, the stable 

diazoalkane adducts yellow [Ph2BPtBu
2]Cu(η1-N2C(SiMe3)2) (2.5) and  red 

[Ph2BPtBu
2]Cu(η1-N2CMes2) (2.6) formed rapidly and could be readily isolated (Scheme 

2.1). We were surprised to find that these adducts are the only characterized examples of 

CuI-diazoalkane complexes to be reported, though Hofmann has described a formally 

CuIII-diazoalkane complex resulting from reduction of a chelating diazoalkane unit by a 

CuI precursor.10 The observed N2CR2 13C{1H} chemical shifts (δ 29.5 for 2.5 and δ 99.3 

for 2.6) and CN2 vibrational frequencies (2108 cm-1 for 2.5 and 2041 cm-1 for 2.6) are 

very similar to the corresponding values for the free diazoalkanes,11 indicating that the 

diazoalkane moieties have not been significantly perturbed upon coordination to copper. 

The molecular structures of 2.5 (Appendix 1) and 2.6 (Figure 2.2) feature N-N distances 

(1.200(8) Å for 2.5 and 1.1630(6) Å for 2.6), N-C distances (1.237(9) Å for 2.5 and 

1.3188(7) Å for 2.6), and N-N-C angles (180.000(7)° for 2.5 and 176.50(6)° for 2.6) that 

are notably similar to the corresponding parameters for the free diazoalkanes.11 The Cu-

N-N angle of 2.5 is linear (180.000(2)°) whereas for 2.6 the angle drops to 156.95(5)°. 

For comparison, Hofmann’s CuIII-diazoalkane complex has severely bent Cu-N-N and N-
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N-C angles (123.8(2)° and 134.3(3)°, respectively) owing to the reduced diazoalkane 

ligand.10 

 Complex 2.5 is stable to 110 °C in toluene solutions even in the presence of 

Lewis acid catalysts. Complex 2.6 decomposes to a complicated mixture of products 

when heated in hydrocarbon solutions, and though the product profile simplifies when 

Sm(OTf)3 is added as a catalyst, no stable products were isolated from these thermolysis 

experiments, and no evidence for Cu=CR2 bond formation was detected. The diazoalkane 

complex (dtbpe)Ni(η2-N2CPh2) has been isolated by Hillhouse and co-workers and was 

shown to extrude N2 and form (dtbpe)Ni=CPh2 upon thermolysis in the presence of 

catalytic Sm(OTf)3.12 Perhaps an important distinction to note between this Ni system and 

the Cu-diazoalkane adducts 2.5 and 2.6 is that N2CPh2 binds in an η2-NN mode to the 

L2Ni0 fragment, whereas N2C(SiMe3)2 and N2CMes2 bind in an η1-N fashion to the L2CuI 

fragment described here. 

 When the less-bulky diazoalkane reagent N2CPh2 was added to 2.3 or 2.4 at 

ambient temperature, N2 release occurred spontaneously with concomitant formation of 

an inky blue solution and free NH2Mes (in the case of 2.3). A mixture of two Cu-

containing species, ultimately assigned as [Ph2BPtBu
2]Cu-N(=CPh2)NCPh2 (2.7, δ 39.9) 

and [Ph2BPtBu
2]Cu=CPh2 (2.8, δ 64.8), could be detected by 31P{1H} NMR (Scheme 2.1). 

Quantitative conversion to 2.7 exclusively was achieved by the use of 2 equiv or more of 

N2CPh2, and its assignment as a benzophenone azine adduct was verified by single-

crystal X-ray diffraction (Figure 2.2). The N-N bond distance of 1.3962(3) Å in 2.7 is 

consistent with the azine N-N single-bond formulation. The Cu center in 2.7 is best 

described as trigonal planar, as the Cu-Ndistal distance (2.7649(3) Å) is much longer than 
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the Cu-Nproximal bond length of 2.0166(2) Å. Complex 2.7 presumably forms from the 

reaction between the intermediate carbene species 2.8 and unreacted N2CPh2; such C-N 

bond forming reactions between isolated terminal metal carbenes and diazoalkanes have 

been observed for metals other than copper.13 

 

 

Figure 2.2. Solid-state structures of [Ph2BPtBu
2]Cu(N2CMes2) (2.6) (left) 

and [Ph2BPtBu
2]Cu-N(=CPh2)NCPh2 (2.7) (right) as 50% ellipsoids. Non-

phosphorus atoms of the [Ph2BPtBu
2] ligands have been omitted for clarity. 

Selected bond distances (Å) and angles (°) for 2.6: Cu-N(1), 1.858(5); Cu-

P(1), 2.2521(17); Cu-P(2), 2.2473(17); N(1)-N(2), 1.163(6); N(2)-C(31), 

1.321(7); P(1)-Cu-P(2), 107.06(6); P(1)-Cu-N(1), 119.67(15); P(2)-Cu-

N(1), 133.01(15); Cu-N(1)-N(2), 156.9(5); N(1)-N(2)-C(31), 176.4(6). For 

2.7: Cu-N(1), 2.017(2); Cu-P(1), 2.2595(8); Cu-P(2), 2.2595(8); N(1)-

N(2), 1.396(3); N(1)-C(31), 1.296(3); N(2)-C(44), 1.322(4); P(1)-Cu-P(2), 

107.62(3); P(1)-Cu-N(1), 129.57(7); P(2)-Cu-N(1), 120.11(7); Cu-N(1)-

N(2), 106.81(18). 
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Figure 2.3. 13C{1H} signal (left) and 31P{1H} signal (right) for 

[Ph2BPtBu
2]Cu=13CPh2 (2.8-13C). 

 

 Under dilute conditions, as high as 70% conversion to carbene complex 2.8 has 

been achieved. This species features an intense band at λmax = 583 nm (ε = (est.)  

12000 M-1 cm-1) that likely arises from MLCT charge transfer into the Cu=CPh2 unit. 

Warren has observed an optical transition of similar energy and intensity in the related β-

diketiminato Cu=CPh2 species.5 To cement the assignment of 2.8, solutions of 

[Ph2BPtBu
2]Cu=13CPh2 (2.8-13C) were generated using N2

13CPh2 in place of unlabelled 

diphenyldiazomethane. A diagnostic triplet at δ 331.5 was clearly visible in the 13C{1H} 

NMR spectrum (2JPC = 41 Hz) (Figure 2.3), and the 31P{1H} NMR spectrum of 2.8-13C 

featured a corresponding sharp doublet (δ 64.8, 2JPC = 41 Hz). A slightly larger value for 

2JPC was observed for Hillhouse’s (dtbpe)Ni=CPh2 species (δ 222, 2JPC = 51 Hz).12 

Interestingly, the Cu=CPh2 13C{1H} NMR chemical shift in 2.8-13C is considerably 

further downfield than for other reported copper carbene species,3-5 though it is certainly 

within the range typically observed for terminal metal carbene complexes.14,15 As further 

evidence for the presence of the “CPh2” carbene functionality in 2.8, we observed 
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quantitative carbene transfer to CO to generate ketene Ph2C=C=O and [Ph2BPtBu

2]Cu(CO) 

upon exposure of solutions of 2.8 to excess carbon monoxide (Scheme 2.1). Carbene 

transfer to CO is also characteristic of the Ni and Cu carbenes of Hillhouse and Warren, 

respectively.5,12 Complex 2.8 did not readily transfer its carbene unit to olefins such as 1-

hexene or styrene. 

 

Figure 2.4. Optimized structure of 2.8, as determined by DFT. Selected 

bond distance: Cu-C, 1.933 Å. 

 

 Whereas Warren’s β-diketiminato copper carbene complex is stable at room 

temperature, complex 2.8 loses Ph2C=CPh2 even at  -30 °C. This fact has thus far 

precluded its crystallization from solution. The β-diketiminato Cu=CPh2 species degrades 

similarly upon thermolysis.5  

 A computational study of 2.8 was undertaken to probe the Cu-C distance by DFT 

methods.16 A diphenylcarbene unit was attached to the [Ph2BPtBu
2]Cu fragment taken 
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from the atomic coordinates in the solid-state structure of 2.1. Geometry optimization 

calculations using various initial Cu-C distances all gave the same optimized geometry 

(Figure 2.4), featuring trigonal planar geometries at both the copper center and the 

carbene carbon atom, with a Cu-C distance of 1.933 Å. Significantly shorter distances 

have been determined experimentally for the previously reported M=CR2 (M = Cu, Ni) 

complexes (1.834-1.859 Å).5,12 It is possible that the long-predicted Cu-C distance in 2.8 

is experimentally manifested by the relatively small value for 2JPC and the significantly 

deshielded carbene carbon atom. It must, however, be noted that optimizing the geometry 

of 2.8 while fixing the Cu-C distance to be either 1.830 or 2.030 Å gave structures whose 

energies spanned a range of only 1.0 kcal/mol, indicating that the molecule’s potential 

energy surface is quite flat with regard to the Cu-C distance. 

 

2.3 Experimental Section 

 

2.3.1 General Considerations 

All manipulations were carried out using standard Schlenk or glovebox 

techniques under a dinitrogen atmosphere.  Unless otherwise noted, solvents were 

deoxygenated and dried by thoroughly sparging with N2 gas followed by passage through 

an activated alumina column.  Non-halogenated solvents were tested with a standard 

purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm 

effective oxygen and moisture removal.  All reagents were purchased from commercial 

vendors and used without further purification unless otherwise stated. Lithium 2,4,6-

trimethylanilide was prepared by deprotonation of 2,4,6-trimethylaniline with n-
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butyllithium. [Ph2BPtBu

2]Li(OEt2),17 diphenyldiazomethane,18 bis(2,4,6-

trimethylphenyl)diazomethane,19 and bis(trimethylsilyl)diazomethane20 were prepared 

according to literature procedures. N2
13CPh2 was prepared from benzophenone-(carbonyl-

13C) (Cambridge Isotopes, Cambridge, MA) according to literature procedures.18 

Elemental analyses were performed by Desert Analytics, Tucson, AZ.  Deuterated 

solvents were purchased from Cambridge Isotope Laboratories, degassed, and dried over 

activated 3 Å molecular sieves prior to use.   

 

2.3.2 Spectroscopic Measurements 

A Varian Mercury-300 spectrometer was used to record 1H, 13C, 19F, and 31P NMR 

spectra at ambient temperature.  1H and 13C chemical shifts were referenced to the 

residual solvent peaks.  19F and 31P chemical shifts were referenced to external 

hexafluorobenzene (δ = -165 ppm) and phosphoric acid (δ = 0 ppm) respectively. Optical 

spectroscopy measurements were taken on a Cary 50 UV/Vis Spectrophotometer using a 

1 cm quartz cell. 

 

2.3.3 Computational Methods 

All calculations were performed using the Jaguar 5.0 program package (Jaguar 

5.0, Schrodinger, LLC, Portland, OR). The calculations employed the hybrid DFT 

functional B3LYP. The LACVP** basis set21 was used for the Cu atom. The 6-31G** 

basis set was used for the P atoms, as well as the carbene C atom. The MIDI! basis set22 

was used for all other C atoms, as well as B and H atoms. Input coordinates for the 

geometry optimizations were derived as described in the text. The calculations were spin 
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restricted, and no symmetry constraints were used. The default values for geometry and 

SCF iteration cutoffs were used, and all structures converged under these criteria. 

 

2.3.4 X-ray Crystallography Procedures 

X-ray diffraction studies were carried out at the Beckman Institute 

Crystallography Facility on a Brüker Smart 1000 CCD diffractometer and solved using 

SHELX v. 6.14.23  X-ray quality crystals were grown as indicated in the experimental 

procedures per individual complex.  The crystals were mounted on a glass fiber with 

Paratone N oil.  Structures were determined using direct methods with standard Fourier 

techniques using the Bruker AXS software package. Spatial refinement details: 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for 

negative F2.  The threshold expression of F2 > 2σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement.  R-factors 

based on F2 are statistically about twice as large as those based on F, and R-factors based 

on ALL data will be even larger.  All esds (except the esd in the dihedral angle between 

two l.s. planes) are estimated using the full covariance matrix.  The cell esds are taken 

into account individually in the estimation of esds in distances, angles, and torsion 

angles; correlations between esds in cell parameters are only used when they are defined 

by crystal symmetry.  An approximate (isotropic) treatment of cell esds is used for 

estimating esds involving l.s. planes. Crystallographic details have been placed in 

Appendix 1. 
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2.3.5 Synthesis 

Synthesis of [Ph2BPtBu
2]Cu(pyr) (2.1).  [Ph2BPtBu

2]Li(OEt2) (1.83 g, 3.25 mmol) 

and [Cu(CH3CN)4][BF4] (1.02 g, 3.25 mmol) were combined in a 250 mL flask equipped 

with a stir bar and dissolved in diethyl ether (100 mL).  The initially cloudy purple 

mixture was stirred for 3.5 h, yielding a cloudy white suspension.  The solvent was 

removed in vacuo, and the residues were suspended in minimal acetonitrile.  A white 

powder was collected on a sintered glass frit, dissolved in minimal THF, and filtered 

through Celite.  Pyridine (2 mL) was added to the colorless filtrate, giving a clear, bright 

yellow solution that gradually became cloudy.  After stirring for 1 h, the solvent was 

removed in vacuo to yield analytically pure 2.1 (1.48 g, 73%).  X-ray quality crystals 

were obtained by slow diffusion of petroleum ether vapors into a concentrated THF 

solution of 2.1.  1H (THF-d8, δ): 8.74 (dt, J = 2.2 and 4.4 Hz, 2H, pyridine ortho-CH), 

7.80 (tt, J = 1.4 and 7.7 Hz, 1H, pyridine para-CH), 7.55 (tq, J = 1.4 and 6.9 Hz, 2H, 

pyridine meta-CH), 7.37 (br, 4H, phenyl ortho-CH), 6.88 (t, J = 7.3 Hz, 4H, phenyl meta-

CH), 6.67 (t, J = 7.2 Hz, 2H, phenyl para-CH), 1.58 (br, 4H, BCH2P), 1.09 (d, 3JPH = 6.3 

Hz, 18H, P[C(CH3)3]2), 1.07 (d, 3JPH = 6.1 Hz, 18H, P[C(CH3)3]2).  13C{1H} (THF-d8, δ): 

152.5 (m, ipso-C), 150.6 (s, pyridine C2), 136.7 (s, pyridine C4), 134.8, 133.7, 126.8, 

122.5 (s, pyridine C3), 35.8 (br, P[C(CH3)3]2), 34.5 (br, P[C(CH3)3]2), 31.0 (d, 2JPC = 4.2 

Hz, P[C(CH3)3]2), 30.9 (d, 2JPC = 4.1 Hz, P[C(CH3)3]2), 28.0 (m, BCH2P).  31P{1H} (THF-

d8, δ): 35.7 (s).  IR (KBr, cm-1): 3055, 3030, 2976, 2941, 1595, 1470, 1444, 1383, 1362, 

1155, 1103, 1067, 1016, 934, 861, 810. Anal. Calcd for C35H55BCuNP2: C, 67.14; H, 

8.85; N, 2.24.  Found: C, 66.75; H, 8.62; N, 2.34. 
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Synthesis of {[Ph2BPtBu

2]Cu(NHMes)}{Li(12-C-4)2} (2.2).  2.1 (1.07 g, 1.71 

mmol) and LiNHMes (0.242 g, 1.71 mmol) were combined in THF (50 mL), giving a 

cloudy brown solution.  After stirring for 5 min, 12-crown-4 (0.690 mL, 4.26 mmol) was 

added.  The resulting clear yellow-brown solution was stirred for 0.5 h, and then the 

solvent was removed in vacuo.  The residues were triturated with petroleum ether  

(50 mL), and a tan powder was collected on a sintered glass frit.  Subsequent washes with 

petroleum ether (5 x 10 mL) gave spectroscopically pure 2.2 (1.71 g, 96%).  X-ray 

quality crystals were obtained by slow diffusion of petroleum ether vapors into a 

concentrated THF solution of 2.2.  1H (THF-d8, δ): 7.37 (br, 4H, ortho-CH), 6.82 (t, J = 

7.3 Hz, 4H, phenyl meta-CH), 6.61 (t, J = 7.0 Hz, 2H, para-CH), 6.38 (s, 2H, mesityl 

meta-CH), 3.60 (s, 32H, O(CH2)2O), 2.80 (br, 1H, CuNHMes), 2.19 (s, 6H, ortho-CH3), 

2.01 (s, 3H, para-CH3), 1.41 (br, 4H, BCH2P), 1.06 (d, 3JPH = 5.5 Hz, 18H, P[C(CH3)3]2), 

1.05 (d, 3JPH = 5.5 Hz, 18H, P[C(CH3)3]2). 13C{1H} (THF-d8, δ): 160.0 (s, mesityl ipso-C), 

155.4 (br, phenyl ipso-C), 134.1, 129.1, 126.4, 121.9, 120.7, 114.0, 69.4 (s, O(CH2)2O), 

34.0 (br, P[C(CH3)3]2), 31.1 (d, 2JPC = 7.2 Hz, P[C(CH3)3]2), 31.0 (d, 2JPC = 7.2 Hz, 

P[C(CH3)3]2), 21.4 (s, ortho-CH3), 21.2 (s, para-CH3), 14.6 (br, BCH2P).  31P{1H} (THF-

d8, δ): 29.0 (s).  IR (KBr, cm-1): 3374 (N-H st), 2909, 2864, 1629 (N-H δ), 1603, 1475, 

1445, 1362, 1289, 1248, 1136, 1098, 1024, 916, 853, 812. Anal. Calcd for 

C55H94BCuLiNO8P2: C, 63.48; H, 9.11; N, 1.35.  Found: C, 62.12; H, 8.73; N, 1.24. Note: 

Satisfactory combustion analysis results could not be obtained, even when doubly 

recrystallized material was submitted for analysis. 1H and 31P{1H} NMR spectra indicated 

that the material was spectroscopically pure. 
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Synthesis of [Ph2BPtBu

2]Cu(NH2Mes) (2.3).  2.2 (1.66 g, 1.60 mmol) was 

dissolved in toluene (50 mL) and cooled to -90 ºC.  Separately, tetrafluoroboric acid 

(0.219 mL of a 48 wt% solution in diethyl ether, 1.60 mmol) was diluted with toluene (10 

mL) and cooled to -30 ºC.  The acid solution was then added slowly at -90 ºC, giving a 

cloudy brown mixture that was allowed to warm gradually to room temperature.  After 

stirring for 2 h at room temperature, the mixture was filtered through Celite.  

Concentration of the gold-yellow filtrate gave a tacky yellow residue, which was 

triturated with petroleum ether (20 mL) and collected by filtration.  Subsequent washes 

with petroleum ether (3 x 10 mL) gave analytically pure 2.3 (0.813 g, 74%).  X-ray 

quality crystals were obtained by slow diffusion of petroleum ether vapors into a 

concentrated dichloromethane solution of 2.3.  1H (C6D6, δ): 7.92 (br d, J = 5.4 Hz, 4H, 

ortho-CH), 7.39 (t, J = 7.5 Hz, 4H, phenyl meta-CH), 7.13 (t, J = 7.2 Hz, 2H, para-CH), 

6.56 (s, mesityl meta-CH), 3.43 (br, 2H, CuNH2Mes), 2.05 (s, 3H, para-CH3), 1.9 (br, 

4H, BCH2P), 1.87 (s, 6H, ortho-CH3), 1.01 (d, 3JPH = 6.0 Hz, 18H, P[C(CH3)3]2), 0.99 (d, 

3JPH = 6.0 Hz, 18H, P[C(CH3)3]2). 13C{1H} (C6D6, δ): 150.9, 144.2, 136.7, 134.4, 133.7, 

127.3, 124.5, 123.3, 36.1 (br, P[C(CH3)3]2), 33.9 (br, P[C(CH3)3]2), 31.1 (d, 2JPC = 7.2 Hz, 

P[C(CH3)3]2), 31.0 (d, 2JPC = 7.2 Hz, P[C(CH3)3]2), 28.1 (s, ortho-CH3), 27.7 (s, para-

CH3), 17.9 (br, BCH2P).  31P{1H} (C6D6, δ): 37.1 (s).  IR (KBr, cm-1): 3353 (N-H st), 3292 

(N-H st), 3053, 2938, 1580, 1480, 1428, 1381, 1364, 1305, 1260, 1219, 1156, 1105, 

1015, 940, 860, 808. Anal. Calcd for C39H63BCuNP2: C, 68.66; H, 9.31; N, 2.05.  Found: 

C, 68.51; H, 9.28; N, 1.79. 

Preparation of [Ph2BPtBu
2]Cu(THF) (2.4). Petroleum ether vapors were diffused 

slowly into a saturated THF solution of 2.3 to provide a quantitative yield of 2.4. 1H 
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(C6D6, δ): 7.90 (d, J = 5.8 Hz, 4H, phenyl ortho-CH), 7.39 (t, J = 7.7 Hz, 4H, phenyl 

meta-CH), 7.13 (t, J = 8.3 Hz, 2H, phenyl para-CH), 3.55 (m, 4H, O-(CH2-CH2)2), 1.84 

(br, 4H, BCH2P), 1.38 (m, 4H, O-(CH2-CH2)2), 1.02 (d, 3JPH = 6.0 Hz, 18H, P[C(CH3)3]2), 

1.00 (d, 3JPH = 6.3 Hz, 18H, P[C(CH3)3]2).  13C{1H} (C6D6, δ): 136.4, 135.9, 133.6, 123.3, 

68.7 (br, O-(CH2-CH2)2), 34.8 (br, P[C(CH3)3]2), 34.1 (br, P[C(CH3)3]2), 31.4 

(P[C(CH3)3]2), 30.7 (P[C(CH3)3]2), 27.7 (m, BCH2P), 26.1 (O-(CH2-CH2)2).  31P{1H} 

(C6D6, δ): 37.5 (s).  IR (KBr, cm-1): 3054, 2941, 1474, 1364, 1103, 860, 815. Anal. Calcd 

for C34H58BCuOP2: C, 65.96; H, 9.44.  Found: C, 66.21; H, 9.22. 

Synthesis of [Ph2BPtBu
2]Cu(N2C(SiMe3)2) (2.5).  Bis(trimethylsilyl)diazomethane 

(0.0598 mL of a 1.87 M stock solution in hexanes, 0.112 mmol) was added to a stirring 

solution of 2.3 (63.6 mg, 0.0932 mmol) in benzene (5 mL).  The resulting yellow solution 

was heated to 60 °C for 24 h, and then concentrated in vacuo to a solid yellow-orange 

residue.  Recrystallization from petroleum ether (1.5 mL, -30 °C) gave 2.5 as faint yellow 

crystals (7.3 mg, 11%).  X-ray quality crystals were obtained by slow evaporation of a 

petroleum ether solution of 2.5. 1H (C6D6, δ): 8.01 (br d, J = 5.4 Hz, 4H, ortho-CH), 7.42 

(t, J = 7.3 Hz, 4H, meta-CH), 7.16 (t, J = 7.2 Hz, 2H, para-CH), 1.91 (br, 4H, BCH2P), 

1.22 (d, 3JPH = 6.3 Hz, 18H, P[C(CH3)]2), 1.20 (d, 3JPH = 5.8 Hz, 18H, P[C(CH3)2]), -0.03 

(s, 12H, Si(CH3)2). 13C{1H} (C6D6, δ): 166.1 (m, ipso-C), 133.6, 127.4, 132.2, 34.1 (d, 

1JPC = 5.8 Hz, P[C(CH3)3]2), 34.0 (d, 1JPC = 5.8 Hz, P[C(CH3)3]2), 30.8 (d, 2JPC = 4.1 Hz, 

P[C(CH3)3]2), 30.7 (d, 2JPC = 4.1 Hz, P[C(CH3)3]2), 29.5 (br m, N2C(SiMe3)2), 12.5 (br q, 

1JBC = 42.0 Hz, BCH2P), -0.4 (s, Si(CH3)2). 31P{1H} (C6D6, δ): 39.2 (s).  IR (C6H6, cm-1): 

2932, 2865, 2108 (CN2 st), 1477, 1425, 1364, 1260, 1102, 1071, 899, 867, 817. Anal. 
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Calcd for C37H68BCuN2P2Si2: C, 60.59; H, 9.35; N, 3.82.  Found: C, 60.47; H, 9.43; N, 

3.59. 

Synthesis of [Ph2BPtBu
2]Cu(N2CMes2) (2.6).  2.3 (0.200 g, 0.293 mmol) and 

bis(2,4,6-trimethylphenyl)diazomethane (0.0816 g, 0.293 mmol) were combined in 

benzene (10 mL), giving a clear red-orange solution that was stirred for 40 min and then 

concentrated in vacuo.  Petroleum ether (20 mL) was added, and the solution was cooled 

to -78 °C.  A pre-cooled solution of tetrafluoroboric acid (0.0402 mL of a 48 wt% 

solution in diethyl ether, 0.293 mmol) was added in one portion, and the solution was 

allowed to warm gradually to room temperature with stirring.  After 25 min at room 

temperature, a white precipitate was filtered off, and the filtrate was concentrated to a 

red-orange powder (0.130 g, 54%).  X-ray quality crystals were obtained by slow 

evaporation of a petroleum ether solution of 2.6.  1H (C6D6, δ): 7.95 (br d, J = 6.9 Hz, 4H, 

ortho-CH), 7.40 (t, J = 7.4 Hz, 4H, phenyl meta-CH), 7.14 (t, 2H, para-CH), 6.70 (s, 4H, 

mesityl meta-CH), 2.09 (s, 6H, para-CH3), 2.06 (s, 12H, ortho-CH3), 1.91 (br, 4H, 

BCH2P), 1.07 (d, 3JPH = 6.3 Hz, 18H, P[C(CH3)3]2), 1.05 (d, 3JPH = 6.0 Hz, 18H, 

P[C(CH3)3]2). 13C{1H} (C6D6, δ): 137.8 (br, phenyl ipso-C), 137.6, 133.6, 130.6, 129.7, 

127.4, 126.6, 123.4, 99.3 (N2CMes2), 34.0 (d, 1JPC = 6.7 Hz, P[C(CH3)3]2), 33.9 (d, 1JPC = 

6.7 Hz, P[C(CH3)3]2), 30.7 (d, 2JPC = 3.7 Hz, P[C(CH3)3]2), 30.6 (d, 2JPC = 3.7 Hz, 

P[C(CH3)3]2), 21.3 (s, para-CH3), 21.1 (s, ortho-CH3), 14.3 (br, BCH2P). 31P{1H} (C6D6, 

δ): 45.9 (s).  IR (C6H6, cm-1): 2921, 2868, 2041 (CN2 st), 1444, 1366, 1099, 812. Anal. 

Calcd for C49H72BCuN2P2: C, 71.30; H, 8.79; N, 3.39.  Found: C, 71.41; H, 8.43; N, 5.42. 

Note: High levels of N were found consistently by elemental analysis. 1H and 31P{1H} 
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NMR spectra indicated that the material was spectroscopically pure. In addition, the IR 

spectrum of the material precluded the presence of residual free N2CMes2. 

Synthesis of [Ph2BPtBu
2]Cu(N(=CPh2)(NCPh2)) (2.7).  Diphenyldiazomethane 

(32.0 mg, 0.165 mmol) was dissolved in benzene (5 mL) and added to solid 2.3 (56.3 mg, 

0.0825 mmol), giving a deep inky-blue solution.  Over several hours, the solution turned 

orange-brown.  After 24 h, a crude reaction aliquot showed >90% conversion to the 

desired product (by 31P NMR).  The solution was concentrated in vacuo to a solid brown 

residue, which was recrystallized from diethyl ether (1.5 mL, -30 °C) to give 2.7 as dark 

orange crystals (23.8 mg, 32%).  X-ray quality crystals were obtained by slow diffusion 

of hexamethyldisiloxane vapors into a diethyl ether solution of 2.7 at -30 °C.  1H (C6D6, 

δ): 9.10 (br, 2H), 8.05 (br d, J = 6.3 Hz, 4H, ortho-BPh2), 7.67 (m, 8H), 7.42 (t, J = 7.3 

Hz, 4H, meta-BPh2), 7.33 (m, 8H), 7.13-6.89 (m, 34H), 1.91 (br, 4H, BCH2P), 1.09 (d, 

3JPH = 5.8 Hz, 18H, P[C(CH3)]2), 1.07 (d, 3JPH = 5.5 Hz, 18H, P[C(CH3)]2). 13C{1H} (C6D6, 

δ): 176.5 (m, Cu-N=CPh2), 166.3 (br m, ortho-BPh2), 160.4 (s, Cu-N-N=CPh2), 139.1, 

136.7, 132.5, 131.5, 130.2, 130.1, 129.6, 129.1, 128.7, 128.4, 127.3, 123.3, 33.9 (d, 1JPC = 

5.8 Hz, P[C(CH3)3]2), 33.8 (d, 1JPC = 5.8 Hz, P[C(CH3)3]2), 30.8 (d, 2JPC = 3.8 Hz, 

P[C(CH3)3]2), 30.7 (d, 2JPC = 3.8 Hz, P[C(CH3)3]2), 14.0 (br q, 1JBC = 41.7 Hz, BCH2P).  

31P{1H} (C6D6, δ): 39.9 (s).  IR (KBr, cm-1): 3055, 2940, 2866, 1584 (C=N st), 1561 

(C=N st), 1487, 1445, 1393, 1362, 1319, 1178, 1157, 1103, 1074, 955, 865. Anal. Calcd 

for C56H70BCuN2P2: C, 74.12; H, 7.77; N, 3.09.  Found: C, 74.10; H, 7.48; N, 3.21. 

Observation of the optical spectrum for [Ph2BPtBu
2]Cu=CPh2 (2.8). 

Diphenyldiazomethane (0.5 mg, 0.0026 mmol) was dissolved in benzene (3 mL) and 

added to solid 2.3 (1.8 mg, 0.0026 mmol) in a volumetric flask, resulting in an immediate 
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color change to an intense inky blue. The volume was brought up to 20.0 mL, and an 

aliquot was removed for observation by UV-Vis. A intense feature at 583 nm was 

observed. In a separate experiment under identical conditions, 2.8 was present in ca. 70 

mol% by 31P{1H} spectroscopy. On this basis, an ε value of ca. 12000 was estimated. 

Observation of 13C-labelled 2.8. N2
13CPh2 (13.1 mg, 0.0671 mmol) was 

dissolved in benzene-d6 (1 mL) and added to solid 2.3 (49.8 mg, 0.730 mmol), resulting 

in an immediate color change to an intense inky blue. The reaction was monitored by 1H, 

13C{1H}, and 31P{1H} NMR. In the initial reaction mixture, the salient features attributed 

to 2.8-13C were as follows. 13C{1H} (δ): 331.5 (t, 2JPC = 40.4 Hz, Cu=CPh2). 31P{1H} (δ): 

64.8 (d, 2JPC = 41.2 Hz). 

Carbene transfer to CO. Using the reaction conditions described above, 2.8 was 

generated in situ and transferred to a J. Young NMR tube. The solution was frozen, and 

then the dinitrogen atmosphere was evacuated and replaced with carbon monoxide (1 

atm). The reaction mixture was examined by 1H and 31P{1H} NMR, showing quantitative 

conversion of 2.8 to the previously characterized [Ph2BPtBu
2]Cu(CO).8 The solution was 

then transferred to a solution IR cell and examined by IR spectroscopy, revealing 

diagnostic CO stretching vibrations for both [Ph2BPtBu
2]Cu(CO) and Ph2C=C=O,  

2082 cm-1.24 In a separate experiment, the copper-containing components of the product 

mixture were precipitated with petroleum ether, and analysis of the supernatant by ESI-

MS revealed the presence of Ph2C=C=O. 
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3.1 Introduction 

Electron transfer (ET) through proteins often utilizes copper-containing active 

sites as efficient one-electron relays. The type-1 active sites of the blue copper proteins 

are prominent examples.1,2,3 It is generally thought that rapid ET rates through type-1 

redox sites derive from the protein environments enforcing unusual trigonally distorted 

coordination spheres to allow for minimal structural reorganization during ET.1,4 Though 

large CuII/CuI self-exchange ET rate constants (kS) in the range observed for type-1 sites 

have been achieved in certain synthetic monocopper systems using geometries distinct 

from trigonal environments,5 ET studies have yet to be conducted in a synthetic system 

featuring isolated, trigonally disposed copper centers. The simplest such systems would 

contain a trigonal planar geometry. 

 

Here we report structural characterization of a trigonal planar system featuring 

formally CuII and CuI amido complexes related by a reversible one-electron redox event. 

We find in this system that ET is extremely rapid and is accompanied by a small degree 

of structural reorganization during redox. We propose that this structural rigidity in the 

absence of secondary coordination sphere effects results from significant covalency of 
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the copper-amide linkages. In fact, a CuI-aminyl radical description of the formally CuII 

amide complex may be most appropriate. 

 

3.2 Results and Discussion 

 

3.2.1 Synthesis, Characterization, and Electron Transfer Kinetics 

The anionic CuI amido complex {[Ph2BPtBu
2]Cu(NTol2)} {Li(12-crown-4)2} (3.1) 

([Ph2BPtBu
2] = Ph2B(CH2PtBu2)2, Tol = p-tolyl) was synthesized by the reaction between 

[Ph2BPtBu
2]Cu(pyridine) and LiNTol2 in the presence of excess 12-crown-4,6 and isolated 

as a yellow, diamagnetic solid. The cyclic voltammogram of 3.1 features a fully 

reversible redox event at -0.882 V vs FeCp2
+/FeCp2 (see Section 3.5.3). Chemical 

oxidation of 3.1 with [FeCp2][B(3,5-(CF3)2C6H3)4] produced paramagnetic 

[Ph2BPtBu
2]Cu(NTol2) (3.2) as red needles with optical bands at 365 nm (ε = 870 M-1 cm-1) 

and 480 nm (ε = 600 M-1 cm-1) (Scheme 3.1). 

Both 3.1 and 3.2 were studied by single-crystal X-ray crystallography (Figure 3.1; 

also see Appendix 2). Immediately evident upon comparison of the two oxidation states 

is the minimal degree of structural rearrangement at the Cu centers upon ET (see Figure 

3.1B for overlay). In both structures, the Cu centers have rigorously planar coordination 

geometries (Σ∠ = 359.97(14)° (3.1) and 359.97(17)° (3.2)). The Cu-P distances, P-Cu-P 

angles, and P-Cu-N angles are all essentially identical in both 3.1 and 3.2. The most 

notable structural difference is the Cu-N contraction seen upon oxidation from 3.1 

(2.0019(18) Å) to 3.2 (1.906(2) Å). The UV-Vis spectra of 3.2 in benzene and 

acetonitrile are identical (see Section 3.5.5), consistent with 3.2 being three coordinate in 
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solution as well as in the solid state. A series of trigonal planar β-diketiminato CuII 

complexes synthesized by Tolman and coworkers remain the only other reported 

examples of three-coordinate, formally CuII complexes.7  

 

Figure 3.1. (A) Solid-state structure of 3.2. (B) Structural overlay of anion 

3.1 (red) and 3.2 (blue) with only phosphorus atoms of [Ph2BPtBu
2] shown. 

Selected bond lengths (Å) and angles (°) for 3.1: Cu-N, 2.0019(18); Cu-

P(1), 2.2921(6); Cu-P(2), 2.2684(6); P(1)-Cu-P(2), 105.67(2); P(1)-Cu-N, 

124.07(6); P(2)-Cu-N, 130.23(6). For 3.2: Cu-N, 1.906(2); Cu-P(1), 

2.2816(7); Cu-P(2), 2.2806(8); P(1)-Cu-P(2), 104.04(3); P(1)-Cu-N, 

123.99(7); P(2)-Cu-N, 131.94(7). 

 
Taken together, complexes 3.1 and 3.2 represent the only three-coordinate copper 

system to be isolated and structurally characterized in two distinct redox states.8 

Therefore, it was of interest to study the 3.2/3.1 self-exchange ET rate constant (kS). As 

discussed in Section 3.5.6, we determined that kS in this system is too large to measure 
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accurately by NMR linewidth analysis, implying a lower limit of kS ≥ 107 M-1 s-1.9 For 

comparison, type-1 active sites typically exhibit values of kS on the order of 106 M-1 s-1.1 

 

3.2.2 Multiedge X-ray Absorption Spectroscopy 

Spectroscopic studies of the dinuclear CuA ET sites in cytochrome c oxidase and 

nitrous oxide reductase have revealed significant covalency in the Cu2(µ-SR)2 cores, 

resulting in significant sulfur-centered redox during ET.10 This covalency likely 

contributes to the extremely efficient ET rates mediated by CuA,11 and this concept has 

been discussed in the context of synthetic Cu2(µ-X)2 model complexes.9,12 It is also likely 

that such Cu-ligand covalency likewise plays a role in the functional properties of the 

type-1 active sites in blue copper proteins.11 We therefore sought to probe the intimate 

electronic structures of 3.1 and 3.2, in particular questioning whether oxidation of the 

amido ligand occurs during the interchange of 3.1 and 3.2. In other words, we wondered 

if the CuI-aminyl radical form of 3.2 is an important resonance contributor. A Rh 

complex from Grützmacher and coworkers in 2005 was the first reported example of an 

isolable 1:1 aminyl radical complex of a transition metal,13 and, unlike their aryloxy 

radical analogues, such complexes remain quite rare.14 To our knowledge, examples of 

non-chelated aminyl radical ligands have not yet been reported.  

Cu K-edge X-ray absorption spectroscopy (XAS) was used to probe the effective 

Cu oxidation states in 3.1 and 3.2. The Cu K-edge spectra for 3.1 and 3.2 in Figure 3.2A 

show a high degree of similarity in their respective pre-edge features and rising-edge 

energy positions, indicating practically identical Cu effective nuclear charges and ligand 

fields. The first electric dipole allowed Cu 1s→4s transitions at 8982.2 and 8982.5 eV in 
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3.1 and 3.2, respectively, are well resolved from the rising-edge features, which is 

indicative of trigonal planar coordination geometry.15 The small shift of 0.3 eV upon 

oxidation of 3.1 indicates that 3.1 and 3.2 have similar effective oxidation states that are 

closer to cuprous than cupric when compared to the reference spectra for CuCl and CuCl2 

(Figure 3.2A).  

Cu L-edge XAS was used to directly probe the Cu 3d character of the frontier 

orbitals in 3.1 and 3.2. Figure 3.2B compares a set of features observed at the L3-edge for 

complexes 3.1, 3.2, CuCl, and CuCl2. The intense pre-edge feature at 930.4 eV for CuCl2 

is due to the transition of a Cu 2p electron to the unoccupied, Cu 3d-based LUMO. The 

Cu 3d character of the LUMO is determined to be about 65% based upon the area under 

this pre-edge feature. This intense feature disappears in the spectrum of CuCl.16 The 

group of features between 936 and 937 eV in the spectrum of 3.1 arise due to Cu→L 

back donation. Similar but more intense features have been observed for dinuclear Cu-

amidophosphine complexes.12 Upon oxidation to 3.2, a new feature at 931.9 eV appears, 

consistent with an electron being removed from an orbital with Cu 3d character. The 

proportion between the area of this feature and of the pre-edge feature in CuCl2 indicates 

that the redox active molecular orbital in 3.2 has about 14% 3d character, and that 

therefore the remainder of the electron density has to be ligand centered. 
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Figure 3.2. (A) Cu K-edge spectra, (B) Cu L3-edge spectra, and (C) P K-

edge spectra of CuCl (black), 3.1 (red), CuCl2 (green), 3.2 (blue), and PPh3 

(gray); * = trace impurity. 
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Figure 3.3. Atomic spin density plots17 (0.002 isocontours) for 

[Ph2BPtBu
2]Cu(NTol2) viewed A) parallel and B) perpendicular to the 

P2CuN plane. 

 

To dissect the role of the phosphine ligands in redox, we collected P K-edge XAS 

data (Figure 3.2C). In comparison to the reference PPh3, the spectra of 3.1 and 3.2 are 

shifted toward higher energy due to increase in P effective nuclear charge of the 

phosphines involved in P→Cu donation. Upon oxidation, an electron hole is created in an 

orbital that has phosphorous character of about 20% (see Appendix 2). This with the 14% 

Cu 3d character clearly indicates that close to 70% of the redox active frontier orbital of 

3.1 and 3.2 must have N, C, and H character. This estimate is in good agreement with 

spin densities calculated using DFT,17 which indicate 13% unpaired spin character on Cu, 

49% on N, 15% on P, and 20% on C/H of the p-tolyl groups (see Figure 3.3 for spin 

density plots).  
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Figure 3.4. A) Multifrequency EPR spectroscopy of 3.2. Spectra were 

recorded in a frozen dichloromethane/toluene glass. Microwave frequency 

(temperature): 35.100 GHz (123 K), 9.188 GHz (77 K), and 3.392 (123 K) 

for Q-, X-, and S-band, respectively. B) Core structure of 3.5, with only 

phosphorus atoms of [Ph2BPtBu
2] shown. Selected bond lengths (Å): Cu-N, 

1.944(11); N-C(31), 1.344(14); C(34)-C(34#), 1.40(2). 

 

3.2.3 Multifrequency EPR Spectroscopy 

EPR spectra of 3.2 were collected at the S-, X-, and Q-bands and are quite 

unusual compared to typical cupric complexes (Figure 3.4A). The S- and X-band spectra 

are dominated by six lines, each with several shoulders, unlike the typical four-line 

A B 
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pattern expected for a single cupric center. In all three spectra, sharp high-field lines are 

evident. (The spectra depicted in Figure 3.4A are aligned with these high-field lines.) A 

line on the low-field side is well resolved in the S- and X-band spectra and is a shoulder 

at Q-band. By assigning these outer lines as purely Cu lines, a reasonable simulation of 

the X-band spectrum can be obtained. However, accurate simulation parameters should 

give satisfactory fits at all frequencies; this is not the case here, particularly at the Q-band 

(Figure 3.5). 

 

 

Figure 3.5. Experimental (black) and simulated (red) EPR spectra of 3.2 

resulting from assigning outer lines as deriving purely from Cu. 
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On the other hand, one way to get a six-line pattern is to have ACu approximately 

equal to AP for two equivalent phosphorus donor atoms, resulting in lines with intensities 

1:3:4:4:3:1. Experimentally, if the outer lines are set to intensity 1, then the measured 

intensities of the adjacent lines are close to 3. Using this as a guideline, approximate 

simulations (Figure 3.6) were obtained using the following parameters: gx, gy, gz = 2.008, 

2.008, 2.030; ACu
x, ACu

y, ACu
z = 34, 34, 170 MHz; AP

x, AP
y, AP

z = 148, 148, 173 MHz; AN
x, 

AN
y, AN

z = 24, 100, 24 MHz. (Figure 3.6B depicts simulated spectra obtained by holding 

all other parameters constant and varying AN
y.) Though these simulation parameters are 

consistent with but not proof of physical EPR parameters, reasonable fits were obtained 

using the same parameters at all three bands (Figure 3.6A), lending weight to their 

assignments. For comparison, one of Tolman’s (β-diketiminate)CuIICl complexes, a more 

typical three-coordinate CuII complex, has the parameters g|| = 2.20, g⊥ = 2.05, ACu
|| = 398 

MHz, ACu
⊥ = 52 MHz.7 An example of a typical nitrogen radical is di-t-butylnitroxide 

(DTBN), which exhibits anisotropic hyperfine tensors of AN = 89.6, 16.7, and 21.3 

MHz.18 The comparatively small ACu and large AN
y values in 3.2, as well as the proximity 

of gaverage in 3.2 to the value for the free electron, indicate a significant degree of spin 

delocalization between the Cu and N centers.  
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Figure 3.6. A) Experimental (black) and simulated (red) second derivative 

EPR spectra of 3.2 at Q-, X-, and S-bands. B) Simulated second derivative 

X-band spectra of 3.2 resulting from maintaining all other simulation 

parameters while varying AN
y as indicated. 

 

3.2.4 Reactivity 

XAS, DFT, and EPR analyses collectively suggest that 3.2 is better considered as 

a CuI-aminyl radical than a CuII-amido complex. This unusual electronic structure is also 

manifested in the chemical reactivity of the system. For instance, the addition of H-atom 

donors such as Bu3SnH, PhSH, or 9,10-dihydroanthracene to solutions of 3.2 cleanly 

produced [Ph2BPtBu
2]Cu(NHTol2) (3.3) (Scheme 3.1). The by-products Bu3Sn-SnBu3, 

A B 
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PhS-SPh, and anthracene were detected by 1H NMR and GC-MS, and the presence of an 

N-H linkage in 3.3 was confirmed by 1H NMR (δ(N-H) = 4.93) and IR spectroscopy 

(ν(N-H) = 3405 cm-1). The hydrogen atom transfer (HAT) reactivity of 3.2 is, to our 

knowledge, unprecedented for the formal CuII oxidation state. Instead, HAT reactions 

have been observed at CuIII centers,19 or alternatively, CuII-aryloxy radicals.20 The 

reaction between 3.2 and either Bu3SnD or Bu3SnH provided a kinetic deuterium isotope 

effect of kH/kD = 4.8(6) at room temperature. This value is more consistent with a 

concerted hydrogen atom abstraction mechanism rather than rate-limiting ET followed by 

proton transfer, and it is within the range observed for other Cu-containing systems.20  

 

Further indication of radical character delocalized into the aromatic rings in 3.2 

comes from the oxidation chemistry of {[Ph2BPtBu
2]Cu(NPh2)}{Li(12-crown-4)2} (3.4), 

which lacks methyl groups para to the amido nitrogen (Scheme 3.2). The reaction 

between 3.4 and [FeCp2][PF6] produces a bright red, diamagnetic dicopper product (3.5) 

in which two diphenyl amido groups have been fused together at the positions para to the 

N atoms (Figure 3.44B). The identity of 3.5 was established using a relatively low-quality 

X-ray crystal structure. Nonetheless, the short length of the new C-C bond (1.40(2) Å) in 

[Ph2BPtBu
2]Cu-NPh2

3.5

[FeCp2][PF6]

CH2Cl2
- 2 H

[Ph2BPtBu
2]Cu

N
Ph

N
Ph Cu[Ph2BPtBu

2]

3.6

Scheme 3.2
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3.5 and the planar geometries at these carbons indicate that two hydrogen atom 

equivalents have been lost subsequent to C-C coupling. Similar ligand-centered radical 

coupling has been observed in an oxidized Cu2(µ-NR2)2 complex12 and from a putative 

three-coordinate CuII-aryloxide intermediate synthesized by Tolman.7 

 

3.3 Conclusions 

In conclusion, we have isolated and thoroughly characterized a highly covalent, 

three-coordinate Cu-NAr2 system in two distinct oxidation states, with the unusual 

oxidized form being best regarded as an aminyl radical ligated to CuI. Chemical reactivity 

facilitated by this electronic structure includes HAT, C-C coupling, and efficient electron 

transfer, the latter being reminiscent of protein active sites bearing similar Cu 

coordination geometries. 

 

3.4 Experimental Section 

 

3.4.1 General Considerations 

All manipulations were carried out using standard Schlenk or glovebox 

techniques under a dinitrogen atmosphere.  Unless otherwise noted, solvents were 

deoxygenated and dried by thoroughly sparging with N2 gas followed by passage through 

an activated alumina column.  Non-halogenated solvents were tested with a standard 

purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to confirm 

effective oxygen and moisture removal.  All reagents were purchased from commercial 

vendors and used without further purification unless otherwise stated. Lithium amides 
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were prepared by deprotonation of the corresponding amines with n-butyllithium.  

[Ph2BPtBu
2]Cu(pyridine)21 and [FeCp2][B(3,5-(F3C)2C6H3)4] 22 were prepared by literature 

procedures. Elemental analyses were performed by Desert Analytics, Tucson, AZ.  

Deuterated solvents were purchased from Cambridge Isotope Laboratories (Cambridge, 

MA), degassed, and dried over activated 3 Å molecular sieves prior to use.  A Varian 

Mercury-300 spectrometer was used to record 1H, 13C, and 31P NMR spectra at ambient 

temperature.  1H and 13C chemical shifts were referenced to the residual solvent peaks. 31P 

chemical shifts were referenced to external phosphoric acid (δ = 0 ppm). 

 

3.4.2 Synthesis 

Synthesis of {[Ph2BPtBu
2]Cu(NTol2)}{Li(12-crown-4)2} (3.1). 

[Ph2BPtBu
2]Cu(pyridine) (0.203 g, 0.324 mmol) and LiNTol2 (0.0659 g, 0.324 mmol) were 

combined in THF (10 mL), giving a clear yellow solution.  After stirring for 5 min, 12-

crown-4 (0.131 mL, 0.810 mmol) was added.  The resulting bright yellow solution was 

stirred for 0.5 h, and then the solvent was removed in vacuo.  The residues were triturated 

with petroleum ether (10 mL), and a yellow powder was collected on a sintered glass frit.  

Subsequent washes with petroleum ether (5 x 5 mL) gave analytically pure 3.1 (0.299 g, 

84%).  X-ray quality crystals were obtained by slow diffusion of petroleum ether vapors 

into a concentrated THF solution of 3.1.  1H (THF-d8, δ): 7.36 (br, 4H, borate ortho-CH), 

6.8-7.0 (m, 8H, Ar-H), 6.61 (m, 6H, Ar-H), 3.63 (s, 32H, O(CH2)2O), 2.08 (s, 6H, para-

CH3), 1.46 (br, 4H, BCH2P), 1.01 (d, 3JPH = 5.8 Hz, 18H, P[C(CH3)3]2), 1.00 (d, 3JPH = 5.5 

Hz, 18H, P[C(CH3)3]2). 13C{1H} (THF-d8, δ): 162.3 (br, borate ipso-C), 156.0 (s, tolyl 

ipso-C), 133.7, 128.4, 125.4, 121.1, 120.4, 69.4 (s, O(CH2)2O), 33.0 (br, P[C(CH3)3]2), 
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30.2 (P[C(CH3)3]2), 30.1 (P[C(CH3)3]2), 20.3 (s, para-CH3), 13.3 (br, BCH2P).  31P{1H} 

(THF-d8, δ): 30.9 (s).  IR (KBr, cm-1): 2914, 2865, 1597, 1491, 1362, 1323, 1290, 1246, 

1136, 1098, 1024, 920, 858, 809. Anal. Calcd for C60H96BCuLiNO8P2: C, 65.36; H, 8.78; 

N, 1.27.  Found: C, 65.22; H, 8.55; N, 1.33. 

Synthesis of [Ph2BPtBu
2]Cu(NTol2) (3.2). A solution of [FeCp2][B(3,5-

(F3C)2C6H3)4] (0.230 g, 0.219 mmol) in dichloromethane (12 mL) was added in one 

portion to solid 3.1 (0.242 g, 0.219 mmol), resulting in a cherry-red solution. After 

stirring for 15 min, the solvent was removed in vacuo, leaving a dark-red oily residue that 

was dissolved in petroleum ether (10 mL), filtered through Celite, and allowed to stand at 

-30 °C for 16 h, resulting dark red needles that were crushed and washed thoroughly with 

petroleum ether to yield analytically pure 3.2 (41.4 mg, 25%). X-ray quality crystals were 

obtained by diffusion of hexamethyldisiloxane vapors in a concentrated solution of 3.2 in 

petroleum ether at -30 °C. IR (KBr, cm-1): 2941, 2865, 1583, 1509, 1474, 1364, 1258, 

1154, 1019, 936, 864, 813. Anal. Calcd for C44H64BCuNP2: C, 71.10; H, 8.68; N, 1.88.  

Found: C, 71.17; H, 8.42; N, 1.85. 

Synthesis of [Ph2BPtBu
2]Cu(NHTol2) (3.3).  Tributyltin hydride (8.28 mL, 0.0308 

mmol) was added to a stirring solution of 3.2 (21 mg, 0.028 mmol) in benzene (7 mL). 

After stirring for 4 h, the light-yellow solution was concentrated in vacuo. The residues 

were washed thoroughly with petroleum ether (3 x 2 mL), leaving behind 3.3 as a tan 

powder (7.8 mg, 37%). The petroleum ether fraction was filtered through alumina and 

analyzed by GC-MS to reveal the stoichiometric hexabutyldistannane by-product. Similar 

results were achieved using 1,2-dihydroanthracene (0.5 eq) or thiophenol in place of 

tributyltin hydride, yielding anthracene or PhS-SPh (0.5 eq), respectively. Though 3.3 
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was isolated in low yield due in part to its petroleum ether solubility, 1H NMR studies 

established that it was generated quantitatively in the initial reaction mixtures. Attempts 

to recrystallize 3.3 from THF/pentane produced the previously characterized 

[Ph2BPtBu
2]Cu(THF) just as was observed for [Ph2BPtBu

2]Cu(NH2Mes),21 and thus far other 

solvent systems have not yielded crystals suitable for either combustion analysis or X-ray 

crystallography.  Characterization of 3.3: 1H (C6D6, δ): 7.95 (br, 4H, borate ortho-CH), 

7.39 (t, J = 6.9 Hz, 4H, borate meta-CH), 6.95 (d, J = 8.4 Hz, 4H, tolyl ortho-CH), 6.84 

(d, J = 8.4 Hz, 4H, tolyl meta-CH), 6.73 (t, J = 7.2 Hz, 2H, borate para-CH), 4.93 (br s, 

1H, N-H), 2.15 (s, 6H, para-CH3), 1.84 (br, 4H, BCH2P), 1.03 (br, 36H, P[C(CH3)3]2).  

13C{1H} (CD2Cl2, d): 132.9, 130.3, 128.8, 126.9, 126.6, 122.2, 118.1, 34.5 (br, 

P[C(CH3)3]2), 30.9 (P[C(CH3)3]2), 30.3 (P[C(CH3)3]2), 28.1 (s, para-CH3).  31P{1H} (C6D6, 

δ): 37.7 (br s).  IR (C6H6, cm-1): 3405 (N-H st), 2922, 2866, 1365, 1293, 1081, 880, 811. 

Synthesis of {[Ph2BPtBu
2]Cu(NPh2)}{Li(12-crown-4)2} (3.4). A THF solution (8 

mL) of lithium diphenylamide (0.050 g, 0.29 mmol) was added to solid 

[Ph2BPtBu
2]Cu(pyridine) (0.180 g, 0.287 mmol). After stirring for 2 min, 12-crown-4 

(0.100 mL, 0.618 mmol) was added by syringe. The resulting cloudy yellow solution was 

stirred for 12 h, and then volatiles were removed in vacuo. Faint yellow residues were 

washed with pentane (3 x 10 mL) and then recrystallized from THF/pentane (-30 ºC). 

Though combustion analysis of the crystals indicates the formula 

{[Ph2BPtBu
2]Cu(NPh2)}{Li(12-crown-4)3}, crushing these crystals and washing with 

pentane gives a product whose NMR spectroscopy is consistent with the indicated 

stoichiometry of 3.4, i.e., two equivalents of 12-crown-4.  Two-crop yield: 0.169 g, 55%.  

1H (THF-d8, δ): 7.36 (br, 4H, borate ortho-CH), 6.98 (d, J = 7.5 Hz, 4H, borate meta-
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CH), 6.86-6.75 (m, 8H, amido phenyl meta- and ortho-CH), 6.62 (t, J = 7.1 Hz, 2H, 

amido phenyl para-CH), 6.18 (t, J = 6.6 Hz, 2H), 3.63 (s, 32H, O(CH2)2O), 1.48 (br, 4H, 

BCH2P), 1.01 (d, 3JPH = 5.4 Hz, 18H, P[C(CH3)3]2), 0.99 (d, 3JPH = 5.7 Hz, 18H, 

P[C(CH3)3]2). 13C{1H} (THF-d8, δ): 133.7, 132.8, 129.5, 125.4, 121.7, 121.1, 117.3, 69.6 

(s, O(CH2)2O), 33.0 (br, P[C(CH3)3]2), 30.1 (P[C(CH3)3]2), 13.5 (br, BCH2P).  31P{1H} 

(THF-d8, δ): 31.0 (s).  IR (KBr, cm-1): 3055, 2969, 2918, 2861, 1575, 1478, 1364, 1332, 

1313, 1247, 1136, 1098, 1024, 920, 858, 809. Anal. Calcd for C66H108BCuLiNO12P2: C, 

63.38; H, 8.70; N, 1.12.  Found: C, 63.13; H, 8.62; N, 1.12. 

Alternate synthesis of 3.4. THF (10 mL) was added to the solids 3.1 (0.345 g, 

0.313 mmol) and diphenylamine (0.031 g, 0.33 mmol). The resulting clear, yellow 

solution was stirred for 12 h, and then volatiles were removed in vacuo. The tacky yellow 

residues were washed with diethyl ether (3 x 10 mL) and dried to yield 3.4 as an off-

white powder (0.223 g, 66%). 

Synthesis of {[Ph2BPtBu
2]Cu-N(Ph)C6H4}2 (3.5). A dichloromethane solution (10 

mL) of FeCp2PF6 (0.067 g, 0.20 mmol) was added to solid 3.4 (0.216 g, 0.201 mmol) in 

one portion, immediately resulting in a clear, dark-red solution. After stirring for 15 min, 

volatiles were removed in vacuo. Diethyl ether (10 mL) was added, the resulting mixture 

was filtered, and the red filtrate was concentrated in vacuo to a red residue. After washing 

with pentane (10 mL), the remaining tacky red solids were lyophilized from benzene to 

yield 3.5 as a dark red powder (0.034 g, 23%). Crystals suitable for X-ray diffraction 

were grown by diffusion of pentane vapors into a concentrated dichloromethane solution 

of 3.5.  Performing the initial stage of the procedure in deuterated dichloromethane and 

monitoring the reaction in situ by NMR spectroscopy reveals clean and quantitative 
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conversion to 3.5 and one equiv of FeCp2.  However, over a period of 2 days, 3.5 

decomposes to a mixture of unknown colorless species, and hence satisfactory 

combustion analysis was not obtained. 1H (CD2Cl2): 8.00 (d, J = 6.6 Hz, 2H), 7.51 (t, J = 

7.5 Hz, 2H), 7.41 (br, 4H, borate ortho-CH), 7.35-7.00 (m, 5H), 6.99 (t, J = 7.5 Hz, 4H, 

borate meta-CH), 6.95-6.85 (m, 4H), 6.79 (t, J = 7.2 Hz, 2H, borate para-CH), 1.56 (br, 

4H, BCH2P), 1.12 (d, 3JPH = 6.0 Hz, 18H, P[C(CH3)3]2), 1.10 (d, 3JPH = 5.4 Hz, 18H, 

P[C(CH3)3]2).  31P{1H} (CD2Cl2, d): 37.4 (br).  IR (KBr, cm-1): 3056, 3040, 2945, 2865, 

1590, 1584, 1471, 1427, 1364, 1310, 1180, 1156, 1101, 1018, 937, 862, 812. 

 

3.4.3 Electrochemistry 

Electrochemical measurements were carried out in a glovebox under a dinitrogen 

atmosphere in a one-compartment cell using a CH Instruments 600B electrochemical 

analyzer.  A glassy carbon electrode was used as the working electrode and platinum wire 

was used as the auxillary electrode.  The reference electrode was Ag/AgNO3 in THF.  

The ferrocene couple Fc+/Fc was used as an external reference.  Solutions (THF) of 

electrolyte (0.3 M tetra-n-butylammonium hexafluorophosphate) and analyte were also 

prepared under an inert atmosphere. 
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Figure 3.7. Cyclic voltammograms of (a) {[Ph2BPtBu
2]CuNPh2}{Li(12-

crown-4)2} (3.4), (b) {[Ph2BPtBu
2]CuNPh2}{Li(12-crown-4)2} (3.1), and 

(c) {[Ph2BPtBu
2]CuNHMes2}{Li(12-crown-4)2}.21 Conditions: THF, 0.3 M 

[nBuN4][PF6] electrolyte, 200 mV/s scan rate. 

 

3.4.4 X-ray Crystallography Procedures 

X-ray diffraction studies were carried out at the MIT Department of Chemistry X-

Ray Diffraction Facility on a Brüker three-circle Platform diffractometer, equipped with a 

CCD detector. Data was collected at 100K using Mo Kα (λ = 0.710 73 Å) radiation for 

all structures and solved using SHELX v. 6.14.23 X-ray quality crystals were grown as 

described in the experimental procedures. The crystals were mounted on a glass fiber or 

nylon loop with Paratone N oil. Structures were determined using direct methods with 

standard Fourier techniques using the Bruker AXS software package.  Disordered solvent 

and 12-crown-4 regions of 3.1 and 3.2 were modeled extensively and restrained using 

a 

b 

c 
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DFIX, SIMU, DELU, and BUMP commands where appropriate.  Crystallographic details 

have been placed in Appendix 2. 

 

3.4.5 UV-Vis Measurements 

Optical spectroscopy measurements were taken on a Cary 50 UV/Vis 

spectrophotometer using a 1 cm quartz cell sealed with a Teflon stopper. 

 

Figure 3.8. Optical spectra of 3.2 as equally concentrated benzene and 

acetonitrile solutions. Note: the blue line corresponding to the spectrum in 

benzene is invisible because of near-perfect overlap with the red line. 

 

3.4.6 Self-Exchange Rate Constant Measurements 

Self-exchange rate constant measurements were conducted using 1H NMR line-

broadening analysis.24 Stock solutions of 3.1 in CD3CN and 3.2 in C6D6 were prepared. 

The stock solution of 3.1 (400 mL) was placed in a J. Young NMR tube and the initial 

chemical shift (δ) and linewidth (ν1/2) of the tolyl methyl resonance were recorded. 

Increasing amounts of the stock solution of 3.2 were then added volumetrically, and the 
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mole fraction of 3.2 (χ2), concentration of 3.2 ([3.2]), and δ and ν1/2 for the tolyl methyl 

peak were recorded, each time locking, shimming, and referencing the 1H NMR spectrum 

to the residual solvent peaks. A linear relationship between δ and χ2 as well as between 

ν1/2 and χ2 verified that electronic exchange between 3.1 and 3.2 was occurring in the fast-

exchange regime. The plots for one data run are reproduced below. NMR parameters are 

as follows: frequency = 300.080 MHz, acquisition time = 1.995 s, sweep width = 4506.5 

Hz, pulse width = 7.0 ms, relaxation delay = 5 s, number of transients = 16, spectrometer 

temperature = 20.0 °C. 

The relation between linewidth and the exchange rate (k) is given in eq (1), where 

W denotes linewidth, χ denotes mole fraction, C denotes concentration, and subscripts P, 

D, and PD denote paramagnet (i.e., 3.2), diamagnet (i.e., 3.1), and paramagnet/diamagnet 

mixtures, respectively. 

 

€ 

WPD = χPWP + χDWD +
χPχD 4π δν( )2( )

kCPD

  eq (1) 

 

For all data points we measured (15 pts), the difference between WPD and the sum χPWP + 

χDWD was less than or equal to 1 Hz.  In other words, the third term on the right-hand side 

of eq (1) was immeasurably small when considering the error associated with linewidth 

measurement.  Because k is in the denominator of that term, it follows that k is too large 

to be measured accurately by this technique. 
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Figure 3.9. Plots of linewidth (top) and chemical shift (bottom) of the p-

tolyl methyl 1H NMR resonance in mixtures of 3.1 and 3.2 as a function of 

concentration of 3.2. 

 

3.4.7 Electronic Structure Calculations 

Density functional calculations were carried out using the Gaussian03 suite.25 The 

electronic structures of the computational models {(Ph2BPtBu
2]CuI(NTol)2}1- and  
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{(Ph2BPtBu

2]CuII(NTol)2} and their ionic fragments were calculated by employing a 

hybrid gradient-corrected density functional composed of 62% Becke nonlocal and Slater 

local density functional exchange26a, 38% HF exact exchange, and 100% Perdew nonlocal 

and Vosko-Wilk-Nussair local density functional correlation26b functions. This hybrid 

functional (B(38)HFP86) has been shown to provide the most reasonable ground state 

electronic structures27 for copper complexes among the most commonly used density 

functionals. Calculations were carried out using Gaussian-type all electron basis sets26c-d 

with polarization and diffuse functions 6-311+G(d).26e-g We have utilized an ionic-

fragment based approach28 to achieve rapid wave function convergence and to compare 

and contrast the possibility of metal versus ligand localized as well as delocalized 

electronic structures. The molecular orbital contour plots were generated using 

GaussView 4.1.29 

 

3.4.8 Details of XAS Data Collection 

The copper K-, phosphorus K-, and copper L-edge XAS measurements were 

carried out at beam lines 7-3, 6-2, and 10-1, respectively, of Stanford Synchrotron 

Radiation Laboratory under storage ring (SPEAR3) conditions of 3 GeV energy and 100-

80 mA current. BL7-3 is a 20-pole, 2 T Wiggler beam line equipped with a Si(220) 

downward reflecting, double-crystal monochromator. Data was collected in the energy 

range of 8660-9690 eV using an unfocused beam. The samples were placed in a liquid He 

cryostat and about 11 K temperature was maintained throughout the measurements. The 

beam intensity was maximized at 9685 eV. The data was collected in transmission mode. 

BL6-2 is a 56-pole, 0.9 T Wiggler beam line with a liquid-nitrogen-cooled, Si(111) 
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double-crystal monochromator. P K-edge spectra were collected in the energy range of 

2120- 2250 eV using an unfocused beam in a He-purged beam path at room temperature 

and a 3-element Lytle fluorescence detector. The beam line was optimized at 2320 eV. 

BL10-1 has a 30-pole 1.45 T Wiggler insertion device with 6 m spherical grating 

monochromator. The samples were placed in a vacuum chamber with operating pressures 

below 10-5 torr. The incident beam energy was scanned between 925 and 955 eV and 

beam line optics were optimized at 920 eV. Data collection was carried out in electron 

yield mode by a channeltron detector with 300 V accelerating potential. 

The samples were ground and pasted onto a contaminant-free Kapton tape from 

Shercon or carbon tape from Specs CertiPrep in a glovebox with sub parts per million 

oxygen and moisture levels. Samples for transmission measurements were diluted in and 

ground together with boronitride to minimize incident beam absorption. Samples were 

protected by a thin polypropylene window (Specs CertiPrep) from exposure to air during 

sample mounting and change. Sample holders for Cu L-edge measurements were 

mounted in a He-purged glove bag tightly wrapped around the vacuum chamber. The 

sensitivity of the finely dispersed samples on the sample cells were tested by exposing 

them immediately after measurements for about 30 s to air followed by a repeated data 

collection. Even in the most sensitive samples such as CuCl, we only observed negligible 

change in the spectral feature intensities or energy positions. 

The incident photon energy was scanned in 0.5 eV steps outside the rising edge 

regions for each edges where the step size was 0.1 eV. At least five scans were averaged 

to obtain a good signal-to-noise ratio. Radiation damage was observed at the Cu L-edge 

for the radical complex {(Ph2BPtBu
2)CuII(NTol2)}, which was corrected for by estimating 
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the rate of change from two scans of three with 1 s and 0.5 s dwell times for two different 

sample positions. The incident photon energy was calibrated to the spectra of copper foil 

at the Cu K-edge (first inflection point at 8979 eV), difluorocopper(II) at the Cu L3- and 

L2-edges (white line positions at 930.5 and 950.5 eV, respectively), and 

triphenylphosphineoxide at the P K-edge (maximum of pre-edge feature at 2147.5 eV). 

The averaged raw data was background subtracted using a second-order 

polynomial fit to the approximately 30 eV energy range before any spectral feature and 

normalized with a second order spline function above the edge jump at 9200, 980, 2890, 

and 2190 eV for the Cu K-, Cu L-, Cl K-, and P K-edges, respectively. Due to the 

different number of absorbers per molecule, the Cl K-edge spectra had to be renormalized 

in order to compare the pre-edge features of CuCl2 and Cs2CuCl4 samples. The pre-edge 

features at the P K-, Cl K-, and Cu L-edges were fitted using the edg_fit program of 

EXAFSPAK.30 Fits to the pre-edge features at the Cl K-edge were used to determine the 

Cl 3p covalency in anhydrous CuCl2 using the reference spectra and pre-edge fits for D2d 

Cs2CuCl4.31 Due to the complementarity of orbital coefficients, 100% less the above Cl 

3p covalency gave the amount of Cu 3d character in the probed unoccupied, frontier 

orbitals of the CuCl2. This provided a Cu 2p3d transition dipole moment, which was 

used to quantitate the Cu L-edge pre-edge features of the {(Ph2BPtBu
2)CuII(NTol2)} 

sample. Due to the lack of good standards the P character represented by the pre-edge 

feature at the P K-edge was estimated from results of electronic structure calculations. 

Background corrected and normalized data, as well as representative fits, have 

been placed in Appendix 2. 
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3.4.9 EPR Measurements 

EPR spectra were obtained at the National Biomedical EPR center in Milwaukee 

using Varian E-9 and E-109 spectrometers operating at 9.188 GHz (X-band), 3.392 GHz 

(S-band), and 35.100 GHz (Q-band). The low frequency 3.3 GHz (S-band) spectrometer 

is based on the loop-gap resonator designed by Froncisz and Hyde.32 The Q-band bridge 

was modified with the addition of a GaAs field-effect transistor signal amplifier and low-

noise Gunn diode oscillator.33 Microwave frequencies were measured with an EIP model 

331 counter. Spectra were recorded in a frozen glass of dichloromethane/toluene at 123 K 

(S- and Q-band) or 77 K (X-band). Spectra are reported from 4 scans with time constant 

0.128 s, modulation amplitude 5 G, and microwave power 30 dB (Q-band) or 16 dB (X- 

and S-band). The second derivative of the spectra was obtained by using SUMSPC92, a 

data manipulation program available upon request from the National Biomedical EPR 

Center. The second derivative spectra emphasize sharp lines. A 1% argument was used to 

obtain the second derivative spectrum. EPR simulations were carried out using the 

program W95EPR.34 

 

3.4.10 Determination of kH/kD 

A dilute solution of 3.2 in C6H6 (~70 mM) was placed in a cuvette and stopped 

with a rubber septum. UV-Vis scans were obtained every 1 min, and after the first scan 

either neat Bu3SnH or neat Bu3SnD (> 25 equiv per Cu) was added to the cuvette through 

the septum by syringe. An example of the resulting decomposition of 3.2 as monitored by 

UV-Vis is reproduced below. A plot of |ln(A365)| vs t revealed linear relationships in both 
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cases, and the ratio of the slopes provided the kinetic isotope effect (see plot below). The 

average of three trials is reported. 

 

 

Figure 3.10. (left) Example of UV-Vis spectroscopy used to monitor the 

decomposition of 3.2, in this case with the addition of ~25 equiv Bu3SnD. 

(right) Plot of |ln(A365)| vs time for Bu3SnH (squares) and Bu3SnD 

(triangles). 
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4.1 Introduction 

Dinitrogen complexes of iron have been the targets of numerous synthetic studies 

in recent years.1 An unusual and intriguing formal oxidation state to explore in such 

systems is iron(I), especially in the context of a Chatt-type2 FeI/IV N2 fixation cycle (i.e., 

FeI-N2 + 3 H → FeIV≡N + NH3; FeIV≡N + 3H → FeI-N2 + NH3). Schrock’s recent work 

has provided impetus for such studies by establishing the synthetic viability of a 

conceptually related MoIII/VI N2 fixation cycle.3 Both iron and molybdenum are present in 

the FeMo-cofactor of MoFe nitrogenases,4 and pseudotetrahedral FeIV≡N species, 

hypothetical intermediates of an FeI/IV N2 fixation mechanism, have recently been 

characterized.5 Both Holland’s group and our own have reported examples of 3- and 4-

coordinate N2 adducts of iron in the formal +1 oxidation state, but in neither case were 

terminally bonded N2 species identified or isolated; dinuclear end-on Fe-NN-Fe species 

were inevitably obtained.6 For the Schrock tris(amido)amine Mo-N2 systems, it proved 

necessary to use a high degree of steric bulk to prevent bimetallic adduct formation 

before the N2 fixation chemistry of interest could be exposed. We have attempted to 

retrofit the [PhBPR
3]Fe scaffolds ([PhBPR

3] = [PhBP(CH2PR2)3]-) with bulky substituents 

at phosphorus to prevent dinuclear reaction pathways, but have thus far been unable to 

obtain terminally bonded FeI-N2 adducts using [PhBPR
3] ligands. 

Recently we began to turn our attention to new derivatives of the classic Sacconi-

type NP3 ligands (e.g., N(CH2CH2PR2)3) to achieve access to a terminally bonded FeI-N2 

synthon.7 While FeII(N2)(H)+ species are readily accessible using ligands of these types,7 

N2 adducts of iron(I) have yet to be obtained. We find, however, that replacement of the 

apical neutral N-atom donor of a tetradentate NP3 ligand by an anionic Si-atom donor 



 78 

achieves the intended goal. Herein we describe our efforts to prepare the 

monoanionic [SiPR
3] ligands ([SiPR

3] = (2-R2PC6H4)3Si, R = Ph and iPr) and to exploit 

them in the preparation of 5-coordinate, [SiPR
3]FeI-N2 complexes. 

 

 

4.2 Results and Discussion 

The tris(phosphino)silane precursors [SiPR
3]H (R = Ph (4.1) and iPr (4.2)) are 

prepared by ortho-lithiation of 2-R2PC6H4Br reagents with n-butyllithium, followed by 

addition of 1/3 equiv of trichlorosilane. Heating a benzene solution of 4.1 and 

mesityliron(II) to 65 °C results in Si-H activation and extrusion of mesitylene, producing 
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red [SiPPh
3]FeMes (4.3, Mes = 2,4,6- trimethylphenyl) (Scheme 4.1).8 Complex 

4.3 has an interesting solid-state structure (Figure 4.1) and is nominally 6-coordinate; the 

[SiPPh
3] ligand and the mesityl ipso-carbon together occupy five of the coordination sites, 

while the sixth site (trans to the silyl donor) is occupied by an agostic C-H interaction 

with a mesityl ortho-methyl group. Two molecules are found in the asymmetric unit, and 

both feature very short distances from the iron center to the carbon participating in the 

agostic interaction (2.564(4) and 2.569(4) Å).9 It is plausible to attribute the structure of 

4.3 to the presence of strongly trans-influencing aryl and silyl donors that do not favor a 

trans configuration. 

 

Figure 4.1. (left) Solid-state structure of [SiPPh
3]FeMes (4.3) (only one 

molecule from the asymmetric unit shown, agostic hydrogen shown in 

calcd position). (right) Solid-state structure of [SiPPh
3]FeN2 (4.6). Selected 

bond distances (Å) and angles (°) for one molecule of 4.3: Fe-Si, 

2.1988(14); for others see text. For 4.6: Fe-N, 1.819(2); N-N, 1.106(3); 

Fe-Si, 2.2682(8); Si-Fe-N, 179.00(7); Fe-N-N, 178.5(2). 
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Solution NMR spectra of 4.3 are also interesting (Figure 4.2). The room-

temperature 1H NMR spectrum (C6D6) of diamagnetic 4.3 features a sharp resonance at δ 

1.84 ppm corresponding to the mesityl para-methyl group and two broad resonances at δ 

5.33 and 0.58 ppm corresponding to the two ortho-methyl groups, which are inequivalent 

on the NMR time scale due to restricted Fe-Cipso rotation. The 1H NMR spectrum at -60°C 

(toluene-d8) instead features three broad resonances for the ortho-methyl groups (δ 4.59, 

1.10, and -0.24 ppm) in addition to the sharp para-methyl singlet at δ 1.88 ppm, 

indicating that at low temperature even the exchange of C-H bonds on the same methyl 

group is slower than the NMR timescale due to restricted C-C rotation. In addition, the 

31P{1H} NMR spectrum of 3 at -60°C resolves the inequivalent phosphines into a doublet 

(2P) and a triplet (1P) with 2JPP = 11 Hz. While iron(II) species that exhibit C-H agostic 

interactions are known,9 complexes in which a C-H agostic interaction is stable enough to 

freeze rotation between the three C-H positions of a methyl group are quite rare.10 

 

Figure 4.2. 1H NMR spectroscopy of [SiPPh
3]FeMes (4.3) as a function of 

temperature (* = residual NMR solvent peak). 
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Protonolysis of ethereal solutions of 4.3 with HCl cleanly produces mesitylene 

and paramagnetic, light orange [SiPPh
3]FeCl (4.4) (Scheme 4.1). Though reaction between 

4.2 and mesityliron(II) does not produce a tractable reaction mixture, light orange 

[SiPiPr
3]FeCl (4.5) can be accessed by addition of CH3MgCl to a mixture of 4.2 and FeCl2 

(Scheme 4.1).11 The crystal structures of 4.4 and 4.5 feature iron centers with trigonal 

bipyramidal coordination geometries (Figure 4.3), and solution magnetic data indicate 

triplet ground states for both (μeff = 2.9 μB (4.4) and 3.3 μB (4.5)). The cyclic 

voltammogram (CV) of 4.4 in THF features two reversible redox events, an Fe(III/II) 

couple at E0’ = -0.40 V and an Fe(II/I) couple at E0’ = -2.10 V (vs Fc+/Fc). The 

corresponding redox events for 4.5 are shifted to more negative potentials by 

approximately 300 mV each due to the more strongly electron-donating phosphine 

substituents. The Fe(II/I) couple in 4.5 is irreversible at 500 mV/s scan rates, presumably 

due to the enhanced lability of the chloride ligand in the more electron-rich system. 

Na/Hg reduction of 4.3 in THF produces the target terminal iron(I) dinitrogen 

adduct [SiPPh
3]FeN2 (4.6) (Scheme 4.1). The closely related dinitrogen complex 

[SiPiPr
3]FeN2 (4.7) is synthesized by Na(C10H8) reduction of 4.5 (Scheme 4.1). Solution 

magnetic data indicate S = 1/2 spin states for these iron(I) complexes 4.6 (μeff = 1.8 μB) 

and 4.7 (μeff = 2.2 μB). Accordingly, the X-band EPR spectrum of 4.6 at 4 K (2-MeTHF 

glass) features an intense rhombic signal with g1 = 2.013, g2 = 2.051, g3 = 2.187 that is 

coupled to three P-atoms (A1 = 58.0 MHz, A2 = 55.0 MHz, A3 = 5.8 MHz) (See section 

4.3.6). The solid-state structures of these red-orange complexes (Figure 4.1) confirm their 

identities as terminally bonded N2 adducts of iron(I). Complex 4.6 has an Fe-N distance 

of 1.819(2) Å and a short N-N distance of 1.106(3) Å consistent with the weak N2 
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activation implied by the relatively high- energy N-N stretching vibrations observed 

by IR spectroscopy (2041 cm-1 for 6 and 2008 cm-1 for 7).12 For comparison, 

tetrakis(phosphine)iron(0) dinitrogen complexes have N-N vibrations ranging from 1955 

cm-1 in Fe(N2)(depe)2
13 to 2068 cm-1 in Fe(N2)(dppe)2.14 As expected, the N2 ligands in 4.6 

and 4.7 are in positions trans to the silyl donors. This structural feature is unusual; 

transition metal N2 complexes that also feature silyl donors are rare,15 especially where 

the ligands are trans disposed. Such an arrangement of ligands might be expected to 

labilize the N2 ligand. Indeed, prolonged exposure of 4.6 to vacuum results in loss of 

some of the N2 adduct species (determined by 1H NMR, Toepler pump analysis, and 

combustion analysis). The N2 ligand of 4.7 is similarly labile. Hence, while each complex 

can be generated cleanly in solution and crystallographically characterized, neither 

provides satisfactory combustion analysis data upon rigorous solvent removal. 

 

Figure 4.3. Solid-state structures of [SiPPh
3]FeCl (4.4) (left) and 

[SiPiPr
3]FeCl (4.5) (right). Selected bond distances (Å) and angles (°) for 

4.4: Fe-Cl, 2.2623(12); Fe-Si, 2.3062(14); avg Fe-P, 2.289(4); Si-Fe-Cl, 

177.28(5). For 4.5: Fe-Cl, 2.2820(9); Fe-Si, 2.3046(10); avg Fe-P, 

2.352(2); Si-Fe-Cl, 178.532(17). 
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Comparative examination of the respective solid-state structures of 4.6 and 

4.7 provides insight as to why dinuclear complex formation is observed for 

{[PhBPiPr
3]Fe}2(μ-N2), but not in the case of 4.6 and 4.7. Figure 4.4 shows space-filling 

models of the hypothetical ‘[PhBPiPr
3]Fe-N2’ fragment, derived from the X-ray structure 

of {[PhBPiPr
3]Fe}2(μ-N2) after stripping away one of the [PhBPiPr

3]Fe units, alongside its 

5-coordinate relative 4.7. As can be seen, the N2 ligand of ‘[PhBPiPr
3]Fe-N2’ extends well 

beyond the protective pocket provided by the isopropyl substituents of the phosphine 

donors, whereas even the β-N atom of the N2 ligand of 4.7 is nicely shrouded by the 

isopropyl substituents. Energetically unfavorable interactions can be anticipated for 4.7 

under the approach of another ‘[SiPiPr
3]Fe’ unit, precluding formation of the dinuclear 

species. A similar analysis holds for [SiPPh]Fe(N2) (4.6), where the terminal N2 ligand is 

buried even more deeply in the protective pocket than for the case of 4.7 (Figure 4.4). 

 

Figure 4.4. Space-filling models of {[PhBPiPr
3]Fe}2(μ-N2) (left, one 

[PhBPiPr
3]Fe fragment omitted), [SiPiPr

3]FeN2 (4.7) (center), and 

[SiPPh
3]FeN2 (4.6) (right). 
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Reversible 1-electron reduction events at E0’ = -1.93 V for 4.6 and E0’ =  

-2.72 V for 4.7 (vs Fc+/Fc) are observed by CV, along with irreversible oxidations at 

higher potentials. Chemical reduction of 4.6 with an additional equiv of Na/Hg in the 

presence of 12-crown-4 affords the dark purple formally iron(0) species assigned as 

{[SiPPh
3]FeN2}{Na(12-crown-4)2} (4.8) on the basis of a strong N2 vibration at 1967 cm-1 

in its IR spectrum, its diamagnetic 1H and 31P{1H} (δ 84.3 ppm) NMR spectra, and 

combustion analysis (Scheme 4.1). On the other hand, one-electron oxidation of 4.6 with 

[FeCp2][BArF
4] releases N2 and produces the high-spin solvento species 

{[SiPPh
3]Fe(thf)}{BArF

4} (4.9) (ArF = 3,5-(F3C)2C6H4).16 Note that anion 4.8 features a 

less labile N2 ligand than its neutral precursor 4.6 (vide supra) due to stronger 

backbonding from the more electron-rich Fe center, and it therefore gives satisfactory 

combustion analysis data. 

The N2 ligand in 4.6 can be displaced by CO (1 atm) to provide [SiPPh
3]Fe(CO) 

(4.10) (νCO = 1881 cm-1). The νCO stretching frequency for 4.10 is virtually identical to 

that for the structurally related but cationic Fe(I) carbonyl complex [{N(2-

diisopropylphosphino-4-methylphenyl)3}Fe(CO)][BPh4], where isopropyl rather than 

phenyl substituents decorate the phosphine donors.7a No reaction, however, is observed 

between 4.6 and excess PMe3 or NH3. The Fe(I) site trans to the silyl ligand therefore 

appears preferentially disposed to coordination of π-acidic ligands, whereas Fe(II) 

accommodates pure σ-donors, as for the THF-adduct complex 4.9. 

Previously characterized iron dinitrogen complexes have been reported to release 

low yields (<15% per Fe) of hydrazine and/or ammonia under strongly protolytic 

conditions.17 However, the addition of protic sources to either of the previously reported 
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diiron(I) systems {[PhBPiPr
3]Fe}2(μ-N2) or β-diketiminato LRFeNNFeLR 6a did not lead 

to any detectable production of either NH3 or N2H4. Therefore, our observation of low 

yields of hydrazine upon addition of acids HX to 4.6 (17% per Fe for X = BF4; 7% per Fe 

for X = Cl) represents a promising initial lead for the [SiPR]Fe systems. More interesting 

is the observation that performing such protonations in the presence of CrX’2 as a 

sacrificial 1-electron reductant increases yields of hydrazine significantly (47% per Fe for 

X’ = Cl; 42% per Fe for X’ = Cp*). The addition of similar protic sources to 4.8 rapidly 

and cleanly regenerates 4.6 with no evidence for protonation at the N2 ligand. Analogous 

conditions result in substantially lower yields of hydrazine for 4.7 (9% per Fe) even in the 

presence of CrCp*2, presumably because the more reducing nature of 4.7 causes direct H+ 

reduction to H2 to vastly outcompete N2 reduction. Complex 4.7 is more basic than 4.6, 

and therefore weaker acids that fail to react with 4.6 instead provide low yields of 

hydrazine with 4.6 (e.g., 13% per Fe for HX = [HNiPr2Et][BPh4]). One key to advancing 

this N2 reduction chemistry further will be to more carefully control the delivery of 

protons and electrons so that N2 reduction is favored over H2 evolution. 

 

4.3 Experimental Section 

 

4.3.1 General Considerations 

All manipulations were carried out using standard Schlenk or glovebox 

techniques under a dinitrogen atmosphere.  Unless otherwise noted, solvents were 

deoxygenated and dried by thoroughly sparging with N2 gas followed by passage through 
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an activated alumina column.  Nonhalogenated solvents were tested with 

a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order to 

confirm effective oxygen and moisture removal.  All reagents were purchased from 

commercial vendors and used without further purification unless otherwise stated.  2-

(diphenylphosphino)phenyl bromide,18 2-(diisopropylphosphino)phenyl bromide,19 and 

mesityliron(II)20 were prepared according to literature procedures.  Elemental analyses 

were performed by Desert Analytics, Tucson, AZ.  Deuterated solvents were purchased 

from Cambridge Isotope Laboratories (Cambridge, MA), degassed, and dried over 

activated 3 Å molecular sieves prior to use. 

 

4.3.2 X-ray Crystallography Procedures 

X-ray diffraction studies were carried out at the Beckman Institute 

Crystallography Facility on a Brüker Smart 1000 CCD diffractometer and solved using 

SHELX v. 6.14.21  X-ray quality crystals were grown as indicated in the experimental 

procedures per individual complex.  The crystals were mounted on a glass fiber with 

Paratone N oil.  Structures were determined using direct methods with standard Fourier 

techniques using the Bruker AXS software package. Special refinement details used for 

the disordered solvent region in 4.3 and for the entire data set in 4.9 are specified in the 

comments sections of the cif files. 

 

 



 87 

4.3.3 Spectroscopic Measurements 

Varian Mercury-300 and Inova-500 spectrometer was used to record 1H, 13C, 29Si, 

and 31P NMR spectra at ambient temperature unless otherwise indicated.  1H and 13C 

chemical shifts were referenced to the residual solvent peaks. 31P chemical shifts were 

referenced to external phosphoric acid (δ = 0 ppm). 29Si chemical shifts were referenced 

to external tetramethylsilane (δ = 0 ppm). Optical spectroscopy measurements were taken 

on a Cary 50 UV/Vis Spectrophotometer using a 1 cm quartz cell sealed with a Teflon 

stopper.  

 

4.3.4 Synthesis 

Synthesis of tris(2-(diphenylphosphino)phenyl)silane ([SiPPh
3]H, 4.1). Under a 

dinitrogen atmosphere, 2-(diphenylphosphino)phenyl bromide (6.65 g, 19.5 mmol) was 

dissolved in diethyl ether (100 mL) and cooled to -78°C. n-Butyllithium (8.30 g of a 1.6 

M solution in hexanes, 19.5 mmol) was added slowly, giving a light orange solution with 

a tan-colored precipitate. This mixture was allowed to warm gradually to room 

temperature and then stirred for 1 h, after which the volatiles were removed in vacuo. 

Toluene (100 mL) was added, and the cloudy orange solution was cooled back to -78°C. 

Trichlorosilane (0.660 mL, 6.54 mmol) was added in one portion, and the resulting 

mixture was warmed to room temperature gradually. After stirring for 0.5 h at room 

temperature, the reaction was heated in a sealed reaction bomb to 110°C for 15 h. The 

resulting yellow solution and white precipitate were cooled to room temperature and 

filtered through Celite, and the filtrate was concentrated to white solids. Petroleum ether 
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(60 mL) was added and the resulting mixture was stirred vigorously for 20 min, 

at which point tan solids were collected on a sintered glass frit and washed with 

additional petroleum ether (2 x 10 mL) to afford [SiPPh
3]H as a fine tan powder (4.59 g, 

87%). 1H NMR (C6D6, δ): 7.63 (dm, J = 1.5 and 6.3 Hz, 3H), 7.34 (ddm, J = 1.0, 3.9, and 

7.8 Hz, 3H), 7.25-7.20 (m, 12H), 7.05 (td, J = 1.5 and 7.3 Hz, 6H), 7.02-6.95 (m, 19H). 

13C{1H} NMR (C6D6, δ): 145.5 (d, J = 11.4 Hz), 144.3 (t, J = 4.0 Hz), 144.0 (t, J = 4.0 

Hz), 138.8 (d, J = 14.6 Hz), 138.5 (d, J = 12.8 Hz), 134.7, 134.5 (d, J = 19.2 Hz), 130.4, 

128.8, 128.6 (d, J = 17.3 Hz). 29Si{1H} NMR (C6D6, δ): -33.8 (q, 3JSi-P = 24.4 Hz). 

31P{1H} NMR (C6D6, δ): -10.4 (s). IR (KBr, cm-1): 3044, 2170 (ν[Si-H]), 1580, 1478, 

1429, 1109, 795. Anal. Calcd for C54H43P3Si: C, 79.78; H, 5.33. Found: C, 79.39; H, 5.61. 

Synthesis of tris(2-(diisopropylphosphino)phenyl)silane ([SiPiPr
3]H, 4.2). (2-

bromophenyl)diisopropylphosphine (4.1429 g, 15.164 mmol) was dissolved in 100 mL of 

diethyl ether and chilled to -78 °C, and n-butyllithium (1.60 M solution in hexanes, 9.50 

mL, 15.2 mmol) was added dropwise, causing a darkening of the solution and gradual 

precipitation of solids. After 15 min, the slurry was brought to room temperature and 

stirred for 2 h, after which volatiles were removed in vacuo to yield a pale-red powder.  

The powder was redissolved in toluene (80 mL), chilled to -35 °C, and trichlorosilane 

(511 μL, 5.06 mmol) was added in one portion, resulting in the immediate precipitation 

of white solids and lightening of the solution.  The mixture was stirred at room 

temperature for 30 min, then at 90 °C for 15 h, and filtered through Celite to give a clear, 

light orange solution.  Solvents were removed in vacuo to give an orange oil, and the 

addition of petroleum ether (20 mL) caused the precipitation of white solids.  These were 

isolated on a frit and washed with petroleum ether (2 x 5 mL) to yield 4.2 as a white 
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powder.  Subsequent crops could be isolated by crystallization from 

concentrated petroleum ether solutions at -35 °C (0.5439 g, 18%).  1H NMR (C6D6): δ 

7.46 – 7.34 (m, 3H, Ar-H). 7.30 – 7.20 (m, 3H, Ar-H), 7.20 – 7.10 (td, J = 1.2 and 7.2 

Hz, 3H, Ar-H), 7.02 – 6.92 (tt, J = 1.5 and 7.5 Hz, 3H, Ar-H), 2.05 – 1.85 (doublet of 

septets, 2JHP = 6.9 Hz, 3JHH = 3.0 Hz, 6H, -CH(CH3)2), 1.20 – 1.02 (m, 18H, -CH(CH3)2), 

1.00 – 0.88 (m, 18H, -CH(CH3)2). 31P NMR (C6D6): δ 1.7 (s). IR (THF, cm-1): ν(Si-H): 

2218. Anal. Calcd. for C36H55P3Si: C, 71.02; H, 9.11. Found: C, 71.09; H, 9.38. 

Synthesis of [SiPPh
3]Fe(Mes) (4.3). [SiPPh

3]H (3.06 g, 3.77 mmol) and 

mesityliron(II) (1.11 g, 3.77 mmol) were combined in benzene (40 mL) and heated to 

65°C for 14 h. Volatiles were removed in vacuo, petroleum ether (100 mL) was added, 

and the mixture was stirred for 30 min. Filtration through Celite afforded a strawberry red 

filtrate that was concentrated to oily red solids. Benzene (15 mL) was added, and the 

clear red solution was lyophilized to give a fine red powder (1.70 g, 46%). Though this 

material was typically utilized without further purification, analytically pure material 

could be obtained by cooling a saturated petroleum ether solution to -30°C for 16 h. 

Crystals suitable for X-ray diffraction were obtained by diffusion of 

hexamethyldisiloxane vapors into a saturated petroleum ether solution at -30°C. 1H NMR 

(C6D6, δ): 8.50 (d, J = 7.2 Hz, 6H), 7.6-6.8 (m, 29H), 6.7-6.5 (m, 18H), 5.33 (br, ortho-

CH3), 1.84 (s, 3H, para-CH3), 0.58 (br, ortho-CH3). 1H NMR (toluene-d8, -60°C, δ): 8.48 

(d, J = 7.2 Hz, 2H), 8.33 (d, J = 7.8 Hz, 1H), 7.6-6.9 (m, 29H), 6.8-6.6 (m, 15H), 6.52 (t, 

J = 7.5 Hz, 1H), 6.36 (t, J = 7.8 Hz, 2H), 4.60 (ortho-CH3), 1.88 (s, 3H, para-CH3), 1.10 

(ortho-CH3), -0.24 (ortho-CH3). 13C{1H} NMR (C6D6, δ): 157.4 (br), 150.0 (br), 139.5 

(br), 134.7, 134.5 (d, J = 19.2 Hz), 132.7, 132.5, 131.7 (br), 130.9, 130.4, 128.9, 128.8, 
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127.3, 127.2, 104.9 (br, mesityl ipso-C), 23.1 (s, ortho-CH3), 20.5 (s, para-CH3), 

14.6 (s, ortho-CH2-H-Fe). 31P{1H} (C6D6, δ): 72.0 (br). 31P{1H} (toluene-d8, -60°C, δ): 

76.0 (t, 1P, 2JPP = 10.7 Hz), 73.3 (d, 2P, 2JPP = 10.7 Hz). UV-Vis (toluene, nm(M-1cm-1)): 

367(5000), 508(3800). IR (KBr, cm-1): 3049, 2956, 2910, 1584, 1479, 1429, 1100, 838. 

Anal. Calcd for C63H53FeP3Si: C, 76.67; H, 5.41. Found: C, 77.50; H, 5.37. 

Synthesis of [SiPPh
3]FeCl (4.4). [SiPPh

3]Fe(Mes) (1.02 g, 1.03 mmol) was 

dissolved in diethyl ether (40 mL) and cooled to -78°C. Hydrogen chloride (1.0 mL of a 

1.0 M solution in diethyl ether, 1.0 mmol) was added in one portion by syringe. The 

solution was allowed to warm to room temperature with stirring, resulting in gradual 

precipitation of an orange solid. After stirring the reaction at room temperature for 1.5 h, 

the orange solid was collected on a sintered glass frit and washed with additional portions 

of diethyl ether (2 x 10 mL), affording an analytically pure sample of [SiPPh
3]FeCl (0.555 

g, 60%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of 

petroleum ether vapors into a dichloromethane solution. 1H NMR (C6D6, δ): 12.32, 7.61, 

6.99, 4.67, 3.29, -2.09, -5.03. μeff (C6D6, Evans’ method, 23°C): 2.9 μB. UV-Vis (toluene, 

nm(M-1cm-1)): 426(4700), 479(5700). IR (KBr, cm-1): 2363, 1482, 1433, 1103. Anal. 

Calcd for C54H42ClFeP3Si: C, 71.81; H, 4.69. Found: C, 71.82; H, 4.41. 

Alternative synthesis of 4.4. To a THF-suspension (30 mL) of 4.1 (1.43 g, 1.76 

mmol) and FeCl2 (0.224 g, 1.76 mmol) was added 1,4-dioxane (3 mL). The entire 

mixture was cooled to -78°C, and CH3MgBr (1.17 mL of a 3.0 M solution in Et2O, 3.51 

mmol) was added by syringe with stirring. The solution was kept stirring at -78°C for 0.5 

h, and then was stirred at room temperature for 12 h, resulting in a cloudy brown mixture. 
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Volatiles were removed in vacuo. Diethyl ether (50 mL) was added and the mixture 

was filtered through Celite. The resulting red filtrate was cooled to -78°C, and HCl (1.75 

mL of a 1.0 M solution in Et2O, 1.75 mmol) was added, forming a light orange 

precipitate. After stirring at room temperature for 0.5 h, this precipitate was collected on 

a sintered glass frit, washed with additional portions of diethyl ether, and dried. 1H NMR 

confirmed the product’s identity as 4.4. Yield: 0.381 g, 24%. 

Synthesis of [SiPiPr
3]FeCl (4.5). To a stirring slurry of ferrous chloride (30.6 mg, 

0.241 mmol) in THF (10 mL) was added a solution of H[SiPiPr
3] (147.2 mg, 0.2418 

mmol) in THF (5 mL), causing a color change to yellow. The resulting solution was 

chilled to -78 °C, and MeMgCl (3.0 M in THF, 81 μL, 0.24 mmol) was diluted in THF (1 

mL) and added dropwise, causing an immediate darkening of the solution. The reaction 

was stirred at -78 °C for 1 h, then warmed to room temperature and stirred 3 h to give a 

dark orange solution. The solution was filtered through Celite and concentrated to an 

orange film in vacuo. The residues were extracted into benzene, filtered, lyophilized, and 

washed with petroleum ether (3 x 3 mL) to yield 4.5 as an orange powder (72.5 mg, 

43%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of 

benzene from a concentrated solution. 1H NMR (C6D6): δ 6.3, 5.9, 5.4, 4.7, 3.7, 3.2, 2.5, 

2.0, 1.4, 1.1, 0.9, 0.3, -2.5. UV-vis (THF, λmax, nm (ε, M-1 cm-1)): 471 (990), 379 (2100). 

Evans Method (C6D6): 3.3 μB. Anal. Calcd. for C36H54ClFeP3Si: C, 61.85; H, 7.79. Found: 

C, 62.34; H, 7.96. 

Synthesis of [SiPPh
3]Fe(N2) (4.6). Sodium (8.3 mg, 0.36 mmol) and mercury 

(0.714 g) were combined in THF (1 mL). Solid [SiPPh
3]FeCl (0.322 g, 0.357 mmol) was 
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added, and the total volume was brought up to 15 mL. After vigorous stirring for 6 h at 

room temperature, a brown supernatant was decanted off the Na/Hg amalgam and 

concentrated in vacuo to brown solids. Benzene (10 mL) was added, and the resulting 

cloudy solution was filtered through Celite. The resulting red-orange filtrate was 

lyophilized, providing spectroscopically pure [SiPPh
3]Fe(N2) as a fluffy red-orange solid 

(0.278 g, 87%). Crystals suitable for x-ray diffraction were obtained by slow diffusion of 

petroleum ether vapors into a THF solution. 1H NMR (C6D6, δ): 10.48, 7.98, 7.42, 6.17, 

4.46, -1.6 – -2.1 (br), -1.86. μeff (C6D6, Evans’ method, 23°C): 1.8 μB.  UV-Vis (toluene, 

nm(M-1cm-1)): 347(9400). IR (KBr, cm-1): 3048, 2041 (νNN), 1578, 1477, 1432, 1096. 

Note: Though all solution data we have collected indicates the presence of 4.6 in pure 

form, the lability of the dinitrogen ligand complicated isolation of analytically pure solid 

samples. As a result, combustion analysis and Toepler pump analysis indicated low levels 

of nitrogen. To probe this instability, we note that after repeated lyophilization of 4.6 

from benzene over several hours, a new paramagnetic species is observed as 4.6 decays. 

This unidentified paramagnetic species subsequently decomposes at temperatures as low 

as -30ºC to cleanly generate [SiPPh
3]H in benzene solution. 

[SiPiPr
3]Fe(N2) (4.7). A dark-green solution of sodium naphthalide was prepared 

by stirring a colorless solution of naphthalene (8.6 mg, 0.067 mmol) in THF (3 mL) over 

excess sodium metal (8.0 mg, 0.35 mmol) for 3 h. The resulting naphthalide solution was 

filtered away from sodium and added dropwise to an orange solution of 4.5 (46.8 mg, 

0.0669 mmol) in THF (5 mL), causing the color of the solution to change to dark orange 

over a period of several minutes. The reaction was allowed to proceed overnight, filtered, 

and volatiles removed in vacuo to give an orange-red film. The residues were extracted 
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into benzene (5 mL), filtered and dried. The residues were triturated with 

petroleum ether (1 x 5 mL) to give a red powder that was washed with petroleum ether (2 

x 3 mL) to yield spectroscopically pure 4.7 (10.5 mg, 23%). Crystals suitable for X-ray 

diffraction were obtained by slow evaporation of benzene from a concentrated solution. 

1H NMR (C6D6): δ 10.0, 5.9, 5.5, 4.8, 3.8, 3.3, 0.3. Evans Method (C6D6): 2.2 μB. IR 

(THF, cm-1): ν(N2): 2008. UV-vis (THF, λmax, nm (ε, M-1 cm-1)): 468 (1800), 380 (3500). 

Synthesis of {[SiPPh
3]Fe(N2)}{Na(12-crown-4)2} (4.8). Sodium (2.3 mg, 0.10 

mmol) and mercury (0.552 g) were combined in THF (1 mL). A THF solution (8 mL) of 

[SiPPh
3]Fe(N2) (73.5 mg, 0.0821 mmol) and then 12-crown-4 (40.0 mL, 0.247 mmol) 

were added, resulting in a red-purple solution. The reaction was stirred vigorously for 6.5 

h, then the deep purple supernatant was decanted off the Na/Ha amalgam, filtered 

through Celite, and concentrated in vacuo to purple solids. The residue was triturated 

with diethyl ether (10 mL), and a purple microcrystalline solid was collected on a 

sintered glass frit. Additional diethyl ether washes (2 x 10 mL) yielded analytically pure 

{[SiPPh
3]Fe(N2)}{Na(12-crown-4)2} (63.5 mg, 71%). 1H NMR (THF-d8, δ): 8.22 (d, J = 

10.5 Hz, 3H), 7.4-6.4 (m, 39H), 3.55 (s, 32H, 12-crown-4). 31P{1H} NMR (THF-d8, δ): 

84.3 (s). UV-Vis (THF, nm(M-1cm-1)): 415(6100), 460(6300). IR (KBr, cm-1): 3042, 

2963, 2911, 2866, 1967 (νNN), 1578, 1476, 1431, 1364, 1289, 1244, 1134, 1096, 1023, 

916. Anal. Calcd for C70H74FeN2O8P3Si: C, 66.14; H, 5.87; N, 2.20. Found: C, 66.35; H, 

5.85; N, 1.77. 

Synthesis of {[SiPPh
3]Fe(thf)}{BArF

4} (4.9). A THF solution (1 mL) of 

[FeCp2][BArF
4] (48.6 mg, 0.0463 mmol) was added slowly to a stirring THF solution (2 
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mL) of 4.6 (42.2 mg, 0.0471 mmol) at room temperature. After stirring for 2 h, 

the volatiles were removed and 4.9 was recrystallized from Et2O/petroleum ether (-30°C). 

Yield: 54.5 mg (65%). 1H NMR (10:1 C6D6/THF-d8, δ): 8.22, 7.63, 7.09, 6.99, 3.32, 0.82. 

μeff (10:1 C6D6/THF-d8, Evans’ method, 23°C): 5.6 μB. 19F NMR (10:1 C6D6/THF-d8, δ): -

60 (s). IR (KBr, cm-1): 3055, 2961, 1611, 1439, 1356, 1280, 1125, 867, 839. Anal. Calcd 

for C90H62BF24FeOP3Si: C, 59.95; H, 3.47; N, 0.00. Found: C, 55.28; H, 3.72; N, <0.05. 

Note: Satisfactory combustion analysis for this complex was not obtained, possibly due 

to lability of the thf ligand. However, an analogous preparation was used to access 

{[SiPPh
3]Fe(thf)}{BPh4}, whose x-ray quality crystals were grown by diffusion of Et2O 

vapors into a THF solution. 

Synthesis of [SiPPh
3]Fe(CO) (4.10). Sodium (4.2 mg, 0.18 mmol) and mercury 

(0.982 g) were combined in THF (1 mL). Solid [SiPPh
3]FeCl (0.153 g, 0.169 mmol) was 

added, and the total volume was brought up to 5 mL. After vigorous stirring for 3.5 h at 

room temperature, a brown supernatant was decanted off the Na/Hg amalgam and 

concentrated in vacuo to brown solids. Benzene (10 mL) was added, and the resulting 

cloudy solution was filtered through Celite into a resealable Schlenk tube. The resulting 

red-orange filtrate was frozen, evacuated, and backfilled with CO (1 atm). After stirring 

at room temperature for 1 h, the solution was filtered through Celite and concentrated to 

brown solids. Trituration with petroleum ether (10 mL) provided a brown powder that 

was collected on a sintered glass frit and washed with additional portions of petroleum 

ether, providing [SiPPh
3]Fe(CO) (0.062 g, 41%). 1H NMR (C6D6, δ): 10.37, 7.62, 7.01, 

6.15, 5.29, -1.02, -1.52. μeff (C6D6, Evans’ method, 23°C): 2.1 μB.  UV-Vis (toluene, 
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nm(M-1cm-1)): 335(2400), 411(1600). IR (C6H6, cm-1): 1881 (νCO). Anal. Calcd for 

C55H42FeOP3Si: C, 73.75; H, 4.73; N, 0,00. Found: C, 73.22; H, 4.68; N, 0.28. 

Reaction of 4.6 and 4.7 with acids. [SiPR
3]FeN2 (approx 10 mg), and in some 

cases a sacrificial Cr(II) reagent (10 equiv per Fe), were dissolved in THF (3 mL) in a 2-

neck 25 mL round-bottom flask and sealed with septa. An ethereal solution of the acid 

(10 equiv per Fe) was added via syringe, and the resulting solution was stirred overnight 

under septum seal. Volatiles were then vacuum-transferred onto a frozen HCl solution (5 

mL, 1.0 M in Et2O). A solution of NaOtBu (>15 equiv) in THF (5 mL) was then added to 

the source flask via syringe through the second neck, and the mixture was stirred 

vigorously for 30 min. The volatiles were again vacuum-transferred into the same 

receiving flask. The combined distillates were concentrated to white solids by rotary 

evaporation and analyzed by 1H NMR (DMSO-d6) with mesitylene added as an internal 

integration standard. [N2H6]Cl2 was detected22 in modest yields based on 1H NMR 

integration. The results of these experiments are summarized in Table 4.1. 
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Table 4.1. Summary of protolytic hydrazine formation experiments 

Phosphine 
substituent 

H+ e- Solvent 
Yield of N2H4 

per Fe 

Ph HCl None THF 7% 

Ph HBF4 None THF 17% 

Ph HBF4 CrCl2 THF 47% 

Ph HBF4 CrCp*2 THF 42% 

Ph HBF4 CrCp*2 THF, 0°C 28% 

Ph HBF4 CrCp*2 
THF, add H+ 

dropwise 
23% 

Ph HBF4 CrCp*2 Et2O 15% 

Ph HBF4 CrCp*2 C6H6 <5% 

Ph [LutH]BPh4 CrCp*2 THF 0% 

Ph [LutH]BPh4 CrCp*2 C6H6 0% 

iPr HBF4 CrCp*2 THF 9% 

iPr [HNiPr2Et]BPh4 CrCp*2 THF 13% 

iPr [HNiPr2Et]BPh4 CrCp*2 C6H6 0% 

iPr [LutH]BPh4 CrCp*2 C6H6 0% 

Lut = 2,6-lutidine, Cp* = pentamethylcyclopentadienyl 

 

4.3.5 Electrochemistry 

Electrochemical measurements were carried out in a glovebox under a dinitrogen 

atmosphere in a one-compartment cell using a CH Instruments 600B electrochemical 

analyzer.  A glassy carbon electrode was used as the working electrode and platinum wire 

was used as the auxillary electrode.  The reference electrode was Ag/AgNO3 in THF.  

The ferrocene couple Fc+/Fc was used as an external reference.  Solutions (THF) of 
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electrolyte (0.3 M tetra-n-butylammonium hexafluorophosphate) and analyte were 

also prepared under an inert atmosphere. 

 

 

Figure 4.5. Cyclic voltammograms of (a) [SiPiPr
3]FeCl and (b) 

[SiPPh
3]FeCl. The potential scale is vs FeCp2

+/FeCp2. 

 

 

Figure 4.6. Cyclic voltammograms for [SiPPh
3]Fe(N2) (top) and 

[SiPiPr
3]Fe(N2) (bottom). 

 



 98 

4.3.6 EPR Spectroscopy 

X-band EPR spectra were obtained on a Bruker EMX spectrometer (controlled by 

Bruker Win EPR software v. 3.0) equipped with a rectangular cavity working in the TE102 

mode and an Oxford continuous-flow helium cryostat (temperature range 3.6-300 K).  

Accurate EPR frequency values were provided by a frequency counter built into the 

microwave bridge. EPR spectra were simulated using the W95EPR program.23 

 

 
 
Figure 4.7. X-band EPR spectrum of [SiPPh

3]FeN2 (4.6) (blue) and simulation (red) in a 

2-methyltetrahydrofuran glass at 4 K. Simulation parameters: ν = 9.3743 GHz; g1 = 

2.013, g2 = 2.051, g3 = 2.187; for 3 equivalent P atoms: A1 = 58 MHz, A2 = 55 MHz, A3 = 

5.8 MHz; line widths: W1 = 8.0 G, W2 = 9.5 G, W3 = 26.0 G. 

2900 3000 3100 3200 3300 3400 3500

B (G)

Experimental
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5.1 Introduction 

Organoazides (N3R) are desirable reagents for nitrene transfer reactions.1 

Generally, organoazides interact with transition metal catalysts to form transient M-N3R 

adduct species that in many cases subsequently extrude N2 to yield metal-imido/nitrene 

(MNR) complexes as the key reactive intermediates for substrate activation.1 

Understanding the properties of metal-organoazide and metal-imido/nitrene complexes is 

fundamentally important in this context. Several iron-imido/nitrene intermediates that are 

unstable toward hydrogen atom abstraction and/or intramolecular ligand oxidation 

pathways have been proposed for various coordination geometries.2 We3 and others4 have 

shown that iron-imido complexes formed from organoazides can be stabilized in 

pseudotetrahedral coordination environments. Subsequently, stable iron-imido complexes 

with distorted square planar geometries,5 as well as a trigonal planar bis(imido)iron 

complex,6 also have been structurally characterized.  

 

Figure 5.1. Qualitative d-orbital splitting diagrams for pseudotetrahedral and 

trigonal bipyramidal iron-imido/nitrene complexes. 

 
An interesting geometry to consider for an FeNR unit is the trigonal bipyramid 

(TBP). The well-studied pseudotetrahedral L3FeIIINR complexes feature bona fide Fe-N 
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triple bonds resulting from two highly destabilized, unoccupied π*FeN orbitals (Figure 5.1, 

left).3 Introducing a ligand trans to the imido group and shifting the Fe into the L3 plane 

in a TBP leads in principle to population of the π*FeN set (Figure 5.1, right), thereby 

obliterating a significant degree of the Fe-N multiple bonding character presumed 

responsible for the stability of pseudotetrahedral L3FeIIINR species.3,4a Accordingly, until 

recently7 metal-ligand multiply bonded species in TBP configurations had been isolated 

only for d-electron counts of 0 or 1.8 TBP systems with higher d-electron counts often 

dissociate the apical ligand and distort towards the more stable pseudotetrahedral 

geometry when accommodating an axial metal-ligand multiple bond.9 In this context, we 

sought to examine the ramifications of placing a FeNR linkage in a TBP environment. 

Our recent work10 with low-valent TBP Fe complexes supported by anionic 

tris(phosphino)silyl ligands (2-R2PC6H4)3Si- ([SiPR
3]-) provided a convenient entry point 

for such studies (Figure 5.1). 

 

5.2 Results and Discussion 

 

5.2.1 Coordination of 1-Adamantylazide 

Addition of 1-adamantylazide to red-colored [SiPiPr
3]Fe(N2) (5.1) produced dark-

brown solutions from which the organoazide adduct [SiPiPr
3]Fe(η1-N3Ad) (5.2) was 

crystallized. A characteristic optical band for 5.2 appears at 679 nm (ε = 1100 M-1 cm-1). 

The solution magnetic moment of 5.2 is μeff = 2.2 μB, consistent with an S = 1/2 ground 

state similar to 5.1 and in accord with its intense EPR signal with gaverage = 2.086. 
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Figure 5.2. Core structures of (a) 5.2 and (b) 5.6 as 50% probability 

ellipsoids. The N-H hydrogen in 5.6 was located on the Fourier difference 

map and refined semifreely. (c) Spin density plot of 5.2 (0.002 

isocontour). Selected bond lengths (Å) and angles (°) for 5.2: Fe-N1, 

1.769(5); N1-N2, 1.269(13); N2-N3, 1.25(3); Fe-N1-N2, 162(3); N1-N2-

N3, 147(4); N2-N3-C, 111.5(15). For 5.6: Fe-N, 1.963(2). 

 
The solid-state structure of 5.2 (Figure 5.2a) is noteworthy because isolable 

metal-organoazide complexes are unknown for Fe and rare in general.11 The η1-Nγ 

binding exhibited in 5.2 is the most common binding mode represented in the 

literature.11a-f The diazenylimido(2-) resonance structure (M=N-N=NR) is descriptive of 

many of these complexes11a-e and results in bent N-N-N angles (114°-117°) and redshifted 

ν(N3) IR bands. A recent copper(I) 1-adamantylazide complex,11f on the other hand, is 

best formulated as a redox-innocent RN3M adduct and exhibits a linear N-N-N angle of 

173.1(3)° and a blueshifted ν(N3) IR band. Complex 5.2 has an N-N-N angle of 147(4)°, 

and its N3 vibration occurs at an energy that is indistinguishable from free 1-
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adamantylazide. Also noteworthy is the Fe-N distance in 5.2 (1.769(5) Å), which is 

significantly shorter than that of 5.1 (1.817(4) Å).10 These data collectively indicate that 

the electronic structure of 5.2 lies somewhere between the above two limiting resonance 

structures. DFT calculations12 are consistent with this hypothesis, as the calculated spin 

densities (molecular sum 1.00) on the P3Fe and N3 units are 1.81 and -0.77, respectively 

(Figure 5.2c). This electronic structure is distinct from metalloradical 5.1, for which 92% 

of the calculated spin density resides on Fe.12 

 

 

5.2.2 Stoichiometric and Catalytic Aryl Azide Coupling 

Stoichiometric reactions of 5.1 with aryl azides (N3Ar) gave green-colored 

solutions that decayed gradually to yield red solutions containing 5.1 and the 

corresponding azoarene (ArN=NAr) products (Scheme 5.1). Complex 5.1 also was found 

to be a catalyst for this unusual N-N coupling reaction (Table 5.1). With 5% catalyst 

loading in C6D6 solutions at 70°C, various aryl azides (Ar = Ph, p-tolyl, p-C6H4OMe, 

Mes) were converted to the corresponding azoarenes in moderate yields (44%-57%). The 

only other spectroscopically detectable species were the corresponding anilines (ArNH2) 

as minor by-products (8%-24%).13 To our knowledge, the only previous example of 

[SiPiPr
3]Fe(N2)
5.1

N3R

- N2

[SiPiPr
3]Fe(N3R)

5.2: R = 1-Ad
5.3: R = aryl

R = aryl

[SiPiPr
3]Fe(NAr)
5.4

N3Ar

1/2 ArN=NAr

tBuN=C=NAr

[SiPiPr
3]Fe(NHAr)

5.6: Ar = p-tolyl
Scheme 5.1

tBuNC
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catalytic N-N coupling to yield diazenes from organoazides was reported as a side 

reaction during the catalytic amination of C-H bonds by Co porphyrins.14 Thus, we 

became interested in understanding the mechanism of this unusual process. 

 

Table 5.1. Results from the catalytic decomposition of aryl azides (N3Ar) by catalyst 1 

Entry Ar 
Temp. 

(°C) 
Solvent 

Catalyst 

Loading 

(%) 

Reaction 

Time (h) 

Yield 

ArNNAr (%) 

Yield 

ArNH2 

(%) 

1 p-tolyl 23 Benzene 10 48 46 5 

2 p-tolyl 45 Benzene 5 17 52 11 

3 p-tolyl 70 Benzene 5 3 57 8 

4 p-tolyl 70 Benzene 0 17 0 0 

5 p-tolyl 70 C7H14 5 18a 25 < 2 

6 p-tolyl 70 THF 5 18a 10 < 2 

7 Ph 70 Benzene 5 18a 44 24 

8 p-anisyl 70 Benzene 5 18a 50 16 

9 Mes 70 Benzene 5 18a 50 22 
a Separate in situ NMR experiments established that reaction times of <3 h were 
sufficient for these conditions. 

 

The green intermediates observed during the reactions between 5.1 and aryl 

azides were assigned as the aryl azide complexes [SiPiPr
3]Fe(N3Ar) (5.3, Ar = Ph, p-tolyl, 

p-C6H4OMe, Mes, 2,6-Et2C6H3) on the basis of in situ spectroscopic characterization and 

comparison to stable organoazide complex 5.2. Characteristic ν(N3) IR bands were 

observed at energies deviating by ≤3 cm-1 from the corresponding free aryl azides, 

implying the presence of coordinated azide ligands. Complexes 5.3 are paramagnetic, and 

the p-tolyl derivative [SiPiPr
3]Fe(N3Tol) (5.3-Tol, Tol = p-tolyl)  exhibited an intense EPR 
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signal with gaverage = 2.106. Characteristic optical bands for 5.3 were evident at λmax = 608 

– 617 nm (ε = (est.) 1400 M-1 cm-1) and ca. 775 nm (Table 5.2). 

 

Figure 5.3. Changes in the UV-Vis spectrum during the decay of 

[SiPiPr
3]Fe(N3Ph) (inset: first-order plot of absorbance at 611 nm). 

 

The decay profiles of 5.3 were followed by UV-vis spectroscopy at room 

temperature. In all cases studied, clean isosbestic behavior was observed (Figure 5.3), 

indicating that no intermediates were accumulating during the conversion of 5.3 to 

ArN=NAr and 5.1. The decay of 5.3 was found to be clean and first order (Figure 5.3). 

The rate of decay of the aryl azide complexes was relatively insensitive to the identity of 

the aryl substituent, as the t1/2 of the complexes spanned a relatively small range (1.2 – 3.2 

h at 23°C) even as the electronics (Ar = Ph, p-tolyl, p-C6H4OMe) and sterics (Ar = Mes, 

2,6-Et2C6H3) were varied. 
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Table 5.2. λmax and half-life data for [SiPiPr

3]Fe(N3R) at 23°C in C6H6 solution 

R λmax (nm) t1/2 (h) 

Ph 608 1.3 

p-tolyl 614 1.8 

p-C6H4OMe 617 3.2 

Mes 609 1.2 

2,6-Et2C6H3 617 2.2 

1-adamantyl 679 N/A 

 

 

5.2.3 Experimental Evidence for N-N Coupling of Iron-Nitrene Intermediates 

It is likely that complexes 5.3 decayed to yield reactive [SiPiPr
3]Fe(NAr) 

intermediates (5.4) prior to N-N coupling, akin to first-order conversions of 

Cp2Ta(Me)(N3Ar) complexes to Cp2Ta(Me)(NAr) studied by Bergman.11a,b Important to 

note is our recent isolation and structural characterization of the Ru analogues of 5.4, 

[SiPiPr
3]Ru(NAr).15 Though the corresponding Fe complexes 5.4 are too reactive to permit 

isolation and thorough characterization, it appears that the p-tolyl derivative 

[SiPiPr
3]Fe(NTol) (5.4-Tol) can be observed by EPR spectroscopy in a frozen glass. 

Photolysis of 5.3-Tol in frozen 2-methyltetrahydofuran over 1 h at 77 K resulted in a 

color change from green to red-brown. The disappearance of the EPR signal for 5.3-Tol 

(Figure 5.4b) was accompanied by the appearance of a new EPR signal (Figure 5.4c) that 

we presume to correspond to 5.4-Tol. A simulation of this signal was obtained with the 

parameters (gx, gy, gz) = (1.990, 2.032, 2.098) and (AP
x, AP

y, AP
z) = (55, 40, 50 MHz) 

(Figure 5.4d), suggesting that imido complex 5.4-Tol possesses an S = 1/2 ground state. 
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Intermediate 5.4-Tol rapidly converted to 5.1 upon thawing of the glass, as judged by 

EPR spectroscopy (Figure 5.4e). 

 

Figure 5.4. X-band EPR spectra (77 K, 2-methyltetrahydrofuran) of (a) 

5.1, (b) 5.3-Tol, (c) 5.4-Tol produced by photolysis of a frozen glass of 

5.3-Tol, (d) simulated spectrum of 5.4-Tol, and (e) 5.1 produced upon 

warming and re-freezing 5.4-Tol. Spin density plots (0.002 isocontours) of 

(f) 5.7-LS and (g) 5.7-IS.12 

 

Two chemical transformations further support the existence of the proposed 

FeNAr intermediates (Scheme 5.1). First, when 5.3-Tol was generated in the presence of 

tBuNC, the resulting product mixture contained TolN=NTol, 5.1, tBuN=C=NTol, and 
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[SiPiPr

3]Fe(CNtBu) (5.5). Stoichiometric16 and catalytic17 reactions with isocyanides to 

yield carbodiimide products are diagnostic of isolable FeNR species. Second, when 5.3-

Tol was generated in the presence of 9,10-dihydroanthracene (DHA), the resulting 

product mixture contained a new paramagnetic product (5.6), identified 

crystallographically (Figure 5.1b) as [SiPiPr
3]Fe(NHTol) after independent synthesis from 

[SiPiPr
3]Fe(OTf) and LiNHTol. For comparison, adamantylazide adduct 5.2, which does 

not decay at a measureable rate under analogous conditions, was found to be unreactive 

towards DHA and underwent ligand substitution with tBuNC to yield 5.5 and free N3Ad. 

Careful analysis of product distributions in these trapping experiments proved 

informative with regard to the mechanism of N-N bond formation. The ratio of 

azotoluene to anthracene decreased linearly when decreasing the concentration of 5.1 

while holding the concentrations of N3Tol and DHA constant (Table 5.3). If one assumes 

that only one Fe center is involved in the hydrogen atom transfer (HAT) reaction with 

DHA, this result implyies the involvement of two Fe centers in the N-N bond-forming 

step. On the other hand, the azotoluene:anthracene ratio was insensitive to varying the 

concentration of N3Tol while holding the concentrations of 5.1 and DHA constant (Table 

5.3). Though mechanisms involving the reactions of metal-imido species with excess 

organoazides have been discovered for stoichiometric generation of diazenes,18 we 

propose for the present system that the mechanism most consistent with these product 

distributions is the bimolecular coupling of Fe-nitrene species 5.4. Stoichiometric imido-

imido coupling has been observed recently.19 
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Table 5.3. Product distributions as a function of reagent concentration 

Entry 
[Fe] 

(mM) 

[TolN3] 

(mM) 

[DHA] 

(mM) 

Product ratio 

(TolN=NTol/anthracene) 

1 13.7 13.7 11 2.5 

2 13.7 13.7 25 1.2 

3 13.7 13.7 68.8 0.8 

4 20.0 20.0 10 4.2 

5 9.0 20.0 10 2.6 

6 4.2 20.0 10 1.6 

7 20.0 25.0 10 4.1 

8 20.0 20.0 10 4.6 

9 20.0 6.7 10 4.2 

10 10.6 10.7 5.2 3.1 

11 10.6 7.1 5.2 3.1 

12 10.6 3.6 5.2 2.6 

 

 

5.2.4 DFT Studies of a Hypothetical Trigonal Bipyramidal Iron-Imido 

This finding is significant not only in the context of catalytic nitrene transfer 

reactions, but also because nitrene-nitrene coupling is related conceptually to oxo-oxo 

coupling, which may be relevant to O-O bond forming processes for some water splitting 

catalysts.20 It has been suggested that oxygen-centered radical character is crucial for such 

reactions to proceed.20 We hence chose to examine the model complex [SiPMe
3]Fe(NPh) 

(5.7) by DFT methods12 to explore the degree of spin character carried by the NPh 

moeity. 

The low spin, S = 1/2 state (5.7-LS) was calculated to be the ground state of 5.7, 

consistent with the EPR spectroscopy of 5.4-Tol and the observed ground state of 
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[SiPiPr

3]Ru[N(p-C6H4CF3)].15 The optimized geometry of 5.7-LS falls intermediate 

between TBP and square pyramidal (τ = 0.49)21 and is similar to the crystallographically 

determined structure of [SiPiPr
3]Ru[N(p-C6H4CF3)] (τ = 0.54). The optimized Fe-N 

distance in 5.7-LS (1.703 Å) is much shorter than that of anilido complex 5.6 (1.963(2) 

Å). Structurally characterized Fe-NR bond distances range from 1.61-1.66 Å for 

tetrahedral systems3,4 to 1.70-1.72 Å for distorted square planar systems.5 Low-spin 

[SiPiPr
3]Ru[N(p-C6H4CF3)] has experimental and computational characteristics implying 

significant radical delocalization through the RuNAr π-system.15 Such delocalization is 

less obvious for 5.7-LS (Figure 5.4f, Table 5.4), which has calculated spin densities 

(molecular sum 1.00) on the Fe center and NPh unit of 0.89 and 0.16, respectively, with 

very little spin density on the N atom itself (0.01). Noteworthy, however, are the short N-

C (1.341 Å) and alternating C-C bond lengths in the calculated NPh unit of 7-LS that 

suggest a significant quinoidal resonance contributor (see Figure 5.17). 

 

Table 5.4. Mülliken spin densities of complexes 5.7-LS and 5.7-IS 

Atom(s) Spin density, 5.7-LS Spin density, 5.7-IS 

Fe 0.89 2.00 

N 0.01 0.82 

C,H (Ph) 0.15 0.15 

P -0.07 0.04 

Si -0.06 -0.18 

C,H (SiPMe
3) 0.08 0.17 

total 1.00 3.00 
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Interestingly, the intermediate spin, S = 3/2 state (5.7-IS) of 5.7 was higher in 

energy than 5.7-LS by only 2.8 kcal/mol. The calculated spin densities for 5.7-IS 

(molecular sum 3.00) on the Fe, N, and Ph units are 2.00 and 0.82, and 0.15 (Table 5.4), 

respectively, indicating some radical character for the imido ligand (Figure 5.4g). 

Considering the likelihood that, based on our DFT studies of 5.7, the [SiPiPr
3]Fe(NAr) 

intermediates 5.4 also possess low-lying excited states, the possibility of two-state 

reactivity22 for 5.4 could account for the strikingly rich redox chemistry that enables 1-

electron (HAT), 2-electron (nitrene transfer), and 4-electron (bimolecular coupling) redox 

processes and merits further study. 

 

5.3 Experimental Section 

 

5.3.1 General Considerations 

All manipulations were carried out using standard Schlenk or glovebox 

techniques under a N2 atmosphere unless otherwise indicated. Unless otherwise noted, 

solvents were deoxygenated and dried by thoroughly sparging with Ar gas followed by 

passage through an activated alumina column in the solvent purification system by SG 

Water, USA LLC. Non-halogenated solvents were tested with a standard purple solution 

of sodium benzophenone ketyl in tetrahydrofuran in order to confirm effective oxygen 

and moisture removal. [SiPiPr
3]Fe(N2) (5.1) was prepared according to literature 

procedures.10 LiNHTol was prepared from NH2Tol and nBuLi in n-pentane. All aryl 

azides were prepared according to literature procedures.23 All azoarene and carbodiimide 

products were synthesized independently by literature methods to compare 
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characterization data.24,25 All other reagents were purchased from commercial vendors 

and used without further purification. Elemental analyses were performed by Midwest 

Microlab, LLC, Indianapolis, IN. Deuterated solvents were purchased from Cambridge 

Isotope Laboratories (Cambridge, MA), degassed, and dried over activated 3 Å molecular 

sieves prior to use. Photolysis was conducted with a Blak-Ray long-wave UV, medium 

skirted Hg spot lamp (100 W). 

 

5.3.2 X-ray Crystallography Procedures 

Low-temperature diffraction data were collected on a Siemens Platform three-

circle diffractometer coupled to a Bruker-AXS Smart Apex CCD detector with graphite-

monochromated Mo Kα radiation (λ = 0.71073 Å), performing φ-and ω-scans. The 

structures were solved by direct methods using SHELXS26 and refined against F2 on all 

data by full-matrix least squares with SHELXL-9727 using established methods.28 All 

non-hydrogen atoms were refined anisotropically.  All hydrogen atoms (except the 

hydrogen on nitrogen atom N in the structure of 5.6, which was taken from the difference 

Fourier synthesis and refined semifreely with the help of distance restraints) were 

included into the model at geometrically calculated positions and refined using a riding 

model.  The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 

times the U value of the atoms they are linked to (1.5 times for methyl groups).  Details 

of the data quality and a summary of the residual values of the refinements are listed in 

Appendix 4. 

Compound 5.6 crystallizes in the orthorhombic space group P212121 with one 

molecule per asymmetric unit.  Structure solution and refinement were straightforward 
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and routine.  Compound 5.2 crystallizes in the rhombohedral space group R-3c 

(hexagonal setting) with one-third of 5.2 plus one-half of an n-pentane molecule per 

asymmetric unit.  Only parts of the molecule of 5.2 show threefold symmetry, which 

results in a threefold disorder of the 1-adamantylazide moiety about the crystallographic 

threefold axis.  The half solvent molecule is disordered over four positions involving a 

crystallographic twofold axis; hence only two of the four positions are 

crystallographically independent, corresponding to one half pentane molecule in the 

asymmetric unit.  The ratio between the two independent components of the solvent 

disorder was refined freely and converged at 0.710(8).  Similarity restraints on 1-2 and 1-

3 distances and displacement parameters as well as rigid bond restraints for anisotropic 

displacement parameters were applied to all atoms of the solvent molecule and also of the 

adamantly moiety.  The fact that the asymmetric unit contains one third of 5.2 but one 

half pentane molecule results in a non-integer number for the element C in the empirical 

formula. 

 

5.3.3 Spectroscopic Measurements 

Varian Mercury-300 and Inova-500 spectrometers were used to record 1H, 19F, 

and 31P NMR spectra at ambient temperature unless otherwise indicated. 1H chemical 

shifts were referenced to the residual solvent peaks. 19F chemical shifts were referenced 

to external hexafluorobenzene (δ = –165 ppm). 31P chemical shifts were referenced to 

external phosphoric acid (δ = 0 ppm). Solution magnetic moments were determined by 

the method of Evans.29,30 Optical spectroscopy measurements were taken on a Cary 50 

UV-Vis spectrophotometer using either a 1 cm or 2 mm two-window quartz cell sealed 
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with a standard closed cap purchased from Starna Cells, Inc. Infrared spectra were 

recorded on a BioRad FTS 3000 EXCALIBUR series FT-IR spectrometer. An Agilent 

5973N Gas Chromatograph/Mass Spectrometer was used for GC-MS analysis. X-band 

EPR measurements were recorded using a Brüker EMX spectrometer at 77 K in 2-

methyltetrahydrofuran glasses. EPR samples were prepared in a glovebox under N2 in 

quartz EPR tubes equipped with J. Young caps. X-band microwave frequencies: 

[SiPiPr
3]Fe(N2), ν = 9.3368 GHz; [SiPiPr

3]Fe(η1-N3Ad), ν = 9.3367 GHz; 

[SiPiPr
3]Fe(N3Tol), ν = 9.3379 GHz, [SiPiPr

3]Fe(NTol), ν = 9.3764 GHz. EPR spectra were 

simulated using the W95EPR program.31 

 

5.3.4 Synthetic Procedures 

Synthesis of [SiPiPr
3]Fe(η1-N3Ad) (5.2). A solution of 1-adamantylazide (31.6 

mg, 0.178 mmol) in benzene (3 mL) was added to solid 5.1 (78.0 mg, 0.113 mmol), 

resulting in effervescence and a darkening of the solution. The brown solution was stirred 

for 6 days, and then volatiles were removed in vacuo. n-Pentane (1 mL) was added, and 

the resulting brown insoluble material was collected on a sintered glass frit and washed 

with additional n-pentane (2 x 1 mL). The solids were then lyophilized from benzene to 

give 5.2 as a brown powder (54.3 mg, 57%). X-ray quality crystals were grown by 

diffusion of hexamethyldisiloxane vapors into a pentane solution of 5.2. In the absence of 

excess 1-adamantylazide, a trace equilibrium amount of 5.1 was consistently evident by 

1H NMR spectroscopy. Therefore, combustion analysis was not obtained. 1H NMR (C6D6, 

δ): 11.4, 7.3, 7.0, 6.8, 3.9, 2.0, 1.8-1.0 (multiple overlapping peaks), 0.4, 0.3,  

-6.6. IR (KBr pellet, cm-1): 2086 (νN3). μeff (C6D6, room temp): 2.2 μB. UV-Vis (C6H6, 
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nm(M-1cm-1)): 298(37000), 406(11000), 679(1100). 

Synthesis of [SiPiPr
3]Fe(CNtBu) (5.5). Addition of tert-butylisocyanide (2.03 μL, 

0.0179 mmol) to a solution of 5.1 (12.4 mg, 0.0179 mmol) in benzene-d6 (~0.7 mL) 

provided 5.5 in situ after stirring for 18 h. In the absence of excess isocyanide, complex 

5.1 was consistently a minor impurity in the product mixtures. Moreover, prolonged 

exposure of these solutions to vacuum caused the majority of the material to revert to 5.1 

upon reexposure to an N2 atmosphere, as judged by 1H NMR. Therefore, complex 5.5 

was not isolated in pure form; characterization data for 5.5 generated in situ is provided 

here and match the data obtained from the competitive trapping experiments (vide infra). 

1H NMR (C6D6, δ): 10.3, 6.8, 4.9, 4.3, 1.6, 0.9. IR (C6D6 solution, cm-1): 1977 (νCN). 

Synthesis of [SiPiPr
3]Fe(OTf). Complex 5.1 (0.565 g, 0.817 mmol) was dissolved 

in THF (10 mL) and frozen in a cold well bathed in liquid N2. Silver triflate (0.211 g, 

0.821 mmol) was dissolved in THF (5 mL) and likewise frozen. As the silver triflate 

solution thawed, it was added dropwise to the still-frozen solution of 5.1. The entire 

mixture was then allowed to thaw and warm to room temperature, resulting in a 

darkening of the solution and precipitation of black solids. After stirring at room 

temperature for 2 h, the mixture was filtered through Celite and evaporated to dryness. A 

toluene/n-pentane mixture (1:1, 10 mL) was added, the resulting solution was filtered 

once again, and the dark orange filtrate was placed in a -35°C freezer overnight, resulting 

in light orange crystals of [SiPiPr
3]Fe(OTf) (0.397 g, 60%). 1H NMR (C6D6, δ): 31.7, 6.8, 

6.6, 5.4, 1.8, 1.0, -0.4, -4.8. 19F NMR (C6D6, δ): -55.6 (br). IR (KBr pellet, cm-1): 3039, 

2956, 2922, 2870, 1496, 1424, 1383, 1367, 1315, 1226, 1207, 1174, 1106, 1019. μeff 

(C6D6, room temp): 2.8 μB. UV-Vis (C6H6, nm(M-1cm-1)): 367(4700), 427(5400), 
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486(6900). Anal. Calcd for C37H54F3FeO3P3SSi·C7H8 ([SiPiPr

3]Fe(OTf)·toluene): C, 58.40; 

H, 6.91. Found: 58.49, 6.68. 

Synthesis of [SiPiPr
3]Fe(NHTol) (5.6). A thawing solution of LiNHTol (21.5 mg, 

0.190 mmol) in THF (1 mL) was added to a frozen solution of [SiPiPr
3]Fe(OTf) (0.149 g, 

0.183 mmol). The mixture was allowed to warm to room temperature gradually, resulting 

a color change to an intense cherry red. After stirring for 18 h at room temperature, 

volatiles were removed in vacuo.  n-Pentane (10 mL) was added, and the resulting 

solution was filtered. The cherry-red filtrate was concentrated in vacuo to red solids (93.3 

mg, 66%). 1H NMR of this material indicates that the product contains 5.1 and NH2Tol as 

minor impurities. Recrystallization from n-pentane (-35°C or by slow evaporation) gave 

red crystals of co-crystallized 5.6 and 5.1, and these complexes could not be separated in 

our hands by repeated crystallization. X-ray quality crystals were grown by diffusion of 

hexamethyldisiloxane vapors into a pentane solution of crude 5.6, and a crystal of 5.6 

rather than 5.1 was selected based upon color. Crude characterization with only spectral 

data attributed to 5.6 is presented here. 1H NMR (C6D6, δ): 87, 38, 5.6, -0.6, -1.5, -2.7. IR 

(C6H6 solution, cm-1): 3380 (νNH). 

 

5.3.5 Catalytic Conversion of Aryl Azides to Azoarenes 

 General procedure. Catalyst 5.1 was dissolved in a solvent (approx 1 mL) in a 

resealable Schlenk tube equipped with a stirbar. The aryl azide and an internal integration 

standard (mesitylene) were added, and the resulting solution was sealed and stirred as 

indicated in Table 5.1. The solution color progressed from red to brown to green to 

brown to red, at which point the reaction was complete as judged by full consumption of 
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starting azide based on separate in situ NMR experiments. Yields of azoarene and aniline 

were determined by 1H NMR analysis (integration against the internal standard). IR 

spectroscopy of the solutions confirmed the presence of 5.1. Filtration through silica gel 

under air followed by analysis by GC-MS confirmed the product assignments. 1H NMR 

and GC-MS characterization of the azoarene products were reproduced with authentic 

samples prepared by literature methods.24 A representative NMR spectrum is shown in 

Figure 5.5. Tabulated results are presented in Table 5.1. 

 

 

Figure 5.5. 1H NMR spectrum from the catalytic decomposition of N3Tol 

by catalyst 5.1. 

 

5.3.6 IR Data for [SiPiPr
3]Fe(N3Ar) 

General procedure. [SiPiPr
3]Fe(N2) was dissolved in benzene, and an aryl azide 

(1 equiv) was added. Periodically, aliquots were transferred to a solution IR cell and 

analyzed by IR spectroscopy. Representative spectra are presented in Figure 5.6. In all 
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cases, the difference between free and coordinated azide was found to be Δν(N3) ≤ 2 cm-1 

(see Table 5.5). 

 

Table 5.5. IR data for various [SiPiPr
3]Fe(N3Ar) derivatives in benzene solution 

Ar ν(N3) (cm-1) ν(N3) (cm-1) (free azide) 

Ph 2127 2127 

p-tolyl 2105 2103 

p-C6H4OMe 2104 2104 

Mes 2120 2119 

2,6-Et2C6H3 2098 2098 

 

 

Figure 5.6. IR spectra (benzene solutions) of 5.1, TolN3, and initial and 

final time points for the reaction between 5.1 and TolN3. 
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5.3.7 UV-Vis Spectroscopy and Kinetics 

 General procedures. All UV-Vis spectra were recorded in benzene solution. 

Figure 5.7 shows spectra for the various [SiPiPr
3]Fe(N3Ar) derivatives as well as 

complexes 5.1 and 5.2 recorded at arbitrary concentrations in a 1 cm path length cell. 

 

Figure 5.7. (left) UV-Vis spectra of various [SiPiPr
3]Fe(N3Ar) derivatives 

at arbitrary concentrations in benzene solutions. (right) Overlaid UV-Vis 

spectra of [SiPiPr
3]Fe(N2) (5.1), [SiPiPr

3]Fe(η1-N3Ad) (5.2), and 

[SiPiPr
3]Fe(N3Mes). 

 

UV-Vis Kinetics. The decay rates of the various [SiPiPr
3]Fe(N3Ar) species were 

monitored at room temperature in 2 mm path length cells. In each experiment, a stock 

solution of complex 5.1 (3.3 mM) was loaded into the cell, and then 1 equiv of the aryl 

azide was added. Data points were taken every 15 min. Over the earliest data points, the 

peaks corresponding to the green intermediate species (see Figure 5.7) were observed to 

be growing in. During the many subsequent data points, these peaks proceeded to decay. 
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The kinetic analysis of the disappearance of the green intermediates was based on the 

latter set of points. An example of this decaying absorbance is shown in Figure 5.2. 

Isosbestic points are evident in Figure 5.2 and were evident in for all aryl groups 

canvassed. Plots of ln(At/A0) versus time revealed linear relationships (R > 0.99) in all 

cases, indicating first order processes. An example of such a plot is shown in Figure 5.2. 

The first-order rate constants were extracted from the slopes of these linear plots, and the 

half-lives tabulated in Table 5.2 are based upon those rate constants. The linearities and 

slopes of the lines were independent of wavelength, and the half-lives in Table 5.2 are 

based upon decay at the λmax of each species that is near 610 nm (Table 5.2). 

 

5.3.8 EPR Spectroscopy. 

 General procedures. EPR spectra were recorded in 2-methyltetrahydrofuran 

glasses (~5-10 mM) at 77 K. In the cases of 5.1 and 5.2, isolated material was utilized to 

record the spectra. In the case of [SiPiPr
3]Fe(N3Tol), complex 5.1 was incubated with 

N3Tol in 2-methyltetrahydrofuran for 0.5 h prior to freezing. Optical spectroscopy was 

used to determine that this was the optimal amount of time to maximize concentration of 

5.3-Tol and minimize the concentration of residual 1. Figures 5.8 – 5.11 present EPR 

data and fits, and Table 5.6 summarizes the resulting EPR parameters. 
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Figure 5.8. X-band EPR spectra (2-methyltetrahydrofuran glass, 77 K) of 

isolated 1 and 2, as well as [SiPiPr
3]Fe(N3Tol) generated in situ. 

 

 
Figure 5.9. Experimental (red) and simulated (green) EPR spectra for 

complex 1. 
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Figure 5.10. Experimental (red) and simulated (green) EPR spectra for in 

situ generated [SiPiPr
3]Fe(N3Tol). 

 

 
Figure 5.11. Experimental (red) and simulated (green) EPR spectra for 

complex 2. 
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 Observation of the EPR spectrum for [SiPiPr

3]Fe(NTol). Complex 5.1 (15.6 

mg, 0.0226 mmol) was dissolved in 2-methyltetrahydrofuran (1.00 mL) and split into two 

equal solutions (A and B). To solution A was added p-tolylazide (1.27 µL, 0.0113 mmol). 

After 1 h the resulting deep green Solution A as well as Solution B were diluted to 7.5 

mM and frozen into a glasses at 77 K in EPR tubes equipped with a J. Young cap. Both 

samples were photolyzed while constantly bathed in liquid nitrogen. Solution A changed 

from green to brown over the first 1 h, at which point the spectra shown in Figure 5.3 

were collected. Solution B was treated as a control and exhibited a clean EPR spectrum 

corresponding to 5.1 that did not change upon prolonged photolysis side by side with 

Solution A. After photolyzing the solutions for 2 h, the solutions were allowed to stand at 

room temperature for 5 min before being frozen in liquid nitrogen once again. EPR 

spectra of both samples displayed complex 5.1 at this point. Simulation parameters are 

listed in Table 5.6. A separate control was run with 7.5 mM N3Tol and no Fe complex in 

solution. A weak signal similar to that previously reported for the free NTol nitrene32 was 

observed in this case and did not align with the spectrum shown in Figure 5.3. 

 

Table 5.6. EPR parameters implied from computer simulations of spectra 

Complex gx gy gz Ax (MHz)a Ay (MHz)a Az (MHz)a 

[SiPiPr
3]Fe(N2) 2.013 2.041 2.196 6.0 3.7 25.4 

[SiPiPr
3]Fe(η1-N3Ad) 2.013 2.036 2.210 6.7 6.5 0 

[SiPiPr
3]Fe(N3Tol) 2.041 2.130 2.146 6.9 4.0 28.9 

[SiPiPr
3]Fe(NTol) 1.990 2.032 2.087 55.0 40.0 50.0 

a A values correspond to hyperfine splitting from 3 equivalent I = 1/2 (i.e., phosphorus) 
nuclei, except in the case of [SiPiPr

3]FeNTol, where only 1 P nucleus was included. 
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5.3.9 Competitive Trapping Experiments 

Reactions with tert-butylisocyanide. To solutions of 5.1 in C6D6 was added 1 

equiv each of N3Tol and tBuNC, resulting in a dark-brown color. After stirring for 2 days 

at room temperature, the solutions had become red colored. Analysis by 1H NMR 

revealed the presence of the following products: TolN=NTol, tBuN=C=NTol, 5.1, and 

5.5. The presence of 5.1 and 5.5 was also confirmed by IR spectroscopy of the solution. 

Characterization data for 5.5 matched that of a sample prepared independently from 5.1 

and tBuNC (vide supra). The ratio of azotoluene to carbodiimide was typically 

approximately 2:1. Under air, the solutions were filtered through silica gel and analyzed 

by GC-MS, confirming the presence of TolN=NTol and tBuN=C=NTol. The 

characterization data for tBuN=C=NTol matched that of authentic samples prepared by 

literature methods.25 

Reactions with 9,10-dihydroanthracene. In a typical experiment, a C6D6 

solution containing 5.1 and N3Tol (1:1) was added to 0.5 equiv of 9,10-

dihydroanthracene. After stirring for 18 h, the red solution was analyzed by 1H NMR. 

Two paramagnetic products were evident: 5.1 and 5.6. 1H NMR data for 5.6 matched that 

of material synthesized independently from [SiPiPr
3]Fe(OTf) and LiNHTol (vide supra). 

Three diamagnetic products were also evident (in addition to unreacted 9,10-

dihydroanthracene): TolN=NTol, NH2Tol, and anthracene. Under air, the solution was 

filtered through silica gel and analyzed by GC-MS, confirming the assignments of the 

diamagnetic components. 

For utilization of GC-MS for quantitative measurements, calibration curves were 

made over the range 0-50 ppm with triphenylamine as an internal standard. These 
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calibration curves are shown in Figure 5.14. 

Table 5.3 was constructed as follows. For Entries 1-3, a freshly prepared stock 

solution of 5.1 and N3Tol was immediately added to various amounts of 9,10-

dihydroanthracene. For Entries 4-6, a freshly prepared stock solution of N3Tol and 9,10-

dihydroanthracene was added to varying amounts of 5.1. For Entries 7-9, a freshly 

prepared stock solution of 5.1 and 9,10-dihydroanthracene was split into three equal 

parts, and various amounts of N3Tol were added to each one. (Note: Control experiments 

established that under analogous reaction conditions, no reactions are observed between 

9,10-dihydroanthracene and either 5.1 or N3Tol individually, and so the order of addition 

is not important.) For all Entries 1-9, the solutions were stirred for 18 h prior to opening 

them to the air, filtering them through silica gel, and analyzing them by GC-MS. A 

sample GC trace is shown in Figure 5.15. Concentrations of 9,10-dihydroanthracene, 

azotoluene, and anthracene were quantitated using the Agilent data analysis software and 

the calibration curves described above. Table 5.3 summarizes the results, and Figure 5.16 

plots the azotoluene/anthracene ratio against Fe concentration, implying that two Fe 

centers are involved in the N-N bond-forming step. 
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Figure 5.12. GC-MS calibration curves for azotoluene, anthracene, and 

9,10-dihydroanthracene using triphenylamine as an internal standard. 

 

 

Figure 5.13. Sample GC trace (in this case from Table 5.3, Entry 4) 

showing the compounds quantitated and the internal standard (NPh3). 
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Figure 5.14. Plot of the azotoluene/anthracene ratio versus reagent 

concentrations (as indicated in legend). 

 

5.3.10 DFT Calculations 

Density functional calculations were carried out using the Gaussian03 suite33 

using the unrestricted B3LYP functional. For complexes 5.1 and 5.2, the 6-311++G** 

basis set was utilized to do single-point energy calculations using crystallographic 

coordinates. Initial coordinates for 5.7 were generated by taking crystallographic 

coordinates of complex 5.6, removing the N-H hydrogen, truncating the p-tolyl group to a 

phenyl group, and truncating the iso-propyl groups to methyl groups. The 6-31+G* basis 

set was used for obtaining minimized structures for 5.7-LS and 5.7-IS, and subsequently 

the final electronic structure calculations used the 6-311++G** basis set. Mülliken 

population analysis was used to examine spin density. The molecular orbital and spin 
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density contour plots were generated using GaussView 4.1.34 Spin density data and 

optimized structures are presented below; frontier orbitals are presented in Appendix 4. 

 

 

Figure 5.15. Spin density plots (0.002 isocontours). (left) Complex 5.1. 

(right) Combined, positive phase, and negative phase spin density of 5.2. 

 

Table 5.7. Mülliken spin densities of complexes 5.1 and 5.2 

Atom(s) Spin density, [SiPiPr
3]Fe(N2) 

Spin density, 

[SiPiPr
3]Fe(N3Ad) 

Fe 0.92 1.59 

Nα 0.03 -0.53 

Nβ -0.09 -0.47 

Nγ N/A 0.23 

P 0.01 0.22 

Si -0.01 -0.05 

C,H 0.14 0.01 

total 1.00 1.00 
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Figure 5.16. Optimized structures of [SiPMe
3]Fe(NPh) (5.7): (left) low 

spin, 5.7-LS; (right) intermediate spin, 5.7-IS. 

 

 

Table 5.8. Metric parameters for the optimized structures of 5.7-LS and 5.7-IS 

Metric 5.7-LS 5.7-IS 

Fe-N (Å) 1.70322 1.76669 

Fe-Si (Å) 2.35284 2.37279 

Fe-P (Å) 2.21410, 2.27132, 2.24227 2.28779, 2.38238, 2.32360 

N-C (Å) 1.34087 1.34208 

P-Fe-P (deg) 107.414, 134.782, 109.263 109.093, 108.123, 135.880 

Si-Fe-N (deg) 164.46463 177.82614 

Fe-N-C (deg) 174.41771 161.98101 

τ 0.49 0.70 
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Figure 5.17. Bond lengths within the FeNPh groups of 5.7-LS (left) and 

5.7-IS (right). 

 

Figure 5.18. Spin density plots (0.002 isocontours) of (left) 5.7-LS and 

(left) 5.7-IS. 

 

Table 5.9. Mülliken spin densities of complexes 5.7-LS and 5.7-IS 

Atom(s) Spin density, 5.7-LS Spin density, 5.7-IS 

Fe 0.89 2.00 

N 0.01 0.82 

C,H (Ph) 0.15 0.15 

P -0.07 0.04 

Si -0.06 -0.18 

C,H (SiPMe
3) 0.08 0.17 

total 1.00 3.00 
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6.1 Introduction 

 Electrophilic platinum(II) complexes have been studied extensively due to their 

ability to activate C-H bonds such as those in methane and other cheap hydrocarbons.1,2 

As these species are almost always square planar,3 it is of interest to consider how other 

geometries might impact the electrophilicity and reactivity of Pt(II) centers. Using the 

tris(phosphino)silyl scaffold [SiPR
3]- (where [SiPR

3]- = [(2-R2PC6H4)3Si]-, R = Ph or iPr),4 

we sought to access trigonal bipyramidal (TBP) platinum(II) synthons that could allow 

access to 4-coordinate, trigonal pyramidal (TP) species. In general, isolable d8 complexes 

with non-planar 4-coordinate geometries are extremely rare and require stabilization by 

strongly π-accepting, non-innocent ligands.5 However, targeting such a species seems 

reasonable considering the recent report from Maron, Ozerov, Bourissou, and co-workers 

of the first divalent TP platinum complex, [(2-iPr2PC6H4)3B]Pt.6 Replacing the apical 

boron atom in that complex with the silicon atom featured in the [SiPR
3] framework 

would render the complex cationic (Figure 6.1), and therefore presumably more reactive 

as an electrophile. We report herein the characterization of TBP [SiPPh
3]Pt(L)+ cations, 

with weak solvent ligands bound in the axial site, as candidate precursors to the TP target 

compounds. 

 

Figure 6.1. (left) Neutral trigonal planar Pt complex reported by Maron, 

Ozerov, Bourissou, and coworkers; (right) Cationic trigonal planar Pt 

complex targeted herein. 
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6.2 Results and Discussion 

 Neutral Pt(II) complexes are readily accessible by reaction of [SiPPh
3]H with 

appropriate commercially available platinum reagents (Scheme 6.1). Specifically, 

reaction of [SiPPh
3]H with (COD)PtCl2 (COD = cyclooctadiene), (COD)PtMe2, and 

(Ph3P)4Pt provided [SiPPh
3]PtCl (6.1), [SiPPh

3]PtMe (6.2), and [SiPPh
3]PtH (6.3), 

respectively. 

 

 

 

Complexes 6.1 – 6.3 are yellow, air-stable solids that exhibit single peaks in their 

31P{1H} NMR spectra ranging from 22.6 to 34.0 ppm, indicative of threefold symmetry in 

solution. 195Pt satellites are observed with an average 1JPtP of 3086 Hz. Complex 6.2 

displays characteristic methyl resonances in the 1H NMR (0.34 ppm, 3JPH = 6.9 Hz, 2JPtH = 

49.6 Hz) and 13C{1H} NMR spectra (-35.4 ppm, 2JPC = 9.7 Hz, 1JPtC = 458 Hz). Complex 

6.3 possesses a characteristic hydride 1H NMR resonance at -6.27 ppm with 2JPH = 19.8 

Hz and 1JPtH = 782 Hz (Figure 6.2a), and the Pt-H vibration occurs at νPtH = 1803 cm-1 in 

the solid-state IR spectrum. The TBP geometry is retained in the solid state as confirmed 
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by single crystal X-ray diffraction (Figure 6.3). Further discussion of the metrical 

parameters is provided below. 

 

Figure 6.2. a) 1H NMR spectrum of [SiPPh
3]PtH (6.3), b) 31P{1H} NMR 

spectrum of {[SiPPh
3]Pt(CD2Cl2)}{BArF

4} (6.5). 

 

Complexes 6.2 and 6.3 are structurally unusual. Transition metal complexes 

featuring both a silyl ligand and either a hydride or alkyl ligand are rare,7 especially when 

the alkyl or hydride ligand is trans to the silyl group.7b Accordingly, complexes 6.2 and 

6.3 are useful synthons for access to cationic species via protonolysis reactions. The 

Brønsted basicity of methyl complex 6.2 was examined by the addition of various acidic 

reagents. Complex 6.2 was unreactive towards phenol but was easily converted to the 

acetate derivative [SiPPh
3]PtOAc (6.4) using acetic acid. Thus, the basicity of 6.2 can be 

bracketed by considering the relative pKa values of PhOH (18.0 in DMSO)8 and AcOH 

(12.6 in DMSO).9 
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Figure 6.3. Solid-state structures of (left) [SiPPh
3]PtCl (6.1) and (right) 

[SiPPh
3]PtCH3 (6.2) as 50% ellipsoids. Hydrogen atoms have been omitted 

for clarity. Selected bond lengths (Å) for 6.1: Pt-Cl, 2.4975(10). For 6.2: 

Pt-C(100), 2.229(6). Further parameters are in Table 6.1. 

 

Cationic species were accessed by using the non-coordinating borate anion BArF
4

- 

(ArF = 3,5-(F3C)2C6H3). As shown in Scheme 6.2, protonolysis of 6.2 with H(OEt2)2BArF
4 

resulted in methane evolution and generation of stable, cationic solvento species 

{[SiPPh
3]Pt(L)}{BArF

4} (6.5) dependent on the reaction solvent. Analogous species were 

generated by methide abstraction from 6.2 with B(C6F5)3, but the resulting compounds 

were found to decay to unidentified products over the course of several days. The 

cationic species 6.5 retained threefold symmetry as evidenced by their single resonances 

(with 195Pt satellites) in the 31P{1H} NMR spectra (Figure 6.2b). The 31P NMR peaks were 

shifted downfield significantly (46.3 ppm in CD2Cl2, 54.5 ppm in C6D6) compared to the 

neutral counterparts 6.1 – 6.3; apparently this feature is diagnostic of cationic, electron-

deficient Pt centers in this system. Variable temperature 1H and 31P{1H} NMR 

spectroscopy, both of CD2Cl2 and toluene-d8 solutions, indicated that threefold symmetry 
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was maintained even at temperatures as low as -90°C, and no features in the 1H NMR 

spectra indicative of intramolecular interactions between the Pt center and the SiPPh
3 

ligand were detected. 

 

 

It is likely that the cationic complexes 6.5 take on the L ligands corresponding to 

the solvent in which the compound is dissolved. One set of observations consistent with 

this hypothesis is the solvent-dependent color of 6.5. In coordinating solvents such as 

THF or CH3CN, 6.5 appears yellow. In poorly coordinating solvents such as benzene or 

toluene, cations 6.5 appears red. Instead, 6.5 appears orange in diethyl ether or 

dichloromethane solutions. Accordingly, a dominant band in the visible region of the 

UV-Vis spectra of 6.5 was found to be highly solvent dependent (Figure 6.4), moving to 

higher energy in strong donor solvents and to lower energy is poorly coordinating 

solvents. All of these observations are consistent with dative solvent ligands coordinating 

to the axial position of a TBP geometry and thus modulating the energy of the lowest-

energy unoccupied orbital of dz2 parentage. 

 

PPh2
P

Ph2P

Si

Pt

L

Ph2

6.5

Scheme 6.2 BArF
4

L = e.g. THF, Et2O, CH2Cl2, C6H6, PhCH3

H(OEt2)2BArF
4

L
- CH4

H2SiRR'

- L

PPh2
P

Ph2P

Si

Pt
Ph2

BArF
4

6.6.1: R = R' = Ph
6.6.2: R = Ph, R' = Me

H

Si R'

H R

[SiPPh
3]PtCH3

6.2



 144	  

 

Figure 6.4. UV-Vis spectra of 6.5 in toluene (red), dicholoromethane 

(blue), and tetrahydrofuran (green) solutions. 

 

The assignment of 6.5 as a solvento species in dichloromethane solution was 

confirmed by X-ray crystallography (Figure 6.5). Four dichloromethane solvent 

molecules were found in the asymmetric unit of crystals of 6.5 grown from 

dichloromethane; one CH2Cl2 unit was coordinated to the Pt center via one of its chlorine 

atoms, while the others showed no interactions with the Pt center. The Pt-Cl distance of 

2.6236(16) Å, though well within the sum of the covalent radii of Pt and Cl, is indicative 

of a weak dative interaction, especially when compared to the Pt-Cl distance of 

2.4975(10) Å in the neutral chloride complex 6.1. Further metrics are presented below. 

Crystals of 6.5 grown from benzene solutions were consistently of rhombohedral 

symmetry and suffered from significant disorder about a threefold axis of 

crystallographic symmetry as well as whole-molecule disorder, precluding its 

characterization by X-ray crystallography. However, subsequent unpublished work in the 
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Peters group has since shown that crystals of 6.5 grown from toluene solutions do indeed 

feature a toluene solvent molecule coordinated to the cationic Pt center via the para-C-H 

bond.10 

 

Figure 6.5. Solid-state structures of the cationic portions of (left) 

{[SiPPh
3]Pt(CH2Cl2)}{BArF

4} (6.5) and (right) {[SiPPh
3]Pt(η2-

H2SiMePh)}{BArF
4} (6.6.2) as 50% ellipsoids. Hydrogen atoms in 6.6.2 

are placed in calculated positions. Selected bond lengths (Å) for 6.5: Pt-Cl, 

2.6236(16). For 6.6.2: Pt-H, 2.1821; Pt-Si1, 2.290(2). Further parameters 

are in Table 6.1. 

 

According to all available data, a solvent molecule coordinates the axial site of 

6.5 trans to the silyl ligand for any solvent that dissolves 6.5. Thus, the target TP cation 

{[SiPPh
3]Pt}{BArF

4} could not be observed directly either by solution methods or by X-

ray crystallography, and in fact no evidence of its existence has yet been gained. 

Nonetheless, it is of interest to consider whether some equilibrium between 6.5 and such 

a “naked” cation exists and thus can provide access to interesting solution reactivity. 
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Along these lines, attempts at inducing C-H activation reactions by thermolysis of 

6.5 in the presence of various potential substrates and a base did not prove fruitful. A 

noteworthy control experiment showed that prolonged exposure of 6.5 to triethylamine 

resulted in significant decomposition, a major product of which was hydride species 6.3. 

Presumably, this product is the result of NEt3 coordination followed by β-hydride 

elimination. 

In attempts to induce Si-H activation, cationic 6.5 was exposed to various silanes. 

Rather than succumbing to Si-H activation, however, secondary silanes H2SiPh2 and 

H2SiMePh were found to displace the solvent ligand of 6.5 to rapidly form yellow σSiH
-

adduct species {[SiPPh
3]Pt(η2-H2SiRR’)}{BArF

4} (6.6.1 and 6.6.2, respectively; see 

Scheme 6.2). No reaction was observed with the tertiary silane HSiPh3. Thermolysis of 

6.6.1 and 6.6.2 at 90°C led to partial conversion to 6.3 with no evidence of an observable 

Si-H activation intermediate, and the fate of the silyl moiety is unknown. 

Simple electron-counting considerations dictate that only one Si-H σ-bond can 

coordinate a Pt center at a time to generate 18-electron complexes. At room temperature, 

the 1H NMR spectra of 6.6.1 and 6.6.2 reveal broad silane Si-H resonances (5.19 ppm for 

6.6.1 and 4.32 ppm for 6.6.2; cf. 5.13 ppm and 4.48 ppm for free H2SiPh2 and H2SiMePh, 

respectively), indicative of rapid exchange of the two available Si-H σ-bonds. Complex 

6.6.2 was studied by variable temperature 1H NMR. At -60°C in CD2Cl2 solution, distinct 

Si-H peaks were found to decoalesce, with the free Si-H proton appearing as a broad 

resonance at 4.89 ppm and the bound Si-H proton appearing at -5.01 ppm as a broad peak 

with Pt satellites (JPtH = 346 Hz, intermediate between 1JPtH = 782 of 6.3 and 2JPtH = 49.6 

of 6.2). The timescale of an IR experiment is much faster than that of an NMR 
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experiment, and accordingly at room temperature in benzene solution the IR spectra 

exhibited Si-H vibrations at νSiH = 2187 and 2140 cm-1 for 6.6.1 and νSiH = 2136 and 1900 

cm-1 for 6.6.2 (cf. 2158 cm-1 for free H2SiPh2; 2158 and 2117 cm-1 for free H2SiMePh). 

The solid-state structure of 6.6.2 was investigated using X-ray crystallography 

(Figure 6.5). The Si-H hydrogens could not be located on the difference map and were 

placed in calculated positions. The calculated Pt-H distance in 6.6.2 is 2.1821 Å, 

indicative of significant Pt-silane interaction in the solid state. The Pt-Sisilane distance 

(3.148(3) Å) is quite long in comparison to the Pt-Sisilyl distance (2.290(2) Å). Silane 

complexes of transition metals are relatively well known and span a wide variety of 

binding modes and electronic structures.11 However, it is noteworthy that 1:1 Pt-silane 

complexes have not been structurally characterized previous to 6.6.2 despite their 

proposed role in Pt-catalyzed hydrosilylation reactions.12,13 

 

Table 6.1. Structural data for [SiPPh
3]PtIIX complexes 

X Si-Pt-X (°) τc Sisilyl-Pt (Å) 

Cl- (6.1) 178.17(3) 0.88 2.2689(11) 

CH3
- (6.2) 178.15(16) 0.87 2.3076(15) 

H- (6.3) n.d.a n.d.a 2.3136(13) 

CH2Cl2 (6.5) 178.48(5) 0.89 2.2805(16) 

H2SiMePh (6.6.2) 177.6(5)b 0.93 2.290(2) 
a Not determined because the hydride ligand could not be located on the Fourier 
difference map. b Estimated by averaging the Sisilyl-Pt-Sisilane and Sisilyl-Pt-H angles. c τ = 0 
for a square pyramid and 1 for a trigonal bipyramid.14 

 

When considering the collection of [SiPPh
3]PtX structures presented herein, the Pt-

silyl distances provide a convenient indicator of the trans influence. Table 6.1 
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summarizes representative structural data for complexes 6.1 – 6.3, 6.5, and 6.6.2. The τ 

values all indicate close to idealized TBP geometries, and the Si-Pt-X angles are all 

extremely close to 180°. The Pt-Sisilyl distances increase as a function of the trans ligand 

X in the order CH2Cl2 < Cl- < H2SiMePh < CH3
- < H-. 

 

6.3 Conclusions 

 The neutral, trigonal bipyramidal Pt(II) compounds [SiPPh
3]PtX (X = Cl (6.1), CH3 

(6.2), H (6.3)) were prepared and thoroughly characterized by solution spectroscopy and 

solid-state X-ray crystallography. The methyl and hydride compounds are structurally 

unusual by virtue of placing extremely strong σ-donors trans to a silyl ligand. 

Protonolysis of these precursors was examined in order to target trigonal pyramidal 

geometries achieved by leaving the axial site trans to the silyl donor empty. Though such 

a trigonal pyramidal species was never detected directly, various labile solvento species 

[SiPPh
3]Pt(L)+ (6.5, L = e.g., THF, Et2O, CH2Cl2, C6H6, PhMe) were observed. 

Apparently, the Lewis acidity of the cationic Pt(II) center in this system precludes access 

to a “naked” cation with an empty coordination site in any solvent that can dissolve the 

compound. This fact is noteworthy when making a comparison to the neutral analogue 

prepared by Maron, Ozerov, Bourrisou, and co-workers (Figure 6.1). Future studies 

already underway will entail extending this chemistry to the [SiPiPr
3]- scaffold to access a 

bona fide trigonal pyramidal Pt(II) complex, as well as studying the reactivity of these 

and related Pd(II) and Ni(II) complexes.10 
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6.4 Experimental Section 

 

6.4.1 General Considerations 

Unless otherwise noted, all manipulations were carried out using standard 

Schlenk or glovebox techniques under a dinitrogen atmosphere.  Unless otherwise noted, 

solvents were deoxygenated and dried by thoroughly sparging with N2 gas followed by 

passage through an activated alumina column.  Non-halogenated solvents were tested 

with a standard purple solution of sodium benzophenone ketyl in tetrahydrofuran in order 

to confirm effective oxygen and moisture removal.  All reagents were purchased from 

commercial vendors and used without further purification unless otherwise stated. 

[SiPPh
3]H4 and H(OEt2)2BArF

4
15 were prepared according to literature methods. Elemental 

analyses were performed by Desert Analytics, Tucson, AZ.  Deuterated solvents were 

purchased from Cambridge Isotope Laboratories (Cambridge, MA), degassed, and dried 

over activated 3 Å molecular sieves prior to use.   

 

6.4.2 Spectroscopic Measurements 

A Varian Mercury-300 spectrometer was used to record 1H, 13C, 19F, and 31P NMR 

spectra at ambient temperature (unless otherwise indicated).  1H and 13C chemical shifts 

were referenced to the residual solvent peaks.  19F and 31P chemical shifts were referenced 

to external hexafluorobenzene (δ = -165 ppm) and phosphoric acid (δ = 0 ppm) 

respectively. Optical spectroscopy measurements were taken on a Cary 50 UV/Vis 

Spectrophotometer using a 1 cm quartz cell. 
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6.4.3 X-ray Crystallography Procedures 

X-ray diffraction studies were carried out at the Beckman Institute 

Crystallography Facility on a Brüker Smart 1000 CCD diffractometer and solved using 

SHELX v. 6.14.16  X-ray quality crystals were grown as indicated in the experimental 

procedures per individual complex.  The crystals were mounted on a glass fiber with 

Paratone N oil.  Structures were determined using direct methods with standard Fourier 

techniques using the Bruker AXS software package. Spatial refinement details: 

Refinement of F2 against ALL reflections.  The weighted R-factor (wR) and goodness of 

fit (S) are based on F2, conventional R-factors (R) are based on F, with F set to zero for 

negative F2.  The threshold expression of F2 > 2σ(F2) is used only for calculating R-

factors(gt) etc. and is not relevant to the choice of reflections for refinement.  R-factors 

based on F2 are statistically about twice as large as those based on F, and R-factors based 

on ALL data will be even larger.  All esds (except the esd in the dihedral angle between 

two l.s. planes) are estimated using the full covariance matrix.  The cell esds are taken 

into account individually in the estimation of esds in distances, angles, and torsion 

angles; correlations between esds in cell parameters are only used when they are defined 

by crystal symmetry.  An approximate (isotropic) treatment of cell esds is used for 

estimating esds involving l.s. planes. Crystallographic details have been placed in 

Appendix 5. 

 

6.4.4 Synthesis 

Preparation of [SiPPh
3]PtCl (6.1). Under a dinitrogen atmosphere, [SiPPh

3]H 

(0.631 g, 0.776 mmol) and (COD)PtCl2 (0.290 g, 0.775 mmol) were placed in a 
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resealable Schlenk tube with THF (20 mL) and triethylamine (1.5 mL). The tube was 

sealed and heated to 70°C for 1.5 h, resulting in a yellow solution with bright yellow 

precipitate. This mixture was poured under air into a 250 mL separatory funnel with 

dichloromethane (75 mL). The combined organic fraction was then washed with water 

(150 mL), sodium bicarbonate (saturated aqueous solution, 2 x 150 mL), and water (150 

mL). The cloudy yellow organic fraction was dried over anhydrous magnesium sulfate, 

filtered through Celite, and evaporated to dryness by rotary evaporation. Diethyl ether (50 

mL) was added with stirring, and a bright yellow powder was collected on a sintered 

glass frit and washed with several portions of diethyl ether to yield spectroscopically pure 

[SiPPh
3]PtCl (0.571 g, 71%). Analytically pure material was obtained by recrystallization 

from dichloromethane/petroleum ether. The complex is stable to air and moisture 

indefinitely. Crystals suitable for X-ray diffraction were grown by layering a 

dichloromethane solution with petroleum ether. 1H NMR (CD2Cl2, δ): 8.46 (d, 3H,  J = 

7.2 Hz), 7.56 (t, 3H, J = 7.1 Hz), 7.32 (m, 6H), 7.11 (m, 18H), 6.91 (t, 12H, J = 7.7 Hz). 

13C{1H} NMR (CD2Cl2, δ): 150.2 (m), 144.1 (m), 137.6 (m), 134.3 (t, JPtC = 15.3 Hz), 

133.2 (q, J = 8.0 Hz), 132.8 (q, J = 4.2 Hz), 130.8 (s), 129.6 (s), 129.1 (s), 128.2 (q, J = 

3.1 Hz). 31P{1H} NMR (CD2Cl2, δ): 29.3 (1JPtP = 3064 Hz). IR (KBr, cm-1): 3051, 2874, 

2864, 1582, 1479, 1429, 1255, 1186, 1105, 1065, 1028, 999, 910. Anal. Calcd. for 

C54H42ClP3PtSi: C, 62.22; H, 4.06. Found: C, 62.02; H, 3.88. 

Preparation of [SiPPh
3]PtCH3 (6.2). Under a dinitrogen atmosphere, [SiPPh

3]H 

(0.941 g, 1.16 mmol) and (COD)PtMe2 (0.386 g, 1.16 mmol) were placed in a resealable 

Schlenk tube with toluene (40 mL). The tube was sealed and heated to 70°C for 18 h, 

resulting in a golden yellow solution with some yellow precipitate. The solvent was 
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removed in vacuo. To the residues was added diethyl ether (50 mL) under air, and an off-

white powder was collected on a frit and washed with additional portions of diethyl ether 

to yield analytically pure [SiPPh
3]PtCH3 (0.997 g, 84%). The complex is stable to air and 

moisture indefinitely. Crystals suitable for X-ray diffraction were grown by diffusion of 

petroleum ether vapors into a THF solution. 1H NMR (CD2Cl2, δ): 8.51 (d, J = 7.5 Hz, 

3H), 7.48 (t, 3H, J = 6.8 Hz), 7.23 (m, 6H), 7.06 (m, 6H), 6.88 (m, 24H), 0.34 (3H, 3JPH = 

6.9 Hz, 2JPtH = 49.6 Hz, PtCH3). 13C{1H} NMR (CD2Cl2, δ): 153.3 (m), 149.4 (m), 139.1 

(m), 133.5 (t, J = 11.3 Hz), 133.1 (m), 132.5 (q, J = 4.3 Hz), 129.9 (s), 128.8 (s), 128.4 

(s), 128.1 (q, J = 2.9 Hz), -35.4 (2JPC = 9.7 Hz, 1JPtC = 458 Hz, Pt-CH3). 31P{1H} NMR 

(CD2Cl2, δ): 23.2 (1JPtP = 3104 Hz). IR (KBr, cm-1): 3051, 2974, 2864, 1580, 1477, 1429, 

1304, 1248, 1182, 1126, 1089, 1065, 1027, 907. Anal. Calcd. for C55H45P3PtSi: C, 64.63; 

H, 4.44. Found: C, 64.82; H, 5.35.  

Preparation of [SiPPh
3]PtH (6.3). [SiPPh

3]H (76.7 mg, 94.4 μmol) and 

tetrakis(triphenylphosphine)platinum(0) (117 mg, 94.4 μmol) were dissolved in THF (5 

mL) in a resealable Schlenk tube under a dinitrogen atmosphere and heated to 70˚C for 

17 h. Volitiles were removed, and the residues were triturated with diethyl ether (20 mL) 

under air. An off-white solid was then collected on a sintered glass frit and washed with 

diethyl ether (2 x 25 mL) to yield analytically pure [SiPPh
3]PtH (54.9 mg, 58%). The 

complex is stable to air and moisture indefinitely. Crystals suitable for X-ray diffraction 

were grown by diffusion of petroleum vapors into a THF solution. 1H NMR (C6D6, δ): 

8.60 (d, J = 7.5 Hz, 3H), 7.41 (d, J = 9.0 Hz, 3H), 7.27 (m, 15H), 6.97 (t, J = 7.6 Hz, 3H), 

6.78 (t, J = 7.3 Hz, 6H), 6.63 (t, J = 7.5 Hz, 12H), -6.27 (2JPH = 19.8 Hz, 1JPtH = 782 Hz, 

1H). 13C{1H} NMR (C6D6, δ): 154.3 (dd, J = 19.7 Hz and 37.1 Hz), 150.3 (m), 140.0 (m), 



 153	  
134.7 (s), 133.6 (m), 132.9 (d, J = 4.1 Hz), 130.0 (s). 31P{1H} NMR (C6D6, δ): 34.0 (1JPtP 

= 3092 Hz). IR (KBr, cm-1): 3046, 2974, 2858, 1803 (nPtH), 1582, 1479, 1431, 1304, 

1248, 1184, 1093, 1065, 1028, 910. Anal. Calcd. for C54H43P3PtSi: C, 64.34; H, 4.30. 

Found: C, 64.44; H, 4.21. 

Preparation of [SiPPh
3]PtOAc (6.4). Under air, [SiPPh

3]PtCH3 (0.216 g, 0.211 

mmol) was suspended in dichloromethane (25 mL) in a 100 mL round-bottom flask. 

Acetic acid (0.5 mL) was added by pipet with stirring. Over the first 5 min of the 

reaction, the solution changed from cloudy off-white to clear yellow. After 0.5 h, the 

solution was evaporated to dryness on a rotovap. Diethyl ether (25 mL) was added, and 

bright yellow flakes of analytically pure [SiPPh
3]PtOAc were collected on a frit (0.148 g, 

66%). The complex is stable to air and moisture indefinitely. 1H NMR (CD2Cl2, δ): 8.31 

(d, J = 7.2 Hz, 3H), 7.49 (t, J = 6.7 Hz, 3H), 7.31 (m, 6H), 7.12 (m, 18H), 6.93 (t, J = 7.5 

Hz, 12H), 1.72 (s, 3H, Pt-CO2CH3). 13C{1H} NMR (CD2Cl2, δ): 175.6 (Pt-CO2CH3, Note: 

Multiplicity could not be determined due to a poor signal-to-noise ratio), 148.8 (m), 

145.4 (m), 138.1 (m), 133.4 (t, J = 8.4 Hz), 132.9 (m), 130.3 (s), 129.6 (s), 129.0 (s), 

128.1 (t, J = 4.7 Hz), 23.6 (s, Pt-CO2CH3). 31P{1H} NMR (CD2Cl2, δ): 35.5 (1JPtP = 3152 

Hz). IR (KBr, cm-1): 3050, 2919, 1614 (nCO), 1584, 1482, 1431, 1363, 1320, 1186, 1157, 

1108, 1027, 916. Anal. Calcd. for C56H45O2P3PtSi: C, 63.09; H, 4.25. Found: C, 62.97; H, 

4.33. 

Preparation of 6.5. Under a dinitrogen atmosphere, [SiPPh
3]PtCH3 (0.108 g, 0.106 

mmol) was suspended in dichloromethane (2 mL). A dichloromethane solution (2 mL) of 

H(OEt2)2BArF
4 (0.107 g, 0.106 mmol) was added in one portion. The solution 

immediately went clear and became red-orange. After stirring for 2 min, volitiles were 
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removed in vacuo. The residues were recrystallized from diethyl ether/petroleum ether  

(-30˚C). The resulting yellow-orange crystals were crushed and dried under vacuum for 

18 h, giving analytically pure 6.5 as a red powder (0.171 g, 86%). The complex is stable 

under a dinitrogen atmosphere indefinitely. Crystals suitable for X-ray diffraction were 

grown by diffusion of petroleum ether vapors into a concentrated dichloromethane 

solution. 1H NMR (C6D6, δ): 8.42 (br, 8H, BArF
4 o-CH), 7.63 (m, 7H, overlapping BArF

4 

p-CH and a SiP3 ArH peak), 7.04 (t, J = 7.2 Hz, 3H), 6.9 – 6.7 (m, 36H). 13C{1H} NMR 

(C6D6, δ): 163.2 (q, 1JBC = 49.4 Hz, B-C), 135.8 (s), 133.0 (s), 131.2 (q, 1JCF = 35.4 Hz, 

ArCF3), 130.2 (q, 1JCF = 34.3 Hz, ArCF3), 129.3 (s), 126.7 (s), 124.5 (s), 122.4 (s), 118.4 

(s) (Note: Some peaks are likely obscured by the C6D6 peak). 19F NMR (C6D6, δ): -62.9 

(s). 31P{1H} NMR (C6D6, δ): 54.5 (1JPtP = 3064 Hz). IR (KBr, cm-1): 3059, 2984, 1610, 

1481, 1435, 1355, 1278, 1130, 1000. Anal. Calcd. for C86H54BF24P3PtSi (i.e., 

{[SiPPh
3]Pt}{BArF

4}): C, 55.23; H, 2.91. Calcd. for C90H64BF24OP3PtSi (i.e., 

{[SiPPh
3]Pt(OEt2)}{BArF

4}): C, 55.60; H, 3.32. Calcd. for C87H56BF24P3PtSi (i.e., 

{[SiPPh
3]Pt(CH2Cl2)}{BArF

4}): C, 53.45; H, 2.89. Found: C, 55.56; H, 3.01. 

Preparation of {[SiPPh
3]Pt(η2-H2SiMePh)}{BArF

4} (6.6.2). Under a dinitrogen 

atmosphere, 6.5 (15.2 mg, 8.13 μmol) was dissolved in either C6H6, C6D6 or CD2Cl2 (ca. 

0.7 mL), giving a red-orange solution. H2SiMePh (1.00 μL, 8.1 μmol) was added in one 

portion, resulting in an immediate color change to bright yellow. Diffusion of petroleum 

ether vapors into such a solution gave X-ray quality crystals. However, either exposing 

the crystals to vacuum or evaporating a solution to dryness results in reversion to 6.5. 

Therefore, satisfactory combustion analysis data could not be obtained. 1H NMR 

(CD2Cl2, 20˚C, δ): 8.14 (d, J = 7.2 Hz, 3H), 7.74 (br, 4H, BArF
4 p-CH), 7.57 (m, 6H), 
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7.40 – 7.28 (m, 29H), 7.20 (m, 3H), 7.09 (t, J = 7.6 Hz, 6H), 6.84 (br, 8H, BArF

4 o-CH), 

4.32 (br, 2H, H2SiMePh), 0.41 (br, 3H, H2SiPhCH3). 19F NMR (CD2Cl2, 20˚C, δ): -63.2 

(s). 31P{1H} NMR (CD2Cl2, 20˚C, δ): 37.9 (1JPtP = 3022 Hz). 1H NMR (CD2Cl2, -60˚C, δ): 

8.13 (d, J = 7.2 Hz, 3H), 7.74 (br, 4H, BArF
4 p-CH), 7.57 – 7.51 (m, 11H), 7.39 – 7.21 

(m, 26H), 7.07 – 6.97 (m, 6H), 6.79 – 6.70 (m, 6H), 6.23 (d, J = 7.2 Hz, 3H), 4.89 (br, 

1H, unbound H2SiPhMe), 0.12 (br, 3H, H2SiPhCH3), -5.01 (br, JPtH = 346 Hz, 1H, bound 

H2SiPhMe). 19F NMR (CD2Cl2, -60˚C, δ): -63.2 (s). 31P{1H} NMR (CD2Cl2, -60˚C, δ): 

37.9 (1JPtP = 3022 Hz). IR (C6H6, cm-1): 2136, 1900. 
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Figure A1.1. Diagram of [Ph2BPtBu
2]Cu(pyridine) (2.1). Half of the 

molecule (not shown) was generated by symmetry operations. Disorder in 

the tert-butyl group was modeled as shown. Note: The Flack parameter 

refined to 0.009(12) in this structure. Ellipsoids are plotted at 50% 

probability. Hydrogen atoms have been omitted for clarity. 
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Table A1.1.  Crystal data and structure refinement for [Ph2BPtBu

2]Cu(pyridine) (2.1). 

Empirical formula  C18H28BCuNP2 

Formula weight  394.70 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Fdd2 

Unit cell dimensions a = 16.5848(13) Å α = 90° 

 b = 30.917(2) Å β = 90° 

 c = 13.3863(10) Å γ = 90° 

Volume 6863.8(9) Å3 

Z 8 

Density (calculated) 0.764 g/cm3 

Absorption coefficient 0.729 mm-1 

F(000) 1656 

Crystal size 0.33 x 0.15 x 0.11 mm3 

θ range for data collection 2.06 to 23.27° 

Index ranges -18 ≤ h ≤ 18, -34 ≤ k ≤ 34, -14 ≤ l ≤ 14 

Reflections collected 8664 

Independent reflections 2460 [R(int) = 0.0409] 

Completeness to θ = 23.27° 99.9 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2460 / 1 / 210 

Goodness-of-fit on F2 0.973 

Final R indices [I>2σ(I)] R1 = 0.0273, wR2 = 0.0674 

R indices (all data) R1 = 0.0297, wR2 = 0.0691 

Absolute structure parameter 0.009(12) 

Largest diff. peak and hole 0.316 and -0.318 e.Å-3 
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Figure A1.2. Diagrams of {[Ph2BPtBu
2]Cu(NHMes)}{Li(12-crown-4)2} 

(2.2) and a cocrystallized pentane molecule. Ellipsoids are plotted at 50% 

probability. Hydrogen atoms have been omitted for clarity. 
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Table A1.2.  Crystal data and structure refinement for {[Ph2BPtBu

2]Cu(NHMes)}{Li(12-crown-4)2} (2.2). 

Empirical formula  C60H106BCuLiNO8P2 

Formula weight  1112.69 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 11.9146(9) Å α = 90° 

 b = 21.3858(16) Å β = 92.5560(10)° 

 c = 24.4619(18) Å γ = 90° 

Volume 6226.8(8) Å3 

Z 8 

Density (calculated) 2.374 g/cm3 

Absorption coefficient 0.905 mm-1 

F(000) 4832 

Crystal size 0.42 x 0.15 x 0.14 mm3 

θ range for data collection 1.71 to 33.18° 

Index ranges -18 ≤ h ≤ 15, -27 ≤ k ≤ 27, -32 ≤ l ≤ 32 

Reflections collected 72625 

Independent reflections 14800 [R(int) = 0.0841] 

Completeness to θ = 33.18° 62.1 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 14800 / 0 / 684 

Goodness-of-fit on F2 2.234 

Final R indices [I>2σ(I)] R1 = 0.0715, wR2 = 0.1193 

R indices (all data) R1 = 0.1280, wR2 = 0.1242 

Largest diff. peak and hole 1.631 and -0.989 e.Å-3 
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Figure A1.3. Diagram of [Ph2BPtBu
2]Cu(NH2Mes) (2.3). Ellipsoids are 

plotted at 50% probability. Hydrogen atoms have been omitted for clarity. 
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Table A1.3.  Crystal data and structure refinement for [Ph2BPtBu

2]Cu(NH2Mes) (2.3). 

Empirical formula  C39H63BCuNP2 

Formula weight  682.19 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 10.186(5) Å α = 90° 

 b = 17.079(8) Å β = 98.24(4)° 

 c = 22.083(7) Å γ = 90° 

Volume 3802(3) Å3 

Z 4 

Density (calculated) 1.192 g/cm3 

Absorption coefficient 0.685 mm-1 

F(000) 1472 

Crystal size 0.22 x 0.17 x 0.11 mm3 

θ range for data collection 1.51 to 28.38° 

Index ranges -12 ≤ h ≤ 13, -19 ≤ k ≤ 19, -28 ≤ l ≤ 22 

Reflections collected 31590 

Independent reflections 7306 [R(int) = 0.0990] 

Completeness to θ = 28.38° 76.6 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7306 / 0 / 412 

Goodness-of-fit on F2 1.288 

Final R indices [I>2σ(I)] R1 = 0.0473, wR2 = 0.0746 

R indices (all data) R1 = 0.1049, wR2 = 0.0834 

Largest diff. peak and hole 0.640 and -0.498 e.Å-3 
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Figure A1.4. Diagram of [Ph2BPtBu
2]Cu(THF) (2.4), which sits on a 

crystallographic twofold axis of symmetry. Ellipsoids are plotted at 50% 

probability. Hydrogen atoms have been omitted for clarity. 
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Table A1.4.  Crystal data and structure refinement for [Ph2BPtBu

2]Cu(THF) (2.4). 

Empirical formula  C34H58BCuOP2 

Formula weight  619.09 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Fdd2 

Unit cell dimensions a = 17.548(3) Å α = 90° 

 b = 30.333(5) Å β = 90° 

 c = 12.818(3) Å γ = 90° 

Volume 6823(2) Å3 

Z 8 

Density (calculated) 1.205 g/cm3 

Absorption coefficient 0.758 mm-1 

F(000) 2672 

Crystal size 0.59 x 0.33 x 0.30 mm3 

θ range for data collection 2.08 to 28.45° 

Index ranges -15 ≤ h ≤ 12, -40 ≤ k ≤ 11, -16 ≤ l ≤ 9 

Reflections collected 3639 

Independent reflections 2005 [R(int) = 0.0358] 

Completeness to θ = 28.45° 70.7 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2005 / 1 / 185 

Goodness-of-fit on F2 2.106 

Final R indices [I>2σ(I)] R1 = 0.0345, wR2 = 0.0646 

R indices (all data) R1 = 0.0388, wR2 = 0.0653 

Absolute structure parameter 1.01(3) 

Largest diff. peak and hole 0.548 and -0.324 e.Å-3 
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Figure A1.5. Diagram of [Ph2BPtBu
2]Cu(N2C(SiMe3)2) (2.5), which sits on 

a crystallographic twofold axis of symmetry. Disorder in the SiMe3 group 

was modeled as indicated in the diagram. Ellipsoids are plotted at 50% 

probability. Hydrogen atoms have been omitted for clarity. 
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Table A1.5.  Crystal data and structure refinement for [Ph2BPtBu

2]Cu(N2C(SiMe3)2 (2.5). 

Empirical formula  C34H59BCuN2P2Si2 

Formula weight  688.30 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Rhombohedral 

Space group  R-3c 

Unit cell dimensions a = 21.4508(13) Å α = 90° 

 b = 21.4508(13) Å β = 90° 

 c = 47.633(3) Å γ = 120. 

Volume 18981(2) Å3 

Z 15 

Density (calculated) 0.903 g/cm3 

Absorption coefficient 0.561 mm-1 

F(000) 5535 

Crystal size 0.41 x 0.22 x 0.09 mm3 

θ range for data collection 1.90 to 23.33° 

Index ranges -23 ≤ h ≤ 23, -23 ≤ k ≤ 23, -52 ≤ l ≤ 52 

Reflections collected 37667 

Independent reflections 3067 [R(int) = 0.0834] 

Completeness to theta = 23.33° 99.9 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3067 / 0 / 254 

Goodness-of-fit on F2 1.121 

Final R indices [I>2σ(I)] R1 = 0.0453, wR2 = 0.1020 

R indices (all data) R1 = 0.0720, wR2 = 0.1224 

Largest diff. peak and hole 0.579 and -0.362 e.Å-3 
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Figure A1.6. Diagram of [Ph2BPtBu
2]Cu(N2CMes2) (2.6). Ellipsoids are 

plotted at 50% probability. Hydrogen atoms have been omitted for clarity. 
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Table A1.6.  Crystal data and structure refinement for [Ph2BPtBu

2]Cu(N2CMes2) (2.6). 

Empirical formula  C49H72BCuN2P2 

Formula weight  825.38 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 11.6975(16) Å α = 90° 

 b = 17.955(2) Å β = 91.707(4)° 

 c = 23.035(3) Å γ = 90° 

Volume 4836.1(12) Å3 

Z 4 

Density (calculated) 1.134 g/cm3 

Absorption coefficient 0.550 mm-1 

F(000) 1776 

Crystal size 0.15 x 0.13 x 0.11 mm3 

θ range for data collection 1.44 to 24.16° 

Index ranges -12 ≤ h ≤ 13, -20 ≤ k ≤ 20, -25 ≤ l ≤ 25 

Reflections collected 22763 

Independent reflections 6798 [R(int) = 0.1309] 

Completeness to θ = 24.16° 87.7 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6798 / 6 / 514 

Goodness-of-fit on F2 0.910 

Final R indices [I>2θ(I)] R1 = 0.0571, wR2 = 0.1168 

R indices (all data) R1 = 0.1360, wR2 = 0.1425 

Largest diff. peak and hole 0.505 and -0.465 e.Å-3 
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Figure A1.7. Diagram of [Ph2BPtBu
2]Cu(N(=CPh2)NCPh2) (2.7). Ellipsoids 

are plotted at 50% probability. Hydrogen atoms have been omitted for 

clarity. 
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Table A1.7.  Crystal data and structure refinement for [Ph2BPtBu

2]Cu(N(=CPh2)NCPh2) (2.7). 

Empirical formula  C56H70BCuN2P2 

Formula weight  907.43 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 12.0749(11) Å α = 90° 

 b = 22.347(2) Å β = 104.625(2)° 

 c = 19.2412(18) Å γ = 90° 

Volume 5023.8(8) Å3 

Z 4 

Density (calculated) 1.200 g/cm3 

Absorption coefficient 0.536 mm-1 

F(000) 1936 

Crystal size 0.31 x 0.30 x 0.11 mm3 

θ range for data collection 1.74 to 28.46° 

Index ranges -15 ≤ h ≤ 15, -28 ≤ k ≤ 28, -24 ≤ l ≤ 24 

Reflections collected 42567 

Independent reflections 11402 [R(int) = 0.0617] 

Completeness to θ = 28.46° 90.0 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11402 / 0 / 571 

Goodness-of-fit on F2 2.064 

Final R indices [I>2σ(I)] R1 = 0.0574, wR2 = 0.0940 

R indices (all data) R1 = 0.0967, wR2 = 0.0978 

Largest diff. peak and hole 1.112 and -0.744 e.Å-3 
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Figure A2.1. Solid-state structure of {[Ph2BPtBu
2]Cu(NTol2)}{Li(12-

crown-4)2} (3.1, 50% ellipsoids).  Hydrogen atoms have been omitted for 

clarity.  Conformational disorder in the 12-crown-4 and solvent regions 

were modeled as depicted in the diagram. 
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Table A2.1.  Crystal data and structure refinement for 3.1. 

Empirical formula  C70.57H118.12BCuLiNO10.02P2 

Formula weight  1284.14 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 12.9114(9) Å α = 79.4810(10)° 

 b = 16.8578(12) Å β = 74.3230(10)° 

 c = 17.6005(12) Å γ = 80.2250(10)° 

Volume 3596.9(4) Å3 

Z 4 

Density (calculated) 1.186 g/cm3 

Absorption coefficient 0.403 mm-1 

F(000) 2092 

Crystal size 0.35 x 0.30 x 0.15 mm3 

θ range for data collection 1.21 to 29.13° 

Index ranges -17 ≤ h ≤ 17, -23 ≤ k ≤ 23, -24 ≤ l ≤ 23 

Reflections collected 78924 

Independent reflections 19261 [R(int) = 0.0564] 

Completeness to θ= 29.13° 99.4 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 19261 / 304 / 932 

Goodness-of-fit on F2 1.015 

Final R indices [I>2σ(I)] R1 = 0.0518, wR2 = 0.1274 

R indices (all data) R1 = 0.0820, wR2 = 0.1458 

Largest diff. peak and hole 0.664 and -0.559 e.Å-3 
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Figure A2.2. Solid-state structure of [Ph2BPtBu
2]Cu(NTol2) (3.2, 50% 

ellipsoids), including disordered solvent regions.  Hydrogen atoms have 

been omitted for clarity. 
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Table A2.2.  Crystal data and structure refinement for 3.2. 

Empirical formula  C52.42H80.84BCuNP2 

Formula weight  861.36 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 16.3201(18) Å α = 90° 

 b = 16.3538(18) Å β = 91.277(2)° 

 c = 18.849(2) Å γ = 90° 

Volume 5029.4(10) Å3 

Z 4 

Density (calculated) 1.137 g/cm3 

Absorption coefficient 0.531 mm-1 

F(000) 2488 

Crystal size 0.65 x 0.35 x 0.20 mm3 

θ range for data collection 1.63 to 29.57° 

Index ranges -22 ≤ h ≤ 22, -22 ≤ k ≤ 22, -26 ≤ l ≤ 26 

Reflections collected 132059 

Independent reflections 14110 [R(int) = 0.0613] 

Completeness to θ = 29.57° 100.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 14110 / 105 / 562 

Goodness-of-fit on F2 1.282 

Final R indices [I>2σ(I)] R1 = 0.0606, wR2 = 0.1667 

R indices (all data) R1 = 0.0807, wR2 = 0.1813 

Largest diff. peak and hole   2.930 and -1.964 e.Å-3
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Figure A2.3. Solid-state structure of 3.5 as 50% ellipsoids. Hydrogen 

atoms have been omitted for clarity. Half of the molecule was generated 

by symmetry operations. 
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Table A2.3.  Crystal data and structure refinement for 3.5. 

Empirical formula  C42H59BCuNP2 

Formula weight  714.25 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 10.575(15) Å α = 90° 

 b = 21.60(3) Å β = 96.41(2)° 

 c = 16.50(2) Å γ = 90° 

Volume 3745(9) Å3 

Z 4 

Density (calculated) 1.297 g/cm3 

Absorption coefficient 0.702 mm-1 

F(000) 1524 

Crystal size 0.45 x 0.10 x 0.10 mm3 

θ range for data collection 1.56 to 23.25° 

Index ranges -11 ≤ h ≤ 11, -24 ≤ k ≤ 24, -18 ≤ l ≤ 18 

Reflections collected 50483 

Independent reflections 5387 [R(int) = 0.3278] 

Completeness to θ = 23.25° 100.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5387 / 0 / 436 

Goodness-of-fit on F2 1.021 

Final R indices [I>2σ(I)] R1 = 0.1187, wR2 = 0.2839 

R indices (all data) R1 = 0.2077, wR2 = 0.3511 

Largest diff. peak and hole   1.193 and -1.281 e.Å-3 
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Figure A2.4. Background corrected and normalized Cu K-edge spectra for 

CuCl (black), anhydrous CuCl2 (brown), 3.1 (green), and 3.2 (red). 
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Figure A2.5. Background corrected and normalized Cu L-edge spectra for 

CuCl (black), anhydrous CuCl2 (brown), 3.1 (green), and 3.2 (red). 
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Figure A2.6. Background corrected and normalized P K-edge spectra for PPh3 

(black), 3.1 (green), and 3.2 (red). 
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Figure A2.7. Background corrected and renormalized Cl K-edge spectra 

for D2d Cs2CuIICl4 (orange) and anhydrous CuIICl2. 
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Figure A2.8. Fitted Cl K-edge XANES spectra for D2d Cs2CuIICl4 

(orange) and anhydrous CuIICl2 to generate transition dipole integrals for 

quantifying the Cu L-edge pre-edge features. 
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Figure A2.9. Representative fits to the pre-edge features at the Cl K-edge 

spectra. 

Cs2CuCl4.dat                                      
   2810.000       2825.000    
           1  5.000000074505806E-002  0.000000000000000E+000
   2  16.0000    
   0.00000     0   2824.65     0   1.00000     0   1.00000     0   0.00000     0   0.00000     0   0.00000     0
  0.513460     1   2820.26     1  0.507258     1  0.500000     0   0.00000     0   0.00000     0   0.00000     0
  0.793734     1   2825.05     1  0.761335     1  0.260989     1   0.00000     0   0.00000     0   0.00000     0

CuCl2brown.dat                                    
   2810.000       2826.000    
           2  5.000000074505806E-002  0.000000000000000E+000
   2  16.0000    
   0.00000     0   2824.65     0   1.00000     0   1.00000     0   0.00000     0   0.00000     0   0.00000     0
   1.08735     1   2821.06     1  0.566065     1  0.500000     0   0.00000     0   0.00000     0   0.00000     0
   1.42440     1   2826.04     1  0.847224     1  0.558745     1   0.00000     0   0.00000     0   0.00000     0
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Figure A2.10. Representative fits to the pre-edge features at the Cu L3-

edge spectra. 

CuCl2.dat                                         
   920.0000       940.0000    
           1  5.000000074505806E-002  0.000000000000000E+000
   1  16.0000    
  0.500000     0   936.500     0  0.500000     0   0.00000     0   0.00000     0   0.00000     0   0.00000     0
   4.06697     1   930.416     1  0.505741     1  0.300000     0   0.00000     0   0.00000     0   0.00000     0

Cu2BP2.dat                                        
   920.0000       935.0000    
           1  5.000000074505806E-002  0.000000000000000E+000
   1  16.0000    
  0.500000     0   938.600     0  0.500000     0   0.00000     0   0.00000     0   0.00000     0   0.00000     0
  0.900000     0   931.950     0  0.505741     0  0.300000     0   0.00000     0   0.00000     0   0.00000     0
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Figure A2.11. Representative fits to the pre-edge features at the P K-edge 

spectra. 

 
 

 

Cu1BP2.dat                                        
  2140.  2150.
 1  0.0500000007  0.
   2  16.0000    
   1.00000     0   2148.50     1   1.17571     1  0.869465     1   0.00000     0   0.00000     0   0.00000     0
   2.04091     1   2146.29     1  0.544170     1   1.00000     1   0.00000     0   0.00000     0   0.00000     0
   2.29790     1   2147.81     1   1.06906     1  0.308965     1   0.00000     0   0.00000     0   0.00000     0

Cu2BP2.dat                                        
  2140.  2150.
 2  0.0500000007  0.
   3  16.0000    
   1.00000     0   2148.80     1   1.17571     0  0.869465     0   0.00000     0   0.00000     0   0.00000     0
   1.59780     0   2146.45     0  0.544170     0  0.500000     0   0.00000     0   0.00000     0   0.00000     0
   1.89920     0   2147.85     0   1.06906     0  0.308965     0   0.00000     0   0.00000     0   0.00000     0
  0.780000     0   2145.93     0  0.450000     0  0.500000     0   0.00000     0   0.00000     0   0.00000     0



 

 

 

 

 

 

Appendix 3: Supplementary Data for Chapter 4 
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Figure A3.1. Solid-state structure of [SiPPh
3]FeMes (4.3, 50% ellipsoids) 

and cocrystallized alkane solvent molecules.  Hydrogen atoms have been 

omitted for clarity. 
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Table A3.1. Crystal data and structure refinement for 4.3. 

 

Empirical formula  C149.5H162Fe2P6Si2 

Formula weight  2312.49 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.966(5) Å α = 101.547(16)° 

 b = 21.469(12) Å β = 93.092(18)° 

 c = 27.269(13) Å γ = 100.968(10)° 

Volume 6147(5) Å3 

Z 2 

Density (calculated) 1.249 g/cm3 

Absorption coefficient 0.387 mm-1 

F(000) 2458 

Crystal size 0.37 x 0.35 x 0.13 mm3 

θ range for data collection 1.37 to 35.99° 

Index ranges -14 ≤ h ≤ 16, -35 ≤ k ≤ 27, -33 ≤ l ≤ 42 

Reflections collected 69138 

Independent reflections 33909 [R(int) = 0.0738] 

Completeness to θ = 35.99° 58.2 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 33909 / 10 / 1442 

Goodness-of-fit on F2 0.952 

Final R indices [I>2σ(I)] R1 = 0.0656, wR2 = 0.1590 

R indices (all data) R1 = 0.1357, wR2 = 0.1894 

Largest diff. peak and hole 1.213 and -0.662 e.Å-3 
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Figure A3.2. Solid-state structure of [SiPPh
3]FeCl (4.4, 50% ellipsoids) 

and aco-crystallized dichloromethane solvent molecule.  Hydrogen atoms 

have been omitted for clarity. 
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Table A3.2. Crystal data and structure refinement for 4.4. 

 

Empirical formula  C55H44Cl2FeP3Si 

Formula weight  952.65 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 11.1583(15) Å α = 87.973(2)° 

 b = 13.2714(18) Å β = 84.822(2)° 

 c = 15.689(2) Å γ = 86.423(2)° 

Volume 2308.3(5) Å3 

Z 2 

Density (calculated) 1.371 g/cm3 

Absorption coefficient 0.610 mm-1 

F(000) 986 

Crystal size 0.18 x 0.067 x 0.041 mm3 

θ range for data collection 1.54 to 26.05° 

Index ranges -13 ≤ h ≤ 13, -15 ≤ k ≤ 15, -11 ≤ l ≤ 18 

Reflections collected 13098 

Independent reflections 7641 [R(int) = 0.0671] 

Completeness to θ = 26.05° 83.8 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7641 / 0 / 569 

Goodness-of-fit on F2 0.956 

Final R indices [I>2σ(I)] R1 = 0.0504, wR2 = 0.0786 

R indices (all data) R1 = 0.0975, wR2 = 0.0886 

Largest diff. peak and hole 0.587 and -0.466 e.Å-3 
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Figure A3.3. Solid-state structure of {κ2-[SiPiPr
3]H}FeCl2 (50% 

ellipsoids).  C-H hydrogen atoms have been omitted for clarity.  The 

silicon hydride was located on the Fourier difference map and refined 

freely. 
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Table A3.3. Crystal data and structure refinement for (κ2-[SiPiPr
3]H)FeCl2. 

 

Empirical formula  C36H55Cl2FeP3Si 

Formula weight  735.55 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/n 

Unit cell dimensions a = 13.0548(19) Å α = 90° 

 b = 13.718(3) Å β = 104.102(11)° 

 c = 22.356(6) Å γ = 90° 

Volume 3883.0(13) Å3 

Z 4 

Density (calculated) 1.258 g/cm3 

Absorption coefficient 0.704 mm-1 

F(000) 1560 

Crystal size 0.34 x 0.29 x 0.19 mm3 

θ range for data collection 1.88 to 35.37° 

Index ranges -20 ≤ h ≤ 17, -22 ≤ k ≤ 21, -35 ≤ l ≤ 33 

Reflections collected 62610 

Independent reflections 15058 [R(int) = 0.0954] 

Completeness to θ = 35.37° 85.6 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15058 / 0 / 404 

Goodness-of-fit on F2 1.091 

Final R indices [I>2σ(I)] R1 = 0.0688, wR2 = 0.2048 

R indices (all data) R1 = 0.1255, wR2 = 0.2406 

Largest diff. peak and hole 3.615 and -0.796 e.Å-3 
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Figure A3.4. Solid-state structure of [SiPiPr
3]FeCl (4.5, 50% ellipsoids) 

and a cocrystallized benzene solvent molecule.  Hydrogen atoms have 

been omitted for clarity. 
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Table A3.4. Crystal data and structure refinement for 4.5. 

 

Empirical formula  C42H60ClFeP3Si 

Formula weight  777.20 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 12.913(4) Å α = 90° 

 b = 15.513(4) Å β = 92.33(3)° 

 c = 20.296(8) Å γ = 90° 

Volume 4062(2) Å3 

Z 4 

Density (calculated) 1.271 g/cm3 

Absorption coefficient 0.613 mm-1 

F(000) 1656 

Crystal size 0.37 x 0.26 x 0.21 mm3 

Theta range for data collection 1.58 to 38.63° 

Index ranges -22 ≤ h ≤ 22, -27 ≤ k ≤ 27, -34 ≤ l ≤ 34 

Reflections collected 77474 

Independent reflections 20057 [R(int) = 0.0936] 

Completeness to θ = 38.63° 86.9 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 20057 / 0 / 445 

Goodness-of-fit on F2 1.367 

Final R indices [I>2σ(I)] R1 = 0.0510, wR2 = 0.0872 

R indices (all data) R1 = 0.1009, wR2 = 0.0956 

Largest diff. peak and hole 1.302 and -0.731 e.Å-3 
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Figure A3.5. Solid-state structure of [SiPPh
3]FeN2 (4.6, 50% ellipsoids).  

Hydrogen atoms have been omitted for clarity. 
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Table A3.5. Crystal data and structure refinement for 4.6. 

 

Empirical formula  C54H42FeN2P3Si 

Formula weight  895.75 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 12.7101(9) Å α = 90° 

 b = 17.4799(12) Å β = 99.0290(10)° 

 c = 19.7248(14) Å γ = 90° 

Volume 4328.0(5) Å 3 

Z 4 

Density (calculated) 1.375 g/cm3 

Absorption coefficient 0.528 mm-1 

F(000) 1860 

Crystal size 0.18 x 0.16 x 0.14 mm3 

θ range for data collection 1.57 to 28.45° 

Index ranges -16 ≤ h ≤ 16, -22 ≤ k ≤ 23, -26 ≤ l ≤ 24 

Reflections collected 34641 

Independent reflections 9873 [R(int) = 0.0732] 

Completeness to θ = 28.45° 90.6 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9873 / 0 / 550 

Goodness-of-fit on F2 1.343 

Final R indices [I>2σ(I)] R1 = 0.0481, wR2 = 0.0745 

R indices (all data) R1 = 0.0882, wR2 = 0.0796 

Largest diff. peak and hole 0.954 and -0.577 e. Å -3 
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Figure A3.6. Solid-state structure of [SiPiPr
3]FeN2 (4.7, 50% ellipsoids) 

and a cocrystallized benzene solvent molecule.  As shown in the figure, 

the N2 site had partial chloride occupancy; for this reason, bond lengths 

and angles are not discussed in Chapter 4.  The N and Cl atoms were 

refined isotropically; all other atoms were refined anistotropically.  The 

occupancies of the two N atoms refined to approximately 0.97, and the 

occupancy of the Cl atom refined to approximately 0.03. 
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Table A3.6. Crystal data and structure refinement for 4.7. 

 

Empirical formula  C42H60Cl0.03FeN1.94P3Si 

Formula weight  765.45 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 12.759(2) Å α = 90°. 

 b = 15.4865(19) Å β = 92.006(16)°. 

 c = 20.561(4) Å γ = 90°. 

Volume 4060.1(11) Å3 

Z 4 

Density (calculated) 1.317 g/cm3 

Absorption coefficient 0.617 mm-1 

F(000) 1712 

Crystal size 0.35 x 0.33 x 0.17 mm3 

θ range for data collection 1.60 to 40.85° 

Index ranges -22 ≤ h ≤ 23, -28 ≤ k ≤ 25, -37 ≤ l ≤ 35 

Reflections collected 79596 

Independent reflections 24271 [R(int) = 0.0828] 

Completeness to θ = 40.85° 91.5 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 24271 / 0 / 452 

Goodness-of-fit on F2 1.431 

Final R indices [I>2σ(I)] R1 = 0.0512, wR2 = 0.0892 

R indices (all data) R1 = 0.0993, wR2 = 0.0966 

Largest diff. peak and hole 1.409 and -0.750 e.Å-3 
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Figure A3.7. Solid-state structure of the two molecules of 

{[SiPPh
3]Fe(THF)}{BPh4} (4.9, 50% ellipsoids) found in the assymmetric 

unit.  Hydrogen atoms and cocrystallized THF solvent molecules have 

been omitted for clarity. 
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Table A3.7. Crystal data and structure refinement for 4.9. 

 

Empirical formula  C300H182B2Fe2O9P6Si2 

Formula weight  4305.78 

Temperature  293(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 79.786(5) Å α = 90° 

 b = 15.5571(9) Å β = 99.316(2)° 

 c = 23.7631(14) Å γ = 90° 

Volume 29107(3) Å3 

Z 20 

Density (calculated) 4.913 g/cm3 

Absorption coefficient 0.957 mm-1 

F(000) 44680 

Crystal size 0.30 x 0.24 x 0.06 mm3 

θ range for data collection 1.52 to 21.85° 

Index ranges -78 ≤ h ≤ 83, -16 ≤ k ≤ 15, -23 ≤ l ≤ 23 

Reflections collected 62552 

Independent reflections 14763 [R(int) = 0.1781] 

Completeness to θ = 21.85° 84.2 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 14763 / 1128 / 1802 

Goodness-of-fit on F2 1.026 

Final R indices [I>2σ(I)] R1 = 0.1128, wR2 = 0.2673 

R indices (all data) R1 = 0.2064, wR2 = 0.3108 

Largest diff. peak and hole 0.987 and -0.636 e.Å-3 

 



 

 

 

 

 

 

Appendix 4: Supplementary Data for Chapter 5 
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Figure A4.1. Calculated frontier molecular orbitals for [SiPiPr
3]Fe(N2) 

(5.1). 
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Figure A4.2. Calculated frontier molecular orbitals for [SiPiPr
3]Fe(η1-

N3Ad) (5.2). 
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Figure A4.3. Calculated frontier molecular orbitals for the S=3/2 state of 

[SiPMe
3]Fe(NPh) (7-IS). 
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Figure A4.4. Calculated frontier molecular orbitals for the S=1/2 state of 

[SiPMe
3]Fe(NPh) (7-LS). 
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Figure A4.5. Solid-state structure of [SiPiPr

3]Fe(N3Ad) (5.2) and a 

disordered n-pentane solvent molecule as 50% ellipsoids. All parts are 

shown, and hydrogen atoms have been omitted. Details about the disorder 

and refinement details are found in Section 5.3.2. 
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Table A4.1.  Crystal data and structure refinement for compound 5.2. 
Empirical formula  C53.50H87FeN3P3Si 

Formula weight  949.11 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Rhombohedral 

Space group  R-3c 

Unit cell dimensions a = 15.0449(8) Å α = 90° 

 b = 15.0449(8) Å β = 90° 

 c = 81.101(6) Å γ = 120° 

Volume 15897.8(17) Å3 

Z 12 

Density (calculated) 1.190 g/cm3 

Absorption coefficient 0.435 mm-1 

F(000) 6168 

Crystal size 0.50 x 0.50 x 0.45 mm3 

θ range for data collection 1.51 to 30.50°. 

Index ranges -21 ≤ h ≤ 21, -21 ≤ k ≤ 21, -115 ≤ l ≤ 115 

Reflections collected 136582 

Independent reflections 5406 [R(int) = 0.0557] 

Completeness to θ = 30.50° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8284 and 0.8120 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5406 / 331 / 336 

Goodness-of-fit on F2 1.210 

Final R indices [I>2σ(I)] R1 = 0.0516, wR2 = 0.1168 

R indices (all data) R1 = 0.0588, wR2 = 0.1200 

Largest diff. peak and hole 0.429 and -0.375 e.Å-3 
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Figure A4.6. Solid-state structure of [SiPiPr
3]Fe(NHTol) (5.6) as 50% 

ellipsoids. C-H hydrogens have been omitted. H1 was located on the 

Fourier difference map and refined semifreely. 
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Table A4.2. Crystal data and structure refinement for compound 5.6. 

Empirical formula  C43H62FeNP3Si 

Formula weight  769.79 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P212121 

Unit cell dimensions a = 13.4209(18) Å α = 90° 

 b = 14.619(2) Å β = 90° 

 c = 21.192(3) Å γ = 90° 

Volume 4157.8(10) Å3 

Z 4 

Density (calculated) 1.230 g/cm3 

Absorption coefficient 0.537 mm-1 

F(000) 1648 

Crystal size 0.30 x 0.20 x 0.10 mm3 

Theta range for data collection 1.69 to 30.03°. 

Index ranges -18 ≤ h ≤ 18, -20 ≤ k ≤ 20, -29 ≤ l ≤ 29 

Reflections collected 93936 

Independent reflections 12149 [R(int) = 0.0903] 

Completeness to θ = 30.03° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9482 and 0.8555 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12149 / 1 / 459 

Goodness-of-fit on F2 1.011 

Final R indices [I>2σ(I)] R1 = 0.0419, wR2 = 0.0820 

R indices (all data) R1 = 0.0587, wR2 = 0.0899 

Absolute structure parameter -0.016(11) 

Largest diff. peak and hole 0.363 and -0.239 e.Å-3 
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Figure A5.1. Solid-state structure of [SiPPh
3]PtCl (6.1, 50% ellipsoids) and 

a cocrystallized dichloromethane solvent molecule.  C-H hydrogen atoms 

have been omitted for clarity. 
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Table A5.1.  Crystal data and structure refinement for 6.1. 

Empirical formula  C55H44Cl3P3PtSi 

Formula weight  1127.34 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 11.1768(12) Å α = 87.699(2)° 

 b = 13.3695(14) Å β = 84.961(2)° 

 c = 15.7387(16) Å γ = 86.359(2)° 

Volume 2336.6(4) Å3 

Z 2 

Density (calculated) 1.602 g/cm3 

Absorption coefficient 3.341 mm-1 

F(000) 1124 

Crystal size 0.19 x 0.10 x 0.08 mm3 

θ range for data collection 1.53 to 29.15° 

Index ranges -15 ≤ h ≤ 14, -17 ≤ k ≤ 17, -20 ≤ l ≤ 21 

Reflections collected 40452 

Independent reflections 11408 [R(int) = 0.0562] 

Completeness to θ = 25.00° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7759 and 0.5693 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11408 / 510 / 568 

Goodness-of-fit on F2 1.082 

Final R indices [I>2σ(I)] R1 = 0.0422, wR2 = 0.1040 

R indices (all data) R1 = 0.0489, wR2 = 0.1081 

Largest diff. peak and hole 3.382 and -2.062 e.Å-3 
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Figure A5.2. Solid-state structure of [SiPPh
3]PtCH3 (6.2, 50% ellipsoids) 

and cocrystallized THF solvent molecules.  C-H hydrogen atoms have 

been omitted for clarity. 
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Table A5.2.  Crystal data and structure refinement for 6.2. 

Empirical formula  C63H61O2P3PtSi 

Formula weight  1166.21 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 18.745(2) Å α = 90° 

 b = 16.1454(18) Å β = 94.181(4)° 

 c = 16.911(2) Å γ = 90° 

Volume 5104.4(10) Å3 

Z 4 

Density (calculated) 1.518 g/cm3 

Absorption coefficient 2.913 mm-1 

F(000) 2368 

Crystal size 0.30 x 0.08 x 0.05 mm3 

θ range for data collection 1.67 to 29.13° 

Index ranges -25 ≤ h ≤ 24, -21 ≤ k ≤ 22, -23 ≤ l ≤ 21 

Reflections collected 75418 

Independent reflections 13406 [R(int) = 0.1465] 

Completeness to θ = 29.13° 97.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8680 and 0.4753 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 13406 / 613 / 632 

Goodness-of-fit on F2 1.091 

Final R indices [I>2σ(I)] R1 = 0.0506, wR2 = 0.1189 

R indices (all data) R1 = 0.0844, wR2 = 0.1457 

Largest diff. peak and hole 5.837 and -2.011 e.Å-3 



 217 

 

 

 

  

Figure A5.3. Solid-state structure of [SiPPh
3]PtH (6.3, 50% ellipsoids) and 

cocrystallized THF solvent molecules.  C-H hydrogen atoms have been 

omitted for clarity.  Disorder was modeled as indicated in the figure. 
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Table A5.3.  Crystal data and structure refinement for 6.3. 

Empirical formula  C62H58O2P3PtSi 

Formula weight  1151.17 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 18.572(3) Å α = 90° 

 b = 16.157(3) Å β = 96.473(3)° 

 c = 16.968(3) Å β = 90° 

Volume 5059.0(15) Å3 

Z 4 

Density (calculated) 1.511 g/cm3 

Absorption coefficient 2.938 mm-1 

F(000) 2332 

Crystal size 0.19 x 0.07 x 0.07 mm3 

θ range for data collection 1.10 to 28.70° 

Index ranges -24 ≤ h ≤ 22, -21 ≤ k ≤ 19, -22 ≤ l ≤ 22 

Reflections collected 30622 

Independent reflections 11907 [R(int) = 0.0651] 

Completeness to θ = 25.00° 99.3 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8208 and 0.6053 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11907 / 1625 / 889 

Goodness-of-fit on F2 1.030 

Final R indices [I>2σ(I)] R1 = 0.0437, wR2 = 0.0879 

R indices (all data) R1 = 0.0778, wR2 = 0.1041 

Largest diff. peak and hole 2.285 and -1.598 e.Å-3 
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Figure A5.3. Solid-state structure of {[SiPPh
3]Pt(CH2Cl2)}{BArF

4} (6.5, 

50% ellipsoids) and cocrystallized dichloromethane solvent molecules.  C-

H hydrogen atoms have been omitted for clarity.  Trifluoromethyl disorder 

was modeled as indicated in the figure. 
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Table A5.4.  Crystal data and structure refinement for 6.5. 

Empirical formula  C90H62BCl8F24P3PtSi 

Formula weight  1104.95 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 12.6057(11) Å α = 84.459(2)° 

 b = 17.5913(16) Å β = 84.435(2)° 

 c = 20.2306(18) Å γ = 86.795(2)° 

Volume 4439.2(7) Å3 

Z 2 

Density (calculated) 1.653 g/cm3 

Absorption coefficient 1.986 mm-1 

F(000) 2192 

Crystal size 0.38 x 0.09 x 0.05 mm3 

θ range for data collection 1.61 to 27.87° 

Index ranges -15 ≤ h ≤ 16, -23 ≤ k ≤ 23, -26 ≤ l ≤ 25 

Reflections collected 54713 

Independent reflections 19579 [R(int) = 0.0645] 

Completeness to θ = 25.00° 99.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9072 and 0.5191 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 19579 / 1727 / 1163 

Goodness-of-fit on F2 1.050 

Final R indices [I>2σ(I)] R1 = 0.0635, wR2 = 0.1600 

R indices (all data) R1 = 0.0840, wR2 = 0.1736 

Largest diff. peak and hole 3.246 and -2.506 e.Å-3 
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Figure A5.5. Solid-state structure of {[SiPPh
3]Pt(η2-H2SiMePh)}{BArF

4} 

(6.6.2, 50% ellipsoids).  C-H hydrogen atoms have been omitted for 

clarity.  Si-H hydrogens are shown in calculated positions.  This structure 

has not been published and is not currently part of a manuscript in 

preparation; thus, full tables of coordinates, anisotropic displacement 

parameters, and bond metrics are included below. 
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Table A5.5. Crystal data and structure refinement for 6.6.2. 

 

Empirical formula  C93H64BF24P3PtSi 

Formula weight  1992.43 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 13.192(14) Å α = 68.45(4)° 

 b = 17.568(17) Å β = 78.88(7)° 

 c = 19.961(15) Å γ = 87.26(8)° 

Volume 4220(7) Å3 

Z 2 

Density (calculated) 1.568 g/cm3 

Absorption coefficient 1.848 mm-1 

F(000) 1988 

Crystal size 0.26 x 0.09 x 0.07 mm3 

θ range for data collection 1.75 to 26.38°. 

Index ranges -16 ≤ h ≤ 16, -21 ≤ k ≤ 21, -24 ≤ l ≤ 24 

Reflections collected 45339 

Independent reflections 17025 [R(int) = 0.0630] 

Completeness to θ = 26.38° 98.5 %  

Absorption correction Multi-scan 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 17025 / 0 / 1118 

Goodness-of-fit on F2 1.057 

Final R indices [I>2σ(I)] R1 = 0.0556, wR2 = 0.1301 

R indices (all data) R1 = 0.0721, wR2 = 0.1409 

Largest diff. peak and hole    3.217 and -2.210 e.Å-3 
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Table A5.6.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for 6.6.2.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pt 8848(1) 6915(1) 7065(1) 10(1) 

P(1) 7101(1) 7229(1) 6963(1) 11(1) 

P(2) 10139(1) 7943(1) 6715(1) 11(1) 

P(3) 9383(1) 5594(1) 7094(1) 11(1) 

Si(1) 9081(1) 7227(1) 5825(1) 11(1) 

Si(2) 8378(1) 6498(1) 8770(1) 24(1) 

C(1) 7789(4) 7181(3) 5577(3) 14(1) 

C(2) 6903(4) 7182(4) 6090(3) 15(1) 

C(3) 5928(5) 7154(4) 5942(3) 25(1) 

C(4) 5824(5) 7120(4) 5276(3) 26(2) 

C(5) 6690(5) 7108(4) 4763(3) 22(1) 

C(6) 7654(5) 7145(4) 4914(3) 19(1) 

C(7) 9777(4) 8247(3) 5327(3) 11(1) 

C(8) 10323(4) 8529(3) 5728(3) 12(1) 

C(9) 10988(4) 9204(4) 5378(3) 18(1) 

C(10) 11121(5) 9608(4) 4623(3) 20(1) 

C(11) 10565(5) 9338(4) 4223(3) 20(1) 

C(12) 9898(4) 8674(4) 4566(3) 17(1) 

C(13) 9940(4) 6434(4) 5604(3) 13(1) 

C(14) 10089(4) 5700(3) 6177(3) 12(1) 

C(15) 10699(4) 5089(4) 6040(3) 16(1) 

C(16) 11150(4) 5201(4) 5321(3) 19(1) 

C(17) 11017(4) 5911(4) 4752(3) 22(1) 

C(18) 10413(4) 6529(4) 4894(3) 17(1) 

C(19) 6062(4) 6539(4) 7620(3) 16(1) 

C(20) 5991(4) 5744(4) 7617(3) 19(1) 

C(21) 5236(5) 5194(4) 8103(4) 26(1) 

C(22) 4546(5) 5409(4) 8619(3) 24(1) 

C(23) 4623(5) 6190(4) 8634(3) 22(1) 

C(24) 5359(4) 6756(4) 8134(3) 19(1) 

C(25) 6673(4) 8262(4) 6892(3) 16(1) 
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C(26) 6526(5) 8850(4) 6217(4) 23(1) 

C(27) 6254(5) 9637(5) 6158(4) 34(2) 

C(28) 6111(5) 9864(4) 6760(4) 32(2) 

C(29) 6255(5) 9293(4) 7434(4) 32(2) 

C(30) 6539(4) 8499(4) 7494(4) 20(1) 

C(31) 9963(4) 8687(3) 7168(3) 13(1) 

C(32) 10774(4) 9193(4) 7139(3) 18(1) 

C(33) 10603(5) 9755(4) 7486(3) 21(1) 

C(34) 9627(5) 9809(4) 7873(3) 21(1) 

C(35) 8815(5) 9316(4) 7907(3) 23(1) 

C(36) 8994(5) 8751(4) 7553(3) 19(1) 

C(37) 11427(4) 7548(3) 6840(3) 12(1) 

C(38) 12009(4) 7249(3) 6331(3) 15(1) 

C(39) 12908(4) 6851(4) 6464(3) 19(1) 

C(40) 13260(4) 6734(4) 7108(3) 20(1) 

C(41) 12689(5) 7026(4) 7616(3) 21(1) 

C(42) 11775(4) 7430(4) 7487(3) 17(1) 

C(43) 10238(4) 5025(4) 7721(3) 14(1) 

C(44) 10823(4) 5465(4) 7977(3) 19(1) 

C(45) 11527(5) 5064(4) 8427(3) 24(1) 

C(46) 11635(5) 4222(4) 8635(4) 25(1) 

C(91) 5116(4) 7740(4) 3181(3) 14(1) 

C(47) 11057(5) 3779(4) 8383(4) 24(1) 

C(48) 10362(4) 4181(4) 7923(3) 18(1) 

C(49) 8375(4) 4832(4) 7241(3) 16(1) 

C(50) 7958(4) 4280(4) 7935(3) 20(1) 

C(51) 7163(5) 3741(4) 8020(4) 27(1) 

C(52) 6753(5) 3754(4) 7427(4) 27(2) 

C(53) 7145(5) 4328(4) 6739(4) 25(1) 

C(54) 7949(4) 4857(4) 6640(3) 18(1) 

C(55) 9332(7) 6842(5) 9166(4) 44(2) 

C(56) 8016(5) 5389(4) 9223(3) 26(1) 

C(57) 8723(5) 4782(4) 9498(3) 29(2) 

C(58) 8419(5) 3958(4) 9797(4) 30(2) 

C(59) 7416(6) 3737(4) 9835(3) 29(2) 

C(60) 6695(5) 4328(4) 9582(3) 28(2) 
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C(61) 7004(5) 5148(4) 9278(3) 25(1) 

B 6631(5) 8415(4) 2076(4) 15(1) 

C(62) 6604(4) 9236(3) 2295(3) 13(1) 

C(63) 6755(4) 10012(3) 1742(3) 13(1) 

C(64) 6796(4) 10716(4) 1905(3) 16(1) 

C(65) 6687(4) 10681(3) 2616(3) 13(1) 

C(66) 6575(4) 9912(4) 3170(3) 16(1) 

C(67) 6543(4) 9199(4) 3011(3) 14(1) 

C(68) 6979(4) 11537(4) 1299(3) 16(1) 

C(69) 6518(5) 9815(4) 3953(3) 21(1) 

C(70) 7866(4) 8301(3) 1821(3) 15(1) 

C(71) 8363(4) 8576(4) 1088(3) 18(1) 

C(72) 9440(5) 8546(4) 884(3) 20(1) 

C(73) 10056(4) 8237(4) 1419(3) 19(1) 

C(74) 9579(4) 7966(3) 2154(3) 16(1) 

C(75) 8499(4) 7992(4) 2348(3) 16(1) 

C(76) 9921(5) 8797(4) 92(3) 28(2) 

C(77) 10210(5) 7654(4) 2740(4) 24(1) 

C(78) 5955(4) 8518(4) 1440(3) 16(1) 

C(79) 6134(4) 8020(4) 1026(3) 16(1) 

C(80) 5497(5) 8025(4) 542(3) 20(1) 

C(81) 4645(5) 8522(4) 459(3) 23(1) 

C(82) 4431(5) 9006(4) 886(3) 20(1) 

C(83) 5077(4) 9001(4) 1366(3) 16(1) 

C(84) 5764(6) 7513(5) 82(4) 35(2) 

C(85) 3483(5) 9508(5) 847(4) 29(2) 

C(86) 6064(4) 7626(3) 2774(3) 14(1) 

C(87) 6379(4) 6816(4) 2947(3) 17(1) 

C(88) 5807(5) 6166(4) 3508(3) 18(1) 

C(89) 4895(4) 6299(4) 3922(3) 20(1) 

C(90) 4545(4) 7096(4) 3749(3) 15(1) 

C(92) 6166(5) 5304(4) 3672(4) 31(2) 

C(93) 3536(5) 7283(4) 4155(3) 22(1) 

F(1) 7021(3) 11516(2) 627(2) 23(1) 

F(2) 7869(3) 11905(2) 1262(2) 26(1) 

F(3) 6234(3) 12068(2) 1383(2) 34(1) 
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F(4) 6424(4) 10531(2) 4059(2) 39(1) 

F(5) 5734(3) 9322(2) 4409(2) 28(1) 

F(6) 7377(3) 9474(3) 4208(2) 33(1) 

F(7) 9428(4) 9376(4) -341(2) 67(2) 

F(8) 9983(6) 8181(3) -132(3) 84(2) 

F(9) 10882(4) 9092(4) -59(2) 63(2) 

F(10) 11179(4) 7563(5) 2500(3) 86(2) 

F(11) 9870(4) 6933(3) 3229(3) 59(2) 

F(12) 10177(4) 8137(3) 3118(2) 48(1) 

F(13) 6215(8) 6864(5) 360(4) 145(4) 

F(14) 6398(10) 7880(5) -516(5) 183(6) 

F(15) 5020(6) 7346(6) -164(6) 136(4) 

F(16) 3200(4) 9757(3) 195(3) 57(2) 

F(17) 2671(3) 9112(4) 1338(3) 77(2) 

F(18) 3586(3) 10199(3) 965(3) 52(1) 

F(19) 7019(5) 5231(3) 3258(4) 84(2) 

F(20) 6460(6) 5010(4) 4326(4) 105(3) 

F(21) 5486(5) 4795(3) 3745(7) 160(5) 

F(22) 2809(3) 7467(3) 3747(2) 37(1) 

F(23) 3635(3) 7925(3) 4350(2) 37(1) 

F(24) 3179(3) 6657(3) 4772(2) 35(1) 

________________________________________________________________________________ 
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Table A5.7.   Bond lengths [Å] and angles [°] for 6.6.2. 

_____________________________________________________  

Pt-H(1A)  2.1821 

Pt-Si(1)  2.290(2) 

Pt-P(2)  2.358(3) 

Pt-P(1)  2.374(3) 

Pt-P(3)  2.376(3) 

Pt-Si(2)  3.148(3) 

P(1)-C(19)  1.834(6) 

P(1)-C(25)  1.839(6) 

P(1)-C(2)  1.842(6) 

P(2)-C(31)  1.827(5) 

P(2)-C(8)  1.830(6) 

P(2)-C(37)  1.831(5) 

P(3)-C(43)  1.832(6) 

P(3)-C(14)  1.833(6) 

P(3)-C(49)  1.838(6) 

Si(1)-C(1)  1.877(6) 

Si(1)-C(13)  1.879(6) 

Si(1)-C(7)  1.881(6) 

Si(2)-C(55)  1.839(8) 

Si(2)-C(56)  1.862(8) 

Si(2)-H(1A)  0.9900 

Si(2)-H(1B)  0.9900 

C(1)-C(6)  1.395(8) 

C(1)-C(2)  1.398(8) 

C(2)-C(3)  1.380(8) 

C(3)-C(4)  1.387(9) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.385(9) 

C(4)-H(4)  0.9500 

C(5)-C(6)  1.372(8) 

C(5)-H(5)  0.9500 

C(6)-H(6)  0.9500 

C(7)-C(8)  1.398(7) 

C(7)-C(12)  1.406(8) 
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C(8)-C(9)  1.385(8) 

C(9)-C(10)  1.389(9) 

C(9)-H(9)  0.9500 

C(10)-C(11)  1.394(8) 

C(10)-H(10)  0.9500 

C(11)-C(12)  1.371(9) 

C(11)-H(11)  0.9500 

C(12)-H(12)  0.9500 

C(13)-C(18)  1.385(8) 

C(13)-C(14)  1.411(8) 

C(14)-C(15)  1.387(8) 

C(15)-C(16)  1.388(8) 

C(15)-H(15)  0.9500 

C(16)-C(17)  1.375(9) 

C(16)-H(16)  0.9500 

C(17)-C(18)  1.398(8) 

C(17)-H(17)  0.9500 

C(18)-H(18)  0.9500 

C(19)-C(24)  1.396(8) 

C(19)-C(20)  1.406(8) 

C(20)-C(21)  1.377(9) 

C(20)-H(20)  0.9500 

C(21)-C(22)  1.387(9) 

C(21)-H(21)  0.9500 

C(22)-C(23)  1.393(9) 

C(22)-H(22)  0.9500 

C(23)-C(24)  1.385(9) 

C(23)-H(23)  0.9500 

C(24)-H(24)  0.9500 

C(25)-C(30)  1.387(8) 

C(25)-C(26)  1.407(9) 

C(26)-C(27)  1.381(10) 

C(26)-H(26)  0.9500 

C(27)-C(28)  1.377(11) 

C(27)-H(27)  0.9500 

C(28)-C(29)  1.393(11) 
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C(28)-H(28)  0.9500 

C(29)-C(30)  1.394(9) 

C(29)-H(29)  0.9500 

C(30)-H(30)  0.9500 

C(31)-C(36)  1.382(8) 

C(31)-C(32)  1.402(8) 

C(32)-C(33)  1.388(8) 

C(32)-H(32)  0.9500 

C(33)-C(34)  1.387(9) 

C(33)-H(33)  0.9500 

C(34)-C(35)  1.385(9) 

C(34)-H(34)  0.9500 

C(35)-C(36)  1.403(8) 

C(35)-H(35)  0.9500 

C(36)-H(36)  0.9500 

C(37)-C(42)  1.395(7) 

C(37)-C(38)  1.396(8) 

C(38)-C(39)  1.369(8) 

C(38)-H(38)  0.9500 

C(39)-C(40)  1.391(8) 

C(39)-H(39)  0.9500 

C(40)-C(41)  1.383(8) 

C(40)-H(40)  0.9500 

C(41)-C(42)  1.389(8) 

C(41)-H(41)  0.9500 

C(42)-H(42)  0.9500 

C(43)-C(48)  1.396(8) 

C(43)-C(44)  1.397(8) 

C(44)-C(45)  1.400(8) 

C(44)-H(44)  0.9500 

C(45)-C(46)  1.389(9) 

C(45)-H(45)  0.9500 

C(46)-C(47)  1.391(9) 

C(46)-H(46)  0.9500 

C(91)-C(90)  1.394(8) 

C(91)-C(86)  1.403(8) 
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C(91)-H(91)  0.9500 

C(47)-C(48)  1.403(8) 

C(47)-H(47)  0.9500 

C(48)-H(48)  0.9500 

C(49)-C(50)  1.390(9) 

C(49)-C(54)  1.406(8) 

C(50)-C(51)  1.391(9) 

C(50)-H(50)  0.9500 

C(51)-C(52)  1.385(9) 

C(51)-H(51)  0.9500 

C(52)-C(53)  1.389(10) 

C(52)-H(52)  0.9500 

C(53)-C(54)  1.381(9) 

C(53)-H(53)  0.9500 

C(54)-H(54)  0.9500 

C(55)-H(55A)  0.9800 

C(55)-H(55B)  0.9800 

C(55)-H(55C)  0.9800 

C(56)-C(61)  1.392(9) 

C(56)-C(57)  1.408(9) 

C(57)-C(58)  1.393(10) 

C(57)-H(57)  0.9500 

C(58)-C(59)  1.378(10) 

C(58)-H(58)  0.9500 

C(59)-C(60)  1.393(10) 

C(59)-H(59)  0.9500 

C(60)-C(61)  1.389(10) 

C(60)-H(60)  0.9500 

C(61)-H(61)  0.9500 

B-C(70)  1.637(9) 

B-C(78)  1.641(8) 

B-C(86)  1.644(9) 

B-C(62)  1.651(8) 

C(62)-C(67)  1.393(8) 

C(62)-C(63)  1.397(8) 

C(63)-C(64)  1.394(8) 
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C(63)-H(63)  0.9500 

C(64)-C(65)  1.378(8) 

C(64)-C(68)  1.496(8) 

C(65)-C(66)  1.389(8) 

C(65)-H(65)  0.9500 

C(66)-C(67)  1.405(8) 

C(66)-C(69)  1.496(8) 

C(67)-H(67)  0.9500 

C(68)-F(2)  1.344(7) 

C(68)-F(1)  1.346(6) 

C(68)-F(3)  1.351(6) 

C(69)-F(5)  1.339(7) 

C(69)-F(4)  1.346(7) 

C(69)-F(6)  1.355(7) 

C(70)-C(71)  1.394(8) 

C(70)-C(75)  1.404(8) 

C(71)-C(72)  1.405(8) 

C(71)-H(71)  0.9500 

C(72)-C(73)  1.401(8) 

C(72)-C(76)  1.490(9) 

C(73)-C(74)  1.390(8) 

C(73)-H(73)  0.9500 

C(74)-C(75)  1.406(8) 

C(74)-C(77)  1.491(8) 

C(75)-H(75)  0.9500 

C(76)-F(7)  1.309(8) 

C(76)-F(8)  1.309(8) 

C(76)-F(9)  1.330(8) 

C(77)-F(10)  1.300(8) 

C(77)-F(11)  1.319(8) 

C(77)-F(12)  1.322(7) 

C(78)-C(79)  1.392(8) 

C(78)-C(83)  1.402(8) 

C(79)-C(80)  1.395(8) 

C(79)-H(79)  0.9500 

C(80)-C(81)  1.387(9) 



 232 

C(80)-C(84)  1.492(8) 

C(81)-C(82)  1.396(8) 

C(81)-H(81)  0.9500 

C(82)-C(83)  1.397(8) 

C(82)-C(85)  1.493(9) 

C(83)-H(83)  0.9500 

C(84)-F(13)  1.250(9) 

C(84)-F(15)  1.269(9) 

C(84)-F(14)  1.280(11) 

C(85)-F(17)  1.325(9) 

C(85)-F(16)  1.333(7) 

C(85)-F(18)  1.336(8) 

C(86)-C(87)  1.398(8) 

C(87)-C(88)  1.395(8) 

C(87)-H(87)  0.9500 

C(88)-C(89)  1.385(8) 

C(88)-C(92)  1.499(9) 

C(89)-C(90)  1.392(9) 

C(89)-H(89)  0.9500 

C(90)-C(93)  1.508(8) 

C(92)-F(21)  1.248(9) 

C(92)-F(19)  1.293(8) 

C(92)-F(20)  1.343(10) 

C(93)-F(22)  1.329(7) 

C(93)-F(24)  1.334(7) 

C(93)-F(23)  1.340(7) 

 

H(1A)-Pt-Si(1) 178.9 

H(1A)-Pt-P(2) 96.4 

Si(1)-Pt-P(2) 82.81(8) 

H(1A)-Pt-P(1) 97.3 

Si(1)-Pt-P(1) 83.77(9) 

P(2)-Pt-P(1) 122.10(9) 

H(1A)-Pt-P(3) 95.7 

Si(1)-Pt-P(3) 83.97(7) 

P(2)-Pt-P(3) 117.64(9) 
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P(1)-Pt-P(3) 116.47(8) 

H(1A)-Pt-Si(2) 4.7 

Si(1)-Pt-Si(2) 176.40(5) 

P(2)-Pt-Si(2) 99.47(8) 

P(1)-Pt-Si(2) 92.64(9) 

P(3)-Pt-Si(2) 97.35(7) 

C(19)-P(1)-C(25) 104.9(3) 

C(19)-P(1)-C(2) 101.5(3) 

C(25)-P(1)-C(2) 102.6(3) 

C(19)-P(1)-Pt 119.54(19) 

C(25)-P(1)-Pt 117.84(19) 

C(2)-P(1)-Pt 108.00(19) 

C(31)-P(2)-C(8) 106.7(3) 

C(31)-P(2)-C(37) 103.6(2) 

C(8)-P(2)-C(37) 103.0(3) 

C(31)-P(2)-Pt 117.9(2) 

C(8)-P(2)-Pt 110.35(19) 

C(37)-P(2)-Pt 113.9(2) 

C(43)-P(3)-C(14) 105.1(3) 

C(43)-P(3)-C(49) 103.4(3) 

C(14)-P(3)-C(49) 101.2(3) 

C(43)-P(3)-Pt 119.24(19) 

C(14)-P(3)-Pt 108.0(2) 

C(49)-P(3)-Pt 117.76(19) 

C(1)-Si(1)-C(13) 109.7(2) 

C(1)-Si(1)-C(7) 113.8(3) 

C(13)-Si(1)-C(7) 107.4(3) 

C(1)-Si(1)-Pt 108.5(2) 

C(13)-Si(1)-Pt 107.57(19) 

C(7)-Si(1)-Pt 109.69(18) 

C(55)-Si(2)-C(56) 114.4(4) 

C(55)-Si(2)-Pt 117.6(3) 

C(56)-Si(2)-Pt 107.6(2) 

C(55)-Si(2)-H(1A) 108.7 

C(56)-Si(2)-H(1A) 108.7 

Pt-Si(2)-H(1A) 10.5 
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C(55)-Si(2)-H(1B) 108.7 

C(56)-Si(2)-H(1B) 108.7 

Pt-Si(2)-H(1B) 98.6 

H(1A)-Si(2)-H(1B) 107.6 

C(6)-C(1)-C(2) 117.6(5) 

C(6)-C(1)-Si(1) 124.2(4) 

C(2)-C(1)-Si(1) 118.1(4) 

C(3)-C(2)-C(1) 121.2(5) 

C(3)-C(2)-P(1) 122.0(4) 

C(1)-C(2)-P(1) 116.8(4) 

C(2)-C(3)-C(4) 119.5(6) 

C(2)-C(3)-H(3) 120.2 

C(4)-C(3)-H(3) 120.2 

C(5)-C(4)-C(3) 120.4(6) 

C(5)-C(4)-H(4) 119.8 

C(3)-C(4)-H(4) 119.8 

C(6)-C(5)-C(4) 119.4(5) 

C(6)-C(5)-H(5) 120.3 

C(4)-C(5)-H(5) 120.3 

C(5)-C(6)-C(1) 121.8(6) 

C(5)-C(6)-H(6) 119.1 

C(1)-C(6)-H(6) 119.1 

C(8)-C(7)-C(12) 118.6(5) 

C(8)-C(7)-Si(1) 116.8(4) 

C(12)-C(7)-Si(1) 123.9(4) 

C(9)-C(8)-C(7) 120.5(5) 

C(9)-C(8)-P(2) 122.9(4) 

C(7)-C(8)-P(2) 116.6(4) 

C(8)-C(9)-C(10) 120.3(5) 

C(8)-C(9)-H(9) 119.9 

C(10)-C(9)-H(9) 119.9 

C(9)-C(10)-C(11) 119.4(6) 

C(9)-C(10)-H(10) 120.3 

C(11)-C(10)-H(10) 120.3 

C(12)-C(11)-C(10) 120.7(6) 

C(12)-C(11)-H(11) 119.7 
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C(10)-C(11)-H(11) 119.7 

C(11)-C(12)-C(7) 120.5(5) 

C(11)-C(12)-H(12) 119.8 

C(7)-C(12)-H(12) 119.8 

C(18)-C(13)-C(14) 118.3(5) 

C(18)-C(13)-Si(1) 122.6(5) 

C(14)-C(13)-Si(1) 119.0(4) 

C(15)-C(14)-C(13) 121.2(5) 

C(15)-C(14)-P(3) 122.9(5) 

C(13)-C(14)-P(3) 115.8(4) 

C(14)-C(15)-C(16) 118.9(5) 

C(14)-C(15)-H(15) 120.6 

C(16)-C(15)-H(15) 120.6 

C(17)-C(16)-C(15) 121.1(5) 

C(17)-C(16)-H(16) 119.5 

C(15)-C(16)-H(16) 119.5 

C(16)-C(17)-C(18) 119.8(6) 

C(16)-C(17)-H(17) 120.1 

C(18)-C(17)-H(17) 120.1 

C(13)-C(18)-C(17) 120.7(6) 

C(13)-C(18)-H(18) 119.6 

C(17)-C(18)-H(18) 119.6 

C(24)-C(19)-C(20) 118.5(6) 

C(24)-C(19)-P(1) 123.2(5) 

C(20)-C(19)-P(1) 118.2(4) 

C(21)-C(20)-C(19) 121.0(6) 

C(21)-C(20)-H(20) 119.5 

C(19)-C(20)-H(20) 119.5 

C(20)-C(21)-C(22) 120.4(6) 

C(20)-C(21)-H(21) 119.8 

C(22)-C(21)-H(21) 119.8 

C(21)-C(22)-C(23) 119.0(6) 

C(21)-C(22)-H(22) 120.5 

C(23)-C(22)-H(22) 120.5 

C(24)-C(23)-C(22) 121.1(6) 

C(24)-C(23)-H(23) 119.5 



 236 

C(22)-C(23)-H(23) 119.5 

C(23)-C(24)-C(19) 120.0(6) 

C(23)-C(24)-H(24) 120.0 

C(19)-C(24)-H(24) 120.0 

C(30)-C(25)-C(26) 118.1(6) 

C(30)-C(25)-P(1) 121.0(5) 

C(26)-C(25)-P(1) 120.9(5) 

C(27)-C(26)-C(25) 120.7(6) 

C(27)-C(26)-H(26) 119.7 

C(25)-C(26)-H(26) 119.7 

C(28)-C(27)-C(26) 120.8(7) 

C(28)-C(27)-H(27) 119.6 

C(26)-C(27)-H(27) 119.6 

C(27)-C(28)-C(29) 119.5(6) 

C(27)-C(28)-H(28) 120.3 

C(29)-C(28)-H(28) 120.3 

C(28)-C(29)-C(30) 119.9(6) 

C(28)-C(29)-H(29) 120.0 

C(30)-C(29)-H(29) 120.0 

C(25)-C(30)-C(29) 121.1(6) 

C(25)-C(30)-H(30) 119.5 

C(29)-C(30)-H(30) 119.5 

C(36)-C(31)-C(32) 119.0(5) 

C(36)-C(31)-P(2) 118.6(4) 

C(32)-C(31)-P(2) 122.4(4) 

C(33)-C(32)-C(31) 120.5(5) 

C(33)-C(32)-H(32) 119.8 

C(31)-C(32)-H(32) 119.8 

C(34)-C(33)-C(32) 119.8(6) 

C(34)-C(33)-H(33) 120.1 

C(32)-C(33)-H(33) 120.1 

C(35)-C(34)-C(33) 120.6(5) 

C(35)-C(34)-H(34) 119.7 

C(33)-C(34)-H(34) 119.7 

C(34)-C(35)-C(36) 119.2(6) 

C(34)-C(35)-H(35) 120.4 
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C(36)-C(35)-H(35) 120.4 

C(31)-C(36)-C(35) 121.0(6) 

C(31)-C(36)-H(36) 119.5 

C(35)-C(36)-H(36) 119.5 

C(42)-C(37)-C(38) 118.9(5) 

C(42)-C(37)-P(2) 120.9(4) 

C(38)-C(37)-P(2) 119.6(4) 

C(39)-C(38)-C(37) 120.5(5) 

C(39)-C(38)-H(38) 119.7 

C(37)-C(38)-H(38) 119.7 

C(38)-C(39)-C(40) 120.8(5) 

C(38)-C(39)-H(39) 119.6 

C(40)-C(39)-H(39) 119.6 

C(41)-C(40)-C(39) 119.2(5) 

C(41)-C(40)-H(40) 120.4 

C(39)-C(40)-H(40) 120.4 

C(40)-C(41)-C(42) 120.4(5) 

C(40)-C(41)-H(41) 119.8 

C(42)-C(41)-H(41) 119.8 

C(41)-C(42)-C(37) 120.2(5) 

C(41)-C(42)-H(42) 119.9 

C(37)-C(42)-H(42) 119.9 

C(48)-C(43)-C(44) 119.2(5) 

C(48)-C(43)-P(3) 122.7(4) 

C(44)-C(43)-P(3) 118.1(4) 

C(43)-C(44)-C(45) 120.2(6) 

C(43)-C(44)-H(44) 119.9 

C(45)-C(44)-H(44) 119.9 

C(46)-C(45)-C(44) 120.3(6) 

C(46)-C(45)-H(45) 119.8 

C(44)-C(45)-H(45) 119.8 

C(45)-C(46)-C(47) 119.8(6) 

C(45)-C(46)-H(46) 120.1 

C(47)-C(46)-H(46) 120.1 

C(90)-C(91)-C(86) 122.6(5) 

C(90)-C(91)-H(91) 118.7 
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C(86)-C(91)-H(91) 118.7 

C(46)-C(47)-C(48) 119.9(6) 

C(46)-C(47)-H(47) 120.0 

C(48)-C(47)-H(47) 120.0 

C(43)-C(48)-C(47) 120.4(5) 

C(43)-C(48)-H(48) 119.8 

C(47)-C(48)-H(48) 119.8 

C(50)-C(49)-C(54) 118.9(6) 

C(50)-C(49)-P(3) 122.2(4) 

C(54)-C(49)-P(3) 118.7(5) 

C(49)-C(50)-C(51) 119.9(6) 

C(49)-C(50)-H(50) 120.1 

C(51)-C(50)-H(50) 120.1 

C(52)-C(51)-C(50) 121.3(6) 

C(52)-C(51)-H(51) 119.3 

C(50)-C(51)-H(51) 119.3 

C(51)-C(52)-C(53) 118.6(6) 

C(51)-C(52)-H(52) 120.7 

C(53)-C(52)-H(52) 120.7 

C(54)-C(53)-C(52) 121.0(6) 

C(54)-C(53)-H(53) 119.5 

C(52)-C(53)-H(53) 119.5 

C(53)-C(54)-C(49) 120.3(6) 

C(53)-C(54)-H(54) 119.9 

C(49)-C(54)-H(54) 119.9 

Si(2)-C(55)-H(55A) 109.5 

Si(2)-C(55)-H(55B) 109.5 

H(55A)-C(55)-H(55B) 109.5 

Si(2)-C(55)-H(55C) 109.5 

H(55A)-C(55)-H(55C) 109.5 

H(55B)-C(55)-H(55C) 109.5 

C(61)-C(56)-C(57) 118.5(7) 

C(61)-C(56)-Si(2) 118.4(5) 

C(57)-C(56)-Si(2) 123.1(5) 

C(58)-C(57)-C(56) 120.4(7) 

C(58)-C(57)-H(57) 119.8 
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C(56)-C(57)-H(57) 119.8 

C(59)-C(58)-C(57) 119.7(6) 

C(59)-C(58)-H(58) 120.1 

C(57)-C(58)-H(58) 120.1 

C(58)-C(59)-C(60) 120.9(7) 

C(58)-C(59)-H(59) 119.5 

C(60)-C(59)-H(59) 119.5 

C(61)-C(60)-C(59) 119.2(6) 

C(61)-C(60)-H(60) 120.4 

C(59)-C(60)-H(60) 120.4 

C(60)-C(61)-C(56) 121.2(6) 

C(60)-C(61)-H(61) 119.4 

C(56)-C(61)-H(61) 119.4 

C(70)-B-C(78) 113.5(5) 

C(70)-B-C(86) 113.7(5) 

C(78)-B-C(86) 103.3(4) 

C(70)-B-C(62) 103.2(4) 

C(78)-B-C(62) 112.5(5) 

C(86)-B-C(62) 110.9(5) 

C(67)-C(62)-C(63) 116.8(5) 

C(67)-C(62)-B 123.1(5) 

C(63)-C(62)-B 119.7(5) 

C(64)-C(63)-C(62) 121.4(5) 

C(64)-C(63)-H(63) 119.3 

C(62)-C(63)-H(63) 119.3 

C(65)-C(64)-C(63) 121.8(5) 

C(65)-C(64)-C(68) 118.1(5) 

C(63)-C(64)-C(68) 120.1(5) 

C(64)-C(65)-C(66) 117.5(5) 

C(64)-C(65)-H(65) 121.3 

C(66)-C(65)-H(65) 121.3 

C(65)-C(66)-C(67) 121.2(5) 

C(65)-C(66)-C(69) 121.0(5) 

C(67)-C(66)-C(69) 117.8(5) 

C(62)-C(67)-C(66) 121.3(5) 

C(62)-C(67)-H(67) 119.3 
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C(66)-C(67)-H(67) 119.3 

F(2)-C(68)-F(1) 105.4(5) 

F(2)-C(68)-F(3) 105.1(5) 

F(1)-C(68)-F(3) 106.5(4) 

F(2)-C(68)-C(64) 113.2(4) 

F(1)-C(68)-C(64) 113.9(5) 

F(3)-C(68)-C(64) 112.1(5) 

F(5)-C(69)-F(4) 107.3(5) 

F(5)-C(69)-F(6) 105.1(5) 

F(4)-C(69)-F(6) 105.6(5) 

F(5)-C(69)-C(66) 113.0(5) 

F(4)-C(69)-C(66) 113.1(5) 

F(6)-C(69)-C(66) 112.2(5) 

C(71)-C(70)-C(75) 116.6(5) 

C(71)-C(70)-B 122.9(5) 

C(75)-C(70)-B 120.2(5) 

C(70)-C(71)-C(72) 122.0(6) 

C(70)-C(71)-H(71) 119.0 

C(72)-C(71)-H(71) 119.0 

C(73)-C(72)-C(71) 120.4(6) 

C(73)-C(72)-C(76) 119.9(6) 

C(71)-C(72)-C(76) 119.6(6) 

C(74)-C(73)-C(72) 118.7(5) 

C(74)-C(73)-H(73) 120.7 

C(72)-C(73)-H(73) 120.7 

C(73)-C(74)-C(75) 120.1(5) 

C(73)-C(74)-C(77) 120.2(5) 

C(75)-C(74)-C(77) 119.7(5) 

C(70)-C(75)-C(74) 122.3(5) 

C(70)-C(75)-H(75) 118.8 

C(74)-C(75)-H(75) 118.8 

F(7)-C(76)-F(8) 107.3(6) 

F(7)-C(76)-F(9) 104.7(6) 

F(8)-C(76)-F(9) 105.5(6) 

F(7)-C(76)-C(72) 113.7(6) 

F(8)-C(76)-C(72) 111.9(6) 
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F(9)-C(76)-C(72) 113.1(6) 

F(10)-C(77)-F(11) 105.7(6) 

F(10)-C(77)-F(12) 107.1(6) 

F(11)-C(77)-F(12) 105.2(6) 

F(10)-C(77)-C(74) 114.1(5) 

F(11)-C(77)-C(74) 112.0(5) 

F(12)-C(77)-C(74) 112.1(5) 

C(79)-C(78)-C(83) 116.4(5) 

C(79)-C(78)-B 120.5(5) 

C(83)-C(78)-B 122.3(5) 

C(78)-C(79)-C(80) 121.9(5) 

C(78)-C(79)-H(79) 119.0 

C(80)-C(79)-H(79) 119.0 

C(81)-C(80)-C(79) 121.2(5) 

C(81)-C(80)-C(84) 119.4(5) 

C(79)-C(80)-C(84) 119.3(5) 

C(80)-C(81)-C(82) 117.9(5) 

C(80)-C(81)-H(81) 121.0 

C(82)-C(81)-H(81) 121.0 

C(81)-C(82)-C(83) 120.5(5) 

C(81)-C(82)-C(85) 119.4(5) 

C(83)-C(82)-C(85) 120.1(5) 

C(82)-C(83)-C(78) 122.0(5) 

C(82)-C(83)-H(83) 119.0 

C(78)-C(83)-H(83) 119.0 

F(13)-C(84)-F(15) 108.1(8) 

F(13)-C(84)-F(14) 102.4(9) 

F(15)-C(84)-F(14) 100.9(9) 

F(13)-C(84)-C(80) 115.8(6) 

F(15)-C(84)-C(80) 115.3(6) 

F(14)-C(84)-C(80) 112.6(7) 

F(17)-C(85)-F(16) 106.5(6) 

F(17)-C(85)-F(18) 105.5(6) 

F(16)-C(85)-F(18) 104.2(6) 

F(17)-C(85)-C(82) 112.7(6) 

F(16)-C(85)-C(82) 113.6(5) 
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F(18)-C(85)-C(82) 113.5(5) 

C(87)-C(86)-C(91) 115.8(5) 

C(87)-C(86)-B 125.2(5) 

C(91)-C(86)-B 118.5(5) 

C(88)-C(87)-C(86) 122.1(5) 

C(88)-C(87)-H(87) 118.9 

C(86)-C(87)-H(87) 118.9 

C(89)-C(88)-C(87) 120.9(6) 

C(89)-C(88)-C(92) 118.6(6) 

C(87)-C(88)-C(92) 120.5(6) 

C(88)-C(89)-C(90) 118.4(6) 

C(88)-C(89)-H(89) 120.8 

C(90)-C(89)-H(89) 120.8 

C(89)-C(90)-C(91) 120.2(5) 

C(89)-C(90)-C(93) 121.3(6) 

C(91)-C(90)-C(93) 118.5(5) 

F(21)-C(92)-F(19) 112.5(8) 

F(21)-C(92)-F(20) 102.5(8) 

F(19)-C(92)-F(20) 99.5(6) 

F(21)-C(92)-C(88) 115.0(6) 

F(19)-C(92)-C(88) 114.8(6) 

F(20)-C(92)-C(88) 110.7(6) 

F(22)-C(93)-F(24) 107.9(5) 

F(22)-C(93)-F(23) 106.7(5) 

F(24)-C(93)-F(23) 106.5(5) 

F(22)-C(93)-C(90) 111.8(5) 

F(24)-C(93)-C(90) 112.1(5) 

F(23)-C(93)-C(90) 111.6(5) 

_____________________________________________________________  

Symmetry transformations used to generate equivalent atoms:  
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Table A5.8.   Anisotropic displacement parameters  (Å2x 103) for 6.6.2.  The anisotropic 

displacement factor exponent takes the form:  -2p2[ h2 a*2U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  

 U11 U22  U33 U23 U13 U12 

______________________________________________________________________________  

Pt 10(1)  11(1) 12(1)  -6(1) -4(1)  1(1) 

P(1) 10(1)  13(1) 11(1)  -5(1) -2(1)  1(1) 

P(2) 9(1)  12(1) 13(1)  -6(1) -5(1)  1(1) 

P(3) 12(1)  10(1) 13(1)  -5(1) -4(1)  1(1) 

Si(1) 11(1)  12(1) 11(1)  -5(1) -4(1)  2(1) 

Si(2) 34(1)  23(1) 18(1)  -10(1) -6(1)  4(1) 

C(1) 13(3)  11(3) 20(3)  -7(2) -6(2)  0(2) 

C(2) 17(3)  18(3) 11(3)  -6(2) -4(2)  2(2) 

C(3) 16(3)  34(4) 22(3)  -8(3) -3(2)  -4(3) 

C(4) 20(3)  39(4) 17(3)  -5(3) -6(3)  -7(3) 

C(5) 25(3)  27(4) 15(3)  -7(3) -8(2)  -6(3) 

C(6) 22(3)  21(3) 18(3)  -12(3) -2(2)  -6(3) 

C(7) 10(2)  12(3) 13(3)  -7(2) 0(2)  2(2) 

C(8) 6(2)  12(3) 19(3)  -7(2) -3(2)  1(2) 

C(9) 14(3)  18(3) 23(3)  -8(3) -6(2)  0(2) 

C(10) 18(3)  11(3) 28(3)  -6(3) -2(2)  -4(2) 

C(11) 24(3)  18(3) 11(3)  0(2) -1(2)  3(3) 

C(12) 18(3)  15(3) 20(3)  -6(3) -7(2)  4(2) 

C(13) 8(2)  18(3) 17(3)  -10(2) 0(2)  -5(2) 

C(14) 11(3)  16(3) 14(3)  -10(2) -2(2)  -4(2) 

C(15) 15(3)  12(3) 21(3)  -6(2) -3(2)  -1(2) 

C(16) 17(3)  16(3) 29(3)  -15(3) -3(2)  5(2) 

C(17) 17(3)  27(4) 24(3)  -16(3) 3(2)  -2(3) 

C(18) 16(3)  18(3) 20(3)  -9(3) -6(2)  -1(2) 

C(19) 14(3)  16(3) 16(3)  -2(2) -8(2)  0(2) 

C(20) 18(3)  19(3) 19(3)  -8(3) -1(2)  0(2) 

C(21) 19(3)  20(3) 35(4)  -6(3) -7(3)  1(3) 

C(22) 16(3)  27(4) 21(3)  2(3) -1(2)  -2(3) 

C(23) 19(3)  28(4) 16(3)  -4(3) -2(2)  9(3) 

C(24) 17(3)  25(3) 14(3)  -7(3) -6(2)  6(3) 

C(25) 7(2)  14(3) 30(3)  -10(3) -6(2)  1(2) 
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C(26) 18(3)  17(3) 29(4)  -4(3) -2(3)  1(3) 

C(27) 19(3)  29(4) 40(4)  0(3) 1(3)  3(3) 

C(28) 19(3)  16(3) 60(5)  -15(3) -5(3)  6(3) 

C(29) 21(3)  33(4) 54(5)  -31(4) -7(3)  1(3) 

C(30) 12(3)  19(3) 33(4)  -13(3) -8(2)  2(2) 

C(31) 19(3)  9(3) 11(3)  -3(2) -7(2)  5(2) 

C(32) 17(3)  14(3) 26(3)  -6(3) -11(2)  4(2) 

C(33) 22(3)  19(3) 25(3)  -9(3) -12(3)  -2(3) 

C(34) 33(3)  15(3) 21(3)  -14(3) -8(3)  4(3) 

C(35) 21(3)  25(4) 25(3)  -14(3) -2(3)  6(3) 

C(36) 24(3)  15(3) 23(3)  -11(3) -5(2)  -1(2) 

C(37) 4(2)  10(3) 21(3)  -5(2) -4(2)  -4(2) 

C(38) 21(3)  11(3) 11(3)  1(2) -6(2)  2(2) 

C(39) 17(3)  17(3) 19(3)  -5(3) 3(2)  4(2) 

C(40) 6(3)  24(3) 27(3)  -6(3) -7(2)  2(2) 

C(41) 27(3)  16(3) 23(3)  -9(3) -12(3)  2(3) 

C(42) 18(3)  20(3) 20(3)  -14(3) -5(2)  -2(2) 

C(43) 10(3)  15(3) 17(3)  -7(2) -3(2)  3(2) 

C(44) 21(3)  17(3) 18(3)  -3(3) -10(2)  4(2) 

C(45) 26(3)  21(3) 24(3)  0(3) -15(3)  -3(3) 

C(46) 23(3)  25(4) 26(4)  -5(3) -12(3)  4(3) 

C(91) 18(3)  13(3) 12(3)  -4(2) -4(2)  -2(2) 

C(47) 28(3)  13(3) 29(4)  -4(3) -12(3)  8(3) 

C(48) 16(3)  22(3) 17(3)  -9(3) -4(2)  1(2) 

C(49) 16(3)  16(3) 15(3)  -7(2) 0(2)  2(2) 

C(50) 17(3)  26(3) 20(3)  -11(3) -5(2)  2(3) 

C(51) 26(3)  22(4) 28(4)  -7(3) 3(3)  -4(3) 

C(52) 18(3)  27(4) 42(4)  -23(3) 4(3)  -11(3) 

C(53) 20(3)  31(4) 33(4)  -24(3) -1(3)  -2(3) 

C(54) 11(3)  21(3) 25(3)  -14(3) -1(2)  0(2) 

C(55) 63(5)  51(5) 26(4)  -17(4) -15(4)  -10(4) 

C(56) 31(4)  30(4) 15(3)  -7(3) -3(3)  4(3) 

C(57) 28(3)  35(4) 18(3)  -5(3) -2(3)  0(3) 

C(58) 35(4)  28(4) 22(4)  -3(3) -6(3)  12(3) 

C(59) 43(4)  21(4) 15(3)  3(3) -3(3)  -2(3) 

C(60) 24(3)  37(4) 18(3)  -3(3) -2(3)  -1(3) 
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C(61) 29(3)  23(4) 19(3)  -3(3) -6(3)  8(3) 

B 20(3)  9(3) 15(3)  -3(3) -7(3)  -1(3) 

C(62) 13(3)  14(3) 15(3)  -5(2) -7(2)  1(2) 

C(63) 16(3)  10(3) 12(3)  -1(2) -4(2)  0(2) 

C(64) 6(2)  13(3) 28(3)  -4(3) -6(2)  1(2) 

C(65) 14(3)  12(3) 17(3)  -9(2) -7(2)  -1(2) 

C(66) 14(3)  21(3) 13(3)  -5(2) -4(2)  -1(2) 

C(67) 10(3)  13(3) 18(3)  -4(2) -3(2)  0(2) 

C(68) 16(3)  17(3) 18(3)  -8(3) -8(2)  4(2) 

C(69) 34(3)  16(3) 15(3)  -8(3) -6(3)  -5(3) 

C(70) 21(3)  10(3) 15(3)  -6(2) -3(2)  -1(2) 

C(71) 19(3)  16(3) 19(3)  -10(3) -1(2)  0(2) 

C(72) 24(3)  16(3) 21(3)  -7(3) -2(3)  -6(3) 

C(73) 15(3)  19(3) 23(3)  -9(3) -4(2)  1(2) 

C(74) 22(3)  9(3) 18(3)  -8(2) -5(2)  4(2) 

C(75) 20(3)  15(3) 16(3)  -8(2) -4(2)  0(2) 

C(76) 30(4)  33(4) 16(3)  -8(3) 4(3)  -4(3) 

C(77) 23(3)  27(4) 26(4)  -12(3) -8(3)  2(3) 

C(78) 17(3)  17(3) 13(3)  -4(2) 0(2)  -3(2) 

C(79) 17(3)  14(3) 16(3)  -4(2) -6(2)  1(2) 

C(80) 28(3)  18(3) 17(3)  -7(3) -7(3)  0(3) 

C(81) 29(3)  26(4) 21(3)  -11(3) -13(3)  -1(3) 

C(82) 20(3)  18(3) 19(3)  -3(3) -5(2)  -2(2) 

C(83) 18(3)  18(3) 16(3)  -9(3) -4(2)  0(2) 

C(84) 46(4)  40(5) 33(4)  -28(4) -17(3)  12(4) 

C(85) 28(4)  41(4) 24(4)  -17(3) -8(3)  3(3) 

C(86) 18(3)  12(3) 13(3)  -4(2) -6(2)  -2(2) 

C(87) 13(3)  20(3) 17(3)  -6(3) -5(2)  0(2) 

C(88) 21(3)  13(3) 20(3)  -1(3) -12(2)  1(2) 

C(89) 18(3)  20(3) 20(3)  -4(3) -8(2)  -5(2) 

C(90) 13(3)  21(3) 14(3)  -7(3) -6(2)  -4(2) 

C(92) 25(3)  13(3) 45(4)  0(3) -6(3)  3(3) 

C(93) 20(3)  23(3) 22(3)  -5(3) -5(2)  -5(3) 

F(1) 39(2)  14(2) 19(2)  -7(2) -12(2)  -1(2) 

F(2) 32(2)  21(2) 23(2)  1(2) -10(2)  -12(2) 

F(3) 38(2)  20(2) 34(2)  -2(2) -2(2)  13(2) 
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F(4) 80(3)  22(2) 21(2)  -13(2) -11(2)  -3(2) 

F(5) 30(2)  32(2) 16(2)  -5(2) 4(2)  -10(2) 

F(6) 30(2)  49(3) 21(2)  -10(2) -13(2)  -3(2) 

F(7) 56(3)  98(4) 16(2)  6(3) 6(2)  17(3) 

F(8) 157(6)  54(4) 37(3)  -32(3) 31(3)  -27(4) 

F(9) 38(3)  107(5) 29(3)  -13(3) 14(2)  -33(3) 

F(10) 29(3)  185(7) 48(3)  -45(4) -21(2)  44(4) 

F(11) 95(4)  27(2) 58(3)  6(2) -59(3)  -11(3) 

F(12) 81(3)  35(3) 51(3)  -30(2) -46(3)  22(2) 

F(13) 274(11)  121(6) 140(6)  -123(6) -162(7)  154(7) 

F(14) 315(14)  104(7) 122(7)  -101(6) 115(8)  -78(8) 

F(15) 119(6)  188(9) 231(10)  -193(9) -120(7)  87(6) 

F(16) 67(3)  77(4) 47(3)  -36(3) -42(3)  43(3) 

F(17) 23(2)  70(4) 90(4)  17(3) 10(3)  13(2) 

F(18) 46(3)  55(3) 82(4)  -47(3) -36(3)  29(2) 

F(19) 87(4)  23(3) 98(5)  0(3) 37(4)  20(3) 

F(20) 154(7)  68(4) 73(4)  0(4) -38(4)  67(5) 

F(21) 58(4)  21(3) 417(16)  -80(6) -82(6)  16(3) 

F(22) 18(2)  58(3) 34(2)  -14(2) -10(2)  3(2) 

F(23) 30(2)  37(2) 50(3)  -29(2) 4(2)  -3(2) 

F(24) 30(2)  33(2) 27(2)  2(2) 3(2)  -3(2) 

______________________________________________________________________________ 
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Table A5.9.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 

for 6.6.2. 

________________________________________________________________________________  

 x  y  z  U(eq) 

________________________________________________________________________________  

  
H(1A) 8659 6617 8244 29 

H(1B) 7745 6820 8802 29 

H(3) 5332 7158 6295 30 

H(4) 5155 7105 5170 32 

H(5) 6618 7074 4310 27 

H(6) 8246 7146 4556 23 

H(9) 11355 9391 5656 22 

H(10) 11586 10065 4382 24 

H(11) 10648 9616 3707 23 

H(12) 9515 8502 4287 20 

H(15) 10805 4601 6431 19 

H(16) 11557 4781 5221 23 

H(17) 11336 5981 4263 26 

H(18) 10325 7020 4500 21 

H(20) 6471 5584 7275 22 

H(21) 5188 4665 8084 31 

H(22) 4028 5028 8957 29 

H(23) 4163 6337 8993 27 

H(24) 5385 7293 8141 22 

H(26) 6615 8703 5796 28 

H(27) 6164 10028 5697 41 

H(28) 5915 10405 6717 38 

H(29) 6159 9444 7852 38 

H(30) 6643 8114 7954 24 

H(32) 11446 9150 6880 22 

H(33) 11153 10102 7457 25 

H(34) 9514 10187 8117 25 

H(35) 8145 9360 8168 27 

H(36) 8442 8408 7578 23 

H(38) 11779 7323 5889 18 
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H(39) 13297 6652 6112 23 

H(40) 13884 6456 7197 23 

H(41) 12924 6951 8057 25 

H(42) 11386 7627 7840 21 

H(44) 10743 6039 7844 23 

H(45) 11932 5368 8590 29 

H(46) 12103 3951 8949 30 

H(91) 4853 8276 3065 17 

H(47) 11133 3204 8522 29 

H(48) 9973 3877 7748 21 

H(50) 8215 4271 8351 24 

H(51) 6895 3355 8494 32 

H(52) 6216 3379 7489 33 

H(53) 6856 4356 6330 30 

H(54) 8214 5241 6164 22 

H(55A) 9065 6722 9688 67 

H(55B) 9461 7433 8912 67 

H(55C) 9979 6555 9108 67 

H(57) 9412 4935 9479 34 

H(58) 8902 3550 9975 36 

H(59) 7212 3175 10036 35 

H(60) 6002 4171 9617 34 

H(61) 6515 5553 9104 30 

H(63) 6832 10061 1245 16 

H(65) 6689 11165 2723 15 

H(67) 6479 8680 3400 17 

H(71) 7961 8791 716 21 

H(73) 10784 8214 1283 22 

H(75) 8186 7794 2852 20 

H(79) 6705 7667 1075 19 

H(81) 4221 8533 121 28 

H(83) 4916 9336 1651 20 

H(87) 7002 6705 2673 20 

H(89) 4517 5857 4313 24 
________________________________________________________________________________  


