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Abstract

Many lines of evidence suggest that the hippocampus plays a critical role in memory

formation. The predominant hypothesis is that new memories are initially stored within

hippocampal circuits during awake behavior, and are subsequently consolidated across

neocortical networks under the influence of hippocampal activity during sleep. The

hippocampal memory trace is conjectured to reside within the recurrent circuits of area

CA3, which is believed to function as an autoassociative memory. Area CA3 projects

almost exclusively to area CA1, one of the major output stages of the hippocampus.

How is CA3 activity transformed in CA1, and what is the function of the CA1 subfield

that intermediates between CA3 and the neocortex, the presumed long-term storage

site of memories?

Here we characterize the relationships between CA3 and CA1 activity during slow-

wave sleep (SWS), a stage of sleep conjectured to be important in memory consolida-

tion. Activity in SWS is marked by the presence of short-lived (∼100 ms) population

bursts that are believed to be spontaneously generated within CA3 and that co-occur

with high-frequency oscillations (∼200 Hz ripples) in area CA1. We demonstrate that:

1. CA1 amplifies transient increases in CA3 activity levels, while attenuating back-

ground fluctuations.

2. The fraction of co-active neurons is higher in CA1 than in CA3, while the firing

intensity of active neurons is higher in CA3 than in CA1.

3. The above dichotomy is particularly pronounced during the population bursts

associated with ripples.

4. In comparison to isolated spikes, bursts of action potentials by CA3 neurons
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are particularly effective at triggering large CA1 responses and predicting the onset of

CA1 ripples.

These results show that CA1 acts as a selective filter and amplifier of CA3 ac-

tivity patterns, and that bursting of individual CA3 neurons plays a special role in

this CA3-CA1 transformation. We hypothesize that coordinated bursts in CA3 reflect

convergence to attractors, each representing a stored pattern in the auto-associative

network. Our observations suggest that these stored patterns are preferentially am-

plified by CA1 and transmitted to downstream targets, while activity representing

intermediate states in-between attractors are less likely to be transmitted.
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Chapter 1

Introduction

1.1 Hippocampal Role in Memory Formation

Many lines of evidence suggest that the hippocampus plays a critical role in forming

new memories, but is not the long-term storage site for these memories1,2. In humans,

bilateral hippocampal lesions leave patients unable to form new memories while spar-

ing remote memories, a condition called anterograde amnesia3. In rats, hippocampal

lesions impair a wide variety of memory tasks, which include navigating the Morris

water maze4, odor-discrimination learning5, and spatial alternation6. Furthermore,

for certain associative learning tasks such as trace eyeblink conditioning, learning im-

pairment due to hippocampal lesion is also time-dependent. As the interval between

learning and hippocampal lesion increases, the effect of the lesion on acquired memory

diminishes7.

According to one widely held model, memories are formed in two stages8. In the

first stage, during wakefulness, sensory stimuli reach the hippocampus through neo-

cortex and initial memory traces are embedded within hippocampal circuits (Fig. 1.1,

left). In the second stage, during sleep, spontaneous hippocampal activity indepen-

dent of any sensory stimuli triggers synaptic changes both within the hippocampus and

across cortical circuits. Through this process, the initial memory traces are further

reorganized within the hippocampus and gradually transferred to the neocortex where

they are permanently stored and can be recalled independently of the hippocampus
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Figure 1.1: The two-stage model of memory formation.

(Fig. 1.1, right).

1.2 Role of CA3 in Initial Memory Storage

The hippocampus is a heterogeneous structure with subfields that have very different

architectures. The functional roles of the different subfields are not known, although

anatomy can provide some insights. In particular, the hippocampus consists of four

subfields: the dentate gyrus, area CA3, area CA1, and the subiculum (Fig. 1.2).

These subfields are defined based on their distinct cell morphologies and connectivity

patterns.9. Furthermore, unlike many other brain structures where the coexistence of

both feed-forward and feedback connections is the norm, major intrinsic connections

within the hippocampus can be characterized by a mostly feed-forward trisynaptic

pathway: the perforant pathway from entorhinal cortex to dentate gyrus, mossy fibers

from dentate gyrus to area CA3, and Schaffer collaterals from area CA3 to area CA1

(Fig. 1.2).
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Figure 1.2: Subfields and connections of the rat hippocampus. Numbers in yellow rectan-
gles indicate pyramidal cell counts in each hippocampal subfield per hemisphere. Projections
are shown as arrows. Note the trisynaptic pathway that originates from entorhinal cortex and
ends at area CA1. EC, entorhinal cortex. DG, dentate gyrus. S, subiculum. Prs, presubiculum.
PaS, parasubiculum. Adapted from9. Cell counts from10.

Among hippocampal subfields, area CA3 represents the most likely storage site for

initial memory traces. Theoretical work in artificial neural networks has shown that

recurrent circuits with Hebbian synapses can function as an autoassociative memory11.

Highly extensive recurrent connections exist within CA39. The arborized axon of a

CA3 pyramidal cell can make dendritic contacts to several thousands of other CA3 neu-

rons12. Furthermore, CA3-CA3 synapses are highly plastic and display a Hebbian form

of activity-dependent synaptic modification13. Therefore, these unique anatomical and

physiological features provide a foundation for CA3 to operate as an autoassociative

memory network14,15,16. Many theoretical and experimental studies have suggested

that CA3 may encode and store recent memories temporarily in its recurrent circuits

before facilitating their permanent transfer to the neocortex17,18,19,20,21. This is con-

sistent with the two-stage model of memory formation (Fig. 1.1), whereby the initial

encoding phase occurs during the awake state and the transfer phase occurs during

sleep. Additional support of CA3’s role in both the encoding and the transfer of mem-
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Figure 1.3: Anatomical differences between are CA1 and CA3. In rats, both CA1 and
CA3 have approximately 200,000 to 400,000 pyramidal cells per hemisphere. There are dense
recurrent connections within CA3, which also projects to CA1 extensively through Schaffer
collaterals. CA1 further projects to many cortical regions. A major difference between the two
areas is that there are significantly fewer recurrent connections in CA1 compared to CA3.

ories has come from recent genetic manipulations of CA3 in rodent models. NMDA

receptor deletion restricted to CA3 impairs the rapid encoding of novel information22,

while posttraining blockade of CA3 output impairs the consolidation of contextual fear

memory23.

1.3 Role of CA1 in Memory Formation

If CA3 acts as the temporary storage site for recent memories before their transfer

to the neocortex, then the role of area CA1 becomes puzzling. With the excep-

tion of a few subcortical nuclei24,25, CA3 projects almost exclusively to CA1 through

Schaffer collaterals26,27. This projection is extensive, with each CA3 pyramidal cell

giving rise to arborized axonal plexuses that fan out to as much as 75% of the septo-

temporal extent of CA112. Moreover, among hippocampal subfields, CA1 has the

highest degree of cytoarchitectonic similarity to CA3: both areas have similar laminar

structures, overlapping cell types, and contain roughly the same number of pyramidal
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cells9 (Fig. 1.2). However, one feature that clearly differentiates the two areas is

the presence of highly extensive recurrent connections within CA3 compared to the

paucity of such connections within CA128 (Fig. 1.3). Futhermore, unlike CA3, CA1

projects either directly or through the subiculum and entorhinal cortex to a wide range

of cortical areas downstream from the hippocampus29,30,31,32.

What is the role of CA1, which is anatomically positioned as the sole bridge of

communication between CA3, the putative temporary storage site for recent memories,

and the neocortex, the permanent storage site for long-term memories? In order to

understand the process of memory formation, therefore it is crucial to study how CA3

neuronal activity is transformed by CA1 on its way to the neocortex. This will be the

focus of this thesis.

1.4 CA3-CA1 Transformation in Slow-Wave Sleep

We concentrate on slow-wave sleep (SWS) in our study of CA3-CA1 transformation

for the following reasons. First, it has been hypothesized that recent memory is trans-

ferred from hippocampus to neocortex during sleep (stage 2 of the two-stage model

of memory formation, Fig. 1.1, right). Second, SWS provides a unique opportunity

for probing the CA3-CA1 circuit independent of external input. During SWS, exter-

nal input from the entorhinal cortex to hippocampus is highly attenuated33,34, and

spontaneous CA3 activity is thought to provide the dominant drive for the CA3-CA1

circuit35. In contrast, the entorhinal cortex is believed to strongly influence both CA3

and CA1 activity during awake behavior. Furthermore, hippocampal activity during

SWS is characterized by the presence of ripples. Ripples are characterized by large

high-frequency (80 – 400 Hz) oscillations in CA1 local field potentials (LFPs) and

increased firing in the entire hippocampus within a short (∼100 ms) time window36,37

(Fig. 1.4). Recent evidence has shown that synchronous CA1 firing during ripples

may play a crucial role in communication between the hippocampus and the prefrontal

cortex38. Coordinated CA1 spiking within such a short time interval provides a strong
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depolarizing force that may engage plasticity mechanisms in neocortical targets. In

addition, coherent discharge of a small group of CA3 neurons is believed to trigger

hippocampal ripples35.

1.5 Outline

The rest of this thesis is organized as follows. First, we characterize the relationship

between CA3 and CA1 population firing rates in SWS and demonstrate that on average

CA1 effectively amplifies only those fluctuations in CA3 spiking levels that exceed the

background rate by a factor of two or more. Next, by analyzing the firing of single

pyramidal cells in both areas, we show that during SWS a larger fraction of neurons

are co-activated in CA1 compared to CA3, while CA3 neurons discharge more spikes

than CA1 when activated. This dichotomy between population burst size and unit

burst size is particularly pronounced during ripples. Based on these observations, we

hypothesize that CA1 population events are launched by a smaller coordinated set of

CA3 neurons firing bursts of spikes. We present several lines of evidence in support

of this hypothesis. In particular, CA3 bursts are more effective than single spikes

at triggering large CA1 responses and predicting the onset of ripples. Longer CA3

bursts tend to occur progressively earlier with respect to ripple onsets. Overall, our

observations argue that during SWS CA1 may act as a selective amplifier of CA3

activity patterns and that bursting of individual CA3 neurons may play a special role in

this transformation. Finally, we discuss possible mechanisms that may be responsible

for such a transformation and its possible role in memory formation.
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Figure 1.4: Ripple events in hippocampal CA1 pyramidal layer. LFP from 19 CA1
tetrodes (1 channel per tetrode) and raster plot of single unit activity from 140 CA1 units,
ordered in terms of their firing rate. Ripples are marked by dotted rectangles. Notice the high-
frequency oscillations in the LFPs coincide with increased discharge of CA1 neurons. Most
pyramidal cells fire no more than a few spikes in a given ripple, while interneurons (the ones
close to the bottom of the raster plot) fire more spikes and in more ripples.
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Chapter 2

Experimental Results

2.1 CA1 Amplifies CA3 Activity during SWS

Our first objective was to characterize the relationship between CA3 and CA1 activity

in slow-wave sleep (SWS). We first focused on population firing rates, computed

from the multiunit activity containing all recorded spikes, and the 80 – 400 Hz ripple

band of the local field potentials (LFPs). Figure 2.1A shows an example of spiking

and LFPs simultaneously recorded in CA1 and CA3. This example illustrates several

key features. First, there are brief episodes of sharply increased population firing

rate in both CA1 and CA3, with the relative increases in CA1 larger than those in

CA3. Second, these episodes coincide with large high-frequency oscillations in CA1

LFPs (ripples). Third, CA1 population firing rate co-varies with CA3 most of the

time, especially at higher activity levels. Finally, when CA3 population firing rate is

at relatively low levels, CA1 does not necessarily co-vary with CA3 activity. These

observations are confirmed in the summary plots in Figure 2.1B: 1) The dynamic

range is larger for CA1 population firing rate than for CA3 and CA1 spends more time

in higher firing rates (Fig. 2.1B(i)). 2) When the CA3 population firing rate exceeds

twice the background level, CA1 amplifies CA3 input (Fig. 2.1B(ii)), 3) and these

higher rate episodes coincide with hippocampal ripples (Fig. 2.1B(iii)).

While Figure 2.1A illustrates differences between CA3 and CA1 activity over the

span of just a few seconds, our recordings spanned many hours and multiple sleep
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Figure 2.1: Hippocampal CA1 amplification of CA3 activity during SWS. A: (i,v) Local
field potentials (LFPs) from 6 CA1 tetrodes (in blue) and 6 CA3 tetrodes (in red). One channel
per tetrode is plotted. The LFP trace from the last CA1 tetrode is filtered in 80 – 400 Hz
band and is plotted as the bottom trace. (ii,iv) Rasters of 39 CA1 units and 46 CA3 units,
ordered by firing rate. (iii) Population firing rate fluctuations in CA1 and CA3: all recorded
spikes are histogramed into 10 ms bins, smoothed with a 100 ms Gaussian window, and the
resulting population firing rate is divided by its time average. The resulting dimensionless
quantity measures the fluctuations in activity levels relative to the background level. Note
that high-frequency oscillation in CA1 LFP coincides with increased activity in both CA1 and
CA3. B: (i) Distributions of population firing rate fluctuations in CA3 (in red) and CA1 (in
blue). Dashed lines indicate standard errors across 10 SWS epochs. Note that fluctuations in
CA1 are larger than those in CA3. (ii) Average relationship between CA3 and CA1 firing rate
fluctuations. Note that once activity in CA3 is at least twice above the background level, the
corresponding activity in CA1 is significantly amplified (black curve is above the diagonal). (iii)
The relationship between CA1 (in blue) and CA3 (in red) population firing rate fluctuations
and CA1 LFP amplitude in the ripple band. LFP amplitude is calculated from the amplitude
measurements of the Hilbert transform of the LFP traces filtered in 80 – 400 Hz. The resulting
values are then transformed into Z-scores. Note that high population firing rate in both areas
coincides with large high-frequency oscillations in CA1 LFPs.
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stage transitions between SWS, REM, and AWAKE. For example, Figure 2.2A tracks

the interactions between the two areas over more than 9 hours. Our analysis shows

that the strongest CA3-CA1 interactions are restricted to SWS (Fig. 2.2A(ii)) and

that CA3 firing tends to precede CA1 activity by several milliseconds (Fig. 2.2B),

consistent with the view that population bursts and ripples in CA1 are triggered by

firing in CA335.

2.2 Area Differences in Population and Single-Unit Burst-

ing during SWS

Population firing rate is determined by both the number of co-active neurons in a

given time interval and the number of spikes each active neuron produces in that

same interval. Going beyond the multiunit level, we next investigated how CA1 and

CA3 behave along these two dimensions during SWS at the single-cell level. We

restricted our analysis to putative pyramidal cells (428 CA1, 190 CA3 cells), which

were identified as those units with average firing rate below 1 Hz over the duration of

the recording session.

We defined population burst size over a given time interval as the fraction of

simultaneously recorded neurons that fire at least 1 spike during that interval. We

used a 100 ms window in this study, because it is close to the mean ripple duration.

The main observations to be presented here are not affected by the choice of any time

interval between 20 and 500 ms. According to this measurement, we discovered that

CA1 tends to exhibit higher population burst sizes than CA3 during SWS (Fig. 2.3B).

When 50 neurons per dataset were used to compute population burst size, we found

the average population burst size to be 0.86% for CA3 (n = 326,289, 9.1 hr total

over 2 datasets; s.e. = 0.003%) and 1.48% for CA1 (n = 175,835, 4.9 hr total over 4

datasets; s.e. = 0.007%). Furthermore, this difference is independent of the number

of neurons used in computing the population burst size (Fig. 2.4A), although a larger
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SWS. Maximum lag = 500 ms. Bin size = 1 ms, smoothed by 3 bins. Inset: zoom at ±50 ms
window. Note the peak (red dot) at -6 ms, indicating that on average CA3 spiking precedes
CA1 spiking.
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Figure 2.3: Population burst size and unit burst size in SWS. A: Illustration of how
population burst size and unit burst size are calculated. B: Distributions of population burst
sizes, expressed as a fraction of the simultaneously recorded neurons. Dashed lines indicate
standard errors. To avoid complications due to difference in number of neurons recorded
across datasets, 50 cells in an area are randomly sampled from each dataset that contains at
least 50 cells in that area. Note that a larger proportion of neurons in CA1 are active than
in CA3. CA1: n = 4 datasets. Average population burst size = 1.5%; CA3: n = 2 datasets.
Average population burst size = 0.9%. C: Distributions of unit burst sizes. For each neuron,
spikes occurring within 20 ms from each other are grouped into bursts and the size of each
burst is given by the number of spikes it contains. Thus bursts of size 1 correspond to isolated
spikes, bursts of size 2 contain two spikes, etc. Note that CA3 neurons are more likely to fire
longer bursts than CA1 neurons. CA1: n = 420 cells. CA3: n = 189 cells.
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Figure 2.4: Average population burst size during SWS computed using different number
of neurons. A: Average population burst size as a function of the number of units used to
compute it. Note that population burst size fluctuates with the number of units used, but the
difference between CA3 and CA1 remains significant. Standard errors are shown. Note due
to the large sample number, error bars are barely visible in the plot. B: Same plot as A, but
standard deviations, instead of standard errors, are plotted here. Note that as the number of
units increases, the standard deviation of resulting population burst sizes decreases.

number decreases the standard deviation of its distribution (Fig. 2.4B). Additionally,

in line with the difference in population burst sizes between the two areas, more pairs

of pyramidal cells in area CA1 are correlated than in area CA3 (Fig. 2.5).

We next focused on the other dimension: the number of spikes a neuron fires when

activated. Pyramidal cells in the hippocampus tend to fire a series of action potentials

(APs) with short interspike intervals (ISIs). These events are called complex spikes

or bursts39,40. In this study, we defined a unit burst as a sequence of any number of

consecutive spikes with ISI ≤ 20 ms (see Chapter 4 and Fig. 4.2 for how this threshold

was chosen). We also defined unit burst size as the number of spikes in a burst. A

burst of size one is an isolated single spike. Using this measurement, we observed that

CA3 pyramidal cells tend to fire longer bursts, with some as long as 20 spikes, while

the distribution of unit burst sizes for CA1 neurons is more skewed toward shorter (2-3

spike) bursts (Fig. 2.3C, Fig. 2.6). However, it should also be noted that as reported

in vitro41,42, the tendency to fire multiple spikes in a burst is not homogeneous across
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Figure 2.6: Unit burst probability and 99th percentile unit burst size of CA1 and CA3
neurons. 2D histogram of unit burst probability and 99th percentile unit burst size for CA1
(A) and CA3 neurons (B) during SWS. Unit burst probability is calculated as the percentage
of bursts of size ≥ 2 (see Fig. 2.3A). 99th percentile unit burst size is the minimal burst size
of the top 1% of bursts ordered by size. Note that there are a group of neurons that tend
not to fire multiple-spike bursts in both areas. Also note that among the bursting cells, CA3
neurons tend to fire multiple-spike bursts more often and have larger unit burst sizes than CA1
neurons. CA1: n = 420 cells. CA3: n = 189 cells.

all neurons in the hippocampus. As is shown in Fig. 2.6, in both CA1 and CA3, there

are a collection of neurons that rarely fire multiple-spike bursts (also see Fig. 4.1 and

Fig. 4.3).

2.3 Ripples Accentuate Area Differences in Bursting

Since firing in CA3 is believed to trigger ripples in CA1 and ripples may play a crucial

role in memory formation (see Chapter 1), it is important to characterize how these

differences in population burst size and unit burst size between CA1 and CA3 change

during ripples. Any dependence of these differences on the macroscopic state of the

hippocampal network40 — i.e., ripple versus non-ripple — would constrain theories

of how CA3 activity is transformed by CA1. Thus, we next compared CA1 and CA3

activity along the two dimensions, population burst size and unit burst size, both inside

and outside ripples.

To make this comparison, we first identified ripple events by detecting epochs of
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high CA1 LFP power in the 80 – 400 Hz band (see methods described in Chapter 4

for details). We then partitioned SWS into two subsets: ripple epochs, consisting of

100 ms windows centered around each ripple, and non-ripple epochs, which contained

everything else. We then computed population burst size and unit burst size in these

two subsets. Not surprisingly, we found that population burst size is higher inside

compared to outside ripples for both CA1 and CA3 (Fig. 2.7A). However, while this

increase is ∼3 fold for CA3, it is ∼8 fold for CA1. As is shown in Fig. 2.7A(ii),

compared to 0.8% CA3 (n = 312,863, 8.7 hr over 2 datasets; s.e. = 0.003%) and

1.1% CA1 (n = 166,420, 4.6 hr over 4 datasets; s.e. = 0.005%) pyramidal cells

being active in a 100 ms window outside ripples, 2.3% CA3 (n = 13,526 ripples over

2 datasets; s.e. = 0.02%) and 8.3% (n = 9450 ripples over 4 datasets; s.e. = 0.06%)

CA1 pyramidal cells are active during a ripple. Population burst size values greater

than or equal to 10% occur 24 times as often in CA1 as in CA3 during ripples (≥

10% in 39.5% of ripples for CA1 and 1.65% of ripples for CA3, Fig. 2.7A(i)).

Next, we studied the average unit burst size inside and outside ripples for each

pyramidal cell in both areas. We observed that the average unit burst size is signif-

icantly higher inside than outside ripples for CA3 neurons (CA3: average unit burst

size outside ripples = 1.49 spikes/burst, s.e. = 0.02; inside ripples = 1.71 spikes/burst,

s.e. = 0.04), but not for CA1 neurons (CA1: average unit burst size outside = 1.44

spikes/burst, s.e. = 0.01; inside = 1.45 spikes/burst, s.e. = 0.01; Fig. 2.7B).

2.4 Single-Unit Bursts in CA3 Predict CA1 Population

Bursts

So far, we have characterized two independent observations in the two areas dur-

ing ripples in SWS: more CA1 neurons become active, while individual CA3 neurons

discharge more spikes. Since CA3 is thought to provide the dominant input to the

CA3-CA1 circuit during SWS, it is natural to speculate if there is a causal relation-
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Figure 2.7: Population burst size and unit burst size change in ripples. A (i): Dis-
tributions of population burst sizes inside and outside ripples. Same datasets and sampling
of neurons are used as in Figure 2.3B. Population burst size is calculated as the fraction of
neurons that fire at least 1 spike within a 100 ms window around the ripple center (for the
inside ripples case) or within a 100 ms window outside all ripples (for the outside ripples case).
Note that population burst size is increased more from outside to inside ripples for CA1 than
for CA3. (ii): The average population burst size outside and inside ripples for CA1 and CA3.
Due to the large sample number, standard errors are very small and the errorbars are not visible
in the plot. Note an ∼8 fold increase from outside to inside ripples for CA1 versus a ∼3 fold
increase for CA3. B: Average unit burst size inside and outside ripples for individual pyramidal
cells in CA1 (in blue) and CA3 (in red). Note the significantly higher values inside than outside
ripples for CA3 neurons, but not for CA1 neurons. Only neurons that fire at least 50 spikes
both inside and outside ripples are included. CA1: n = 370 cells. CA3: n = 140 cells.
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ship between the two observations, i.e., bursts from a smaller coordinated set of CA3

neurons are responsible for launching population events involving many more neurons

in CA1. If such a relationship exists, then bursting of individual CA3 neurons may play

a special role in the CA3-CA1 transformation. We tested this hypothesis by investi-

gating the relationships between CA3 bursts and CA1 activity in SWS. We performed

our analysis on the basis of both spikes and LFPs.

At the spiking level, we found that bursts in CA3 are more effective than isolated

single spikes in driving CA1 spiking. This observation was made in the following steps:

We first separated all spikes from each CA3 neuron into two parts: isolated single

spikes and spikes in bursts. We then treated the center of each burst as a single

“spike”. Depending on whether there are more isolated spikes or more bursts, we

randomly down-sampled one of the resulting spike trains to ensure that the same

number of events are used for computing cross-covariance with spikes from individual

CA1 neurons (see Fig. 4.4 and Chapter 4 for details of down-sampling and cross-

covariance analysis). We found that even when we treat spikes from each CA3 burst

as a single "spike", compared to isolated single spikes, bursts from the same CA3

neuron have more coincidences with CA1 spikes (Fig. 2.8). Furthermore, on average

CA3 bursts precede CA1 spiking (Fig. 2.8C(i)). In contrast, cross-covariances between

isolated single spikes in CA3 and CA1 spikes peak at zero lag (Fig. 2.8B(i)).

We next studied if this extra effectiveness of CA3 bursts in driving CA1 spiking

grows with the size of the CA3 bursts. This analysis is complicated by the fact

that individual neurons do not have enough bursts of larger sizes for a meaningful

comparison. To overcome this complication, for each dataset we built multiple time

series, each consisting of first spikes of all bursts of the same size from all CA3 neurons.

After equalizing the number of events used in each computation (see Fig. 4.4), we

then calculated how many coincidences with CA1 spikes each of the time series has

relative to single spikes. As is shown in Figure 2.9, on average larger bursts have

more coincidences with CA1 spikes than smaller bursts. This difference is significant

between bursts of size = 2 and bursts of size = 3 (p < 0.005, 1-sided paired t-test,
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Figure 2.8: Relationships between single spikes, bursts in CA3 and CA1 activity. A:
Three examples of standardized cross-covariance between isolated spikes from a CA3 neuron
and all spikes from a CA1 neuron (in black), and between center of bursts from the same CA3
neuron and all spikes from the same CA1 neuron (in orange) during SWS. The same number
of events go into the computation for the two scenarios, hence the cross-covariance values
are directly comparable (see Chapter 4 and Fig. 4.4 for more details). Horizontal dashed line
indicate significance at p = 0.01 level. Note that the number of coincidences is higher for
bursts. The peaks occur to the left of zero lag, indicating that CA3 bursts tend to precede
CA1 firing. B: (ii) Each row shows the standardized cross-covariance between isolated spikes
of a CA3 neuron and all spikes of a CA1 neuron. The top 100 pairs ordered by peak value are
plotted. (i) The standardized mean cross-covariance. Note the peak has zero lag. C: Same
as B, but for center of bursts in CA3. Cell pairs are shown in the same order as in B(ii). Note
the peak in i) is at -4 ms lag, indicating that CA3 bursts precede CA1 spiking. D: Same as C,
but for center of bursts in CA1 vs. all spikes in CA3. Note the peak has 4 ms lag, indicating
that the timing relationship shown in C(i) is not an artifact from using centers of bursts.
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Figure 2.9: Relationship of CA3 unit burst size and CA1 activity. A: (i-iii) Cross-
covariance in raw counts between isolated CA3 spikes and all CA1 spikes (in black), and
between first spikes of CA3 bursts of different sizes and all CA1 spikes (in orange). For each
burst size, the same number of CA3 spiking events go into the computation for the two sce-
narios. For each scenario, a quantity E is calculated as the peak divided by background count.
To compare the effectiveness of bursts and isolated spikes of CA3 in driving CA1 activity, R
is calculated as Eburst/Esingle . Note that as burst size increases, R increases, suggesting that
larger CA3 bursts are more effective in driving CA1 activity. B: The relationship between R
and unit burst size. R is significantly different between burst size = 2 and burst size = 3. p <
0.005, 1-sided paired t-test. n = 5 datasets.

Fig. 2.9B).

In summary, there is a positive relationship between sizes of CA3 bursts and their

effectiveness in driving CA1 spiking. However, we wished to rule out the possibility

that CA1 spiking activity might be over-represented by spikes from a small number of

tetrodes sampling from a large number of neurons, because spikes detected from a

few tetrodes may not be an accurate readout of the global activity level in CA1. Since

ripples are network events detectable on all CA1 tetrodes (Fig. 1.4) and there exists a

positive relationship between population firing rate and LFP amplitude filtered in the

ripple band (Fig. 2.1B(iii)), the CA1 LFP signals can be a more robust measure of

global CA1 activity level (Fig. 2.1B(iii)). Therefore, we next characterized the influ-

ence of CA3 bursts on CA1 activity at the LFP level. Figure 2.10A(i-vii) shows the

timing relationship between burst onset and ripple onset for CA3 bursts of different

sizes. As burst size increases, CA3 neurons fire progressively earlier with respect to

the onset of ripples (Fig. 2.10A(viii)). Furthermore, larger bursts in CA3 correspond
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Figure 2.10: Timing relationship between bursts and ripple onsets. A: (i) CA1 multiunit
firing rate aligned to ripple onset. A ripple’s onset is defined as the first time when the power
of filtered LFPs reaches 2 std above the mean across all CA1 tetrodes. Note in this dataset
most CA1 spikes occur after ripple onset (at zero-lag), with the peak at +24 ms. (ii-vii)
Standardized cross-covariance between first spikes of all CA3 bursts of difference sizes and
ripple onsets. Note that as burst size increases, CA3 fires progressively earlier with respect
to ripple onset. This relationship is also shown in (viii), which combines 5 datasets. B:
The relationship between unit burst size and CA1 LFP amplitude filtered in ripple band. We
calculate the mean LFP amplitude within a 100 ms window around each burst’s center, divided
by its time average during SWS. Note that larger bursts correspond to larger oscillations. This
result is independent of the threshold used for ripple identification.

to larger oscillations in the ripple band in CA1 LFPs (Fig. 2.10B). Both of these ob-

servations provide additional experimental support for the hypothesis that CA3 bursts

play a crucial role in launching population events in CA1.
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Chapter 3

Discussion

3.1 Nonlinear CA3-CA1 Transformation during SWS

Our observations suggest that during SWS, CA1 acts as a selective amplifier of CA3

activity. When the CA3 population firing rate is relatively low, CA1 firing rates do

not co-vary with those of their CA3 inputs. Once the CA3 population firing rate

exceeds twice its background level, however, CA1 amplifies CA3 input, which is often

manifested as a population burst accompanied by a ripple in the LFP (Fig. 2.1B).

Furthermore, these population firing rate increases are implemented differently in the

two areas. While population burst size increases during ripples for both CA1 and

CA3, significantly more CA1 neurons than CA3 neurons become active during ripples

(Fig. 2.7A). On the other hand, individual CA3 neurons discharge more spikes than

CA1 neurons (Fig. 2.7B). As we elaborate below, these differences in network activity

patterns between the two areas relate directly to the nonlinear transformation of CA3

input by CA1 and have important consequences for the functional roles of the CA3-

CA1 circuit in memory formation.
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3.2 Implementation of a Selective Amplifier of CA3

Activity by CA1

It has been previously proposed that unreliable synapses with short-term facilitation

properties can be viewed as filters that transmit bursts but filter out single spikes43.

We argue that the CA3-CA1 circuit may implement this filter, due to its character-

istic anatomical and physiological properties. In particular, here we have shown that

during SWS, CA3 pyramidal cells fire both isolated spikes as well as prolonged bursts

(Fig. 2.6B). Previous studies have demonstrated that the Schaffer collateral synapses

are both unreliable and can be facilitated. We argue that these physiological proper-

ties, combined with the highly extensive projection from CA3 to CA1, may be sufficient

to provide the mechanism responsible for the CA3-CA1 transformation we describe.

The unreliability of the Schaffer collateral synapse is well-established experimen-

tally44,45. A typical CA3-CA1 synapse can have a success rate as low as 0.1 (Fig. 3.1A),

i.e., out of ten isolated presynaptic spikes, only one of them leads to vesicle release

at the presynaptic terminal. Furthermore, CA3-CA1 synapses have only about one-

tenth the potency of synapses connecting two CA3 pyramidal cells. The average

unitary EPSP is 0.6-1.3 mV at CA3-CA3 synapses46, but only 0.13 mV at CA3-CA1

synapses47. We propose that the unreliability and weakness of CA3-CA1 synapses

ensures that isolated background CA3 spikes are not transmitted to cortical targets

and thus CA1 attenuates CA3 input under these circumstances (Fig. 3.2).

On the other hand, CA3-CA1 synapses undergo strong presynaptic paired-pulse

facilitation (PPF) in response to multiple presynaptic CA3 action potentials with short

ISIs48,49,50. The average postsynaptic response to the second of a pair of stimuli is

facilitated, peaking at around 20ms after the first spike51. Furthermore, in contrast to

the very low success rates in response to single isolated spikes from CA3, short-term

facilitation significantly increases the success rate for bursts52,48. At certain CA3-CA1

synapses, a two-spike burst can almost guarantee vesicle release (Fig. 3.1B).

Therefore, when multiple bursts from a few CA3 neurons reach a postsynaptic
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Figure 3.1: Short-term facilitation at unreliable CA3-CA1 synapses. A: CA3-CA1
synapses are highly unreliable. Success rate is calculated as the probability of vesicle re-
lease in response to a presynaptic input. Unreliability rate is 1 - success rate. Note that the
majority of synapses have unreliability rates above 0.6. Also note that the average unreliability
rate is likely to be underestimated for two reasons: 1) Experiments are performed under the
minimal stimulation protocol, which can undercount the number of synapses being stimulated,
and 2) only synapses with success rate ≥ 5% are included, which can bias sampling toward
more reliable synapses. Adapted from44. B: Success rates at a CA3-CA1 synapse for the
second stimulus in a pair as a function of time since the first stimulus. Open circles: success
rates when no EPSC was evoked by the first stimulus. Closed squares: success rates when a
release occurred in response to the first stimulus. The initial depression to a second stimulus
when the first stimulus triggers release is due to time required for a vesicle release site to be
refilled. Horizontal dotted line: the release probability for the first stimulus. Note facilitation
almost guarantees vesicle release in response to a pair of two stimuli less than 20ms apart.
Adapted from48.
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Figure 3.2: Roles of CA3 bursts in influencing CA1 activity. Compared to CA3-CA3
synapses, CA3-CA1 synapses are unreliable (shown as lighter color of the lines connecting
CA3 to CA1 neurons). This allows CA1 to filter out single isolated spikes from CA3, and
transmit only bursts through. Bursts are effective, thanks to short-term facilitation at CA3-
CA1 synapses.

CA1 neuron, the CA1 neuron will respond much more strongly than if it had received

the same number of single spikes from multiple CA3 afferents. Since CA3 neurons

project extensively to CA1, with any single CA3 neuron contacting up to 10,000 CA1

neurons12 (see Chapter 1), it is likely that coordinated bursts from a small group of

CA3 neurons are sufficient to influence enough CA1 neurons to briefly push the entire

CA1 network into a synchronous, high-firing ripple mode, and thus achieve a nonlinear

amplification of CA3 input by CA1.

3.3 Role of CA3 Bursts in Shaping CA3-CA1 Circuit

Activity

According to the implementation mechanisms hypothesized above, CA3 bursts in-

crease the success rate of unreliable CA3-CA1 synapses nonlinearly through short-

term facilitation. We have shown that the increase of CA3 unit burst size and the
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launching of CA1 population events co-occur with hippocampal ripples (Fig. 2.7). Fur-

thermore, CA3 bursts predict and precede CA1 responses (Fig. 2.8, Fig. 2.10). These

observations, as well as anatomical and physiological features of the CA3-CA1 circuit

discussed earlier in this chapter, suggest that CA3 bursts may play a crucial role in

shaping CA3 and CA1 activity during SWS, as discussed in more detail below.

CA3 bursts may be essential in ensuring reliable transmission of activity to CA1

and beyond, while maintaining overall sparse firing patterns within CA3. Relatively

sparse firing in CA3 is probably necessary to avoid runaway excitation and epileptiform

activity in this densely recurrent circuit. Furthermore, as area CA3 is believed to act

as an autoassociative network, sparse firing patterns minimize overlap between the

representations of distinct memory traces53. On the other hand, despite the highly

unreliable CA3-CA1 synapses, it is important that certain neuronal activity patterns in

CA3 be reliably transferred to CA1, since CA1 serves as the only anatomical “gateway”

between CA3 and the neocortex (Fig. 1.2). These two requirements of CA3 activity,

sparse firing and reliable transmission, can be simultaneously satisfied by CA3 bursts,

which through facilitation can reliably trigger CA1 responses, while still maintaining a

relatively small set of neurons within CA3 active at any given time.

In addition to possibly launching population events in CA1, CA3 bursts may also

play an essential role in shaping the patterns of firing within these population events.

Previous studies have shown that neuronal firing across multiple CA1 neurons is re-

played during ripples in SWS following awake experience54. This suggests that CA1

may not only act as an amplifier of CA3 input, but also transform CA3 neuronal repre-

sentations into a format, i.e., through cell membership, amount, and ordering of firing,

that is parsable by downstream cortical targets. One of the most robust protocols

for the induction of long-term potentiation (LTP) is high-frequency stimulation of the

Schaffer collateral pathway55,56. It is interesting to note that the frequency of such

stimulation is similar to the bursting frequency of CA3 neurons. Therefore, CA3 bursts

may serve to induce LTP at specific CA3-CA1 synapses. It is likely that by modifying

the efficacy of specific CA3-CA1 synapses, CA3 bursts can not only adjust what types
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of CA3 input trigger ripples, but also fine tune the cell membership and ordering of

firing across CA1 neurons during ripples. All these processes will be critical for the

reliable transfer of relevant CA3 neuronal patterns to the neocortex. Such a role for

CA3 bursts in plasticity is strongly supported by a recent in vitro demonstration that

the same high-frequency stimulation protocol that induces LTP also induces ripples57.

Finally, CA3 bursts may facilitate synaptic changes within CA3 itself. Weak presy-

naptic stimulation alone normally fails to induce LTP. However, under certain cir-

cumstances, when weak presynaptic stimulation co-occurs with postsynaptic bursts,

LTP could be induced58. Therefore, as a result of the recurrent connections within

CA3, bursting activity may lead to epochs of intense synaptic modification. Some

theoretical and experimental studies have provided evidence in support of this idea.

For example, synchronous bursts within CA3 have been hypothesized to promote the

self-organization of spontaneous network activity patterns within CA3, that fall on the

border between random spiking and synchronous bursting59.

3.4 Role of CA3-CA1 Circuit in Memory Formation

According to the predominant two-stage model of memory formation, memories are

first encoded within the hippocampus during awake before being gradually consolidated

across neocortex during sleep60,61,62,63,64. In this framework, the recurrent synapses

of CA3 are believed to be the storage site for the initial memory traces. Details of

how these memory traces undergo further reorganization within CA3 as well as how

they are transferred to the neocortex are still unknown. Our study provides insights

on how a nonlinear CA3-CA1 transformation can facilitate these processes.

If CA3 functions as an autoassociative network, then each of the memory traces

stored in it may be represented by an attractor of the network. The CA3 network

state at any given time during SWS can be summarized by a set of synaptic weights.

Memory traces are reorganized within CA3 by adjustments to these weights triggered

by spontaneous CA3 activity. Theoretical work has shown that activity patterns in
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Figure 3.3: CA3-CA1 transformation during SWS. CA1 attenuates weaker isolated CA3
spikes, which represent intermediate states in-between attractors in the associative network,
but launches population events involving many neurons at stronger CA3 bursting input, which
reflects convergence to network attractors.
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recurrent networks consist of two distinct states: attractor states, where the network

settles into a relatively high-firing rate mode while resisting the effects of small external

perturbations, and intermediate states, where the network moves transiently between

attractors while firing at a relatively lower rate. Distinct attractor states are thought

to correspond to distinct memory traces. It is important that CA1 responds to the

two network states differently. For activity that represents intermediate states, CA1

should not act as a relay to the neocortex, as this activity does not correspond to a

bona fide memory trace. Activity that underlies convergence to network attractors,

however, should be reliably transferred and, if possible, amplified by CA1 to neocortex,

as it relates to memory traces to be permanently stored in the neocortex.

If we hypothesize that coordinated bursts in CA3 reflect convergence to an attrac-

tor of the CA3 network, then thanks to the amplification segment of the nonlinear

CA3-CA1 transformation, representation contained in this attractor will be preferen-

tially amplified by CA1 to the neocortex (Fig. 3.3, blue segment). Selectively replaying

patterns stored in the hippocampus may lead to gradual strengthening of downstream

cortical traces, a process that may underlie memory consolidation. Previous evidence

indicates that it can take up to several weeks for recent memories, stored in the hip-

pocampus, to become long-term memory, stored in the neocortex. Therefore, the re-

play of CA3 neuronal patterns may occur many times in numerous SWS epochs across

multiple days. Furthermore, this paradigm allows multiple memory traces within CA3

to be transferred to the neocortex simultaneously, as different population events (rip-

ples) in CA1 can have different firing patterns triggered by convergence to different

CA3 network attractors.

On the other hand, thanks to the attenuation segment of the same nonlinear

CA3-CA1 transformation, intermediate network states, hypothesized to be reflected

by isolated background spikes, are less likely to be transmitted by CA1 to the neocortex

(Fig. 3.3, red segment). During these circumstances, synaptic plasticity changes can

be gradually induced within CA3, without affecting activity in downstream structures.

In this way, the CA3-CA1 circuit can selectively transfer stable neuronal representations
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in CA3 through to the neocortex and at the same time minimize any influence exerted

from intermediate states in CA3.
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Chapter 4

Methods

4.1 Electrophysiological Recordings

Electrophysiological signals were acquired using tetrode recordings 65. Five male Long-

Evans rats (age 3-5 months, weight 350-450g) were implanted with a custom-built

microdrive array allowing the independent adjustment of 24 individual tetrodes. In two

of the animals, all tetrodes targeted CA1 pyramidal layer. In the other three animals, 6-

12 tetrodes targeted CA1 and 6-12 tetrodes targeted CA3 pyramidal layers. Individual

tetrodes were gradually lowered to their targets over several days and further micro-

adjusted to optimize yield and stability. Each tetrode signal was buffered by a unity-

gain headstage preamplifier and further differentially amplified with a gain of 2000.

The broadband amplified signals were digitally acquired at 25K Hz as 24-bit samples

(National Instruments PXI-4472) and stored to disk using custom acquisition software

that we developed. Three light-emitting diodes were fixed to the top of the microdrive

array to allow tracking of the animal’s position from video recordings captured at 30

frames per second. Each video frame was timestamped by the acquisition system in

order to synchronize position and neuronal data. All recordings were conducted in

a sleep box that was highly familiar to the animal immediately after the animal had

performed a variety of spatial tasks (linear track traversals, T-maze). The animal

stayed in the sleep box for 2-10 hours, sleeping during most of the time, before

starting the next spatial task. All animal procedures were done in accordance with
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NIH guidelines and with approval of the Caltech Institutional Animal Care and Use

Committee.

4.2 Spike and Local Field Potential Analysis

Spikes and LFP traces were obtained by digitally filtering the broadband signal. For

spikes, a bandpass filter was designed using the Parks-McClellan algorithm with tran-

sition bands of 500 – 600 Hz and 6000 – 6100 Hz and maximal ripple of 10−5 in

the stopband and 10−3 in the passband. LFPs were computed by downsampling the

broadband signal by a factor of 12 in three stages (2, 2, 3); each stage used a 500-

tap FIR linear-phase lowpass filter designed using the window method. Spikes were

clustered into single units on the basis of their amplitudes recorded on each of the

four tetrode channels (Fig. 4.1). Units with firing rate less than 1 Hz in the entire

recorded session were classified as pyramidal cells.

4.3 Ripple Identification

One channel of each CA1 tetrode was selected. LFP from that channel was filtered

between 80 – 400 Hz using Parks-McClellan FIR filters. Candidate events were iden-

tified as deviations in the power of the filtered traces that exceeded two std’s of the

filtered signal. From this set artifact events were rejected based on the duration (< 10

ms), LFP frequency content (< 100 Hz), relative power in gamma (40 – 80 Hz) and

ripple bands (ripple power / gama power < 1.6) and amplitude associated with each

candidate event (< 50% from the minimum to the mode of the amplitude value dis-

tribution). A global ripple was determined as candidate events that were consistently

detected across multiple CA1 tetrodes. A variety of ripple bands and thresholding

parameters were tried, and none of the main results depended on how the parameters

were chosen.
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Figure 4.1: Single unit clustering of spikes from a CA3 tetrode. A: (i)-(vi) Each dot
represents the peak amplitude of a spike on two of the four tetrode channels. This gives rise
to a total of 6 different projections. In this 4D amplitude space, spikes can then be assigned to
individual clusters, each of which includes spikes from a same cell. 7 clusters can be isolated
from this tetrode and are shown in different colors. Spikes that cannot be assigned to any
cluster are shown in gray (those bottom left dots along the diagonal line). All spikes are shown.
Note that the cyan and green clusters are very close in (i, iii), but are far apart in (ii, iv, vi).
B: (i) Rasters of the clusters in (A). Spikes from the same cluster have the same color as in
(A). (ii) An example of a long burst (17 spikes in 140 ms).
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4.4 Burst Identification

Auto-correlation of spike time shows that ISIs during a burst can be as short as 4 ms

(Fig. 4.2A(iii)). The average auto-correlation trace peaks at ±5 ms and gradually

decreases to baseline without showing a second mode. The timing profile is similar

for both CA1 and CA3 cells (Fig. 4.2B). Bursts were defined as a sequence of any

number of consecutive spikes with ISI ≤ 20 ms.

Some CA1 and CA3 cells are less likely to burst than others (Fig. 2.6). We

confirmed that this is not a result of difference in tetrode positions by showing that

cells on the same tetrode can have very different bursting properties (Fig. 4.3).

4.5 Cross-Covariance Analysis

Cross-covariance between two cells was first computed as raw spike counts. These

counts were then normalized to unit normal Z-scores at each lag. This resulted in a

standardized cross-covariance. A standardized mean cross-covariance across multiple

cell pairs was computed by summing the standardized cross-covariances between all

pairs and dividing by the square-root of the number of pairs. Refer to 66 for details of

this computation.

4.6 Bursts vs Single Spikes Comparison

When comparing single spikes vs bursts from CA3 cells in their cross-covariance with

CA1 spikes, we took special care to ensure that the same number of events were used.

For each cell (Fig. 2.8) or dataset (Fig. 2.9), time series of bursts onsets or centers

were constructed (Fig. 4.4). Between this time series and the one consisting of only

isolated single spikes, the one with more number of events was randomly resampled

to match their number of counts. For comparison among bursts of different sizes

(Fig. 2.9), time series consisting of first spike of bursts of different sizes were used
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Figure 4.2: Bursts in the hippocampus. A: (i) A burst of 5 spikes from a CA3 neuron
detected on 4 tetrode channels. Note the small interspike interval and decrease in amplitude
from the 1st spike. (ii) Another burst of 5 spikes from the same cell but 1hr later. Note
the similar amplitude and timing profile to (i). (iii) Auto-correlation of spikes from the cell in
(i,ii) during SWS. Note a sharp peak at ±4 ms followed by a gradual decrease to baseline. B:
(i,ii) Each row represents an auto-correlation of spikes from one cell, normalized by the peak
value. CA1: n = 427 cells. CA3: n = 188 cells. (iii) Mean of (i, ii). Note sharp peaks at ±5
ms and similar profile for CA1 and CA3 cells. We used 20 ms as the ISI threshold for burst
identification. A few other thresholds (10 ms, 25 ms, 50 ms) were also tried and none of the
main results were affected.
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Figure 4.3: Different burst properties of cells on the same tetrode. A: Distributions of
unit burst sizes for the 7 cells in Figure 4.1. The cell in white in Fig. 4.1 is plotted in black
here. All other cells are plotted in the same color. B: Unit burst probability and 99th percentile
unit burst size of the same 7 cells. Note the blue cell and the red cell have the same firing
rate but very different bursting properties. Cells localized around the tip of the same tetrode
can have very different tendencies to discharge bursts.

and the same procedure was applied after that.



37

A

100 ms

CA1 all spikes

CA3 all spikes

CA3 single spikes

CA3 1st spikes of 
bursts -200 200

Time lag (ms)

0

Qij

0

13 single
burst

B

Figure 4.4: Computing standardized cross-covariance between CA1 and single spikes or
first spikes of bursts of CA3. A: Steps to compare the effect of isolated single spikes and
bursts of CA3 on CA1 firing. Spikes of a CA3 cell are first parsed into two time series: isolated
single spikes and first spikes of bursts of size ≥ 2. The one with the larger number of spikes
is then randomly downsampled to match the number of spikes in the two series (illustrated as
the dashed spikes). B: Standardized cross-covariance between each of the two derived series
in (A) and CA1 spikes is computed. Note that to obtain a meaningful comparison of the two
series, the same number of events from each goes into the cross-covariance computation.
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Chapter 5

Supplementary materials

5.1 Controlling for Single-Unit Clustering Quality

The results of our analysis could be complicated by imperfect clustering of single

units67. To address this concern, we applied the following controls. First, an isolation

distance (ISO) was computed for each neuron according to68. ISO estimates how

well-separated the spikes of one cluster are from other spikes recorded simultaneously

on the same tetrode68. We noted that there is no significant correlation between a

neuron’s ISO value and its likelihood to fire bursts (Fig. 5.1). We then re-performed

part of our analysis that involves single-unit data using pyramidal cells whose ISO’s

exceeded different minimal levels. Finally, analysis was performed on a small selection

of well-separated neurons that we hand picked (28 CA1 units and 20 CA3 units. See

Appendix for statistics and cluster plots of these neurons). It was confirmed that

our main results remain qualitatively unchanged independent of the clustering quality.

(Fig. 5.2, Fig. 5.3, Fig. 5.4, Fig. 5.5).
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Figure 5.2: Participation probability outside and insider ripples of highly separable pyra-
midal cells. A: Participation probability of neurons that were hand picked for their high
separability. Participation probability inside ripples is computed as the probability of firing at
least 1 spike within a 100 ms window around the center of ripples. Participation probability
outside ripples is computed as the probability of firing at least 1 spike within any 100 ms
window outside of all ripples. Each dot represents one neuron. Note that while CA1 (blue)
and CA3 (red) neurons have similar participation probability outside ripples, it is increased
significantly more inside ripples for CA1 neurons than for CA3 neurons. n = 28 CA1 units, 20
CA3 units. B: Cumulative density plots for (A). Note the small difference between CA1 and
CA3 outside ripples, but large difference inside ripples.
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Figure 5.3: Uni burst probability of neurons of varying separability. Unit burst probability
outside (x-axis) and inside (y-axis) ripples for individual CA1 and CA3 neurons of varying
separability. Top to bottom, neurons with different minimal ISO. The bottom most row are
for neurons that were hand picked for their high separability. Note that regardless of which
ISO threshold is used, the unit burst probability is increased from outside to inside ripples more
for CA3 neurons than for CA1 neurons.
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Chapter 6

Appendix

The following are firing properties in table format and cluster plots of all hand picked

pyramidal cells used in chapter 5. To avoid double counting the same cell, we used

at most one dataset from each rat. In a cluster plot, each dot represents the peak

amplitude of a spike on two of the four tetrode channels. Spikes that were clustered to

be from the same cell are plotted in the same color. Grey color represents spikes that

were simultaneously recorded on the same channels, but were not part of any hand

picked single-unit clusters. Each page contains plots of spikes from the same tetrode.

The first 13 tetrodes are for CA1 pyramidal cells. The remaining 6 tetrodes are for CA3

pyramidal cells. On each page, the top six panels are in absolute amplitude scale (uV).

The bottom six panels plot the same amplitudes under Hadamard transformation. A

cell that fires complex spikes represented as an elongated cluster shape in absolute

amplitude space takes a more compressed shape under Hadamard transformation.
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CA1 ISO Rate Rate Rate Burst Burst Burst
unit during outside inside probability probability probability

SWS ripples ripples during outside inside
(Hz) (Hz) (Hz) SWS ripples ripples

r1d1t18c2 53.14 0.60 0.57 1.25 0.14 0.14 0.12
r1d2t11c2 38.88 0.09 0.09 0.23 0.14 0.16 0.06
r1d2t11c4 21.89 0.12 0.10 0.65 0.09 0.08 0.10
r1d2t15c7 40.81 0.14 0.09 1.18 0.42 0.36 0.54
r4d1t2c2 37.92 0.15 0.13 0.50 0.28 0.30 0.23
r4d1t2c7 148.37 0.21 0.17 0.95 0.28 0.27 0.31
r4d1t2c9 66.93 0.29 0.14 2.48 0.33 0.24 0.43
r4d1t3c2 58.64 0.14 0.13 0.33 0.30 0.31 0.25
r4d1t3c5 85.47 0.19 0.16 0.76 0.41 0.37 0.55
r4d1t7c1 28.72 0.03 0.03 0.03 0.32 0.31 0.40
r4d1t7c3 22.79 0.04 0.04 0.05 0.45 0.44 0.50
r4d1t17c3 57.55 0.14 0.09 0.83 0.43 0.42 0.45
r4d1t22c4 27.92 0.11 0.06 0.87 0.27 0.24 0.30
r4d1t23c2 23.54 0.06 0.05 0.31 0.27 0.29 0.24
r4d1t23c4 34.11 0.15 0.08 1.26 0.27 0.30 0.24
r4d1t23c5 36.48 0.24 0.16 1.35 0.48 0.49 0.46
r5d1t11c3 53.34 0.12 0.07 0.83 0.27 0.31 0.22
r5d1t11c4 234.18 0.19 0.11 1.53 0.44 0.35 0.59
r5d1t11c8 58.69 0.29 0.26 0.93 0.30 0.30 0.28
r5d1t14c1 44.39 0.11 0.08 0.74 0.18 0.16 0.21
r5d1t16c2 43.16 0.05 0.04 0.26 0.29 0.31 0.25
r5d1t16c4 74.94 0.13 0.07 1.15 0.36 0.45 0.29
r5d1t16c5 64.44 0.08 0.05 0.57 0.24 0.27 0.18
r5d1t16c9 81.03 0.11 0.08 0.59 0.18 0.15 0.23
r5d1t16c22 133.69 0.33 0.25 1.68 0.20 0.19 0.22
r5d1t18c2 28.59 0.15 0.11 0.79 0.34 0.31 0.42
r5d1t18c7 125.66 0.17 0.12 0.95 0.30 0.24 0.45
r5d1t18c10 69.82 0.26 0.16 1.92 0.37 0.32 0.46

Table 6.1: Statistics of hand picked CA1 pyramidal cells
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CA3 ISO Rate Rate Rate Burst Burst Burst
unit during outside inside probability probability probability

SWS ripples ripples during outside inside
(Hz) (Hz) (Hz) SWS ripples ripples

r1d1t1c4 23.35 0.05 0.05 0.19 0.47 0.45 0.61
r1d1t1c6 27.55 0.08 0.08 0.13 0.22 0.22 0.25
r1d1t1c12 56.20 0.08 0.06 0.54 0.37 0.36 0.40
r1d1t3c2 35.70 0.03 0.02 0.03 0.01 0.01 0.00
r1d1t3c3 35.23 0.04 0.04 0.13 0.27 0.25 0.46
r1d1t3c4 154.19 0.08 0.08 0.08 0.15 0.14 0.56
r1d1t3c5 31.98 0.06 0.05 0.21 0.30 0.27 0.48
r1d1t3c6 186.67 0.11 0.11 0.14 0.22 0.22 0.39
r1d1t3c7 79.72 0.16 0.14 0.54 0.41 0.41 0.42
r1d1t3c8 30.69 0.12 0.12 0.12 0.11 0.10 0.25
r1d1t3c9 39.45 0.19 0.19 0.19 0.12 0.11 0.40
r1d1t22c4 94.46 0.05 0.05 0.21 0.14 0.14 0.16
r1d1t22c6 28.18 0.13 0.12 0.25 0.12 0.13 0.11
r1d1t22c8 75.76 0.18 0.18 0.26 0.09 0.10 0.06
r1d1t23c5 27.60 0.06 0.04 0.37 0.21 0.21 0.24
r1d1t24c1 17.87 0.05 0.04 0.23 0.40 0.39 0.45
r2d2t22c1 38.63 0.11 0.11 0.10 0.22 0.22 0.23
r2d2t22c2 37.31 0.08 0.07 0.10 0.46 0.47 0.41
r2d2t22c3 16.42 0.31 0.29 0.66 0.36 0.36 0.34
r2d2t22c6 48.60 0.43 0.41 0.77 0.32 0.32 0.31

Table 6.2: Statistics of hand picked CA3 pyramidal cells
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Figure 6.1: Cluster plots: Rat 1, dataset 1, tetrode 18, CA1. One unit was selected from
this tetrode: r1d1t18c2 (cyan, rate in SWS = 0.6Hz, ISO = 53.14).
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Figure 6.2: Cluster plots: Rat 1, dataset 2, tetrode 11, CA1. Two units were selected
from this tetrode: r1d2t11c2 (cyan, rate in SWS = 0.09Hz, ISO = 38.88), r1d2t11c4 (red,
rate in SWS = 0.12Hz, ISO = 21.89).
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/LD/ld215/analysis/code/burst/paper/clean_cluster.m
Figure 6.3: Cluster plots: Rat 1, dataset 2, tetrode 15, CA1 One unit was selected from
this tetrode: r1d2t15c7 (cyan, rate in SWS = 0.14Hz, ISO = 40.81).
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/LD/ld215/analysis/code/burst/paper/clean_cluster.m
Figure 6.4: Cluster plots: Rat 4, dataset 1, tetrode 2, CA1. Three units were selected
from this tetrode: r4d1t2c2 (cyan, rate in SWS = 0.15Hz, ISO = 37.92), r4d1t2c7 (red, rate
in SWS = 0.21Hz, ISO = 148.37), r4d1t2c9 (yellow, rate in SWs = 0.29Hz, ISO = 66.93).
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/LD/ld215/analysis/code/burst/paper/clean_cluster.m
Figure 6.5: Cluster plots: Rat 4, dataset 1, tetrode 3, CA1. Two units were selected
from this tetrode: r4d1t3c2 (cyan, rate in SWS = 0.14Hz, ISO = 58.64), r4d1t3c5 (red, rate
in SWS = 0.19Hz, ISO = 85.47).
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Figure 6.6: Cluster plots: Rat 4, dataset 1, tetrode 7, CA1. Two units were selected
from this tetrode: r4d1t7c1 (cyan, rate in SWS = 0.03Hz, ISO = 28.72), r4d1t7c3 (red, rate
in SWS = 0.04Hz, ISO = 22.79).
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Figure 6.7: Cluster plots: Rat 4, dataset 1, tetrode 17, CA1. One unit was selected from
this tetrode: r4d1t17c3 (cyan, rate in SWS = 0.14Hz, ISO = 57.55).
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Figure 6.8: Cluster plots: Rat 4, dataset 1, tetrode 22, CA1. One unit was selected from
this tetrode: r4d1t22c4 (cyan, rate in SWS = 0.11Hz, ISO = 27.92).
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Figure 6.9: Cluster plots: Rat 4, dataset 1, tetrode 23, CA1. Three units were selected
from this tetrode: r4d1t23c2 (cyan, rate in SWS = 0.06Hz, ISO = 23.54), r4d1t23c4 (red,
rate in SWS = 0.15Hz, ISO = 34.11), r4d1t23c5 (yellow, rate in SWS = 0.24Hz, ISO =
36.48).



55

/LD/ld215/analysis/code/burst/paper/clean_cluster.m
Figure 6.10: Cluster plots: Rat 5, dataset 1, tetrode 11, CA1. Three units were selected
from this tetrode: r5d1t11c3 (cyan, rate in SWS = 0.12Hz, ISO = 53.34), r5d1t11c4 (red,
rate in SWS = 0.19Hz, ISO = 234.18), r5d1t11c8 (yellow, rate in SWS = 0.29Hz, ISO =
58.69).
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Figure 6.11: Cluster plots: Rat 5, dataset 1, tetrode 14, CA1. One unit was selected
from this tetrode: r5d1t14c1 (cyan, rate in SWS = 0.11Hz, ISO = 44.39).
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Figure 6.12: Cluster plots: Rat 5, dataset 1, tetrode 16, CA1. Five units were selected
from this tetrode: r5d1t16c2 (cyan, rate in SWS = 0.05Hz, ISO = 43.16), r5d1t16c4 (red,
rate in SWS = 0.13, ISo = 74.94), r5d1t16c5 (yellow, rate in SWS = 0.08Hz, ISO = 64.44),
r5d1t16c9 (magenta, rate in SWS = 0.11, ISO = 81.03), r5d1t16c22 (white, rate in SWS =
0.33Hz, ISO = 133.69).



58

CA1
/LD/ld215/analysis/code/burst/paper/clean_cluster.m

Figure 6.13: Cluster plots: Rat 5, dataset 1, tetrode 18, CA1. Three units were selected
from this tetrode: r5d1t18c2 (cyan, rate in SWS = 0.15Hz, ISO = 28.59), r5d1t18c7 (red,
rate in SWS = 0.17Hz, ISO = 125.66), r5d1t18c10 (yellow, rate in SWS = 0.26Hz, ISO =
69.82).
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Figure 6.14: Cluster plots: Rat 1, dataset 1, tetrode 1, CA3. Three units were selected
from this tetrode: r1d1t1c4 (cyan, rate in SWS = 0.05Hz, ISO = 23.35), r1d1t1c6 (red, rate
in SWS = 0.08Hz, ISO = 27.55), r1d1t1c12 (yellow, rate in SWS = 0.08Hz, ISO = 56.20).
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Figure 6.15: Cluster plots: Rat 1, dataset 1, tetrode 3, CA3. Eight units were selected
from this tetrode: r1d1t3c2 (cyan, rate in SWS = 0.03Hz, ISO = 35.70), r1d1t3c3 (red, rate
in SWS = 0.04Hz, ISO = 35.23), r1d1t3c4 (yellow, rate in SWS = 0.08Hz, ISO = 154.19),
r1d1t3c5 (magenta, rate in SWS = 0.06Hz, ISO = 31.98), r1d1t3c6 (white, rate in SWS =
0.11Hz, ISO = 186.67), r1d1t3c7 (green, rate in SWS = 0.16Hz, ISO = 79.72), r1d1t3c8
(cyan2, rate in SWS = 0.12Hz, ISO = 30.69), r1d1t3c9 (red2, rate in SWS = 0.19Hz, ISO =
39.45).



61

CA3
Figure 6.16: Cluster plots: Rat 1, dataset 1, tetrode 22, CA3. Three units were selected
from this tetrode: r1d1t22c4 (cyan, rate in SWS = 0.05Hz, ISO = 94.46), r1d1t22c6 (red,
rate in SWS = 0.13Hz, ISO = 28.18), r1d1t22c8 (yellow, rate in SWS = 0.18Hz, ISO =
75.76).
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Figure 6.17: Cluster plots: Rat 1, dataset 1, tetrode 23, CA3. One unit was selected
from this tetrode: r1d1t23c5 (cyan, rate in SWS = 0.06Hz, ISO = 27.60).
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Figure 6.18: Cluster plots: Rat 1, dataset 1, tetrode 24, CA3. One unit was selected
from this tetrode: r1d1t24c1 (cyan, rate in SWS = 0.05Hz, ISO = 17.87).
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Figure 6.19: Cluster plots: Rat 2, dataset 1, tetrode 22, CA3. Four units were selected
from this tetrode: r2d2t22c1 (cyan, rate in SWS = 0.11Hz, ISO = 38.63), r2d2t22c2 (red,
rate in SWS = 0.08Hz, ISO = 37.31), r2d2t22c3 (yellow, rate in SWS = 0.31Hz, ISO =
16.42), r2d2t22c6 (magenta, rate in SWS = 0.43Hz, ISO = 48.60).
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