TRAVEL TIME CURVES AT SMALL DISTANCES AND WAVE VELOCITIES OF PRINCIPAL PHASES IN THE SOUTHERN CALIFORNIA RANGES

Ву

A.J. GROBECKER

IN PARTIAL FILFILIMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

Division of the Geological Sciences
California Institute of Technology

Pasadena, California

1941

CONTENTS

	PAGI
Abstract	1
Purpose of Investigation	2
Acknowledgements	2
Source of Data	3
Velocities and Character of Principal Phases	34
Focal Depth	37
Thickness of Layers	39

TABLES

TABLE I:	List of Stations	PAGE 6
TABLE II:	List of Shocks	10
TABLE III:	Travel times of Measurable Phases	11
TABLE IV:	Focal Depth Calculation Summary	38
TABLE V:	Summary of Thickness of	41

ILLUSTRATIONS

FIGURE I: - - - Map with locations of Stations and Epicenters

Page 5

FIGURE II: - - Travel-Times vs Distance (separate of all Measured Phases envelope)

FIGURE III: - - - Thickness of Layers

42

ABSTRACT

Four shocks with epicenters in the region of the northern end of the Peninsular Range of Southern California were studied. Travel times of numerous phases of these four shocks were measured from seismograph records of stations at Pasadena, Mount Wilson, Riverside, La Jolla, Santa Barbara, Tinemaha and Haiwee, in Southern California. The velocities of propagation of eight principal phases were determined. Thicknesses of three layers above a depth of about 40 k.m. in the earth's crust were calculated.

PURPOSE OF INVESTIGATION:

This investigation was carried out at the Seismological Laboratory of the California Institute of Technology during the summer of 1940, for the purpose of determining seismic travel times and the depths of crustal layering in a limited geological province in Southern California. For a number of years, in the routine work at the Seismological Laboratory, differences in phase velocities along wave paths in different geological provinces have been known to exist. This paper represents an effort to determine the average velocity of propagation for the eight most easily identified phases of four shocks occurring in the northern end of the Peninsular Ranges of Southern California, and to calculate the approximate thicknesses of the crustal layering in that geological province.

ACKNOWLEDGEMENTS:

This work was carried out under the direct supervision of Dr. Charles F.Richter. Much generous advice was given by Dr. Beno Gutenberg, whose earlier work was an invaluable model. Much help was also given the author by Mr. R.E.Rogers.

^{(*} B.Gutenberg: "Travel Time Curves at Small Distances, and Wave Velocities in Southern California" Gerlands Beiträge zur Geophysik, vol. 35, p. 6-50,1932).

SOURCE OF DATA:

The data was obtained from the records of the Seismological Laboratory, Pasadena, California, which is maintained and operated by the California Institute of Technology as the central station of Coordinated group. Auxiliary stations in Southern California (from which records were obtained) are maintained at Mount Wilson, Riverside, Santa Barbara, La Jolla, Tinemaha, and Haiwee. Records from the Auxiliary Station at Palomar were incomplete, and were not used.

At all these stations the minute-marks on the seismograms are courdinated directly with time signals of the U.S.Naval Observatory automatically recorded on one seismogram of each station three to five times daily. This method of time control gives an accuracy within 2/10 second.

All stations are equipped with horizontal component Wood-Anderson torsion seismometers with electromagnetic damping and optical recording*. The general
direction of the instruments is N-S and E-W, but significant deviations from these directions occur in the
case of torsion seismometers with short free periods;
therefore in general it is not possible to use azimuths
given by the seismograms. The free periods of these

(*Bull. Seismo. Soc. of America XV, 1925)

SOURCE OF DATA: (Cont'd.)

instruments were near o.8 sec.; the magnification for short waves near 3000, and the damping ratio nearly critical. Also at Pasadena are long period instruments of the same type, with free periods near 10 seconds, and a magnification of 300 - 500 for short waves. At all stations, vertical seismographs of the Benioff type* with critical electromagnetic damping and galvanometric-optical recording were used. Also at Pasadena are Benioff type horizontal-motion seismometers which are short period instruments ($T_0 = 1.0 \text{ Sec.}$, $T_1 = 0.25 \text{ and}$ 2.0 sec.), crtically damped, and a strong motion Benioff type seismometer with wave magnification of about 100,000, period of about 1 sec., and little less than critically damped. For this investigation, measurements in all cases were taken from records made by the short period instruments. The location of the stations and epicenters may be seen in Figure I. Data on the stations and epicenters are given in Table I.

(* Bull. Seis. Soc. Am. XXII, 156, 1932)

TABLE I

	HODGE		ALCOLD AND AND AND AND AND AND AND AND AND AN		STORY COMP			
	0		0	-	E CEL	POUNDATION		ABEREVIATION
Pasadena	煮	6.80	116	116 10.3	295	Weathered granite	granite	p.
Mt. Wilson	煮	13.5	118	4.50	1742	Weathered granite	granite	AN
Riverside	23	9.65	117	22.4	250	Weathered grantte	granite	CAS
Santa Barbara 3	煮	9.92	119	42.8	100	Alluvium		52
La Jolla	2	51.8	117	15.2	110	Consolidated detrital	dated detrita material	13
Tinemaka 3	M	65.7	118	15.5	1160	Basalt		6 -4
Enivoe	36	3	117	9.85	1100	Locaely comented tuff	neated tuf	M
Boulder City 3	35	56.8	**	50.0	2116	Fractured monsculte	son soulte	

Four shocks with epicenters in the region of the northern end of the Peninsular Ranges were selected for study. These were shocks whose arrivals were strong at all stations of the system, whose epicenters were in the desired region, and whose records at all stations were undisturbed by mechanical defects of recording. Epicenters of these shocks were first located for the routine reports of the laboratory, by Mr. R.E.Rogers who used either the method of comparing the travel times with those of previously located earthquakes or the perpendicular bisector method applied to the arrival times of the first P wave (not the P phase).

Epicentral locations were checked by the author. The method of perpendicular bisectors to find the epicenter, which is known to first approximation by comparison with travel times of shocks of known location or by macroseismic evidence, has been described by B. Gutenberg* and is as follows:

The velocity of P waves is known to be near 5.6 km/sec in Southern California **

^{(*} B. Gutenberg:op cit.) (** H.O.Wood and Charles F.Richter, Bull.of the Seis. Soc. of Am. XXI, 28, 1931).

SOURCE OF DATA (Cont'd.)

Take at least two pairs of stations which have nearly the same times of arrival of the P waves. If the P waves arrive at one of the pair of stations (x) seconds later than at the other, the second station of the pair will be 5.6(x) km. nearer to the epicenter than the first. One may then mark a point which is 5.6(x) km. from the second station on the line between the second station and the approximate epicenter. The true epicenter then must be on the perpendicular bisector of the line segment from that point to the first station. A second pair of stations gives a second perpendicular bisector, whose intersection with the first perpendicular bisector, whose intersection with the first perpendicular bisector is a second approximation to the true epicenter. If necessary, this method may be repeated, using this better approximation to the true epicenter.

The method of locating epicenters by means of the perpendicular bisector method applied to first arrivals is less exact than the method described by Gutenberg, However, since values of velocity of the P phase differed from each other by less than could probably be introduced by differences in wave path, it was assumed that the additional error introduced by this further approximation is small.

Locations of the epicenters are shown in Figure I.

Origin times of the shocks were calculated in the following way. The \overline{P} wave was identified by

SOURCE OF DATA (Cont'd.)

meens of its short period, which was distinctive at distances less than about 375 km. Dividing the differences in distances to the stations by the differences in corresponding arrival times of P gave quotients which were averaged to a first approximation of the velocity of P. Dividing the distances to the stations by this value of the velocity gave quotients which were averaged to give a first approximation of the origin time. In the last operation, only distances greater than 100 km. were used in the Differences between the arrival times calculations. and this supposed origin time then gave values of the travel-time of P, which in turn when divided into the distances to the station, gave values for the velocity of propagation of P, which were consistent with themselves. The list of shocks is shown in Table II.

The travel times of all measurable phases, tabulated in Table III, were then plotted. In figure 2, plotted versus their epicentral distances are the travel times of all measured phases. Unidentified phases are shown in black. The identified phases, which include P_n , P_a , P_b and \overline{P} and the corresponding transverse waves, are shown in colors.

TABLE II - LIST OF SHOCKS

		LONGITUDE	AUD.	LATITUDE	Trods	TIME OF ORIGIN
SHOCK	DATE	0	•	0	•	(P.S.T.)
Torulligor TV-A	Termiliger Valley TV-A Mar.25,1937	M	92	776	35	0.40:64:80
Tertilliger Valley TV-B May	Valley May 12, 1939	88	40	911	35	11:25:03.4
San Jacinto	Feb. 26, 1940 33	2	8	116	9	69:28:06.5
Arlington A	HOV. 7, 1939 33	ĸ	*	117	7	10:52:07.5

•			Ś	TABLE TERMILLIGER	ER VALLEY "A"		
STATION		Direct (min)	Direct Reading (min) (sec)	Time (sec)	Period (sec)	Amplitude (mm)	Remarks
Pasadena	165.4	0 +	1.1	200	300	0 W.	A.
				200 200 200 200 200	0 0 (w w'	es II
				4.8	00	28.0	
	·			34.9	00	25.	
				/4: /0:	0	\	
				1	9.0	12.0	ú
				8.64	9.0		۵ (ا
				51.3	2.0	55.0	a la
				52.3	2.0	55.0	ş,
				57.2	•		oir record.
Mt. Wilson	160.2	- 03	33.2	O 40 0	₩. I.	0.00	or i
				* * * * * * * * * * * * * * * * * * * *	٠ •		1000
				31.5	00 Wil	50.0	large ampiltudes.
				78.7	00 2.	2.5	0.10
Riverside	93.8	7.	25.1	17.0	9.0	0.5	Pastrong deflection Back lash on all late

	Remarks	n d	F) Group is characterized) by distinct change) in period and amps.	* *	2 2	:) Group is daracterized) by larger period & yariable amplitudes.		P Leter amplitudes are off record.	Pn Microseismic amp. on		(12)
	(ww)			10°0	·					1.5	11.50	~ w
	Amplitude (mm)	מ יע	•	10.							0 H	2.5
# ¥ #	42	0 00	J	*	30.	50.	10.					
III Valley "	Period (sec)									0.5	000	0 0
TABLE I												
TERMIL	Travel- Time (sec)	**************************************	57.4	62.3	22	6.45 6.45 6.45	101.0	1333.4	16.5	# . 09	623.1 62.1 64.1 64.1	9.99 4.89
	Corr. to Direct Reading (min) (sec)	¥1.6							34.1	**		
	Corr. to Direct Re (min)	69		, , i i Agentija					L 0	#		
	OH-1	ŧ							•	+		
		309.1							91.2	430.4		
	STATION	Santa Barbara							La Jolla	Tinemena		

										period, large			ase in amplitude		ase in period.						
	Remarks	*	₽4 æ	p	•			ν,	0	Sa Short	empl.	_	Increase		Increase		od A	•	₽¹ «	ı	je,
	Amplitude (mm) N E Z	1.0	91	17.0	2.0	ر ا ا	10.0	15.0		25.0	•	Q Q	20.00				00 44	000) o	er) v	10.0
E III ER VALLEY "A"	Period (sec)	0.5	7.0	0 C	0 (0.5	0.5	9,0	, C	9.0		7. °	, o,		3.0		9.0	00	00.0	0,40	0.6-0.7
TERWILLIGER VALLEY "	Time (sec)	71.9	V-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	76.5	# M	40. 5.	ຂວ ດ ຄປ ດ ຄປ ຊ	+ O,	124	126.6	7	0.0%	134.1	149.0	155.0	1	0 L 20 C 2	Wa Wa	26.3	かった	60.1
3	ot Reading																20.8				
1	Direct (min)																- 17				
	< ĵ			~													322.1				
	STATION	Tinemaha	(cont.a.)														Haiwee				

TABLE III TERWILLIGER VALLEY B

teading Time Period Amplitude (mm) (sec) (sec) (sec)	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	1122 00.7 122 00.7 122 00.7 122 00.7 123 00.7 123 00.7 124 00.7 125 0
نخصی	1	
⊲ 🧵	165.4	
STATION	Pasadena	

Remarks	ο, Ισ	•		S _b	ଷ ପ୍ର	ka					F possibly Pb	e p, c	a ko	Q.	s n (15)
Amolitude (mm)		• • «	one	•	11.0			4 IV		20	1.5		 	18.00	•
Period (sec)	N, W, Y	• •	000	* ·) O O	· 🐠 🛡	· 🛊 ·		0 0 C			7.0	٠.	00	
Travel Time (sec)	20 00 00 00 00 00 00 00 00 00 00 00 00 0		w== wwn wat	• •							P7	5 0\7	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	×d.	.
teading (sec)	19.8										0				
Corr. to Direct Reading (min) (sec)	0 +										•				
√ §	160.2										93.8				
STATION	Wilson										Riverside				
S	Ä										Œ				

	Romerks		A Wally as to the second of th	P possibly P _b P _n S _a possibly S
	Amplitude (mm)	1250 000	o Hanuara rananaa r oorooor oogoooo	200000 00000
VALLEY B	Period (sec)	7.00	0 0000000 00H0000H	00000
TERWILIIGER VAL	Travel- Time (sec)	37.2 37.6 51.6 58.1	ようではなるののののではいませんできます。これではいるないのののでは、これではないますられるないののでは、これではいるないのでは、は、これではいるないのでは、	222 222 222 232 232 232 232 232 232 232
	to E Reading (sec)	0	n,	13.6
	Corr. to Direct Readin (min) (sec	0	O +	0
		93.8	309.1	91.2
	STATION Y	Riverside (cont'd)	Santa Barbara	La Jolla

TERWILLIGER VALLEY B

	7	Corre	ę.	- Labort			
STATION		Direct (min)	Reading (sec)	Time (sec)	Period (sec)	Amplitude (mm)	Regarks
La Jolla (cont'd)	91.2	•	13.6	WWWAT TO REAL WAS CARES OF THE PROPERTY OF THE	000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6
Tinemala	4.054	+	7.5	4 10.00 4 10.00	• • • • •	• •	et Et
					, , , , , , , , , , , , , , , , , , , 		e le
				1001 1007 1007 1007 1007 1007 1007 1007	000000 00000 00000	COND HE	ಷ <u>ಎ</u> ಭ ಭ
				124.6		MMA :	വ a

																							(18	
Reserve		,	Possibly S					P.	f	j e	•							Sn possibly Sp				න්	15	
(mm)	7.0				0.0			0.5	Q.	0 C	7.0	•	0,0		•			u L				7.0	0	
Amplitude (mm)							(0.5)	(4.0)	,	N. O		6.3												
Feriod (sec)	* *0	0	0.0	0	0 C	.وب	≠	~	r.	о с С	0	0.5	!	···	99	9.0	≠ ,	9.0	0 n	م م) a	9.0	0	
Travel- Time (see)	129.4	131.	. 4	* *	₩ 1			47.3	50 m	₩ ₩ ₩	6.09	63.0	6, 6,	900	, e	76.8	79.6	40. 10.		0 % 0 %	7.06	1046	00.00 00.00 00.00	
n to eding (sec)	7							5.5																
Correction Direct Rec (min)	o +							O +																
∢ 🥞	4.054							322.1																
STATION	Tinemaha (cont'd)							Haiwee																

TABLE III TERNILLIGER VALLEY B

STATTON	Q	Correction Direct Read	sion to Reading	Travel.	Period	Amplitude			
	(880)	(min)	(860)	(360)	(sec)	E E	2	Remarks	•
Haiwee	322.1	0 +	5.5				NO.	: j io	
(cont. q.)					. (• •	a	
					. 1		0.0		
							•		
					. 👊				
							₩.		
							4. 4		
							•		
				143.6	•		, 9 10		
	962	· •							
rontaer	267		•		0.5				
				1 · 🖷	# O		●.	tr eg	
				50°50 50°50	က္ရ ဝ င		9.4	je	
					*		a. •	Y	
					O .				
					o c		٠,		
) () ()		• •		
					100		k. G		
				•	8.0		•		

TERWILLIGER VALLEY B

STATION	(km)	Corr. t Direct (min)	Reading (sec)	Travel- Time (sec)	Period (sec)	Amplitude (mm) N E Z	(mm)	Romerks
Soulder (cont'd.)	329	0	0.1	94.9	000 www		duu One	್ (1)

																										(21)
	Renarks	Pa, possibly Pb				belli eq											Ġ	2	80	ì	8	2 5 02	ì			
	Amplitude (mm)		•	, c	74.0	16.0	0. C		0.04	15.0	15.0	15.0		0.51	0.00	20.0	0*0T	116	10.0	0.9				10.0	0.00	20.0
TABLE III SAN JACINTO	Period (sec)	↑ •0		•	*	0	•		•	P · 0		. 🌞 .	*	. 1	•	7.0			• •					0.0		• •
TABI	Travel- Time (sec)	35.0	26.00	いる。	0.80 0.80	85	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 	ナー・トー・トー・トー・トー・トー・トー・トー・トー・トー・トー・トー・トー・トー	18	50.7	52.5	プライン	24.0) W	100 m	200 200 200 200 200 200 200 200 200 200	11.	65.9	63.1		. 1		Fa		
	tion to Reading (sec)	6.3																								
	Correction Direct Read (min) (s	0 +																								
		225																								
	STATION	Pasadena																								

TABLE III SAN JACINTO

Mt. Wilson

STATION

		•		ı		
1 3	Corr. Direct (min)	Corr. to Direct Reading (min) (sec)	Travel- Time (sec)	Period (sec)	Amplitude (mm)	Remerks
220	0 +	3.8	いない	5.0		Pn possibly Pp
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.0°C	
			, ov	- N		
			. O .	# " O	0.0	ρι
			0°14 44	0 0 0 %	0.0	
			(10) (0)	0	0.0	
			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ر د د د د	25.0	
			7000	9	25.0	
			49.2	9.	0.03 50.0	
			ich n ich n ich a	ာ (၁		
			200	0	7.	
			€6 (0× (0.0		S.
			- 00 - 00 - 00 - 00 - 00 - 00 - 00 - 00) C	4	50
			. W.	100	1.5	3
			, , , , , ,	00	0.	•
			67		0.04	
			69	00	53.	
			- 80 - 00	7.0	, ,	
			100	0	0.0	
			0 0 0	٥	•	
			5. To	9.0	0.04	
			97.	9.0		

	Remarks	പ്പുക, മുത പ്പുക
	Amplitude (mm)	
III	Period (sec)	00000000000000000000000000000000000000
TABLE III SAN JACINTO	Travel- Time (sec)	るるというないないないははははは、そろらしてきるのとうとうとうとうははないのうとはないのうないないないないないないないないない。
	Corr. to Direct Reading (min) (sec)	8°90 0 -
	(880)	152
	STATION	Riverside

Н	5
1	2
H	H
5-3	AC
E	5
m	•
≤4	B
E-4	S
	V3

			•	C	1		
STATION		Corr. t Direct (min)	to Reading (sec)	Travel- Time (sec)	Period (sec)	Amplitude (mm)	Remarks
Santa Barbara	365	0 -	25.0		5.0	2.5	9 ₄
				00°	٠ د د	0.1.	
	•				•	•	,
					•	2.5	Possibly F
					, o (1
					* *	7 0	
					* *	•	Ø
					r 🎔	-	đ
						\circ	δ,
							5
						W.W.	ka
							Possibly 3
					•	•	

	Rengtks	Possibly Pa			S possibly Sa Sb	rg CT	ជ ជ ម ម ម	A PA	
	Amplitude (mm)	S 23	14.0 5.0		50.0 12.0	23.0 15.0 5.7	as wor	-0.400 0.400	00000 0000
TABLE ILI SAN JACINTO	ec) Reriod	\$ 00.00 =	4 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* 0.0 c	9000	244 244 200 200 200 200 200 200 200 200	00000	ا معا مه	, wat = 0
3 (4 2	ding Ti	₽• \$	W (1) (1) (1)	(4 (4) 14)	יל איל איל אי	vw∓∓ vy	12.6	O OF OF CF CF	98 98 101
ς.		#II					9 <i>L</i> tt		
	CEATION.	La Jolla					Tinemaha		

				TABLE I	III		
STATI ON		Corr. t Direct (min)	to Reading (Sec)	Travel- Time (sec)	Period (sec)	Amplitude (mm)	Remark s
Tinemeha (cont'd.)	1178	0 -	12.6				a Si
					00000 	4 w4 w4	න් ජේ
				44444 4444 4444		adiaa nn no	
Haiwee	37.1	0 +	1.5	50.00	* *	•	P _b microseismic ampt
				Mat the	0000 1. 10 10 10 10 10 10 10 10 10 10 10 10 10		es P4
				TO ON HIS			P energent
				-88.80 & (WN O W)-4 O W		44444	Sn 1 sec. early

TABLE III SAN JACINTO

(mm) Z Remarks	4.0000 0000	S Sfarp amplitude increase
Amplitude (
Period (sec)	00000 www.	0000 0 www. r
Travel- Time (sec)	2011110 011110 0000000 000000	59.7 65.2 97.9 101.5
Seading (sec)	1.5	0.0
Corr. to Direct Reading (min) (sec)	0 +	o +
	37.1	331
STATION	Haiwee (cont'd.)	Boulder

H	ā
F	=
BIK	LIN
TA	AB

Pasadena

STATION

			£	•																								
	Remarks	١.	P possibly P.										S possibly S.			ත්	3	හ	a									
(##)	, Z	0.2	30.0				30.0	_														30.0		20.0		2.5		7.5
Amolftinge (mm)	M E		0.1	23.0	30.0	29.0 2.5			30.0	100	30.0		0.0	•	7.0	9	15.0	N. M										
Ter.	(880)	0.3	0.3	0.3	70	0.5	0.5	0.7	0	4.	≠ .	0.0	0.0	0	0	*	9.0	**	0	9.0	0.4	~	9.0	0.0	1.0	o n		9.0
Travel-	(860)	14.8	•	•			20.1	· •							•			#	•	•							Š	100.9
ion to Reading	(sec)	1.8																										
Correction Direct Res	(min)	0 +																										
7	(Kan)	82.0																										

TABLE III ARLINGTON

Remarks	aja,	ዲ	P	티닉	;	S possibly S	i					ຜ້	1									
(ma) Z	0.2					92.0	ċ									٠	1	N	5	30.0	N.	
Amplitude (mm) N E 2	2.5		0.9		3.0	,		55.0				•				2.0	- 15 a	2				
Period (sec)	*** 00	0		ე დ 0	0	٠ <u>٠</u>	0.5	<i>≠</i> •	⇒	ભ <u>.</u> ૦	0.0	0	9.0	0.0	· ·	2.0	0.5	0	9.0	9.0	0.7	2.0
Tratel- Time (sec)	13.6 14.5			702		~	-	-			-	-4	200	CV4	1	æ	~	S	٥	S	9	M
tionto Reading (sec)	20.8																					
Correction Direct Rea (min) (s	0_																					
	75.0																					
STATION	Mount Wilson																					

TABLE III ARLINGTON

STATION	(kg)	Correction to Direct Reading (min) (sec)	con to	Travel- Time (sec)	Period (sec)	Amplitude (mm)	Remarks
Riverside	6	0	0.40	20.00	ကဲ့ကဲ့ကဲ့	44544 00000	Possibly F
				word work won widooooo woo	400000000		
Sants Barbara	226	0	8,				Pn possibly Possibly Possibly Possible
				があるのよう	000000 W4 W4 WW	1.0	

	Romarks				Š	1	ζζ g	ļe	2						£	더날					eg.	•			
	((mm))		0	, eo	12.0		18.0	0		17.0	24.0		0.9	0		2.0	:	0.11))		10.0	0, 10	2	36.0	9
	Amplitude ((mim)) N E Z	2.1	<i>4</i>	2.0		0.9	•	0.			c	0		9		.2	2.5		8 0	20.0		2.2	12.0		0.
			•€	લ્ય	•	9	\$				¥	U W		*	ند		N		N	N	•	C)	72		1 /
TON	Period (sec)	9.0	9	0,0	0	0	0,0) C	0	00	ت پ	00	0	00	Short	0.3	0.7		0.3	9.0		†. •			9.0
TABLE III ARLINGTON	Travel- Time (sec)	56.5	(M)	61.3	6.49	99	න ද න ද	0 TO	72.00	5-6 10.0	70.01	-80 -83-	9.00	;•; %	7,00	22.2	24.2	0 0 0 0 0 0	200	30.9	W. W	0 C	, w	#25.0	68 80
	to t Reading (sec)	5.5	`												ur zat	}									
	Corr. t Direct (min)	0	ì							•					+	•									
	7 9	226													115										
	STATION	Santa Barbara													La Jolla										

TABLE TIT

				TAB	TABLE III ARLINGTON			
STATION	□ □	Correction Direct Read (min) (s	lon to Reading (sec)	Travel- rime (sect)	Period (sec)	Amplitude N E	z (ww) X	Romarks
Tinemana	361	0 +	5.0	64.6	•		•	Pn
				N M			ง	P.
				20 A	00	4		
				00				
				M				
				o o	. #		0.6	
				\i	* ·	1,5		
				A			2.5	
						2.0		
							2.5	
				1	•	5.6		, and
				a.			ν. 	ď
				a.		₹.		
				A 7				
				SO N	•		7. 00	įc.
				1	• •	1.5		a
Haiwee	251	o	21.8	•	•		6.0	P. nossibly P.
٠	•			•	•		: W.:	
					· 🐞 · i		14°0	
							15-	p.
				アンドリ	™ #		۵ د د د	
					• •		0 B	L
							17.0	

TABLE III ARLINGTON

Po marks	Post biy at
Amplitude (mm) K	Sarrayonry Hydrana occiviosción origino
Period (sec)	00000000000000 0000000000000000000000
Trevel- Time (390)	スクタイアアアア はままり 300 とう なんしょう こうさん はんしゅう ひこう こうきょう はんしゅう ひこう うき ういっぱ きゅう はん きゅう できる しょう はん しゅう はん しゅう はん しゅう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ
on to leading (sec)	\$3. • 12.
Correction t Direct Read! (min) (s	•
	251
	Haiwee (cont'd)
STATION	Haive

VELOCITY AND CHARACTER OF PRINCIPAL PHASES:

when the data had been plotted, other principal phases were then identified, and their velocities measured from the graph shown in Figure 2. P was the first arrival at distances less than 50 km. It may be identified at distances greater than 100 km. and less than about 400 km. as the phase with the distinctively short period. The period of the P phase, over that range of distance, was consistently about 0.3 sec. The periods of phases arriving at about the same time were usually about 0.5 sec. P has the travel-time equation:

which for distances greater than about 100 km. approximates:

$$t = \frac{\triangle}{5.4}$$

 P_a was the first arrival at distances greater than about 50 km. and less than about 115 km. At distances greater than about 150 km. it is the large amplitude P wave which just precedes the small period \overline{P} wave. The traveltime equation of P_a is:

$$t = 0.5 + \frac{\triangle}{7.2}$$

where is equal to the distance from the epicenter and t is equal to the travel-time

P is the first arrival at distances greater than 115 km. and less than about 225 km. It is a persistent phase of moderate length period. Its travel-time equation is:

$$t = 5.7 + \frac{A}{7.2}$$

WELOCITY AND CHARACTER OF PRINCIPAL PHASES: (Cont.d.)

Pn is the first arrival at distances greater than about 225 km. It is a long period phase, and has an approximate travel-time formula as follows:

S-group phases corresponding to the above compressional P-waves have been identified. These represent transverse waves which travel along approximately the same paths as the P-group compressional phases.

E is a short period phase of the S-group. It is much harder to distinguish than P, but also has a distinctively short period. It is the first arrival of the S-group for distances less than 90 km. It has the travel-time equation, as follows:

Sa is the first large amplitude phase of the S-group, at distances greater than 200 km. It is the first arrival of the S-group at distances greater than 90 km., and less than 135 km. Its travel-time equation is approximately:

S_b is the first arrival of the S-group at distances greater than 135 km. and less than 325 km. It is a long period wave that at distances greater than about 250 km. appears to be a member of the small

VELOCITY AND CHARACTER OF PRINCIPAL PHASES: (Cont.d.)

amplitude waves at the end of the P-group. Its traveltime equation is:

$$t = 9.2 + \frac{\triangle}{4.3}$$

 S_n is a long period persistent phase, which is identified only with difficulty in the record. It is the first of the S-group to arrive at distances greater than 325 km. Its equation is:

$$t = 15.0 + \frac{\triangle}{4.7}$$

Other phases of the P-group are probably due to reflection. Some of them are:

Pi is an early showt period phase in P-group

$$t = 15.2 + \frac{\triangle}{6.5}$$

P6 is a persistent amplitude increase of moderate period:

$$t = 1.6 + \frac{\triangle}{5.0}$$

P7 is a persistent phase of fairly short period:

t = 13.6 +
$$\frac{\triangle}{4.60}$$

Phases of the S-group which occur with and after those that have been identified are either direct transverse or surface waves. Periods of these waves are so long and the number of the phases so great that no attempt has been made to identify them.

FOCAL DEPTH:

Depth of focus was calculated by the formula suggested by Gutenberg.*

"If we use only short distances, the depth of focus
"h" is given within the limit of error or the observations
by the formula

$$h^2 = (tv)^2 - \triangle^2$$

where "t" is the travel-time of the P waves, "v" their mean velocity and " \(^{\sigma}\)" the distance. On the other hand we can express "t" by the travel-time for the depth of focus zero and the difference "d".

$$t = \Delta + d$$

Combining these two formulas we have:

$$h^2 = vd (vd + 2 \triangle)$$

or approximately in mose cases

with the above formula, the focal depth has been calculated for all cases where distance to the epicenter is less than 100 km. The results of these calculations are shown in Table IV.

^{* (}B.Gutenberg: op. cit.)

TABLE IV - FOCAL DEPTHS

SHOCK	STATION		FOCAL	FOCAL DEPTH, (h = 2 vd)	ㅁ	~	Š	_
TV-A	LJ	91.2		21.2				
	æ	93.8		20.6				
TV-B	Ľ	91.2		32.2				
	ca Ca	93.8		32.7				
4	œ	•		20.3				
	K	75.0		9.3				

According to the formulae suggested by Gutenberg (op. cit.), "if the velocities of a certain kind of waves (either longitudinal or transversal) in successive layers are given by V_1 , V_2 , V_3 , V_n , we can calculate the thickness d_1, d_2, d_3 ... of these layers, assuming constant velocity in each of them, in the following way:

For the first layer, we have: $2d_1-b = \frac{\Delta^* \left(\frac{1}{V_1} - \frac{1}{V_2}\right)}{\sqrt{\frac{1}{V_1^2} + \frac{1}{V_2^2}}}$

Where Δ^* is the distance where the travel time curves of the two corresponding waves intersect, h is the depth of focus.

For each following layer we have, where i is the angle of incidence:

$$Sin i_1 : Sin i_2 : Sin i_3 : \dots : I = V_1 : V_2 : V_3 : \dots : V_n$$

$$D_n = (2d_1 - h) tan i_1 + 2d_2 tan i_2 + 2d_3 tan i_3 + \dots + 2d_{n-2} tan i_{n-2}$$

$$t = \frac{2d_1 - h}{V_1 \cos i_1} + \frac{2d_2}{V_2 \cos i_2} + \frac{2d_3}{V_3 \cos i_3} + \dots + \frac{2d_{n-2}}{V_{n-2} \cos i_{n-2}}$$

If to is the travel-time to a distance A of the wave with its deepest point in the layer n, we calculate:

$$O_n = \Delta' - \Delta_n$$

$$T_n = \xi' - \xi_n$$

$$O_{n-1} = \frac{(V_n T_n - O_n) \cos z_{n-1}}{2 \left(\frac{V_n}{V_{n-1}} - \frac{V_{n-1}}{V_n}\right)}$$

THICKNESS OF LAYERS: (Cont'd.)

Assuming that P_1 , P_2 , P_3 and P_3 , as well as the corresponding S-waves, are caused in this way, the following thicknesses of layers and corresponding wave velocities have been found.

For the first layer, the calculations of the P-wave layers showed that 2d = h + 13.55. Assuming that the focus is situated within this top layer, focal depth calculations, of which results are shown in Table IV, indicate that the focus is probably near the maximum depth in the layer. Thus if one assumes that the depth of focus is 13.5 km., the layering may be calculated with results as indicated in Table V.

TABLE V - THICKNESS OF LAYERS

	Poisson's Ratio	1,74 0,254	1.71 0.242	0,225	1.74 0.254
	A (B)	1.74	1.7	1.68	1.74
5	Lower VP	14.5	22.5	2.54	t
Velocity	Layer (km) Top Bin. (km/sec.)	3.1	3**	N.	*
ersal We	(km) Btm:	- 15,4	15.4 - 24.7	24.7 - 43.9	t .
Transve Depth	Top	0	15.4	24.7	43.9
Data from Transversal Wave	of Layer (km)	15,35	9.33	19.2	
8V8	(Long.) Vp	4.6	κ. 	7.2	6.2
udinal W	7	- 13.6	- 20.2	40.5	
Longit	Layer (km) Top Btm.	0	13.6	20.2	40.5
Data from Longitudinal Wave	of Layer (km)	13.6	9.9	20.3	

FIG 3 THICKNESS OF LAYERS