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Abstract

Wave propagation in saturated porous media is investigated in
the framework of two models, a theoretical and an experimental one.
The theoretical model has two phases, a fluid phase and a
solid phase, both modeled as a continuum. The solid phase consists
of incompressible grains forming a compressible skeleton., The fluid
phase represents a compressible fluid located between the grains.
Interactive forces, due to relative motioﬁ between the skeleton and
the fluid are taken into account. Non—linear balance laws and equa-
tions of state are formulated for plane waves, Linearization
of the non-linear balance laws yields a set of equations which
in limiting cases reduce to well-known results (e.g. consolida-
tion equation, condition for fluidization). The harmonic
solution of the linearized field equations contains two modes:
one in which the phases move almost together (which is slightly
damped) and one in which the phases move in opposite directions
(which is highly damped). Solutions are presented in system form.
Applying a step loading in the variables at the boundary
generates, in general, two propagating discontinuities in the wvariables
and these discontinuities decay as they propagate. If we assume that
the parameters take ''practical" values of wet sand then the jump in
pore-pressure is always large with respect to the jump in effective
pressure along the faster discontinuity propagating into a medium

at rest, while velocity differences between the phases are generated



iv
if the densities of the phases are different. Non-linear effects
due to a non-linear constitutive equation for the fluid oppose the
decay of gradients in the variables along the faster propagating dis-
continuity. The influence of non-linear convective terms can be
neglected if the phase velocities are small with respect to the
velocities of the discontinuities.

The solution to the problem of reflection and refraction of
a discontinuity propagating in a fluid and impinging on a two-phase
medium is presented. The theory is extended in multi-dimensions, in
order to allow shear waves to propagate. The existence of non-
propagating discontinuities in dilatant shear is demonstrated.

The experimental model consists of a disc configuration, dry
and saturated. The interparticle stresses due to impact are visualized
by a photo-elastic technique and recorded by a high-speed camera.
Changing stress patterns in the discs behind the wavefront are
observed. In the dry case a wavefront emerges, behind which the
particles are relatively well stressed, wﬁile no such defiﬁite stress
front can be identified in the saturated case. Phase velocity dif-

ferences occur and separation of particles was observed to take

place due to indirect loading of the discs via the fluid.
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INTRODUCTION

Stress propagation in saturated porous media is of practical
importance in the protection of structures against earthquakes and
other types of ground shock. It is also of theoretical interest in
geophysical studies concerned with identifying the properties of
rock masses and sedimentary deposits, in which case the determination
of wave speeds and reflection coefficients are especially important.

In soil mechanics there is concern about the stability and
the displacement of structures located on or in saturated soil, or
the stability of soil structures themselves. The loss of strength
by a saturated soil during repeated loading, as in the case of an
earthquake, and related liquefaction phenomena are of considerable
practical importance.

In the present study of wave propagation in éaturated sands,

a theoretical model and an experimental model are investigated.

The theoretical model consists of two phases, a solid phése and a
fluid phase, both treated as continua. The compressible solid phase
represents the skeleton of sand grains. The compressible fluid
phase represents the water located in the pore space between the
sand grains which is able to move with respect to the skeleton.
Assumptions as to the constituitive relations follow the traditional
approaches in soil mechanics. Linearization of the non-linear equa-
tions of mass balance, momentum balance, and constituitive relations
for the solid and fluid phases in the one-dimensional case yields

(Chapter B) four equations with four unknowns (fluid pressure, effective
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pressure, average skeleton velocity, average fluid velocity). For
limiting cases we generate, in Appen&ices IV and V, well-known results
(e.g. consolidation, fluidization). Because we derive the linear
theory from the non-linear theory we have the advantage of testing
the validity of the linear theory with respect to the non-linear
theory; this is in contrast to other theories (e.g. Biot [1]). The
linearized model will enable us to study changes in the variables due
to applied loading.

The harmonic solution of the field equations is presented in
Chapter C. De Josselin de Jong [4] showed that if the parameters have
the "practical’ values of wet sand, in the lower frequency range there
are two modes, one (first mode) in which the phases move almost to-
gether (which is slightly damped) and one (second mode) in which the
phases move in opposite directions (which is highly damped). The
harmonic solution is presented in system fqrm in Chapter D, which is
convenient for further numerical treatment. The eigenfrequencies for
a one-dimensional layer are established and it is shown that those
of the first mode are very high and those of the second mode are very
low for a layer height of 0.2 m.

The propagation of discontinuities due to an applied step load-
ing at the boundary is discussed in Chapter G. We demonstrate the
relation between the phase velocity in the harmonic solution, speed of the
characteristics (Chapter F) and speed of the discontinuities. Further
we show that including non-linear terms due to a non-linear constitu-
tive equation forbthe fluid opposes the decay of propagating discon-

tinuities in the gradients. The consequence of equal phase velocities
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is investigated in Chapter H where it is found that in general equal phase
velocities do not occur unless there is a certain ratio between the com-
pressibility of the fluid and the compressibility of the skeleton.

The linear theory is extended to multiple dimensions for the:
isotropic case in Chapter J, in which the harmonic solution for the plane
strain case is investigated. Three modes can exist and the solution can
be presented in system form by including a shear deformation. The
reflection and refraction of a discontinuity propagating in a fluid
and impinging on a two~phase medium is studied in Chapter L. We use
here the coupling condition between a fluid and a two-phase medium as
established in Chapter K. Near the boundary the skeleton compresses
and after that expands to zero effective stress, while the fluid
compresses.

In order to derive a more realistic constitutive relation for
a sand rather than a linear elastic isotropic material we make an
attempt in Chapter M to describe the state of a granular material by
including kinematical variables. By using thermodynamic arguments,
we construct a constitutive relation which in linearized form will
be used for further analysis. A real soil often exhibits contraction
or expansion during shear, called dilatancy. Therefore, we study the
propagation of discontinuities in the dilatant shear case in Chapter N.
There exists a non-propagating discontinuity if the material is present
in a state of neutral stability. |

The laboratory model consists of a disc configuration, dry

and saturated. By shining polarized light through the discs we were
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able to visualize the stress patterns in the discs. The discs were
impacted and high-speed camera films of the resulting stress patterns
were made. In the dry case an area of well-stressed discs emerged
after the stress front. No definite stress front in the saturated
case was observed. Discs, indirectly loaded by a fluid layer on
top of the discs, separated due to impact.

In Chapter A we give a review of some of the work done in the
area of wave propagation through saturated porous media and a summary
of the main results obtained in this investigation is contained in

Chapter P.



A. Literature Review

In this Chapter we will summarize some of the work done on the
subject of wave-propagation through saturated porous media.
In the first part we treat the predominantly theoretical work and

in the second part the predominantly experimental work.

A.1 Theoretical Work

Biof in a series of papers [1,2,3], treated the problem of wave
propagation through saturated porous media.

He assumed that the fluid and the skeleton are linearly elastic.
Constitutive equations were established by thermodynamic arguments for
the linearized case. TFor an isbtropic skeleton the number of constants
in the constitutive equations was four. Further he derived the
momentum equations by evaluating the kinetic energy and the dissipation
function of the medium, and applying Lagrange's equations. The momentum
equations were coupled by inertia coupling terms and terms arising due
to different phase velocities.

The hafmonic sblution of the field equations showed thé existence
of three kinds of waves: one rotational wave and two dilatational
waves (waves of the first kind and waves of the second kind). 1In the
first kind of wave the skeleton and fluid move in phase, while in the
second kind of wave the fluid and the skeleton‘move out of phase. . The
dilatational wave of the second kind is highly damped and propagates

slower than the wave of the first kind.



Biot separated his theory into two parts: low-frequency and high-
frequency range. In the low—frequency‘range the relative motion of the
fluid in the pores is of the Poiseuille type and the coefficient in
the "Darcy" law is a constant, but in the high-frequency ranga the
coefficient becomes frequency dependent.

He introduced viscoelasticity in ordér to describe a variety of
phenomena, such as interfacial surface tension and physical-chemical
interactions. Furthermore he formulated the field equations for an
anisotropic skeleton.

This work formed the basis for many subsequent papers on the theory
of wave propagation through saturated porous media.

De Josselin de Jong [4] treated one-dimensional wave propagation

through a saturated porous medium.

Both the skeleton and the fluid were assumed to be linearly
elastic. He derived two momentumkbalance equations, one for the
skeleton and one for the fluid.

For the harmonic solution in the lower frequency range and
"practical” values of wet sand he showed that there are two kinds of
waves: one in which the phases have almost the same velocity and one
in which the phases have velocities in opposite directions. The
first wave is almost undamped and the second wave is heavily damped.

Ishihara [5,6] did further work on the Biot theory. He related

the Biot coefficients to the compressibilities of the phases and the

soil bulk.



He considered harmonic excitation in the lower frequency range
with parameters established for saturated soils and he focussed his
attention on one of the two kinds of compression waves. This turns out
to be the wave in which the phases almost have the same motion and in
which the damping is low.

Ishihara suggested the use of elasticity theory as a substitute for
poro-elasticity, especially when the medium is stressed in undrained
condition as encountered in dynamic problems. However, this statement
refers only to the above considered wave.

Hsieh and Yew [7] studied the wave motion in a fluid-saturated

porous medium, where the fluid is incompressible.

They used a modified Lubinski stress—-strain relation for the
skeleton and a Biot equation for the fluid. Further they used the
concepts of mixture theory in order to derive the mass balance and
momentum balance equations. They assumed that the interaction force
between fluid and solid is proportional to the mass flow of the fluid
relative to the solid. Further they assumeé that the specific flow
resistance becomes a function of the frequency for high frequencies.
After linearizing the field equations they established the equations
for the dilatational and rotational waves.

The harmonic solution revealed two kinds of dilatational waves
and one rotational wave.

The effect of the specific flow resistancé on the wave speeds

was studied.
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The airflow through a fiber tangle was treated by Taub [8].
He focussed his interest on a one-dimensional problem and postulated

the following nonlinear balance equations: conservation equations

for solid mass and fluid mass; conservation equations for solid momentum
and fluid momentum and a conservation equation for the fluid energy.
Interaction forces were represented by a modified Darcy law, including
nonlinearities due to tortuosity of the streamlines through the pores.
He assumed that the fiber material was incompressible, but postulated a
nonlinear stress—strain relation for the fibers.

The nonlinear equations were solved by the method of characteristics.
The flow within a dilation chamber was considered.

Ghaboussi and Wilson [9] formulated the Biot theory numerically by
use of finite elements.

A one-dimensional boundary value problem consisting of a steploading
of the skeleton at the boundary and keeping the pore—~pressure zero at
the boundary was considered. Two types of mass representation were used:
consistent mass matrix and lumped mass matrix. Results showed a gradual
increase in effective stress and pore-pressure. Near the boundary the
pore-pressue fell to zero.

Furtherﬁore they applied their numerical scheme to a dam-reservoir
system. They noted that in the core of the dam, where the permeability
was very low, almost all the oscillations were taken by the fluid and
the intergranular stress changed very smoothly.

Liou [10] did a numerical study in order to get insight into

liquefaction phenomena in sand deposits.
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He first established the field equations for one-~dimensional com-
pression. These consist of an equation for the fluid pressure and a
constitutive equation for the skeleton, a momentum balance for the total
medium and a momentum balance for the relative motion of the pore water
with respect to the skeleton. The interaction forces between skeleton
and pore water are assumed to be in terms of Darcy's law.

After linearizing the field equations Liou constructed solutions
by the method of characteristics.

He established a coupling between the shear modulus and confined
compression modulus. In this way he coupled the compression waves with
the shear waves. A nonlinear formulation was used in order to investi-
gate the performance of sand deposits during the Niigata earthquake.

Yew and Jogi [11] used the Biot theory in order to study wave
motions in fluid-saturated porous rocks. The purpose of their study
was to make a comparative study between experimental results of wave-
propagation through saturated rocks (sonic~pulse technique) with the
results predicted by the Biot theory.

Applying Laplace transformations they were able to solve the
appropriate boundary value problem. The inversion integral was
evaluated numerically. Two harmonic waves emerged, called the fast
and the slow wave. ‘The slow wave was highly dispersive.and the fast
wave showed very little dispersion. Furthermore the slow wave decayed
much faster than the fast wave.

Using the experimentally obtained constants in the Biot equations,
they compared the theoretically obtained and the experimentally

obtained wave velocities. Because the inertia coupling parameter in
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the Biot equations was unknown, they tried to establish this parameter
by comparing the experimentally obtained wave speeds and the theoreti-
cally obtained wave speeds. It was concluded that the inertia coupling
coefficient was small for the cases considered.

Bécause the recorded waves showed no observable dispersion and
because the slow wave damped out rapidly, they stated that they believed
that the experimentally observed waves were the fast waves.

0'Connell and Budiansky [12] calculated the elastic moduli of a

solid permeated with an isotropic distribution of flat cracks.

They used the argument that the isothermal potential energy of the
cracked body is equal to the potential energy of the uncracked body plus
the potential energy change due to insertion of cracks. In a similar
way they obtained expressions of the elastic moduli of a saturated and
partially saturated cracked body.

Increasing the number of cracks in the body décreased the shear
modulus and compression modulus of the cracked body. For dry cracks
this decrease was larger than for saturated cracks.

Kuster and ToksSz [13] formulated the problem of wave propagation
through a two-phase medium in terms of a scattering phenomenon.

They considered the scattering of a plane wave in a solid matrix
by a spheroical inclusion. By considering the scattering effect of N
spheroical inclusions they derived the composition laws for the effec-
tive elastic constants and density‘(in terms of the elastic constants
and densities of the matrix material and the inclusions). Multiple
scattering effects were neglected and hence the model is limited to

two-phase media where the concentration of inclusions is small.
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They stated that the essential result is that the effective elastic
moduli depend not only on the concentration but also on the shape of the
inclusion.

Numerical results showed that the effective elastic moduli- and
compressional and shear velocities decrease with increasing concentration
of inclusions. Flatter inclusions have a greater effect than the rounder
inclusions. |

Garg et al. [l4j treated the wave propagation in saturated porous
media in the framework of the theory of interacting continua.

They considered a one-dimensional problem and formulated four
equations: two momentum balance equations and two constitutive
equations. The interaction forces were assumed to be proportional to

the velocity differences of the phases.

They considered the harmonic solutions, specifically a step-loading
in the velocities of the phases at the boundary and were able to con-
strﬁct closed-form analytical solutions with Laplace transforms for two
cases: small and strong viscous coupling between the phases. For weak
viscous coupling two propagating discontinuities emerged from the
boundary and they decayed as they propagated. For strong viscous
coupling the two wave fronts coalesced into a single front and the phase
velocities were almost equal.

Nikolaevskii [15,16,17,18] studied shock-wave propagation in soft

water-saturated soils.
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He established five equations for the linearized case, including
a porosity perturbation. The skeleton and the fluid are linearly
elastic and the grains are compressible. The interaction forces are of
the Darcy type. Inertia coupling as in the Biot theory is omitted.

In studying strong shock waves he made the assumption that the
pressures in the phases are equal. Then he studied stationary shocks in
the framework of his nonlinear equations. These consist of: two mass
balance equations, one for the fluid and one for the grains; a
momentum equation for the fluid and a momentum equation for the mixture;
two nonlinear constitutive equations, one for the fluid and one for the
grains.

He concluded that stationary shocks can exist in a coordinate
system that moves with the speed of the shock. The shock wave consists
of an initial jump in the variables, after which the phase velocities
are in general unequal. Behind the jump the phase velocities equalize
gradually.

In the linearized equations.the stationary shock wave form is
impossible. Hence a certain shock strength is needed in order to

zenerate the stationary profile.

Lyakhov et al. [19,20] studied the waves produced by spherical

charge in saturated soils.

They concluded that two mechanisms of compression exist simultan-
éousiy: transmission of the load through the contacts of the grains
and transmission of the load through the compression of air, water and
the grains (compression of a three-component medium). For large loads

the soils behave like a three-component medium.
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By writing down the constitutive equation for the components in
the free state, Lyakhov constructed a constitutive equation for a
three-component medium. By establishing the equations of motion, a
constitutive equation for the detonation products and boundary conditions
at the contact discontinuity between detonation products and the three-
component medium, they studied the wave propagation due to an explosion.

Solutions were obtained by the method of characteristics for one-
dimensional problems and problems with spherical symmetry.

The rate of decay of the maximum pressure with distance inéreased
largely with the increase in the content of the gaseous component in the
soil. The rate of decrease of the velocity of the wavefront with
distance increased substantially with an increase in air conteunt.

They stated that good agreeﬁent between experiment and theory

was obtained for very low air content.

A.2 Experimental Work

Wyllie, Gardner and Gregory [21] conducted a series of tests on

alundum bars and natural specimens of rock in order to study the wave

’

attenuation in porous media.

They used the resonant bar method and alundum specimens in order
to measure sloshing losses and compared these losses with those com-
puted from the Biot theory.

They stated th;t the attenuation of waves in a fluid-saturated
porous medium may be regarded as the sum of the loss due to relative

motion of the fluid with respect to the skeleton (sloshing) and the loss
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caused by the skeleton (jostling; due to solid friction and viscous
loss resulting from the chemical and physical effect of the fluid on the
cementing material of the solid).

Alundum was used because a large change in the elastic moduli upon
addition of fluids is avoided in that case.

They concluded that by éompressing the skeleton and by an increase
in the permeability the jostling losses decrease and the sloshing losses
become dominant. Furthermore they concluded that there is strong
evidence to support the correctness of Biot's theory when applied to
resonating bars.

Kuster and Toksvz [22] measured the velocity and attenuation of
ultrasonic waves in suspensions of solid spherical particles in fluid
matrices as a function of the concentration of inclusions.

A pulse propagation technique was used for velocity measurements.
The density of the matrix and inclusions were about the same in order
to keep the inclusions in suspension during the test.

They concluded that the wave speed in the composite medium varies
with concentration nearly uniformly if the density contrast between
particles and fluid is small. If the density contrast is large then
there is a minimum in the velocity at some concentration. Furthermore
they concluded that the attenuation of the pressure was caused by
scattering effects, absorption in the viscous matrix and anelasticity

of the filling solid. At the lower frequencies the last two effects

dominate.
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Gregory [23] investigated the influence of different fluids on the
wave propagation in consolidated sedimentary rocks by means of an ultra-
sonic technique.

He concluded that fluid saturation effects on compressional wave
velocity are much larger in low-porosity rocks than in high~porosity
rocks. This effecf‘was more pronounced at higher hydrostatic confining
pressure.

Gregory stated that the Biot theory predicts that the shear wave
velocity of dry rocks is higher than the shear wave velocity in
saturated rocks. This observation was confirmed by the experimental
data at confining pressures above 9000 psi. For low-porosity rocks at
lower confining pressures the experimental data disagreed with the
above statement.

Gregory indicated that this discrepancy might be due to the
existence of micro-cracks in and around the cementing material of low-
porosity rocks.

Hardin and Richart [24] conducted a series of laboratory tests,
using the resonant column method, in order to establish longitudinal
and shear wave velocities for different sands.

They concluded that the presence of moisture in a sand reduces the
velocity of wave propagation due to mass of the water that moves with
the skeleton, but that in some materials there is a reduction in the
stiffness of the frame due to the moisture. Furthermore they concluded

that for saturated granular materials with sufficiently large pores,

water flowed through. the pores during testing.
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Hall and Richard [25] studied the dissipation of wave energy in

granular materials by using the vibration decay method. Torsiocnal
and longitudinal oscillations were induced.

They found that saturating the specimens with water increased the
logarithmic decrement by 1.5 to 4 times that of the dry specimens.

Seed and Lee [26] studied the behavior of saturated sands during

repeated loading in a triaxial test under undrained conditions.

The load, deformation and pore pressure were measured as a function
of time.

For a loose specimen the pore pressure built up gradually during
the first cycles of stress application; however, in this stage there
was no noticeable deformation. Quite suddenly the pore pressure
increased to a value equal to the extermnally applied confining pressure
and large strains developed.

For a dense sand the pore water pressure increased gradually and
no noticeable deformation developed. After the pore water pressure
amplitude reached the initial confining pressure the strain amplitude
increased relatively slowly with increasing number of cycles.

It was concluded that the susceptibility of a saturated sand to
liquefaction as a result of cyclic loading is deterxrmined by the void
ratio, the confining pressure, the magnitude of cyclic stress or strain
and the number of stress cycles.

Castro [27] conducted a series of cyclic loading tests on dense
saturated sand samples (cyclic triaxial tests).

He observed that the axial strains were developing mainly in a

narrow horizontal zone near the top of the specimen. This zone
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consisted of an extremely loose, almost liquid sand—water mixture.
He concluded that during the cyclic triaxial tegt substantial redis-
tribution of pore water took place whenever the magnitude of the
cyclic strains reached a few percent and possibly occurred even at
much smaller strainms.

Ivanov [28] documented information on the action of explosions in
water-bearing soils and the processes occurring during compaction of
noncohesive soils.

Ivanov pointed out the different wave propagation character in
nonsaturated and saturated sand.

For dry sand or partially saturated sand, a steep front in the
pressure emerges (which was called shock wave) near the point of
explosion. After propagating into the medium, the slope of the front-
decreases and the profile of the wave expands. Finally it becomes a
seismic wave, in which the deformations are mainly elastic. Within the
zone of action of the shock wave (near the place of explosion) irre-
versible deformation of the soil takes place.

For saturated sands the wave due to an explosion was a shock wave
at all investigated distances from the place of explosion. The general
character of the wave was almost the same as in water.

Observed wave velocities for the wavefront in saturated sands were
1400-1660 m/sec. Small amounts of air (1%-4%) caused a significant

decrease in the speed of the wave front (to 200-300 m/sec).

Furthermore it was observed that in saturated sand the amplitude

of the pressure did not depend on the orientation of the transducer,
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while in dry sand there was a marked difference between radial and
lateral pressure (coefficient of lateral pressure 0.3 to 0.5).

The results of several laboratory studies were also reported.
In a tank (diameter 1.5 m, height 1.2 m), filled up with fine-grained
Volga sand, explosions were performed. Charges (1.5 to 4.5 gm) were
placed 30-50 cm under the soil surface. Saturated, loosely packed
sands were liquefied during the explosion. It waé observed that the
pore water pressure increased instantaneously to maximum values during
the explosion. After liquefaction took place, compaction of sand with
a gradual decrease in excess pore-water pressure and the outflow of
vwater to the surface of the sand took place.

For an initially dense packing of the sand no liquefaction
phenomena, no rise in pore pressure and no compaction were observed.

Akai, et al. [29] conducted studies on stress wave propagation
through saturated cohesive soils by means of a triaxial shock tube.

By connecting a shock tube to a triaxial chamber which contained
a cylindrical saturated clay specimen, they were able to control the
loading condition. The input waveform (pressure) was one with a steep
front, after which a gradual decay took place. After propagating into
the medium the wavefront spread out. Stress and strain gages were
imbedded in the specimen in order to obtain stress-strain curves due
to stress wave propagation.

At a strain level of 10'_3 large hysteretié curves (in stress-—
strain relationship) were observed, while no permanent strain was

created during the test.
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It was concluded that below a stress level of 20% to 25% of the
triaxial compressive strength, the soil behaves elastically or visco-
elastically.

True [30,31] conducted a series of tests at the Naval Civil
Engineering Laboratory in Port Hueneme.

A vertical pipe (diameter 8 inches, length 12 feet) waé connected
to a blast simulator. Sand was poured into the pipe. The walls of the
pipe were coated with vegetable shortening and a layér of thin rubber
sheet isolated the shortening from the sand in order to reduce wall
friction. A 12-mesh-per-inch screen 7.8 inches in diameter was put on
top of the ion surface. Pore pressure meters were instailed in the
wall of the pipe. At tﬁe same height soil pressure gages were buried
in the sand. |

The top of the sand column was loaded due to an explosion in the
air. The loading (air pressure) had the characteristics of a steep
front and a slowly decreasing tail.

The response of the pressure meters at 6 inches below the sand
surface for the case the sand was flooded showed a jump in the water
pressure similar to the loading (air) pressure; however, the calculated
effective stress showed a different pattern. After'an initial positive,
sometimes small, jump the effectivevstress decreased and stayed around
zero reference stress (equal to the overburden sta;ic stress). See
Fig. I and Fig. II. Negative reference stressés were observed and there
were indications that a quick condition existed in some cases (e.g.

migration of pressure meters).
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Further it was stated that the water pressures measured were
probably realistic, but the effective pressures might be affected

by wall friction.

Perry [32] studied the effect of blasting on a saturated sand by
the movement of inclusioms.

A tank (diameter: 4ft and height: 2ft) was partially filled up with
a nearly saturated sand or a dry sand. A charge in the remaining
portion of the tank supplied the loading.

It was concluded that liquefaction, as evidenced by a loss of shear
strength leading to bearing capacity failure, was found to occur in
laboratory one-dimensional plane wave loading tests (from movement of
inclusions) on nearly saturated and dry sand.

Covering the blast-loaded top surface of the sand with a membrane
prevented substantial movement of the inclusions. When the top surface
membrane was present, the sand surface moved downward about 0.3 in.,
but when the membrane was not present the sand surface moved upward

about 0.4 in.
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B. Dynamics of Porous Media,

One-Dimensional Compression

In this chapter we will establish the field equations. The
model is a continuous one and is intended to represent the prototype
in some important aspects. Basic assumptions will be stated. We will
pose the non-linear balance laws and constitutive equations. ' For
further analyéis the field equations will be linearized.

Obviously the model forms only an approximétion to the proto-
type (saturated sand). However the study of this model will generate
some useful information. |

One of the aspects that is not properly modelled is the fact
that the real material consists of discrete particles, which are
separable. This and other aspects of the behavior will be studied

in another, experimental, model.

B.1 Basic Assumptions

The model consists of two media; a fluid in which is immersed
a skeleton of solid grains. The fluid occupies nV and the solid
occupies (n~1) V of the total volume V. We call n the porosity. The
skeleton represents a granular material with constant mass density pp.
The fluid represents a compressible fluid with density pw.

The constant denéity of the solid material and variable density
of the fluid is chosen because quartz is 30 times less compressible

than pure water (Whitman [33]).
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The value for the compressibility of the fluid represents that
of the real fluid located between the real grains.

For the equation of state for the skeleton we assume: n = g(0),
where 0 is the effective stress (Scott [34]). Hence we assume that
the above relation does not depend on the fluid pressure. We consider
the grains to be incompressible, inert and without cracks.

The real particle configuration (skeleton) will be unable to
withstand substantial tensile stresses, therefore we will assume that
the skeleton is prestressed at o and we are interested in the changes
with respect to 00.

For the equation of state for the fluid we assume: pw = f(p),
where p is thep;essure in the fluid. We neglect temperature effects.

Separately we pose the momentum conservation equation and the
mass conservation equation for the fluid and the skeleton.

The fluid surrounds the grains, except at the small contact areas
between the grains.

Relative movement between the skeleton and the fluid is assumed
to give rise to forces R.

After linearization of the equations these forces are assumed
to follow Darcy's law (Verruijt [35]).

The averaged velocity of the fluid particles in an elementary
volume is w and the averaged velocity of the skeleton in an elementary
volume is v.

The mass of the fluid and the mass of the skeleton are assumed to
be npW and (l—n)pp respectively in the momentum balance equations.

The independent variables are distance x and time t.
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B.2 Field Equations

The field equations consist of the mass conservation equations,
the momentum conservation equations and the equation of state for both

constituents.

Mass conservation:

57 @) 0))) + 5= (o () W) = 0 (B1)
o_ 0 =0 B2
3¢ (mo) +5- (b nw) = (B2)

Equation (Bl) represents mass conservation for the skeleton and
. equation (B2) represents mass conservation for the fluid.

Momentum conservation:

ow ow y _ __ 9p _
n pw ot tw 0x ) = 9% R (83)
ov . - 9vy__30 .. | 9p
(1-n) pp (§E~+ A o (1-n) e TR (B4)

Equation (B3) represents the momentum conservation equation for
the fluid. Equation (B4) is the momentum conservation equation for the
skeleton. The term (1-n) %ﬁ-is added because the fluid surrounds the
solid particles. The term R represents forces due to relative move-
ment of solid and fluid; hencg these terms are of opposite sign in
(B3) and (B4).

Both the pore pressure p and the effective stress 0 are assumed

to be positive when compression of their respective phases takes place



26

and hence the gradients of these quantities appear with negative signs
in (B3) and (B4).

Equations of state:

Py = constant (Scott [34]) (B5)
.= £(p) (Bear [36]) (B6)
n =

g(0) (Terzaghi [37]) (B7)

Equation (B6) states that the density of the fluid 0, is a function of
the pore pressure p and equation (B7) states that the porosity is a
function of the efféctive stress.

Hence we have six equations:(Bl), (82), (B3), (B4), (B6) and (B7)
and we have seven unknowﬁs: Oy n,.G, P, V, w, R. These field
equations are non~linear because they contain products of the variables.
We will linearize the field equations around an initial state in order
to get some insight by solving these linearized equations. An
additional equation (Darcy's law) will be added in the linearized
case in order to specify R.

We will now rearrange the equationé and linearize them.

From (Bl) and (B5) there follows:

on ov. . on _
- 3% + (1-n) e v 3% 0 (B8)
Equation (B7) gives:
on _ dg 90 (B9)

9t 90 ot
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Substitution of (B9) into (B8) gives:

_3g 30 L A -/
o s T AT g TV 0 (B10)
From (B2) it follows that
30 ap
on w ) W o_
P, §E~+ n —§E-+ L B (nw) + nw el 0 (B11)
From (B6) we conclude:
ap,
w _of 9dp
ot op ot (B12)
op
_w _29f 3p
9Xx J0p 9ox - .(BlS)

substitution of (B12) and (B13) into (B1ll) gives:

In of 9p 9 9f 9p _
w 3T ™ Fpact Pu 5% (W) Foowgs 5o =0

Hence:
ot ot
o, P p, 9 % .
T +n 5 T + N (nw) + nw o Ox 0 (B14)
W W
adding equation (Bl4) and (B8) gives:
ot ot
9p 9p 9 op  9p
0 Bt + N (aw) + nw %
w W .
+ (1n) X v By (B15)

9%
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The above equations are non-linear because they contain products of

the variables n, p, W, Vv, O and pw.

We now linearize the equations in the following way:

P=PO+P1
W=WO+W1
v=v0+v1
U=00+Ol
n=n0+nl
pw=po+pl

(B16)

where the variables with suBscript zero represent constants and the

variables with subscript 1 are the perturbed values.

Now we note that:

9f
p &
pW pWO

where o is a constant.

Substitution of (B16) and (B17) into (B15) gives:

o(p,+p )
1 %o
(no + nl) o) ot
WO .

P
+ (wo+wl) P (no-l"nl)

+ (ngny) (g o

P
+ (n0 + nl) . (w0+w1)

(B17)
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+ (1-n.-n.) 3 (v +v.)
T 01 ox o 1

9 _
- (ygtvy) g5 (agtny) = 0

Hence to the lowest order:

I T
0 p ot . o 0x
W
0
on op
1 o 1
vy 3% T Y5 3% (B18)
w .
0
v on
- 1 1 _
+ Amg) 5"V Tax O
We further assume that:
WO = 0 (B19)
VO = 0

substitution of (B19) into (B18) gives:

op ow v
o 1 1 1 _
n, o, T + ny = + (1 no) ol 0 (B20)
o
We put:
o _ 1
ST % (B21)
W W

0
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where Kw is the compression modulus of the liquid.

From (B20) and (B21) there follows:

ow. 1-n oV

1 0 1 _ 1 9p
3= T h 5% - T K Bt (B22)
0 w

Equation (B22) can be interpreted as follows: outflow of grains and
outflow of fluid in an elementary cube is compensated by a drop in

the fluid pressure. This is usually called the storage equatiom.

Due to the linearization process:

9 (B23)

where B is a constant.

Substitution of (B16), (B19) and (B23) into (B10) gives:

d (00 + ol)

d
- B ot 3w (OFvy)

+ (l—no—n1

9
- (0+Vl) . (n0+nl) =0
Keeping the lowest order terms gives:

801 Bvl 3
"B A = 0 (B24)
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We put:

= (B25)

where Kp is the compression modulus of the solid material.

From (B24) and (B25) it follows that:

o v
1 19y
"% At T (B26)

p

Hence in the linearized case the skeleton can be considered as a

linear elastic material, with the following one dimensional consti-

tutive relation:

where & is the strain of the skeleton.

Differentiating of the above expression with respect to t gives
equation (B26).
Linearizing equation (B8) gives:

3
- 5 (gtny) + Qmng=ny) 5= (vghvy)

3
~Gvgtvy) 5z (Rginy)
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Keeping the lowest order terms and putting v0=0 gives:

on Bvl

1 _
-t Umg) 53 =0

Hence once we know vl(x,t), we can calculate ny from the above
equation and the initial condition for n, -

Substitution of (B16) and (B19) into (B3) and (B4) gives:

(g (0, 40, ) [%; (O + (Ohr) 3= (owl)]
= - (n ) 2 (pytp,) - R
ot 3x (PotPy
(1-n.-n.) p [ﬁ— (0+v,) + (OFv,) o (O+v )] -
0 17 "p|ot 1 1 ox 1
- -2 (640, - (-n.-n,) > (p4p,) +R
9% 0 1 0™ 3x ‘Po'P1

Keeping the lowest order terms gives:

Bwl Bpl
"o Pu, o T Tx T Ro (B27)
(1-n,) p Ejl-= - ESL - (1-n,) Efl-+ R (B238)
0 p ot 0 0’ o9ox 0

Now we assume that RO is determined by Darcy's law:

k' 9Py
pwog ox

n, (wl—vl) = = (Verruijt[3s]) (B29)
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where k' is the seepage coefficient and g is the gravitational

acceleration.
Hence:
3p Dw g
R. = n __:!: =n 2 __.__0___ (W - )
0 0 ox 0 k! 11
We put:
pWog 1
k
Hence: 2
%o
RO = —if-(wl—vl) (B31)

Substitution of (B31l) into (B27) and (B28) gives:

oy 9Py n02
%o 2 T T (wy=vp) (832)
Bvl 301 Bpl nO?
(l—no) pp 355 T 3% (l—no) P + = (Wl—vl) (B33)

Equations (B32) and (B33) form the linearized momentum balance
equations for the fluid and the skeleton respectively.

The coupling terms due to relative movement of fluid and
skeleton are given by the last term in (B32) and the last term in
(B33).

The third expfession in (B33) forms a coupling term due to

the fact that the fluid surrounds the grains.
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From now on we only use the perturbed variables and we put:

Wl =W
Vl = Vv
P; = P
o, =0
n = h. = constant
DWO = pw = constant

Hence (B22), (B26), (B32) and (B33) become:

. 2
nop %%-= - n %% - %? (w=v) (B34)
(1-n)p v _ _ 39 _ (1-n) e + E—z— (w—-v) (B35)
v p odt ox n x k
9w (I-n) ov _ 1 3p
5%~ a9 K, ot (B36)
o )
a_:; - - fcl“ .5% (837)
P

The above four equations form four linear field equations with
four unknowns p(x,t), o(x,t), v(x,t) and w(x,t).
These equations are equal to those of de Josselin de Jong [4 ] and
the ones used by van der Kogel [38].
Neglecting the mass coupling and considering the case of incompressible
grains and low frequency range, the Biot equations [ 2] for one dim—

ension form the same set of equations as the above equations.
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Considering the case of incompressible grains in Nikolaevkii's
equations [15] for one dimension, Nikolaevskii's equations form the
same set of equations as the above equations plus a linearized equa-
tion (B8).

The field equations (B34) to (B37) are now in a simple form and
the constants are easily interpretable. We stress here the fact that
the assumptions (B5) and (B7) give rise to considerable simplifications
in the two-phase theory. We consider these reasonable assumptions
for a saturated sand.

The generation of some familiar results in soil mechanics with
field equations (B34) to (B37) will be given in Appendix V.

Because the linear theory is derived from the non-linear balance
equations and the non-linear constitutive equations for the two
phases, we will be able to test the validity of the linearized field
equations (B34) to (B37).

Biot [ 2] and de Josselin de Jong [ 4] used only the linear
theory. Liou's field equations [10] were motivated partly from non-
linear balance equations and partly from linear constitutive equationms.
Nikolaevskii [39] formulated non-linear balance equations and linear
constitutive equations. In other work [15] he used non-linear con-
stitutive equations for the grains and the fluid.

In the case pp is not constant, the non—linear theory becomes
more complicated. An additional equation has to be formulated in
order to obtain an equal number of equations and variables. Herrmann
[40] posed a p-o relation (for dry materials: pressure-porosity

relation) and Garg et al., [41] posed a porosity-partial volumetric



36
strain relation. Garg et al., [42] used the theory of interacting
continua in order to study wave propagation through saturated rocks.
(tuff) in the framework of a non-linear theory, including the above

posed relation.

Introduction of gravity forces gives:

2

dw 3p _n”
npw Y k(w-v)+npwg | (B38)
(1-n) ﬁ“—ﬂ—(l-)ﬁ+22-(—)+ (1-n) (839)
1’lppat“ ox ™ Bx k Y ppg

Sw v _1 3

n8x+(l n) o KW 5t (B40)
ov _ _ 1 3o
ox Kp ot (B41)

This set of equations is the same as those of Liou [10].
It has been pointed out by van der Kogel [38] that the field
equations with gravity forces can be reduced to field equations

similar to the ones without gravity forces. If we introduce:

p+nop g (B42)

e}
Il

Q
*
n

o + (1-n) pp g (B43)
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then the field equations (B38) to (B41l) reduce to the form of field

equations (B34) to (B37), with variables p*, 0%, v and w. We note
that introducing p* is similar to the concept of 'head' (Scott [34]).

In the next chapters we will construct solutions of the field
equations (B34) to (B35) byrwell known methods.

First we will consider harmonic solutions. These are of
engineering interest mainly in the lower frequency range (<100 Hz),
e.g. vibrating foundations. Further the harmonic solutions contain
valuable information, because due to the linearity of the field
equations we caﬁ by superposition construct sélutions to a lérge
number of boundary value problems. Alsc the harmonic solution gives
us information about the modes of vibration and‘hence we attain
physical imsight.

In addition we will employ the method of characteristics for
formulating the solution. The characteristics carry information from
the boundaries into the fiéld and hence the method is especially
appropriate to study transient probléms.

Finally we will study the propagation of discontinuities.
These are important when rapidly changing boundary conditions are
involved, such as caused by blasting or during certain earthquake
excitations.

We will establish the connections between the harmonic solution,
method of characteristics and the propagation qf discontinuities

and give a physical explanation.
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C. Solution of the Field Equations,

Harmonic Response

The field equations (B34) to (B37) will be solved for harmonic
response. De Josselin de Jong [4 ] showed that if the parameters have
the practical values of wet sand and the frequency is lower than
1000 Hz, certain simplifications can be made. A derivation of his
results will be included for completeness.

The solution will be put in the form of transmission matrices,
which are especially convenient for problems with layers and for
numerical treatment. We will use the transmission matrices in
order to establish the eigenfrequencies of a one-dimensional layer.

Let us assume:

iw
TR

v(x,t) = VO o elwt (C9)
iw
< *

w(x,t) = W e 1ot (C10)
iw
e

p(x,t) = PO e elmt (c11)
iw
< *

g(x,t) = UO e elwt (C12)

0 0 0 0
where ¢ is the wave speed and where V', W, P and 0 are constants

and where w is the frequency.

Substitution of (C9) to (Cl2) into (B34) to (B37) gives:



(n p, 1

This gives:

w +

(

2

n

k

2
k

2

1-n)

E.) W

n
T v

2

39

2

0 n 0
- v

0 2

-
&

+ (1- i
( n)pp

+ 1'1-—:’:—le PO
c

0

n . 0
n_ - : +
+(k+(1n) pplw)v

(C13)

(C14)

(C15)

(C16)

(C18)
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2
L2 [n(l—n) p, K, + (I-m)"p K +np K

P
n K K
w P
K +nKk
42 W P .
ﬂnlc( n K K >]
w p
" C4 (1-n) pP pw . Py + (1-n) pP = 0 (c19)
K K iw k K K
p w P w
We can write equation (Cl9) as:
al' c4—62 c2+1=0 (C20)

where:

1/2
(1-n) o P npP + (1-n) P
2 P W n \ p
0‘“[ K K +imk(- K, K )] (c21)

Ppw

2
. [n (1-n) pp R+ (I-n)" o K _+mn 0, KP

B n K K +
P W
n KW +n Kp 1/2

+iwk <nK K ) (c22)

P W

From (C20) there follows:
1/2
2 4 (g ,4)

2.8 = f“'o‘ (c23)

20
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Practical values for wet sand are: (Terzaghi [37], Barkan [43],

Dorsey [44].)

3

k < 10—9 m sec
kg

P = 2.5 103 kg/m3

lO3 kg/m3

o)
Q
-

2
2 _109 N/m

Il

K =~ 2 104 kgf/cm2

2

2
K = 10 kgf/o::m2 107 N/m

n=0.25 to 0.50

Now consider a two-phase medium with the above properties.

We assume:

w << 105 rad/sec

This will imply that pw kw <<1, which is required for further
approximations.
For further analysis we will consider:

w < 100 Hz

Substitution of (C24) to (C30) into (C21) and (C22) gives:

Re —>> 1
4o

(C24)
(C25)
(C26)

(c27)

(c28)

(C29)

(C30)

(C30a)

(C31)
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From (C23) and (C31) follows:

1 2 B
7 20 2
= C =
20&2 o

§3+
2
Q

Substitution of (C24) to (C29) into (C21) and (C22) gives:

4
f‘%- <<1
B
From (C33) there follows:
4 1/2 4
40, 200
(l—'—z— NI-T
B B

Q
™
N
I
w0
N
NN
w0

(C32)

(C33)

(C34)

(C35)



From (C21), (C22) and (C32) it follows that’

_ 2 1/2
n (1-n) pp Kw + (lfn) pw Lw + n o, KE L0 KW +n K}2
n K K iwnk nK K
c. =% = w P w_ P
! (I-n) p_p np + (1-n) p 172
W ' p + n w b
K K iw k K K
w p w P
(C36)
From (C24) and (C30) follows:
o, wk <<1 (c37)

Substitution of (C24) to (C29) and (C37) in (C36) shows that the
imaginary parts of the denominator and the numerator are very large

with respect to the real part of the denominator and the numerator

respectively.
- K 4+n K 1/2
so: n w P -
) . n K K
+ iwk W p
=T (C38)
1 n n‘pw+(l—n) pP
[iwk K K
w P

(K /n + K >1/2
=+ -V P
“\n Py, + (1-n) pp

From (C21), (C22) and (C35) follows:
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C2=:’: 1 PP
2 »
[n (1-n) pp KW + (1-n) P, Kw +n P, KP
n K K
w P

1/2

2 Kw+n KP ] (39

ik \n K K J )
v P

In a similar way as for ¢y we get:

1/2 .k 1/2
1 + MD‘H
= + = -
€2 T = K +1nK - 11 1 (C40)
LU P [
ink n Kp K W P

Inspection of (C38) shows that for practical values of the
parameters and the given frequency range the waves with wavespeed
c, are almost undamped, while inspection of (C40) shows that the

waves with wavespeed c, are highly damped. For the waves propagating

2
with s the bulk material can be viewed as having a compression
modulus of KW/n + Kp. This result agrees with the Gassmann equation
[45] if we consider incompressible particles. His equation is fre-

quently employed in the interpretation of seismic data on sedimentary

material (Brown and Korringa[461]).
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Consider now '"'practical” values for wet sand:
K =~ 107 N/m2
p
K ~ 210

N/m

-9 m3 sec
kg

0, = 2.5 10> xg/m>
P, = 103 kg/m3

Substituting the above values into (C38) gives:

For: n=0.3 cy = 1800 m/sec

n=0.5 cy R 1500 m/sec

We note that these wave speeds are higher than the speed of sound in
water (1440 m/sec). A lower porosity results in a higher wave speed.
The above wavespeeds agree with observed compression-wave-propagation
velocities from seismic data in saturated soils. (V5000 ft/sec,
Richart et al. [47].

In Chapter E we will derive the following expression for the

wavespeed Cyt
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1/2

(‘*’ka 2)

N
N 1=

Substituting the "practical values for wet sand in the above

expression gives:

For: T = 1 sec cy < 0.18 m/sec
T = ;L-sec c, < 0-57 m/sec

10 2
T S sec c, < 1.8 m/sec

100 2

where T is the period of vibration.

Hence we see that the wavespeed <, is very small with respect
to c,.

Further in Chapter E we will derive the following expression

~ for the damping of the waves propagating with speed Cyt

2 k Kp)l/2

After substituting the '"practical' values for wet sand we obtain the

following values for the damping:

For T = 1 sec: damping < e~35 x
so: X = 10—2 m = e—()"35 = 0.7
x=10"1 0 = 37 = 0.03
For T =-§6 sec: damping <em110 X
so: X = 10—2 m g,e-l.l - 0.33
x =5 10-2m ﬁ»e~5'50 = 4.10—3
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Hence we see that after a couple of centimeters from the boundary,
the waves propagating with speed c, are damped out. It should
be emphasized that these calculations are given as an example.

From (C38) and (C40) follows:

0 %%X 0 ~%X o%x 0 -‘i:—zx (e
W(x) = Wl e + wz e + w3 e + W4 e
V(x) = Vl e + V2 e + V3 e + V4 e
iw iw iw iw
. -C-I x . - E-l- x . E—;x . - -C—; X (C43)
P(x) = Pl e + P2 e + P3 e + P4 e
Ll - v - e
o(x) = Glo e 1 + 020 e e + 030 ec2 + 040 e “2 (C44)

0 0 0 0 0 0 0 .0
where (W ", W, , Wo™, W), (V; ', V, , V3°, V,7),

0 0 0 0. , 0 0 0 _0
(Pl 2 P2 b ] P3 b P4 )3 (01 b 62 5 03 b3 04 )

are constants.
The functional relation between WO and V0 is established as follows:

Elimination of PO from (Cl3) and (Cl5) gives:

2 2
(n o iw +BE—) Wm0y

n_:.';ul (..iKWO_:‘_L.:I}_lK VO)..—:() (c45)
(&4 C W n C



43

or:
in W 0
- = -k 2
Cx e W
c
l-n w in 0 _
+ (- n Kw - * k yvo=0 46y

c

From (C38) and (C46) follows:

np_+ (1-n) p
.0 _ W Ap) 0
Fig+o,0-K, 0 a2/ ¥ (c47)
w p
np_ + (1-n) p
,n  1-n W 7 p 0
(1k + =/ K ® Kw/n T Kp > \ (ca7)

In order to see which terms are of first order we substitute (C24) to

(C30) into (C47). This gives:

Hence:

V & W (C48)

Hence the waves which travel with wavespeed = have approximately the .

same phase velocities.

From (C48), (C41) and (C42) follows:
wl P~ V1 (C49)

W, RV (C50)
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If ¢ = c,, then from (C46):

V=YW (C51)

where:

2
Y = - e Tn (C52)
n w 2 k
€2
From (C51) follows:
0 _ 0 :
V3 = vy W3 (C53)
0 _ 0
V4 = Y W4 (C54)
Substitution of (C24) to (C30) into (C52) gives:
Y & - -i% (C55)

Hence waves which travel with wavespeed <, have phase velocities

that are opposite in sign. So when the skeleton moves up, the fluid
moves down. Because the viscous forces working on the fluid and the
skeleton are very high in the case of substantial relative velocity,

this wave damps out very rapidly.



50

The functional relation between 00 and WO can be determined as follows:

From (C16) follows:

K
0= - 2 vo (C56)

Hence from (C56), (C49), (C50), (C53) and (C54):

K K
c=c : 00=00=;——-B-V0=——P-W0 (C57)
1 . 1 cl 1 =1 1
K K
c=2c : GO=UO=+-—P~VO=—-RW0 (C58)
1 2 c, 2 c 2
1 1
K K
= - 0 = 0 ::--—R 0 = —l 0
c ¢, : o} 03 , V3 e Y W3 (C59)
K K
- - . 0 _,0_,Py0_p 0
c = Cz . g = 64 _+C V4 P Y W4 (C60)
2 2
Now we determine the relation between PO and WO.
From (C15) follows:
0 Ky 0, 1-n 0
P =—-E‘i(w + == (c61)

Now from (C61), (C49), (C50), (C53), (C53) and (C54):
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K K
_ 0_,0_ "w 0,1=m _ 0 W 0
c =y P o= Pl = (wl + — wl ) p— Wl (C62)
1 1
K K
_ .0 _ 50w 0, 1-n 0, _ W 0
¢ = - P =P, =+ 2 (w2 + =W, ) =+ W (C63)
1 1
K
_ . 0__o0_ W 1-n 0
c=+c,t P =Py o= 2, 1 + — Y ) W, (C64)
cm-c: POop0. Swo,lmo g0 (C65)
2° 4 c, n Y%
So we have established the relationship between the constants (Wlo,
0 0 0 0 0 0 0 0 0 0 0
Vl,Pl,Gl),(Wz,VZ,PZ,OZ), (WB,VB,PE},GB)and

0 0 0 0
W, » V, >, 00).

Substitution of the above relations into (C41) to (C44) gives:

_ . 0 1 0 1 0 2 0 2
W(x) = Wl e + W2 e + W3 e + W4 e (C66)
iw iw iw 1w
o x - % s il
V(x) = Wlo e 1 + WZO e 1 +Y WBO e 2 + YWAO e 2 (C67)
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ET ETT i
K c K c K
P(x) = -2 wOe ! vy 0. 1 _ ¥ g dmmyy 2 0
nc 1 nc 2 c n 3
1 1 2
_iw o
K c
+ 2 e By y e 2 (c68)
A n 4
iw iw iw
~— X - — X F"
K 0 €1 K 0 €2 K 0 2
o(x) = - L2 W e +-£2 w'e - —E-Y W e
c 1 c 2 c 3
1 1 2
iw
K e
+Pyy0 o 2 (C69)
c, 4

The constants Wlo, WZO, W3O and WAO can be determined from

the boundary conditions.

From substituting (C66) to (C69) into (Cl) to (C4) we obtain:
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i —.Q“).. X "i _C(i)— X 1 —x
o 1 0 ! o 2
W(X,t) - wl e + I"]z e + W3 e
-i -cﬁJ— x\ dot
rwle % /e (¢70)
i —é& X -1 E@—x i ’(‘:@" X
1 0 1 0 2
V(x,t) = Wl e + Wz e + Y W3 e
-1 —c@—- x> 1wt
0 2
+ v WA e e (c71D)
1 -—({L X -1 —O‘J— X
K c K c K
B G AR 1, % 0 I ¥ (g4l
px.£) = ( nc, 1 © the Myoe o, )
1 1 2
K Y b i w X)
;L s
c K c iwt
0 2 W 1-n 0 2
Wi oe + <, a+ == ) W, e e (C72)
K + Fw“ * x —* 'c@” X K i Ew‘ x
O‘(X,t)—(——f—wloe 1 +—RW0e 1 -——-EYWOe 2
: c 2 3
1 1 2
w
K -1 —x iwt (C73)
+ ER Y Wao e <2 >e
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The set of equations (C70) to (C74) forms the solution of
the field equations (B34) to (B37) if the parameters have the values
of those of wet sand and the frequency is in the low range (copditions
(C24) to (C30)).

Thefe are two kinds of waves, one with wave speed ¢y (slightly
damped) and one with wavespeed ¢y (heavily damped).

A detailed discussion about the solution and the physical

implications will be given in Chapter E.
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D. Construction of the Transmission Matrices

In this chapter we will construct the transmission matrices
for the system (C66) to (C69). The problem will be approached as an
input/output system, with the two stresses 0 and p and two velocities
w and Vv as input and output variables. The transmission matrix con-—
nects the variables at the two sides of a system of finite length or
it cénnects thé variables at the boundary for a system of infinite
length.

The presentation of the solution in system form is especially
convenient for solving a problem with layers numerically (Pestel and
Leckie [48]).

We will use the transmission matrix for a system of finite
length in order to generate the eigenfrequencies of a one-

dimensional layer.
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D.1 Construction of the Transmission Matrix

fora System of Finite Length

We put:

wlo + wzo = A (D.1.1)
wlO - w?_o =B ~ (D.1.2)
w30 + w40 =C (D.1.3)
w30 - w40 =D (D.1.4)

Substitution of (D.1.1) to (D.l.4) into (C66) to (C69),after

some algebra, gives:

W(x) = A cos-%ji + iBsin®® + C cos®X
1 €1 ¢
+ i D sin 2X (D.1.5)
c
2
w
V(x) = A cos = + iBsin2E + yCcos X
c c c
1 1 2
w
+yi Dsin—c—’i (D.1.6)



P(x)

o (x)

K

———-‘i‘r-Bcos-(g-)i-—iz—%~ Asin%—-éﬂ(l+‘1i£Y)Dcos%
ney 1 1 ‘1 © )
K
LW 1- [:4
- i = 1+ — Y) C sin - (D.1.7)
2 2
K K
—E—E BcosQ—)E—l?:B Asin%—?RYDcos%—E
1 €1 1 €1 “2 2
K W
-i —C—E- ‘Y C sin ———)—{- (D.l.S)
2 €2
At x= 0, (D.1.5) to (D.1.8) becomes:
w(o) = + C (D.1.9)
vV(0) = + yC (0.1.10)
Kw Kw 1-n
P(0) = B - @+—WvD (D.1.11)
1 2
K K
o = -2 3 -2yp (D.1.12)
€1 €2

57
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Hence:
¢ = W) - V(0) (D.1.13)
1-y
_ Y _W(0) - v(0) b1
A = (D.1.14)
KW
Kp P(0) ~ o o (0)
D = N - (D.1.15)
K X
W 1-
ST AT Ty
2 2
1-n
- K v P(0) + K 1+ - Y) o(0)
B = -l (D.1.16)
K K K K
pr_pw(l+l—nY)
n c C
1 1

Substitution of (D.1.13) to (D.1.16) into (D.15) to (D.18)

gives W{x), V(x), P(x) and 0(x) in terms of the constants W(0), V(0),

P(0) and 0(0).
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This substitution gives after some rearrangement:

WX Wx
Y cos — ~ €08 —
¢y c,
W(x) = — W(0)
- .CcOos — +coszw—§
1 2
+ v vV(0)
K K
—E-P-y31n%§+z—asin-—
2 1 1 2
+ i 'KWK Kw ln—-— P{(0)
e Y os (“*;Y
172 1 ™2
KW 1~ W
+— (1 +—7Y) sin — - —— sin —
c n c. n c
2 2 1 2 o (0)
TR X K K n
R B 1 ©2

(D.1.17)
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Y cos Wx Y cos wx
€1 €2
V(x) = T w(0)
- cos ox + Y cos &
cy <,
+ ) v(0)
K K wx
YE_RSinE*_YEP—SlnE—
. 1 2 2 1
X X K K P(0)
p_w p W <l + 1-n Y)
nc, ¢, ¢y ¢ _
K
c—w<l +-];—n'Y)Sln %}—{ ~Y—= sin =
2 1 €1 2
+ i o (0)

(D.1.18)
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K K
Y Ysinin—}i+l <l+}-—Y)51n9)-}-{—
c, n c c
1 1 2 2 W(0)
Y -1
Kp wx 1- wx
e sin C—l—E—P— (l+————Y s1n§
2
— v(0)
K K K
cpc Ycosc%—-CW—CP—<]_+-l——--'Y)c:os;:-3E
1 2 1 1 72 2 ?(0)
pr KW_IER 1-n
nc, c Y—E—c (1_‘——11——Y
1 72 1 72
KW - wx KWKW < - )
1+ =—Y)cos — + -———— (1 + = y]cos —=
1 2( ) 1 "% %
KWK KwK 1-n
e el (“TY)
1 1 72

o (0)

(D.1.19)
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-E Y sin .S Y sin =
cq cy e, c,
o(x) = - i v w(0)
K w K
——71-)— sin — + -2y sin ==
1 1 %2 2
+ i T o1 V(0)
K K K K
cp Cchos—— -E-E—CRYcos——
1 2 1 1 2 2
* K Kw K KW 1-n PO
el il (1 T Y)
1 %2 ‘1 &
K K - . K K oy
- Cp <1+—-—EY)cos o + =B Y cos —
N €1 % 1 "% % €2 o (0)
KW K Kw K 1
e Yoo e, \(Ut e Y)
1 %2 1 %2

(D.1.20)
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WD Y{eo)
P(o) S0

[Tl

X L

1

WL V)
PL) L)

FINITE SYSTEM

FiG. |
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The equations (D.1.17) to (D.1.20) form the input/output

system, which we can write in short as follows:

W(L) = A W(0) + B V(0) + C P(0) + D o(0) (D.1.21)
V(L) = E W(0) + F V(0) + G P(0) + H ¢(0) (D.1.22)
P(L) = K W(0) + L*V(0) + M P(0) + N ¢(0) (D.1.23)
o(L) = Q W(0) + R V(0) + S P(0) + T o(0) (D.1.24)
We call A B ¢ D] the transmission
matrix.

b -

Hence we have the piéture shown in figure (1 ).

The input/output system (D.1.21) to (D.1l.24) comnsists of
four equations with eight unknowns (W(0), P(0), V(0), a(0), W(L),
P(L), V(L), o(L) ) and gives the relation between the unknowns at
x=0 and x=L

Four unknowns have to be described on the boundaries in

order to solve the system (D.1.21) to (D.1.24).
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Matrix for a System of Infinite Length

In this system there is no reflection, so we consider only the

incoming waves.

W(x)

V(x)

P(x)

o(x)

i 1l

=8 P

ol

Then the equations (C66) to (C69) become:

|

il

€1

0 +
0 +
K
0+—W(1+———l—n
Cc ] n

iw
- x
2
e
iw
- X
C2_
Y e
il
2
e
_ iw
€9
e

(D.2.4)
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Hence

W(o) = Wzo + w4°
voy = wl o+ oy ow°
K K
p(0) = —=w? + —-3(1+——l'nv>w0
ncec, 2 c n 4
1 2
K K
0 ==L w0 4+ 2 yyl
cl 2 oy 4

From (D.2.5) and (D.2.6) there follows:

0_ W) = V()
4 - 1 -y

0 _  YW() - v(0)
2 Yy -1

(D.2.5)

(D.2.6)

(D.2.7)

(D.2.8)

(D.2.9)

(D.2.10)

Substitution of (D.2.9) and (D.2.10) into (D.2.1) to (D.2.4) gives

W(x), V(x), P(x) and o(x) in terms of the constants W(0) and V(0).
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Wo) V(o)
Plo) o)

: L1

X

fl

SEMI -INFINITE SYSTEM

FIG. 2
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If we now substitute (D.2.9) and (D.2.10) into (D.2.7) and

(D.2.8) we obtain

Kw‘ Kw 1-
Y -~ |1+ ”"‘QY)
n Cl C2 n .
P(0) = ST W(0)
K K
i} v (1 N l:.rzY)
n Cl C2 n
+ — v(0)
Kp EE
gl* Y - c, Y
o(0) = v w(0)
Kp EP_
Ty ’ 2 !
+ T =1 v (0)

(D.2.11)

(D.2.12)

The equations (D.2.11) and (D.2.12) form the input/output system

at x=0 with four unknowns P(0), g(0), W(0) and V(0).

shown schematically in figure (2).

This is

We have to describe two unknowns at the boundary x=0 in order

to solve (D.2.11) and (D.2.12).
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FIG. 3
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The solution of a layered one-dimensional semi-infinite problem
can be constructed by a coupling of the individual systems. The
actual coupling depénds on the coupling conditions. In Chapter K
we will derive these coupling conditioms.

If we assume: a(l)(L) = 0(2)(0), P(l)(L) = P(Z)(O), V(l)(L) =
V(Z) (0) and w(l)(la = W(z)(O), then the transmission matrix of the
total input/output system will be the product of the transmission
matrix of system (1) and systeﬁ (2). This is shown schematically iﬁ

figure ( 3).
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D.3 Determination of Eigenfrequencies

As an example we will determine the eigenfrequencies of a
layer which is stress free at the top and fixed at the bottom. The
eigenfrequencies of a layer are interesting parameters for studying
forced vibrations, because they determine the resonant frequencies.
These are of engineering interest because they generate the most
violent motion by fixed input amplitude of the prescribed variables

at the boundaries.

We will assume the following boundary conditions:

(D.3.1)

il
(@}

W(0) = V(0)

(D.3.2)

Il
]

It

P(L) a(L)

Substitution of (D.3.1) and (D.3.2) into (D.1.21) to (D.1.24)

gives:
W(L) = C P(0) + D o(0) (Db.3.3)
V(L) = G P(0) + H ¢(0) (D.3.4)
0 =M P(0) + N og(0) (D.3.5)
0 =58 P(0) + T o(0) (D.3.6)
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In order to solve (D.3.5) and (D.3.6) we require:

M

or:
MT-SN=20
Substitution of the expressions for M, T, S and N gives:
K K K K K . K K _ )
~Y-——2<1+1“Y>cosl’m+ i Py cos &L v P Y cm;-"‘—l‘--l}'-—«—ll (l+—1—3y)cus“—7“
Cl Cz 1 n Cl C2 2 n Cl Cz Cl Cl CZ n (:2
SEED (L=, ah BB (e
ncl cz Cl cz n ncl c:2 ’ CI c2 n Y
X K K K ) X, K, . K, o
cp cp Ycos(t-:—l—‘)— B cp'yccs uL -—n—: 2 (11‘-11" ) s%)l"—+ v (1+1_“>c0- tL
_ 1% 1T Y1 % ) 1 ©2 1 "% % B €2
1 K. Ky, -
Tty cr L (1e32y) CEL Y - el (1432)
172 172 "1 %2 12
=0

(D.3.7)

(D.3.8)

(D.3.9)
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After some algebra we obtain:

factor * cos

This equation is satisfied

COSs

and also for:

cos

From (D.3.11) and (D.3.12)

WL

% cos — = 0 -(D.3.lO)

€2 ¢

for:
Wb _ o (D.3.11)
C

2
WL -9 (D.3.12)
¢1

it follows that the lower eigen

frequencies are given by the following expressions:

where k =0, 1, 2, ..., N.
The value of N is determined by
given by (C.30a). Hence we are

frequencies.

c
1 1l *
—i" <°z‘+ kTI') (D.3.13)
c
2 (31 )
i 5+ km (D.3.14)

the upper bound in the frequency-

only considering the lower eigen

The first set of eigen frequencies (D.3.13) are associated

with the first mode (waves with sp
eigen frequencies (D.3.14) are ass

with wave speed CZ)'

eed cl) and the second set of

ociated with the second mode (waves
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We note that the eigen motions in the first mode are almost
undamped, because ¢y has a very small imaginary part; however, the
eigen motions in the second mode are heavily damped, because cy

has a large imaginary part. This is due to the fact that in the

first mode the phase velocities are almost the same and in the

second mode the phase velocities have opposite signs.

We observe that in the case of a layer height of 0.2 m
the real part of the first eigen frequency (k£=0) in the first mode

3 sec) and in the second mode is low

is very high (T; = 10™
(Tl ~ 20 sec, T2 ~ 2 sec) when we use the practical values of wet
sand given by (C24) to (C29).

The contribution of the first and second mode to the eigen

motion will depend on the initial conditions; however for long

time the first mode will dominate because it is almost undamped.
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Inspection_of Far Field
while the

E.
and Near Field Solutions
are slightly damped,
Hence in the far field

The waves with wavespeed cq
are highly damped.

2
(away from the boundaries) only the waves with wavespeed 1 will

waves with wavespeed ¢
survive.
For the far field equations (C66) to (C69) reduce to:
iw iw
P e ‘
W(x) ~ wle b 1 wle 1 (E1)
1 2
iw iw
o % T X
V(x) & wle t 4 wle T (E2)
1 2
i _dw
K 0o “ K ‘1
P(x)m-—_ W e + o0 e (E3)
nc nc 2
1 1
i _dw |
K c K c
o~r--L W e I 42 30 1 (£4)
c 1 c 2
1 1
We conclude from (El) to (E4) that for the far field:-
W(x) = V(%) (E5)
F(X)NKW n
c(x K
(x) o

and from (C38) it follows that:
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K /n+ K 1/2
w P

C =
1 n pw + (l—n) Qp (E7)

Hence in the far field,waves propagate with wavespeed Cl’ which
consists of an apparent compression modulus which is the sum of the
compression modulus of the grain structure (Kp) and the compression

modulus of the fluid (Kw) divided by the porosity. Further c, con-

1

tains a mass term which is the total mass of the system (n P, +

(1-n .
) pp)
In the far field the fluid pressure and the effective pressure
- .
have a ratio: ?F-/ Kp and hence for the assumed parameters (KW >> Kp)

the fluid pressure will be high and the effective pressure will be low.
Finally we conclude from (E5) that in the far field the
velocity of the fluid and the velocity of the grain structure are
almost equal. However, they are not exactly equal and so we have an
open system in the sense of a multi-phase theory. In fact the
inequality of the phase velocities is a crucial condition in the
derivation of the wave speeds, because the smallness of the seepage
coefficient k gave rise to the approximate wave‘speeds ¢y and Cy-
In chapter H we will explore the implications of the condition v = w
in detail.
However, if the boundary conditions are such that the wave

with wavespeed ¢, will not be generated (e.g. v{(0,t)2xw(0,r)), we

2

can use the reduced form of the field equations in order to generate

an approximate solution for the assumed parameters and frequency.
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Consider:
Vaw vk (E8)

Addition of (B34) and (B35), and substitution of (E8) gives:

v
(o, + (A-n) p) FE-m-(otp) = - L (E9)

where: o, = o+ p , the total pressure, (E10)

Addition of (B36) and (B37), and substitution of (E8) gives:

e (E11)

2 % K 2 %
((1-n) p_ +n ) I v =('—‘-‘1+K)3V (E12)
P pW atZ n P BXZ
Bzot KW 320t
((1-n) p_ +np) = (~*~+ K ) (E13)
P W 8t2 n P aX2

Equations (E12) and (E13) are in the form of the 'wave equation",
K /n + K, ) 1/2

(I-0) p_ +np
P W

consistent with the former solution (E7).

v* and Ot propagate with wavespeed ( , which is

Substitution of (E8) into (B36) and (B37) gives:

K *
_9%p _ W v
ot n 9x (E14)

ot P 9x
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Hence:

K /a
Ap  Tw
Ao Kp (E16)

The result (E16) is consistent with the harmonic solution, which
generates resultv(Eé}.

So for the boundary conditions (v(o,t) ~ w (o,t))we can use
the reduced form of the field equations to generate the solution in
the semi-infinite case. We can use the total pressure Gt and v,*
solve the wave equation for Ot and v¥*, and thereafter derive the
pore pressure P and the effective stress 0 from (E16).

In general the boundary conditions will be such that the two
kinds of waves will be generated in the vicinity of the boundary in
order to satisfy the boundary conditions. Because the phase
velocities in this area can be different, damping and momentum
exchange due to interaction of the phases takes place in this
region.

The area, that we call near field consists of that part
of the field near the boundaries, where the waves ¢, can contribute

to the solution with respect to the waves cy-
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The waves c, are given by:

iw

x+ iwt

w w X
—-—-———-———x d
Imc2 . k 1/2
iw —
e = e Im 1 n 1
ﬁ7‘+ n K
w P
Further:
/
k
iw — iw = (K nK)
- n w
1 1 n K + K
¥ "ok pov
\Y P
iw k K_K 1/2
; W
K
W
= (iw k K 1/2
\ P ‘
So:

1/2
Im (iw k Kp) /

I
o
g
=

N
3

(x20)

(E17)

(E18)

(E19)

(E20)
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Substitution of (E20) into (E18) gives:

S S

V2 w k Kp

2/
-2 x

V2 k Kp
e (E21)

The expression (E21) represents the damping of the waves.with
wavespeed Cye

Hence a more permeable (larger k) and a less compressible
(larger Kp) grain structure has a larger near field than a less
permeable (smaller k) and a more compressible (smaller Kp) grain
structure.

A larger near field means a larger area where velocity
differences between the components might be generated. The actual
velocity differences will of course depend on the boundary conditions

and the parameters in the field equatioms.
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F. Field Equations Viewed as a System of

Hyperbolic Equations

In the former chapter we viewed the field equations as a
class which we call dispersive; this means there exists a solution

in the form:

u(x,t) = go exp (ikxFiwt) (F1)

where: v

0 . . .
and where U is a vector with four elements which are constants,
called amplitudes. k(=v§ ) is called the wave number and w the

frequency. We established a relation between k and w:

G(w,k) =0 (F2)
This is called the dispersion relation.
Now we will view the field equations from a different stand-

point and establish a relation between the different approaches.
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The field equations can be written in the following form:

au. du,

— = -
Fra + a, ij o= + bi 0 i=1,..,4 (F3)

where the matrix aij and the vector bi may be functions of Upsessl,
(we use summation convection over repeated subscript).

Now we look for solutions in the following way (Whitham [49]):

We seek the linear combination

Bu. ou,

+La —L 4+ L b, =0 (F4)
i 1

Ll Er ij 9x

which takes the characteristic form:

du
L1 —HE*-+ L b =0 (F5)
on
dx
e A where: x = X(t) (F6)
This is the case if:
L, a., =1L, A (F7)
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Then the characteristic velocity A must satisfy:

a,, =xd,, 1=0
ij ij (¥8)
where:
§,. =0 i+ ]
1]
(F9)
= 1 ie:J

The system (F3) is called hyperbolic if (F8) has 4 different real
roots.

Now we rewrite the field equations (B34) to (B37) on the form (F3):

- 1 - - r - r - ) - - -
(1-n)p 0 0 o {12l |lo 0 1-n 1||™ -n" 0
p 3t 9% . (W)
0 mp 0 O Wllo 0 n O w E? (w=v) 0
w ot ax k -
+ + =
0 0o n o ll22]jimn o0 o]}] 22 0 0
K ot 3%
W .
0 o o X {t3i{lrt o o0 o a0 0 0
Kp ot 9%
- J L o L o = - B J b -

(F10)
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1
So 0 0 o) (1I-n)p
P
0 0 1 0
Py
(ag;) = (F11)
Mv K 0 0
n W
K
] P 0 6] 0

Hence the characteristic velocity is determined by:

\ 1 1
- 0 o 1-—
Py ( n)pp
0 - Y 0
P
=0 (F12a)

(1-n) KW K, o 0

n

K 0 0 -A

P

or:
nK (-m) e+ (1-m)” K p +nK p ),
. W P w_v P W/)\ (F12)
np p (I-n)
W P
+ ¥ P ___9
(1-n) o, op

Comparing the equation for the characteristic velocity (F12) with the

equation for the wavespeed c¢ (Cl9), we observe that both equations



are equal for w=>~ (infinity) .

Rewriting (F12) gives:

, 32
(_IMA_C () ey K + O pWKw+anKP>A2+1=o
K_ K -
W op n K, K (F13)
(F13) can be written as:
o )\4——82 x2+1=o (F14)
a4 ~ (l—n) pW pE (FlS)
B K K .
w P
2
82 . n (1-n) pp K.W + (1-n) Py K.W + n Py KR (F16)
- nkK K
W P
For practical values of wet sand (C24) to {C29) we observe:
4
8 1 (F17)
4a
Hence from (F16) and (F14) there follows:
1/2
(o (8 )
;\2=82+ 4o \ s ) <
2a4
(F18)
2 2
§§-+ 2@2 12 E—E 2
o 97 gt B
~ ) A
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*

1/2
4
also: 1 4oy )
4 ( T4 }
2 24 (75
7 .
20
4
2 2
8 -8 <— 39‘;)
~ B 1
~ Z = ) (F19)
20, B
Substitution of (F1l5) and (F16) into (F18) and (F19) gives:
2
1- K + (1-
Alz:i{n(n)ﬂpw (1-n) pWKW+anKp }1/2
) n (1-n) o Py
. {n > K+ (1-n) o, K, }1/2 (F20)
e, ey
n K K 1/2
Ay, =% S
n (1-n) pp Kw + (1-n) P, Kw +n e, Kp
K
_ " p (F21)

|

n (1-n) pp + (1—n)2 Py

} 1/2
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Now we will compute the left-hand eigenvalues L of [a,.]:

1
(Ll L2 L3 L4) —ki 0 o
p
0 -,
+ Py
K
(I-n) <% K -2
W i
K 0 0
P
After some algebra we obtain:
-p
_ W W
T2 b
pp v i Py Op
- A,
_ w_ i
BT g
pp - . Py Qp
1
L Ll

(l—n)pp

1]

1

(F22)

(F23)

(F24)

(¥25)
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From (F23) to (¥25) we conclude that the characteristic form of the

field equations (B34) to (B37) is given by:

-0 K
—2——+>\_§—- 1v+ W W w
ot i 9x K_)\Z
| pp w i pw p

P
-0 A, |
Py K, - ARy Po Ay (1-n) Py
n2 P n2
) - — (w=-v) - KW "% (w~v)
(I-n) p 4 2 nop
Py Ky AR, . W

where the characteristic velocities are given by (F20) and (F21).

If we put:
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we can bring (F26) into the following form:

2
2 n
dRi B -n  (w-v) —DW Kw if‘(W—V)
T + 5 (F28)
k (1-n) o o Ko A Py P nop.
dx _ . _ :
on gf = Ai’ for i=1,...,4
or:
dRi
30 = £; (Ry> Ry, Rgy R)) (F29)
dx _ .
on == = Ai’ for i=1,...,4

The set of ordinary differential equations (F29) can now be solved by

stepwise numerical integration. The advantage of this approach is

that non-linear problems can be treated in the same way and detailed

proofs of existence and uniqueness are available (Courant and Hilbert [50])
The method of characteristics has been used by Liou [10 ] to

vsolve the field equations (B34) to (B37) with a variable Kp. Some

care should be observed in the process of piecewise linearization of

the field equations, because the dependent variables w and v are the

perturbed variables at the rest state (WO = 0, vy = 0, (B19)). If the
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terms with Y and VO become of first order, we have a different set

of field equations. Therefore in certain cases it might be worthwhile

to do the linear and non-linear analysis on' this different set of
equations or on the full set of non-linear equations directly.

In Chapter H.2 and H.3 we will explore the conditions under

which the terms with g and vy can be neglected.
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G. The Propagation of Discontinuities

In this Chapter we will discover that applying a step
loading at the boundary will in general generate two propagating
discontinuities in the variables. We will make a comparison
between the speed of the discontinuities, the characteristic
velocities and the velocities of the waves in the harmonic solution.
We will draw some general conclusions about the change in variables
during the fastest propagating discontinuity in the special case
that the parameters have the ''practical"” values of wet sand (e.g.
the jump in the pore pressure is large with reépect to the jump
in effective stress along the fastest discontinuity).

By using a wavefront approximation we will show that the
discontinuities decay as they propagate, due to the generation of
velocity differences along the discontinuity. However, we will
demonstrate that non-linearities due to a non-linear comstitutive
equation fdr the fluid opposes the decay of the gradients in the

variables along the fastest propagating discontinuity.
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G.1l. Derivation of the Jump Conditions

We derive the jump condition of a conservation equation in the
following way (Whitham [497]):

Consider the following conservation equation:

X

d
e d/~ p(x,t) dx + q(xl,t) - q(xz,t) =0 (G.1.1)
)

where q(x,t) is the flux and p(x,t) is the density.

Suppose there is a discontinuity at x = s(t) such that:

x> s(t)> X, then from (G.1.1) follows:
s(t) Xy
(x,,t) - ) =4 (x,8) dx + = (x,t) d
q XZ’ q(X19 = dc pX, X de pLx, X
X, s(t)

]

p(sT,t) & - p(s ,t) &

s(t) x

1
+[ p, dx  + f p. dx (G.1.2)



93

+ —
1f Xy +s and X, *S then the last two integrals approach zero and

hence:
a(s7,t) - a(s’,t) = fo(sT,t) - p(s,0)} 3
or:

-— = U -— o Lo
9, ql‘ l(o2 pl) (G.1.3)

This is called the jump condition for the variables with subscript 1
before the discontinuity with respect to the variables with subscript
2 after the discontinuity. U is the speed of the propagation of dis-

continuity.

We write (G.1l.3) as:

~U [p] + [q] = 0 (€.1.4)

where:
[p] = Py = Py (G.1.5)
(G.1.6)

[q] = 4y ~ 43
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G.2 Jump Conditions for the

Field Equations (B34) to (B37)

The field equations are : (B34) to (B37)

ow op n2
el wa (w=v) (G.2.1)
(1) p Fp =~ g~ (n) g5+ = () (6.2.2)
%‘:‘7; - *%;_ *3% (G.2.4)

Now we rewrite the field equations in integral form:

X x
o [ dx - [n p] + li(-)d~o
dt oy Wwdx ~ In P kv ex = (G.2.5)
% %
*1 1,
d n _
ar ',‘ (1-n) pp v dx ~ [O + (1-n) pJ - J/~ * (w=v) dx = 0
X, x, (G.2.6)
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1
d _ 1-n ] _
dE /. p dx [Kw_w + KW v 0 (G.2.7)
)
Pl
4 o dx - [K v] =0 (G.2.8)
dt ’ P
*2

In the same way as in Chapter (G.1l) we derive the jump conditions for

(G.2.5) to (G.2.8):
-U [pw wl + [p]l =0 (G.2.9)

-U [(1-n) Py v] + [0+ (1-n) p] = 0. (G.2.10)

1l-n

-U [p] + [KWW +T KW vl =0 (G.2.11)

~U [o] + [k v] =0 (G.2.12)
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X
1 2
+
We note that if x, - s and x, + s~, then the integral %—‘(W—V) dx

1 2 "
2
approaches zero, indicating that during the jump the inertia terms are

dominant over the viscous terms.

Rewriting (G.2.9) to (G.2.12) gives:

-U P, Yy + U P, Yy + Py = Py = 0 (G.2.13)

- - + - + 0, + (1-
U (1-n) P,V U (1-n) Py Yy F 0y (1-n) p; (G.2.14)
—0, - (1-n) P, = 0
-Up, +Up, +K w, + imn v, K - K w, - im K v, =40 (G.2.15)
1 2 w 1 n 1w w2 n w2
-U 9y + U 9, + Kp v, - KP v, = 0 (G.2.16)

If we assume that the variables V., W before the discontinuity

1 1° %10 P
are known then (G.2.13) to (G.2.16) are four equations with five

unknowns (U, 13,02, Vé, “&). So we have to prescribe one more var—

iable in order to solve (G.2.13) to (G.2.16).
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If we choose v, as known, then after some algebra we obtain:

K K

- _ P _P 2.
9, 9y vy + G v, (G.2.17)

= - E G.2.
P, U P, Y1 U P, Yy + Py ( 18)

(1-n) Kw (1-n) KW

= - G.2.1

W, =W, + v v, ( 9)

2 1
K -0 o) n ® - 0" p)n

(G.2.17) to (G.2.19) form the equations for the unknown variables

after the discontinuity.

Further we obtain an equation for the velocity of the

discontinuity:
4
U (1-n) pp p, B~ ((l—n) pp n KW-+ Kp P, I (G.2.20)
2 2 -
+ (1-0)° K pw) Ut o+ (n K, Kw) 0

We notice that this is the same equation as the equation for the

characteristic velocities (F12) and the same equation for the wave-

speed ¢ (C19) for w~> «,
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Information from the boundaries is carried along the char-
acteristics (Whitham [49]) so that the characteristics propagate with
the speed of discontinuities and hence the first part of the above
statement is correct.

Waves with very high frequency (w » «) are dominated by the
inertia of the . phases (rapid change of the variables in time) and
not by viscous forces between the phases: exactly the same situation
as during the jump and hence the second part of the above result be-
comes clear.

For practical values of wet sand (Kw>>Kp) we derive of course
the same equations as (F20) and (F21) for the discontinuity veloc-

ities U. So:

, 1/2
U, o~ + ’inKW U e K (G.2.21)
1,2 1 e, P,

’ . Kp 1/2
U. , ~ * (F.2.22)
3,4 ) n (1-n) pp + (1—n)2 pwf

We observe that (G.2.21) is larger and (G.2.22) is smaller than the

speed of sound in water. ==\W§E and furthermore that the velocities
W

of the discontinuities are real and hence do exist.
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Substitution of the "practical" values for wet sand into

(G.2.21) and (G.2.22) gives for n = 0.4:

U 1790 m/sec

1,2

It

U 65 m/sec

3,4
We see that the speed of the first discontinuity is larger than the
speed of sound in water (1440 m/sec) and the speed of the second
discontinuity is smaller than the speed of sound in water.
Applying a discontinuity on the boundary will in general gen-
erate two discontinuities, which might attenuate as they propagate.

A boundary value problem will be treated in Chapter L.

From (G.2.19) we conclude:

(1-n) Kw
Wop = Wo=— (v, = v) (G.2.23)
2 1 (X - UZ o) m 2 1
W w
So:
, K
if U > X% => w, ~w, =% (v, = v;) (G.2.24)
* o 2 1 2 1
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if U2 <

'o[sm
R

<

=> WZ - wl = - ¥ (v2 - vl) (G.2.25)

where:

(F.2.26)

If we assume now that the phase velocities are equal in front of

~

the discontinuity, so v1 = wi = B8, then:

K . ~

if WY = w o -8=7 (v,-8) (G.2.27)
o 2 2
\
K - . .

if U‘z < _W = w. - B = - "7 (V - B) (G.2028)
pW 2 2

If we further assume that the velocity of the fluid behind the dis-
continuity is greater than the velocity in front of the discontinuity,
sow.>w, orw,. —B >0, then from (G.2.18) follows:

2 1 2

P, ~P; = Up (w, - B) >0 (G.2.29)
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if we consider a discontinuity propagating in the positive x-
direction.

Furthermore from (G.2.17) there follows:

K

K ~
. 2 \ -1 P -
if U > '5;* => 0'2 - gl =3 (VZ - Vl) = T T (W2 B)> 0(G.2.30)
. K 5 1 p -
3 —— = - = - = o - G-2.3l
if U° < ;. >0, -0, =% (v2 vl) 7T (W2 B)< 0( )

Hence if we consider the case where the phase velocities are equal
in front of a discontinuity (which is the case for a discontinuity
propagating into an area at rest) we come to the following conclusions:
- 1if the speed of the discontinuity is larger than the speed
of sound of the fluid then compressing the fluid during the
discontinuity implies compression of the skeleton.
~ on the contrary, if the speed of the discontinuity is smaller
than the speed of sound of the fluid then compressing the
fluid during the discontinuity implies stretching of the

skeleton.
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K
Now we consider the case: EE >>1, so the speed of the discon-

P
tinuities are given by (G.2.21) and (G.2.22). Consider further the
fastest discontinuity propagating into an area at rest (vl=x§l=0),

then:

K
— = = i GI .
0y, =0y Ao 5 Va2 (G.2.31)
Pp mPp TP =UR, W, (G.2.32)
(1-n) K _
w, = —— v, (6.2.33)
(K -U"p)n =
W W
Substitution of (G.2.21) into (G.2.31) to (G.2.33) gives:
+ (1~ K
bp_ O UM A K (6.2.34)
Ac np K
w P
K
Note that if EE->>1, the fastest propagating discontinuity prop-
P

agates faster than the speed of sound in the fluid and so result
(G.2.27) applies. Also we note that ¥ has the following value in

this case:

©

y = l—P- I _ (G.2.34a)

b3
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Summarizing:

In the case where the parameters have the "practical" values of
wet sand, we conclude that behind the first discontinuity propagating
into a medium at rest, the change in effective stress is small with
respect to the change in pore pressure and that these changes have the
same sign. Further velocity differences between the skeleton and the
fluid are generated. 'The fluid velocity has the ratio of %E-with

w
respect to the skeleton velocity and both velocities are in the same
direction. This result is derived without using specific boundary
conditions and hence will hold in general.

The above result is in agreement with Nikolaevskii's [15] re-
sults. He states that after the fastest propagating discontinuity the
phase mass velocities are equal (pp v=p W ). His result was de-
rived for the case of equal phase stresses.

For the slowest proﬁagating discontinuity we can not make these

general statements, because we do not a priori know the conditions in

front of this discontinuity as it propagates.
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Now we are interested in the following case: A discontinuity
propagates into a medium at rest and we assume equal phase velocities

behind the discontinuity, then from (G.2.19) follows:

- (1-n) K
ZW =1 (G.2.35)
n (KW - U pw)
or.
2 - Ky (G.2.36)
n p
w

We conclude that if the speed of the discontinuity propagating into

K ) .
the rest state is such that U2 = E%—-, then the phase velocities are

w
eqdal behind this discontinuity.
A detailed discussion about equal phase velocities is given in
Chapter H.
In the regions between the discontinuities and between the
slowest discontinuity and the boundary, in general momentum exchange

takes place, due to different phase-velocities. In these regions

viscous forces between the phases play an important role
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G.3 The Attenuation of Propagating Discontinuities

So far we have discussed the jumps in the variables relative to each
other. In general these jumps will attenuate as they propagate. This
question is important in order to assess which parts of the field will be
affected by a discontinuity.

We will use a wavefront expansion in order to establish the
attenuation.

We introduce the following expansion (Whitham [49]):

wix,t) =Wix,t) + W (x) Hy(8) +W () H (5) + ... (G.3.1)
v(x,t) =Vix,t) + V,(x) By(8) + V;(x) Hy(5) + . (G6.3.2)
P(x,t) =PXx,t) + Py(x) Hy(S) +Py(x) H(S) + . (G.3.3)
o(x,t) =0%x,t) + 0 (x) HBy(S) + 0 (x) H(S) + . (G.3.4)
where:

Hy(S) = 0 if $ >0 (G.3.5)

=1 if $ <0
H (S) = S i S <0 (G.3.6)

=0 if s >0
H(S) =37 S 185 <0 (6.3.7)

= ifs >0
S =x- At ' (6.3.8)

where A is the speed of the discontinuity.
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From the definitions (G.3.5) to (G.3.7) we conclude:

i . =H (G.3.9)

Furtherw*(x,t),vk(x,t),P*(x,t) and(?(x,t) satisfy the field equations
(B34) to (B37).

The idea is now to consider ISI << 1 and hence focus our attention
on the neighborhood of the discontinuity. We substitute (G.3.1) to
(G.3.4) into the field equations and collect terms of the same order.
To each order the field equations have to be satisfied. Executing this
process we obtain the following set of equations:

To order HB(S):

np_ (—A)Wo(x) = ~nPO(x) (G.3.10)
(I-m)p ) (MY = =G = (1-n) Po() (G.3.11)
Wo(x) + 22V (x) = - 2= ()P, (x) (6.3.12)
0 n 0 Kw 0 i

V() = - % (DT, () (G.3.13)

We identify (G.3.10) to (G.3.13) with (G.2.9) to (G.2.12), which
clearly shows that the above variables are indeed the jumps in the
variables P, ¢, v and w along the discontinuities, whose wave speed is

given by (G.2.20).
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To order HO(S):

noo. Cﬂ)Wl(x) = -q Pb(x) - n Pl(x) (G.3.14)
n2 nz
"% WO(X) + T VO(X)
(1m) o (W) () = -0 (%) - oy (%) (6.3.15)

~(1-n) Py(x) - (1-n) P;(x)

+-iT-WO(X) i Vo(x)
W)+ W () + }.;le ROR l;—“ HORE é—w EIME
(G.3.16)
VG + V() = - -112—4— Moy () (6.3.17)

Regarding the variables with subscript zero as known, the set of equations
(G.3.14) to (G.3.17) consists of four equations with four unknowns Wl(x),
Vl(x), Pl(x) and Gi(x).

Putting all the variables with subscript zero on the right-hand side
and putting all the variables with subscript one on the left-hand side
of (G.3.14) to (G.3.17) we identify the matrix of (G.3.14) to (G.3.17)
with the matrix of (G.3.10) to (G.3.13). The determinant of the first-
order equations was set to zero in order to get nontrivial solutions for

the jumps. This implies in the case of the given A's that the system
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(G.3.14) to (G.3.17) cannot in general be solved, unless certain

conditions are satisfied.

We proceed here as follows: We reduce (G.3.14) to (G.3.17) to one
equation with one variable with subscript one, e.g., wl.
So

(eveed) Wl(x) = (veees) (G.3.18)

Inspection of (G.3.18) shows that the term in front of Wl is zero for the

given values of A (G.2.20). Hence the right-hand side of (G.3.18) has

to be zero. This right-hand side contains only variables with subscript

zero. Now we use the first-order equations (G.3.10) to (G.3.13) in order
. to express Gb(x), VO(X) and Wo(x) in terms of PO(x). Substitution of

these expressions into the right-hand side of (G.3.18) gives:
t X
a® Po(x) + B¥ Py(x) = 0 : (G.3.19)

where o and B* are functions of the parameters in the field equations

(B24) to (B37). The solution of (G.3.19) is:

*

B

o
o

Po(x) = constant exp(- x) (G.3.20)

o
by

. . B
Hence the attenuation constant is _x-
Inspection of the expressions for a* and B* shows that all terms in
B* contain a factor ~% and that the terms in o* do mot contain k. Hence

a smaller permeability (smaller k) will result in higher attenuation.

Substitution of the "practical" values of wet sand (with n = 0.4)

into (G.3.19) gives as an example calculation:
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1
3.3 PO(X) + 90 Po(x) =0 (G.3.21)

along the fastest propagating discontinuity and

3

~2.8 P (x) - 9x10° P (x) = O | (6.3.22)

along the slowest propagating discontinuity. So the fastest propagating

discontinuity (J\.lz 1800 m/sec) decays like

~ exp (-30x) (x - in meters) (G.3.23)
The slowest propagating discontinuity (Az ~ 70 m/sec) decays 1like:

~ exp(~3300x) - (G.3.24)

Hence we conclude that the first discontinuity decays to'~%~of the
initial amplitude after ~§% m and the second discontinuity decays to
1 1
~Z of the initial litud ~—="—— m.
3 a amp itude after 3300 m
Therefore the second discontinuity decays much more rapidly
than the first one. This result is in agreement with conclusions

of Gimalitdinov [63], who calculated the decay coefficients of

propagating discontinuities in the framework of Nikolaevskii's

equations.
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G.4 Effect of nonlinearities due to a nonlinear constitutive

equation for the fluid on the decay of propagating

discontinuities in the gradients.

In this section we will explore the effect of including a nonlinear
constitutive equation for the fluid on the decay of propagating discon-
tinuities in the gradients of the variables.

First we note that taking the derivative with respect to x in the
linearized field equations (B34) to (B37) and then writing down the jump
conditions for propagating discontinuities of the gradients, we get
exactly the same result for fhe gradients of the variables as for the
" variables themselves.

Particularly we are able to obtain the jumps in the gradients in
the field directly after applying two gradients at the boundary for a
medium initially at rest. (An example for the jumps in the variables
themselves is given in Chapter L.)

Now we focus our interest on the fastest propagating discontinuity.
As we have seen in the linear theory the jump in the effective stress
(or gradients of effective stress) is small with respect to the jump
in the fluid pressure (or gradients of fluid pressure) for "practical"
values of wet sand. Therefore we include a nonlinear comstitutive
equation for the fluid for further amalysis.

We recall field equation (B36):

v, lndv L (G.4.1)

%% n ox K
W
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Instead of field equation (B36) we will use:

ow ,l-n v _ 1 3P _h(p) 3P
X n 93X K ot K ot (G.4.2)
w W
where h(0) = 0
1
h (0 = a <0

so the compressibility is less when p is larger.
Now we proceed as follows (Whitham [49]): We expand the solution

in powers of

g =x - At (G.4.3)
and further:
~ 1 2
(£ <0) :wxt) =VW(5x) = & wx +5 8 Wy(x) + ... (G.4.4)
(g >0) :w(x,t) =w(gx) = 0 (G.4.5)
In a similar way we expand the other variables.
We note that:
LA £€>0 (G.4.6)
X :
dw dvy
Pyl (3 5;7-+ wl(x) + £ wz(x) + ... £ <0 (G.4.7)
Hence:

[%%] = wl(x) for £€> 0 (G.4.8)
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Furtherx:

Qw _ 3w 3E —(;\wl(x) +t Ew,(x) + )

at 9g ot
= =) wl(x) - EX wz(x) + ... (G.4.9)
ox 3§ ox X

= wl(x) + £ wz(x) + ... ) 1
FEwlG) + 3 g W)
= w (%) + g(wz(x) +wi(x)> ... (G.4.10)

In a similar way we obtain expansions for the derivatives of the other

variables.

Furthermore:

il

h(p) h(O + £ pl(x) + ...) =

B(0) + &) () 5
p=0

£ pl(x) a + ... (G.4.11)

Now we substitute the expansidns for the derivatives of the variables
and h(p) into the nonlinear field equations (B34), (B35), (B37) and

(G.4.2). We equate equal powers of &.
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To the zero order we obtain a set of equations like (G.3.10) to
(G.3.13). Hence for the nonlinear problem the speed of the fastest
propagating discontinuity is given by the largest root of (G.2.20).

The effect of including a nonlinear constitutive equation on terms
of order £ can be seen as follows: The last (nonlinear) term of (G.4.2)

becomes:

_ h(p) 3p _
Kot

- pl(x)<1 (—-A pl(x) - & A pz(x) + ...) %;-+ cee

il

£ pi(x) o kl— + ... (G.4.12)
W

Equating terms with powers £ gives a set of equations similar to (G.3.14)
to (G.3.17), with the exception that (G.3.16) now contains an additional
termn in ifs right-hand side. This term is quadratic in pl(x) and is due
to (G.4.12).

Now we proceed in the same way as in section (G.3), but instead of
ending up with a linear differential equation we end up with a nonlinear

differential equation, which is:

a* pl GO + 8% p () + v* pI(0) = 0 (6.4.13)

where a® and 8% are the same as in section (G.3).and(y* is a combination

of the parameters, including a.
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Substitution of the practical values for wet sand (withn = 0.4)

into (G.4.13) gives:

[
3.25 p,(x) + 90 p (x) - 1.63 pi(x) = 0 (G.4.14)

The equation (G.4.14) is in the form of a Riccati equation which can be
solved explicitly (Whitham [49]).

Assume now that the pore pressure increases behind the fastest
propagating discontinuity and hence the jump in the gradient of the pore
pressure is negative near the boundary.

Inspection of (G.4.14) shows that the third term due to the non-~
linearity in the constitutive equation for the fluid (with o negative)

opposes the decay of the gradient due to the second term in (G.4.14).

If [pl(O)I > li:%%7;| , then pl(O) < 0 and hence ]pl(x)l
grows continuaily. This leads to ]pl(x)l + ® in finite time.
Hereafter a shock wave with discontinuities in the variables themselves
has to be introduced.

Summarizing: Jumps in the gradients of the variables for the
linearized case decay as they propagate for "practical" values of wet
sand. Including a nonlinear comstitutive equation for the fluid opposes
the decay along the fastest discontinuity. If the initial gradients are
large enough, a shock wave with discontinuities in the variables will
emerge. The initial gradients behind the fastest discontinuity can be
calculated from the appropriate gradients at the boundary, because the

+
linear theory can be applied at t =0 .
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H. The Consequences of Equal Phase Velocities

It has been assumed that during dynamic loading saturated
earth masses behave as in an undrained condition (Joyner [51]).
It is therefore interesting to explore what the consequences are
of the assumption of equal phase velocities.

An impact problem will be solved with the non-linear
field equations (Bl) to (B6), for equal phase velocities, not so
much to represent a real physical example but to demonstrate the
effect of non-linear terms and the relation to the linear theory.

In Chapter I we will comment on a more general non-linear case.
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H.1. Equal Phase Velocities; the Linearized Case

The field equations (B34) to (B37) are:

ow 9 12
oW _ _ 9P _ 1 — H.1.1
n pw ot n'ax k (w=v) ( )
v 90 ' ap n2
— A S A — - —_— — H'.l.2
(1-n) Py Bt P (1-n) ~ T % (w=v) ( )

ow , 1-n 3v _ _ 1 3p (H.1.3)
9x n 3x K 3t
w
d 1 3o
== "% 3t (H.1.4)
p
Putting:
w =y (H.1.5)
gives:
0 ov. _ _ 9p (H.1.6)
w ot ox
v o 90 _ gy 22 H.1.7
(1-n) °s Bt e~ () o ( )
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L oov _ L 2p
n 9x K 3t
w
3v. __1 9g
ox K st
p
From (H.1.6) and (H.1l.7) follows:
- Nz (1~ 9P
(1-n) Py Bt (1-n) %
- 8Y.  _ 30 _ q_.y 2P
(Am) oy or = "o O g
Subtracting (H.1.10) from (H.1l.11l) gives:
v _ _ 39
(A-n) Cp - . 9%
(H.1.9) states:
wv__1 23
9x K ot

(H.1.8)

(H.1.9)

(H.1.10)

(H.1.11)

(H.1.12)

(H.1.13)
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From (H.1.12) and (H.1.13) we conclude: If pp * Py then a distur-

bance in the velocity v propagates with velocity:

( %p )1/2 .
c =+ — — (H.1.14)
% (1-n) (pp pw)
From (H.1.6) and (H.1l.8) it follows that:
v _ _3p
°y 3r ™ (H.1.15)
v _ _n_ 29p
P KW o (d.1.16)

Hence from (H.1.15) and (H.1.16) we see: A disturbance in the

velocity v propagates with velocity:

K
c. =+ (——;fﬁl-——) (H.1.17)

We note that (H.1l.17) is equal to the square root of (6.2.36).
Because we are looking for a solution of v that satisfies simultan—

eously (H.1.6) to (H.l.9), we conclude from (H.1.14)and (H.1.17):

K K
D =2 (H.1.18)

(1-n) (pp =0 nop
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Condition (H.1.18) states:

Only if there is a certain relationship between the compression mod-
ulus of the fluid and the compression modulus of the grain structure
will the phase velocities in the model be equal. TIf this relation-
ship does not exist, then if pp ¥ Py the phase velocities cannot be
equal.

Biot [ 1] noted the existence of a harmonic solution for com-—
pression waves of the Biot equations, where the phase velocities are
equal.

Substituting the mass densities for quartz and water into

(H.1.18), then for n = 0.4 we obtain:

K = 0.4 K
W P

So the compression modulus of the water has to be of the same order
as the compression modulus for the skeleton. For "practical" values
of wet sand this is not the case and hence equal phase velocities do
not exist. However the presence of small air bubbles can lower the
compression modulus of the water considerably (Richart [47]).
Hence in the presence of enough small air bubbles or a more
compressible fluid, equation (H.1.18) could be satisfied and equal

phase velocities could be possible in that case.



C'=0-N)Qp-Pw) P

PROPAGATING DISCONTINUITIES

FIG. &
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In Chapter B we showed that there do exist waves with almost
equal phase velocities in the lower frequencies for the practical

values of wet sand.

Further from (H.1.8) and (H.1.9) we conclude:

K (1-n) (p - p.)
_g_zip._.- - Pp__ W (H.1.19)
P W/n pW

Substitution of the condition (H.1.18) into (G.2.20) shows that in

that case the fastest discontinuity propagates with speed:
1/2
KW / .
and hence from (G.2.36) we conclude that if condition

. pw
(H.1.18) holds the phase velocities behind the fastest discontinuity
are equal.

If the phase velocities at the boundaries are not equal, and
we apply a step load at the boundary, then a second slower propa-
gating discontinuity will be generated in order to satisfy the bound-

ary conditions. See Fig (4 ).

K
fp=p and —2>>1, then from (G.2.21) it follows that the
P \ K
: W K 1/2
fastest discontinuity propagates with speed - and hence
w

directly behind the discontinuity the phase velocities are equal.
Until the next discontinuity or until disturbing influences from the
boundaries arise there is no change in the variables and hence %§-= 0,
which agrees with (H.1.12).

We conclude that equal phase velocities in general do not occur

in our model.
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H.2. TImpact Problem With Non-Linear Field Equations.

We will consider the following problem: A one-dimensional

semi-infinite two phase medium has an initial velocity v The

1
properties of the medium are such that the phase velocities are
equal and the pore pressure Py and effective stress Ol are known and
constant. At t = 0 the boundary x = 0 of the medium is stopped, such
that v = w = 0 at the boundary. We are interested in the changes in
the variables for t > Q.

Further we assume that the field equations are given by

(B.1) to (B.7).

Hence the field equations are:

%{ ((l—n) pp')'f’”g“; (pp (1-n) v') =0 (H.2.1)
—S-E (n pw> + %}—; (Dw n w) =0 (H.2.2)
n pw(—g%+w %E) =-n %i—- (H.2.3)
(1-n) P (—g{- + v 'gi“) - ;-gg- (1-n) gi—+ R (H.2.4)
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constant (H.2.5)

p =

p

p, = £(p) (H.2.6)
n = g(0) (H.2.7)

Now we attempt to solve the problem in the following way:
after impact a discontinuity with speed U will propagate in the

opposite direction to v We assume that directly behind the dis-

1
continuity the phase velocities are equal and zero, and hence the
boundary condition is satisfied. This assumption puts a constraint
on the constitutive relation (H.2.7). The analysis will generate
the appropriate constitutive relation.

Further we assume that the thickness of the discontinuity is
small enough that we may neglect the viscous terms R for the jump
conditions. (Hence we allow phase velocities differences during the
shock.)

First we develop the mass conservation equations (H.2.1) and

(H.2.2), and the momentum conservation equations (H.2.3) and (H.2.4)

in integral form:

x, .
4 n O dx + [p n w] 2 =0 (H.2.5)
dt w W x1

1

x, .

4 (1-n) 6 dx+ [p. (1-n) vl 2 =0 (H.2.6)
dt ) P X

X
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X
(1-n) p_ v dx + [(1-n) p v2 + 0+ (1-n) p] 2
P P Xl
Rdx =0
X
2 2
np v dx +[p, nv +pn]Xl

Rdx =20

We assume: vl = wl
v, =W,
From (H.2.5) to (H.2.8) we derive the following jump

conditions:

-U [n pw] + In o, vl =0
~U [n o, v] +. [n P, v2 +pn}] = 0
~U [(1-n) p, ] + o, (m) v1 =0

-0 [(1=n) p v] + [(1-0) p, v 4+g+(1l-n) pl = 0

(H.2.7)

(H.2.8)

(H.2.9)

(1.2.10)

(H.2.11)
(H.2.12)

(H.2.13)

(H.2.14)
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Now we make the following assumptions:

©
[l

constant (H.2.15)

©
It

v = Pot P B (p-py) (Bear [36]) (H.2.16)

where B is the compressibility and pO is a reference density.

We.do not make any assumption at this point about the form of
the constitutive relation for the grain structure. The form of the
constitutive relation will be generated by the analysis.

From (H.2.11) to (H.2.16) follows:

-Un, p + U n2 pW 1 Py 1

(H.2.17)

2 -
-n, pWZ Vz -+ p2 n2 =0
(H.2.18)
-U (l—nl)'pp + U (l—nz) pp-+ pp (1—nl) vy
- P (I-n,) v, = 0 (H.2.19)

, 2
-U (l—nl) pp vy + U (l~n2) pp v, + (1—nl) pp vy + oy

_ S 2 -
+ (l-pl) Py~ (lfnz) pp v, - 02 - (l—nz) Py =0
(H.2.20)

p =P + 0 B (p,~p;) H.2.21
Wy vy vy 271 ( )
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We pose the problem in the following way:

Given: MEE pwl, Ol, pl, n, and vy =W, = 0.
Calculate: o , 0., P, N, and U from (H.2.17) to (H.2.21)
Vo 2 2 2

After some algebra we obtain:

v
1
2 ny + (1—nl)‘TT

=}
Il

n
=t -~ 1
L p

n, V
2 2 Y1 ™M Y1

Q
1l

2
9 -0 (1—nl)pp vy + (1—nl) pp vy

+0l + (1—nl) Py~ (l—nz) Py

(H.2.22)

(H.2.23)

(H.2.24)

(H.2.25)
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The variables behind the discontinuity are now known in terms
of the variables ahead of the discontinuity and also the speed of the
discontinuity is known in terms of the variables in front of the
discontinuity.

We observe that we generate n2 and 02. If we take for instance
Puw. > pl, 01, nl as constant and we vary the impact velocity Vl’ we
obtain a relation between 9y and n, behind the discontinuity. This is
a constitutive relation for that case which is required in order to
derive equal phase velocities after the discontinuity. Hence we
derive a solution for the impact problem with the given assumptions.
The solution consists of two uniform regions, both with equal phase
velocities and a narrow region in which the variables change rapidly.
This region propagates with spead U in a direction opposite Vi

The generated constitutive relation of the grain structure may
have unacceptable features with respect to the prototype. We will

explore the character of the constitutive relation in the next section

For the case that the fluid has a high compression modulus.
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H. 3. Example

We recall from (H.2.22) to (H.2.26):

We assume:

V1
n; + (1—nl) = (H.3.1)
n n, v
1 1 1
o QW -0 T?'pw (H.3.2)
"2 1 2 1

' 2
- (l—nl) pp vy + (1—nl) pp vy

+01 + (1—nl) Py - (l—nz) Py (H.3.3)
n n n
1 1 2 1
=-U—p v.+—p v, +p —= (H.3.34)
n, Wy 1 n2 vy 1 1 n,
1/2
1 1 2 ( l)
= + = - — =
2917 2 (Vl ta e, \ P ) * g ) (#-3-3)
Y1

lu| >> v

(H.3.6)
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Then (H.3.1) to (H.3.5) become:

n, & 0y (H.3.7)
B, P (H.3.8)
Py = Pl‘- U pwl vy (H.3.9)
Ao = -U (1-n;) vy (rap—pW ) (H.3.10)

1

We note that in this case the porosity change and the density change
of the fluid are small.
We now consider a material with a porosity of 0.25 and a mass

3 kg/mS. The pores are filled with

density of its grains of 2.5 * 10
a fluid with a mass density of lO3 kg/m3, an ambient pore pressure of

1 atm and a compressibility twice that of water. The impact vel-

ocity is 0.1 m/sec.

So:
v, = 0.1 m/sec (H.3.11)
n, = 0.25 (H.3.12)
p, = 107 kg/m3 (H.3.13)



™ |

From (H.3.11) to (H.3.6) and

Q
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= 2.5 10° kg/m° (H.3.14)
5 2
= 10" kg/m sec” = 1 atm (H.3.15)
9 2
= 10" kg/m sec (H.3.16)
(H.3.5) follows:
. 1/2
-32:( 5 10° )
0.25 10
2000 m/sec (H.3.17)

From (H.3.17) and (8.3.11) we conclude that the condition (H.3.6) is

satisfied and the variables after the discontinuity can be calculated

with (H.3.7) to (H.3.10).

We consider the discontinuity propagating in the opposite

direction to Vs hence we take the minus sign in (H.3.17).
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So the variables after the discontinuity become:

n, = 0.25 (H.3.11)
3 3
Pu, = & (H.3.12)

P, ~10° + 2 103 10° 0.1 = 3.10° ~—3‘~5—7

m sec
= 3 atm (H.3.13)
o, =2 102 0.75 0.1 (2.5 10°-10°)
= 2.25 10° —1—‘5——2- = 2.25 atm (H.3.14)

m sec

Hence the porosity and the density of the water stay almost the same,
while the pore pressure jumps 2 atm and the effective pressure
jumps 2.25 atm.

Now we make the connection with the linear theory: we define
the compression modulus of the grain structure in the same way as
in the linearized theory as: (B25)

*

K =— (H.3.15)
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From (H.3.1), (H.3.7) and (H.3.10) it follows that for |U|>> Lvll.

n-1 = nl—l (H.3.16)
An 2f(l—nl) — (H.3.17)
Ao = -U (l—nl) vy (pp—pwl) (H.3.18)
Substitution of (H.3.16) to (H.3.18) into (H.3.15) gives:
0% (1-n,) v, (P_—Py,)
K = (n,-1) 1 1 P 1
P 1 (l—nl) vy
= (1-n,) v’ (p_-p_ ) (H.3.19)
1 p w1 - -
In (H.3.17) we calculated U as:
1 1/2
nl pwl
K 1/2
3 W
= ;t<g—~5——) (H.3.20)
1 wl

where Kw is defined in the same way as in (B21).

and (H.3.20) we conclude:

S6 from (H.3.19)

(H.3.21)
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. Inspection of (H.1.18) and (H.3.21) shows that the condition
for equal phase velocities after the discontinuity is the same in the
linear theory and in the given example for the non-linear theory. The

result actually suggests that if 'U|>>lvl| the linear theory applies.

Further inspection gives:

For ]U|>>]vl| the non-linear theory generates:

l—n. -0 K
Ao _ (1-ny) (pP Puy) - _P (H.3.22)
Ap le Kw/nl

Ag, = Ao + Ap =

= -7 — -
U (1 nl) vy pp U anj.pW

1
= -U vy ;(l~nl) pp + nlpﬁl} (H.3.23)
1/2
K /n
U=+ w1l
Pu,
1/2
K /n, + K
- w 1 P (H.3.24)

(1-ny) pp + 0, pwl
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From the linear theory of Section H.1l we conclude in the same way as

in Chapter E:

w

S__P
5 Kw/n (H.3.25)
o, =-c v {(1-n) p, *+ m Pt 7 (H.3.26)
(Kw/n.+ KBA )1/2
c == (H.3.27)
(1-n) pp + n P,

By inspection of (H.3.22) to (H.3.27) we conclude that in the non-
linear theory for ]U}>>ivll the same results will be derived as in

the linear theory and hence if the speed of the discontinuity is much
larger than the impact velocity, we can use the linearized equations
(B34) to (337)>directly if Kp is constant in the small range of change
of n. This also gives a criterion for neglecting "WO = v, terms" in
the derivation of the field equations in Chapter B in this case.

Hence if condition (H.1.18) is satisfied and the linear theory is
applicable then only one discontinuity propagates from the boundary

if a step in the velocities is applied and the phase velocities are
equal at the boundaries. In the uniform region in front of and be-
hind the discontinuity the phase velocities are equal and the stress
ratio of the effective stress to the pore pressure is given by (H.1.19).

So if the pore pressure increases the effective stress increase is of

the same order (if we take the mass densities of quartz and water).
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I. Comment on Discontinuities with Different Phase-

Velocities for Non~Linear Field Equations.

When we include equation (B7) as a constitutive relation for
the grain structure, we can study the propagation of discontinuities
in a medium with field equations (B1l) to (B7) in the same way as in
Section H-2. The algebra expands rapidly because we have to include

an additional equation and an additiomal variable after the discon-

tinuity (edither w, or v2).
If we put (B7) in the form: 0, = Ol - c Oj_(nz—nl), where ¢ is a
RS 2
constant, and make the assumptions:‘Tr s T and TT‘<<1 we retrieve

the propagation of discontinuities in the linearized system (B34) to
(B37) which is treated on Chapter G.

In fact this gives us a criterion for neglecting the non-
linear convective terms in the non-linear balance equations.

So in general the velocities of the phases behind a discon-
tinuity will be different. In the region behind the discontinuity
momentum exchange and damping takes place. As we have seen in the
linear case the region of substantial velocity differences might be

quite small.
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J. Dynamics of Porous Media, Multi-Dimensional

So far we have discussed the wave propagation through saturated
porous media for the one-dimensional case. In this chapter we will
extend the theory for the multi-dimensional case. The field equations
(B34) to (B37) for the one-dimensional case will be the basis for the
extension into more dimensions. An additional feature with respect to
cne-dimensional compression is the propagation of shear waves, which
is treated in more detail in Appendix III.

For many problems in soil mechanics the plane strain case is
appropriate (e.g. long dams). Therefore we will establish the field
equations for the plane strain case. We will derive the solution for
harmonic excitation and give a system theoretical formulation. This

is a summary of work done by van der Kogel [38].
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J.1 Interpretation of Field Equations {(B36) to (B37)

The one-dimensional field equations (B36) and (B37) are:

9w , 1-n v _ 1 9
o0x + n 9x K ot (J.1.1)
w
ov._ _ 1 90
5% -~ T K. ot (J.1.2)

p

Equation (J.1.1) is the so called "storage'" equation. Equation
(J.1.1) states that that the outflow of fluid and the outflow of
skeleton material in a unit cube of.a two-phase medium are balanced
by a drop in fluid pressure.

Equation (J.1.2) represents "Hooke's law" for the gréin
structure differentiated with respect to t.

We will use the same concept in order to derive the storage
equation in more dimensions and a set of equations equivalent to

(J.1.2) for a porous linearly elastic isotropic skeleton in more

dimensions.
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J.2 The Storage Equation and the Continuity

Equations for Multiple Dimensions

The storage equation in more dimensions is similar

to the one-dimension equation:

1-n =1 2
Vw+ =R Vv T (J.2.1)

It

where: w

~

,(Wx’ W, wz) and v = (VX, Vy’ VZ) are
the velocity components of fluid and solid materials respectively.

For a linear elastic isotropic homogeneous medium we derive

after differentiating with respect to t:

avx 1 aox o0 Bcz
= O E {737:’" v (g +§t—'>} (J.2.2)
va 1 ETX aox Boz
y =”E{at —v (52 +‘§E‘)} (3.2.3)
avz 1 ’aoz 3(5X le]
52 - " \oc " Vi3t (J.2.4)
ov ov oT

1 "%, "y _ 1k Xy
5 Sy T T E 3t (J.2.5)
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ov ov oT

1 X z, _ 1tV X7

720% &) TF B (J.2.6)
v v 9T

1 y z, _ 1+V yz

2 ( 9z + dy ) = E ot (J.2.7)

where E is the elasticity modulus and V is the Poisson's ratio of
the grain structure,qg, Oy and Gz are the normal stresses and Txy’
t , and T__ the shear stresses;o_, 0 and O are assumed to be
Xz vz x’ Ty z
positive if they represent a positive pressure.

We added ninenew variables(c , 0 , T_ , T_ , T, W_, W_,

y> "z’ xy’> xz’ yz y’ =z

Vy’ vz) and five additional equations with respect to the one-
dimensional case. By adding two momentum equations for the fluid and
two momentum equations for the graim structure (y and z direction),

the number of equations equals the number of variables (OX, Oy,

o T T T v A% V, w w w .
z? xy’ %z° yz’ P, x%? ya z? Vg y’ Z)
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J.3 Derivation of the Field Equations for

the Plane Strain Case

For the plane strain we have:

- = P = 5 =0 (J.3.1)
avX
T =0 (3.3.2)
o,
N2 =0 (J.3.3)

For the plane strain case (J.2.2) to (3.2.7) reduce to:

x__1-v X WV v
ox E ot + E ot (3.3.4)
ov 2 90 2 90
y__1-v Y 4 Vv X (3.3.5)
oy E ot E ot Tt
ov v 3T
X v _ 2(1+V) Xy
oy + ox E ot (7.3.6)
and further:
sz = 0 (3.3.7)
Tyz = Q (3J.3.8)

0, =V (0,49) (3.3.9)
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Because we restrict ourselves to the plane strain case, it is

appropriate to choose the boundary conditions such that:

w, = 0 (J.3.10)

From (J.3.1), (J.2.1) and J.3.10) it follows that the storage equation

has the following form:

ow ow ov v
X y , 1-n x , 1-n y _ .1 9p
9% + y + n X + n 9y Kw 3t (J.3.11)

The momentum equations have a similar form as for the one-dimensional
case, however we add an additional gradient in the shear stress in
the appropriate direction for the skeleton. Hence, we assume that
shear stresses are transmitted by the grain structure.

So the momentum equations for the fluid become:

)
np —V—]ﬁ=—n§3-“—(w—v) (J.3.12)
w ot ox k X X T
BWX op n2

and the momentum equations for the grain structure become:
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BVX BOX 3 n2 9T %

(1-n) pp Fraialli- i (l—n)-g% + 7;—(wx—vx) + 8§ (J.3.14)
ov elej 3 n2 T

(Iom) o, 5 = = g5 - (mm) o+ G Grmv)) + 7 (5.3.15)

From (J.3.4) to (J.3.6), (J.2.11) to (J.3.15) follows that the field
equations for the plane strain case are given by the following set of

equations:

ov A Te 2 9o

x _ _ 1-v x | v y
5% 3t T E 3¢ (J.3.16)
ov l-—\)2 So‘y \)_+\)2 80X
_ayl‘ = - E Bt + E at (J 03017)
ov ov 9T
X y _ 2(14) Xy
5yt oox 5 5t (J.3.18)
BWX . Bﬁy L 1 Bvx 1-n avy _ 1 9p
ox oy n 9x n Jy Kw t (J.3.19)
My _ S _ 0y (J.3.20)
n pw t 5% k x Vx T
ow 5p n2
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BvX BGX 3p n2 9T x

(1-n) pp 3 T 5% (1-n) Yl (wx—vx) + ~z—3y (J.3.22)
EZX o0 5p n2 BTX

(1-n) A T e (1-n) By + 5 (wy—vy) + *lax (J.3.23)

(J.3.16) to (J.3.23) form eight equations with eight unknowns (wx,

Wy’ Vs vy, Gx, Gy, Txy = Tyx, p).
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J.4 Solution of the Field Equations (J.3.16) to (J.3.23),

Harmonic Response.

We will construct the solution of (J.3.16) to (J.3.23) in

the same way as in the one dimensional case:

Assume: _
0 i(wrx + wy + ®t) - - iwt
v (x,y,t) = VX e =V (x,7) e (7.4.1)
i(wsx + wy + Bt). . iwt
0
= =V (x
vy (x,y,t) Vy e y( V) e (J.4.2)
i(wex + wy + Ot) iwt
0
v (x,y,t) = wx e ==WX(X,Y) e (J.4.3)
i(w*x + wy + Wt) iwt
0
= =W X, oG
Wy (x,y,t) Wy e y( y) e (3.4.5)
i(w*x + wy + wt) iwt
p (x,y,t) = PO e = P(x,y) e (J.4.6)
i(wkx + wy + ©t) - dwt
UX (x,y,t) = a£9 e = o)§X,y) e (J.4.7)
i(w*x + wy + wt) iwt
0
o t) = o = 0(x,y) e J.4.8
y (x,y,t) y °© : ( )
iwt

i(w*x + wy + wt)

T(x,y) e (J.4.9)

o]

0
Txy(x,y,T)=Tyx(x,y,T)=T
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Substitution of (J.4.1) to (J.4.9) into the field equations (J.3.16)

to (J.3.23) gives:

. 0 1-v7 o~ 0 v+ — 0
b3 = -
iw VX E iw x + 3 iw Gy (J.4.10)
0 1 \)2 0 +\)2 0
. _ 1w o= ) L~
iw Vy = z iw cry + T iw Gx (3.4.11)
s v 0 4 g v 0= 2N 50 (J3.4.12)
X y E
s W O dww O + 2Ry Qg ¢ 12y 0y =L in B0 (3.4.13)
X y n X n oy Kw
— 0 0 n? . 0_0
n pw 1w wx =-n iw* P - —k— (WX _VX ) (J.4.14)
n oo iawo=~ninO—P—E(WO—VO) (J.4.15)
W y k Uy 'y _ T
0 0 0 o> 0_0 0
1__ = Tk _ _ - A _ N -
(1-n) pp iw Vv iwk o (1-n) diw* P~ + 4 (wX Vo)t (J.4.16)
~ 0 0 0 n2 0 0 0
1-n iw V = - iw O - (1=n) iw P +-— (W_ -V + iwdt (J.4.17
(1-n) Dp y . (1-n) * ( y vy ) ( )

In order to solve (J.4.10) to (J.4.17) we require:
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2
et Tk PR 0 0 0 Lok 0
2 2
vy o= 1oy s 0 0 0 0 0 iw
E iw 3 1w
o] : 0 2—(%:—*3)15 0 0 0 -1w P TAT
10 "
0 0 0 n T niw niwn (1-n) dw* (1-n) 1w
w
n - n?
0 0 0 niwk T tn pwim 0 b 0
n? = n
—-— (o} -
0 0 0 n i 0 —+np 10 -
n? o emenl
Tk o ~iw (1-n) dw* - T 0 (l—n)pp tutg 0
nZ
0 1w —~ 1tk (1-n) 1w 0 - 0 (l—n)pp 10 +

2

n_
k

We note the symmetry of the determinant (J.4.18). This is

also the case for the determinant (C18) in the one-dimensional case.

Evaluation of the determinant (J.4.18) gives:

A w6 + B w4 + C wz + D=0
where A,B,C and D are functions of w and w*.

The solution of (F.4.19) is:

I+
Q

1+
<2

(J 4.19)

(J.4.20)
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Inspection of the determinant (J.4.18) shows that w* only
exists in the following powers: w*z, w*4 and w*6. So if o, B, Y

are roots of (J.4.19) for w* = Wy

of (F.4.19) for w* = W, -

We consider now a solution in the following form:

then o, B and Y are also roots

ioy  diw,x iBy  iw,x iyy iw, x
_ 0 1 0 1 0 1
wy(x,y) Wyl e e + Wyz e e + wy3 e e
0 —ioy  dwgx 0 -iBy diwyx 0 —iyy  diwyx
+ W e e + W e e + W e e
vh y5 y6
0 ioy -—iwgx 0 +iBy —iwyx 0 iyy —iwyx
+ W e e + W e e + W e e
y7 y8 y3
oy 0" iay -iwqx o 0 —-iBx -iw 1 u 0 -iyy ~iwyx
¥10 e e y1i e e y12 e e
(J.4.21)
where wylo’ cees wylZO are constants. In the same way we define the

other wvariables.

Due to the linearity of the field equations (F.3.16) to

(F.3.23), W (x,9)e iwt etc, is a solution of the field equation.
y bl

Now for every choice of w and W% with an W generated by

(F.4.19), the system (F.4.10) to (F.4.17) gives the relation between

\Y O, \Y 0, W O, W 0, POQ ¢] 0, Oyo and TO. Hence we can write the

y X pe v X
total solution with the constants W O, eees W 0 (twelve).
vi y1l2
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Once the solution has been cast in this form we can construct

the transmission matrices in the same way as for the one-dimensional

case:
e.g:
0 0 0 0 0 o | fox

W_(x,0) = wl +wy2 +wy3 +wy4 +wy5 +wy6 ’e

0w O Oy Ouy Opy Oy 0T (J.4.22)

y7 v8 y9 y10 yll y12
etc.
Now we assume:
lLUlX —1L01X
Wy(x,O) =C, . (=0) e +C_ (y=0) e (J.4.23)

y y

where Wy(x,O) and the other amplitudes of the variables at y=0 are
periodic functions of x with frequency ®;. C, and C_ are the Fourier
coefficients:

T —iwlx
f W (x,0) e dx (J.4.24)
Ny

=l

C+ w (Y=0) =
y

Rl

¢ (y=0) =

- W

SiwyX
jI W (x,0) e dx (J.4.25)
y 0

y
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where:

w, = == (3.4.26)

We can follow a similar procedure at y=L.

0 0
Hence we can express the constants W to W in terms of

yl y6
the Fourier coefficients C, of six variables at y=0 or at y=L and also
we can express the constants Wy70 to WylZO in terms of the Fourier

coefficients C_ of six variables at y=0 or at y=L. And so we are
able to establish two sets of equations which relate the Fourier
coefficients at y=L and y=0 (each six). The matvrix of this relation
can be viewed as the transmission matrix.

In a similar way we can establish the equation for a semi-
infinite system (van der Kogel [381]).

Sumnarizing: for a system of finite length in y and infinite
length in x we have to prescribe at the boundaries (y=0 and y=L) a
total of six periodic dependent variables. The transmission matrix
relates the C+ or C_ coefficients (six each) of the relevant variables

at the boundaries.

This is shown in diagrammatic form in figure (5).
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For a system of infinite length in y and x we have to prescribe
at the boundary (y=0) a total of three dependent variables. The
transmission matrix relates the q+ or C_ coefficients (three each)
of the relevant variables at the boundary y=0 (figure (6)).

We can join the systems by the appropriate coupling conditions

in order to solve a problem including layers.
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K. Jump Conditions Due to Discontinuities

in the Parameters

As stated in the former chapters we can join transmission
matrices in order to solve a problem with layers. The question
arises as to how to join these transmission matrices.

In this chapter we will establish the jump conditions of the
dependent variables 0, p, w and v for the one-dimensional case across
the interface between two two-phase media (hence with different
parameters: n, KP, Kw’ P, P k). The jump conditions are the
coupling conditions for the transmission matrices.

Further we will state the jump conditions between a two-phase
medium and a fluid medium. These are important because shock loading

on soils due to explosions is frequently applied via a fluid (e.g.

water or air).



154

11 11

S8YSTEM {
® @ f 3 3
[ COUPLING |
t Ht
SYSTEM 2
Il I}

COUPLING OF TWO TwO-PHASE 5SYSTEMS

Fie. #



155

K.1 Jump Conditions at the Interface

Between Two Two-Phase Media

The problem of a moving discontinuity has been treated in

Chapter G. Following the same procedure and putting U=0 we conclude:

[pl =0 (K.1.1)
[c]l =0 (K.1.2)
[nw+ (l-n) v] =0 (K.1.3)
[vl = 0 (K.1.4)

Diagrammatically the coupling of two finite systems looks like
figure (7).

So using the transmission matrices of system 1 and system 2,
and Fhe coupling conditions (K.l1.1l) to (K.1.4) we can solve the
equations by applying appropriate boundary conditions (e.g. two at
the top and two at the bottom).

We note that (K.1.3) in general gives rise to velocity

differences between the phases near the interface.
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K.2 Jump Conditions at the Interface Between a

Two-Phase Medium and a Fluid Med%gg

Inspection of (K.1.1) and (X.l.4) shows that the first two
equations are the "action=reaction" laws and the last two equations
are the continuity equations for fluid and grain structure. Because

one side of the interface is lacking a grain structure, we delete the

continuity equation for the grain structure and put o, = 0. Hence:
P " Py = 0 (X.2.1)
Oy = 0 (K.2.2)
n Wy + (1-n) v, T W, = 0 (XK.2.3)

where the medium 2 is the fluid and the medium 1 is the two-phase
medium.

Schematically the coupling of two finite systems looks like
figure (8).

Hence by using the transmission matrices of the fluid system
(see Appendix I) and the two-phase medium we can solve a problem by
applying appropriate boundary conditions (e.g. one at the top and two
on the bottom).

We observe that (K.2.3) in general will give rise to velocity
differences between the components near the interface and

zero effective stress due to (K.2.2).
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L. Propagation of Discontinuities Near an

Interface Between a Fluid and a Two-Phase Medium

In Chapter G we studied the propagation of discontinuities in
a two phase medium in general. 1In this chapter we study a specific
boundary value problem. We focus our interest on an interface
between a fluid and a two-phase medium. Both are at rest initially.
At t=t,; a discontinuity in the fluid phase with a uniform particle
velocity v#** behind the discontinuity approaches the interface.

After the discontinuity hits the interface we assume that
refraction and reflection take place in the pattern of figure (9).
So two discontinuities are propagating into the two-phase medium and
one discontinuity is propagating back into the fluid.

We will use coupling conditions along the interface, jump
conditions for the discontinuities in the two-phase medium and jump
conditions for the discontinuity in the fluid in orxder to derive the
solution.

This is a problem of practical interest. Geophysicists,
interested in locating and identifying the sea floor under the
oceans by means of sonar want to know how an incoming discontinuity
is reflected by a porous medium as a function of the properties of
the porous medium. The solution presented gives this function in
the framework of the assumed models for the two-phase medium and the

fluid.
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Engineers are interested in the initialization of liquefaction
by shock loading and the efficiency of compaction due to shock
loading. The solution presented gives insight into the distribution
of effective stresses and velocity differences among skeleton‘and
fluid near the boundary for this special, but probably frequently

encountered, boundary value problem.

From (I.31) it follows that:
- = - L.1
Py ~ Py U P, (v1 VZ) ( )

where (1.30): 1/2

)

For the incoming discontinuity we have a situation as in figure (10).
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So the pressure behind the incoming discontinuity is:

p, = U p, v (L.3)

After reflection the picture looks like figure (11).

So from (L.1l) and (L.3) there follows:

Py = -U o, V1 4+ 20U o, vk (L.4)

This is the jump condition for the fluid.

P, = Py (L.5)
ol =0 (L.6)
n ‘_"1 + (1-n) x‘rl - 52 =0 L.7)
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Lower Speed U; (figure (13)).

We use the jump conditions (G.2.17) to (G.2.19) and hence:

kS * KJ * Kl %
g, =20 -—Uv2+le (L.8)

* *

%
pl - Ul pw w2 + Ul pw Wl + p2 (L.9)
% % (1-n) Kw % (1-n) Kw %
w, =w, + v, - v (L..10)
2w -u?p)n 2 ® -ufpya b
W 1 w w 1 w

Jump Condition in the Two-Phase Medium in the Case of the

~ K
=P 3
g, 7, v, (L.11)
p2 = U2 DW W, (L.12)
(1-n) KW ~
W, = = v (L.13)
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So we have the picture explained in figure (15).

Hence:

- * - s % L= % L= % (L.14)
Pp =Py 50359 sV TV sWp T

x * x x
P, =P, 30, = 82 3V, =V, 5w, =W, (L.15)

Now we substitute (L.4) to (L.7), (L.11) to (L.13) into (1..8)
to (L.10) and we use the conditions (L.14) and (L.15). This

~ * -
results in three equations with three unknowns (e.g. Vs Vs WZ)'

Once 92, Vlﬁ and 52 have been determined in terms of the para-
%
meters and v , we can determine all the other variables from (L.4)
K
to (L.15). 1If we assume'-ﬁE <<1, we can use the approximate
W

expressions for U1 and U2 given by (G.2.22) and (G.2.21) respectively.

In that case we obtain the following qualitative picture (figure (16)).
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Hence we conclude that near the interface just after impact,
different velocities are being generated in the two-phase medium.
The velocity of the grain structure is small and the velocity of

fluid is relatively large, and both are in the positive x~direction.

The effective pressure is low and the pore pressure is positive
and larger than the original pressure in the fluid. The fact that
the effective pressure is small with respect to the pore pressure
is important from the point of view of justifying the use of the
linearized theory (Kp:: constant).

If further w<< Ul’ we conclude from chapter J that the non-—
linearities due to the convective terms are small.

If we use water as a fluid, then the compression modulus
K, 1s constant until high pressures (Dorsey [44]).

Hence, if w<<Ul { v~ 65 m/sec for "practical' values of wet
sand) then the use of the linearized theory is jﬁstified.

The "fast'" discontinuity in the two-phase medium acts

merely as a "softening'" phenomenon. The differences in velocity and

pressure are less than behind the "slow" discontinuity.
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Near the interface on the fluid side, just after impact, the
pressure is larger and the velocity slower than the original values
in the fluid. However, the differences are smaller than in the case

of a reflection from a rigid non-porous interface.
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M. Constitutive Relations

In the former chapters we used a linearly elastic isotropic
model in the linear case as a constitutive equation for the skeleton.

In Chapter B we used the relation 0 = O (n) for the non-linear
case in one dimension. These models will in general not closely
describe the behavior of real soils (Scott [34]). 'Especially the
history dependence of the constitutive equations for real soils in
the framework of the above formulations forms a barrier for further

progress.

We will make an attempt to describe more closely the state and
the behavior of a granular material by including additional kinematical
variables in a thermodynamic approach to the derivation of the con-
stitutive equation.

We generate a linearized constitutive equation, which will be

used for further analysis in the two-phase theory.
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M.l Kinematical Variables

In Chapter B we used the porosity n as a structure variable and

we postulated:

o = o(n) (M.1.1)

For real soils ‘this is not a one to one mapping (Scott [34]).

So the question to be asked is: what variables describe the
state of a granular material?

Goodman and Cowin [ 52] introduced the gradient of the porosity
and Mullinger [ 53] introduced a fabric tensor, representing the dis-
tribution of contact points between the grains, as an additional
kinematical variable. Both theories contain generalized forces
associated with the motion of the additionél kinematical wvariables,

which are somewhat hard to explain physically (Jenkins [541]).

Once the state of a granular material is known, one can
consider the motion to another state.

Gudehus et al. [55] did work in this area. They defined a
state of swept out memory (S.0.M.) and once the material reaches

this state the behavior is independent of the initial state.
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We will try here to identify the state of a soil in general
by introducing additional kinematical variables. For the moment
let us restrict ourselves to a two-dimensional case (e.g. a system
of rods).

Assume that the state of a granular material is given by the

following kinematical variables:

n (M.1.1)
U] (M.1.2)
(0 (M.1.3)

where n is the porosity Yand $ are scalars.

We choose only two additional kinematical variables in
order to generate a simple theory on one hand, and on the other hand
hopefully to generate enough information about the grain structure.

Now we have to define the additional kinematical wvariables
in a physical sense.

Oda [56] has shown that the particles in a grain structure
orient themselves during stress application. So appropriate choices
for the additional kinemaﬁical variables seem to be ¢ and Y, where
¢ is the average angle between the major axis of the particles in

an element and the principal stress axes (fig.17) and ¥ is the

deviation in an assumed distribution around the average angle ¢ of

particles in an element,
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An element of particles is defined as that elementary volume
by which expansion of that elementary volume does not give any change
in n, ¢ and Y.

The disadvantage of such definitions is that the angle ¢ and
the deviation { are hard to measure with today's available techniques.

Alternatively one could consider the following definitions: ¢
is the angle between the principal axis of the seepage coefficient
and the axis of the principal stress and |y is the ratio between the
principal seepage coefficients.

These variables can be obtained with today's available
techniques and give some information about the grain structure. The
last definitions look more appropriate for bulky particles.

Other definitions are possible, but the usefulness will depend

on the precision and the cost of measurement of these variables.
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M.2 Constitutive Assumptions

We vestrict ourselves to those materials for which the internal
energy per mass €, the stress T and the temperature 0 are functions of
the present value of entropy per mass N(X,t) and the kinematical

variables ¢(X,t), ¥(X,t) and n(X,t).

SO
e =¢e (n(X,t), ¢(X,t), ¥(X,t), nX,1)) (M.2.1)
T=1f (n(X,8), ¢(X,1), Y(X, 1), n(X,t)) (M.2.2)
6 =8 (n(X,t), ¢(X,0), ¥(X,1), n(X,t)) (M.2.3)

The motion of an elementary particle is described by:

X = x (X,t) M.2.4)

where X is the position of an elementary particle at a reference time.
We use rectuangular Cartesian coordinates throughout. We
further assume that the deformation gradient F is a function of the

present value of n, ¥, ¢ and n:

F = F(n,$,6,n) (M.2.5)
where
0X.,
F = ——-——1 (M.Z 6)
ij BXj -

Then (M.2.1) to (M.2.5) together with appropriate balance equations

determine the deformation of a body of the given model. We note that
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this formulation has the advantage of removing the direct history
dependence in the formulation.

From now on we focus our interest on "loading" processes, which
means the variables either grow or decay continuously.

In that case we assume that we can write:

¢ = ¢(F) ‘ (M.2.9)
V= 9@ (M.2.10)
n = n(F) (M.2.11)

In order to imply material objectively we pose:

¢(F) = ¢(F" F) (M.2.12)
V(F) = HE F) (M.2.13)
n(F) = 4E B (M.2.14)
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M.3 Reduction of the Class of Constitutive

Functionals by the Entropy Inequality

Posing the entropy inequality generates information about the

dependence of T on F.

~

The local entropy Y is given by:

local

- 1 L ]
e v local = 6 n+ 5 Tij dij - (M.3.1)
1 BVi v, .
where dij = E~(§§i-+‘§§%) (M.3.2)
and v, = % (M.3.3)

From (M.2.1) and (M.2.9) to (M.2.11) follows:

._E_E_:_. ~a_€—o —8—8_0 ___8_?__.
€ = n n + 3% ¢ + 30 Y+ An D
_de s 9e0¢ . de By,
"o "t opor L T A o *
9 dn =
+ oo F (M.3.4a)

~

The entropy inequality states: For all motions x = x(X,t)

>
Y local ~ 0.
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Substitution of (M.3.4a)in (M.3.1) and posing the entropy

inequality gives:

L4l NI N T
On+ 5T 445 "3 N T3 BF,. ij
ij
_9%e W = 9 dn g
3) OF,, ij ~ on OF,. Fiy 2 0 (M.3.4b)
ij ij
Further we notice:
1 Bvi ov.
Ti3 445 77 O3, Y e ) T
] 1
Bvi :
= T4y ox, (:3-5)
]
P.‘ = _B__. (E{_E.L_) = iv_}..
ij ot “9X, X,
J ]
ov, 9 ov.
= —};—1- i 3 F, ., —— , (M.3.6)

From (M.3.4) to (M.3.6) follows:

o€,

_ o€ o€ 99
on’

ik ~ 9¢ 9Fiy Kj
9E Y F 9< on i,

.~ A m Fpa) 2
oY aFij Kk on aFij kj axk

(0 ) 1+ (% T F (M1.3.7)

ov,

for.all E(g,t) and n(X,t).
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The inequality (M.3.7) requires that:

-
6 = an (M.3.8)
T, de [ 9¢ } o [y }
ik =po=d_ g b4 plE 4 g
2 |9, k3 o Vo Tk
ot on :
+p o 5§;}~ ij} M.3.9)

We stress here the fact that the above equations have been derived -
under the assumptions (M.2.9) to (M.2.11), which we assumed to be
valid in the case of loading processes. The above derivation is
valid for the general non-linear case.

Inspection of (M.3.9) shows that the stress Tix consists of

three parts: those associated with changes in the kinematical wvariables

. Jde  0€ o€
¢, P, and n respectively. 563-55, and Ao can be viewed as participa-

tion factors in the stress due to their ¢, ¥ and n "motion"
respectively.
We now linearize the equations; this means that we assume for

the motion x = x(X,t) that:

~ A o~

Sui
3%, | <<t (M.3.10)
J
where:
x; = Xi + vy (M.3.11)



179

and ug is called the displacement.
Then:
0%, ou,
i_ - + 1
X ij i 9xX
J J J J
Hence:
9¢
F) = ¢(I) + o F_ -
b (F) = 6(D) + 57 (F =)
Pg
=1
2
197¢
+ = : (F -6 ) (F
2 BFPg aFrs P8 P8 r

Normalize ¢ such that:

6 (D) = ¢,

Similar expressions can be derived for Y and n.

From (M.3.13) follows::

9 _ od )
SF.. - 3F + 5F. oF (Frs
+J H dp=1 + F=1
We note that: (M.3.11)
2u
Y

(M.3.12)

(M.3.13)
S-drs) +...

(M. 3.14)
»srs) (M.3.15)

(M.3.16)
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So:

9% _ 99 (M.3.17)

Substituting (M.3.17) into (M.3.9) gives a first term on the right

hand side of (M.3.9) as:

o fpo | L% 1 Y
36 Polor. . oF, . OoF l X /(=
ij ij rs s
F=1 F=1
2 du
3 , 39 +3€ . 3% ouy
36 P0 BF ! 36 "o 3F  oF 5% (11.3.18)
ij ij . 8
F=1 F=1

Similar expressions can be derived for the second and third term of

(M.3.9).
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So from (M.3.18), the above similar expressions and (M.3.9)

there follows:

0 a.ur
TiJ = 1j Cijrs 5§; (M.3.19)
where:
c = c
pqrs rspq
“pqrs B qurs (M. 3.20)

Cc C
Pgrs pgsr

We observe that the material in general behaves as an anisotropic
linear elastic material which is prestressed. The result is only
valid for the "loading' case with small deviations from the reference
state.

From (M.3.12) to (M.3.14) follows:

ou du Bur
¢ = ¢.o + dpq -~p—3Xq + e pqrs —RBXq _aXs (M.3.21)

We note that this result is formally valid for the two-dimensional
case. However including more kinematical wvariables in the form of
(M.2.9) to (M.2.11) din order to describe the grain structure in three

dimensions, would have generated equations of the same form as (M.3.19).
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When there is no stress in the reference state (M.3.19) becomes:

du

T
. = C Crrae
ij ijrs SXS

Y (M.3.22)

C. .
ijrs rs

where:

du dur

=1 s

T
Yrs 2 (BX + X
s T

) (M.3.23)

Now we consider again a two-dimensional case, then from (M.3.22)

follows:
T.., = C.. Y i,j=1,2 (M.3.24)
1 ijrs s
3.4 r,s=1,2
or: Opx = Cxaxx Yxx ¥ Cxxxy 2ny + Cxxyy Yyy (M.3.25)
T = + 2 +
x  Sxyxx Yxx T Sy Yy T Sxyyy Vyy (M.3.26)
o = ¢ + c 2 + c
vy xxyy Txx T Syyxy “Vxy yyyy Vyy (M.3.27)

From (M.3.20) we conclude that there are six constants in the above

constitutive equatioms.
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N. The Propagation of Discontinuities in a

Two-Dimensional Two-Phase Medium,

Including Dilatancy

So far we have studied the wave propagation through a saturated
linearly elastic isotropic porous medium. However a real soil often
exhibits dilatancy (Scott [34]). 1In a dilatant material contraction
or expansion takes place during shear. This phenomenon can be
taken into account by the use of the derived constitutive equations
(M.3.25) to (M.3.27) of the former chapter for the two~dimensional
case.

We will consider the case of '"dilatant shear'. Applying a
shear discontinuity at the boundary will generate discontinuities
propagating into the two-phase medium. We will derive the jump
conditions and an equation for the speed of the discontinuities in
a similar way as in the one-dimensional compression case.

We will relate some of the results to the results of the
one~-dimensional compression case and we will discover that non-
propagating discontinuities exist which also occur in a dry

material (Appendix VI).
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N.1l 'Field Equations

We assume an orthogonal coordinate system (x,y) and we further
assume that the boundary cqnditions are such that the variables are
independent of y.

Then:

u

d
= =0 ' N.1.1
Yoy = 3y ( )

So (M.3.25) to (M.3.27) become:

wx = Cxmxx YXX + c Zny (N.1.2)

T = + c 2 N.1.3
xy | Sy Txx xyxy Txy ( )

e L (N.1.4)

Now we write (N.1.2) and (N.1.3) as:

It

ag

xx A Yok +D zny (N.1.5)

T __=1D Y + F Zny (N.1.6)
Inspection of (N.1.5) and (N.1.6) shows that the grain structure

might expand (YXX positive) or compress (YXX negative) by applying

a shear stress and hence the possibility of dilatancy is included.
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Further:
du
= %
Yxx ox
1 oJu du
2ny =2 E.(O + ox ) = ox

Substitution of the above expressions into (N.1l.5) and (N.1l.6) gives

after differentiating with respect to t:

BGXX va ov

5t A ax Y Dax (N.1.7)
0T, v, v

2 opL +pt (N.1.8)

For the fluid we derive the following storage equation:

ow ov
x , 1-n x_ _ 1 23p
ox + n  9x Kw ot (N.1.9)

The derivation is similar to the one in Chapter J. We omit the
derivatives with respect to y.

The momentum equations for the fluid are:

wa p n2 n2

"PBE T Tig G i By (M0
Bwv n2 n2

n pw 3{;— = ‘ - -E—-“ (wy—vy) - ’E_" (WX"‘V'X) (N.l.ll)

yy yX
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Again these equations are similar to the ones in Chapter J,
but we omit derivatives with respect to y and add terms which represent
the forces in the x-direction dﬁe to velocity differences in y~direction
and vice versa.

In a similar way we derive the momentum equations for the grain

structure:

BVX agxx 3p 0
(A-n) oy 57 = 3%~ ) 5o+ (W -v,)
XX
n2
+ o (w_-v) (N.1.12)
Key 7Y
ov aTxy n2
(1-n) pp SEZ-= e + Ef-(wy-vy)
yy
n2
T V) (N.1.13)
yx

Hence from (N.1.7) to (N.1.13) it follows that the field equations

are:
80XX Bvx va
3t = A = + D = (N.1.14)
BTYX, BVX va
Y =D P + F o (N.1.15)
wa , 1 Bvx _ 1 3
ox n  ox K At - (N.1.16)
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awx ap n n2
np =—=-n+ -7 f(w-v) -7 (w-v)
w ot ox kxx X X kxy y y
ow p2 n2
P -lat = - (wy—vy) % (WX—VX)
yy yX
Bvx BGXX 3p n2
o) oy g = T ) gt ()
n2
+ ——— (w_-v )
kxy y vy
ov ery n2 ‘
(1-n) pp Jt 0% kyy (Wy vy)
n2
+ k— (WX—VX)
vX

(N.1.17)

(N.1.18)

(N.1.19)

(N.1.20)

The field equations (N.1.14) to (N.1.20) form seven equations for the

the seven unknowns v_, v., w , w , O, T _ and p.
x> Ty’ x? Ty’ Txx? xy

The independent variables are x and t.
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N.2 Derivation of the Jump Conditions

We write (N.1.14) to (N.1.20) in integral form and we assume x

17 %9
then:
*9
d
- £ o <+ + =
< / L AV +D vy] 0 (N.2.1)
1
X
_d _ .
e / Ty 4% F [Dv _+F vy] 0 (N.2.2)
1
)
d 1-n -
e f pdx + [K w +K % v.]=0 (N.2.3)
*1
X2
d _
E f n pw Wx dx + [n p] =0 (N.2.4)
]
X2 .
4 p w dx=0 (N.2.5)
dt Wy
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~2
%’E / (1-n) pp v dx+ [~OXX + (I-n) pl =0 (N.2.6)
*1
*2
-g; / (I-n) p, vy dx + [- Txy] =0 (N.2.7)
*1

From (N.2.1) to (N.

2.7) we derive the

following jump conditions:

U [GXX] + [A Vo + D vy] =0 ' (N.2.8)
U [Txy] + [D vX + F Vy] =0 (N.2.9)
1-n
~Ulp]l + [K w +K ==v]=0 (N.2.10)
- U [pW 'WX] + [p]l=20 (N.2.11)
-U [pw wy] = (N.2.12)
- U [(A-n) p v 1+ [0 + (I-n) pl =0 (N.2.13)
- U [(1-n) Py vy] + [~ 'rxy] =0 (N.2.14)

where U is the speed of the discontinuity.
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From (N.2.12) it follows that

w =W (N.2.15)

Now consider the following problem: a discontinuity is propagating

into a medium where the variables have the following values (rest

state) ..

v =v =w =w_ =20 (N.2.16)

6 =1 _=p =0 (N.2.17)

Substitution of (N.2.16) and (N.2.17) into (N.2.8) to (N.2.14) gives:

- U Gxx -Av -Dv. =20 (N.2.18)
2 %2 ¥
-UT -Dv - Fv = 0 (N.2.19)
Y9 ) Y2
U p ~K w -k Ry =0 (N.2.20)
2 W X W n X, ter
2 2
U Py, Wx, - Py = 0 (N.2.21)
2 .
U (1-n) pp sz + Gxxz - (1-n) P, = 0 (N.2.22)

U(l-n) p_v. +1 =0 (N.2.23)
P Y
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These are six equations for seven variables (U, o s T
X%, Xy,

V., V., W_ , P,).
2 Yo Xy T2

Hence we have to prescribe one more variable behind the

discontinuity, e.g. choose v
Y2
After some algebra we obtain:

“DUG =-(-AU% (1-n) p + AF - D) v (N.2.24)
2 B k)
T = - U (1~ v N.2.26
%, (1-n) Py ¥, ( )
Dv = { U2 (l-n) p - F}v (N.2.27)
*2 P Y2

2 o 1-n 2 ~
D (U° oK) Py =Up, K == { U° (I-n) p - F| "y, (N.2.28)
Up w_ =P, (N.2.29)
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2 2 6
(1-n)" o p_ U
P w

_ 2 2
+1{- 7 a-w P, Py T Ky (1= oy

2 “1l-n _ 4
- p o K 7= A (1-n) oy pp} U

- A ., 1-n
{r x_ (1-n) p, + F (I-n) p K =

+ K -
K, A @Qm) o +FAp

+{-F K A+D"K}=0 (N.2.30)

Substitution of V = U2 in (N.2.30) shows that we have to

solve a third order polynomial in V. We retain only the positive
roots of V in order to arrive at real wavespeeds for U.

Assume now that the parameters are such that one pair (positive
and negative) of wave speeds U exists, then (N.2.24) to (N.2.29) gives

the variables behind the discontinuity in terms of v_ .
2
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We note that if D2 - F A = 0 there exists a non-propagating
discontinuity (U = 0). A discussion for this case will be given
in Appendix VI for a dry material.

We consider the case K_>>A, F, D .and put (N.2.30) in the

following form:

2
axd + 3bx" + 3cx 4+ d =0 (N.2.30b)

qg=ac- b2 (N.2.31)

3 (N.2.32)

z=—21~(3 abc—a2 d) - b
Substitution of the coefficients of (¥.2.30) into (N.2.31) and (N.2.32)

- shows:

q ~ -b (N.2.33)

r ~-b (N.2.34)

So if the parameters are such that there exist three real roots then:
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(<b-b) ~b _ -3b

1= 3 - (N.2.35)
1
(- i—(—b—b) -b)
x2,3 ~ 5 =0 (N.2.36)
In fact this shows that we solve:
ax> + 3b X2 0 (N.2.37)

Substitution of the coefficients of (N.2.30) into (N.2.35)

shows:

(N.2.38)

v <n pp + () pW) el
n pp QW

We note that the speed of the fastest discontinuity in the "dilatant
shear" case is equal to the speed of the fastest discontinuity in

the one-dimensional compression case (G.2.21).

2 and X, are small with respect to X Iﬁ order

to associate a propagation velocity with X, and Xq their roots have

We note that x

to be positive., If one of them or both are positive, then the
associated speed of a discontinuity is small with respect to the

fastest discontinuity (N.2.38).
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Hence we conclude that for the case Kw > A, D, F a fast
propagating discontinuity is possible and its speed is given by
(N.2.38). If the parameters A, D and F are such that one or two
propagating discontinuities are possible, then their speed is always
small with respect to the fastest discontinuity.

Substitution of (N.2.38) into (N.2.24) to (N.2.29) shows:

®p (N.2.39)
w = — v N.2.
*2 pw X2

_ nop

A W

o3 =8 N.2.40
xx,) Kw(n p, + (I-m) pw>P2 ( )
Py, =U p, wX2 (N.2.41)

We note the similarities between (N.2.39) with (G.2.33), (N.2.40) with
(G.2.34) and (N.2.41) with (G.2.32).

Hence for w_ , © and p., we conclude that they behave in

X, XX, 2

the same way as the variables behind the fastest propagating dis-
continuity in the one-dimensional case and the same conclusions for
the one-dimensional compression case apply to the dilatant shear
case. Additional features in the dilatant shear case, with respect

to the one-dimensional compression case, are the generation of a

velocity in the y-direction and a shear stress Txy given by:
2
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=D
Txyz =3 o] (N.2.42)

nop

i |
v K, G @ ¥ @ pp x, 24D

|
+

v

Hence vy is always small with respect to vy and the ratio of
2 2
T and O will be equal to the ratio of D and A. For slightly
2 ¥
dilating materials D/A will be small and hence Txy will be smail
2

with respect to Oxx2'>

The conclusion is that for KW > A, D, F, behind the fastest
propagating discontinuity, the effective stress (T ) and Gxxz) is
small with respect to the pore pressure and veiocity differences
in x-direction between skeleton and fluid depend on the ratio pp/pw.

A propagatiﬁg discontinuity or discontinuities are generated
by suddenly applied loads or velocities at the boundary. In the case
that there exist three discontinuities we can prescribe three variables
at the boundary (e.g. vx(O,t) =0, WX(O,t) = 0 and Txy(O,t) = H(t),

+

where H(t) is the stepfunction) and calculate the variables at t = 0

in the same way as in Chapter L.
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0. Wave Propagation in a Laboratory Model

In the theoretical model the saturated granular medium was repre-
sented by a two-phase continuum whose stresses and pressures indicate
only in an average sense what the sand grains and the pore water are
actually doing and, obviously, some significant behavior of the grains
and fhe water are not included in the continuum representation. To
throw some light on this behavior experimental studies were undertaken.
Our objective here is to obtain additional information especially on
those aspects not accounted for in the theoretical model. Notably the
discrete character of the solid particles and the ability of the particles
to slide along each other or even lose contact will draw our attention.

Furthermore we are interested in interparticle stressesvafter
shock loading. The usual techniques for measuring pore pressures and
total pressure (e.g., True and Herrmann [31]) have many drawbacks and
calibrating the gages is an elaborate and sometimes questionable process
which requires judgement. Therefore we felt the need for another tech-
nique to obtain a picture of the changes in intergranular stresses.

At the suggestion of R.F. Scott we chose a photoelastic technique
because it permits the direct visualization of stress wave propagation.
Two different models are used: (1) Homalite 100 (supplier: Homalite
Corp., Wilmington, Delaware), circular discs (diameters: 2 cm and 1 cm,
thickness 0.5 cmg two sizes were used to break up the regular pattern)
saturated with Pasadena tap water, and (2) crushed Pyrex (sieve +8 728)

saturated with glycerol.

The first model will give us specific insight into disc movements,

relative movements of discs and water, and stress in the discs. The
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second model gives insight into the stresses in a granular medium which
represents more closely the properties of a saturated sand.

Each matefial was put into a tank (31.5 cmbx 22.6 cm x 0.6 cm,
inside) which consisted of two Lucite plates, clamped to an aluminum
frame (Figure.(l9)).

0.1 Wave propagation through a dis¢ configuration

Dantu [57], de Josselin de Jong and Verruijt [58], and Drescher and
de Josselin de Jong [59] studied the stress‘and deformation patterns of
disc configurations due to applied stresses.

The method consists of projecting polarized light through discs of
a photoelastic material. The light patterns on the discs are a
measure of the stress in the discs.

Natural light consists of waves vibrating in all directioms
(Kuske and Robertson [g0]). Light passing a ﬁolaroid will only vibrate
in one direction (the direction of the axis of the polaroid). Natural
light passing two polaroids with the axes pérpendicular will result in
a dark field on a screen behind the last polaroid. Inserting a piece
of photoelastic material (the model) between the above polaroids will
have the following effect: All points within the model which have
principal stress directions parallel to the axes of the polaroids will
stay black (these black lines are called isociinic fringes). Hence the
isoclinic fringes determine the principal stress directioms.

Polarized light crossing a 1/4 wave plate, which has axes at an
angle of 45° with the direction of the incoming pdlarized light, results

in light whose vibration direction rotates.
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Inserting two 1/4 wave plates between two polarizers (axes per-
pendicular) in such a manner that the axes of the 1/4 wave plates are
perpendicular and’make 45° angles with the axes of the polaroids, will
result in a dark field on a screen behind the last polarizer (for a
monochromatic light source). Inserting the model between the 1/4 wave
plates has the following effect: By loading the model a set of dark and
light fringes appear. The dark fringes, called isochromatics, give the
collection of points where the difference in principal stresses has the
same value. No isoclinics appear.

However, when the model is placed between two polarizers (axes
perpendicular), isoclinics as well as isochromatics appear on the screen.
'Frequently one is only interested in the principal stress difference.
The isoclinics are then undesirable because they obscure the stress
pattern. |

It was felt that the photoeleastic technique could be adapted for
the study of wave propagation through disc configurations (saturated and
dry).

0.2 Experimental Setup

The experimental set-up is as follows (Fig.20): A mercury arc
bulb (~150 Watts; A in Fig. 20) generates the light. The light rays
are brought parallel by a lens (48 in., £/6.3, B in Fig. 20). The
light rays cross the polarizer (1/4-wave plate, C in Fig. 20), tank
(D in Fig. 20), (1/4-wave plate), polarizer and a lems, respectively.

Behind the last large lens we placed a high speed camera (type:
Hycam, model K20S4E, lens: 25 mm, 1:1.4, film: 16 mm, Kodak RAR film

2498). We set the camera at 5,000 frames per sec. or 10,000 frames per sec.
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0.3 Impacted discs, dry

The tank was randomly filled with discs. On top of the disks was
placed an aluminum bar (30.5 cm x 5 cm x 0.5 cm). The top of the bar
was struck with a steel strip and a high-speed camera film recorded
the subsequent phenomena (5,000 frames per sec.). No 1/4 wave plates
were used.

Fig. A.1 shows the unstressed state of the disc configuration.
Visible is the part of the tank that was struck by the circular light
beam (Vv 19 cm), which was centered on the tank. Figures A.2 to A.1ll
show the first 10 consecutive frames after impact. In Figure A.2 we
can identify a stress front. The front is about halfway down the tank
so that, considering the framing rate, this means that the front
propagates with at least 5.102 m/sec. We notice that in front of the
dark-colored fringes a grey area has developed which might indicate
some minor stress or disc movement.

Figures A.3 to A.1l1l show subsequent events. The lighted area
stays well-stressed until unloading starts from the top. We note the
change in stress patterns, indicating that particles are stressed
differently at different times.

From Figures A.8 and A.9 we see that the vertical stress rays
disappear faster than the horizontal stress rays during unloading.

Figure A.11 shows a loading wave incoming from the top. In sub-
sequent frames of the original film this loading and unloading behav-
ior took place many times, until it damped out in time. This might be

due to the fact that the top bar was hit by a steel strip, which may
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have developed a bending vibration around the point where it was
clamped (hand) and hence the top bar was possibly subjected to several

impacts.

The plate velocity (= v-———ji——-) for Homalite 100 plates from
p(1 = v?)

which the discs were cut, is in the order of 2.103 m/sec. The esti-
mated front velocity was at least 5.102 m/sec. The large difference
might be due to the tortuosity of the stress transmission path and the

possibility of slip between the discs.

0.4 TImpacted discs, saturated

This time the tank was filled up with water and discs (Fig. B.1l).
The aluminum bar was placed on top of the discs and the.water level was
higher than the lower edge of the bar.

Again the bar was hit by a hammer and a film recorded the subsequent
phenomena. The camera speed was set at 10,000 frames per sec. No 1/4
wave plates were used. The first 10 frames after impact are shown in
Figs. B.2 to B.1ll,

In Fig. B.2 the small top disc has changed color, indicating that
fhe disc is stressed. The individual discs are more easily identifiable
than in the dry case.

Fig. B.3 shows the progress of the front. The stress "front” is
about halfway down. 1In the stressed area the picture becomes fuzzy and
individual discs are not identifiable anymore (which might be due to the
movement of discs and/or water). The estimated speed of the "front" is
8.102 m/sec, higher than the estimated speed of the front in the dry

case.



Fig. B.4 shows the next stage. A definite stress front is not
identifiable. A main ray (row of stressed discs) emerges from top to
bottoﬁ, crossing small particles as well as larger ones. The head of
the main ray has propagated approximately half the lighted circle
diameter from Figs. B.3 to B.4. The general picture becomes
more fuzzy.

Figs. B.5 to B.1ll show the subsequent stages. The pictures stay
fuzzy and rays of stressed discs are visible. We note the change in
location of the rays of stressed discs, indicating a change in stress
distribution.

The whole process of loading the discs took about 25 frames; after
which stress release in the particles started at the top, progressing in
a few frames downwards. The pictures then became less fuzzy and indi-
vidual particles became again identifiable as in Fig. B.l. Hereafter
the pictures stayed stationary; this is in contrast to the dry case in
which the process of loading and unloading repeated itself many times.
Probably the discs weré not loaded anymore by the top bar.

It shoﬁld be remarked that the discs were in a rather dense con-
figuration and presumably the water contained some air. This, and the
fact that the Lucite walls were flexible, probably gave the water an
additional compressibility with respect to the compressibility of pure
water. Because the walls were flexible the compressibility of the
water was not uniform in the tank.

If we estimate the compressicn modulus of the skeleton from the

wave speed (V500 m/sec) and the dry density and assume that the water
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had a compression modulus in the same order as that of the skeleton,
then by substituting these values in the equation that determines the
speed of the discontinuities (G.2.20), we can actually derive a speed
around 800 m/sec for the faster propagating discontinuity and a speed
of V200 m/sec for the slower discontinuity. The fact that we were
unable to identify a definite stress front might partially be caused

by the two-wave structure, but we were unable to make definite

conclusions.

0.5 Impacted saturated granular medium

Dantu [57] introduced a method of visualizing the stress in a
granular medium. It consists of saturating a granular material made of
glass (e.g., Pyrex) with a fluid of the same refractive index, sco the
light is not refracted at the grain boundaries when projected through
the saturated medium.

However, when circularly polarized light passes through the stressed
saturated medium, a 1/4 wave plate and analyzer in series, small light
patterns are visible. Déntu points out that this indicates stress in
the granular medium.

R. F. Scott suggested that this technique might be useful for
studying effective stress changes in a saturated granular medium due to
impact, because the effective stress is indicated in a direct way.

The tank was filled up with a saturated medium, consisting of
glycerol and broken Pyrex. An aluminum bar covered the top of the
medium and was in contact with the granules. The medium was prestressed
by a pair of jacks, placed on top of the bar. Patterns of small lines

became visible, mostly concentrated around the edges of the bar.
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The patterns disappeared instantanecusly after impact; however,
the resolution of the film at 5,000 frames per sec. was not high
enough to follow this process in detail. Consequently the tests
were inconclusive. It should be remarked however that the jacks
fell off their supports and hence the eventual disappearance of
stress patterns was not unexpected.

Using higher camera speeds, stronger light sources ( > 6 amp,
mercury arc bulb): and improving the matching of refractive indexes
might make it a promising technique for studying liquefaction phenomena

due to impact.
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0.6 Discs, indirectly loaded

In the foregoing experiments with discs, we got some insight into
the stress in discs after impact.

In the dry case the discs were loaded directly by the top bar and
in the saturated case the bar rested on the discs and the discs were
partly directly loaded by the bar and partly, presumably, by the water.
The disc configuration in both cases was rather dense and in general no
large relative movement between the discs took place, except in the
saturated case where a few small particles, which were not clamped
between neighboring particles, moved relative with respect to neighboring
particles.

Now we will induce a small water layer above the top discs (+ 2 cm)
and place a nylon bar on top of it. The nylon bar is fitted close to
the Lucite plates at the side. So the discs are not constrained by the
bar and can move relatively freely upwards.

The nylon bar was struck and disc displacement and fluid movement
observed visually. After impact the following phenomenon occurred:

The discs moved upwards and the disc structure expanded so that
generally the discs lost contact with each other.

High-speed camera films and particle movement studies showed that
in the first stage the discs stay in their positions, but water is
flowing downwards around the discs. The downward velocity of the water
particles decreases to zero velocity almost simultaneously in the

whole tank, then the velocity direction becomes upwards. So far
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as could be observed around this point the discs start to move
upwards and in general relative to each other.

The same phenomenon was observed in a smaller tank (10 cm X 5 cm x
0.6 cm) with the small size discs, where the walls of the tank were
relatively rigid. Experiments in this small tank showed that by using
a fluid with a higher viscosity (glycerol-water), the discs moved
quickly upwards after which they floated for a while in the viscous
fluid.

The upward movement of the top discs and separation of discs after
impact on the water layer above the disc layer was also observed in a
tank of rectangular cross section (10 cm X 6 cm X 3.5 cm), where the
discs were put in randomly in a three-dimensional structure (height
disc layer: 4 cm, height water layer: 2 cm).

When a periodic motion of a certain strength was applied to the
nylon bar above the water layer in the big tank, a motion of the
discs was caused relative to each other. Generally this loosened
up the top layers of discs and partially filled up the water layer

with discs.
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0.7 Summary

Observations showed that behind the downward propagating stress
"frgnt” the stress was mainly transmitted perpendicularly to the stress
front (that is, approximately vertical), while during unloading the
stress was mainly horizontally transmitted. This was true for both

the dry and saturated case.

‘In the saturated case a definite stress front was not identifiable,
this might partially be due to a two-wave structure as found in the
theory. But no definite conclusions could be made on this aspect.

Relative movement of water and discs was observed for
low-frequency cyclic loading and shock loading of saturated
disc configurations.

It was observed that indirect shock loading of the discs
via a fluid layer on top of the discs was able to induce relative

movement of the discs or even cause the discs to lose contact.
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P. Summary and Conclusions

The thesis investigation on the wave propagation in saturated
porous media was divided in two parts, a theoretical one and an
experimental one.

The theoretical model consisted of a continuum with two inter-
acting phases, a fluid and a skeleton. The linear field equations
were derived from the non-linear balance laws and constitutive
equations for the one-dimensional case. Limiting cases of these
field equations yielded well-known results (e.g. fluidization). For
"practical" values of wet sand and in the lower frequency range there
exist two modes: one in which the phéses move almost together
(first mode) and one in which the phases move opposite (second mode).
In the far field only the first mode survives because the first mode
is slightly damped and the second mode is heavily damped. The
second mode has to be introduced when we apply boundary conditions
other than can be generated by the first mode (vaxw). A larger
permeability means a larger area near the boundaries where the second
mode can exist. TFor the first mode and hence in the far field the
effective pressure is small with respect to the pore pressure.

If we apply a step loading at the boundary in general, two dis-
continuities in the variables propagate. We were able to show that for
"practical" values of wet sand the jump in the effective stress is always
small with respect to the jump in the pore pressure along the fastest

propagating discontinuity, regardless of the boundary conditions.
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Using a wave front expansion we showed that the discontinuities decay
as they propagate. The decay is faster if the permeability is smaller.
Including non-linearities due to a non-linear constitutive equation
for the fluid opposes the decay of propagating discontinuities in the
gradients of the variables.

Equal phase velocities, in general, do not exist unless there is
a certain ratio between the compressibilities of the fluid and the
skeleton (Equation H.1.18). It was shown that the non-linear convective
terms are unimportant if the speed of the discontinuity is high with
respect to the phase velocities along the discontinuity.

The theory was extended to more than one dimension in order to
allow shear waves to propagate. For an isotropic linear elastic
skeleton we demonstrated that for the low frequency range the phases
move almost together in the shear mode.

In an attempt to establish a more realistic constitutive equation
for a granular material we introduced kinematical variables in order
to define the state of a granular material. By using thermodynamic
arguments we showed that the stress consists of the sum of stresses due
to the "motion" of the kinematical variables. The linearized version
of the constructed constitutive relation was used for further analysis
in the "dilatant shear" case in the two-phase theory. In this case
there exist non—-propagating discontinuities, which can also occur
in a dry material. For practical values of wet sand we showed
some of the similarities and differences with respect to the one-

dimensional case.
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The speed of the fastest propagating discontinuity is equal
for dilatant shear and one-dimensional compression. The jump in
the effective stress is small with respect to the jump in the pore
pressure and the velocity differences in the direction of propagation
depends on the density ratio.

In the one-dimensional model we can apply different boundary
conditions, e.g. loading the grains or fluid or both. As an applica-
tion of the theory of propagating discontinuities we looked at a
discontinuity propagating in a fluid and impinging on a two-phase
medium at rest. Two discontinuities propagate into the two-phase
medium. After the first discontinuity the pore pressure jump is
large with respect to the effecﬁive pressure jump and both phases
compress; however, after the second discontinuity near the boundary
the effective stress falls back to zero and the pore pressure rises
higher due to the boundary condition. Hence the fluid compresses and
the skeleton expands. As indicated in the literature review, True [30],
[31] did a series of experiments in which a soil column (saturated, wet
and dry) was loaded by an explosion in air above it. True plotted the
total pressure, pore pressure and calculated effective pressure as a
function of time at depths of 6, 18, 54, 90 and 126 inches below the
surface of the sand columm and stated that the water pressuresvmeas—
ured were probably realistic, but that the total measured and therefore
the deduced effective pressures might be affected by wall friction. 1In
the saturated case at a depth of 6 inches the pore pressure followed

more or less the input air pressure. The plotted effective pressure
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went down to negative reference stress (reference stress is static
overburden stress (Vv 1/2 psi)) following an interval of small positive
effective stress. For the dry case, again at 6 inch depth, the pore
pressure followed more or less the input air pressure, but the positive
jump  in the plotted effective stress was more pronounced, after which
it went down below the static reference stress while the pore pressure
was still increasing. Further down in the column the decrease in
effective stress was less. True stated that there were indications of
a quick condition in some of the tests in the top two feet of the sand
column (negative values of effective stress with respect to the
reference stress and migration of pressure meters).

A possible interpretation would be that near the top of the column
the skeleton first compressed and thereafter expanded. This might have
caused "overshoot" in the expanding grain structure to such an extent
that the grains lost contact. In the theoretical model compression
and expansion.of the skeleton directly after impact is due to the
existence of two waves in order to satisfy the boundary conditions and
hence the question arises as to whether or not the second wave in a
saturated granular medium exists and its significance with fespect
to liquefaction. Therefore, it would be interesting to assess by
further experiments whether or not there is compression and expansion
of the grain skeleton during such shock loading near the boundary as
indicated in the theory. Furthermore it would be interesting to
assess whether this phenomenon, if it exists, could initiaté lique-

faction due to '"overshoot'" in the expansion of the grain structure.
P g
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The experimental model for this thesis consisted of a disc con-
figuration in which the interparticle stresses were visualized by a
photoelastic technique. Stress waves in the discs, due to impact,
were recorded by a high speed camera film. For the dry case a repeated
loading and unloading of the discs took place, while in the saturated
case there was apparently only one cycle of loading and unloading in
the discs. A definite stress front could be identified in the dry
case, but no definite stress front could be observed in the saturated
case. Relative movement of fluid and skeleton was observed during
impact. Discs that werevloaded by impact in an indirect manner via
a fluid layer on top of the discs showed a tendency to move upwards
and also relative to =ach other. Whether this phenomenon was mainly
due to overshoot of the loaded grain structure or the flow of the
fluid is at the moment an open question.

The fact that in the dry case aldefinite wavefront could be
identified, but not in the saturated case, might indicate a two
wave structure as found in the theory. 1In order to assess the
existence of the second wave one has to choose the parameters and
the boundary conditions in such a manner that the second wave will
be generated in at least a part of the field as indicated by the
theory. This means a large permeability (in order to reduce the
damping) and e.g. only loading the skeleton in the case the para-
meters take the "practical' values of wet sand (in order to generate

the second wave).
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Including relaxation effects of the skeleton in the theory,
would allow a more detailed description of the change in the

variables during rapid loading.
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Appendix 1

Transmission Matrix and Jump Conditions for a Fluid

The transmission matrix and the jump conditions for a fluid
system will be derived.

Assume the field equations are given by:

9v _ _ 9p (I.1)
Py ot ox

ov _ _ 1 9p .

9x KW ot (1-2)

Equation (I.1l) is the momentum equation and equation (I.2) is
the continuity equation for the fluid. The pressure and the velocity
are represented by p and v respectively. The mass density is pW and
the compression modulus is Kw' The independent variables are x and t.

Consider solutions in the form:

iw(t- %) iwt

0 V(x) e : (1.3)

v(x,t) =V e

If

iw(t- %) iwt

0 P(x) e (1.4)

P” e

p(x,t)

Substitution of the solution form (I.3) and (I.4) into the

field equations (I.1) and (I.2) gives:
0
0 % P’ =0 (1-5)

P =0 (1.6)
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For a non-trivial solution we require:

s
pW C
=0 (r.7)
-1 1
c K
W
or:
01,2 = _ E)—— (1.8)
w
From (I.3), (I.4) and (I.8) follows:
18y i¥x (1.9)
0 ¢ o ¢
V(x) = Vl e + V2 e
—ig- X 1-9 X
0 ¢ o ¢
P(x) = P, e + P, e (1.10)
1 2
where:
1/2

c= |- (1.11)
pW
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Furthermore from (I.5) it foilows that

P0=chO
Hence:
p 0 - v.© = __vao (1.12)
1 TP c 1 .
K
0 0 W 0
PZ —-—ch2 = - VZ (1.13)

Substitution of (I.12) and (I.13) into (I.9) and (I.10) gives:

w w
-1 —=x i—x
0 ¢ 0 ¢
V(x) = V1 e + V2 e (1.14)
-i -L—U-x 19— X
Kw 0 c KW o ¢
P(x) = e Vl e . V2 e (1.15)
We now put:
0 0
Vl + V2 = A (1.16)
0 0 '
—Vl + V2 =B (1.17)

Then (1.14) and (I.15) become:

V(x) = A cos % x + i B sin % x (1.18)

K
P(x) = -—~ B cos Yx-iYAsinlx (1.19)
c c c c



220

s0:
V(o) = A (1.20)
K
W
P(o) = - T B (1.21)
Substitution of (I.20) and (I.21) into (I.18) and (I.19) gives:
V(x) = V(o) cos L x -i JL-P(O) sin £ x (1.22)
c Kw c
K W w
P(x) = -1 7¥-V(o) sin-z x + P(o) cos T X (1.23)
or
V(L) = V(o) cos WL _ i = P(o) sin-—uQL (1.24)
c KW c
Kw wL wL
P(L) = ~i TT.V(O) sin 7;-+ P(o) cos - (1.25)

The above equation relates the amplitudes at x = o to the
amplitudes at x = L. So we have to prescribe two variables at the

boundaries in order to solve (I.24) and (I.25).
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The jump conditions will be derived as follows: we write

the field equations in integral form:

~1
L. p vdx - [p] =0 (1.26)
dt w
%2
X1
4 L2 dx - [v] =0 (1.27)
dt K ‘
w
*2
So the jump conditions are:
- U [p, vl + [p] = 0 (1.28)
~U T+ l=0 (1.29)
w
Substitution of (I.29) into (I.28) gives:
1,
- T pW U 'Iz‘— +1=20
w
or:
K, 1/2
U = i(—-) (1.30)
Pu
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We note that the velocity of the discontinuity has the same
speed as the phase velocity.

Frem (I.28) follows:

pl—Pz =1 pW (vl"vz (1.31)

This is the jump condition across a discontinuity propagating

with a speed given by (I.30).
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Appendix II-

Speed of Discontinuities for the Case KW~<<

The speed of the discontinuities for the case Kw<< Kp is

derived as follows:

In this case equation (G.2.20) reduces to:

4 2 ~
U (1-n) Py pp n-1U Kp p, 0 + n Kp KW 0

From (If.1) follows:

K 1

2 o 5 P + C :
1-n T2 (1= n
(1-n) pp n) pp o,

U

2 2 2
(Kp pW n - 4 (1-n) pp o, ™ Kp Kw>

Hence:

(I1.1)

(1I1.2)

(1I1.3)

(II.4)

We note that Ul 2 and U3 , are the speed of sound in the grain
b >

structure and the fluid respectively, viewed as separate materials.
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Appendix ITIL

Propagation of Shear Waves in a Two-Phase

Medium with a Linearly Elastic Isotropic

Skeleton

Consider the case where there are only shear deformations,
which are independent of y, due to the applied boundary conditions.

Then the field equations (J.3.16) to (J.3.23) reduce to:

aTxy E avy
ot 2(1Fv) o9x (III.1)
Bwy n2
nopo RS ST (Wy“Vy) (II1.2)
ow T nz
(1-n) pp "a—tz = g—xﬁ + 5 (Wy-—vy) (III.3)
1f we consider the harmonic solution:
Txy T%y(x)
wop = 4 WG e we (IT1.4)

v . Vy(x)
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and substitute (III.4) into (III.2) we obtain:

2
n
np W iy = - (W -V
Py Wy 1w k(yy)
Henceif:pwcuk<<l,then: W&(x) = Vy(x) (1I11.5)

So in the lower frequency range:

W =V =1V (I1I.6)

Substituting (III.6) into (III,Z) and (III.3), and then adding (I1II.2)

and (II1.3) gives:

. BTXy
{(1-n) o, + 1 B, v (I11.7)
Further from (III.1) follows:
oT
xy . _E__ v
5 2(19) ox (1I1.8)

Hence in the lower frequency range the phase velocities are

almost equal and the speed of the waves is:

1/2

_E_ _
c = i. 2 ( 1+
s (1-n) pp 4+ n Qw
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The propagation of discontinuities is studied in the following

way: From (III.1) to (III.3) we derive the following jump conditions

in the usual way:
-U [T
[T,
-~ Unop, [v]
- U (1-
(I-n) p, vl

Hence:

W =

where

[ous
Il

{

= - U (1-n) Pp (

E

2 (1+v)

(1-n) Py

)

1/2

v -V
Y1 Y2

)

(111.9)

(I11.10)

(I11.11)

(III.12)

(I11.13)

(111.14)

Hence behind a shear discontinuity the velocity of the fluid

does not jump, but the shear stress and the skeleton velocity do.
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Appendix IV Liquefied State

If we assume that the interparticle forces are zero (0=0), the
skeleton does not transmit any forces and hence the constitutive
equation for the skeleton may be deleted.

Hence the field equations (B34) to (B37) reduce to:

np =T n o= - o (w-v) (Iv.1)
(1-n)p. L = = (1-n) L + q (w-v) (1v.2)
p ot ax '
ow , 1-n 9v _ 1 3p
ox + n ox K, ot (1v.3)
where:
n2
o = T (IV.4)
After some algebra we obtain:
a2 2 2 2 '
] 2 - 2
R s TN S (1v.5)
ox ot 9x ot
where
2 Kw (n pp + (1—n)pw>
e = n o P (1V.6)
w P
K /n
2 W
e = - _ (1V.7)
0 n pw + (1-n) pP
-1 0 {(l—_-n) p_+np }
T = £ = (1V.8)

k (1-n) op Py
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This is a familiar equation in the theory of the dynamics of mixtures.

(e.g. Noordzy and van Wyngaarden [61], Marble [62]). For times

t<<T the solution consists of waves propagating at speed e and for

times t>>T the solution represents waves propagating with speed -
For a step-loading in the pressure at the boundary we have

the following situation: for times smaller than T the components

might have different velocities, but for times greater than T the

component velocities become the same. An initial disturbance

propagates with the speed c¢_. and the strength of this disturbance

f
is being damped expoﬁentially as it propagates. Finally the distur-
bance has a speed Cy» the equilibrium speed of sound (v=w). This
is shown in figure (21).

Inspection of (IV.6) shows that the speed C; is equal to
the fastest propagating discontinuity (G.2.21). The connection is
clear when we realize that if we take Kp 2> 0, the speed and the
strength of the slowest propagating discontinuity go to zero and
hence we would obtain the same picture if we do the analysis with
field equations (B.34) to (B.37) for K.p + 0. Further we note that

c, is equal to ¢, (C.38) if we take K_ + 0 and ¢, ~ 0 if K = 0 for
1 P 2 P

0

the lower frequency range.
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Nikolaevskii [15] studied the shock wave propagation in a
mixture (hence with zero interparticle forces) in the framework of a
non-linear theory, for which the solution is stationary in the moving
coordinate system & = x — V t (where V is the shock wave velocity).
He concluded that a stationary structure of the front is possible.

For the linearized case he derived an equation in the form of

(Iv.5).



231 .

Aggendix \Y

V.1 Fluidization

We consider a stationary process in which v=0 (particle
velocity).

The momentum equation for the fluid and the skeleton become:

2
- g _n
0=-n o v - P, & (v.1.1)
0=-29._ (1-n) 9P 4 —Iﬁw—(l—n) (V.1.2)
ox ox k pp & o

Substitution of (V.1l.1l) in (V.1.2) gives:

2
90 n n
Pl (1-n) {——Ew—- P, g}+—IE—W
- (1-n) b, 8
= - (1-n) {pp - pw} g +%w (v.1.3)

The first term on the right-hand side we call the term due to the
buoyancy force and the second term on the r.h.s. we call the term due

to the seepage force.
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90 . .
If we assume-§§ = 0 and assume that the effective stress is
zero at the top of the specimen, then 0=0 throughout. We call this
a state of fluidization.

So for fluidization:

%w = (1—n){pP g~ p, g} (v.1.4)

Hence in a state of fluidization the seepage force just balances

the buoyancy force (Scott [34]).
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V.2 Stationary Flow

We assume a steady state, incompressible fluid and fixed

position of the skeleton.

The storage equation for the liquid becomes: (J.3.19):

awx ow
'.a—;- + -—lay =0 (v.2.1)

The momentum equations for

©((J3.3.20) and (J.3.21) with

the fluid in x~ and y~direction become:

gravity term)

9 _n’
-n N T Yy (v.2.2)

x

% _n’
-n 3y i;—w& -np 8 (v.2.3)

Now we introduce the 'head' h in order to eliminate an explicit

gravity term in the equations:

+ = h V.2.4
-'B-pw gty ( )
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Substitution of (V.2.4) into (V.2.2) and (V.2.3) gives:

= on _
0 = el v (v.2.5)
X
oh n
0= -~ — - — vV.2.6
5y ky vy ( )

Substitution of (V.2.5) and (V.2.6) into the continuity equation (V.2.1)

gives:

2 2
K szl+k___.3h=o (V.2.7)

% ox y oy

This is the well~known quasi-Laplace equation which is used in order

to solve stationary flow problems (Scott [34]).
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V.3 Consolidation

We assume an incompressible fluid and a slowly varying process,
so that we can neglect the inertia forces. In that case the field

equations in one dimension become: ((B34) to (B37)).

2
d
0= -n-g% - %: (w-v) + ngop, (v.3.1)
30 3p , o
0= -2 = =) 32+ 5= (w=v) + (I-n) g p, (v.3.2)
ow , 1-n 9v _
a0 (V3.3
v _ _ 1 30
. T | (V.3.4)

Adding (V.3.1) and (V.3.2) gives:

90 _ _9p _
e N +ng pW + (1-n) g pp (v.3.5)

We can write (V.3.1) as:

2P o _

. (w=v) + P, 8 (V.3.6)

=B
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Substitution of (V.3.6) into (V.3.5) gives:

3
"a% =~ () g p, + () g o + T =)
or: _
lz.q___ =1 93 (w=v)
ot ox Kk ot

Further from (V.3.4) follows:

——— 2 e

Differentiating (V.3.3) with respect to x gives:

Bsz—v) + l_azv =0
2 n 2
ox ox

Substitution of (V.3.10) into (V.3.1ll) gives:

2

9 (w=v) _ 1 9 _
2 =% g at OV
ox P

(v.3.7)

(v.3.8)

(v.3.9)

(v.3.10)

(v.3.11)

(V.3.12)

Hence we note that the velocity difference between fluid and skeleton

satisfies the diffusion equation.
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In order to derive an equation for the stresses we proceed as follows:

From (V.3.6) follows:

3 . _kop
3w V) = mnT
X
and from (V.,3.3) follows:
3 1 9v _
&‘(W—V)‘f-—' —8—}2—-

Substitution of (V.3.14) into (V.3.13) gives:

2

Lk 9% 1 By
n o 2 n 09x
x

From (V.3.4) and (V.3.15) follows:

2
P ax

Further from (V.3.5) follows:

0 N
5(0+p)—ngow+(ln)gpp

(V.3.13)

(V.3.14)

(v.3.15)

(v.3.16)

(v.3.17)
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Hence:

o+ p= { ng pW + (1-n) g pp} X + Ut(O,t)

Substitution of (V.3.10) into (V.3.16) gives:

2 oo, (0,t)
k K Q_E.= op _ _t 77
P 3}(2 ot ot

c = l—no _ l—n0 _ l—nO
P B og l on f
o0 ! _ oo !
0—00 -00
Further we define the void ratio e:
e - —L
1-n
Then:
de on 1 -2 on
-— = — - 1-n.) -—
50 I_ 5 | 1-n 1y g 30
0—00 o=00 0 O’=O’O
or:
n
de _on 0l_8n
30 Clr_g a nO) - ac_l _ {l + 1—n0f— 3 | (l+e0)
™0 Cf:GO O=00

(v.3.18)

(v.3.19)

(v.3.20)

(v.3.21)

(v.3.22)
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Substitution of (V.3.22) into (V.3.20) gives:

l—n0
Kp = e —8_ (l- ) (l+eo)
90 )

= |
=O’0

where:

Substitution of (V.3.23) into (V.3.19) gives:

1+e 2 2p 90, (0,t)

a, aXZ ot ot
where
k= Dk'g
w
k' = seepage coefficient
Ot (0,t) = total stress as a function of time at x=0,

This is the familiar consolidation equation (e.g. Scott[34]).

(v.3.23)

(V.3.24)

(v.3.25)
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Appendix VI

Discontinuities in a two-dimensional dilatant material

VI.l Static

We consider a dilatant material as described by (M.3.25) to

(M.3.27). We can put these equations in the following form:

r— - l‘ <Tr -
O x a d b Yy
= d £ Vi.l.1
Xy € 2 ny ( )
o b e c
yy i YYY

Where-a to £ are constants. Now we consider'txy=0, and hence Gxx and

Uyy are principal stresses:

From (VI.1.1) there follows:

Hence: 2y = - %~y -3 (Vi.1.2)
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Substitution of (VI.1.2) into (VI.1l.1l) gives:

o]
yy

or:

XX

o)
yy

2
d
(a—-f‘-) Yoo *

ed
G

I

E Yxx+ Byyy

B Yxx*-(:yyy =

Further in the case TXy=0, the

Now we study the ''propagation”

d e
(b-?) Yyy
eZ
(c —,f~9 Yyy
Bux du
Fg—}-{-‘*-i'B—la'y
Bux ou

B tC3

equilibrium equations become:

(VI.1.3)

(VI.1.4)

(VI.1.5)

(VI.1.6)

(Vi.1.7)

(V1.1.8)

of discontinuities in the y-direction

in the same way as we studied the propagation in t in the former

chapters.
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We first put (VI.1.5) and (VI.1l.6) in an appropriate form:

30 5 9y 3 %Yy
90 e T

From (VI.1l.7) to (VI.1.10) we derive the following jump conditions

in the x-direction:

[Oxx] = E [ T ]+B [ 3y 1 (VI.1.11)
[ny] = B L35 1+c I 5y 1 (V1.1.12)
[0l = O | | (VI.1.13)
U [gyy] = 0 (VI.1.14)

*
where U = %% is the direction of the discontinuity.

From (VI.1.11) to (VI.1l.14) there follows: a necessary condition for
. . .. . . 8ux Buz . *
the existence of a discontinuity in the strains e and 3y is: (U #0).

EC - B2 =0 (VI.1.15)
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then further:

[ . 1=20 ‘ (VI.1.16)

[c..1=0 . (VI.1.17)

Condition (VI.1l.15) for the constitutive equations (VIk.l.S) and

du ou
(VI.1l.6) states: strains 5§§»and 5§z-can exist if the stresses

Oxx and Uyy are zero. This means the material is in a neutrally

stable state.

B
=-3 (VI.1.18)

Hence if condition(VI.1l.15) is satisfied then a discontinuity

in the strains can exist and the material is in a neutrally stable

state.
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We consider now the pore space to be empty.

The field

equations (N.1.14) to (N.1.20) can be written in the following form:

SOXX Bvx v
e A 3x TP oax
9T v ov
X =p E4+7 L
ot 9x ox
Bvx aUxx
(1-n) pp 3t ox
Sv‘ oT
(1-n) pp 3t ox

where A , D , F are constants.

We use here the usual convention in
in tension).

We derive the following jump
(VI.2.4):

-U [Gxx] - A

[vx] -D

It
K=}

[vy]

r—
<

et
1l

o

U [1, ] - D [v,]
0 (1) p [v,] - [0, 1=0

-U (1-n) Py [vy] - [

(V1.2.1)

(VvI.2.2)

(VI.2.3)

(VI.2.4)

solid mechanics (OXX is positive

conditions from (VI.2.1) to

(VI.2.5)
(VI.2.6)
(V1.2.7)

(VI.2.8)
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or:

{o? a-my o) -4} Iy =D [v] =0 (VI.2.9)

Il

2
- D [VX] + {U (1-n) pp - F } [Vy] 0 (VI.2.10)

For non-trivial solutions we require:

v (1-m)? pp2 ~ (A +F ) (1-n) pp,u2 + (AF-D%) = 0 (VI.2.11)

or:
~2 v 2 |
AT - (A+F) A+ (AF-D7) = 0 (Vi.2.12)
where:
2 _ 2
U =t Vi.2.
T-mp (VI.2.13)
P
Hence:
~ + 2 - 1/2
- A {a ) -4 (AF D )} WI.2.14)
b

Assuming that A and F are positive, we conclude that there are only

two positive roots Al and AZ (4 discontinuities) if

2
AF -D >0 " (VI.2.15)

(A =F )2 + D% >0 (VI.2.16)
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Further we note that if:

AF D2 (VI.2.17)

Il
o

there is only one discontinuity propagating in the positive x-directiom
and there is one non-propagating discontinuity.

We note further that decreasing the value of A F =D  until
AF -D? * 0 causes a maximum difference in the speed of the
"propagating" discontinuities in the positive x-direction (Amax = A +F
and A . = 0).

min

For a non-dilating material (D=0) the roots become:
Al = A and 12 =F .

Now we rewrite (VI.2.1) and (VI.2.2):

OXX = A Y + D e (vi.2.18)
TXY =D K + F . (VI.2.19)

In a similar way as in Section VI.l we conclude that condition (VI.2.
means that the material is in a neutrally stable condition.

Hence the interpretation becomes clear: when we assume A
and F positive (''reasonable" material behavior) and fixed, and we
increase D (measure for dilatancy) from zero uﬁtil:

AF -D2 =9
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we see the following behavior with respect to the discontinuities:
First (if D=0) two discontinuities propagating in positive x-direction
A )1/2

are possible (propagation speed: U1 = m > Ppure compression,
P

F 1/2
and U2 = (W) , pure shear).

Increasing D will increase the speed of the fastest propagating
discontinuity and decrease the speed of the slowest discontinuity

(both discontinuities generate now shear and compression).

- 2
If AF - D =0, then the slowest discontinuity degenerates into a
stationary discontinuity. The fastest discontinuity will propagate
A +F
with speed U =(——-—-—-—-————-
P (I o,

neutrally stable condition.

1/2
) . At that point the material is in a
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List of Symbols

pp = mass density of the grain material
p, = mass density of the fluid
w = average fluid velocity
v = average skeleton velocity
P = fluid pressure
o = effective stress
n = porosity
R = interactive forces
g = acceleration due to gravity
k' = permeability coefficient
w = frequency
¢ = wavespeed
Kw = compression modulus of the fluid
Kp = compression modulus of the skeleton
T = period of oscillation
A= characteristic velocity
[] = jump in the expression between the brackets
U = speed of discontinuity
A = change in the variable
vx’y’z = average skeleton velocity in x-, y- and z—directions
Wx’y’z = avérage fluid velocity in x-, y- and z-directions

Gx’y’z = effective stress in x—-, y- and z-directions

Txy’xz’yz = shearing stresses on faces of elemental unit volume
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Young's modulus

Poisson's ratio

position of an elementary particle at a reference time
kinematical variables

deformation gradient

displacement in i-direction

mass density of an elementary particle

internal energy per mass

entropy per mass

temperature

void ratio
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