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Chapter 3

Buckling Instability in Physical LC
Gels
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3.1 Abstract

We observe in a nematic gel a low-energy buckling deformation arising from soft and semi-soft elastic

modes. The self-assembled gel is prepared by dissolving a triblock copolymer having a side-group

liquid crystalline midblock and polystyrene endblocks in a nematic liquid crystal. Under polarized

optical microscopy we observe a striped texture that forms when gels uniformly aligned at 35 oC are

cooled to room temperature. We model the instability using the molecular theory of nematic rubber

elasticity, and the theory correctly captures the change in pitch length with sample thickness and

polymer concentration. This buckling instability adds to the library of fascinating texture transitions

observed in liquid crystalline elastomers and gels.
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3.2 Introduction

Rubbers, or elastomers, are unique in their ability to undergo large shape changes under exter-

nal forces and then snap back to their initial shape when the forces are removed [1]. Elastomers

are comprised of long, rubbery polymer strands connected together by covalent or physical bonds.

These strands are initially randomly coiled, but they can stretch and change their configuration

to accommodate large shape changes. In a liquid crystal (LC) elastomer, the network strands are

LC polymers, and they have an anisotropic conformation that is temperature dependent and also

affected by external electric and magnetic fields. Similarly, an LC gel is composed of an anisotropic

polymer network swollen with solvent. Unlike conventional elastomers or gels, LC elastomers and

gels are predicted to undergo “soft” and “semi-soft” deformations in which they can change shape at

little cost to the free energy [2, 3, 4, 5]. These low-energy deformations are enabled by the anisotropy

in the polymer network strands; when a strain is imposed on an LC elastomer, the network strands

can accommodate the strain by rotating their sense of anisotropy instead of deforming the end-to-

end distance of the chains, which is energetically more costly. Soft deformations oftentimes give rise

to periodic textures [6], and they can also result in significant shape changes to temperature [2] or

other external influences such as UV light [7, 8, 9].

Recently, we produced an LC gel by the physical association of a copolymer comprised of a side-

group LC polymer (SGLCP) midblock and polystyrene (PS) endblocks [10, 11] (Fig. 3.1). When

the LC gel is uniformly aligned and confined between rigid plates, it exhibits a reversible, striped

texture change with small changes in temperature. Similar striped textures have been observed in

LC elastomers[6, 4], but the instability observed here is unique for its geometry and sensitivity to

small changes in temperature. We present the details of the striped texture in the physical gels,

and we formulate a description of the instability based on the molecular theory of nematic rubber

elasticity. The theory accounts for the changing network anisotropy, which in an unconfined sample

would cause the gel to change shape macroscopically. Instead, due to the confining substrates

which impose a no-slip condition, the gel undergoes a semi-soft deformation that involves a periodic

modulation of the nematic director; in other words, the gel “buckles.” The theory correctly accounts
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Figure 3.1: (a) Chemical structure of LC 5CB and the end-associating triblock copolymer used in
this study, and (b) a schematic of the LC gel. The midblock is a random copolymer of LC side-group
and butadiene monomer, with the LC side-group composing approximately 70 mol % of the mid-
block. The polydispersity (Mw

Mn
) of the triblock is approximately 1.6, as measured by gel-permeation

chromatography. In the schematic, the speckled background represents the LC solvent 5CB, the dark
black lines represent the SGLCP midblock, and the red chains represent the polystyrene endblocks.

for the observed dependence of the stripe texture pitch and threshold temperature on the sample

thickness and polymer concentration.

3.3 Experimental

The triblock copolymer was prepared by polymer-analogous synthesis starting with a polystyrene

– block – 1,2-polybutadiene – block – polystyrene triblock copolymer, as described in Chapter 2.

The self-assembled gels are prepared by dissolving the resulting high molecular weight ( ∼ 1500

kg/mol) PS - SGLCP - PS triblock copolymer in the nematic LC 4-cyano-4′-n-pentylbiphenyl (5CB)

(Fig. 3.1) [10]. The polystyrene block is considerably less soluble than the SGLCP block in 5CB, and

in the nematic phase of 5CB the endblocks form aggregates which physically crosslink the triblock

polymers. The resulting self-assembled network has a uniform molecular weight between crosslinks

defined by the size of the SGLCP midblock.

In this work, we study gels with polymer concentrations of 10 wt % or less. Samples were loaded

into cells with well-defined gap spacings and alignment layers. For gaps smaller than 10 µm, we

used cells purchased from LC Vision. The cells consist of indium-tin-oxide coated glass plates with

a layer of SiO2 to induce planar alignment. For gaps larger than 10 µm, we used glass slides with
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teflon spacers and a rubbed polyimide layer for alignment. The cell thickness was determined with

a UV/vis spectrophotometer by interferometry for gaps smaller than 10 µm [12] or by measuring

the thickness with a micrometer for larger gaps. The nematic gels thermoreversibly transition to a

viscous liquid when heated above the nematic-isotropic phase transition temperature (TNI) of 5CB,

35.2 oC, and this allows for easy loading of the gel into the cell gap.

A magnetic field or shear was used to form uniform nematic monodomains. In the first case,

the gel was placed in an 8.8 T magnetic field oriented parallel to the desired director orientation,

heated above its TNI , and allowed to cool to room temperature. After removing the cell from the

magnetic field, the cell was heated to 34 oC and then cooled back down to room temperature at 1

oC/min to remove any residual irregularities. In some cases it was easier to use shear to align the

sample. Shear proved effective in eliminating bubbles and defects at the solid-gel interface that were

difficult to eliminate using magnetic field alignment. In order to shear align the sample, the sample

was loaded into a Mettler FP 82 hot stage and the temperature set to 34.5 oC while the top slide

was carefully moved back and forth across the sample.

3.4 Results

3.4.1 Details of the stripe texture

Gels that are uniform monodomains at 35 oC develop a striped texture visible under polarized optical

microscopy when cooled to room temperature (Fig. 3.2). The periodic texture reversibly disappears

and reappears when the gel is heated above and then cooled below a threshold temperature for stripe

formation, and the pitch length of the striped texture is independent of temperature. The stripes run

perpendicular to the initial director orientation no. Rotating the crossed polarizer/analyzer pair by

approximately ±15o relative to no maximizes the contrast between dark and bright bands, and the

regions in the sample that appear dark at +15o appear bright at −15o and vice-versa (Fig. 3.2). The

stripes are less evident but still visible when the polarizers are aligned with no. These observations

indicate that the director rotates within the plane and in opposite directions in adjacent stripes but
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Figure 3.2: A 5 wt % gel in a 25 µm gap at 20.0 oC viewed with a polarizing optical microscope.
The orientation of the director imprinted during crosslinking no and the orientation of the crossed
polarizers is shown in the top left-hand corner of each image. Note that the dark lines, which
represent regions in which the director is locally aligned with an axis of the crossed polarizers, shift
positions in the left- and right-hand images, which were taken for the same sample in the same
position and orientation but with a different orientation of the crossed polarizers. The positions of
the extinction bands in the images are shifted relative to each other, and this indicates a spatially
varying director orientation in the sample. The scale bar in the image shows the pitch length of
approximately 10 µm for this particular sample.

does not preclude an out-of-plane rotation of the director coupled with this in-plane rotation.

The characteristics of the striped texture depend on the sample thickness and polymer concen-

tration. The pitch length is larger in thicker samples and more dilute gels (Fig. 3.3). Stripes do not

appear when the gap is too thin or the polymer concentration too dilute. In the case of a 5 wt %

gel, stripes do not appear in 4- and 9-µm-thick cells but they do appear at larger gap thicknesses.

For 10 wt % gels, stripes appear in the thinnest gaps tested, 4 µm.

3.4.2 Mathematical model

We propose that the buckling instability arises from a combination of rubber elasticity and LC

elasticity, and that the instability represents a periodic network strain coupled to a periodic rotation

of the director. We can formulate a molecular model of the instability by utilizing the theory

for nematic rubber elasticity developed for LC elastomers [2, 13]. This theory assumes that the

network is composed of anisotropic, gaussian chains and neglects excluded volume interactions. The

anisotropic conformation of the polymer strands can be described by a step-length tensor lij =

l⊥δij + (l‖ − l⊥)ninj , where l⊥ and l‖ are the step lengths perependicular and parallel, respectively,
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Figure 3.3: Dependence of pitch on gap in 10 and 5 wt % polymer gels.

to the nematic director for a freely jointed chain. These step lengths are directly related to the mean

square end-to-end distance, 〈RiRj〉 = 1
3 lijL, where L is the arc length of the polymer chain. A more

useful expression relates the ratio of the step lengths to the ratio of the radii of gyration of the chain,

l‖
l⊥

= ( R‖
R⊥

)2. For the present polymer, which has a strongly prolate conformation (see Chapter 5,

Fig 5.1), r is greater than 1 and decreases towards 1 as the temperature increases towards the TNI .

The ratio of the step lengths l‖
l⊥

is denoted as the network anisotropy r, and the anisotropy during

crosslinking is denoted as ro.

The free energy density of the gel consists of three terms: ideal nematic network elasticity, non-

ideal nematic network elasticity, and Frank elasticity (Eq. 3.1). The free energy cost of deforming the

gel includes the contribution of the network strands, expressed in terms of the deformation gradient

tensor λij (see Chapter 1). The ideal nematic elastic term is weighted by the rubber modulus µ. The

non-ideal, or semi-soft, contribution is weighted by µ and the semi-softness parameter α. Semisoft

elasticity arises from imperfections in the nematic network such as compositional fluctuations [4].

The last term is the Frank elastic term, which is a penalty for non-uniform director fields. We make
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the one-constant approximation [14] with Frank elastic constant K.

F =
1
2
µ

(
Tr[lo · λT · l−1 · λ]

)
+

1
2
µα

(
Tr[(δ − no no) · λT · n n · λ]

)
+ (3.1)

1
2
K

(
(∇ · n)2 + (n · ∇ × n)2 + (n×∇× n)2

)

In order to model the phenomena, we start with a macroscopically uniform nematic gel in which

the director n is aligned in a unique direction parallel to the substrates of the cell. Below a critical

temperature, r becomes sufficiently large that the gel buckles. We assume that the director stays

in the x − y plane and that the director orientation depends on x and z but is independent of y.

(Fig. 3.4). Coupled to the director rotation is a network strain field described by the deformation

gradient tensor λij . At the interface with the cell (z = ±d
2 ), the substrates impose the boundary

conditions of no-slip. We analyze the behavior near the transition to the striped state, where

we assume small values for the amplitudes of the director rotation and the displacements. The

displacement field ∆ satisfies the conditions of no-slip at the substrates (∆ = 0 at z = ±d
2 ) and

incompressibility (∇ ·∆ = 0). Also, the displacement field and director rotation are independent of

y.

We can develop simple sinusoidal functions (Eq. 3.2) that satisfy the boundary conditions, as

follows. First, we assume a simple sinusoidal dependence for the director orientation, φ ∼ cos kx,

Figure 3.4: Nematic gel director orientation in a) the initial uniformly aligned state, and b) the
striped state. The cell substrates are at z = ±d

2 .
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where k is a constant that sets the wavevector for the distortion. Note that the pitch length in

Fig. 3.2 corresponds to half the pitch of this periodic function, π
k . Since the director is confined

to the x − y plane, ∆z = 0 everywhere. It then follows, from the condition of incompressibility,

that ∆x is independent of x, and therefore ∆x must also zero everywhere to be compatible with the

symmetry of the nematic phase. Therefore, ∆y is the only non-zero component of the displacement

field ∆. The y displacement will be out of phase with the director rotation (the deformation gradient

is in phase with the rotation), giving ∆y ∼ sin kx.

Since the director is coupled to the undeformed network at the substrates it retains the same

orientation present during crosslinking. Director rotations independent of network deformations are

in general costly, with F ∼ 1
2µφ2 for such rotations [2]. Therefore, φ = 0 at z = ±d

2 . We also assume

a simple sinusoidal dependence cos qz, with q = π
d , for the director rotation and network strain fields

along the z-axes. Note that this function decays to zero at the substrate interface. Finally, the terms

ξ and γ set the amplitudes of the rotation and displacement fields, respectively (Eq. 3.2).

φ(x, z) = ξ cos(qz) cos(kx),

∆y = γ cos(qz) sin(kx), (3.2)

∆x = ∆z = 0

We can calculate the deformation gradient tensor λ from the displacement field (λij = δij + ∂∆i

∂xj
),

and substitution of λ and n into Eq. 3.1 gives the free energy density of an incompressible nematic

gel subject to the periodic deformation and director rotation described by Eq. 3.2. We Taylor expand

this function in ξ around ξ = 0 and keep only terms of O(ξ2) or greater. Next, we integrate the

simplified free energy density over one wavelength of the deformation to obtain the average free

energy density of the gel. Subtracting the energy of the uniformly aligned gel from this free energy

gives the free energy relative to the monodomain state, so that a crossing from a positive to a

negative value in the free energy indicates an onset of the buckling instability. (Eq. 3.3).
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F =
1
8
Kξ2(k2 + q2) +

µ{1
8
γ2(q2 + k2ro) +

ro

4
γξk(

1
r
− 1) + (3.3)

1
8
ξ2(ro − 1 + α +

1
r
− ro

r
)}

The first term in (Eq. 3.3) is the contribution from Frank elasticity and is always positive, as

expected. The second, bracketed term (weighted by µ) is the contribution from nematic rubber

elasticity, and it contains some terms that contribute negative values to the free energy. The various

terms in the bracketed expression are grouped according to whether they arise from ideal or non-

ideal nematic rubber elasticity. The first two terms in the bracketed expression, 1
8γ2(q2 + k2ro) and

ro

4 γξk( 1
r − 1), are the ideal or soft rubber elastic terms. The term ro

4 γξk( 1
r − 1) is always negative

for γξ > 0 and is resposible for the buckling instability, while the term 1
8γ2(q2 + k2ro) is always

positive and increases the threshold to the buckled state.

The final term in the bracketed expression, 1
8ξ2(ro − 1 + α + 1

r − ro

r ), is the contribution from

non-ideal network elasticity. This term is always positive, and it arises from two sources of semi-

softness, or non-ideality. The first source, weighted by α, accounts for compositional fluctuations

or polydispersity in the molecular structure. α is always positive or zero, and a greater value of

α indicates a greater degree of semi-softness. The second source of semi-softness arises from the

anisotropy during crosslinking r0. A perfectly soft network has r0 = 1 and a perfect memory of the

isotropic state [2]. Note that if α = 0 and r0 = 1, the semi-soft contribution vanishes.

In order to compute an anisotropy and wavevector for this general case, we look for the minimum

value of r and critical wave vector k for which the right combination of infinitesimal displacement

γ and rotation ξ costs zero energy (Eq. 3.4), signalling an instability as r passes through this value.

For slightly larger r values, the amplitude of the instability grows rapidly, with the wavelength

determined at the instability.



49

γ =
kr0ξ(r − 1)
r(q2 + k2r0)

(3.4)

The material parameters can be reasonably approximated from independent measurements or

from known properties of the liquid crystal solvent 5CB. For example, the LC elastic constants K

have been measured previously for 5CB at room temperature [12, 15] and have values of about

1 × 10−11 N. We measured the rubber modulus µ in a cone-and-plate rheometer and obtained a

value of approximately 220 Pa for a 10 wt % gel and 50 Pa for a 5 wt % gel [10]. The endblocks

associate at a temperature near the TNI to form the gel, so we set the initial anisotropy ro to the

small value of 1.2. In addition to these parameters, we reasonably approximate the semi-softness

parameter α to have a value of 0.05, based on previous studies of nematic elastomers [16].

3.5 Discussion

A periodic modulation of the nematic director is unexpected because it introduces a free energy

contribution from Frank elasticity. The appearance of the stripes can be accounted for, however, by

including the rubber elastic energy of the polymer network. (A periodic striped texture has also been

observed in very thin (< 1 µm) films of small molecule nematic LC due to surface gradient terms in

the elastic free energy expression [17, 18]. Our samples are thick enough that the surface gradient

terms are not significant.) An SGLCP dissolved in a nematic solvent adopts an anisotropic chain

conformation coupled to the nematic order of the solvent [10]. Based on prior literature on nematic

elastomers [2], we expect that an unconstrained free standing gel will change shape: in the case of a

strongly prolate alignment tendency, the gel will expand in the direction of director orientation with

decreased temperature (our gel is too soft to carry out the same experiment). When constrained

between glass plates, however, expansion of the gel in the direction of increasing anisotropy is

prevented by the boundary conditions, and the network becomes increasingly frustrated as the

temperature decreases. Increasing network elastic energy results in a buckling instability in which

a periodic strain field reduces the rubber elastic free energy at the cost of a Frank elastic penalty.
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Such a spontaneous deformation is possible only in nematic rubbers, where a coupling between the

local nematic director orientation and macromolecular conformation significantly reduces the rubber

elastic penalty associated with mechanical deformations, a phenomenon known as soft elasticty [2].

This coupling gives rise to macroscopic shape changes in nematic rubbers in response to heat and

light and director rotations in response to strains.

It is instructive to look at the behavior predicted by Eq. 3.3 for various limiting cases. First, an

infinitely small spatial frequency k ≈ 0, or equivalently an infinitely large pitch, results in a positive

free energy relative to the unbuckled state. This can be easily seen in Eq. 3.3 by noting that the

only negative term in the expression, ro

4 γξk( 1
r − 1), disappears when k = 0. This indicates that

there is always energetic penalty, from both LC elasticity and nematic rubber elasticity, for buckling

in a sample of finite thickness. The penalty arises from the boundary condition which necessitates

a bend distortion and shearing from the edges to the center of the sample.

In the case of an infinitely thick sample, q ≈ 0, the penalties 1
8Kξ2q2 and 1

8γ2q2 for the bend

distortion and shearing, respectively, vanish. If the gel is perfectly soft (α = 0 and r0 = 1), then

the buckling instability carries no penalty from the rubber elastic term. This can be seen in the

free energy expression (Eq. 3.3): In the limit q → 0, the negative contribution ∼ roγξk( 1
r − 1) can

always compensate the positive contributions for any k by properly selecting γ and ξ. For r > 1,

the buckling instability will always be favored over the monodomain state for a soft gel of infinite

thickness. In the case of semi-soft (α > 0 and/or r0 > 1) gels in thick gaps, there is a finite threshold

in r to the buckling instability.

The various contributions to the free energy are depicted graphically for a gel of finite thickness in

Fig. 3.5a. The rubber elastic terms favor a large frequency. However, Frank elasticity goes inversely

with the square of the wavelength, making very short wavelengths costly in energy. The final

wavelength is a compromise of nematic rubber elasticity and Frank elasticity. The final wavelength

is set by the rubber modulus µ, the Frank elastic constant K, the initial anisotropy r0, and the

semi-softness parameter α.

A comparison of the model prediction of the pitch and experimental results shows good qualitative



51

10
0

10
1

10
2

0

5

10

15

20

Gap (µm)

T
hr

es
ho

ld
 A

ni
so

tr
op

y

(a)
220 Pa
50 Pa

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

(µm−1)

E
ne

rg
y 

D
en

si
ty

 (
ar

b.
 u

ni
ts

)

k

(b)
LC + Soft + Semisoft
Soft + Semisoft
Soft

Figure 3.5: (a) Predicted value of the threshold anisotropy rth, as a function of gap thickness d
and rubber modulus µ. Bands form if the polymer has r > rth. The values of µ correspond to
those of the 5 wt % and 10 wt % gels. (b) The different components of the free energy expression
(Eq. 3.3) for a gel with a modulus of 220 Pa, an initial anisotropy of 1.2, a present anisotropy of 3,
a semi-softness parameter of 0.05, an LC elastic constant of 1× 10−11 N, and a gap of 25 µm. The
soft and semi-soft elastic parts refer to the ideal and non-ideal network elastic terms, respectively,
and adding the LC part gives the full free energy density. The mimumum in the full free energy
density corresponds to the predicted k for these sample conditions.

agreement (Fig. 3.3a). The model predicts the trends of increasing pitch with increasing gap and

decreasing polymer concentration. The model also accounts for the disappearance of stripes at

small gaps from a prediction of the threshold anisotropy (Fig. 3.5). Small-angle neutron scattering

measurements show the anisotropy of the present midblock at 25oC to be approximately 10 (see

Fig. 5.2, Chapter 5. Based on this value, the model predicts that bands are suppressed for d < 3.7 µm

for the 5 wt % gel and for d < 1.9 µm for the 10 wt % gel. As the gap decreases, q increases, increasing

the cost of both Frank elasticity and nematic rubber elasticity (Eq. 3.3).

k =

√
q

√
µ

K

(
r − 1

r

)
− q2

r0
(3.5)

The functional dependence of the optimal wavevector on the gap has a square root dependence

at large gaps (small q) (Eq. 3.5). At small enough gaps, however, for q ∼
√

µ/K, the negative term

in (Eq. 3.5) becomes comparable to the positive contribution. This would result in an increasing k

with increasing q (longer pitch at smaller gap); however, this never occurs because the upper bound

on q is
√

µ/K.
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To summarize, we have presented a stripe distortion that arises in uniformly aligned nematic

gels in response to small temperature changes. A model based on the molecular theory of nematic

rubber elasticity accounts for the observed experimental features: the onset of the instability with

changes in the network anisotropy, the increase in the pitch with increasing sample thickness, the

decrease in the pitch with increasing polymer concentration, and the disappearance of the instability

at small sample thicknesses. The model indicates that the instability arises from a balance of Frank

elasticity and polymer elasticity, resulting in a periodic structure on the length scale of micrometers.

The buckling instability in nematic gels is a remarkable transition that adds to the library of

texture transitions observed in LC elastomers and gels. LC elastomers can show similarly striped

states in response to mechanical strains [6, 19], and LC gels demonstrate non-uniform responses to

external electric fields [20, 16]. These periodic textures in LC materials find analogy in an instability

observed in deformable elastic crystals [21], which can develop an undulating texture at their surface

in response to strains.
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