
73

Chapter 5

Hydrogen diffusion in
potassium-intercalated graphite

5.1 Introduction

Hydrogen is adsorbed in large amounts by KC24 at low temperatures. The potassiums,

hydrogens and vacancies essentially form a two-dimensional ternary lattice gas between

the host graphitic layers. Due to the ionized metal atoms and the overlapping graphite

corrugation potentials, adsorbed H2 molecules experience a strong anisotropic potential.

This provides an opportunity to study both the effect of steric barriers and strong binding

interactions on the diffusion of the adsorbed H2 molecules. As an indicator of macroscopic

transport behavior, we know that hydrogen adsorption in KC24 is kinetically-limited at

large fillings (see Sec. 4.4). In this chapter, the microscopic self-diffusion of hydrogen in

KC24 is investigated using quasielastic neutron scattering (QENS) and molecular dynamics

simulations. Neutron scattering is an experimental technique particularly well-suited to

quantitatively studying the molecular motions of hydrogen (and other hydrogen-rich fluids)

adsorbed in host frameworks. It also provides a unique opportunity to directly compare the

simulated and experimental values of fluid diffusivities at the microscopic level.

Portions of this chapter were published in the article: J. J. Purewal, J. B. Keith, C. C. Ahn, C. M.
Brown, M. Tyagi and B. Fultz, Phys. Rev. B 2009, 79, p. 054305.
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5.2 Quasielastic neutron scattering

5.2.1 Description

Quasielastic scattering is a broadening of final neutron energies caused by the diffusion of

atoms within a material. Consider an atom which jumps to a new lattice site before it

completes the scattering of a neutron wavepacket. It will continue to scatter the neutron

wavepacket from its new position. In “quasielastic” scattering the neutron does not cause

transitions between the quantum states of the target material. The two scattered waves

will typically interfere destructively (unless of course the initial and final positions are

separated by an arbitrary fraction of the neutron wavelength). The uncertainty principle

tells us that ∆E = ~/∆t, where ∆t is the average time that an atom resides on a particular

site. The final neutron energies are symmetrically broadened around ∆E = 0 due to the

uncertainty in ∆t. Based on this idea, quasielastic scattering can be used to measure

the time scale of the diffusive jumps. Spectrometers can currently measure quasielastic

broadening over an energy range of 1 µeV to 1 meV, which corresponds to characteristic

jump times of 10−9 s to 10−12 s. When diffusion occurs on a fixed sublattice the quasielastic

scattering can exhibit a Q-dependence which provides information on the geometry of the

diffusive jumps.

5.2.2 Continuous diffusion

The simplest model for long-range diffusion is isotropic, three-dimensional, continuous dif-

fusion. The starting profile at t = 0 is a delta function, and at finite time it is a Gaussian

in r. The variation of the Gaussian distribution of molecular displacements gives a mean-

squared displacement of 〈r2〉 = 6Dt, where D is the self-diffusion coefficient. As described
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in Sec. 3.2.2, the incoherent scattering function is the Fourier transform in time and space

of the van Hove autocorrelation function. Vineyard [83] calculated the incoherent scattering

function for this system,

Sinc(Q, ω) =
1
π

DQ2

(DQ2)2 + ω2
, (5.1)

which is a Lorentzian with a width (HWHM) of Γ = DQ2. This law is typically valid

at small Q, where distances are large compared with the individual steps of the diffusion

process. Large deviations from the Γ = DQ2 behavior is observed at large Q, however,

where underlying jump mechanism becomes important.

When the continuous diffusion is two-dimensional (such as between the graphite planes

in KC24) the limiting form of the scattering function assumes the following form,

S2D
inc(Q, ω) =

1
π

D2D (Q sin θ)2[
D2D (Q sin θ)2

]2
+ ω2

, (5.2)

where D2D is the self-diffusion in two dimensions, and θ is the angle that the normal to the

diffusion plane makes with Q [84]. This model predicts that elastic scattering is obtained

when Q is perpendicular to the diffusion plane (i.e., θ = 0). Lorentzians of increasing width

are obtained as θ increases. The powder-averaged scattering function then has a cusp-like

shape with a logarithmic singularity at ω = 0. This is illustrated in Fig. 5.1. For continuous

diffusion in a general lamellar system of arbitrary width, the scattering function is actually

an infinite sum of Lorentzians with Q-dependent amplitudes [85].

5.2.3 Jump diffusion

A jump diffusion model takes into account the microscopic diffusive steps and therefore

provides more accurate predictions at large Q. The standard model for jump diffusion is
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Figure 5.1: Left: Scattering functions for continuous two-dimensional diffusion. The angle θ
between the diffusion plane normal and Q increases going down the set of curves. Right: Scattering
function obtained by taking a powder average over all orientations.

the Chudley-Elliott model [86]. This model assumes that the sublattice on which diffusion

occurs is a Bravais lattice and that successive jumps are uncorrelated. The latter assumption

means that the model is only valid in the dilute limit where correlation effects are absent.

The particle stays at a site for a mean residence time τ and jumps to one of its z nearest-

neighbor sites. There are then a set of z possible jump vectors, which are denoted {li}. The

scattering function can be calculated as

Sinc(Q, ω) =
1
π

|Γ(Q)|
|Γ(Q)|2 + (~ω)2 , (5.3)

where the peak width is given by

Γ(Q) =
~
zτ

z∑
j=1

(
1− e−iQ·lj

)
. (5.4)

In the low-Q limit, it reduces to the continuous diffusion form Γ = ~DQ2, with D =

l2/6τ . The peak-shape is Lorentzian with a width that varies sinusoidally depending on the
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sublattice geometry. This model can be extended to a non-Bravais lattice, as described in

Ref. [87]. In this case the scattering function contains a sum of m weighted Lorentzians,

where m is the number of inequivalent sites in the unit cell.

5.2.4 Concentration effects

For a finite concentration, equal to c, there are correlations between successive jumps on the

sublattice. After a single jump, a particle has an increased probability of jumping back to

its initial (now unoccupied) site compared to a jump to other nearest-neighbor sites (which

are occupied with probability c). In the mean-field approximation, we can simply adjust

the mean residence time to allow for site-blocking:

τ(c) =
τ(0)
1− c

. (5.5)

The scattering function is still a Lorentzian but now with a width that has been corrected

by a site-blocking factor. If we also consider memory effects due to correlation between

successive jumps, then the effective self-diffusion coefficient has a concentration-dependent

expression

D =
f(c)l2

τ(c)
, (5.6)

where f(c) is the tracer correlation factor for long-range diffusion. There have been a number

of studies to determine whether Sinc(Q,ω) at high concentrations can still be described by

a Lorentzian with a width corresponding to the effective diffusivity (Eq. 5.6). The results

seem to depend both on the computational method and on the assumptions made [88].

Nevertheless, the jump diffusion model should not be applied at high concentrations.



78

5.3 Experimental methods

Neutron scattering measurements were performed on the Disc Chopper Spectrometer (DCS)

at the NIST Center for Neutron Research [81]. For the current measurements, a KC24

sample with a mass of approximately 2.2506 g was transferred in a high-purity helium

glovebox to an annular-geometry aluminum sample cell, sealed with an indium o-ring. The

sample thickness was chosen for 10% total scattering. The sample can was mounted onto a

sample stick which was adapted for a top-loading, closed-cycle helium refrigerator system.

The sample can was connected with a stainless steel capillary line to a gas handling rig

containing a calibrated volume and a high resolution pressure transducer. Hydrogen loading

was performed at 60 K by filling the calibrated volume with the precise amount of H2 gas

needed for a KC24(H2) 0.5 composition, opening the valve to the sample, and monitoring

the pressure as it dropped to approximately 0 Torr.

Scattering from bare KC24 was measured at 40 K and 60 K on DCS. The neutron scat-

tering spectra at the different temperatures were identical within the instrument resolution.

Scattering from KC24(H2) 0.5 was collected at 80 K, 90 K, 100 K, and 110 K. By moni-

toring the pressure, we confirmed that there was not any significant desorption of H2 at

these temperatures. Since the incoherent scattering cross-section of hydrogen is very large,

approximately 35 % of the total scattering is from hydrogen. The background signal from

KC24 is subtracted to isolate the scattering from hydrogen alone. Diffraction peaks from the

host KC24 material are a significant feature in the S(Q,ω). Because the metal-containing

graphite galleries expand approximately 5% upon H2 adsorption, the KC24 diffraction peaks

shift to slightly lower Q values, causing the KC24 background to over-subtract on the high Q

side. Therefore it is necessary to mask the detector banks containing the diffraction peaks in
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both the KC24 and KC24(H2) 0.5 samples. To improve statistics and make up for missing data

in the masked detector groups, the reduced S(Q,ω) was binned into momentum-transfer

increments of 0.15 Å−1 and into energy increments of 0.01 meV .

The DCS measurements in this chapter were collected using an incident neutron wave-

length of λ = 6.0 Å, operating the choppers in low resolution mode, with a speed ratio of 2/3,

a sample-detector minimum time of 500, and a master speed of 20 000 rpm. These settings

give an energy resolution of approximately 65 µeV at the elastic line. The kinematically-

allowed region includes a maximum neutron energy loss of 1.35 meV, and a wavevector

transfer between 0.1 Å−1 to 2.0 Å−1.

5.4 Quasielastic scattering results

An example of the QENS spectra of KC24(H2) 0.5 measured on DCS is shown in Fig. 5.2.

The instrument resolution is plotted as a dashed red line. A low concentration (x = 0.5)

was used for these measurements in order to minimize the effects of correlation and site-

blocking. The QENS spectra consist entirely of scattering from H2 since the signal from bare

KC24 was subtracted as a background. There is a considerable amount of quasielastic line

broadening due to the diffusion of adsorbed H2 molecules. At 80 K, the spectrum contains

both a broad quasielastic component and a sharp elastic component. Elastic scattering can

originate from either the geometry of the hydrogen diffusion, or from a population of H2

molecules whose motions are too slow to be resolved by the instrument. The intensity from

the elastic component decreases with temperature, and is fairly small at 110 K. Since the

amount of hydrogen was confirmed to be constant in all of the spectra, the decrease in total

intensity is simply due to a decrease in elastic scattering at higher temperatures (i.e., the

Debye-Waller factor). To obtain information from the QENS spectra about the diffusion
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Figure 5.2: QENS scattering of KC24(H2) 0.5 at Q = 1.61 Å
−1

measured on DCS with wave-
length λ = 6 Å, after subtracting scattering from bare KC24. Dashed red lines indicate instrument
resolution.

mechanism, it is necessary to develop a detailed jump diffusion model and then fit it to the

experimental data. This is done in the next section.

5.5 Honeycomb lattice diffusion model

In a first approximation the diffusion of H2 molecules in KC24 is two-dimensional. It is

unlikely that the hydrogen will pass through two graphite planes into the neighboring in-

tercalate layers (if it does happen it will be on a vastly slower time scale than in-plane

diffusion). We assume that the
(√

7×
√

7
)
R 19.11° structure adequately describes the in-

plane structure of KC24 at low temperature. As depicted in Fig. 5.3, the sublattice of H2



81

l1
a

l2
a

l3
a

l1
b

l2
b

l3
b

Figure 5.3: Hydrogen sorption sites in a
(√

7×
√

7
)
R 19.11° structure. The sorption sites form

a 2D honeycomb net. Potassiums are represented by black dots while hydrogen sorption sites are
represented by red dots. Sets of jump vectors for the two non-equivalent basis points are labeled
{lai } and {lbi}. The length of each jump vector is 3.7 Å.

sorption sites forms a honeycomb net, which is not a Bravais lattice. The primitive unit

cell contains a basis of two nonequivalent sites, and thus there are two distinct sets of jump

vectors {la1, la2, la3} and {lb1, lb2, lb3}.1 In calculating the scattering function, we assume that

τ is the mean residence time of H2 molecules on the honeycomb sublattice sites, and also

assume that there is no correlation between consecutive jumps. The honeycomb lattice has

a basis of two lattice points, and the scattering function is calculated using the procedure

described in Ref. [87]. The result of these calculations is a sum of two Lorentzians [89],

Sinc(Q, ω) =
1
π

2∑
j=1

wj(Q)Γj(Q)
ω2 + Γ2

j (Q)
, (5.7)

1The fact that the {lai } jump vectors are simply the negative of the {lbi} jump vectors is implicitly
included in the remainder of the calculation. Therefore only one set of jump vectors will be referenced in
the derivation in this section.
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where the weights wj(Q) and linewidths Γj(Q) of the two Lorentzians are given by

w1(Q) = 1
2 (1 + Re(K)/|K|) w2(Q) = 1

2 (1− Re(K)/|K|) (5.8)

Γ1(Q) = L− |K| Γ2(Q) = L+ |K| (5.9)

and values of L and K are given by

L =
1
τ

K =
1
3τ

3∑
i=1

exp (−iQ · li) . (5.10)

The value of K can be calculated from a single set of jump vectors,

l1 = 〈l, 0, 0〉 l2 = 〈−l/2,−
√

3l/2, 0〉 l3 = 〈−l/2,
√

3l/2, 0〉 (5.11)

and for a randomly oriented wavevector transfer Q,

Q = 〈Q cosφ sin θ,Q sinφ sin θ,Q cos θ〉. (5.12)

We need to calculate the dot product for the three jump vectors,

Q · l1 = Ql cosφ sin θ (5.13)

Q · l2 = −1
2Ql cosφ sin θ −

√
3

2 Ql sinφ sin θ (5.14)

Q · l3 = −1
2Ql cosφ sin θ +

√
3

2 Ql sinφ sin θ. (5.15)

To simplify notation, we substitute in the following expressions,

a = Ql cosφ sin θ b =
√

3
2 Ql sinφ sin θ. (5.16)
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The dot products are now substituted into the exponentials in Eq. 5.10,

exp (−iQ · l1) = cos a− i sin a (5.17)

exp (−iQ · l2) =
[
cos a2 − i sin a

2

]
[cos b− i sin b] (5.18)

exp (−iQ · l3) =
[
cos a2 − i sin a

2

]
[cos b+ i sin b] , (5.19)

and the value of K is calculated,

K =
1
3τ

3∑
i=1

exp (−iQ · li) =
1
3τ
[
cos a+ 2 cos a2 cos b

]
− i

3τ
[
sin a+ 2 sin a

2 cos b
]
. (5.20)

We can now readily determine the magnitude and real part of K,

|K| = 1
3τ
[
1 + 4 cos2 b+ 4 cos b cos 3a

2

]1/2 (5.21)

Re(K)
|K|

=
cos a+ 2 cos a2 cos b[

1 + 4 cos2 b+ 4 cos b cos 3a
2

]1/2 . (5.22)

This is the QENS function for a single-crystal honeycomb lattice. The KC24 samples mea-

sured in this experiment are polycrystalline however, so it is necessary to take an orienta-

tional average over θ and φ:

〈Sinc(Q,ω)〉 =
1

4π

∫ 2π

0

∫ π

0
[Sinc(Q, ω)] sin θdθdφ. (5.23)

To take into account a fraction of H2 molecules which are not diffusing, we add a delta

function2 weighted by a Q-independent elastic-like factor (f). The experimentally measured

scattering function is broadened by the instrumental resolution, R(ω). Therefore, the model
2It is not clear what the origin of the elastic-like intensity is, but from a practical point of view it is

necessary to include the delta function to obtain good fits to the experimental data.
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Figure 5.4: Linewidth (FWHM) of the honeycomb net model function F (Q,ω, τ = 5 ps, l =
3.7 Å, f = 0, A = 1) plotted versus momentum-transfer, Q. Resolution is a Lorentzian function with
HWHM of 20 µeV (left) and 60 µeV (right).

function in its final form is obtained after taking the convolution of the powder-averaged

honeycomb net model plus delta function with the instrument resolution,

F (Q,ω, τ, l, f, A) = A [(f)δ(ω) + (1− f)〈Sinc(Q,ω)〉] ∗R(ω) (5.24)

= A

[
(f)R(ω) + (1− f)

∫ ∞
−∞

R(ω − ω′)〈Sinc(Q,ω)〉dω′
]
, (5.25)

where (Q,ω) are variables and (τ, l, f, A) are the parameters to be fitted. For most of the

fits, the jump distance l was held fixed at the theoretical value of 3.7 Å. Several different

jump distances were tested to determine whether they improved the fit. To simplify calcu-

lations, the resolution function was fitted to a sum of five Lorentzians and the convolution

was carried out analytically before the orientational average. For the convolution of two

Lorentzians the linewidths add linearly.

At finite instrument resolution, the linewidth of the honeycomb net model function

F (Q,ω, τ, l, f, A) varies with Q in a distinct manner. This is illustrated in Fig. 5.4, where

the line widths are plotted for τ = 5 ps, l = 3.7 Å, and f = 0 (equivalent to D =

6.8× 10−9 m2 s−1) at two different instrument resolutions. The sinusoidal character of the
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curve begins to be damped out at coarser resolutions.

The QENS spectra of KC24(H2) 0.5 were fit simultaneously over all Q-values to the

honeycomb net model function F (Q,ω, τ, l, f, A) to optimize a single set of fit parameters

{τ ,l,f} for a given temperature. The amplitude A was allowed to vary independently for

each Q-value however. Fits for the 80 K to 110 K spectra using the theoretical l = 3.7 Å

jump length are plotted in Figs. 5.5–5.8, respectively. Only the first ten momentum transfer

groups are shown due to limited space.3 The y-axes of the individual plots have a logarithmic

scale to facilitate the visualization of the goodness-of-fit in both the peak regions and wing

regions of the spectra. Fit parameters are summarized in Table 5.1.

In the 80 K spectra the wings are not well fitted by the model. For the higher temper-

ature spectra, it is clear that the peak regions are not fitted well at larger Q-values. This

can be fixed by allowing the elastic-like weighting parameter f to vary with Q. The pres-

ence of a Q-dependent elastic-like intensity (sometimes called an EISF) usually indicates

the presence of confined dynamics in the system. However there is no intuitive physical

basis for such confined motion in KC24 since the H2 molecules are not chemically bonded

or trapped within a rigid cage. Further, there is a large amount of correlation between

the τ and f parameters, which creates some doubt about the physical significance of the

elastic-like intensity.

We must conclude that the honeycomb net jump diffusion model is not sufficient to

fully describe the hydrogen dynamics in the KC24(H2) 0.5 system. There are a number of

possibilities for this shortcoming. First, the model ignores the rotational motion of the

H2 molecules. Since H2 has a large rotational constant, the characteristic frequencies are

expected to be well above the range measured here. Nevertheless, there is expected to be

3The eleventh group has a momentum transfer of Q = 1.74 Å
−1

.



86

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Energy (meV)

0.1

1

10
I (

ar
b.

 u
ni

ts
)

0.1

1

10

I (
ar

b.
 u

ni
ts

)

0.1

1

10

I (
ar

b.
 u

ni
ts

)

0.1

1

10

I (
ar

b.
 u

ni
ts

)

0.1

1

10

I (
ar

b.
 u

ni
ts

)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Energy (meV)

Q = 0.31 Å
-1

Q = 0.42 Å
-1

Q = 0.55 Å
-1

Q = 0.74 Å
-1

Q = 0.87 Å
-1

Q = 1.02 Å
-1

Q = 1.16 Å
-1

Q = 1.32 Å
-1

Q = 1.47 Å
-1

Q = 1.61 Å
-1

Figure 5.5: QENS spectra of KC24(H2) 0.5 at 80 K fitted to the honeycomb net jump diffusion
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Figure 5.8: QENS spectra of KC24(H2) 0.5 at 110 K fitted to the honeycomb jump diffusion model.
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Table 5.1: Honeycomb net jump diffusion model parameters from fits to
the KC24(H2) 0.5 data

Temperature (K) τ (ps) l (Å)a f D (10−9 m2 s−1)b

80 10.36(4) 3.7 0.214(2) 3.30(1)
90 7.80(2) 3.7 0.167(1) 4.39(1)
100 6.38(2) 3.7 0.146(1) 5.36(2)
110 4.29(1) 3.7 0.126(1) 7.98(3)

a Jump length (l) was held fixed at 3.7 Å.
b The diffusion coefficient assumes two-dimensional translation.

some coupling between the rotational and translational dynamics which can affect peak

shape. Second, it is probably incorrect to impose a single jump frequency on the diffusion

process. As described later in the chapter, there are a wide range of jump frequencies present

in the KC24(H2) 0.5 system. Developing a model with a distribution of jump frequencies is far

from trivial, however. In the next section we use several “mechanism-independent” methods

to estimate the diffusion coefficients and residence times of the KC24(H2) 0.5 system.

5.6 Estimates of diffusion coefficients

5.6.1 Low-Q limit

In the limit of low Q, the honeycomb net jump diffusion model (Eq. 5.7) reduces to the

expression for continuous two-dimensional diffusion (Eq. 5.2). Before fitting to data from

polycrystalline samples, the orientational average must be calculated. The powder-averaged

function can actually be determined analytically, as discussed by Lechner [90, 91]. The

resulting expression is given by

〈Sinc(Q,ω)〉 =
1

8πk3DQ2

(
1 + k2

cosα/2
ln

1 + 2k cosα/2 + k2

1− 2k cosα/2 + k2

+
2
(
1− k2

)
sinα/2

arctan
2k sinα/2
k2 − 1

)
, (5.26)
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Figure 5.9: Experimental KC24(H2) 0.5 spectra measured at 110 K (with Q = 0.31 Å
−1

) fitted to
the two-dimensional continuous diffusion model.

where the following terms need to be substituted in,

k =

[
1 +

(
ω

DQ2

)2
]1/4

sinα/2 =
(

1− cosα
2

)1/2

(5.27)

cosα =

[
1 +

(
ω

DQ2

)2
]−1/2

cosα/2 =
(

1 + cosα
2

)1/2

(5.28)

This expression (Eq. 5.26) was fitted to experimental spectra at low Q. The fitted curve

for the smallest momentum transfer group (Q = 0.31 Å−1) of the 110 K spectra is displayed

in Fig. 5.9. From the fit parameters we obtain a two-dimensional self-diffusion coefficient

of D = 9.3(1)× 10−9 m2 s−1. This is slightly larger than the self-diffusion coefficient of

7.8× 10−9 m2 s−1 obtained from the honeycomb net jump diffusion model. It can be seen

in Fig. 5.9 that the goodness-of-fit in the wing regions is not sufficient. The chi-squared

value for the fit was χ2 = 7.8. The values of the fitted parameter D are summarized in

Table 5.2 for all the temperatures.
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Table 5.2: Comparison of the hydrogen self-diffusion coefficients for
KC24(H2) 0.5 extracted from QENS data by fitting to different diffusion
models

D (10−9 m2 s−1)a

Temperature (K) Honeycombb Low-Q limitc High-Q limitd

80 3.30(1) 2.16(4) 5.9(3)
90 4.39(1) 5.42(3) 6.2(3)
100 5.36(2) 6.53(4) 6.7(4)
110 7.98(3) 9.29(7) 7.5(4)

a Self-diffusion coefficients are two-dimensional.
b Honeycomb net jump diffusion model.
c Two-dimensional continuous diffusion in the low-Q limit.
d Geometry-independent jump diffusion in the high-Q limit.

5.6.2 High-Q limit

When Eq. 5.7 is averaged over large Q values, the incoherent scattering function reduces

to a Lorentzian with an average linewidth of 〈Γ(Q)〉 = 1/τ . In other words, the average

quasielastic linewidth in the limit of large Q is approximately independent of the geometry

of the system and depends only on the the jump frequency. To estimate τ , a resolution-

broadened model function consisting of a Lorentzian function, a delta function, and a flat

background was fitted to the experimental spectra. An example of fits to the five largest

Q-values of the 110 K data is displayed in Fig. 5.10. Values of τ were obtained by averaging

Γ(Q) over the range 1.16 Å−1 to 1.74 Å−1. Residence times varied from 4.6 ps to 5.9 ps

for the experimental temperatures. Two-dimensional self-diffusion coefficients were then

calculated from the expression D = l2/4τ , using the jump length l = 3.74 Å. Values are

summarized in Table 5.2. There is a modest discrepancy between the diffusion coefficients

obtained from the rigorous honeycomb net model and from the approximate methods.
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line is the convolution of a delta function with instrument resolution. As illustrated, the quasielastic
curve is a Lorentzian before convolution with resolution. The flat background is not shown.
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5.6.3 Distribution of jump frequencies

The presence of more than a single jump frequency in the KC24(H2) 0.5 system is a highly

intractable problem in the analysis and interpretation the QENS data. From data collected

on a backscattering spectrometer (see Sec. 5.7), we know that there is also a slower dif-

fusion process present in the H2/KC24 system with a residence time on the order of 100

to 1000 ps. This leads to the possibility that there are a distribution of diffusive jump

frequencies. Incorporating such a frequency distribution into a rigorous jump diffusion

model is problematic. Even for the simplest case of two hopping frequencies on a Bravais

lattice, the resulting expression is too complicated to be fit to the QENS spectra from a

two-dimensional, polycrystalline system.

The intermediate scattering function for unrestricted diffusion is a simple exponential

decay, I(Q, t) = exp (−t/τ), where τ is the characteristic relaxation time. This expression

simply reflects how the system relaxes back to its equilibrium state after some external

perturbation is switched off. If there are numerous hopping frequencies present in the

system, however, we need to take a linear superposition of the exponential decays. This

can be approximated by a stretched exponential,

I(Q, t) = exp

[
−
(
t

τ

)β]
, (5.29)

where the stretching factor β is taken to be between 0 and 1. This empirical relation is

often referred to as the Kohlrausch-Williams-Watts (KWW) function. It describes a fairly

broad distribution of relaxation times. The scattering function, S(Q,ω), is obtained by

taking the Fourier transform of the KWW function.

The FT-KWW function was fitted to the QENS spectra of KC24(H2) 0.5 as a way of
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gauging the importance of multiple hopping frequencies on the H2 dynamics. The detailed

expression used for the fits is given by the LHS of the following equation,

F
[
e−( tτ )β ×F

[
Ae−

ω2

2σ2

]]
= F

[
e−( tτ )β

]
∗Ae−

ω2

2σ2 , (5.30)

where the Gaussian function is used to describe the instrument resolution.4 The σ parame-

ters were determined by fits to the DCS resolution function and were held fixed during the

fits. The convolution that appears on the RHS is due to the fact that the Fourier transform

of a product equals the convolution of two individual Fourier transforms (i.e., convolution

theorem). Also utilized is the fact that two successive Fourier transforms of a Gaussian

yields the original Gaussian. During the least-squares fits, the outermost transform on the

LHS was computed numerically. Fit parameters {τ, β,A} were allowed to vary indepen-

dently in each momentum-transfer group. The resulting fits are shown in Fig. 5.11, and

the fit parameters are summarized in Fig. 5.12. These are the best fits obtained so far, and
4The resolution function of the DCS instrument is well-described by a Gaussian function.
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are certainly superior to those obtained for the honeycomb net jump diffusion model. Al-

though the FT-KWW function is not a rigorous jump diffusion model, it can be considered

a phenomenological indicator of the importance of a multiple hopping frequencies in the

KC24(H2) 0.5 system.

5.7 Measurements at longer timescales

5.7.1 Overview

The high-flux backscattering spectrometer (HFBS)5 located at NCNR has an energy reso-

lution of better than 1 µeV [92]. This allows it to detect very slow dynamical processes with

characteristic times from 100 ps to 10 ns, processes which are not resolvable on DCS. Mea-

surements were collected on a KC24(H2)1 system in order to verify whether there were slower

H2 hopping frequencies present.6 For comparison, measurements on the same KC24(H2)1

system were also performed on DCS over the same temperature range. The important find-

ing from these measurements is that there are at least two distinct H2 hopping frequencies

in the KC24 system.

5.7.2 Methods

The HFBS instrument was operated in both the fixed window and dynamic window modes.

In the fixed window mode, the Doppler drive was stopped and only elastic scattering was

recorded. A heating rate of 0.5 K s−1 was used for the temperature scan experiments and the

total intensity was obtained by summing over all 16 detector banks. In the dynamic window
5The HFBS spectrometer is an indirect geometry instrument which utilizes the fact that the wavelength

spread of a Bragg-diffracted neutron beam decreases as the scattering angle 2θ approaches 180°. Incident
energies of the neutrons are varied by the Doppler motion of the monochromator (i.e., controlled by a
Doppler drive).

6Compared to other measurements, a larger hydrogen filling of x = 1 was used here, in order to improve
the counting statistics on HFBS.
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mode, the Si[111] crystal monochromator was operated at 24 Hz, providing a dynamic range

of ± 17 µeV, a Q-range of 0.25 Å−1 to 1.75 Å−1, and an energy resolution of 0.85 µeV at the

elastic peak.

5.7.3 Quasielastic scattering

QENS measurements were collected on the KC24(H2)1 system using both the DCS and

HFBS spectrometers. In Fig. 5.13a, the DCS spectra show resolution-limited elastic scatter-

ing at 40 K and quasielastic line broadening at higher temperatures. For the HFBS spectra

illustrated in Fig. 5.13b, elastic scattering is dominant 45 K, while quasielastic broadening is

significant at 55 K and 65 K. The combination of a sharp elastic-like component and broad

quasielastic component is present in both the DCS and HFBS spectra. The peak intensity

decreases with temperature, but in Fig. 5.13 the spectra have been scaled to equal height

to facilitate comparison. Quasielastic broadening is present at the same temperature range

in both the HFBS and DCS data. However the energy scales for the two spectra are vastly

different. This means that there are at least two different hopping frequencies present in

KC24(H2)1. The characteristic residence times for these hopping motions were estimated

from the high-Q spectra (following the method discussed in Sec. 5.6.2) and are summarized

in Table 5.3.

5.7.4 Elastic intensity

Using the fixed window mode of operation on HFBS, we measured the elastic intensity of the

H2/KC24 system as a function of temperature. These scans are displayed in Fig. 5.14. The

curve for KC24 does not show any major changes between 4 K and 100 K. In contrast, the

KC24(H2)1 and KC24(H2)2 curves show a rapid decrease in the elastic intensity starting at
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The instrument resolution is included for comparison to the spectra at each temperature. The
experimental spectra have been scaled to equal height, and offset for clarity.

Table 5.3: Residence times for thermally activated H2 jump
diffusion in KC24(H2)1.

DCS dataa HFBS datab

T (K) τ (ps) T (K) τ (ps)

60 13.4± 0.2 45 1330± 36
70 9.4± 0.1 55 699± 12
80 7.0± 0.1 65 372± 7

a Measurements on DCS probe the faster diffusion process.
b Measurements on HFBS probe the slower diffusion process.
c Residence times (τ) were determined from the high-Q limit, as

described in Sec. 5.6.2.
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35 K and 60 K, respectively. The sudden drop in elastic signal is accompanied by the growth

in quasielastic intensity (see Fig. 5.13), indicating the presence of hydrogen diffusion. Scans

obtained from heating and cooling the sample at the same rate did not have any significant

differences except that the KC24(H2)1 heating curve was slightly more rounded near the

transition point at 35 K compared to the cooling curve.

One possibility that needed to be ruled out was that desorption of H2 could also con-

tribute to the decrease in elastic scattering at higher temperatures. For the composition

KC24(H2)1 this is unlikely because the equilibrium pressure at 60 K is close to 0 kPa, and the

decrease begins at an even lower temperature of 35 K. Nevertheless, to be certain that the

elastic intensity was not affected by H2 desorption, we monitored the equilibrium pressure

with a high resolution manometer over the entire temperature scan. We are confident that

the concentration of adsorbed H2 did not change significantly over the measured tempera-

ture range, and would not have contributed to the large decrease in the elastic intensity.
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5.8 Molecular dynamics simulations

5.8.1 Computational details

To better understand the hydrogen diffusion mechanism in KC24, molecular dynamics sim-

ulations were performed and compared with the experimental results. The theoretical(√
7×
√

7
)

structure with stoichiometry KC28 was used for all simulations. To reduce

the size of the supercell, the structure consisted of two graphite layers and one potassium

metal layer in a A|A stacking sequence with an interlayer spacing of 5.69 Å for the inter-

calated layer and 3.35 Å for the unintercalated layer. The relaxed supercell was contained

within a simulation box with parameters a = 51.9837 Å, b = 45.0192 Å, and c = 9.04 Å. Pe-

riodic boundary conditions were enforced. The host graphite structure was held constant in

all simulations. For the 1:1 H2:K ratio, the supercell had the stoichiometry K64C1792(H2)64,

which consists of 64 unit cells.7

The program GULP V.3.4 was used as the computational engine for the simulation [93].

Forcefields were taken directly from the literature without further optimization. Hydrogen

molecules were treated as Lennard-Jones spheres, which ignores the fact that they are quan-

tum rotors. Because the dimensions of the KC24 system are on the order of the hydrogen

de Broglie wavelength, it is necessary to account for quantum effects in the simulations.

This is done using the Feynman-Hibbs (FH) variational approach. A quantum particle of

mass m is represented by a Gaussian with a width
√
β~2/12µ that accounts for the spread

in position due to the uncertainty principle [24]. The quantum partition function of N
7The KC24(H2)1 stoichiometry was used in order to increase the number of hydrogens in the supercell,

thereby increasing the quality of the calculated mean-squared-displacement and the intermediate scattering
function.
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Figure 5.15: Molecular dynamics trajectories of hydrogen particles in KC24 at (top) 50 K and
(bottom) 90 K. Total simulation time is 500 ps for each trajectory. Trajectories of four different
particles are shown for 50 K while trajectories of two particles are shown for 90 K. Individual
trajectories are identified by the color of the traces. Black circles indicate the final positions of
potassium atoms. Carbon atoms are not shown.
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particles is

Z =
1
N !

(
m

2πβ~2

)3N/2 ∫
· · ·
∫
dr1 . . . drN exp

−β∑
i<j

UFH(rij)

 (5.31)

where β = 1/kBT and

UFH(r) =
(

6µ
πβ~2

)3/2 ∫
U(|r +R|) exp

(
− 6µ
β~2

R2

)
dR. (5.32)

Here UFH(r) is the effective potential between a pair of molecules with reduced mass µ. The

integral in Eq. 5.31 is difficult to evaluate. As described in Ref. [24], the term U(|r + R|)

is expanded around r to the fourth order in R to obtain a more tractable expression. This

approximation to the FH potential was incorporated into all of the molecular dynamics

simulations. The carbon and potassium potentials were extracted from Ref. [94], which

were based on empirical fits to lattice parameters, elastic moduli, and infrared-Raman data

for graphite and potassium-intercalated graphite. The hydrogen potentials were taken from

Ref. [24] in which they successfully reproduced bulk hydrogen data. The forcefield has a

tapered 12.0 Å cutoff. Since intercalate layers are separated by a distance of 9.04 Å, this

means that interlayer interactions in the simulation are very weak. Simulations were run

using an NVT ensemble with a leapfrog-verlet integrator and a time-step of 1 fs. Tempera-

ture was controlled with a Nose-Hoover thermostat. Simulations were equilibrated for 50 ps

(50 000 steps), followed by a production run of 500 ps (500 000 steps).

5.8.2 Results

Molecular dynamics trajectories of KC24(H2)1 were run at temperatures of 30 K, 40 K, 50 K,

70 K, and 90 K. Sample H2 trajectories are illustrated in Fig. 5.15 for the 50 K and 90 K
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Figure 5.16: Total mean square displacement of H2 particles in KC24(H2)1 at 70 K. The projections
of the MSD along the x-axis, y-axis, and z-axis of the simulation box are also shown.

simulations. Each single-colored trace depicts the trajectory of a single H2 particle for a

500 ps production run. As can be seen in the trajectories, hydrogens rattle around inside of

the triangular cages formed from three potassium atoms for extended periods of time before

jumping into a neighboring triangular site. As expected for thermally activated diffusion,

the jump frequency appears to be much larger at 90 K than at 50 K. In a jump diffusion

model, it is assumed that the particle vibrates around its equilibrium position between

jumps. This vibrational motion can be decoupled from the diffusive motion and distilled

into a separate Debye-Waller factor. For the KC24(H2) system, however, the particles seem

to jump rapidly between three local energy minima within the triangular sites (evident in

the triangular shaped motifs present in Fig. 5.15). The potassium atoms do not diffuse at

the temperatures investigated here, but mainly vibrate around their equilibrium positions

(though several potassiums did actually jump to neighboring graphite hexagons during the

90 K run).
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Dynamical properties were calculated from H2 trajectories using the nMOLDYN package

[95]. The mean square displacement (MSD), with respect to a particular axis n, is calculated

for a system of N particles with the expression,

∆2(t) =
1
N

N∑
i=1

[n · (Ri(t)−Ri(0))]2 . (5.33)

For illustration, the MSD of H2 at 70 K is plotted in Fig. 5.16. As expected, the diffusion

is two-dimensional and the MSD along the z-axis is zero. The sum of the x-projection and

y-projection give the total MSD. We calculate the 2D self-diffusion coefficient from the slope

of the MSD in the long-time limit, using the Einstein relation

lim
t→∞

∆2(t) = 4Dt. (5.34)

In Fig. 5.17 the simulated self-diffusion coefficients are plotted with the experimental diffu-

sion coefficients (calculated from the DCS residence times listed in Table 5.3). Agreement

between the experimental and simulated self-diffusivities is remarkably good, especially con-

sidering that the MD forcefields were used without optimization. The fact that simulated

values are larger than than experimental values might be due to the FH corrections, which

have the overall effect of increasing the hydrogen mobility. The fact that such excellent

agreement is obtained with experimental data with an unoptimized forcefield perhaps in-

dicates that the layered geometry, not the fine form of the intermolecular potentials, is the

main determining factor in the dynamics.

Between 40 K and 90 K, the simulated diffusivities follow the expected Arrhenius relation
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for a thermally activated process,

D = D0 exp
(
−Ea

T

)
, (5.35)

where D is the self-diffusion coefficient, D0 is the pre-factor, and Ea is the activation

coefficient. For experimental diffusivities we obtain values of D0 = 3.43× 10−8 m2 s−1 and

Ea = 155 K. For the simulated self-diffusivities the values are D0 = 2.99× 10−8 m2 s−1 and

Ea = 128 K.

5.8.3 Concentration effects

The jump diffusion model is only valid in the dilute limit where site-blocking and correlation

are absent (see Section 5.2.4). In other words, at large H2 concentrations we cannot apply
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a jump diffusion model to obtain a meaningful diffusion coefficient. In fact, the lineshape

itself might not be well-described by the jump diffusion model at large concentrations.

Therefore it is best to remain in the dilute-limit where the correlation between successive

jumps is negligible and the diffusivity only needs to be corrected for site-blocking. To test

whether the dilute-limit approximation can be applied to the experimental QENS data,

MD simulations were performed at 90 K for various H2 fillings. Computational details were

otherwise the same as the previous simulations.

For direct comparison of line shapes it was convenient to calculate the incoherent inter-

mediate scattering function,

Iinc(Q, t) =
1
N

N∑
i

σ2
inc,i〈exp [−iQ ·Ri(0)] exp [iQ ·Ri(t)]〉, (5.36)
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which describes correlation between the initial position and the final position. In unre-

stricted translational diffusion, Iinc(Q, t) should decay to zero at infinite time. Powder-

averaged ISFs were calculated from the MD trajectories at Q = 1.0 Å−1. They are plotted

in Fig. 5.18. The effect of correlations on the line shape becomes noticeable above at a

stoichiometry of x = 1.0. Therefore, it seems that the dilute-limit approximation is not

valid for x > 1. However, the dilute-limit approximation at x = 0.5 (for which most QENS

measurements were collected) is clearly sufficient. Concentration effects on hydrogen diffu-

sion in a CsC24(H2)x sample were investigated experimentally on the HFBS instrument.8

Spectra were collected at three different hydrogen loadings and are shown in Fig. 5.19. It

is clear that the breadth of the quasielastic peak decreases at large concentrations.
8It would have been better to have collected data on a KC24 sample rather than a CsC24 sample. On a

qualitative level, though, concentration effects should be similar in both systems.
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5.9 Discussion

5.9.1 Comparison with carbons, zeolites, and MOFs

In Fig. 5.20 the hydrogen diffusivity9 in KC24 is plotted as a series of solid black squares,

and is compared to values for single-walled carbon nanotubes [96] and the carbon black

XC-72 [97]. Also plotted are self-diffusion coefficients for the type-A zeolite NaA [98], the

type-X zeolite 13X [99], and the metal-organic framework MIL-47 [100]. It should be noted

that the self-diffusion coefficients for KC24 are two-dimensional, and should actually be

multiplied by a factor of 2/3 for direct comparison to three-dimensional systems.
9Extracted from fits of the honeycomb net jump diffusion model to the QENS spectra of KC24(H2) 0.5.
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Hydrogen diffusivity in KC24 is more than an order-of-magnitude slower than in other

carbon sorbents. It is similar in magnitude to diffusivities in the microporous zeolites (13X

and NaA). Both KC24 and the 13X/NaA zeolites share a nanoporous geometry. Hydrogen

diffuses in KC24 through narrow channels formed between closely spaced graphene layers.

Similarly, diffusion in NaA and 13X occurs though intra-crystalline channels with molecular-

sized windows. The widths of these cavities are on the order of the H2 molecule diameter.

For example, the windows of NaA have a van der Waals diameter of about σ ≈ 2.9 Å,

while the interlayer separation of KC24(H2) 0.5 has a van der Waals diameter of σ ≈ 2.3 Å.

The narrow intra-crystalline channels of KC24, and of zeolites NaA and 13X, act as steric

barriers that slow down the diffusion considerably. Interestingly, the steric barriers are

also reflected in the molecular-sieve properties of these materials. In comparison, hydrogen

diffuses mostly on the outer surfaces of carbon blacks and SWCNs, subject to fewer steric

diffusion barriers. Geometry appears to be a dominant factor in determining the diffusion

properties of hydrogen adsorbed in porous materials, while the actual chemical identity of

the sorbent material appears to be of secondary importance.

5.9.2 Diffusion on two time-scales

A puzzling feature of the QENS data for KC24(H2)1 is that it shows diffusion processes oc-

curring on two distinct time scales (see Table. 5.3). The extremely slow diffusivity measured

on HFBS is fairly unique and cannot be easily explained with a simple jump diffusion model.

This type of slow diffusion (detectable on a backscattering spectrometer) is sometimes ob-

served in metal hydrides and is typically attributed to H trapping at strong attractive

sites. The origin of trapping sites in KC24 is not clear however. Dual timescales in certain

metal hydrides have also been linked to the simultaneous presence of fast, localized motions
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between closely spaced interstitial sites and slower, long-range diffusion [101]. Similarly,

elastic-like features in the QENS spectra of H2/sorbent systems are usually explained in

terms of a slow-diffusing population of hydrogen molecules [96,99,102].

One possible explanation is that the fast process originates from rapid individual jumps

of the H2 molecules while the slow process originates from in-plane jumps of the potassiums.

Hydrogen molecules tend to cluster around the potassiums due to both electrostatic and

dispersion interactions. When a potassium atom jumps, the fast-moving H2 molecules

quickly reconfigure around the new site of the potassium atom. This fluctuation in H2

particle density can be detected by the backscattering spectrometer as slow diffusion. An

alternative theory can be developed by hypothesizing that the adsorbed hydrogen forms

a new phase. Lateral interactions between the adsorbed hydrogens may cause them to

coalesce into tightly packed islands. Molecules in the interior of an island will have less

mobility than the molecules at the island periphery. Measurements on a completely filled

KC24(H2)2 composition would provide some indirect information on the H2 diffusivity in a

tightly packed arrangement. The possibilities of phase transformations in the H2 adsorbate

will be discussed further in the next subsection.

5.9.3 Phase transformations

For a system consisting of H2 monolayers on a clean graphite surface, transitions between

commensurate and incommensurate solid 2D phases are determined by a competition be-

tween the hydrogen-hydrogen interactions and the hydrogen-surface interactions. At low H2

concentrations, interactions with the periodic graphite corrugation potential are dominant,

resulting in a commensurate, solid-like adsorbate phase [103]. As the surface coverage is

increased and the lateral interactions between hydrogen molecules grow more important,
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the commensurate solid monolayer becomes unstable relative to the formation of long-range

dislocations, leading to a domain-wall intermediate phase [104]. In the Kosterlitz-Thouless

theory of two-dimensional phase transformations, this type of intermediate phase is some-

times called a hexatic phase [105–107]. It is unique to two-dimensional systems and does

not occur for three-dimensional systems. Diffusion along the fluid-like domain wall bound-

aries is considerably faster than within the domain interior [108]. This can result in the

two time-scales for the system diffusivity. If the temperature is increased, an isotropic two-

dimensional liquid is eventually formed. For the H2/graphite system this transition occurs

at around 20 K.

We studied the phase behavior of the H2/KC24 system by measuring the elastic intensity

as a function of temperature (see Fig. 5.14). There is a distinct drop in elastic intensity

starting at around 35 K which exceeds the expected decrease from the Debye-Waller fac-

tor. This is due to the onset of H2 diffusion within the measurable time window of the

instrument. However, the decrease in intensity with further heating is gradual, not abrupt.

This means that there is no discrete H2 melting transition in KC24 such as is observed

for H2 on a graphite surface. Instead, there is a gradual increase in hydrogen mobility

with temperature. The corrugated potential of the host KC24 is dominant compared to

the lateral interactions between hydrogen molecules. What occurs, therefore, is a gradual

thermally-induced increase in diffusion through a solid-like sublattice, rather than a distinct

solid-to-fluid bulk phase transition.

Bulk H2 melts at a temperature of around 14 K. Confinement of H2 in a porous mate-

rial is known in some cases to lower the freezing temperature. For H2 in Vycor, a porous

glass with cavities of ∼60 Å, the freezing temperature has been measured at 8 K. In the

smaller pores (∼20 Å) of the silica glass MCM-48, though, the melting temperature is little
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changed from the bulk value of 14 K [109]. The strong binding interactions between H2 and

KC24 appear to have the opposite effect on the “melting” behavior.10 Hydrogen diffusivity

(within the instrument time window) in KC24(H2)1 is not detected until a temperature of

35 K, considerably higher than the bulk melting point. However there is not enough infor-

mation to determine whether this actually is a phase transition. To make more conclusive

observations of the phase behavior in the H2/KC24 system, other experimental techniques

such as calorimetry or diffraction should be utilized.

5.10 Conclusions

Hydrogen self-diffusion in KC24 was studied with QENS measurements and with MD sim-

ulations. The diffusivity in KC24 is over an order of magnitude smaller than in other

carbon adsorbents. It appears that steric diffusion barriers from the molecular-sized pore

dimensions of KC24 are the main factors in slowing down the diffusion. The hydrogen

self-diffusion coefficients follow the Arrhenius relation for a thermally activated process.

Good agreement is observed between the experimental and simulated diffusivities in KC24

without optimization of the forcefields, hinting once again that geometry is the significant

factor. Experimental quasielastic scattering was observed from an extremely slow process

(τ ∼ 1000 ps) and a faster process (τ ∼ 10 ps). The origin of the slow process is still unclear.

There was no sharp melting transition in KC24(H2)1, but rather a gradual increase in H2

mobility with temperature.

10Since most measurements were collected above the critical temperature of hydrogen, it may not be
accurate to denote this as melting.


