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Abstract

Autocatalytic networks (pathways) are a necessary part of core metabolism. In ev-
ery cell, food and resources are broken down to create energy and components via
processes that also require the use of those same components and energy. Indeed at
a certain level all biological networks are massively autocatalytic. The simplest and
most widely studied autocatalytic network is the glycolytic pathway. This metabolic
pathway is used by the cell to produce energy anaerobically (without oxygen) by
breaking down glucose. It is probably the most common autocatalytic pathway on
the planet, found in every cell of living organisms, from bacteria to humans. Its spe-
cial autocatalytic structure, like the structure of many similar autocatalytic networks,
can lead to instabilities and makes it particularly hard to control.

In this thesis, we study autocatalytic metabolic networks, and specifically glycol-
ysis, to investigate fundamental performance tradeoffs in these network topologies.
Using classical linear control theory, we hypothesize that the instabilities in glycoly-
sis, which are exhibited in the form of oscillation are a result of performance tradeoffs
that stem from the structure of the pathways and a conservation law mathematically
described by a special form of the Bode Sensitivity Integral. We show that the size
of the pathway and the consumption of the intermediate metabolites by other pro-
cesses in the cell adversely affect the performance of the pathway, while reversibility
of chemical reactions improves performance. We also establish tight stability bounds
for the feedback control gains, which guarantee stability of pathways of arbitrary size
and arbitrary parameter values of the intermediate reactions.

In addition changes in the concentration of metabolites and catalyzing enzymes

during the lifetime of the cell can perturb the system from the nominal operating point
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of the pathway. We address the question of whether the controller can restore the
system to normal operating conditions from these perturbations, and the maximum
perturbations a cell can sustain before it dies. We investigate effects of such pertur-
bations through the estimation of invariant subsets of the region of attraction around
nominal operating conditions (i.e., a measure of the set of perturbations from which
the cell recovers). The numerical procedure for estimating the region of attraction is
composed of system theoretic characterizations and optimization-based formulations.
For large, computationally intractable systems we employ a different technique based
on the underlying biological structure, which offers a natural decomposition of the
system into a feedback interconnection of two input-output subsystems: a small sub-
system with complicating nonlinearities and a large subsystem with simple dynamics.
This decomposition simplifies the analysis and leads to analytical construction of
Lyapunov functions for a large family of autocatalytic pathways.

The results of our analysis of these autocatalytic networks reveal fundamental
tradeoffs between performance and robustness, energy efficiency, evolvability of the

pathway, and computational complexity.
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Chapter 1

Introduction

I learned very early the difference between knowing

the name of something and knowing something

Richard Feynman

Metabolism is the collection of chemical reactions that take place in the cell to
sustain life. It is comprised of metabolic reaction networks (pathways), which are
sequences of chemical reactions usually connected in series. The products of these
chemical reactions are called metabolites. Metabolism is divided into two categories,
catabolism and biosynthesis. Catabolism breaks down complex molecules in food to
generate energy and some of the small molecules that the cell uses as building blocks,
while biosynthesis uses the energy generated by catabolism to construct the compo-
nents that make up the cell. The chemical reactions that comprise the metabolic path-
ways are catalyzed by specialized proteins called enzymes, which speed up (catalyze)
the reactions [1]. The cell uses these enzymes to regulate (control) the metabolic
pathways via two distinct mechanisms, transcriptional regulation and allosteric reg-
ulation (Figure 1.1). Transcriptional regulation changes the concentration levels of
the enzymes by controlling gene expression, thus speeding up or slowing down the
corresponding reactions. The slow events of transcription and translation dominate
this mechanism making the entire process operate at a slow time-scale. Allosteric
requlation is the process by which a molecule binds to an enzyme causing the enzyme

to change shape and become more effective (activation) or less effective (inhibition).
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Figure 1.1: The cell regulates a pathway in two basic ways, transcriptional regu-
lation and allosteric regulation of the enzymes. Transcriptional regulation changes
the concentration levels of the enzymes by controlling gene expression, thus speeding
up or slowing down the corresponding reactions. Allosteric regulation is the process
by which a molecule binds to an enzyme causing the enzyme to change shape and
become more effective (activation) or less effective (inhibition).

It happens at a much faster time-scale than transcriptional regulation because the
effects of binding are immediate.

Some metabolic pathways contain reactions that require the use (consumption) of
one of their own products, thus creating a positive feedback loop. Such pathways are
called autocatalytic pathways. They are very common in biology; indeed at a certain
level all biological networks are massively autocatalytic, since in every cell, food and
resources are broken down to create energy and components via processes that also
require the use of those same components and energy. In addition, these metabolic
pathways, as an integral part of the whole cell activity, are also coupled with other
networks through their intermediate products which are consumed by other processes
in the cell. Many of these pathways contain reversible reactions (i.e. both the reaction
that converts A to B and the reverse one that converts B to A occur) in addition to
the irreversible ones.

The simplest and most widely studied autocatalytic pathway is glycolysis. The cell
relies on this metabolic pathway to produce energy anaerobically (without oxygen)

by breaking down glucose. It is coupled to other pathways through the provision
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of many of its intermediates for the production of amino acids, lipids, nucleotides,
and other organic molecules essential to the function of the cell. In glycolysis, the
autocatalysis happens when two ATP molecules (energy carriers) are consumed early
in the pathway (in this process Hexokinase (HK) and Phosphofructokinase (PFK) act
as the catalyzing enzymes). Four ATP molecules are generated later in the pathway,
for a net return of two ATP molecules.

Autocatalysis in metabolic pathways, and specifically glycolysis, can cause insta-
bility and aggravate control performance [8]. The instability of the glycolytic pathway
has been experimentally observed since the 1960s when oscillations of glycolytic in-
termediates were seen in continuous flow experiments on yeast extracts. Since then,
glycolytic oscillations have been studied extensively both experimentally and theo-
retically [9, 14, 24|. The oscillations appeared when precursors to the PFK catalyzed
reaction (or PFK itself) were added to the system [14]. These studies led to the
hypothesis that oscillations are caused by PFK activity. The effect of different en-
zymes on the period and amplitude of these oscillations has been investigated [6, 38]
and temperature dependence has also been observed [33]. A nice review of the ex-
perimental history of yeast glycolytic oscillations can be found in [31]. Many of the
mathematical models developed for glycolysis attempt to capture in detail the full
mechanism of glycolysis [18|. These models have high fidelity but result in large mod-
els that are not amenable to theoretical analysis and can thus obscure fundamental
tradeoffs.

In the present work, we study autocatalytic metabolic pathways, and specifically
glycolysis, to investigate fundamental performance tradeoffs in these networks, and
the hard limits imposed on performance by autocatalysis. We want to understand
the underlying principles behind the set of nominal operating parameters for these
networks and if these principles can be generalized to other networks in biology.
A second goal is to use these networks as a benchmark to better understand the
applicability of many available tools in control and optimization to biological system
analysis. In this thesis we study a special case of the metabolic networks pictorially

represented in Figure 1.1, specifically the metabolic network with the topology of



Figure 1.2: The autocatalytic network is composed of a chain of reversible reactions
(black arrows) that convert one metabolite x; to another, ultimately producing a + b
copies of the final product y of the pathway (blue triangles, ATP in the case of
glycolysis). The pathway also requires the consumption of a copies of the final product
y to convert the input of the pathway into the first metabolite 1. The intermediate
metabolites and the final product of the pathway are consumed by other processes in
the cell. All the reactions are catalyzed by enzymes. Additionally, the product of the
pathway inhibits (dotted red line) the enzyme (PFK in glycolysis) that catalyzes the
autocatalytic reaction.

Figure 1.2, with glycolysis serving as a prime example. This network is composed
of a chain of reversible reactions that convert one metabolite to another, ultimately
producing a + b copies of the final product of the pathway (ATP in the case of
glycolysis). The pathway also requires the consumption of a copies of the final product
to convert its input into the first metabolite. The intermediate metabolites and
the final product of the pathway are used (consumed) by other processes in the
cell. All the reactions are catalyzed by enzymes. Additionally, the product of the
pathway inhibits the enzyme (PFK in glycolysis) that catalyzes the autocatalytic

(first) reaction. The set of these reactions is shown below

utay =~ a2 w =P - =2, =i (a+b)y =% ¢
) |d ldn (1.1)
¥ ¥ ¥

where arrows signify a chemical reaction with the rate shown in the superscript (sub-
script for the reversible reactions) and z;, for ¢ = 1,...,n, are the intermediate
metabolites, u is the input, y is the output, and ¢ is a null state representing the con-
sumption of the reactants by other processes in the cell. The enzymes that catalyze

these reactions are not shown. We are interested in the fast allosteric regulation of
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the pathway, and assume that at this time-scale the pathway’s output is constant.

Biochemical networks with different topologies and different reaction rate con-
straints have been an object of study for many decades. General results regarding
the number of the possible steady states and the convergence properties to these
states for certain rather general networks with mass-action kinetics (the so-called
networks of deficiency zero and one) have been established [12, 11, 16]. The theory
of monotone dynamical systems [36] has proven to be a powerful tool for understand-
ing the behavior of biological systems. Using this theory, certain network topologies
have been shown to globally converge to steady states for quite general reaction rates
[22]. The theory of monotone systems is directly applicable to topologies that have
net positive feedback loops, but might also be useful to study more general systems.
For example, the authors of [45] use singularly perturbed monotone systems to show
global asymptotic stability for topologies with negative feedback, under certain time-
scale assumptions. Cyclic interconnection networks are closer to the topology shown
in Figure 1.2 and for these networks a sufficient local stability criterion for cyclic in-
terconnection with inhibition of the first reaction by the end product of the network
has been established [39, 43]. These results are extended to prove global asymptotic
stability (using passivity of subsystems) if certain criteria are satisfied by the reaction
rates [2, 3.

In most cases the difficulty associated with analyzing autocatalytic networks, with
the topology and feedback structure of Figure 1.2, is that they do not exhibit such
global properties. These networks can have multiple equilibrium points, each with
large regions of attraction. The nonlinear nature of the autocatalytic reaction rate
makes the analysis of non-local properties, such as estimating the region of attraction,
difficult. This nonlinearity is caused by the coupling of positive and negative feedback,
which induces many of the interesting properties in these networks. Depending on the
feedback gain, the (stable) dynamics near the equilibrium points can be dominated by
either positive or negative feedback. The fact that the end product of such networks is
consumed by the reaction it controls, implies that the initial response to the regulatory

negative feedback will yield the opposite of the desired effect (i.e., an error in the
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response will initially increase before it decreases). This property is intrinsic to their
structure and makes them inherently difficult to control. We investigate the control
structure of these autocatalytic networks with its limitations and benefits, as well as
the tradeoffs that arise from both their structure and biologically imposed constraints.
We attempt to understand the cause of certain behaviors that are commonly exhibited
in real biological pathways and to address the “synthesis” question of why certain

feedback gains are chosen.

1.1 Biological Preliminaries

A chemical reaction that converts the collection of a; copies of chemical species X;,
1 <4 < n into the collection of b; copies of chemical species Y;, 1 < j < m at rate k&

will be denoted by

X;’s are called the substrates and Y}’s are called the products of the reaction. The rate
k of the reaction determines how fast the chemical reaction takes place and usually
depends on the concentration of the substrates X;, denoted by [X;] and their copy
number a; (the number of the molecules involved in the reaction), but not on the

products. In the reaction given by (1.2), reaction species X; is loosing a; copies at

rate k, so [X;] changes at a rate of £[X;] = —a;k, and similarly Y; is gaining b; copies
therefore £[Y;] = b;k.

There are many different kinetics models used to determine the reaction rate k, but
here we limit our discussion to the two most common ones; mass-action kinetics and
Michaelis-Menten kinetics. In mass-action kinetics, the reaction rate k is modeled to

be proportional to the product of the substrates, i.e.

k= alX)]® - [Xa]o - ... [X,]o"

Michaelis-Menten kinetics models the kinetics of reactions catalyzed by enzymes, and
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state that for a simple reaction that converts X into Y using enzyme FE, the reaction
rate k is given by
ColX]

KR =
ko + [X]’
for some positive constants Cy and kg, where Cj is proportional to the concentration

of the available enzyme FE.

Remark 1.1: For convenience of notation, from now on we will use A to denote both
the chemical species A and its concentration [A], and clarify when the distinction is

important.

Let X = {X1, Xs,..., X} be a set of chemical species and R = {R;, Ry, ..., R,} a
set, of chemical reactions that involves species X', with corresponding reaction rates
{v1,v9,...,v,}. The vector v = [vy, vy, ... ,Un]T is known as the reaction rate vector.
The m x n matrix S whose entry s ; is the net gain/loss of species X; when reaction
R; happens, is called the stoichiometry matriz for the set of reactions R on species
X. Then for X := [X, X5, ... ,Xm]T (i.e., the vector of the concentrations of the
species X in the system),

d

%X =Sv
Example 1.1: Let X = {X;, Xy, X3, X4} , R = {R1, R, R3} with

Rl : 2X1+X2 — X3+X2
Ry : X3 — X4
R3 : X4 — X3

and corresponding reaction rate vector given by v(X) = |01 X2Xs, X3, asXy]". The

net loss/gain of the chemical species from the reaction R is given by the following table

Ri R, Rj
X, -2 0 0
X, 0 0 0
X; 1 -1 1
X, 0 1 -1



and therefore the stoichiometry matriz is

Consequently,

-2 0 0
0 0 O
S =
1 -1 1
0 1 -1
X5 -2 0 0
O[1X12X2
g | X2 0 0 O
dt = @2 X3
X, 1 -1 1
043X4
X, 0 1 -1

Using this formulation, the ODE for the set of chemical reactions in (1.1) is given by

T

T

f(y) + ha(ze) — gi(21) — di(1)
91(71) + h3(23) — ga(w2) — ha(z2) — da(72)

In—2(Tn—2) + hn(Tn) = gn1(Tn-1) = hn-1(Tn-1) — dn(T0-1)
In—1(Tn-1) + hy(Y) = gn(@0) — hn(Tn) — dp(n)
(a+0) gu(zn) — af(y) — 2hy(y) — g4(y),

1.2 Outline and Contributions

The three main objectives of this thesis are:

e To analyze the glycolytic pathway and the various performance tradeoffs that

arise by the structure of the chemical reactions in the pathway.

e To analyze autocatalytic networks of similar topology as the glycolytic pathway,

and establish the various topological tradeoffs.

e To develop scalable tools to study nonlinear properties of such networks.
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Figure 1.3: Thesis outline.

Essentially, in the context of the special structure of autocatalytic networks, we try
to shed some light to the question of why biological networks are the way they are.
To address the above objectives we study progressively more complex autocat-
alytic networks. Figure 1.3 shows an outline of how networks of different topologies
are covered in this thesis. Here we give an outline of each chapter highlighting the

main contributions.

e In Chapters 2 and 3, we use a 2D model of the glycolytic pathway (incorpo-
rating both autocatalysis and feedback inhibition) that captures the essential
dynamics of glycolysis. In Chapter 2 we use classical linear control theory to
answer the question of why glycolysis exhibits instabilities. We then explore
the many tradeoffs and hard limits that the structure of the pathway imposes
on performance. In Chapter 3 we analyze the nonlinear properties of the 2D
model, and answer the questions if, why and when glycolysis becomes unstable
or whether or not it ever crashes (i.e., exhibits a complete loss of ATP concen-
tration). In both these chapters, we use the 2D model to build intuition and
illustrate concepts that are more easily explainable in 2D (using pictures and
simple plots), but we also develop ideas and analysis techniques that generalize
to higher dimensional models. This model also serves as a good benchmark to

test the efficacy of certain semidefinite programming and optimization tools in
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analyzing these types of biological systems.
Using the 2D model, we establish hard limits on achievable performance and
provide evidence that the cause of the oscillations in glycolysis could be the
result of tradeoffs in performance stemming from the structure of autocatalysis.
Overall we confirm that oscillations and crashes in glycolysis are not caused
by perturbations in state space (i.e., perturbations in the concentrations of the
products and reactants), but rather perturbations in the parameter space (i.e.,
catalytic enzyme concentrations, precursors to the pathway, ATP demand, or
temperature).
Additionally estimation of the region of attraction of fixed points using optimization-
based formulations reveals that for this model, complex systems (measured by
the complexity of the vector field near the fixed point) are fragile, i.e. they are

very close to instability in parameter space.

e In Chapter 4 we extend the 2D model to incorporate multiple intermediate
reactions, and study the effect of pathway size on its stability and performance.
We use a natural decomposition of the system into a feedback interconnection
of two input-output subsystems to reduce the complexity of the problem which
allows us to obtain nice characterization of the behavior. We also explore the
effects of performance and pathway size on computational complexity.

We establish bounds on the stability of the pathway, that are independent of
the pathway size and intermediate reactions. We show that the achievable
performance of the pathway decreases with the size of the pathway, and that
longer pathways are harder to control.

We use the above decomposition to analytically construct Lyapunov functions
for a large range of feedback gains. Furthermore, we establish a scalable method
for construction of block diagonal Lyapunov functions for large pathways. We
show that realizations that are more (computationally) complex can only arise

from those realizations with high gains.

e In Chapter 5 we extend the model to include reversible reactions and con-
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sumption of the intermediate metabolites, and explore the effects of these on
performance, stability and computational complexity. We show that the pres-
ence of reversible reactions makes the pathway easier to control and improves
the bounds of achievable performance, while the consumption of intermediate
metabolites has the opposite effect. We establish a scalable method for con-
struction of block diagonal Lyapunov functions using a decomposition similar

to that of Chapter 4.

e Chapter 6 concludes the thesis with a summary and future research directions.
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Chapter 2

Linear Aspects of Glycolysis in Two
Dimensions

2.1 Introduction

Autocatalytic processes generally lead to instability but are unavoidable in cell metabolism.
The cell uses external food /resources to create usable components and energy. At the
same time it needs to use those same parts and energy in the process. The cell uses
mechanisms such as transcriptional regulation of enzymes and product inhibition
of enzymes, to stabilize such pathways and minimize the effects of the instabilities.
Transcriptional regulation changes the concentration levels of the enzymes by control-
ling gene expression, thus speeding up or slowing down the corresponding reactions.
The slow events of transcription and translation dominate this mechanism making
the entire process operate at a slow time-scale. Allosteric regulation is the process
by which a molecule binds to an enzyme causing the enzyme to change shape and
become more effective (activation) or less effective (inhibition). It happens at a much
faster time-scale than transcriptional regulation because the effects of binding are
immediate.

Glycolysis is probably the most common autocatalytic pathway on the planet,
since it is found in every cell of living organisms, from bacteria to humans. The cell
relies on this metabolic pathway to produce energy anaerobically (no involvement

oxygen) by breaking down glucose. It is composed of a chain of ten reactions cat-
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alyzed by enzymes|1|. The autocatalysis happens when two ATP molecules (energy
carriers) are consumed early in the pathway (Hexokinase (HK) and Phosphofruc-
tokinase (PFK) are the catalyzing enzymes ). Four ATP molecules are generated
later in the pathway (for a net return of two ATP molecules) (Figure 2.1A). One of
the catalyzing enzymes, PFK, plays a crucial role since it is regulated by ATP (the
output of the pathway). PFK is inactive when ATP concentration is high [4], and
this form of inhibition is the mechanism used to stabilize the pathway on the fast
time-scale. Most intermediate reactions are catalyzed by enzymes, and transcription
regulation of those enzymes could be used to stabilize the pathway, but on a much
slower time-scale.

We study glycolysis to investigate the tradeoffs between performance and stability
in autocatalytic networks, and the hard limits imposed on performance by autocatal-
ysis. Glycolysis is one of the main sources of energy production (ATP), and as such
is vital in the control ATP production and concentration. The cell tries to keep the
concentration of ATP constant in spite of high variability in both supply and demand.
This is important task since many parts of the cell both use and depend on ATP.

As previously described, the instability of the glycolytic pathway appears in the
form of oscillations of glycolytic intermediates. Although the details of the mecha-
nisms of glycolysis as well as the physical components responsible for causing instabil-
ities are very well understood, there is no good understanding of what fundamentally
causes these oscillations. There are suggestions that they potentially minimize the
dissipation of free energy [32|, while most argue that they could be detrimental to
the cell [25, 29]. Are these oscillations the result of a frozen accident in history?
Are the enzymes doing something they were not intended to do? Is it bad design?
Is it possible to design a better enzyme that would have better performance and
eliminate these oscillations? In this chapter we will investigate these very questions.
The oscillations are shown to be an unavoidable consequence of the structure of the

autocatalytic pathways and a result of a performance tradeoffs.
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2.2 A Two Dimensional Model of Glycolysis

We look at the inner autocatalytic loop of glycolysis, highlighted in Figure 2.1A.
Other autocatalytic pathways have similar properties. A general representation of

this pathway would be

u+ay — 1+ ay
Tn+ (a+b)g — (a+b)y+ Tpia

y—

where w is the concentration of some precursor and source of energy (like fructose-6-
phosphate) with no dynamics associated, y is ATP concentration, 3 is ADP concen-
tration, z; are intermediate metabolites, ¢ is a null state, a is the number of ATP
molecules are invested in the pathway, and a + b is the number of ATP molecules
produced. A — B (sometimes A —f B) denotes a chemical reaction that converts
the chemical species A to the chemical species B (at rate f). Most of the above
reactions are catalyzed by enzymes which are proteins that speed up the chemical
reactions. We do not show the enzymes in the above reactions, but note that the
reaction rates depend on the concentration of the catalyzing enzymes. The first re-
action is catalyzed by PFK and the rate of this reaction is modeled by f,(y). We
will initially assume that a single intermediate reaction can capture the essence of
all of the intermediate metabolite reactions, and denote by z the resulting “aggre-
gate” intermediate state (Figure 2.1B). We will also assume that the last reaction,
Tn+ (a+0)y — (a+b)y + z,41 is fast [9]. These assumptions simplify the system to
the following

U+ ay —~ z4az
xr =% (a+by (2.2)

y _\9y (p
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Figure 2.1: (A) Glycolysis pathway. Autocatalysis happens when two ATP molecules
(energy carriers) are consumed early in the pathway through reactions catalyzed by
Hexokinase (HK) and Phosphofructokinase (PFK). Four ATP molecules are gener-
ated further along the pathway (energy return). Allosteric regulation happens as ATP
inhibits PFK. (B) The inner autocatalytic loop of the pathway (highlighted in blue)
is reduced to a 2D system by aggregating the intermediate reactions in a single one.
The resulting 2 state model is composed of 3 aggregate chemical reactions R;, R
and R3. The structure of the pathway is completely determined by the stoichiometry
matrix, (where each entry m; ; is the net gain/loss of species i as a result of reaction
R;). The number of ATP molecules consumed and produced by the pathway are a
and a + b respectively (in this case a = b =1).
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where u is the input to the pathway. We will not keep track of u explicitly and
associate no dynamics to it. We use f(y) as shorthand for f,(y), noting the param-

eter dependence of f on u when necessary. The corresponding ordinary differential

equation (ODE) is

, f(y)

T _ 1 —1 0 (2 3)

§ —a a+b —1 9:(2) '
gy(y)

for x,y > 0 and g¢,(0) =0, g,(0) = 0, and g,(x) and g,(y) are continuous monotone
increasing functions in the positive orthant. The constraints above on g,(z) and
gy(y) are consistent with large classes of chemical kinetics models such as mass-
action and Michaelis-Menten. The rate of the first reaction f(y) is directly related
to PFK’s activity. This enzyme gets activated by AMP, and inactivated by ATP. A

Vyd
Iyyh?

reasonable form for f(y) that also agrees with experimental data is f(y) =
where V' is related to the availability of precursors such as glucose, ¢ is the strength
of autocatalysis, and v, h are determined by the enzyme and regulate the strength of

feedback inhibition [4, 9]. Finally, the ODE takes the special form

. Vol
r = 1+,Zy!yh - gac(‘r) (24)
g = (a+0)g.(x) —agris — 9,(y)

It should be noted that all the parameters are positive.

2.2.1 Other Glycolysis Models and Experimental Data

Next we examine some of the numerous glycolysis models and how the 2D model in
(2.4) relates to them.

Many of the models in the literature attempt to capture the full mechanism of
glycolysis [18] as it is biochemically understood. This allows for high fidelity but
results in large systems that are hard to analyze. This tradeoff motivates the search

for reduced or minimal models that capture the essential mechanisms and behavior.
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Most reduced models are derived using reduction techniques that rely on biological
intuition that leads to “lumping” several reactions and states into a single one, or
eliminating fast reactions by replacing the reactions by their quasi steady state value.
The parameters of such models are adjusted to fit experimental data and preserve
crucial properties, such as proximity to a Hopf bifurcation, which might be the cause
of oscillations in glycolysis 9, 24, 47|. Reference |9] uses two such model reduction
techniques to reduce the full-scale glycolysis pathway [18] first to an eight-state model
and then to a three-state model. These models are essentially derived by collapsing the
two autocatalytic loops into a single one (lumping) and eliminating the fast reactions
by fixing the corresponding metabolite concentrations at their steady-state values.
As a result, both of them match the structure of (2.1) quite well. Additionally, the
three-state model contains one additional fast reaction, shown in [9] to be several
orders of magnitude faster than the other reactions. If we eliminate this reaction
by fixing the corresponding species to its steady state value, we get equation (2.4)
(for a particular choice of parameters and reaction rates g, and g,). Specifically, the

three-state model in [9] is given by

l.'l = 2f/271+%yq — ];}31'1 — ]~€8ZE1
.%.‘2 = ]~€3ZE1 — ]{341'22
y = 2/€4$22 — QX/QH_K% - (k6 + k7)y7

where x7 is the trioseP concentration, x5 the BPG concentration, z the ADP con-
centration, y the AT P concentration, the parameter values are Vy = 67.7116, ¢ =
2.64, K; = 1.24464, ks = 6.65022, ky = 126519, k¢ = 3.2, k; = 9.65602, ks =
0.617780, and y + z is assumed to be constant. We notice that x5 has much faster dy-
namics since the reaction rate k4 is several orders of magnitude larger than the other

reaction rates. Using simple perturbation theory we eliminate the fast dynamics by
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setting xo to its (quasi) steady state value and as a result we get kszy — kyzoz and

b= e — 7268
(2.5)
gy = 13.30044x; — —334232y 19 85602y,

14+0.56116y2-64

which is exactly (2.4) with V = 135.4232, ¢ = 1, h = 2.64, v = 0.56116, a = 1, b =
0.83 and g,(z) = 7.268z, g,(y) = 12.85602y. As the 3D model in [9], this 2D model
has an unstable oscillatory mode (A = 0.3 & 14.78i in this case).

In addition to the above models, there are classical two-state models that differ
in structure from the 2D model in (2.4) but also qualitatively capture the observed
oscillations in glycolysis. For example, the model proposed in [13| focuses on the
enzyme dynamics rather then the dynamics of the metabolites involved, and qual-
itatively captures the oscillatory behavior observed in experiments. The two-state
model proposed in [35] is reduced from a larger model and uses Michaelis-Menten
reaction rates. This model also exhibits hysteretic behavior and oscillations and it
shows that using these reaction rates stabilization is possible.

We now examine how well the 2D model in (2.4) captures the essence of glycolysis
and glycolytic oscillations. Simulations of the model using simple g, and g, such as
9:(z) = kyz, g,(y) = kyy (as is (2.5)), match experimental data on glycolytic oscilla-
tions. Most of these experiments on glycolytic oscillations are performed on yeast and
generally fall into two categories. The first category is comprised of experiments on
dense cell suspensions. Yeast is put under starving conditions and shifted to anaero-
bic conditions [31]. Under such conditions, glycolysis is the main source of energy in
the cell. Damped oscillations are observed in the metabolites when a pulse of glucose
is added. Furthermore, sustained oscillations are observed when a constant input of
glucose is maintained. In our model increasing the glucose flow (u) would map to
increasing the parameter V' accordingly, since V' is dependent on glucose availabil-
ity. Increasing V' in the model forces the system to go through a Hopf bifurcation,
resulting in oscillations thus matching these experimental observations (Figure 2.2A).

The second type of experiment is done on yeast extracts [14, 24]|. In a Continuously-
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Figure 2.2: Left: Simulations of the 2D model with h =5, ¢ =1, vy =2, a =b =
1, g.(z) = z and g¢,(y) = kyy show oscillations in ATP concentration. A) Induced
oscillations by varying glucose availability (k, = 1, V = 2,2.5,3,5). B) Induced
oscillations by varying ATP consumption rate (V' = 3, k, = 0.3,0.6,1,1.55). Right:
Experiments on yeast extracts show sustained glycolytic oscillation for intermediate
flow rates in a CSTR (b-d) (figure taken from [24]).

Stirred Tank Reactor (CSTR), substrate and glucose are added at a constant rate
(inflow), and the volume is kept constant by an outflow at the same rate. No os-
cillations are observed under high or low inflow rates, but there are oscillations at
intermediate rates [24] (Figure 2.2 right) . In our model this would correspond to
changes in the rate of consumption of ATP, k,. Figure 2.2B shows that simulations

of our model agree with this observation.

2.3 Control of Glycolysis

ATP is the major energy carrier in the cell. Many processes depend on ATP and
drops in its concentration can be fatal to the cell. Glycolysis is the main pathway

that produces ATP anaerobically and as such it is important for glycolysis to main-
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tain ATP concentration close to biological standards in the presence of an uncertain
environment. Uncertainty in the environment is created by fluctuations in the en-
zyme concentrations, variability on the demand for ATP or the supply of glucose, and
intrinsic/extrinsic biological process noise. Some of the regulation needed to adjust
to slow, long term changes in the cell is performed by the transcription/translation
of the enzymes involved. However, for fast fluctuations and disturbances, glycolysis
relies on product inhibition via the allosteric regulation of PFK by ATP. One of our
goals is to understand why oscillations happen in glycolysis and how the structure of
this pathway, especially autocatalysis affects how well the cell performs this task.

System (2.4) can be viewed as output feedback control of an autocatalytic plant
as shown in Figure 2.3. Biology imposes hard constraints on the structure of the
plant and of the controller by forcing the vector field of the open-loop plant and
the controller to have the specific form of Figure 2.3. The control task is to main-
tain a predefined constant output in the presence of disturbances and changes in the
plant dynamics. Unlike many problems in control, the controller in this case has to
not only deal with unmodeled plant dynamics, but also with the fact that the plant
itself is expected to change over time. The simplest way the plant changes is by
fluctuations in enzyme concentrations causing changes in the intermediate reaction
rates. This would be a parametric change in the plant dynamics and always hap-
pens during the lifetime of the cell. In much longer time-scale (thousands of years)
there might also be structural changes in the plant, such as fundamental changes
(insertion/deletion /replacement) in the nature of intermediate reactions or chemical

species.

2.3.1 Linearization

We can evaluate performance based on steady-state or transient response. We will now
look at linearization of the plant to get a good picture of the steady-state performance
as well as to get hints about the transient response.

We will assume that PFK enzyme levels are controlled by the slow transcriptional
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Figure 2.3: Fast regulation of glycolysis can be viewed as the output feedback control
of an autocatalytic plant. Biology imposes hard constraints on the structure of the
plant and the controller. This representation implies the same closed-loop system as
system (2.4).

regulation. This regulates the amount of PFK (parameter V in (2.4)) to match the
availability of glucose and ATP demand. Without loss of generality we will assume
the equilibrium point of interest at which the cell operates is § = 1. Let g, (1) =y,
%gy(y)]yzl =k, and 2¢,(2)|s=z = k,. This implies V' = ry(1 + 7)/b, and the

linearization of (2.4) around this point of equilibrium is

- b (2.6)

where h = -2 h.
7+1
System (2.6) is the linearized closed-loop system as regulated by the enzyme PF K
with £ as the feedback gain (Figure 2.4A.) In standard output feedback control form

(2.6) becomes

x = Ax+ Bu

uw = —hz=—hOx
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Figure 2.4: Steady state performance of glycolysis is analyzed by looking at the
corresponding standard output feedback control form. A) State space model. B)
Frequency domain description of the model.

where

A _ _k:t %qu
(b+a)k, —azryq—k,
1 1
B = Ery Y
¢ o]

The system above is open-loop (h = 0) unstable (saddle point) but with no oscilla-
tions. Simple root locus analysis shows that it can be stabilized via output feedback
control, however a high gain will destabilize the system and lead to oscillations (Fig-
ure 2.5, Table 2.1). It is the structure of autocatalysis that is responsible for causing
instability (oscillations) for high feedback gain, since ATP (y) both controls and is
consumed by the first reaction. Small drops in ATP concentration from the equi-

librium value will be initially followed by further drops in ATP concentration before
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Feedback Strength (h) ‘ Behavior
h<q-3" Saddle
h=q— % Saddle-Node Bifurcation
g2 <h<q+ 2k +k) Stable
h=q+ %(/@x + ky) Hopf Bifurcation
h>q+ %(km + k) Unstable Node (Oscillations)

Table 2.1: Stability of the glycolysis pathway operating point based on the closed-loop
system (2.6).

the eventual increase in concentration, since it needs to consume additional ATP (y)
to produce additional intermediate metabolite (), which in turn will produce more
ATP to compensate for the original drop in concentration. If the gain is high enough
the initial drop might cause the system to overproduce ATP and overshoot the target
concentration by a large enough margin to cause oscillations.

This suggests that the cause of oscillation in the glycolysis pathway could be
aggressive control. Why might glycolysis have such an aggressive control strategy?
The answer to this question will be the focus of the next few sections. A possible
answer is that more aggressive control leads to better performance and the choice of

a control strategy is guided by tradeoffs and hard limits on performance.

2.4 Performance and Hard Limits

2.4.1 Frequency Domain Analysis

Let
P(s) = C(sI-A)"'B
ke—13s
Ty 52+ (ko thy+2qry ) s+kaky—keryq

(2.8)

be the open-loop transfer function for (2.7) (Figure 2.4B). We first observe that the
plant, in addition to the right half-plane (RHP) pole, has a RHP zero at s = z,

z=—k,
a
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Figure 2.5: Stability diagram and root locus plots show that output feedback stabi-
lizes glycolysis, however high gain will destabilize the system and lead to oscillations.
Fast intermediate reaction rates permit higher stabilizing feedback gains.

This RHP zero depends on the intermediate reaction rate and the stoichiometry of
autocatalysis, but not on the reaction rate of autocatalysis. Its existence can be
shown to be a function of the structure of the autocatalysis.

We will see next that the RHP zero imposes additional hard limits on perfor-

mance, by enforcing a special form of the Bode Integral formula [10]. The sensitivity

function S(s) = 1+i11]3(s) measures how sensitive the pathway is to disturbances J in
the feedback as shown in Figure 2.4B. In state space this maps to § perturbations of

(2.6), specifically

~

T —ky iry(q —h) x 1
Y (b+ a)k, _%Ty(q - h) — ky Y —a

In addition weighted S measures the sensitivity to many other disturbances. One of
these disturbances will be analyzed in detail in section 2.4.2.
Typically we want |S(jw)| to be small for small steady state error in some fre-

quency range, often around w = 0. Can we make S arbitrarily small?
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2.4.1.1 Bode Integral Formula

The Bode sensitivity integral formula holds for plants of relative degree> 2. P(s)
from equation (2.8) has relative degree 1, so that formula does not apply. However
the existence of a RHP zero allows the use of the following form of the Bode sensitivity

integral formula

1 [ 2
_/ IS ()| ——dw = M > 0 (2.9)
T Jo

22+ w?
where M = ln\%] > 0 if the open-loop plant has a RHP pole p, and M = 0
otherwise. This formula can be derived easily from Lemma 3 in Chapter 6 of [10].

For completeness we show the Lemma and its application in proving (2.9) here.

Lemma 2.1: For every point sg = og + jwo with og > 0,

oo

1
g |Suns0)] = = [ log[S(s0)l-

—00 0g + (w — u)())

0o

sdw (2.10)

where Sy, s the minimum phase part of S.

PROOF: See [10].

Proposition 2.1: Let z be a RHP zero of (2.8). Then (2.9) holds.

PROOF: In Lemma 2.1, take s = 2 = 09 = 2z, wg = 0.
Let S(s) = Sup(s)Smp(s), where S,,(s) be the all-pass part of S(s) and M =

log | Simp(2)].
Notice that if z is a zero of the plant then S(z) = 1. If p is a pole of the plant,
then S(p) = 0. Therefore, if there is no pole in the RHP, then S,,(s) = 1 and

S(z)=1 = Spup(2) =S,p(z) =1
= M=0
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If there is a pole p in the RHP, then S,,(s) = =2£ and

=2
Z+Dp

S(z)=1 = Smp(z) = Sap(z)_l = Z—p

= M= 1og|izz| >0
z—p
So substituting into (2.10), we get

1 [ z
M = ;/ 10g|5(80)|mdw

oo

1 [ 2z
= ;/ 10g|S(80)|mdw [ ]

0

The formula states that the weighted area under the log of the sensitivity function is
conserved (Figure 2.6). This means that pushing the low frequency response to dis-

turbances to be small, i.e trying to obtain 'good performance’, must be compensated

for with a larger response in some other frequency range. Since % fooo zgizwg dw =1,
the weight puts an emphases on frequencies smaller than z, so there is a much higher
price, i.e. increase in frequency response in another part of the frequency range, as-
sociated with good performance in this frequency range (w < z) (Figure 2.6). Figure
2.6 also indicates that small magnitude zeros make the price for good performance at
low frequencies even steeper. Hence, since z = gkx, this hard limit is aggravated by
slow intermediate reactions (k, small) or poor “efficiency” in energy production (2 is
small, i.e. the amount of extra ATP produced per ATP invested is small).

The existence of a RHP pole and zero for the plant introduces additional hard
limits on any (stable) weighted sensitivity (W;S). It provides a lower bound on how
small the peak of WS can be since the relation ||W,S|| > ’Wl(z)% (Chapter 6

of [10]) must hold.

2.4.2 Disturbances in the ATP Consumption

It is particularly important that the closed-loop system be insensitive to disturbances

in the consumption of ATP. These types of disturbances might be common since a
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Figure 2.6: Bode Sensitivity Integral for Plants with RHP zeros. (A) The area under
the curve of the (weighted) sensitivity function S is conserved. Feedback can push
small frequency response to be small, but this will be compensated for with a larger

response in some other frequency range. (B) The weight in the Bode integral gets
tighter around 0 for smaller magnitude z. This means the price to pay for performance
at small frequencies increases substantially as the RHP zero gets smaller.

number of processes, in many different parts of the cell, use ATP. In this section we

quantify the ability of the control system to reject such disturbances.

The addition of disturbances of the ATP consumption to system (2.7) results in
the following changes to the glycolysis model

0
x = Ax+ Bu-+ 1)

y = Cx (2.11)

u = —hy=—hCx

Let A(s) be the open-loop disturbance transfer function as indicated in Figure

2.7, then the closed-loop transfer function G, ; is given by

Gys = (1 + BP) TA-ws
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G,,=(1+hP) A=ws

s +k,
W, =

sz+(kx+ky+% r, qjs+kxky—kX r,q

—h

Figure 2.7: Sensitivity to disturbances in ATP consumption can be measured by
W1S using the appropriate weight function Wj.

where
s+ kg

52+ (k‘x + k, + %qry) 5+ kyky — kyryq

Wy=A=

Small sensitivity to the disturbance ¢ implies that |[W}S| remains small . However,

since

In (W3 (jw)S(jw)| = n [Wi(jw)| + I [S(jw)|

(2.9) implies that we cannot make this quantity small for all frequencies, as illustrated
in Figure 2.8 A. More aggressive (i.e. high gain) feedback will improve the response at
low frequencies, but it will make the response large at other frequencies (frequencies
around w = 1 in the example plotted).

If the disturbance 0 was a constant, then the value of y at the fixed point of (2.11)
(ATP concentration at equilibrium) is perturbed by

0 1 )
CA™ - - 5= —€(h)o

1 <ﬁ—q>7’y—|—k‘y

where £(h) = W1(0)5(0) is the DC gain of the performance function W;S. The lower

bound on the error is
N a

> T oy + kx

which can be approached arbitrarily closely by taking the maximum gain h that still
keeps the system stable. However such a system will have very poor transient response

as illustrated in Figure 2.8B.



29

A Sensitivity to Disturbances in ATP Consumption B Closed-Loop System Step Response
.
Stronger
151 1 15) Feedback
i
s
5 = ~—
PN . 05
= ° 5 \ .
"o 05 W o Y
2 4 7
-1 Steady State
-0.5
Error
-15 Stronger .
Feedback = Transient
2 Oscillations
25 i i i i i i -15k i ; ; i i i i
-4 -3 -2 -1 0 1 2 0 5 10 15 _20 25 30 35 40
logw time

Figure 2.8: (A) Plot of log|W1S| for different feedback gains shows that more ag-
gressive feedback will improve the response at low frequencies, but it will make the
response large at other frequencies (frequencies around w = 1 in the example plot-
ted). (B) Plot of the output step response for different feedback gains shows that
oscillations in the transient response is another price paid for improved steady state
response using stronger (i.e. higher feedback gains) feedback.

In fact in general more aggressive feedback will lead to better response at low
frequencies, but poorer transient response. The next section will explore tradeoffs

such as this in more detail.

2.5 Tradeoffs

Glycolysis exhibits some tradeoffs that we believe to be common in biology. They
appear as a result of hard constraints put on the system by the structure of the re-
actions/equations and the nature of control in biology. In some cases, these tradeoffs
can be precisely characterized because they appear to be results of well defined “con-
servation laws”. In other cases these tradeoffs are a result of laws that are not yet
fully understood because of the complexity of the cell and/or lack of knowledge of or
inability to compute what the cell is optimizing for. In these cases we use hypothe-
sis based on existing theories or beliefs that are commonly accepted in the research

community.
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2.5.1 Tradeoffs in Plant Design

As previously indicated one of the reasons the plant is hard to control is the existence
of the RHP zero, z = gkx This is a direct consequence of autocatalysis, since if a = 0
(no autocatalysis) there is no zero in the RHP. So, it is the structure of the pathway
and not the parameter values (such as reaction fluxes) that dictates the existence
of a RHP zero. As such, one cannot build autocatalytic plants with the topological
structure of (2.2) that do not have a RHP zero. However one can build a plant that
‘softens’ the hard limits on performance, discussed in the section 2.4, by increasing
the magnitude of the RHP zero (Figure 2.6B). There are two ways to accomplish

this, increase the rate of intermediate reactions or improve autocatalysis efficiency.

Increase the rate £, of intermediate reactions Biologically this means that
either the number of enzymes that catalyze the reactions or enzyme efficiency need
to be increased. There is a limit on how efficient an enzyme can be, so the only
real option is to increase the number of enzymes. However this can be energetically
wasteful for the cell, since it has to create and maintain a high number of proteins.
So, the cell can choose big k, for better performance but it must then pay the cost
of high energy expenditure. Once the controller for the plant is designed (through
selection of the proper enzyme, e.g. PFK for glycolysis) it is very hard to change it,
certainly impossible over the lifetime of a cell. So if designed for good performance
assuming high levels of catalyzing enzymes, these high levels need to be maintained
during the lifetime of the cell, since drops in enzyme levels will decrease the rate k,

and move the system to an unstable regime.

Increase the energy efficiency g of autocatalysis By increasing the extra

amount of energy (ATP) attained per unit of energy invested (increasing 3) the
RHP zero can be moved further from the origin. However in addition to fundamental
limits on what efficiency is achievable, more efficient systems tend to require much
more complex machinery and maintenance. To illustrate this point, we look at the

whole cellular respiration (simplistically glycolysis + CA Cycle + oxidative phospho-



31
rilation), which could produce up to 38 ATP molecules from a single glucose molecule.
In this case we might be able to use a model similar to (2.3) but with b = 35 and
a = 3. This would make the RHP zero about 12 times larger and result in a plant
which is much easier to control. However, this more efficient machinery is far more
biologically complex and relies on other processes (such as electron transport). This
pathway also requires oxygen to proceed, which could be toxic to the cell causing ox-
idative stress. Oxidative stress happens when there is too much reactive oxygen that
the cell cannot reduce fast enough [19]. It appears that for this example increased 2
does not eliminate or soften the constraints or limitations, but merely trades them

for other constraints and limitations.

2.5.2 Tradeoffs in Controller Design

Robust Stability As we saw in Section 2.4, better performance at low frequencies
is achieved using high gain feedback, however there is a limit on how high the gain can
be before the system looses stability. In order to get optimal performance, one would
be tempted to use the highest gain h possible without making the system unstable.
However this would mean that the system would be very sensitive to perturbations in
other parameters such as k,, i.e. if his large then a small perturbation in the value of
k. will lead to instability. In the preceding discussion k, was assumed to be a fixed
parameter, while in reality k, varies throughout the life of the cell, since the enzyme
concentrations change continually. This leads to a tradeoff between performance
and robust stability. We believe that this tradeoff is at the heart of oscillations in
glycolysis. The cell might be aggressive in choosing a controller, that is stable for the
most part, but in rare occasions, the parameter values fall outside the “safe” region.
This concept can be clarified through the following examples of robustness anal-

ysis for specific parameters. Consider plant uncertainty in k, due to changes in the
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B Robustness Radius

A 6 for Uncertain Intermediate Reactions Rates
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Figure 2.9: (A) Changes in the concentrations on the catalyzing enzymes create
uncertainty in the parameter k,. This uncertainty can be modeled by unstructured
real perturbations to the transfer function G. (B) Robustness radius shrinks as the
controller gain goes up (plotted a =b=1,k, =2,¢=2,k, =7, =1)

concentrations of the catalyzing enzymes. The closed-loop system is

| e dna-b |

(b+a)(ky +0) —akry(g—h) -k,

—k, Ly q—fz -1
= i ) ) + 5[ 1 0} x
(b+a)k, —azry(q—h)—k, b+a

The robustness radius Ry, is a measure of how much perturbation the system can
tolerate before it goes unstable. For this system we can calculate Ry, by examining

the p-values of the transfer function
sz (8) = Ckm (SI — A)il Bkm

with scalar real perturbation § [15] (Figure 2.9 ). The u-values of a transfer function

G, with respect to the perturbation ¢ are defined by

115(Gr, (jw)) = (inf {|8] |6 € R, det (I — 6Gy, (jw)) =0}) 7"
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and the robustness radius Ry, is defined by

Ry, = (sup,, 115 (G, (jw))) ™"

) (2.12)
= min {ky, ke + by + $g — h)ry }

Given equation (2.12) it is clear that for this perturbation, the robustness radius
Ry, shrinks as the controller gain increases (Figure 2.9B). In fact, in this case Ry, is
exactly the distance in the z direction to the instability boundary in Figure 2.5A.

Other common perturbations could be fluctuations in feedback h as a result of
changes in PF K concentration by transcriptional regulation. In this case robust
stability radius is exactly the distance in the y direction to the instability boundary
in Figure 2.5A.

Similar results hold by looking at other plant uncertainties such as perturbations in
autocatalysis ¢, then R, = min {% <ky + iw"y — qry> , % (—iw"y + qry> + é (ky + kx)},

or multiple parameter uncertainties.

Transient Response High performance via high gain will lead to “bad” transient
response, as illustrated in Figure 2.8. The DC gain C A~!B; improves with h large
(A=A — iLBC), however, as the gain h increases, the eigenvalues of the closed-
loop system approach the imaginary axis. This results in poor transient response
(characterized by CA~'e*Bs) that is characterized by oscillations and slow decay to

the steady state.

2.6 Summary

Glycolysis is a prime example of an autocatalytic metabolic pathway. Such pathways
are hard to control because of inherent instabilities and limitations imposed on perfor-
mance by the structure of autocatalysis. Performance is defined as the ability of the
control mechanisms to maintain glycolysis close to its standard biological operating
point in the presence of disturbances and plant uncertainty. The existence of a RHP

zero is a result of the structure of autocatalysis and controls in the pathway and is



Pararpeter Pros Cons Comment
Choice
Energetically wasteful
Large Hard limits on since requires the RHP zero is
I performance maintenance of a high | a consequence
Plant * imposed by number of enzymes of the
Design RHP zero at Requires complex structure of
Large z= gkx are mac}-linery, high autocatalysis
b softened by maintenance, and
a making z big introduces new unavoidable
fragilities
Improved Increased fragility as RHP zero
Controller performance system is‘pusheq close forces a
Design High i at loW to a smgule@ty bound on how
frequencies, Poor transient aggressive the
smaller steady behavior, oscillatory control can
state error and big overshoots be.

Table 2.2: The structure of glycolysis imposes hard constraints on design and per-
formance. Such constraints might manifest themselves in the form of tradeoffs. We
believe these tradeoffs are not unique to glycolysis, but appear in all autocatalytic
pathways.

at the core of many of the limitations imposed. This RHP zero is responsible for the
existence of a conservation law, which is mathematically described by a special form
of the Bode Sensitivity Integral (Equation(2.9)). This law imposes hard limits on the
sensitivity function S. S is closely related to the performance objectives mentioned
above, since it measures the sensitivity to a large class of disturbances. In addition,
the consequences of this law are manifested in terms of the tradeoffs summarized in
Table (2.2).

It is hypothesized that oscillations in glycolysis might be a result of these tradeoffs.
For example, the control mechanism might operate in a regime where the pathway
has close to optimal performance for the common operating conditions described by
a safe set in parameter space. However, this might put the controller gain close to a
set in parameter space, for which the control is too aggressive. The plant normally
avoids the unsafe set, except for a few rare events. In those rare events, instabilities

are exhibited in the form of oscillations in ATP concentration. This proximity to the



35
unsafe set for high performance feedback gains is unavoidable and a consequence of the
aforementioned conservation law that arises from the structure of the autocatalytic

pathways.
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Chapter 3

Nonlinear Properties of the 2D Model

3.1 Introduction

In Chapter 2 the characteristics of glycolysis along with its control system near the
normal operating point were studied. It is also of interest to develop an understanding
of the system behavior away from that equilibrium point as well as to obtain a more
global picture of the system.

It has been experimentally observed that there are oscillations of the ATP con-
centration in glycolysis [31, 24, 14], and it was demonstrated herein that aggressive
feedback provides a plausible hypothesis for these oscillations. How big do these
oscillations get?

We classify as crashes all the cases that lead to the concentration of ATP going
to zero, since this would certainly lead to cell death. In this framework one can
study the following questions; Do oscillations in ATP concentration lead to crashes
in the pathway? Does glycolysis, as modeled in (2.3), ever crash? Does the ATP
concentration ever blow up?

Linear analysis showed that negative feedback via product inhibition stabilizes
glycolysis. However changes in the concentration of catalyzing enzymes during the
lifetime of the cell lead to changes in the reaction rates g,(z) (Equation (2.3)), and
these changes will perturb the system from the equilibrium point. With these changes
in the cell’s operating conditions two questions naturally arise; Can the controller

restore the system to normal operating conditions from these perturbations? How big
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can these perturbations from equilibrium be before the system crashes? In essence we
are asking questions regarding the size of the region of attraction of the equilibrium

point.

Definition 3.1: Region of attraction of a fixed point x* € R™ with respect to the flow
o(x,t) is defined as the set Q = {xg € R"™ | limy_.o ¢(z0,t) = z*}.

To address these region of attraction questions we will use the general form of the 2D

model (2.3) introduced in Chapter 2, with f(y) = 1}:3;}1. For simplicity we consider

the case a = b = 1 (the results easily generalize to any a,b > 0). The resulting 2D

model is

. Vsl
xr = 1+,$yh - gl’(l‘)

g q
g = 20.(2) — o — 9y (y)

(3.1)

for (z,y) € R* x R*, where ¢,(0) =0, g,(0) = 0, and g,(z) and g,(y) are continuous
monotone increasing functions on the positive orthant. These constraints on g, and g,

are consistent with large classes of chemical kinetics models such as mass-action and

Michaelis-Menten. The function f(y) = 1}:3;,1 is the rate of the autocatalytic reaction
and captures the negative feedback of ATP (y) via the inhibition of the catalyzing
enzyme, PFK, of this reaction; therefore it is of particular interest. The strength
of this feedback, h = ﬁh, defined in Chapter 2, is captured by the parameters
and h and depends on the strength of chemical interaction between PFK and ATP
that causes allosteric changes to PFK. Figure 3.1 illustrates both how v and h affect
the reaction rate of the autocatalytic reaction and how they change the strength of
feedback at equilibrium (slope of f at y).

The fixed points for the dynamics in (3.1) are determined by the solutions of
f(y) = g,(y) and f(y) = g.(x). In Chapter 2 we showed that at the equilibrium point
the slope of f(y) being smaller than the slope of g,(y) is necessary for stability. We

will assume that such minimal feedback is present in the system and v(y) := g,(y) —

f(y) > 0 and monotone for y > yo, where gy is the value of y at the aforementioned
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A Regulation of PFK activity f(y) by ATP (y) B . Nonlinear effects of h and v on f(y)
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Figure 3.1: The strength of the autocatalytic reaction will depend on activity of the
catalyzing enzyme f(y). (A) Increasing the strength of product inhibition stabilizes
the equilibrium point by shaping f(y). It has been shown experimentally that PFK
activity as a function of ATP has the same general features as f(y) shown in black
([9], [4]). (B) Different v and h combinations yield the same feedback strength at the
equilibrium point (ﬂ), but have very different global characteristics.

equilibrium point. Finally we will also assume that

Vyt

sup g, (z) > sup T

x>0 0<y<yo

This condition guarantees the existence of a fixed point in the strict positive orthant
if yo > 0 (i-e., 7o = g; '(f(yo)) exists).

The special structure of continuous-time dynamical systems in R?, such as (3.1),
enables the use of many tools, for its analysis that are not applicable to higher state
dimensions. One example is the Poincare-Bendixon theorem, which coupled with
uniqueness of the solutions of (3.1) allows one to rule out the existence of limit cycles
through the simulation of a single solution trajectory of (3.1). In this chapter we will
exploit the special nature of R?, but also investigate and develop tools that generalize

to higher state dimensions, which is the subject of the next chapter. The purpose of

the rest of this chapter is twofold.

e Investigate the 2D model, its behavior, its properties and what it teaches us
about glycolysis. We use available analysis and control tools (some of them

specific to 2D) for this purpose.
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e [nvestigate the available tools. In later chapters we generalize the glycolysis
model to incorporate more intermediate reactions etc, increasing the dimension
of the state space in the process. We examine those tools that are generalizable
to higher dimensions, and use the 2D model to illustrate their properties and

limitations.

3.2 Fixed Points, Stability, and Bifurcations

First let us make a few observations. Notice that the direction of flow for (3.1) on

the coordinate axes is pointing to the inside of the positive orthant

Vyd
1+ ~yyh
y=0 = y=2¢,(x)>0, forz>0

r=0 = z=

>0, fory>0

This means that our domain of interest (the positive orthant) is invariant with respect
to the flow of (3.1). From now on we will refer to global properties as properties that
hold on the entire positive orthant, unless otherwise stated. Next we prove a lemma

that assures the trajectories of (3.1) do not blow up.
Lemma 3.1: The trajectories of system (3.1) are bounded.

PROOF: For a small € > 0, §; > 0 let

fo = int {?JO | 9y(y) — 15:32’1 >0 vy > yo}

ap = e+inf {x\gx(x) > SUPg<y<g, %}
Vyd

52 = gx(Cko) - Sup0<y§50 ﬁ

Notice that d2 > 0 (g, is monotone increasing) and fy, oy < 0o. Define

U:R"xR" >R
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2e+y—0Fo y> 0o

2 y < By

Ulz,y) = (3.2)

U is a continuous, positive, radially unbounded function on the positive orthant

(Figure 3.2). For y # [,

J 204y y> ﬁo
2z y < 5o
e — 9 () y > B

2 (7 — 0.(2)) v <o

Consider a level set of U, U(x,y) = n. For n > 2aq, we have that

S m Y ) <=5 <0
y> b= r ) < =6
and
y < Bo, Ulx,y) > 209 = x>
y < o, © = ap = %—gx($)§—52<0-
So

d
U < —6<0
p (z,y) < —0 <

for (z,y) € {(x,y)| U(z,y) > 200, y # Bo}, where 6 = min{dy,d2}. The positive
orthant is invariant to the flow, then for any n > 2aq the trajectories cannot leave

the region

Dy = {(z,y) e R’|z > 0,y > 0,U(z,y) <n},

illustrated by trapezoid OABC in Figure 3.2. Furthermore the discontinuity of the

partials of U at y = (3 is not critical since for y = (3,

¥ =29:(z) — f(Bo) — 94(B0) = 29:(2) — &1
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(a) Trapping function U given by (3.1). (b) Trapping region for 2-d nonlinear glycolysis.

Line ABC is the 7 level set of U.

Figure 3.2: Construction of the trapping region for 2-d nonlinear glycolysis.

and by monotonicity of g,, for some x, y > 0 for x > x and y < 0 for x < k. Since

there are no fixed points in

Dgao :{(:L‘,y)|1:20, y >0, U(x,y) >20¢0}

each trajectory that starts in D5, can cross the line y = 5y a maximum of two times
(Figure 3.2). So the time the solutions spend on y = [, is negligible. The above

argument shows that all trajectories will reach Ds,, exponentially fast.

Remark 3.1: Another way of constructing the set Day, is by consecutive use of two

Lyapunov type functions Uy(z,y) = x and Uy(z,y) = 2x +y. Uy will force all the

trajectories to reach the invariant set
Df:{(‘r?y)|0§x§a07y20}a

and Uy will force the trajectories that start in D, to reach the invariant set Do, .

The vast majority of the possible instances of (3.1) are topologically equivalent to one

of three instances shown in Figure 3.3, determined by the solutions to IE’;}L = gy(y).

The three instances A, B and C, depicted in Figures 3.3 A, B, and C respectively,
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Figure 3.3: The vast majority of the possible models are topologically equivalent

to one of three instances, determined by the number of fixed points in the positive
orthant. This number is determined by the number of solutions to % = g,(y) as

shown in (A), (B) and (C). The three instances A, B and C represent systems that
have 1, 2 or 3 equilibrium points in the positive orthant respectively.

can be characterized as having 1, 2 or 3 equilibrium points in the positive orthant

Vyd
T+yyh

respectively. We will consider the case when g,(y) is tangent to as a special

case of instance C, even though it has only 2 fixed points in the positive orthant.

Instance A The pathway is consuming ATP (y) faster than it can produce it, i.e.
gy(y) > %,V(y > 0 (Figure 3.3A). The origin is globally asymptotically stable,
i.e. all the trajectories go to the origin. This means that the pathway will crash and
the cell will die. The cell can avoid this scenario by reducing ATP consumption or

increasing ATP production via transcriptional regulation.

Proposition 3.1: If g,(y) > %,Vy > 0 then the fized point of (3.1) at the origin

15 globally asymptotically stable.

PROOF: Let us consider the following function U(z,y) = 2z + y. U is a Lyapunov
function since U(0,0) = 0 and U(z,y) > 0forz,y > 0, (z,y) # (0,0). U is unbounded
and U(z,y) = % — gy(y) <0 for y > 0. Invariance of the positive orthant and a

simple application of LaSalle’s theorem prove the asymptotic stability. ™

Instance B There are two fixed points (Figure 3.3B). The origin is a saddle point
whose stable manifold not in the positive orthant. The other fixed point in the
positive orthant, denoted (z., y.), is a node. In Chapter 2 we discussed how this fixed

point (x.,y.) can go through a Hopf bifurcation (by increasing the feedback gain)
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and gave the conditions for its stability. The next proposition establishes that if the
consumption and production of ATP fit the profile of Figure 3.3B, aggressive feedback

can make the ATP concentration oscillate but the pathway will not crash.

Proposition 3.2: If (z.,y.) is a linear source and the only equilibrium point of (3.1)

wn the strictly positive orthant, then there exists a globally stable limit cycle.

PROOF: All the trajectories of (3.1) are bounded in Dy,, (Lemma 3.1) and since no
trajectories can go to either of the fixed points in the region, then by the Poincare-

Bendixon theorem, there exists a globally stable limit cycle. n

If (x¢,ye) is linearly stable, numerical simulation of a single trajectory of (3.1) com-
bined with Lemma 3.1 and the Poincare-Bendixon theorem show that its region of

attraction is the whole positive orthant (without the origin).

Definition 3.2: For two vectors v, w € R", v = (vy,...,v,), w = (wy,...,w,) we

write v = w if v; > w;, Vi, and v = w if v; > w;, V.

Instance C There are three fixed points (Figure 3.3B), a saddle and two nodes.
Let (xe,ye) = (zs,ys) = (0,0) be the fixed points. The origin is a stable fixed point,
(xs,ys) is a saddle and (z.,y.) a node. The stability of (z,y.) will depend on the
strength of feedback, as discussed in Chapter 2. As the feedback gain increases,
a supercritical Hopf bifurcation occurs. Numerical simulations of solutions of (3.1)
combined with Lemma 3.1 and the Poincare-Bendixon theorem show the existence of a
stable limit cycle in this case (i.e., when high gain destabilizes (z.,y.)). Numerically
one can show that the stable manifold of the saddle point separates the region of
attraction of the origin from the region of attraction of (x.,y.) (or the limit cycle
when (z.,y.) is unstable), as illustrated in Figure 3.4.

The same Lyapunov function U(z,y) = 22 4 y that we used before, gives an esti-
mate of the region of attraction of the origin as indicated in Figure 3.4. This estimate
is quite conservative, however it generalizes to higher (state space) dimensions. It also

highlights an important property of the model: a sufficient condition for the model
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Figure 3.4: Using a simple Lyapunov function we can get an estimate for the region
of attraction (RoA) of the origin. The stable manifold of the saddle separates the
RoA of the origin from the RoA of (1,1).

to crash is for the initial concentrations to be in an invariant region of state space
where more ATP (y) is consumed then produced by the autocatalysis.

Another important observation made via numerical simulations, is that aggressive
feedback can cause crashes. This happens for certain ATP consumption functions
gy(y) that are relatively flat (near saturation) near the fixed point values y, and y..
In this case, high feedback gain (h) could increase the size of the limit cycle to the
point that it hits the saddle point (Figure 3.5). This creates a homoclinic bifurcation
and causes the ATP concentration to go to 0. If this bifurcation happens, then all
initial conditions (except for a set of measure zero) would cause the pathway to crash.
Unlike the other types of crashes created by imbalance in the levels of consumption
and production of ATP (controlled by transcriptional regulation), this type of crash
is caused by aggressive allosteric regulation. The following example illustrates this

case.

Example 3.1: In equation (3.1), leth=4,v=5,¢=2,V =6, g,(y) = Oﬁfy and
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gz() = kx (mass-action kinetics). So we get the following system

. 61>
T = — kx
1+ 5yt
612 1.2
j = 2%kx— 2 id

1+5yf 024y

The equilibrium point of interest is (%, 1). As discussed in Chapter 2, the strength of
the negative feedback is determined by h and . For k = 2, the controller stabilizes the
system as shown in Figure 3.5A. If the concentration of the intermediate catalyzing
enzyme drops, the reaction rate k will drop as well. If the drop is big enough it will lead
to instabilities, such as oscillations or even cause the system to crash. For example
cutting the reaction rate in half at k = 1 will lead the ATP concentration (y) to
oscillate (Figure 3.5B). If the drop is even more drastic, say k = 0.5 the oscillations
grow much bigger and the system approaches a homoclinic bifurcation, i.e. the limit
cycle is close to hitting the saddle point (Figure 3.5C). At k = 0.4 the pathway crashes
and the cell dies. The limit cycle opens up as a result of the bifurcation and (almost)

all trajectories go to the origin as shown in Figure 3.5D.

There are two ways to avoid the scenario in Example 3.1. One way is to use a less
aggressive controller, which is less efficient but more robust to changes (as discussed

in Chapter 2). The second is for the transcriptional regulation to adapt and adjust

gy(y) (the rate of ATP consumption) and lj:g;h (rate of ATP production) in (3.1)
accordingly. This solution requires that the transcriptional regulation act at the
same timescale as the drop in enzyme concentration.

Another observation from Example 3.1 is that the equilibrium concentration of the
intermediate metabolite () depends on the rate of the reaction (k), which depends
on the concentration level of the catalyzing enzyme. As such, sudden drops to the
level & will cause a perturbation in the z-direction which moves the system a distance
ox = % — i from the equilibrium point. How big can this drop be if the system is

to continue to converge to equilibrium? To answer this question we need to estimate

the region of attraction.
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Figure 3.5: Example 3.1.The stable and unstable manifolds of the saddle point are
shown in blue and red respectively. Aggressive feedback is stabilizing and efficient
under some operating conditions, but fatal under some others. (A) The negative feed-
back stabilizes the ATP (y) production (k = 2). (B) A drop in enzyme concentrations
could lead to slowing down the intermediate reaction (k = 1), causing the ATP con-
centration to oscillate. (C) Further slow down of the intermediate reaction (k = 0.5)
aggravates the oscillations, pushing the system close to a homoclinic bifurcation. (D)
The limit cycle grows and hits the saddle point, causing a homoclinic bifurcation. At
k = 0.4, the system has crashed.
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3.3 Region of Attraction Estimation Using Optimization-

Based Formulation

If the dynamics are rational functions of the state, we can estimate the region of

attraction of the origin for

%= F(x),

x € R"™ by using Lyapunov functions and Sums of Squares (SOS) programming [21,
27, 26, 44]. In this framework, we search for a polynomial function U : R" — R
satisfying
U0)=0
Ux) >0, xeN\{0} (3.3)
—4U (x) >0, xeMN\{0}

in some neighborhood of the origin NMy. One way to define N is by the sublevel sets
of a positive definite polynomial function ¢ with ¢(0) = 0 and compact level sets, i.e
Mo = Q0 = {x€R"| p(x) < a}. Next find the maximum level set of U(z,y) that

lies entirely in N, i.e., find maximum value of 3 such that
{x|U(x) <8} cNo (3-4)

Then Qug = {x € R"| U (x) < 8} is an invariant subset of the region of attraction
of the origin [21].

We show here an outline of a procedure (similar to the one developed in |26, 40])
to estimate the region of attraction of the origin. Using generalizations of the S-
procedure |7], the above problem is relaxed to a polynomial problem, translated into
a semidefinite programming (SDP) problem using sums of squares (SOS) relaxations
[27] and solved using SOSTOOLS [30, 34]. Given ¢ and degree m of U, we search U

and the maximum value of o that satisfies the following SOS conditions
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U(x) € Rnlx
U(x) — ex'x + 51(x) (p(x) — ) is SOS (3.5)
2U(x) - F(x) — ex'x + s5(x) (p(x) —a) is  SOS

where R, [z] is the set of polynomials of degree m, and s; and s, are SOS polynomials
of a fixed degree. To find the maximum «, we use a line search algorithm on « and
check the feasibility of (3.5) for each a. The corresponding U and « that satisfy (3.5)
will satisfy (3.3) with Ny = Q4.

Given U, ¢, a that satisfy (3.5) we find the maximum value of 5 that satisfies the
following SOS condition

s3(x) (U(x) — B) + sa(x) (@ — p(x)) — 1 is SOS (3.6)

where s3 and s4 are SOS polynomials of appropriate degree. To find the maximum
3, we use a line search on (3 and check the feasibility of (3.6) for each 3. The
corresponding U, ¢, o, B that satisfy (3.6) satisfy (3.4) also, and Qp s is an invariant
subset of the region of attraction of the origin. To improve the estimate of the region
of attraction €y 3, we can repeat the procedure with ¢ = U.

We are going to use the procedure above to estimate the region of attraction for
each fixed point of the system (3.1). In this section we will use special forms of
the reaction reaction rates g,(y) = k,y and g,(xz) = k,x. These types of reaction
rates appear when mass-action kinetics are used to model the reaction rates. Similar
treatment will apply to other types of g,(x) and g,(y). Next, we normalize the
equation (3.1) so that the concentration of ATP at equilibrium point of interest is 1.
For the rest of the chapter we will assume this normalization. Finally we shift the
fixed point of interest at the the origin (0,0) by a simple change of coordinates, and

after relabeling, the system of (3.1) becomes
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for (z,y) € D, where

q
Fila,y) = U2, (04 f2)
q
Fy(z,y) = 2k, (x + Z—j) - k‘y% —ky(y+1)
D = {@y Ry > (- -1}

In the case when h, q are integers we can convert (3.7) into a polynomial vector field

by the following simple transformation. Let

H(y) = l+v(@y+1)"
Gu(z,y) = Fy(z,y)H(y)
Gy(z,y) = Fy(z,y)H(y)

- (3.8)

Lemma 3.2: Let Qug = {(z,y) |U (z,y) < B} with U(z,y), B satisfying conditions
(3.3) and (3.4) for (3.8) be an invariant subset of the region of attraction of the origin
for (3.8), then Qg = Qs (D is an invariant subset of the region of attraction of the
origin for (3.7).

PROOF: Let Lp be the Lie derivative with respect to vector field F' defined by (3.7)
and L¢ the Lie derivative with respect to vector field G defined by (3.8). Then

oUu oUu

1 [oU ou
- 75 (%Gx(x,y)jta—yGy(x,y))
1

= Hy Y
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Figure 3.6: The final estimates of the region of attraction of the fixed points using a
second order polynomial as a Lyapunov function are shown in red. The intermediate
estimated R, of the region of attraction of fixed point (1,1) is also shown as well as
sample trajectories of the system. The stable manifold of the saddle (shown in black)
separates the region of attraction’s of the two fixed points.

For (z,y) € D, H(y) > 1> 0 and

1

et =

EgU($, y) > 0.

Therefore U(x,y) satisfies (3.3) for system (3.7) in the domain €2, , () D. Since D is
invariant with respect to the flow of (3.7) then Q3 = Q3 (D is an invariant subset of

the region of attraction. n

Lemma 3.2 implies that we can get an estimate of the region of attraction of (3.7)
by solving (3.3) and (3.4) for the vector field (3.8). If A and ¢ are integers, then the
constraints in (3.3) and (3.4) are polynomial constraints and as such we can use the
procedure described above.

The next two examples illustrate the procedure and some of its limitations.

Example 3.2: Let V =3, h=4,¢=2, 7 =2, g,(v) =2 and g,(y) =y in (3.1).
We estimate the region of attraction of the fized points.

Let us look at the fized point at (1,1) first. We shift this fized point to the origin.
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The resulting vector field is

. 3w+)? 4

T TroGr D) 1—=x
— 3(y+1)*

Yy 2x—1+2(y+1)4—y 1

for (z,y) € D={(x,y) € R?*| (z,y) > (—=1,-1)}. First we define
-/\[O = Q:EQerQ,a = {(x,y) € RQ"TQ + y2 < C(}

and search for a second degree polynomial Uy(x,y), and a mazximum value Quyq, that

satisfy (3.3) for the corresponding polynomial vector field

i = B3(y+1)°—(1+a)(1+2@y+1)"
g o= 3y+1)°+Qr—y+1)(1+2@y+1)").

Next we find 5y by solving (3.4) for Ny = Qu2yy2 apn- The resulting sublevel set
Qu,.p,, with Up(z,y) = 2.38422* + 1.9118zy + y* and 3 = 0.4098, is an estimate
of the region of attraction of (1,1). In order to improve this estimate we repeat
the process with Ny = Qu, g, After this iteration, the final estimate is Qu g with
U(z,y) = 2.3004z* 4+ 2.001zy + y*, § = 1.8463 . Both estimates Qu, 5, and Qu g of
the region of attraction of (1,1) as well as an estimate of the region of attraction of

the origin obtained using quadratic Lyapunov functions are shown in Figure 3.6.

We can improve the estimates on the region of attraction by using higher order poly-
nomials as Lyapunov functions. However singularities (fixed points nearby) and the

nature of the level sets near U limit how big the estimates can be.

Example 3.3: FEstimate regions of attraction of the fized point at y =1 (3.1) for
(A)V =3, h=6,q=1,v=1, g.(v) =12z and g,(y) =y
(B)V =3, h=6,q=2,7=2, g,(x) = 1.1z and g,(y) =y
Estimates, found using polynomial Lyapunov functions of different degree, are shown
in Figure 3.7. In both cases the closest fized point provides a limit on the mazimum

size of the region of attraction estimate.
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Figure 3.7: Higher degree polynomial Lyapunov functions improve the estimated
region of attraction, but this improvement is limited by how close the next fixed
point is.

It should be mentioned that using higher order Lyapunov functions is more compu-
tationally expensive and can be numerically unstable. Although it is not evident in
the examples shown in Figure 3.7, in many cases the higher order region of attrac-
tion estimate may be worse than a lower order one, because of numerical issues and

complexity associated level sets of higher order polynomials.

3.3.1 Verifying Robustness to Perturbations of Initial Condi-

tions

Robustness to perturbation in initial conditions is closely related to the size of the re-
gion of attraction for a particular fixed point. Performance measures that capture the
amount and type of perturbations from the fixed point that the system can recover
from can be translated into verifying certain properties of the region of attraction of
that fixed point. For instance, distance from the boundary of the region of attrac-
tion gives us a measure ¢ of the maximum perturbations in any direction from the
fixed point that the system can tolerate and be able to recover from. An associated
performance criteria would be given by requiring ¢ to be above a certain threshold 6.
If one is interested in the fixed point (1,1), then a 6=0.3 implies we need to be able

to verify that perturbations of 9 > 0.3 will not cause the system to crash. Given our



23

mm Verified
i == NotVerified

Figure 3.8: Verification of robustness to perturbations in the equilibrium concentra-
tions using a second order polynomial as a Lyapunov function. The horizontal axis
is the rate of the intermediate reaction. The vertical axis is the strength of feedback
h= %h as defined in Chapter 2. In this example ¢ = 1 and k, = 1. 2,500 different
models were investigated and in red are shown the parameter values that define mod-
els than can recover from perturbations of 0.3 from the fixed point (3,1) (as much
as 30% instantaneous change in ATP concentration.) In blue are shown the models
that are stable but we cannot verify such safety margin.

normalization, 6 > 0.3 implies that concentration of ATP (y) can drop or increase
instantaneously by as much as 30% and the system will still recover. For our gly-
colysis model (3.7), an invariant subset of the region of attraction with 6 > 0.3 can
be verified using only a second degree polynomial as a Lyapunov function for most
parameter values (Figure 3.8). In fact this observation holds true for many other

related performance criteria that relate to the size of the verified region of attraction.

3.3.2 Complexity and Robustness

A system is considered fragile if it is sensitive to perturbations in the parameters,
i.e. small perturbations in the parameters destabilize the system. In Chapter 2
we defined and calculated the robustness radius with respect to perturbations in
different parameters such as k, and h. A small robustness radius with respect to a
parameter means the system is fragile to perturbations in that parameter, while a large
radius means the system is robust to such perturbations. As expected, calculations

of the various robustness radii show that system with parameter values close to the
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parameter stability boundary of the system are fragile, while systems with parameter
values that fall in the middle of the parameter stability region are robust. One
observation from the previous section and Figure 3.8 is that it is simple to verify the
safety margins, described in terms of the size of the region of attraction of the fixed
point, for these robust systems.

We will define how complex a system is by the complexity of the vector field in
the neighborhood of the operating equilibrium point. One way measuring this type
of complexity is by the degree of the smallest degree polynomial Lyapunov function
needed to verify that a set B is a subset of the region of attraction. The higher the
degree of that polynomial, the more complex the system is. For example we will look

at the system (3.7) with ¢ = 1 and time-scaled so that k, =1

: A4+ 1
T ey 39
y _ Qkxl‘ (0wt +1— y

T+y(y+1)"

in the domain D = {(x, y) € R?|(z,y) > (—é, —1)}. For a given fixed k,, the models

generated by the different choices in v, h have the same topology in D, i.e., they only

1
kz?

have fixed points at ( —1) and (0,0). For =,k choices that produce a linearly
stable fixed point at the origin, we can show that the region of attraction is the entire

domain D without the point (—é, —1). For each k,, we define the set

1 1
By, = {(:x,y) (@49 <5y 1+ k—} (3.10)

i.e. the ball of radius half the distance to the next fixed point (—é, —1). By fixing k,
and varying h= ﬁh we use second and forth degree polynomial Lyapunov functions
to verify By, is a subset of the region of attraction. For the same k, we use the same
h and adjust v accordingly, to make sure that the order of the vector field is not a
factor. Additionally, to be more complete in the search for the appropriate Lyapunov
functions, we further optimize the Lyapunov function we get from solving (3.3) and

(3.4) using coordinate-wise affine iterations (CWAI) [41]. Given an initial guess U
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Figure 3.9: The set of parameters for which a 2nd degree polynomial can verify that
the set By, defined in (3.10) is a subset of the region of attraction of the origin of
system (3.9), is shown in red. In green is the set that needed a 4th degree polynomial,
and in blue is the set that By, is still a subset of the region of attraction but could
not be verified by a 2nd or 4th degree polynomial Lyapunov function.

for the Lyapunov function, CWALI solves a bilinear problem (similar to (3.3), taking
¢ = U) by iterating between solving for SOS multipliers and the Lyapunov function
U, while maximizing the size of a compact subset of the region of attraction.

We searched for polynomial Lyapunov functions of degree two and four on 2500
different parameter combinations and the results are shown in Figure 3.9. The figure
shows that the robust systems (the systems away from the fragilities at the bound-
aries) are simple, i.e. only need a 2nd order polynomial to verify By_is in the region of
attraction, while higher order polynomials are required for many of the fragile systems
near the boundary.

Generally we are limited by computational power and numerical errors when using
higher order polynomials to verify subsets of region of attraction. An alternative way
of measuring the type of complexity discussed so far is by fixing the degree of the
polynomial Lyapunov function, and comparing the size of the region of attraction
verified by that polynomial. The smaller that size, the more complex the system
is. To do this we look at the system (3.9), and see what size estimate of region of
attraction we can get using a 2nd degree polynomial as a Lyapunov function. As the

measure of the size of the region of attraction verified €2, we will use maximum value
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of the radius of the the ball

such that B(r) C Q.

2500 different parameter combinations were investigated and the results are shown
in Figure 3.10. Again, for the same k, we used the same h and adjusted ~ accordingly,
to make sure that the order of the vector field was not a factor. The main observation
is that as the feedback strength goes up, and the system gets close to the Hopf
bifurcation in the parameter space (small R;) the radius of the verified region of
attraction gets very small. When the system is too close to the critical point of
the Hopf bifurcation (how close depends on k) the SOS programming cannot verify
anything bigger than numerical error tolerance. This numerical experiment provides
evidence that high complexity of this type (characterized by the small size of the
verifiable region of attraction) for the system may be an indication of how fragile the

system is.

3.4 Analytic Region of Attraction Estimation

We have shown that Lyapunov-type characterizations and SOS and S-procedure based
relaxations can provide good numerical estimates for a large class of glycolysis models
in 2D. Much of the results could be obtained using “simple”, (i.e., second order)
Lyapunov functions which naturally leads one to ask whether one can analytically
construct Lyapunov functions that are guaranteed to verify the existence of nontrivial
region of attraction. For a specific subset of the model space such Lyapunov functions
can be constructed by taking advantage of the structure of the system. We perform a

change of coordinates on 3.1 so that the fixed point of interest (x¢, 1) is at the origin.
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Figure 3.10: Complexity and robustness of glycolysis. (A) 2500 different parameter
combinations were investigated. R; is the robustness radius with respect to pertur-
bations in the feedback parameter h. Region of attraction (RoA) radius gets small as
R; gets small (system is fragile). For the same k, we used the same h and adjusted -y
accordingly, to make sure that the order of the vector field was not a factor. (B) 3-D
representation of RoA radius as h approaches the Hopf bifurcation. (C) RoA radius

normalized by k% + 1 as a function of the distance of feedback strength h from the
bifurcation for k, =1, 2, 3.3, 4.7. (D) Verified RoA for k, = 3.3.
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Let the new system be represented by
P- 0 -a®

20.(%) = f(4) — 9y(¥)

<.
Il

for (Z,9) = — (xo,%0). It is easy to see that f, G, and gy are just shifted versions of
f, 9. and g, and as such preserve many of the important properties, i.e., g, g, are
continuous monotone increasing functions, with §,(0) = 0, §,(0) = 0 and f(0) = 0.
For convenience of notation we will drop the tilde for the reminder of the discussion.

For this system let us define

Uz,y) = Us(x)+ Uy(y)
Ue(z) = 2] g.(&)d¢
Uyly) = foy gy(§)dE

U(z,y) is positive definite since g,(z), g,(y) are monotone increasing and U(0,0) =0

and satisfies

LU(z,y) = 29, (7)1 + g,(y)y
= 29.(2) (f(y) — g2(2)) + 9y(¥) (292(2) — f(y) — 94(¥))
= 29.() (94(y) + f(y)) — 293(x) — 9,(y) (f(¥) + g4 (¥))

)
= -2 (M — ggc(a:))2 + 35 (9,0) + F())" = 95(v) (f(v) + 94(v))
- 2 (2HY — g, (2)) — L (2(y) - W)

Consequently, if
Dy, = {y|g;(y) - f*(y) > 0}

then
LU (w,y) <0 for (z,y)€RxD,\{(0,0)}.

Geometrically the set D, is the set of points y for which the graph of f lies between
the graph of g, and —g, (Figure 3.11A ) , since by the monotonicity of g, we have
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Figure 3.11:  The Lyapunov function U(xz,y) = Uy(2) + U,(y) = 2 [ g.(§)d€ +
IS 9,(€)d¢ is used to estimate the region of attraction. (A) 4U < 0 for the set of
points that the graph of f(y) lies between the graph of g, and —g,. (B) The systems
with parameter values for which U(x,y) is guaranteed to verify a nontrivial region of
attraction are shown in gray. The horizontal axis is the slope of g,(z) at the fixed
point, and the vertical axis is the strength of feedback h = q + o, where —o is the

slope of f(y) at the fixed point.

the following

g;(@/) Py >0 = —g9,(v) < f(y) < gy(y) fory > 0
9y(y) < fly) < —gy(y) for y < 0.
Let
uas = sup {y | g2(6) - £2(6) > 0, ¥ st 0 < [¢] < y)
and

Ny:{y||y| <?JM}CDy‘

We first note that if

P 0
o= _3_yf(y)|y:0 < (f)_ygy(y)lyzo

(3.11)

then NV, is nonempty. This class of models is shown in gray in Figure 3.11B. The

sublevel set of U , {13, is an invariant subset of the region of attraction of the origin

for 3 < Uy(ym), since LU (z,y) is negative definite in Qp3 C R x D,

We have shown that U(z,y) can be used to get a nontrivial region of attraction
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estimate for systems satisfying (3.11), however have not commented on how conser-
vative this estimate is. In general, this estimate of region of attraction (Qy 4 ) could
be conservative since it is forced to be a subset of the “decoupled” set R x N,. The

region of attraction estimate might be improved by solving the following for the given

U(z,y)

max (3

st
2 (W0 — g,(@)) "+ (6300) ~ ) >0

for all nonzero (z,y) € {(z,y)[2 [ g.(§)dé + [ g,(£)dE < B},

(3.12)

i.e., we search for the largest sublevel set () g of the given U such that U(x,y) <0

for all nonzero (z,y) € Qu .

Example 3.4: In (3.1) let g,(x) = x and g,(y) = y. Let us ezamine how the estimate
of the region of attraction changes for the following feedback/autocatalytic parameters

A)h=3,q=1,v=2

B)h=4,q=2,v=2

The fized point of interest is at (1,1). First we shift this point to the origin by a
simple change of coordinates x — x + 1, y — y + 1 to obtain (3.7), with g.(x) = x,
gy(y) =y and f(y) = %—1 for instance A and f(y) = %—1 for instance
B. Then for both instances the Lyapunov function is U(z,y) = x* + %yQ.

In the first instance the graph of f(y) lies entirely between the graphs of —y and

y fory > —1 ( Figure 3.12A1). This means that for = % and

1 1
Ra = 2 - 2<_
8 {(x,y)\flf +t5y < 2},

s a subset of region of attraction. Figure 3.12A2, shows this estimate of region of
attraction for the corresponding glycolysis model (3.1) as the area within the ellipsoid
shown in red. Area shown in green is the area where %U(x — 1,y —1) > 0, which

means that we can improve on Rg by solving (3.12).
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Figure 3.12: The function U(z,y) = 2?4 2y is a Lyapunov function for both systems
in Example 3.4. The sector conditions in A1l and B1 allow for the construction of
region of attraction (RoA) estimates shown in red in A2 and B2. This estimates can

be improved by solving (3.12), since U < 0 everywhere but the region shown in green
in A2 and B2.
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3(y+1)?
T+2(y+1)

of —y and y for y > —0.6575 ( Figure 3.12B1). This means that = 0.2161 and

The second case, the graph of f(y) = — 1 lies entirely between the graphs

1
Ry = {(m,y) 2% + §y2 < 0.2161} :

Figure 3.12B2, shows this estimate of region of attraction for the corresponding gly-
colysis model (3.1) as the area within the ellipsoid shown in red. Area shown in green
s the area where %U(z — 1,y — 1) > 0, which means that we can again improve on

Rg by solving (3.12).

3.4.1 Region of Attraction Estimates and Global Properties
of f

How well U(x,y) defined above performs depends not just on the local properties
of f at equilibrium, but also on its global properties, specifically the shape of the
graph of f. Linear analysis of the fixed point determines the strength of feedback
at equilibrium, but it hides the details of how to implement this feedback for better
non-local performance (i.e., away from equilibrium). In our model, the same feedback
strength h = ﬁh can be achieved by different values of the parameters v and h,
both of which depend on the catalyzing enzyme properties. Specifically h uniquely
determines the slope of f at the fixed point, and all the local properties of feedback
discussed in Chapter 2. However different values of v would yield systems with more
easily verifiable region of attraction than others. The values of v, h that are the best
choice for implementing the controller will depend on non-local performance criteria,
like sensitivity to global changes in the curves. For example g, may change as a
result of transcriptional regulation or cell response to environmental changes. The
following example illustrates the consequences of different implementations of the

same feedback strength.

Example 3.5: In (3.1) let g,(x) = =, g,(y) = y, ¢ = 1 and the strength of feed-

back at the fized point (1,1) is h = #h = 1.8. Let B,C and D be three different
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Figure 3.13: Three different implementations of the same feedback strength h=18
for (3.1) with g,(z) = =, ¢,(y) = y and ¢ = 1. (A) Different h’s and 7’s lead
to different global properties of the corresponding autocatalytic reaction rate f(y).
(B,C,D) Different global properties of f lead to different behavior in the vicinity of
the fixed point and different complexities of estimating regions of attraction (RoA) .
The area shown in green is the area where the the Lyapunov function used to estimate
the RoAs has non-negative time derivative (LU > 0).
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implementations of this iL, where hg = 3, yg = 1.5; he =2, v¢ = 9; and hp = 5,
vp = 0.5625. Linearly these 3 implementations are identical, however they have dif-
ferent global (nonlinear) properties of the corresponding autocatalytic reaction rate
f(y), as shown in Figure 3.13A. This leads to different behavior in the vicinity of the
fixed point and harder to estimate region of attraction for implementations C and D

(Figure 3.13).

3.5 Summary

The model described by Equation (3.1) suggests that there are two basic mechanisms
that can cause glycolysis to crash; failure of transcriptional regulation or overly ag-
gressive allosteric regulation. The first scenario occurs when the slow transcriptional
regulation fails to prevent the system from going into a(n) (invariant) regime where
the consumption of ATP (y) is faster than its production. This can be caused by
a sudden drop in the input to the system (glucose) or an increase in ATP demand.
Either condition causes the system to deplete all of its ATP reserves, which results
in all of the concentrations going to zero and thus cell death. The overly aggressive
fast allosteric feedback condition can be caused by drops in the catalyzing enzyme
concentrations. Most of the time aggressive feedback leads to oscillations in ATP
concentration. However, under certain circumstances, if the drops in enzyme concen-
trations are too severe, the magnitude of oscillations increases to the point that a
homoclinic bifurcation occurs causing the pathway to crash.

Analysis of system (3.1) shows that allosteric feedback regulation can suppress
the positive feedback generated by autocatalysis, thus guaranteeing both that the
trajectories of the system are bounded and that the concentrations do not blow up
for any initial conditions, as well as the local stability of the operating fixed point.
Simulations of the system show that the region of attraction of the fixed point where
the cell operates is large, which means that glycolysis is not sensitive to perturbation
in the concentrations of the products and reactants (i.e., perturbation in state space).

If the dynamics of (3.1) are rational functions of the state, the size of the region
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of attraction of the fixed point can be estimated by optimization-based formulations
using Lyapunov functions and SOS programming. These formulations reveal that
low degree polynomial Lyapunov functions can verify region of attraction related
properties for a wide range of parameters. For example, systems whose operating
point is robustly stable with respect to perturbations in parameter values are simple
to verify, i.e., a second degree polynomial Lyapunov function verifies large invariant
subsets of the region of attraction of the fixed point. In fact, polynomial Lyapunov
functions of degree larger than 2 are only necessary for systems whose parameter
values fall close to the stability boundary in the parameter space, which are clearly
not robust as small changes in parameters may result in the instability of the fixed
point.

We define the complexity of a realization of model (3.1) by the complexity of the
vector field in the neighborhood of the operating equilibrium point. We then develop
two related approaches of quantifying this view of complexity by using either the
smallest order polynomial Lyapunov function needed to verify a specific set as an in-
variant subset of the region of attraction, or the size of the region of attraction verified
by a specific order polynomial Lyapunov function. We compare realizations that are
“topologically equivalent”, i.e. realizations that have the same number and location of
fixed points and the same sizes of region of attraction. This framework reveals that
complex systems are fragile, i.e they are very close to instability in parameter space.

Overall, the global analysis of the model described by Equation (3.1) confirms
that oscillations and crashes in glycolysis are not caused by perturbations in state
space (i.e., perturbations in the concentrations of the products and reactants), but
rather perturbations in the parameter space (i.e., catalytic enzyme concentrations,
precursors to the pathway, ATP demand, or temperature) as observed in the literature
[14, 6, 24, 31, 33, 38]. Furthermore the structure of the equations enables us to
analytically construct Lyapunov functions, that are guaranteed to verify a nontrivial
region of attraction for a specific subset of the model space. The size of the verified
region of attraction depends on the global properties of f(y) (which is the rate of

the autocatalytic reaction and captures the strength of feedback), and not just on its



properties near the fixed point.
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Chapter 4

Higher Dimensional Model of
Autocatalytic Pathways

4.1 Introducing n-D Model

Autocatalytic pathways in general (and specifically glycolysis) are composed of a
chain of enzymatically catalyzed intermediate reactions. In the previous chapters we
studied the properties of such pathways through a 2D model given in (3.1), which is
obtained by collapsing all the intermediate reactions (links in the chain) into a single
intermediate reaction (Figure 2.1). In this chapter we consider models that explicitly
account for the intermediate reactions. Consider the autocatalytic metabolic pathway

with multiple intermediate metabolite reactions

/U/_'_a/yéfxl —_\g1 x24...4xnégn (b+a)y

y _\Gy (p
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The corresponding ODE (in terms of the stoichiometry matrix and reaction fluxes) is

r - 1 f()
T 1 -1 0 0 0
_ , g1(z1)
To 0 1 .0 0 0 )
= (4.1)
. gnfl(xnfl)
Tn 0 0 1 -1 0 ()
Gn\Tn
i —a 0 -+ 0 b+ta -1
- - 1 9

for z; > 0,y > 0, where for all 4, g;, g, are continuous, monotone, increasing functions,

with ¢;(0) = 0 and ¢,(0) =0, and f(y) = 1}:;’;,1 is the same as in the 2D model. As

in the 2D case, it is easy to see that the positive orthant is invariant with respect to

the flow since (away from the origin)

q
s,
+y"
;=0 = z;,= gi—l(l‘i—l) > O, for 2 <i<n

=0 = Ilzl

y=0 = §=(a+b)gule.)>0.

Consider the case a = b = 1 (the results easily generalize to any a,b > 0). Let
0 <y <--- <7 be the solutions of f(y) = g,(y) in the positive orthant. We will

assume that Vi,

sup g;(x;) > sup Vy'
;>0 o 0<y<y; 1+ Fyyh '

This guarantees that there are [ fixed points in the positive orthant given by

(gfl(f(gj))v"'aggl (f(%))a%)v for 1 S] Sl-

As discussed in Chapter 3 for the 2D counterpart, there are 3 main instances, [ = 1,
=2 orl=3.
If I =1, then

gy(y) > Yy >0

1+ ~yyh’
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and the only fixed point is at the origin. The behavior of the system is simple, since

as in the 2D case, the origin is globally asymptotically stable.

Proposition 4.1: If g,(y) > %,Vy > 0 then the fized point of (4.1) at the origin

15 globally asymptotically stable.

PROOF: Let us consider the following function
U(xy,...,xn,y) = 22:1:2- +y.
i=1

U is positive definite since U(0) = 0 and U(xy,...,z,,y) > 0 for xq,...,2,,y > 0,
(1,...,Tn,y) # 0. U is radially unbounded and

Vyt

—7 - <0

U(xl,...,xn,y) =

for y > 0. Invariance of the positive orthant and a simple application of LaSalle’s

theorem prove the asymptotic stability. n

As before, this means that if g,(y) > %,V(y > (0 the pathway will crash and the
cell will die. It is a consequence of the pathway consuming ATP (y) faster than it can
produce. The cell can avoid this scenario by reducing ATP consumption or increasing
ATP production via transcriptional regulation.

From this point on we will only consider the cases where I > 1. Let (Z1,...,Z,,7) >

0 be the fixed point of interest, and k; = ggz’_\f >0, ky, = %_g;‘g >0, r, = gy(y) >0,

o= —g—£|y:g. Without loss of generality, for the rest of the chapter we assume that
y = 1. This implies that V = r, (1+7), ¢ = r,(h — ¢) where h = 715N, and the

linearization around the equilibrium point is
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for x € R", y € R, where

[ k0 - 0 0 ry(q—iz) ]
ky o —k 0 0 0
J =
0 0 ~ko1 O 0
0 0 kno1 —kn 0
00 0 2k, —ky—ry(g—h) |

4.2 Linear Stability

If h > q, we can apply a secant condition as a sufficient condition for the stability of

(4.2) derived by [39, 43]. For (4.2) this secant condition demonstrates that if,

2ry (iqu)

x \nt+l
ol < (sec—) * (4.3)

n+1

then (4.2) is stable. Let

then (4.3) gives an upper bound

. k, 6(n
ha(n) = q+ T_Z#Q()n)
on the feedback gain h that guarantees linear stability. The upper bound ﬁd(n)
depends on the pathway size (n), ATP consumption (k,, r,) , and the autocatalysis
parameters (¢q), but not on the rate k; of the intermediate reactions. It also suggests
that as the pathway size (n) increases, the maximum allowable stabilizing feedback
gain decreases.

The following proposition gives tight bounds on the range of feedback gains that

guarantee stability for any pathway size and intermediate reaction rates.

Proposition 4.2: (a) Let h, == q+ %f—;‘ and hy == q— f—;’ If hy < h < h,, then (4.2)

is stable for arbitrary size (n) and arbitrary values of intermediate reaction rates (k;).
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(b) The bounds above are tight, i.e. for any gain h ¢ (ﬁs,izr], there exists an
unstable pathway.

PROOF: Let
—k 0 0 0 2r,(q — h)
ki  —ko 0 0 0
Q = )
0 0 —kn_1 0 0
0 0 ko1 —ky, 0
0 0 0 kn —ky—ry(q—h)

-1
0 2 0 2

where [, is the n x n identity matrix. Consequently J has the same eigenvalues as

(. Since
det J — ”+1Hk ( ~ 3, q—h))

and therefore J has no zero eigenvalues for h #q— %7 the stability of @) can be easily
shown using diagonal dominance [17]. There are two cases

Case 1: h < q

The condition for stability is

N N R k R
ky+ry(q_h)>27“y(q—h)<:>h>q—r—y:hs.
y

Case 2: h > q
The condition for stability is

N 1k A
ky+7°y(q—h)2—27“y(q—h)<:>h<q+§r— .
v
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(b) For h < h,, unstable systems can be constructed as in the 2D case (Chapter 2).

In order to construct an unstable system for h > izr, let € > 0, h = h,+ € and for all i
- 2
ki =ky+ry (=) = Sky —er, =k > 0.
The characteristic polynomial of (4.2) is

ps(s) = <s +ky+ 1y <q - ﬁ)) [T, (s + ki) —2r, <q - ﬂ) [T, ki
— (s+ k)" —kn <2ry (—%f—;’ — e))
= (s+ k)" — k" (—2k, — 2er,)
= (s + k)" 4 k™ (k + 3er,)

Eigenvalues \; are the roots of the polynomial p;(s), so A = k (w — 1) such that

R - (_1 o 3€%>1/(n+1) =(-1- €1)1/(n+1)

where €; := 36%. The real part of the eigenvalues A\;, 0 <17 < n is

RN) =k (—1 +(1+ 61)1/(n+1) oS <L n 271 ))

n+1 n+1

Let
v(n) = (14 €)Y cosZ

= 1+ 2log(l+e)+O(:H).

This implies that the system is unstable since for n big enough

v(n)>1 = R(A) > 0.

Remark 4.1: For general stoichiometry of autocatalysis (i.e. a >0, b >0 in (4.1))

A~

hy =q+ bt

Sy Ky
2a+b 1y

Ty’

andiLS:q—

A couple of observations

~

o h, =lim, .. ha(n)
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A Stability Conditions for Feedback Gain B Stability Conditions
(2D Pathway) for the Feedback Gain
" UNSTABLE \
2 il R P e e m———————————
o he ~=h (0
2 4 o5t - hr
1 7— ------------------------- - = hs
0 ‘ : ; , -~ 00--0--0--.--.--.-4--.-.-.-.-_--h:q 'y
2 0 1 2 3 4 ~s ~ i i i i : ‘
h - 2 4 6 8 10 12 14 16
I kx hs Pathway Size (n)

Figure 4.1: (A) The stability conditions for a 2D model with ¢ = 1, k, = 1 for general

feedback strength h and intermediate reaction rate k,. The gray area marks the set of
parameters that define stable systems. The area between the blue lines corresponds
to systems that can be verified to be stable using the secant condition (4.3). The area
between the red lines corresponds to systems that can be verified using the bounds
from Proposition 4.2. (B) As the pathway size increases, the upper bound on the
feedback strength h given by the secant condition gets smaller.

e The bounds fzs, fzr on h are robust to changes in the rate and number of in-
termediate reactions, since they depend on the stoichiometry and strength of
autocatalysis (a, b, q), and the demand of ATP (k,, r,), but not on the other

parameters.

Proposition 4.2 states that the goal of stability for evolvable pathways with “fixed”
autocatalysis and ATP consumption curves is achievable. Both the secant condition
bound hy and h, are conservative, especially for high intermediate reaction rates as
Figure 4.1A illustrates, since they provide robustness to intermediate reaction rate

fluctuations. Later in this chapter we will revisit these bounds.

4.3 Performance

As in Chapter 2, performance is defined as the ability of the control mechanisms to
maintain the pathway close to its standard biological operating point in the presence of
disturbances and plant uncertainty. We saw in Chapter 2 that performance as defined

above can be best analyzed in the frequency domain, since many of the performance
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criteria are captured by the sensitivity function S. It should be noted that comparing
pathways of different sizes is possible because of the normalization of the steady state
value of the output (to 1). Since we are interested in maintaining the concentration
of the output of the pathway y at a desired steady state value, such normalization
and performance comparison is appropriate.

In standard output feedback control form, (4.2) becomes

x = Ax+ Bu

z = Cx
u = —hOx
where
-k 0 0 Tyq
ki —ko 0 0
A p—
0 0 —k, 0
0 0 2k, —ky, —1ryq
) T
B =110 0 1]
= [0 0 0 1]
Then
P(s) = C(sI—A)'B

r H?:1(ki+5)_2n?:1 k;
Y (ky+ary+s) [ 17, (kits)—2qry [17_; ki ©

The coeflicients of the numerator

m(s) = II (ki +s) = 2[1 ks
= "kt k)" e (ST R

of P(s) do not have the same sign. This means that the polynomial n;(s) is not
Hurwitz stable and therefore P(s) has at least one zero in the right half-plane (RHP).

This implies that the special form of the Bode sensitivity integral (2.9) holds for the
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A RHP Zero B Bode Integral Weight
as a Function of Pathway Size ~asaFunction of Pathway Size

2z
224+ w?

>
25 30

B Path\j\slay Sizzg n
Figure 4.2: (A) The magnitude of the RHP zero decreases as pathway size increases.
(B) The weight in the Bode integral gets tighter around 0 for longer pathways. This

means the price paid for performance at small frequencies increases substantially as
the number of intermediate reactions increases.

n-D pathway.

Let us look at the case where k; = k, for all i. The zeros of P(s) are at

s = (20-1)%
_ k(

As expected, there is at least one zero in the RHP. The magnitude of this RHP zero

1

2n

- 274

G 1) for all 4.

decreases as the size of the pathway (n) increases (Figure 4.2A). This fact, coupled
with the conservation law given by (2.9), implies that as the number of interme-
diate reactions grows the price paid for performance at small frequencies increases
substantially (Figure 4.2B). Furthermore, numerical simulations confirm what (4.3)
suggests, that in general as the pathway size increases, the upper bound on the feed-
back strength h decreases. So the increase in the intermediate metabolite reactions

has two main consequences.

e The price for good performance at low frequencies increases as the magnitude

of the RHP zero gets smaller.

e The upper bound on the feedback gains gets smaller, so the range of stable

gains gets smaller.
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A S for Longer Pathways B  Closed—Loop System Step Response
(Same Feedback Gain) (Same Feedback Gain)
15
. | Il 2D System
——3D System it
|| =——4D System
r 5 05t
E
0
— 2D System
-05 —3D System
—4D System
e S S ] 5 10 15 20 25 % 3 40
logw time
S for Longer Pathways D Closed—Loop System Step Response
(Different Feedback Gains) (Different Feedback Gains)
5
.|| =—=4D System
—3D System
?[| —2D System

error

m— 4D System

3D System

e 2D System
T T

i i i i i i i i i i i
-5 -4 -3 -2 -1 0 1 2 3 5 10 15 20 25 30 35

log w time

Figure 4.3: The performance of 2D, 3D and 4D systems is compared. The inter-
mediate reaction rates are ky = ko = k3 = 1 and ¢ = 2, k, =, = 1. (A) Plot of
log |S| for the same feedback h = 3.8, shows that the higher dimension systems pay
a higher price at higher frequencies for similar performance at low frequencies (B)
Closed-loop system step response shows that the same gain h =38 yields the same
steady state error for all 3 systems. However higher dimensional systems have poorer
transient response. (C) Lower dimensional systems have access to higher gains, which
means that they can get better performance at low frequencies. The plot of log |S| for
h = 5.5, 4, 3.8 for 2D, 3D, and 4D systems respectively, illustrates the difference in
performance at low frequencies, and the price paid at higher frequencies (comparable
for all 3 systems). (D) Closed-loop system step response shows that access to higher
gains for the low dimension systems (th = 5.5, h3D =4, h4D = 3.8) achieves smaller
steady state error and better transient response as well.



For example look at the DC gain (steady state error) of a n-D system with ¢ = 2, k, =

7

ry = 1. From (4.4) we get P(0) =1 and the DC gain

It is clear that the DC gain improves as the gain increases, however the maximum h
that still stabilizes the system gets smaller as n increases. Therefore lower dimensional
systems can achieve better DC gain (steady state error). Figure 4.3 illustrates the

consequences of increased pathway size on the performance of the system by looking

1 1

SO0) = — > =~
1 +hP0) 1+h

at log |S| and the step response for comparable 2D, 3D and 4D systems.

4.4 Global Behavior

Next we prove the analogue of Lemma 3.1 for the n-D system. We will assume

is bounded for all y > 0, (i.e. h > ¢) and for small € > 0 ,

Vyl
Supy>0 gy(y) > Supy>0 1+gyh +e€

sup,, o 9i(xi) > SUDP,~0 % +e¢ foralli=1,....n
and

0y = Sup,.g % < 00

ﬂO = inf {yO ‘ gy(y) - 13:’3;}‘ > €, Vy > yO}

a; = inf{x1|gi(z1) > 0, + €}

o; = inf {.TZ’gZ(.CIfZ) > gz;l(C(ifl) -+ 6} , forall ¢ > 1.
Let

Uy (z1,...,20,9)
Tlo

QUU »T10

= y"‘z,?:l 233'Z
= BO+Z?:1 20[1‘
= {(z1,...,2n,y) ER"™ U, (x1,...,20,y) <1Mo}.
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and
Dy = {(z1,...,zp,y) ER"™0< 2y <y}
D; = {(w1,.m0,y) ERHO0 <2 <} Dima, 0> 1
Da”go = QUy,noﬂDn'

Lemma 4.1: All the trajectories of system (4.1) are bounded and eventually reach

Da7ﬂ0 ‘

PROOF: We are going to show that each of the sets D; (Figure 4.4) are invariant with
respect to the flow (4.1) and that all the trajectories of the solutions of (4.1) reach

D;, by using Lyapunov type functions
Ui (1, ..., T, y) = 25
In the positive orthant U; are positive, C'(R"™!) functions. For z; > o

d Vyt
_U1 (.1'1,...,.1’n,y) = 1+f-)/yh

dt — gl(xl) < —E€.

So the set D; is invariant with respect to the flow (4.1) and all the trajectories of

(4.1) reach D;. Using induction for xy > ay and (z1,...,2,,y) € D4

d

%Uk (951, cee 7xn:y) = gkfl(xkfl) - gk(ﬂﬁk) < gkfl(@kfl) - gk(ﬂﬁk) < —€.

So the set Dy is invariant with respect to the flow (4.1) and all the trajectories of
(4.1) reach Dy, k < n.
Let
Uy(x1,.. ., 0, y) = Y+ 2z
To = Bo+ i 20

For (x1,...,xn,y) € QF . (D, we get

Uy »T10

Y >50+2204i—i2% > fo
=1 i=1
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Figure 4.4: Trapping region for 3D

% y(‘rlw”ul‘nay) = y‘f‘Z?:lQI’Z

1:{3; - gy(y) < —-e<0

Therefore the set Dy, g, = Qu, .y [ Dy is invariant with respect to the flow (4.1) and

all the solution trajectories of (4.1) reach D, g,. n

A consequence of Lemma 4.1 is that the system can display oscillations or chaotic

behavior only inside the region D, g,.

4.5 Region of Attraction Estimates

We perform a change of coordinates on (4.1) so that the fixed point of interest

(%1, ..

., ZTn,Y) is at the origin. Let the new system be represented by

for (Z1,...,%n,9) = — (T1,..., T, Y). It is easy to see that f, G, and gy are just shifted

versions of f, g, and g, and as such preserve many of their important properties. For

example, for all ¢ = 1,...,n, g;, g, are continuous, monotone, increasing functions,
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Normalized Radius of RoA Normalized Radius of RoA
3D Model 4D Model

nnlliﬁlllllll“‘ml‘
sl

g

Figure 4.5: Figures show the radius of region of attraction (RoA) estimate normalized
by /1+ (n—1)/k% n = 3,4 (i.e., the distance to the closest fixed point, which is
the actual radius of RoA) for 3D and 4D systems with g¢;(z;) =k, ¢ =1, g,(y) = y.

with g;(0) = 0, g,(0) = 0. For ease of notation, we will drop the tilde for the remainder

of this chapter, and rewrite the system as

i1 = f(y) — gi(z1)
Ty = gi(z1) — ga(w2)

(4.5)
i‘n - gn—l(l‘n—l) - gn(l‘n)
o= 2ga(zn) — f(y) — gy(v)
for (x1,...,2n,y) = — (T1,...,Tpn,y), where f(y) = % — Ty

For integer values of ¢ and h, same tools discussed and used in Section 3.3 for the
2D model are used to analyze system (4.5). In the simulations we use g;(x;) = k;x;
(assume mass-action kinetics) but it is easy to incorporate any rational functions such
as the ones derived from Michaelis-Menten kinetics. As in the 2D case, second degree
polynomial Lyapunov functions verify large subsets of the region of attraction of the
origin for a wide range of parameter values. Radius of region of attraction estimate
is defined as the radius of the largest n-D ball centered at the origin that is contained
in the estimate of the region of attraction of the origin. For 3D and 4D systems with

gi(xi) = k, ¢ = 1, g,(y) = y, Figure 4.5 shows the radius of region of attraction
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(2d\n[ 23] 4|5 [ 7 [ 9 [ 11 [ 15 |
2 [3]4] 5] 6] 8 [10] 12 16
4 [ 6]10][ 15|21 ] 36 | 55 | 78 | 136
6 |10]20] 35 | 56 | 120 | 220 | 364 | 816
8 |15]35] 70 | 126 | 330 | 715 | 1365 | 3876

10 21 | 56 | 126 | 252 | 792 | 2002 | 4368 | 15504
12 28 | 84 | 210 | 462 | 1716 | 5005 | 12376 | 54264

Table 4.1: The size of the SDP for checking the existence of a SOS decomposition for
a polynomial of degree 2d in n variables.

estimate normalized by /14 (n — 1)/k? (i.e., the distance to the closest fixed point,
which is the radius of actual region of attraction). It shows that for the majority
of the parameter values, the region of attraction estimate radius is at least half the
actual region of attraction radius. Similar to the 2D case the parameter regions where
the estimate is not as good is close to the stability boundary.

Using higher degree polynomial functions becomes computationally expensive for
large systems. In fact the size of the semidefinite programming (SDP) problem grows
polynomially in the size of state space if the degree of the polynomials is fixed [28].
Table 4.1 shows the size of the size of the matrix in the SDP for checking the existence
of a sums of squares (SOS) decomposition for a given polynomial of degree 2d in n
variables (the corresponding expression is (”Zd)). For low dimensions (short path-
ways) even higher degree polynomial Lyapunov functions result in SOS programs that
are still manageable, but the corresponding SOS programs become prohibitively large
for longer pathways even for small degree polynomial Lyapunov functions [5]. Next
we propose a decomposition of high dimensional problems that takes advantage of
the structure of the pathway and renders the corresponding SOS program to become

computationally tractable for large subsets of the parameter space.
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Sy

S;

Figure 4.6: The system (4.5) is represented as feedback interconnection of 2 subsys-
tems Sy and Sy, given by (4.6) and (4.7).

4.6 A Simple Decomposition

The system (4.5) is represented as feedback interconnection of 2 subsystems S; and

527

T = z— qr(xy)
2 = qi(@1) — g2(22)
: : (4.6)
En = Gn-1(Ta-1) — gnl@n)
w o= n(Tn)
and
g o= 2w—f(y)—gyy) (47

z = f(y)

where f(y) = % — ry, as shown in Figure 4.6. System S; is a SISO (single-
input single-output) system with n states. We expect S; to be a “simple” well behaved
system since it is composed of the chain of chemical reactions, i.e., it has a very
special structure and the rates (g;) are monotone. As such it is easy to analyze
even for relatively large values of n. Sy is a SISO system with a single state that
captures the most important nonlinearity: the dynamics of ATP and its involvement
in autocatalysis and feedback regulation. Using this decomposition we have separated
the complexity of high dimensional states (system S;) from the complexity of the

important nonlinearity of autocatalysis control (system Sy).

Reference [42| proposes a method for computing invariant subsets of the region of
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attraction of the asymptotically stable equilibrium points of systems with unmodeled
dynamics, where the unmodeled dynamics are required to satisfy certain gain relations
or dissipation inequalities. We apply this idea to the feedback interconnection of

Figure 4.6 to compute invariant subsets of the region of attraction for (4.5).

Definition 4.1: A continuously differentiable function U : R™ — R is positive
definite in a neighborhood N of the origin if U(0) = 0 and for all nonzero v € N,
U(x) > 0.

Let Lg, Lg,, and Lg, denote the Lie derivatives for the systems (4.5), (4.6), and (4.7)

respectively. We search for positive definite function U; : R®™ — R such that
Ls, Ui (x) < 22 + 20wz — kw?, V¥ (z,2) (4.8)

and Us : R — R | Uy(y) positive definite in some neighborhood N of the origin such
that
Ls,Us(y) < kw? — 20wz — 2%, VYw and y € N. (4.9)

Let U(x,y) := Uy(x) + Us(y) and (3 be such that
Qup = {(z,9) e R | U(z,y) < B} CR" x N, (4.10)

Proposition 4.3: (a) Qu s is an invariant subset under the flow of (4.5).
(b) If one of the inequalities (4.8), (4.9) is strict (i.e., equality is satisfied only at
(0,0)) then Qu g is a subset of the region of attraction of the origin of (4.5).

PROOF: (a) U is a Lyapunov function for (4.5), since for all nonzero (z,y) € Qu g C

R"™ x Ny, U(z,y) > 0 and
LsU(x,y) = Ls,Ur(x) + L5,Us(y) < 0.

Hence, Qp 3 is invariant under the flow of (4.5).

(b) We examine the two cases separately. Since part (a) establishes that 5 is
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invariant under the flow of (4.5), all the set mentioned below are assumed to be

subsets of Qg .
Case 1: If (4.8) is strict, i.e.,

Ls,Ui(x) < 2% + 26wz — kw?, ¥(z, 2) # (0,0),
then

I'y={(x,y) | LsU(x,y) =0} C Ty :={(z,y) |z =0} .

Since V(x,y) € 'y

the only invariant subset of I'; with respect to the flow of (4.5) is the origin and
LaSalle’s theorem shows that all trajectories in 23 go to the origin. Therefore €2 3
is an invariant subset of the region of attraction of the origin of (4.5).

Case 2: If (4.9) is strict, i.e.,

Ls,Us(y) < —2* — 20wz + kw?, for all nonzero (y,w) € Ny x R,

then
I'ii={(z,y) | LsU(z,y) =0} C I3 :={(z,y) |y = 0}.

Let I';,, C I's be a invariant set under the flow of (4.5). But V(x,y) € [y,

s0 ,, = 0. Similarly V(x,y) € Tin,,

jjn = gnfl(xnfl) 7& 07 V.Tn,l 7é O:

s0 Z,—1 = 0. Inductively we get that V(z,y) € [y, ; = 0, Vi and consequently the
only invariant subset of I's with respect to the flow of (4.5) is the origin and LaSalle’s

theorem shows that all trajectories in ;g go to the origin. Therefore )y g is a subset
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of the region of attraction of the origin of (4.5). n

4.6.1 Region of Attraction Estimation via a Local Small-Gain

Type Condition

Recall that h = 5h, 0 = —g—g]yzo = r,(h —q), k, = %—g;\y:o and we defined
7 k 7 k 7 \n+tl 7 ky 6(n .
h, = q+ %i, hs = q— 3, 0(n) = (sec n—+1) and hg(n) = g + E2+(9()n)' Using

special forms of the inequalities (4.8) and (4.9), we show that for specific ranges
of feedback gain h we can analytically find a positive definite diagonal U(z,y) and
B, such that Qg satisfies (4.10), i.e., Qp g is an invariant subset of the region of

attraction. Specifically
o if hy <h < h,
n T; 1 Y
Ulz,y) =2 (€)dE + ~ d 411
=23 [Calgac g [TU©ra@de @

o if g < h < hy(n),

Ulx,y) = Zd /0 " g(©)de 5 /0 " fe)de

for some constants d; > 0.
In (4.8) and (4.9), let § = 0 and x = 1, i.e., we search for positive definite function
U; : R" — R such that

Ls,Ui(z) < 22 —w? V(w,2) (4.12)

and Us : R — R | Uy(y) positive definite in some neighborhood N of the origin such
that
Ls,Us(y) < w? — 2%, Vw and Vy € Ny\{0}. (4.13)
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Definition 4.2: A SISO system with input u and output y has gain Ls-gain at most
k if for all u,

1ylly < lfuly-

The inequalities in (4.12) and (4.13) enforce that the system S} has Ly-gain at most 1
and system S5 has Lo-gain less than 1 in the respective domains, and if satisfied, then
the feedback interconnection meets the conditions of the local small-gain theorem
[42]. Next we show that if hy < h < h, then (4.11) is a Lyapunov function for (4.5)
and show how to construct a corresponding invariant subset €y of the region of

attraction.

Lemma 4.2: System (4.6) has Ly-gain no more than 1, i.e., exists positive definite

Uy : R" — R that satisfies inequality (4.12) V (x, z).

PROOF: Let

Us() = iz /0 " (€)de, (4.14)

then U;(0) = 0, Uy(z) > 0, Vo # 0 since Vi, g;(x;) is monotone and g;(0) = 0, and for
all (z,2)

Ls,Ui(x) = Y0, 2g(xi)i;
= 2g1(21) (2 — g1(21)) + D015 20i(2) (gi1(wim1) — gi(24))
= 2zg1(21) — g7 (71) — g (n)

+ 300 (=gt (wice) + 2gi(2i) gio (zim1) — g7 (1))

— (2= 91(1'1))2 — > i (gica(wiy) — gi(xi))Q + 2% = w?

22 — w2

IN

Lemma 4.3: If iLS <h< iLT, then there exists a nonempty neighborhood Ny of the
origin and a function Uy : R — R positive definite in Ny that satisfies the inequality
in (4.13) Yw and Yy € Ny\{0}.
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PROOF: Let

D, = y>0|—1 y(y) < fly) <gy(y) p U y<0|gy(y)<f(y)<—lgy(y) :
39 3

Note that D, is the set of points y for which the graph of f lies between the graph of
gy and —zg, (Figure 4.7A). Since %]yzo = r,(q — h) and %—g;\y:o =k, >0,

s k:y dgy
h < h =q—+ 1 = —g—£|y:0 < :1,) 8gy |y 0
; k 9 dgy
h>ho=qg—3 = Gl < Gy
So, there is a nonempty neighborhood of the origin
Ny € D, U {0}. (4.15)
Furthermore,
1 Yy
Ualw) =5 || () +(€)) de (1.16)
0

is positive definite in N and

Ls,Us(y) —w® +2* = F2g—w’+ f(y)
) —w? + f*(y)

= % (9 - f(2) 9y(y )
_ <%_féz _ w) n (%—Zf) — B2 (f(y) + 9y() + F(v)

2

N @TZQ - w) — 1 (W) +a,)” + ).
But, —1 (f(y) + g,(v))* + f2(y) <0, Yy € D,, and consequently
Ls,Us(y) < w? — 2%, Yw, Vy € Np\{0} C D,

Remark 4.2: If h > h, then the inequality in (4.13) cannot be satisfied by any

positive definite function in any nonempty neighborhood of the origin, since the lin-

earization of system (4.7) has Lay-gain greater than 1.
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Figure 4.7: (A) N is the set of points y where the graph of f lies between g, and
—19y. In this case Ny = {y | y > —1}. (B) The y — a; slice of the invariant subset of
region of attraction Qug (x; =0, j #1).

Notice that for U; and Us as defined in (4.14) and (4.16), if U(z,y) is given by (4.11)
then U(z,y) = Ui(x) + Us(y). Let Ny be defined as above by (4.15).

Proposition 4.4: If hy < h < izr, for any B such that Qug C R™ x Ny, Qug is an

invariant subset of the region of attraction of the origin for system (4.5).

PROOF: A direct consequence of Proposition 4.3, Lemma 4.2 and Lemma 4.3.

Example 4.1: Let g;(z;) = kivy, g,(y) =y, 7 = %, q=1, and h = 2. Then h = g,

~ 5 1 1 5
U= kz?+ —log(5+6y+3y?) +-y?>— -y — —logh
;$z+120g(+y+ y)+4y 5¥ — 73 1085,

N ={y |y > —1} (Figure 4.7A). The mazimum sublevel set 3 of U that satisfies
(4.10) is 8 = 0.3682. Figure 4.7B shows a y—x; slice of the invariant subset of region

of attraction Qu g.

4.6.2 Compositional Estimation of the Region of Attraction

Using General Dissipation Inequalities

In the previous sections, we estimated regions of attraction of asymptotically sta-

ble equilibrium points through an application of a local small-gain type condition.
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Namely, the overall system was decomposed into two input-output systems and a
certificate for the estimates of the region of attraction of the overall system was
assembled using certificates for the input-output gain properties of the subsystems
(equations (4.12) and (4.13)). In this subsection, we consider extensions of this idea
where input-output gain properties are replaced by more sophisticated so-called dis-
sipation inequalities [46]. One diversion from the classical dissipation inequalities
literature is that the inequalities devised here will be local inequalities, i.e., they are
supposed to hold in certain bounded subsets (for example in certain sublevel sets of
associated storage functions) of the state-space but not necessarily the whole state
space [42].

In (4.8) and (4.9) let k = 0, i.e., we search for a positive definite function Uj :

R™ — R such that

Ls,Ui(z) < 22 + 26wz, VY (x,2) (4.17)

and Us : R — R | Uy(y) positive definite in some neighborhood N of the origin such
that
Ls,Us(y) < —2* — 26wz, Yw and Vy € Ny\{0}. (4.18)

Next we find U; and U, satisfying the inequalities above for ¢ < h < hy(n) and a
specific 9. We first show that a diagonal function U; exists for the linearization of
(4.6) and 0 < § < 360(n), and then show that it exists for general system S;. We treat
the special case of the linearization separately since the proof outlines a procedure of
finding U; by solving a Lyapunov inequality for the case when g¢;(x;) = k;x; (mass-
action kinetics). The linearization of system (4.6) is given by

z = Ax+ Bz
(4.19)

w = Cz
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where

—k 0 0 0
ki —ks 0 0
A = : : (4.20)
0 0 ~kpy1 O
0 0 ooy —kn
I . ]
B:[10~--00} (4.21)
¢ =000 k] (422)

Definition 4.3: A matriz A is diagonally stable if there exists a diagonal matriz
P >~ 0 such that
ATP 4+ PA <.

Lemma 4.4: If 0 < § < %H(n), then there exists positive definite Uy : R" — R
that satisfies the inequality in (4.17) ¥ (x, z) for Sy being the linear system defined in
(4.19).

PROOF: First let 0 < ¢ < 16(n) and

- A B A —-B
A= G =
—-20C —1 20C -1
Then
- I, O I, O
A — G )
0 -1 0 -1

and so A is diagonally stable if and only if G is diagonally stable. For § > 0, reference
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[2] shows that a necessary and sufficient condition for diagonal stability of

-k 0 - 0 -1
ki —ko 0 0
G:
0 0 -k, O
0 0 20k, —1
is
)< 16’( )
5 nj.

Therefore there exists a diagonal matrix P > 0 such that

ATP 4+ PA <. (4.23)
Without loss of generality, let
. P 0
P = ,
0 3

where P is diagonal and P > 0. Then,

e AT —25CT P 0 P 0 A B
0~ ATP+PA = +
BT -1 0 3 0 3 -20C" -1
ATP+PA PB-46CT
BTP —C -1
and V (z,z) € R" x R\{0} and 0 < § < 30(n)
T
x AP+ PA PB-6CT x 0
<
z BTP —C —1 z

0

(2TAT + 2"B") Px 4 2" P (Az 4+ Bz) — 26 (Cz) z — 22 < 0.
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By continuity in 6, we get that for 0 < § < %O(n)

(2" AT 4+ 2"B") Px + 2" P (Az + Bz) — 26 (Cx) z — 2* < 0,
and therefore Uy (z) = 27 Pz for system (4.19) satisfies (4.17).

Remark 4.3: We can easily find Uy by constructing A as shown above and solving
(4.23) for a diagonal P. Inequality (4.23) is a Lyapunov inequality and can be effi-
ciently solved as a linear matriz inequality (LMI) using many of the available solvers

[23, 37].

Lemma 4.5: If 0 < § < %H(n), then there exists a positive definite function U; :
R"™ — R that satisfies the inequality in (4.17) V¥ (x, 2) for Sy being the system in (4.6).

PRrROOF: Consider the system C; defined by

T = —Z—gi(71)
Ty = 91(71) — g2(2)
: : (4.24)
i‘n = gn—l(l‘n—l) - gn(l‘n)
z = 2000 (x,) — 2

and let L, denote the corresponding Lie derivative. For 0 < 6 < 36(n), since

T4

lim 9i(§)d§ = oo,

lzil—o0 Jo

reference [2] (Corollary 3 and its proof) shows that for system (4.24) there exist

constants d; > 0, 1 < i < n+ 1 such that

Uy (2,2) = Y0y di )" gi(€)dE + dpya 322

(4.25)
= Ur(2) + dngr 52
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is a proper Lyapunov function, i.e., V(x,2) # 0

Without loss of generality, take d,.; = 1 and let z = —Z, then V(x,z) # 0 and
0<d<36(n)

0> Lo, Uy (x,—2) = LgUi(z) — 2 (20gn(2,) + 2)
= Ls,Ui(z) — 20wz — 2*

By continuity in 6, we get that for 0 < § < %O(n)
Ls, Ui (z) < 20wz + 2°.
Lemma 4.6: If, for system in (4.7), ¢ < h < izd(n), then there ezists a nonempty

neighborhood of the origin Ny and a function U, : R — R positive definite in Ny that
satisfies inequality (4.18) for § = 10(n) Yw and Vy € No\{0}.

PROOF: Let

D, = {y>0| —%gy(y)<f(y)<0}U{y<0|0<f(y)<—1;i59y(y)}'

Note that D, is the set of points y for which the graph of f lies between the graph of
—ﬁ‘(sgy and the horizontal axis (Figure 4.8). Since g—£|y:0 — r,(q — h) and %ﬂyzo =

ky, >0,

7 7 o ky 0(n) af 5 Ogy

h < ha(n) =q+ v m il _a_y’y=0 < 15 8;‘3/:0
> P
h>q = a—£|y:0 <0.

So there is a nonempty neighborhood of the origin Ny C D, U {0}. Furthermore, for
y € Ny the function

Us(y) = 6 /O " Fode (4.26)
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Figure 4.8: The set N is the set of points for which the graph of f lies in the
area between the graph of —% gy and the horizontal axis. This area shrinks as the
pathway size increases.

is positive definite and

Ls,Us(y) + 26wz + 2% = G2y + 20w f(y) + f*(y)
= —0f(y) (2w — f(y) — g,(y)) + 26w f (y) + f*(y)
= (04 1) f2(y) +dg9(y) f(y)

But, (6 +1) f*(y) + dg(y)f(y) <0, Vy € D,, and therefore

Ls,Us(y) < —2% — 20wz, Yw, Yy € Ny\{0} -

Let U(x,y) := Ui(z) + Uy(y), for Uy and U, as defined in (4.25) and (4.26) for

§ = 360(n) and let Ny be as constructed in the proof Lemma 4.6.

1
2
Proposition 4.5: If0 < h < ﬁd(n), for any B such that Quz C R™ x Ny, Qug is an

invariant subset of the region of attraction of the origin for system (4.5).

PROOF: A direct consequence of Proposition 4.3, Lemma 4.5, and Lemma 4.6.

Remark 4.4: Proposition 4.2 and the secant condition establish bounds h, and izd(n)
on h that guarantee stability of the pathway for arbitrary rates (and number in the
case of ﬁr) of intermediate reactions. Propositions 4.4 and 4.5 imply that the systems

with gains that obey those bounds are simple to analyze.
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Propositions 4.4 and 4.5 establish how to construct invariant subsets of region of
attraction for a family of systems, but do not offer any guarantees on how large this
subsets are. In general the size of these subsets will depend on the global properties

of f and g, as illustrated in Section 3.4.1.

Remark 4.5: There are two basic ways of improving the region of attraction esti-
mates Qu g for (4.5). Similar to 2D case (Ezample 3.4), given a fized U we can solve
the following problem for 3:

max (3

LsU(z,y) <0, ¥Y(x,y)e Qus\{0,0}.

Another approach is to combine invariant subsets of the region of attraction, since if
Qup, and Qw, g, are invariant subsets of region of attraction of the fized point, then so
is Qug, U Qw,,. For example, if ¢ < h < hy, then we can use Qdy g and the Lyapunov

functions that we get from Proposition 4.4 and 4.5 to improve our estimate.

4.6.2.1 Block Diagonal Lyapunov Functions

The decomposition of (4.5) into S} and Sy provides a convenient way of searching for
block diagonal Lyapunov functions, i.e we search for U(z,y) = U (z) +Us(y), x € R™,
y € R. The next proposition examines the linearizations of S; and S, and shows that
locally, if there is such a Lyapunov function for the linearization of system (4.5), then
we can construct it by finding U; and U, satisfying (4.25) and(4.26) respectively. The

linearization of system (4.6) is given by (4.19), and let the linearization of Sy be

Yy = agy+ 2w

(4.27)
z = —oy
where o = —g—£|y:0 = ry(h—q) , ay = —k, 4+ 0. The linearization of (4.5) is given by
(4.2) and we rewrite it as
T T
—J (4.28)
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where

A —-oB
2C a9

J:

Proposition 4.6: If there exist positive definite matrices P, € R™ ™ and py € RY>!

such that J'P + PJ < 0, where

b |0 |

0 po

then there exist positive definite quadratic functions U; : R® — R, Uy : R — R, and

0= kyia such that
LgUi(z) < 22+ 20wz, Va,z

ESQUQ(y> S _22 - 2(5?1]2, vyaw

for systems Sy and Sy given by (4.19) and (4.27) respectively.

PROOF: Define
Ui(z) :=2"Piz Us(y) == pay?

(= —2ap 5=
and
Q = JTP+PJ
ATpl + PlA QPQCT - O'PlB 0 (429)
= < 0.
2p20 — O'BTpl 2&2])2

Notice that (4.29) implies that as < 0, and therefore a > 0. Then Yy, w

Ls,Us(y) = 2paasy? + dpayw
= —acy? + 2oyw (4.30)

= —az?— 25w



97

and
Ls,Uy(z) —az? — 20wz = TP (Az+ Bz) + (zT AT + 2B") Pix
2022 22 _ 922 (0
o T o
x x
= 1

z z

where

Q ATP1+P1A —% (QPQOT—O'PlB>
1 pu—
—% (2p20 — O'BTpl) 0_%2@2]72

Then @; < 0 since @ < 0 (the principal minors of both matrices have the same sign)
and so

LUy (x) < az? + 20wz, Yz, z. (4.31)

Since a > 0, inequalities (4.30) and (4.31) imply that U, (z) := —U;(z) and Us(y) :=

1
2(y) satisfy
LsUi(z) < 2%+ 26wz, Vz,z

Ls,Us(y) < —2% — 20wz, Vy,w

4.6.3 Limitations of the Decomposition

Lemma 4.7: If k; = k, Vi for (4.19) and there exists a positive definite Uy(x) =
2T Pyx satisfying (4.17) with 6 > 0, then § < 30(n) and there exists a diagonal matriz
Py = 0 such that Uy(z) = 27 Pz satisfies (4.17).

PROOF: Let L, be the Lie derivative for system (4.19) and W (x) = kU(x), then
for all x, z

L1, W(z) < kz* + 20kwz
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and
. [ ATKP, + kPLA kP.B — 6kCT
BTkP, — §kC &
[ ar —asker ] [ ke o L Epo A B
BT —k 0 3 0 3 —20kC' —k
= J\_JTP+PM,
where
k0 o o0 1
ko —k 0 0 o0
M =
0 0 k0 0
0 0 E k0
00 0 20K —k |
k0 0o o0 —1]
ko —k 0 0 0
R L, 0
Clo 1] o o k0 o0 0 -1
0 0 ko —k 0
00 - 0 20k —k |

But for § > 0, M is stable if and only if § < 36(n) [43]. Furthermore, if M is stable
it is diagonally stable [2]. So there exists a diagonal P; > 0 such that

Lr, (xTﬁlx) < k2* 4+ 20kwz

Next we show that if a%igi(xi)lo — k, Vi, then for h > hy(n) there is no quadratic
block diagonal Lyapunov function U(z,y) = Uj(x) + Usz(y) for system (4.28) (the

linearization of system (4.5)).



Figure 4.9: Tllustration of the general decomposition for ny, = 3.

Proposition 4.7: If ;2g;(z;)|o = k, Vi, in (4.5), then for h > hg(n) there is no

quadratic block diagonal Lyapunov function U(x,y) = Uy (x)+Us(y) for system (4.28).

PROOF: Assume that for h > hg(n) > ¢, and quadratic U(z,y) = Uy(z) + Us(y)

o
ky—o

exists for system (4.28). By Proposition 4.6, there exists U; = 27 Pz and § =
satisfying (4.17). On the other hand Lemma 4.7 implies 6 < $6(n) and

s_ o _ _nlig)
T ky—o k:y—ry(fz—q)

lQ(n) B ky?r(:(dﬁdq—)q)

N = A

hd (n) .

Consequently, the contradiction implies that no quadratic block diagonal Lyapunov

function for system (4.28) exists. n

4.7 General Decomposition

We represent system (4.5) as feedback interconnection of 2 systems S; and Sy as
shown in Figure 4.6, with S; in R™ and Sy in R"2, ny + ny = n+ 1 (illustrated in

Figure 4.9 for ny = 3). System S is given by

g = Fl(C)—i-Blz
w = Gi(Q)

(4.32)
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for ¢ € R™, where

—gm+1(C1)

R = Im+1(C1) fgm—l—Q(C?)

| ngrnlfl(Cnlfl) - gm+n1 (Cnl) |
GI(C) = Gmin (Cny)
T
B~ [10 o]

and m = ny — 1. System S, is given by

¢ = F2(¢)+32w

(4.33)
z = Gy(Y)

for ¢ € R™, where

—f(¥1) — gy (¢h1)
(1) = g1(¥)
Fy(yp) = 91(12) — g2(3)

L gnQ*Q(wnzfl) - gn2*1(wn2)
G2(¢) = gn2—1(¢n2)
T
B, = |20 0]

We will call any such feedback interconnection of systems in R" and R™ a (nq,ns)-
decomposition of (4.5). Let Lg, Lg,, and Lg, be the Lie derivatives for the systems
(4.5), (4.32), and (4.33) respectively. Similar to the previous decomposition, we
search for a neighborhood N, C R"™ of the origin, and positive definite function

U : R™ — R in R™ and positive definite functionUs : R™ — R in N5 such that

LsUi(() < plw,2), V(¢ z2) eR™ xR (4.34)
Ls,Us(v) < —p(w,2), V(,w)e Ny xR. (4.35)
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where p : R? — R is a supply rate parametrized by § and &

p(w, z) == 2% + 20wz — Kw?.

Define
U(¢,v) == Ui (Q) + Us(v), (4.36)

and ( be such that
QUﬁ C R™ x ./\[0

A proposition analogue to Proposition 4.3 holds.

Proposition 4.8: Qs is invariant under the flow of (4.5), and if one of the inequal-

ities (4.8), (4.9) is strict then Qu g is a subset of the region of attraction of the origin
of (4.5).

PROOF: Similar to proof of Proposition 4.3. n

As before if Fy is rational we can search for U;, U, using generalizations of the S-

Zi%, where dy(¢)) > 0

for ¢ > 0, and define N; by using the sublevel sets of a positive definite poly-

procedure and SOS relaxations, as in Section 3.3. Let Fy(¢)) =

nomial function ¢s with ¢2(0) = 0 and compact level sets, i.e., No = Qu, p, =

{x € R™ | py(x) < Ro}. The corresponding SOS problems for finding U; and U, are

U (¢) — eCT¢ is SOS

(4.37)
—5eU1(Q) - (Fi(C) + Bi2) + p(2,G1(¢)) — eC"¢ s SOS

and

Us(¥) — e Tt + 51(¢) (pa(¢p) — Ry) is  SOS
da(0) { = ZUa() - (Fa(th) + Baw) = p(Ga(w), w) } (4.38)
+da(10)s2(1, w) (a2(1h) — Ry) — ey s SOS,

where 51,5, are SOS polynomials. The subset €2, r, can be further improved by

taking po = Us and using coordinate-wise affine iterations [41]. These two problems



102
Stability Diagram for 3D System

Stable
- Full Block

*l Unstable

.s. Diagonal Lyapunov
:SmaII:Gain (1,2)
Decompostion

k

Figure 4.10: Stability diagram for the 3D system with g;(z;) = kx;, i = 1,2, ¢ =
1, %gy(y)\o = 1. The (2,1)-decomposition can only be used to construct Lyapunov
functions for the parameter sets labeled Diagonal Lyapunov and Small Gain. In
addition to this sets, the (1,2)-decomposition only be used to construct Lyapunov
functions for the set in blue also.

are coupled through the decision variables (4, ) in the supply rate p. Let us denote
by 2ay the highest degree of the polynomials in SOS problem (4.37) and by 2as the
highest degree of the polynomials in SOS problem (4.38). We assume «; to be small
since we expect system S; to be simple (i.e. low degree vector field, even linear if
mass-action kinetics are used), and s to be much larger since the degree (h) of da(1))
could be high.

We now focus on the special case where

0
a—ngz(l})’o =k, foralli=1,...,n.

We have shown in the previous section that for iLS <h< iLd(n), we can find block
diagonal Lyapunov functions that give an estimate of region of attraction for the
system. For this special case Proposition 4.7 establishes that for h > ﬁd(n) there is no
(quadratic) block diagonal Lyapunov function of the form U(x,y) = U;(z) + Ua(y),
x € R" y € R exists for the linearization of (4.5), i.e., the (n,1)-decomposition
cannot produce even a local quadratic Lyapunov function for (4.5). To find Lyapunov
functions for systems with & > hg(n) we increase the dimension of the system S,.

However this becomes computationally expensive since «y is big, i.e., we are moving
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Stability Diagram for 7D System

[ In=6
22} |:| n2=5

241

Full Block

18

16

14l Diagonal Lyapunov

Small Gain

1.2r
0 2 4 6 8 10

k

Figure 4.11: For longer pathways different (n;,ny)-decompositions are used to pro-
duce Lyapunov functions that verify subsets of region of attraction of the origin. For
a fixed k as the feedback gain h approaches the stability boundary, it requires larger
systems Sy (increase in ny), i.e., the computational complexity of finding a Lyapunov
function increases. Figure shows the 7D system with ¢ = 1, %gy(y)b =1.

toward the bottom right corner of Table 4.1. We now restrict our search to block
diagonal Lyapunov functions of the form (4.36) where U is diagonal, i.e. U;(() =
>t Vi(G)- As such the size of the SDP required to verify (4.34) is small, and we will
approximate the size of the SDP required to find U, by the size of the SDP required
to find Uy. Therefore the computational complexity of the problem (determined by

the SDP size) increases as the dimension ny of the system S, increases.

Example 4.2: Let us look at the (1,2)-decomposition of a simple 3D pathway with
gi(z;) = kxy, i = 1,2. Then we have the following S,

l.'l = Z— kl’l
w = kx;
and Sy
.%.'2 = w — kl’g
y = 2kzy— f(y) — gy(y)

z = fly)
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Stability For Different Pathway Sizes

1'9\/ —n=3
18} : == -n=7

Increased =11

Pathway _-°"|-.- n=15

171

13r

Figure 4.12: As the size of the pathway increases, the size of the stability region gets
smaller. Figure shows the stability bounds for the feedback gain h as a function of k,
for n-D systems with ¢ = 1, a%gy(yﬂo = 1.

with f(y) = % —ry. For k>0, =52 U(z1) =1 (14 k) a?
Lo Ui(z1) — 2> — (k— Dwz+ kw? = (1+k)kz(z— kzy) — 22
—(k — 1) kx12 + KEk*2?
= —2%+2kwi2 — k2?2

= —(z— k)’

So we search for Uy satisfying
Ls,Us(x2,y) < kw? — (k — 1) wz — 2°

in a neighborhood of the origin. Figure 4.10 shows the set of parameters for which

this decomposition can produce a Lyapunov function, for g =1, %gy(y)\o =1.

As the size of the pathway increases, the size of the stability region (in the parameter
space) gets smaller (Figure 4.12) and range of feedback gains becomes limited. For a
fixed pathway size, as feedback gains increase the corresponding systems approach the
stability boundary and we need to use decompositions that require larger systems S5,
i.e., the problems become computationally more complex, as illustrated in Figure 4.11.

For a fixed k as the feedback gain h approaches the stability boundary, it requires
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larger systems Sy (increase in ny), i.e., the computational complexity of finding a
Lyapunov function increases.

Let xn,(k) be defined as the largest value of feedback gain h for which the de-
composition (ny,ns) produces a Lyapunov function for system (4.5). Figure 4.12 and
Table 2.1 show that increase in pathway size has two adverse effects. It increases the
computational complexity as indicated in column 2 of Table 2.1 but also it limits the
feedback gains that can be captured by the simpler decompositions, i.e. it moves the

system into the lower, more complex rows of Table 2.1.

4.8 Summary

Autocatalytic metabolic networks (pathways), such as glycolysis, are composed of a
chain of enzymatically catalyzed intermediate reactions. To characterize the effect of
the size (n) of the chain on the stability and performance properties of the pathway,
we explicitly account for the intermediate reactions in the model given by equation
(4.1). As in the 2D case, allosteric feedback regulation can suppress the positive
feedback generated by autocatalysis, thus guaranteeing both the boundedness of the
system’s trajectories, as well as the local stability of the operating fixed point. A
direct application of a secant condition |2, 39, 43| gives an upper bound ﬂd(n) on the
feedback gains h, that result in stable pathways of fixed size (n) and arbitrary (fixed)
intermediate reaction rates. We also establish lower and upper bounds, respectively
h, and fzr, on feedback gains that result in arbitrarily large stable pathways. All
of these bounds depend on the stoichiometry and strength of autocatalysis, and the
demand of the pathway product (ATP in glycolysis), but not on the other parameters.
These bounds are tight in the sense that unstable pathways can be constructed for
gains that lie outside the ranges established by them. The bound izd(n) suggests that
the range of possible stable gains gets smaller as the pathway size (n) increases. The
RHP zero, studied in detail for the 2D system, also becomes smaller with an increase
in n thus making larger pathways harder to control. This means that larger chains of

enzymatically catalyzed intermediate reactions in the autocatalytic pathways cause
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Feedback Gain COmPUtatlpnal
h Complexity Comment
(SDP size)
he < h < h 1
hr < h< hs 0] (1) Sér;?n
. o . 1
hs < h < hg(n) O (n) iagona

Lyapunov function

O (C2F*) + O (n)

Calculated by
(n — 1,2)-decomposition

Calculated by

< 2 3+as
xa(k) <h <xs(k) | O(Cit*)+0(n) (11— 2.3) dcompasition
2 Complexity increases as the
na2+aoa .
Xz (B) < <o (k) O (C” )+O (n n‘)dimension ny of Sy increases
Xn (k) < b < Xnpa (k) O (Crritee) Full block Lyapunov

function

Table 4.2: Computational complexity (size of the SDP) as a function of feedback gain
and pathway size (n). Increase in pathway size has two adverse effects, it increases
the computational complexity (column 2) and it limits the feedback gains that can
be captured by the simpler decompositions, i.e., it moves the system into the lower,
more complex rows of the table. s is the degree of the polynomials in (4.38) and

O — i

i JG=H"
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two adverse effects on performance: good performance at low frequencies gets more
expensive (smaller RHP zero) and, the range of stable gains available is reduced
which makes the operating gains less robust and reduces the achievable performance
objectives.

If the dynamics of (4.1) are rational functions of the state, the size of the region
of attraction of the fixed point can be estimated by optimization-based formulations
using Lyapunov functions and SOS programming. As previously discussed, these
formulations reveal that low degree polynomial Lyapunov functions can verify region
of attraction related properties for a wide range of parameters in three and four
dimensional systems. The size of the invariant subsets of the region of attraction of
the fixed point demonstrated that these pathways are not sensitive to perturbation in
state space (i.e., perturbations in the concentrations of the products and reactants).
We are unable to analyze systems with longer pathways because the degree of the
polynomials in the corresponding SOS program is high which makes the problem
computationally intractable.

A simple representation of the system (4.1) as the feedback interconnection of a
n-state system S; given by (4.6) and a single state system Sy given by (4.7), allows
us to analytically construct diagonal Lyapunov functions via the use of local general
dissipation or small-gain type inequalities for systems with feedback gain less than
iLd(n). This simple decomposition allows us to construct block diagonal Lyapunov
functions (i.e., functions of the type U(z,y) = Uy(z) + Us(y), = € R", y € R) for (4.1)
if they exist. However this decomposition is not as useful for gains larger than ﬁd(n).
In fact, we show that no quadratic block diagonal Lyapunov functions exists for the
linearization of (4.1) if & > hy and the intermediate reaction rates are equal to each
other around the fixed point.

To construct Lyapunov functions for gain h > hy amore general (n, ny)-decomposition
scheme is used. We represent (4.1) as the feedback interconnection of an n;-state sys-
tem S; given by (4.32) and an na-state system Sy given by (4.33), with generally n4
(much) bigger than ny. If the vector field of system (4.1) is rational we can construct

Lyapunov functions by using local dissipation inequalities and solving the correspond-
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ing SOS problems (4.37) and (4.38). The first SOS problem (4.37) contains low degree
(2c1) polynomials in many variables (n;), and the second one contains high degree
(2a2) polynomials in a few variables (ny). As the size ny of system Sy increases,
so does the computational complexity of constructing a Lyapunov function. On the
other hand, (n;,ny)-decomposition with the larger ny can be used to construct Lya-
punov function for realizations of (4.1) with higher gains. This reinforces the notion
that realizations that are more (computationally) complex can only arise from those
realizations with high gains (i.e., gains that are close to the stability boundary, and
therefore fragile to perturbations in parameter space). This framework also shows
that, from the computational point of view, the increase in pathway size has two
adverse effects: it makes it computationally harder to construct Lyapunov functions
first by increasing the overall dimension of the problem n = ny; + ny and second, by
limiting the range of stable gains available, thus pushing current gains closer to the

stability boundary, and therefore requiring (nq, ns)-decomposition with large na.
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Chapter 5

Autocatalytic Networks with
Reversible Reactions and
Consumption of Intermediates

5.1 Introduction

Individual biological networks (pathways) within the cell do not act in isolation. They
are an integral part of the whole cell activity and are coupled with other networks
through the exchange of products and sharing of components. In metabolism specif-
ically, many of the intermediate products of the pathway are used and consumed by
other processes in the cell. Glycolysis for example provides many of the necessary
intermediates used to produce amino acids, lipids, nucleotides, and other organic
molecules essential to the function of the cell [1]. In this chapter we investigate these
interactions and in particular address the following question; How does this coupling
of pathways through the consumption of intermediate metabolites effect their per-
formance? Due to the fact that many biological pathways are composed not only
of irreversible chemical reactions, but also reversible ones we are also interested in
understanding whether or not the reversibility of the chemical reactions make the
pathways harder to control.

In order to address these questions, we investigate the role that the consumption of
the intermediate resources and reversibility play in the performance of autocatalytic

pathway. To carry out this study we first extend the 2D model of equation (3.1)
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7 = y R(xyu) = uvy? =g, () +h,(y)—d,(x)
F(xy.u) = (a+b)g,(x)-2n,(y)—auvy’—g,(y)
K@) = L
1+yz
K(z)

Figure 5.1: Control of autocatalytic plant with reversible reaction and intermediate
consumption. This representation implies the same closed-loop system as system

(5.1).

to include reversibility of the intermediate chemical reaction and consumption of
the intermediate metabolite. Later in this chapter we further expand this model to
incorporate large chains of intermediate (reversible) reactions. The chemical reactions

that comprise the extended 2D model are given by

utay =Sz = (a+b)y

T _\dg SO Y _\Gy (;0

We consider the case a = b =1 with the corresponding ODE

& = f(y) = go(x) + hy(y) — do(z)

(5.1)
gy = 2g.(x) —2hy(y) — f(y) — g4(v),

for x,y > 0 and where g¢,, g,, hy, d, are continuous, monotone increasing functions,

with g,(0) = g,(0) = d.(0) = R, (0) = 0 and f(y) = 2%%. In the following sections

T+yh

the tools and ideas developed in Chapter 2 and 3 are applied to the analysis of the
model given by (5.1).

5.2 Control of Two Dimensional Model

The model (5.1) can be viewed as output feedback control of an autocatalytic plant

as shown in Figure 5.1. Furthermore, if a fixed point (xg,yo) > (0,0) of (5.1) exists,



111

S

Figure 5.2: System (5.2) in output feedback control form.

then without loss of generality the system can be rescaled such that yy = 1. Then if

we define
Vo= f(1) =155  h=35h
ko= 200(0)]ay e = de(2)]ay
ky =g ry= Ehy(y)h

the dynamics near this fixed point are given by the linear system

T —ky — Ny Volg —h) +r T
_ n o(qA )+ 1y ' (5.2)

v 2k, —Volg—h) —2r, — k, Yy

This system is represented by the following state space standard output linear feed-

back form;
x = Ax+ Bu
z = (Cx
u = —hCx
where
A = _kx — Nz %q - ry
2k, —Voq —2r, — kK,
1
B =V
-1
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The corresponding frequency domain description is shown in Figure 5.2 with P(s) =
C (sI — A)™' B and feedback gain h. In the next section we use this formulation to
first study the role of reversibility and then to investigate the role of intermediate
consumption on the performance of the pathway. We are interested on how well the
pathway maintains the concentration of the output y at the desired steady state yq.
Again normalizing the concentration at yy = 1, makes a comparison of the different

topologies possible.

5.2.1 Effects of Reversible Reactions

If in Equation (5.1) we assume that there is no consumption of intermediate metabo-

lite z (d,(x) = 0) and consider the case a = b = 1, then the resulting ODE is

T = 14‘:};;;1 — gu() + hy(y)

g o= 20.(x) = 2hy(y) — Tr — 9,(y)-

Similar to Equation (3.1) the fixed points are found by solving f(yo) = ¢,(v0), z =
g (f(yo) + h(yo)). If we again set yo = 1 then the linearization around the fixed
point (xg, 1) is given by

T —k, Volg — iz) +r, x

~

y 2ky —Volg=h) =2ry—Fky | | y
Equation (5.3) shows that the fixed point is stable for

1 ~ 1
q—voky<h<q+vo(k‘x+ky+2ry),

and so the presence of the reversible reactions increases the range of stable gains h.

This suggests that the reversible reactions make the pathway easier to control. There
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is still a RHP zero at s = k, since

P(s) = C(sI-A"'B

which implies that the special form (2.9) of the Bode sensitivity integral holds for this
system. However, because the range of the stable gains is larger for higher reversible
reaction (RR) rates, the same feedback gain is more “robust”. This suggests that
systems with higher RR rates have better performance (i.e., smaller peak in the
log |S|, and smaller oscillations in the step response, Figure 5.3 A and B). It also
means that higher gains can be used for systems with high RR rates to obtain better
performance at low frequencies and better steady state error without a meaningful
increase in performance losses at high frequencies and qualitatively similar oscillations

in the step response, as shown in Figure 5.3 C and D.

5.2.2 Effects of the Consumption of Intermediates

Assume that there are no reversible reactions in the system (5.1), i.e., hy(y) = 0, then

the corresponding ODE for a =b =1 is

T = 1}:3;}1 - gac(‘r) - d:v(‘r)

. vVl
y o= 26.(x) — r — 9(y)-

Notice that at a fixed point (zo, yo)

dy(20) = 92(x0) = — (hy (o) + 94(%0))

so a fixed point (zg,yo) > (0,0) exists only if d,(xy) < g.(x¢), i.e., the pathway cannot
allow more intermediate metabolite consumption by other pathways than it is using.

If a fixed point (zo,y0) > (0,0) exists, then without loss of generality we can again
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A S for Systems with RR B Closed—Loop System Step Response
(Same Feedback Gain) (Same Feedback Gain)
25
| IRR Rate 2 l
—RR Rate 1 0.6
157 =——=No RR
E n S 0.4
%0 0.5 E 0.2
0 ol ‘ ‘ : —RR Rate 2
o8 —RRRate 1
02 —No RR
R 0 1 2 3 5 10 _1‘5 20 2 20
log w time
C S for Systems with RR D Closed—Loop System Step Response
(Different Feedback Gains) (Different Feedback Gains)
3
B RR Rate 2 >
—RR Rate 1 06
—No RR 05
- 0.4
2 § 0.3
%0 S o2
— 0.1
0 —RR Rate 2
-01 —RR Rate 1
02 —NoRR
% 4 s 2 1 o0 1 2 3 0 5 0 1 20 2 %
log w time

Figure 5.3: The performance of three 2D models with b, =1, ¢ =2, k, =1, Vj =

~

1 and 7, = 2, 1, 0 is compared. (A)-(B) Using the same feedback gain h = 3.5
, the systems with higher reversible reaction (RR) rates have better performance
(i.e., smaller peak in log|S/|, and smaller oscillations in the step response). (C)-(D)
Models with higher reversible reaction rates allow for higher stabilizing gains. Using
h = 7.5, 5.5, 3.5 respectively, we obtain better performance at low frequencies and
better steady state error (without a meaningful increase in performance losses at high
frequencies and qualitatively similar oscillations in the step response) for the systems
with higher RR rates.
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A S for Systems with B Closed—Loop System
Consumption of Intermediates Step Response
bel -/8 =0 12
J—B=1/3 .
L—B8=2/3 08

@ 5 o
i&o 1r E 0.2 _ﬁ = 0
0.5 0
0 -02 —ﬁ == ]./3
-0.4
-0.5

—B3=2/3
-5 -4 -3 -2 -1 0 1 2 3 0 5 10 15 20 25 30 35 40

time

Figure 5.4: Performance of three 2D models with &k, =1, ¢ = 2, k, = 1, and n, = Sk,

with g =0, %, % is compared. Using the same feedback gain h=3 , the systems with

less consumption of intermediates have better performance, which corresponds to a
smaller peak in log |S| plot, and less oscillations in the step response.

set yo = 1 and the linearization around the fixed point (zg, 1) is given by

z _kx — Nz Vb(q_ﬁ) z

~

y 2k, —Volg—h)—ky | |y
The point (¢, 1) is stable for

1 ke+mn. 1
- — h — (k. + Kk .

and, as it can be shown that it is open-loop (iL = 0) stable when 7, is close enough

to k.. Notice that 7, cannot be larger than k., since for § := n, — k, > 0 and

o <k, nx%::jfky’ the system is not stabilizable.

Under the above conditions, the consumption of the intermediate increases the
range of stable gains h. Similar to the RR case, this suggests that the consumption
of the intermediate might make the pathway easier to control. However, the plant

has a RHP zero at s = k, — n, since

P(s) = C(sI-A)'B

_ _ s—kz+nz
Vi pa(s) ’
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which implies that as 7, increases the magnitude of the RHP zero gets smaller, which
puts harder constrains on performance. It appears that this is another performance
tradeoff and it is not clear whether or not the consumption of intermediates helps the
performance of the system.
We can further investigate the effect of the intermediate consumption on the
system by defining m(z) := g,(x)+d,(z) and «(z) such that d(x) = a(z)m(x) which

results in a system of the form,;

j o= (2-a(@)m) - {25 - g,).

These equations show that consumption of intermediates has the same effect as re-
ducing the efficiency of the pathway. For example, if g,(x) = kz and d,(x) = Skz,
then o = % and this pathway is equivalent to a pathway with g.(z) = (1 + f)kz
that produces (2 — «) molecules of y for each molecule y invested. As Figure 5.4
shows, larger (§ leads to a higher price paid for good performance at low frequencies

and more oscillations for the same steady state error.

5.3 Nonlinear Characterization for the Extended 2D
Model

The global nonlinear characteristics of the 2D system of Equation (3.1) are similar
to the case with no RR or consumption of intermediates described by system (3.1)
in Chapter 3. In addition the positive orthant remains invariant with respect to the

flow of (5.1) since

Vvt
1+ yyh
y=0 = y=2¢.(z) >0, forxz>0.

r=0 = 1= +gy(y) >0, fory>0



117

Normalized Radius of RoA
2D Model with RR

Figure 5.5: The normalized radius of the invariant subset of region of attraction
(RoA) for the nominal operating point for a 2D systems with reversible reactions
(RR), computed using second degree polynomial Lyapunov functions (g,(z) = k.z,
hy(y) = kzy, ¢ = 1, g,(y) = y, d.(z) = 0). The normalized radius of RoA is the
radius of RoA estimate normalized by the distance to the nearest fixed point.

Also under some similar mild assumptions, an analogue of Lemma 3.1 holds as well,
which assures that the trajectories of (5.1) are bounded.

Using the same optimization-based formulation as in Section 3.3, we can compute
invariant subsets of the region of attraction for each of the fixed points. Figure 5.5
shows that for most parameter values, large invariant subsets of region of attraction
can again be verified using second degree polynomial Lyapunov functions. Similar
to the case with irreversible reactions (Equation (3.1)), the systems with parameter
values close to the parameter stability boundary are harder to verify. This provides
further evidence that the observation of Chapter 3 that robust realization have simple
proofs (i.e., low degree polynomial Lyapunov functions can verify large invariant

subset of region of attraction) is a property of these autocatalytic pathways.
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5.4 Higher Dimensional Model of Autocatalytic Path-

ways with Reversible Reactions and Consump-
tion of Intermediates

In this section we combine the ideas of Section 5.2 to analyze a general autocatalytic
metabolic pathway composed of both reversible reactions and consumption of inter-

mediate metabolites. The chemical reactions that comprise this general pathway are

given by
utay = oz = m =P - =20, = (a+b)y =% ¢
Ldl Ldg Ldn
12 ¥ ¥

We consider the case where a = b = 1 with the corresponding ODE given by

i1 = f(y)+ ha(z2) — gi(z1) — di(z1)
T2 = qi(@1) + ha(zs) — g2(22) — ha(z2) — da(z2)
(5.5)
Tn-1 = Gn-2(Tn-2) + hu(Tn) = Gn-1(Tn-1) — hn-1(2n-1) — dn(2n-1)
Bn = gn1(@n-1) + hy(y) — gnl@n) = ha(zn) — dn(zn)
g = 2ga(z) — f(y) —2hy(y) — 9, (y),

for z; > 0,y > 0, and where f(y) = lrfy’;h and for all 4, g;, h;, d;, gy, hy are continuous,

monotone increasing functions that take the value 0 at 0.

5.4.1 Existence of the Fixed Point

Here we present a necessary conditions for the existence of a nonzero fixed point and
provide a probabilistic interpretation for this condition. Let h, = 0, h; = 0 for all

i =1,...n, i.e., no reversible reactions. Assume that the fixed point (Z,7) > (0,0)
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exists, then

= (2ITL 5o — 1) 1) = au(@).
In-1(Tp-1) = gn(Tn) + dn(Zn)
200 (%) = f(7) + gy@)

This implies that the fixed point (Z,7) > (0,0) exists only if

i=1

91(331
(xz)"'d (

x; will continue to the next step of the pathway (i.e., will be converted into 1),

where p;(Z;) := . We can think of p;(Z;) as the probability that a molecule

di(Z;
gz(IZ)JFd (T

and 1 — p;(7;) = the probability that it will be used by another pathway.
Then the probability that a molecule x; (produced by the first reaction through the
investment of 1 molecule of y) will ultimately be converted into 2 molecules of y and
not be used by other pathways is given by []'_, p:(Z;). So for each investment of 1
molecule of y at the start, the pathway expects a return of E, [y] = 2 (I]i, pi(Z:))
molecules of y at the end.

Condition (5.6) states that for a fixed point to exist, the expected return E, [y]
should exceed the value of the investment, i.e., each molecule y invested must produce
at least one molecule of y (E, [y] > 1). So in order for the pathway to have a stable

operating fixed point it must not allow excessive consumption of the intermediate

metabolites. For example, let d;(z;) = a;g;(x;), then condition (5.6) becomes

l\DI»—

I
=1
Ifoy =aforalli=1,...,nthen o < /2 — 1. So for a pathway of size 10, a has to

be less than 0.072, i.e., only a small percentage of the intermediate metabolites can



120

be consumed at each step.

Remark 5.1: If there are reversible reactions, we can get a similar condition to (5.6)
by considering the “net flow” g;(x;) — hit1(x;y1) through the pathway.

5.4.2 Stability of the Fixed Point

If a nonzero fixed point (z,7y) > (0,0) of (5.5) exists, then without loss of generality

we can set §y = 1. For the rest of the chapter we will assume y = 1. If h = ﬁh, and

Vor=f(1) =15 ri=ghi(e)

1+y LT Ouy

ki = %gi(%)‘f = aiidi(fﬂi)

I

T

ky = ,%gy(yi)h Ty = %hy(y)|17

then the dynamics of (5.5) near the fixed point are given by the following linear

system
T x
=J (5.7)
Y Y
for x € R", y € R and where
—my Ty o - 0 0 Volg — iz)
ki —mo 13 0 0 0
0 kg —1n3 . 0 0 0
J = )
0 0 0 —Mp—1 T 0
0 O O kn—l —Mp Ty
o 0 0 - 0 2%k, —k, — Vo(g—h) —2r,

and for all ¢, m; := k; + r; +n;, r1 := 0. Notice that all of the parameter in J are
non-negative and k; are strictly positive. This allows us to prove that the following

analogue to Proposition 4.2 holds for this more general pathway.

~

Proposition 5.1: (a) Let hy = q+ %l‘{"‘/—z and hy == q — ™. If hy < h < h., then
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(5.7) is stable for arbitrary size (n) and arbitrary values of intermediate reaction rates

(ki:ni;ri; Ty)'
(b) The bounds above are tight, i.e. for any gain h ¢ (ﬁs,izr], there exists an

unstable pathway.

PROOF: (a) Define

D = diag{m,...,n,,0} =0
J() = J—-D
and
—ky Ty 0 ces 0 2Vo(q — h)
kl _k'2 — Ty T3 0 0
0 kg —kg — T3 0 0
QO = X . . )
0 0 0 —k, —ry, 2r,
0 0 0 ko —ky,—Volg—h) —2r,
then .
I, 0 I, 0
<]0 = QO )
0 2 0 2

Consequently Jy has the same eigenvalues as (Jy. Also by adding all of the preceding

rows to row ¢ of ()y one can easily compute the determinant of )y as

n

det Qo = (=1)"" ky H (ki +14) <ky — Volg — il)) :

1=2

Consequently if h #*q— % = ﬁs, then det Qg # 0, and using diagonal dominance we

can conclude that for izs <h < iLT, (o is Hurwitz, and therefore Jy is Hurwitz. This

means that there exists a matrix P = 0 such that

JIP+ PJy=—1I,,
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[20]. Then
J'P+PJ = (Jy—D)' P+ P(J,— D)
— J'P+PJ,—D'P—PD
= —I1 — (DTP+ PD)

But DTP + PD = 0 since P = 0, D = 0 and D is diagonal, so
J'P+PJ =<0

and therefore J is Hurwitz for hy < h < h,, and (5.7) is stable.
(b) This follows from direct application of Proposition 4.2 with r, =0, 7, =0, =0

for all 7. ]

5.5 Compositional Analysis

We showed in Section 5.3 that we can use optimization-based formulations to compute
invariant subsets of the regions of attraction of the fixed points for the 2D version
of (5.5). However, as the dimension of the pathway grows, the corresponding SOS
programs become prohibitively large. To ameliorate this effect we propose a decom-
position scheme for high dimensional problems that is similar to the decomposition
of Chapter 4. This method takes advantage of the structure of the pathway and thus
creates an SOS program that is computationally tractable for large subsets of the
parameter space.

To begin the procedure we perform a change of coordinates for (5.5) so that
the fixed point of interest, (Z,1), is at the origin. As before, all of the functions

Gi, hi, di, gy, hy, f are just shifted versions of themselves. After relabeling we get
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where x € R", y € R,

ho(w2) — g1(z1) — di (1)
91(71) + ha(x3) — ga(wa) — ha(w2) — da(z9)

| In-1(Tp_1) + hy(y) = In(Tn) — hn(2n) — dn(20)

5o |
00 ---01

for all 4, gi, hi, d;, gy, hy are continuous, monotone increasing functions and take the

value 0 at 0, and
_ Vly+1r VvV
L+yy+Dh 144

f(y)

System (5.8) can be decomposed into the feedback interconnection of two systems .Sy

and S,. System S; is a "simple” n-dimensional input-output system defined as

t = F(z)+ Bz

w = gn(xn)

where 7 € R", 2 € R2. System S5 is a one dimensional nonlinear input-output system

that captures the most important nonlinearity and has the form

y = 2w—2h,(y) = f(y) — g,(v)
f(y)
hy(y)

where y € R.

If one considers the supply rate p : R* — R, parametrized by 61, ds,k1, and ko

plw, 21, 2) 1= w? — 281wz — 200W2y — K127 — KoZs
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and defines
C1(01,09) = 2010 — 2092 + (2¢5 — 0 + 1)
Co(01, 09, K1, ko) = &+ 4dejey + 4cs — 2¢10 — deyo + o

—4Kk0?% — 4/{205
+40, (c10 + 250 — 0?)
+485 (co0 — 263 — c103)

v (y) = 2(01f(y) + dahy(y)) — 2hy(y) + (y) + 9u(y))

vo(y) = (01f(y) + 0y (y) + 1/ (y) + mary (y)

where ¢; = k,, co = ry and k1, kg > 0, then one obtains the following lemmas.

Lemma 5.1: (a) There exists a nonempty neighborhood Ny of the origin and a posi-
tiwe definite function Uy : R — R in Ny, such that for all nonzero y € Ny and w € R,
Us(y) > 0 and

oU,

n 2w = 2hy(y) — f(y) — 94(y)) < p(w, f(y), hy(y)) (5.9)
iof and only of
01(51, (52) > 0, and 02(51, 52, K1, IQQ) >0 (510)
(b) Define ,
Us(y) := —/0 Son(€)de (5.11)
and
Dy :={y e R| —vi(y)y > 0 and vi(y) — 4vo(y) > 0} . (5.12)

If inequality (5.10) is satisfied, then there exists a nonempty neighborhood Ny of the
origin, No C D,|J{0} such that U, is positive definite in Ny and for all nonzero
y € Ny and w € R, Uy satisfies (5.9).
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PROOF: (a) Let

M (y,w) := égf (2w —2hy(y) — f(y) — 94(v)) — p(w, f(y), hy(y))

Mi(y,w) = 522 (2w —2h,(y) — f(y) — 9,(v))
—w? + 20w f (y) + 202why (y) + k1 f*(y) + Karp (y)
= (0= (L + 0@ + o)) + (L +00) + Bahy(v)
— %2 (2hy(y) + fy) + 9,(y) + k1Y) + kary (y)

Let
Ma(y) = (%2465 (y) + by (v))
—%’f( w () + F(Y) + 9y(0) + E1f?(y) + rary(y)
= <%—U;) +oi(y) GF +v0(y).

Notice that

0

a—ym(y)\o = -4 (51, 52)

The first order term of the Taylor expansion of Ms(y) is 0. Let the second order term

in the expansion be M3 and

. 0%Us . 9%vp
D= g7 o (o = G2 1o

then
My = p*—C (01,02) p + ao,

where ag := (d10 + 5202)2 + K102 + Kocs > 0. Notice that
Cs(01, 02, K1, k2) = (Ch (61, 62))° — 4ay.

= direction:
Assume such Uj exists. We will show that if either Cy < 0 or C; < 0 then there is no

nonempty neighborhood of the origin where U, is positive definite and satisfies (5.9).
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If Co(d1, 02, K1, k2) < 0 then Mz > 0 and in every neighborhood of the origin, there
exists a yo # 0 such that Ms(yy) > 0, and for w = (aa—[f + 1 f(vo) +52hy(yo)>,
M; > 0.
If Cy(01, 09, K1, k2) > 0 and C; (41, 02) < 0, then the roots of Mz = 0 are negative and
therefore M3 > 0 for all p > 0. So in every neighborhood of the origin, there exists a
yo # 0 such that either My(yo) > 0= M; > 0, or Us(yo) < 0.
< direction:

If 02(61,62, K1, Iig) > 0 and (] (51,62) > 0. Pick U; such that

0*U. 1
ayj lo=5C1(81,62).

Then M3 < 0 and therefore there exists a neighborhood of the origin A such that
for all nonzero y € Ny, w € R, Us(y) > 0 and My < 0= M; < 0.

(b) Notice that for y € D, and U,(y) defined as in (5.11), Us(y) > 0 (—v1(y)y > 0)
and Ms(y) > 0 since

Ma(y) = ivf(y) — %vf(y) +vo(y) = —ivf(y) + vo(y).

But
—vi(y) = Ci(d1,02)y* +O(y?)

vi(y) —4ug(y) = Ca(d1, 02, k1, k2)y? + O(y?)

and therefore there exists nonempty neighborhood of the origin Ny C D, |J{0}.

Lemma 5.2: Let U; : R" — R be a solution to the following SOS feasibility problem

Up(z) is SOS

— 1 (F(x) + Bz) = p(ga(@n), 21,22) is  SOS
C1(01,00) is  SOS (5.13)
Cy(01, 09, K1, k2) is  SOS

K1, Ko > 0.
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Figure 5.6: The restrictions C(d1,02) > 0, Cy(d1,02,Kk1,k2) > 0 imposed on the
supply parameters, result in sector conditions for f in Example 5.1. In this case
Ulz,y) <0 for (z,y) € R* x D, where D, is the set of points y for which the graph
of f lies in the area between the lines [;(y) = 0.0971y and l5(y) = —0.5464y.

Then for Uy defined as in (5.11), D, defined as in (5.12)
U(z,y) = Ui(z) + Ua(y)
there exists 0 > 0 such that
Qg =A{(z,y) | Ulz,y) < B} CR" x D,

is an invariant subset of the region of attraction of the origin of (5.8).
PROOF: Direct consequence of Lemma 5.1.
Remark 5.2: Lemma 5.2 gives us a way to compute a Lyapunov function for (5.8)

by solving (5.13). Since we expect F(x) to be “simple”, the degrees of SOS polynomial
in the SOS program (5.13) are expected to be low, and thus computationally tractable.

Example 5.1: Let n =11, g,(y) =y, hy(v) =y, f(y) = AWED ) gi(w) = 2a,

1+3(y+1)*
hi(x;) = x;, and d;(z;) = 0. Solving (5.13) returns

01 = 2.2046 0o = —0.6424
k1 = 7.9964 Ko = 3.6494.
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Consequently,

vi(y) = 2(0f(y) + dahy(y)) — (2hy(y) + f(v) + g4(y))
= 3.4093 f(y) — 4.2848 y,

and

Us(y) = 1.0712y* + 3.4093y + 3.15086 — 2.27287 log (1 + 3(1 + y)?)

and D, is the set of points y for which the graph of f lies in the area between the lines
li(y) = 0.0971y and ly(y) = —0.5464y (Figure 5.6), which gives 3 = 0.7073.

5.6 Summary

Autocatalytic metabolic pathways, such as glycolysis, provide many of the necessary
intermediates used to produce organic molecules that are essential to the function of
the cell. For glycolysis, as a model pathway, this means that there are less resources
to produce energy (ATP) from, which effectively reduces the efficiency of the pathway
(i.e., how much energy (ATP) is produced per energy invested in the autocatalytic
step). This effective reduction in efficiency makes the pathway harder to control be-
cause it corresponds with the RHP zero getting smaller, and thus good performance at
low frequencies gets more expensive. Additionally, glycolysis must enforce a positive
return in the energy investment, i.e., for each unit of energy invested at the beginning,
it must produce at least that much energy produced by the end of the pathway. The
loss of the intermediates to the other pathways must be only a fraction of the available
resources, otherwise excessive consumption of these intermediates causes the pathway
to crash.

On the other hand, the presence of reversible reactions makes the autocatalytic
pathways easier to control. They function as “release valves” by making higher stable
gains available, thus providing more robustness and better achievable performance
objectives.

High feedback gains can cause instability and lead to oscillation in autocatalytic
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pathways with both reversible reactions and intermediate consumption. However, as
in the case with no reversible reactions or consumption of intermediates, if a fixed
point exists, then there are tight lower and upper bounds, respectively fzs, iLT, on the
feedback gain h that guarantee stability for arbitrary size pathway as well as arbitrary
values of both the (reversible) reaction rates and intermediate consumption rates.

Nonlinear global analysis of the model given by Equation (5.1), as before shows
that allosteric feedback regulation can suppress the positive feedback generated by
autocatalysis, thus guaranteeing both that the trajectories of the system are bounded,
as well as the local stability of the operating fixed point. Region of attraction analysis
using optimization-based formulation using Lyapunov functions and SOS program-
ming specifically reveals that although the system is robust to perturbations in state
space, its stability can be susceptible to perturbations in the parameter space.

Estimation of the region of attraction for the higher dimensional model described
by equation (5.5) is a hard nonlinear problem, that is not amenable to a direct brute
force application of optimization-based formulations. However the underlying struc-
ture of the system allows for compositional analysis of the system using the feedback
interconnection of two systems and local dissipation inequalities, similar to the frame-
work developed in Chapter 4. We use a simple decomposition to show that for a subset
of the models we can find Lyapunov functions by solving a computationally tractable

SOS feasibility problem.
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Chapter 6

Conclusions

6.1 Summary

Stability of the Glycolytic Pathway Glycolysis is a prime example of an auto-
catalytic metabolic network (pathway). The task of the control system in glycolysis
is to maintain the pathway close to its standard biological fixed point where the
cell operates in the presence of disturbances and plant uncertainty. A simple 2D
model described by Equation (3.1) captures the essential dynamics of the glycolytic
pathway. This model reveals that the existence of a right half-plane (RHP) zero,
which is a result of the structure of autocatalysis and controls in the pathway, is at
the core of many of the limitations that constrain pathway performance. This RHP
zero is responsible for the existence of a conservation law, which is mathematically
described by a special form of the Bode Sensitivity Integral (Equation(2.9)). It is
hypothesized that oscillations in glycolysis might be a result of tradeoffs that stem
from this conservation law. For example, the control mechanism might operate in
a regime where the pathway has close to optimal performance for the common op-
erating conditions described by a safe set in parameter space. However, this might
put the controller gain close to a set in parameter space, for which the control is too
aggressive. The plant normally avoids the unsafe set, except for a few rare events.
In those rare events, instabilities are exhibited in the form of oscillations in ATP
concentration. This proximity to the unsafe set for high performance feedback gains

is unavoidable and a consequence of the aforementioned conservation law that arises
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from the structure of the autocatalytic pathways.

The 2D model described by Equation (3.1) suggests that there are two basic
mechanisms that can cause glycolysis to crash (i.e., ATP concentration approach
zero); failure of transcriptional regulation or overly aggressive allosteric regulation.
The first scenario occurs when the slow transcriptional regulation fails to prevent
the system from going into a(n) (invariant) regime where the consumption of ATP
is faster than its production. This can be caused by a sudden drop in the input to
the system (glucose) or an increase in ATP demand. Either condition causes the
system to deplete all of its ATP reserves, which results in all of the concentrations
going to zero and thus cell death. The overly aggressive fast allosteric feedback
condition can be caused by drops in the catalyzing enzyme concentrations. Most
of the time aggressive feedback leads to oscillations in ATP concentration. However,
under certain circumstances, if the drops in enzyme concentrations are too severe, the
magnitude of oscillations increases to the point that a homoclinic bifurcation occurs
causing the pathway to crash.

Simulations of the system (3.1) show that the region of attraction of the fixed
point where the cell operates is large. This means glycolysis as modeled by (3.1)
is not sensitive to perturbations in the concentration of the reactants. In fact, the
analysis of the glycolysis model confirms that oscillations and crashes in glycolysis
are not caused by perturbations in state space (i.e., perturbations in the concentra-
tions of the products and reactants), but rather perturbations in the parameter space
(i.e., catalytic enzyme concentrations, precursors to the pathway, ATP demand, or

temperature) as observed in the literature [14, 6, 24, 31, 33, 38]|.

Stability and Performance of Autocatalytic Pathways Autocatalytic net-
works (pathways) are hard to control because of inherent instabilities and limitations
imposed on their performance by the structure of autocatalysis. Performance of an
autocatalytic pathway is defined as the ability of the control mechanisms to maintain
the pathway close to its standard biological operating point in the presence of distur-

bances and plant uncertainty. These metabolic pathways are composed of large chains
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of both irreversible and reversible reactions, that interact with other components in
the cell. In fact, they are an integral part of the whole cell activity and are coupled
with other networks through the exchange of products and sharing of components,
as many of their intermediate products are used by other processes in the cell. We
analyze these autocatalytic metabolic networks (pathways) using the different models
described by Equations (5.1), (4.1) and (5.5) that incorporate multiple intermediate
reactions (Equations (4.1) and (5.5)), and reversible reactions and consumption of
the intermediate metabolites (Equations (5.1) and (5.5)).

Output feedback regulation of autocatalytic pathways can suppress the positive
feedback generated by autocatalysis, thus guaranteeing both that the trajectories of
the system remain bounded, as well as the local stability of the operating fixed point.
However the structure of autocatalysis limits the range of stable feedback gains iz,
because the product of the pathway both controls and is consumed by the first reac-
tion. A direct application of a secant condition |2, 39, 43| to the n-dimensional model
described by (4.1) (no reversible reactions and no consumption of intermediates) gives
an upper bound iLd(n) on the feedback gains iL, that result in stability of pathways
of fixed size (n) and arbitrary (fixed) intermediate reaction rates. The bound hg(n)
suggests that the range of available stable gains gets smaller as the pathway size
(n) increases. On the other hand, consumption of intermediate metabolites and the
presence of reversible reactions increases the range of stable gains. For the more gen-
eral model described by (5.5) there are tight lower and upper bounds, respectively
ﬁs, BT, on the feedback gain h that guarantee stability for arbitrary pathway size as
well as arbitrary values of both the (reversible) reaction rates and the intermediate
consumption rates. These bounds are tight in the sense that unstable pathways can
be constructed for gains that lie outside the ranges established by these bounds.

Similar to the 2D model of glycolysis described by Equation (3.1), the existence
of a RHP zero z is at the core of many of the limitations imposed on the performance
of these pathways. The special form of the Bode Sensitivity Integral (Equation(2.9))
imposes hard limits on the sensitivity function S, requiring the conservation of the

area under the curve of the “weighted” log|S|. S is closely related to many perfor-
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Figure 6.1: The effect of increases in enzyme concentrations (EC), pathways size (PS),
intermediate consumptions (IC), and reversible reactions (RR) on the performance
and range of stable feedback gains.

mance objectives, since it measures the sensitivity to a large class of disturbances.
The weight on S in Equation (2.9) depends on the magnitude of z and emphasizes
the frequencies smaller than z, thus making better performance (small S) at low
frequencies more expensive (i.e., large S) in higher frequency ranges.

High concentration of catalyzing enzymes leads to an increase in the rates of the
intermediate reactions, which makes the pathway more stable (i.e., there is a larger
range of stable gains available) and increase the magnitude of z (i.e., “softens” the
hard limits on performance).

Pathway size has the opposite effect of increasing the enzyme concentrations on
pathway performance. An increase in the size of the chain of enzymatically catalyzed
intermediate reactions in the autocatalytic pathways causes two adverse effects on
performance: good performance at low frequencies gets more expensive (i.e., z be-
comes smaller) and the range of available stable gains is reduced which makes the
operating gains less robust and reduces the achievable performance objectives.

Consumption of intermediates in autocatalytic metabolic pathways results in less
resources available to convert to the product of the pathway, which effectively reduces
the efficiency of the pathway. This effective reduction in efficiency makes the pathway

harder to control because it again corresponds to the RHP zero(s) getting smaller, and
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thus good performance at low frequencies gets more expensive. Another constraint
on these pathways is that the loss of the intermediates to the other pathways must
be only a fraction of the available resources because excessive consumption of these
intermediates causes the pathway to crash.

On the other hand, the presence of reversible reactions makes the autocatalytic
pathways easier to control, as they function as “release valves” by making higher
stable gains available, thus providing more robustness and better achievable perfor-
mance objectives. Figure 6.1 shows a summary of the role of concentration of catalyz-
ing enzymes, pathway size, consumption of intermediate metabolites, and reversible

reactions in determining the stability and performance of the pathway.

Nonlinear Analysis and Region of Attraction Estimations If the dynam-
ics of the systems given by (3.1),(5.1), (4.1) and (5.5) are rational functions of the
state, then the size of the region of attraction of the fixed point can be estimated by
optimization-based formulations using Lyapunov functions and SOS programming.
These formulations reveal that low degree polynomial Lyapunov functions can verify
region of attraction related properties for a wide range of parameters. For exam-
ple extensive experiments run on 2D, 3D and 4D systems reveal that systems whose
operating point is robustly stable with respect to perturbations in parameter values
are simple to verify, i.e., a second degree polynomial Lyapunov function verifies large
invariant subsets of the region of attraction of the fixed point. In fact, polynomial
Lyapunov functions of degree larger than 2 are only necessary for systems whose
parameter values fall close to the stability boundary in the parameter space. These
points are clearly not robust as small changes in parameters may result in the insta-
bility of the fixed point. Computing and characterizing the invariant subsets of region
of attraction for larger pathways is not possible because the degree of the polynomials
in the corresponding SOS program is high (even when searching for quadratic poly-
nomial Lyapunov functions) and the problem becomes computationally intractable.
The underlying structure of the system (4.1) allows for compositional analysis of

the system using the feedback interconnection of two systems and local dissipation
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inequalities. The system given by (4.1) is represented as the feedback interconnection
of an nj-state system S; given by (4.32) and an ny-state system Sy given by (4.33),
with n; generally (much) bigger than ny. If the vector field of system (4.1) is rational
we can construct Lyapunov functions using local dissipation inequalities and solving
the corresponding SOS problems (4.37) and (4.38). The first SOS problem (4.37)
contains low degree (2a) polynomials in many (n;) variables, and the second one
contains high degree (2as) polynomials in a few (ny) variables. As the size (ny) of
system S5 increases, so does the computational complexity of constructing a Lyapunov
function. However if computing resources are available, (n, ny)-decompositions with
the larger ny can be used to construct Lyapunov function for realizations of (4.1)
with higher the gains. Notably, the (n,1)-decomposition specifically allows us to
analytically construct diagonal Lyapunov functions for system with feedback gain
less than hy(n).

The structure of the system described by Equation (5.5) similarly allows for com-
positional analysis of (5.5) using the feedback interconnection of two systems and
local dissipation inequalities. We use a simple (n, 1)-decomposition to show that for
a subset of the models we can find Lyapunov functions by solving a computation-
ally tractable SOS feasibility problem. Figure 6.2a shows a summary of the role
of concentration of catalyzing enzymes, pathway size, consumption of intermediate
metabolites, and reversible reactions in determining the computational complexity of

the pathway and how they each relate to performance.

Tradeoffs The investigation of the autocatalytic pathways reveals a few fundamen-

tal performance tradeoffs which can be classified in the following manner.

e Overall cell energy efficiency vs. performance. Performance and stability of the
pathway improves with increases in the catalyzing enzyme concentrations (i.e.,
faster reaction rates). However maintaining high enzyme concentrations in the

cell is energetically wasteful.

e Multi-purposeness of the pathway vs. performance. Autocatalytic pathways
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Figure 6.2: The effect of increases in enzyme concentrations (EC), pathways size (PS),
intermediate consumptions (IC), and reversible reactions (RR) on the performance
and computational complexity of the pathways.

provide many of their intermediate products to other processes in the cell. These
intermediates are essential to the cell, however their consumption reduces the

efficiency of the pathway which causes its performance to suffer.

e Robustness vs. performance. Higher feedback gains generally lead to better
performance at the low frequencies, but this makes the operating point less
robust because these high gains could be close to the stability boundary. In
this case a change in the nominal parameter values (for example a drop in
the catalyzing enzyme concentrations) could lead to oscillations in the ATP

concentration and instability of the operating point.

e Evolvability vs. performance. For feedback gains smaller than iLT, the pathway
is robustly stable with respect to the insertion or removal of intermediate re-
actions. However the pathway sacrifices performance by using smaller gains to

have this additional flexibility.

e Computational complexity vs. performance. Higher feedback gains (i.e., better
performance) make the system harder to analyze. Specifically, as discussed in
the previous paragraph, in order to construct Lyapunov functions for realiza-

tions with high gains we need to use we need to use (nj, ny)-decomposition with



137

the large ny. However as the n, increases, so does the computational complexity

of the corresponding SOS problem.

Complexity and Robustness We define the complexity of a realization of model
(3.1) by the complexity of the vector field in the neighborhood of the operating
equilibrium point. We then develop two related approaches to quantify this view;
the smallest order polynomial Lyapunov function needed to verify a specific set as
an invariant subset of the region of attraction, or the size of the region of attraction
verified by a specific order polynomial Lyapunov function. To evaluate the complexity
of system realizations we compare realizations that are “topologically equivalent”, i.e.
realizations that have the same number and location of fixed points and the same
size region of attraction. This framework in 2, 3, and 4D reveals that robust systems
(systems whose parameter values are in the middle of the stability region) have simple
proofs (i.e. second degree polynomial can verify large invariant subsets of region of
attraction). In higher dimensions, using (n;,ny)-decompositions, we again observe
that realizations that are more (computationally) complex can only arise from those
realizations with high gains (i.e., gains that are close to the stability boundary, and
therefore fragile to perturbations in parameter space). This is derived from the fact
that (nq,ny)-decompositions with large ny are necessary only for gains that are close

to the instability boundary (Table 2.1).

6.2 Future Research Directions

The work done up to this point covers networks that contain one autocatalytic loop.
This topology is applicable to many glycolysis models that “lump” the two ATP
autocatalytic loops of glycolysis into a single one. It would be of interest to investigate
more general networks composed of multiple autocatalytic loops. These pathways
could be controlled by allosteric feedback at different points in the pathway. A first
step toward such pathways would be the study of the network shown in Figure 6.3.
This network better captures the topology of the real glycolysis pathway, as it models



Figure 6.3: Pathway with two autocatalytic loops.

the two ATP autocatalytic loops explicitly. Even though the presence of these loops
breaks down some of the nice structure of the networks discussed so far, enough special
structure remains that the results of this thesis might generalize for these networks.

Another direction of research is to determine where in parameter space the real
biology lies. Applying tools from areas such as optimal control, one can determine the
optimal parameter value for specific performance measures. Alternately, by using pa-
rameter values obtained experimentally one can determine the performance measures
that are being optimized.

Many methods proposed in this thesis, such as the decomposition and the con-
struction of Lyapunov functions, are quite general and can be applied to many other
biological networks that exhibit similar structure. More generally one can investigate
if the various tradeoffs and results in this thesis are generalizable to other classes of

biological networks.



139

Bibliography

1]

2]

13l

4]

[5]

6]

17l

18]

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell, Fourth Edition. Garland, 2002.

M. Arcak and E. D. Sontag. Diagonal stability of a class of cyclic systems and
its connection with the secant criterion. Automatica, 42(9):1531-1537, 2006.

M. Arcak and E. D. Sontag. A passivity-based stability criterion for a class
of biochemical reaction networks. Mathematical Biosciences and Engineering,

5(1):1-19, 2008.

M. Banuelos, C. Gancedo, and J. M. Gancedo. Activation by phosphate of yeast
phosphofructokinase. Journal of Biological Chemistry, 252(18):6394-6398, 1977.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convexr Optimization: Anal-
ysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimiza-
tion, 2001.

M. Bier, B. Teusink, B. N. Kholodenko, and H. V. Westerhoff. Control analysis
of glycolytic oscillations. Biophysical Chemistry, 62(1-3):15-24, Nov 1996.

S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge Univ. Press,
2004.

F.A. Chandra, G. Buzi, and J.C. Doyle. Linear control analysis of the autocat-
alytic glycolysis system. In American Control Conference, pages 319-324, June
2009.



9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

140
S. Dang, M. F. Madsen, H. Schmidt, and G. Cedersund. Reduction of a bio-

chemical model with preservation of its basic dynamic properties. FEBS Journal,

273(21), 2006.

J. Doyle, B. Francis, and A. Tannenbaum. Feedback Control Theory. Macmillan
Publishing Co, 1990.

M. Feinberg. Chemical reaction network structure and the stability of complex
isothermal reactors: II multiple steady states for networks of deficiency one.

Chemical Engineering Science, (43):1-25, 1988.

M. Feinberg. The existence and uniqueness of steady states for a class of chemi-
cal reaction networks. Archive for Rational Mechanics Analysis, (132):311-370,
1995.

A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge Uni-
versity Press, Cambridge, 1996.

B. Hess and A. Boiteux. Substrate control of glycolytic oscillations. In B. Chance,
E. K. Pye, A. A.K. Ghosh, and B. Hess, editors, Biological and Biochemical
Oscillators, pages 229-241. Academic Press, 1973.

D. Hinrichsen and A. J. Pritchard. Mathematical Systems Theory I. Springer-
Verlag Berlin, 2005.

F. Horn and R. Jackson. General mass action kinetics. Arch. Rational Mech.

Anal, 47(2):81-116, 1972.

R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University Press,
February 1990.

F. Hynne, S. Dang, and P. G. Sgrensen. Full-scale model of glycolysis in saccha-
romyces cerevisiae. Biophysical Chemistry, 94(1-2):121 — 163, 2001.

J. A. Imlay. Pathways of oxidative damage. Annual Review of Microbiology,
57(1):395-418, 2003.



[20]

21]

22]

23]

[24]

[25]

[26]

27]

28]

[29]

141

R. E. Kalman and J. E. Bertram. Control system analysis and design via the

“second method” of lyapunov: Parts I and II. Journal of Basic Engineering,

82:371-400, 1960.
H. K. Khalil. Nonlinear Systems. Prentice Hall, 3" edition, 2002.

P. De Leenheer, D. Angeli, and E. D. Sontag. Monotone chemical reaction

networks. Journal of Mathematical Chemistry, 41(3):295-314, April 2007.

J. Lofberg. Yalmip : A toolbox for modeling and optimization in MATLAB. In
Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

K. Nielsen, P. G. Sorensen, F. Hynne, and H. G. Busse. Sustained oscillations in
glycolysis: an experimental and theoretical study of chaotic and complex periodic
behavior and quenching of simple oscillations. Biophysical Chemistry, 72:49-62,
1998.

B. O’Rourke, B. Ramza, and E. Marban. Oscillations of membrane cur-

rent and excitability driven by metabolic oscillations in heart cells. Science,

265(5174):962-966, 1994.

A. Papachristodoulou. Scalable analysis of nonlinear systems using convex opti-

mization. Ph.D. dissertation, Caltech, January 2005.

P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. Ph.D. dissertation, California Institute of

Technology, May 2000.

P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.

Mathematical Programming Series B, 96(2):293-320, 2003.

J. R. Pomerening, S. Y. Kim, and J. E. Ferrell. Systems-level dissection of the
cell-cycle oscillator: bypassing positive feedback produces damped oscillations.

Cell, 122(4):565-578, August 2005.



[30]

[31]

[32]

[33]

[34]

[35]

[36]

37]

38]

[39]

142

S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOSTOOLS: Sum
of squares optimization toolbox for MATLAB, 2004.

P. Richard. The rhythm of yeast. FEMS Microbiology Reviews, 27:547-557, 2003.

P. H. Richter and J. Ross. Concentration oscillations and efficiency: glycolysis.

Science, 211(4483):715-717, 1981.

P. Ruoft, M. Christensen, J. Wolf, and R. Heinrich. Temperature dependency and
temperature compensation in a model of yeast glycolytic oscillations. Biophysical

Chemistry, 106:179-192, 2003.

P. Seiler. Multipoly and SOSOpt:  Matlab packages to represent mul-
tivariate polynomials and for sum-of-squares optimization. available at

http://jagger.me.berkeley.edu/software /acc09/.

E. E. Selkov. Stabilization of energy charge, generation of oscillations and mul-
tiple steady states in energy metabolism as a result of purely stoichiometric

regulation. European Journal of Biochemistry, 59(1):151-157, 1975.

E. D. Sontag. Monotone and near-monotone biochemical networks. Systems

Synthetic Biology, 1(2):59-87, Apr 2007.

J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999.

Available at http://sedumi.mcmaster.ca/.

B. Teusink, B. M. Bakker, and H. V. Westerhoff. Control of frequency and am-
plitudes is shared by all enzymes in three models for yeast glycolytic oscillations.

Biochimica et Biophysica Acta, 1275(3):204-212, Jul 1996.

C. D. Thron. The secant condition for instability in biochemical feedback control

— Parts I and II. Bulletin of Mathematical Biology, 53:383—424, 1991.



143
[40] U.  Topcu. Quantitative  local  analysis  of  nonlinear  sys-
tems. Ph.D. dissertation, UC, Berkeley, 2008. available at

http://jagger.me.berkeley.edu/ utopcu/dissertation.

[41] U. Topcu, A. Packard, and P. Seiler. Local stability analysis using simulations
and sum-of-squares programming. Automatica, 44:2669 — 2675, 2008.

[42] U. Topcu, A. Packard, P. Seiler, and G. Balas. Stability region estimation for
systems with unmodeled dynamics. In Proceedings of the European Control Con-

ference, 2009.

[43] J. J. Tyson and H. G. Othmer. The dynamics of feedback control circuits in bio-
chemical pathways. In R. Rosen and F. M. Snell, editors, Progress in Theoretical

Biology, volume 5, pages 1-62. Academic Press, New York, NY, USA, 1978.
[44] M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, 2" edition, 1993.

[45] L. Wang and E. D. Sontag. Singularly perturbed monotone systems and an
application to double phosphorylation cycles. Journal of Nonlinear Science,

18(5):527-550, October 2008.

[46] J. C. Willems. Dissipative dynamical systems I: General theory. Archive for
Rational Mechanics and Analysis, 45:321-343, 1972.

[47] J. Wolf, J. Passarge, O. J. G. Somsen, J. L. Snoep, R. Heinrich, and H. V.
Westerhoff. Transduction of intracellular and intercellular dynamics in yeast

glycolytic oscillations. Biophysical Journal, 78(3):1145 — 1153, 2000.



