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ABSTRACT 

The matrix-vector multiplier is an important building block in optical informa­

tion processing architectures, examples of which are correlators for pattern recog­

nition, associative memories, and neural networks. Such architectures are most 

suitable for implementation by optics due to the ease in realizing dense intercon­

nections optically. The success of the implementation partially relies on the quality 

of the SLM used to record the information for processing. Limited dynamic range 

for the representation of the data recorded is a common drawback suffered by most 

commercially available devices. In this thesis, the importance of the dynamic range 

of the device on the performance of the implementation is investigated. The effect 

of limited dynamic range on the signal to noise ratio, probability of error, capacity, 

and training of various forms of matrix-vector multipliers are addressed. Through 

the use of theoretical analyses, computer simulations, and optical experiments, it 

will be shown that a large dynamic range is not essential in most applications. 

Specifically, it is shown that only one bit of dynamic range, i.e. two gray levels, for 

the representation of each data point, results in acceptable loss in performance. 
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I. Introduction 

One of the most important building blocks in optical information processing 

architectures is the correlator. In its analog form, the correlator is composed of an 

input function f(x, y), a reference kernel h(x, y), and an output function g(x, y): 

g(x,y) = j j f(x + x,y + y)h(x,y)dxdy 

We will assume that f and h are both real functions. The relationship between 

the input and the output can be described as follows: each output data point is 

the result of the inner-product between a shifted form of the input pattern and the 

reference kernel. The correlation center is the output point corresponding to the 

unshifted input function. (In its discrete form, the reference kernel and the output 

function become vectors whereas the input function and its various shifted forms 

can be described by a Toeplitz matrix.) 

Correlators have been studied extensively in many fields ( e.g. singal processing, 

communication, and pattern recognition). Besides the attractive feature that the 

operations needed to calculate the correlation (multiplication and addition) can be 

done in parallel, another reason why correlators are so popular in the field of optics 

is the simplicity of their implementations. The hardware requirement are a device to 

represent the input, a lens (for calculating Fourier transform of the input), another 

device to represent the kernel, a second lens (for the inverse Fourier transform), and 

an output detector (Figure I.I.). 

The input and the kernel can be represented through various means. One of 
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them is through the use of spatial light modulators (SLl'vl). A SLM is a device which 

modulates the incident light, e.g. amplitude, according to the information recorded. 

The performance of the implementation depends largely on the quality of the SLMs 

used. 

Intuitively, a "good" SLM means that the modulation introduced by the SLM 

resembles the function recorded closely. If this is the case, we expect the real corre­

lation output to resemble the correlation we try to implement. By the same token, 

a "poor" SLM will yield a correlation output which we did not plan for. It is, 

however, important to note that typically, the optical implementation of correlators 

are aimed at accomplishing certain goals ( e.g. pattern recognition). It is therefore 

unimportant whether the correlations come out to be exact so long as the desired 

goal is accomplished. For example, a correlator is often used to do template match­

ing. In this case, the kernel is the template. vVhen a pattern is presented at the 

input plane, the cross-correlation between the input pattern and the template will 

be obtained at the output plane. If the input pattern resembles the template, the 

cross- correlation will contain a strong peak. By the presence ( or absence) of such 

a peak, patterns can be classified. It is evident that the essential element in such 

a system is the presence or absence of a correlation peak but not the fidelity with 

which the correlation function is computed. Thus, so long as the kernel and the in­

put correlate strongly when so desired, it does not really matter how close do they 

represent the respective functions. This observation allows us to use effectively, 

non-ideal devices. 

Currently, commercially available SLMs suffer from various drawbacks. Some 
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of them are: low resolution, poor optical quality, and few gray levels per pixel. All 

of these factors affect the actual correlation output. At least one of them, few gray 

levels, however, does not degrade the "detectability" of correlation peaks (should 

they be present) significantly. The goal of my thesis is to demonstrate that this is 

indeed the case. 

The detectability of correlation peaks is a quality measured by comparision: 

the strength of correlation peaks can only be determined by also measuring their 

background. In this sense, the signal to side-lobe ratio, SSR, is a useful figure of 

merit to quantify the perfomance of various correlators. It can be shown that the 

matched filter, MF, (h(x, y) = f(x, y)) is the optimum linear filter in terms of SSR 

if fa white Gaussian random process (Figure I.2.). 

Suppose we want to implement the MF. If the kernel is affected by limited 

dynamic range ( another way of saying few gray levels per pixel) of the SLM that 

it is written onto, we expect the SSR to be less than that of the genuine MF. We 

also expect that as the dynamic range is reduced, the SSR is also degraded. The 

worst performance is expected when the SLM has only a one-bit (two gray levels) 

dynamic range. By this virtue, the model that I will use the most in this thesis is a 

device with only two gray levels. The results on perfomance of various correlators 

using this model should provide useful lower bounds for correlators implemented 

with devices having larger but still limited dynamic range. By comparing the results 

produced by my model and those produced by devices with infinitely large dynamic 

ranges, the importance of dynamic range on information processing of the cases I 

considered can be realized. 
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In Chapter II, we investigate the degradation in perfomance of various forms 

of the MF with only one bit of dynamic range. The detectability of the correlation 

peak with and without the influence of noise are examined. Specifically, the SSR 

and the SNR ( signal to noise ratio) are calculated. The SSR and the SNR of the MF 

can be shown to be proportional to N 2 , the number of pixels in h or f. Comparing 

to the MF, the SSR and the SNR of the one-bit correlators considered are shown to 

decrease by constant factors. In other words, the correlation peaks of all the one-bit 

correlators considered will be detectable given enough information is contained in 

the patterns to be identified. Another standard problem in pattern recognition is 

the two-category classification. In this problem, patterns are assigned to one of two 

categories by comparing the inner-products ( a special case of correlation) of the 

patterns with the two representation patterns of the two categories -- a pattern 

is assigned to one category if its inner-product with that category's representation 

pattern is greater than that of the other category (Figure I.3. ). 

Matched filters ( one for each category) are the optimum representation patterns 

in terms of probabiliy of error if the patterns are white Gaussian random processes. 

Respective qualitative treatment of the 1-bit correlators are given. It is shown 

that the general behaviors of the MF and the 1-bit correlators are the same as the 

number of pixels increases, i.e. the probability of errors decreases. 

Suppose the features (in forms of vectors) of the patterns belonging to two 

different classes are known. Then pattern classifers using these features can be 

constructed. One way to construct such a classifier is to build correlation filters 

out of a linear combination of the known features. Patterns can be identified by 

computing the inner-products of the patterns and the filters. (The classifier can be 



7 

g1=f•h1 

/ h1 

Max. m 
f 

ni=l,2 

h2 
g2=f ·h2 

Figure I.3. A two-category classifier. 



8 

made insensitive to translations in inputs if the correlations are computed.) The 

appropriate figure of merit in this case is the number of independent features that 

the filters can sustain given a certain number of pixels without exceeding a certain 

probability of error. We refer to this figure of merit as the capacity of correlators. 

The quantitative value of the capacity provides a good idea for the number of 

patterns that correlators can handle. When these correlators are implemented on 

devices with lim.ited dynamic range, we expect a decrease in capacity. In Chapter 

III, I derived the capacity of correlators with a one-bit dynamic range. The capacity 

of correlators with an infinite dynamic range are also derived for comparison. It is 

shown that the loss in capacity clue to the two gray levels allowed is only a constant 

factor. (An interesting way to look at this type of two-category classifier is to view 

them as a one-bit holographic associative memory.) 

Correlators made of linear combinations of features is only one way to construct 

a multiple-pattern two-category classifier. Another way to obtain a multiple-pattern 

two-category classifier is to train the kernel by the patterns to be classified. A 

number of training algorithms were developed in the past years. A famous example 

is the perceptron (Figure I.4.) developed in the '60s. 

However, most of these algorithms implicitly assume that the number of gray 

levels is inexhaustible. Though this assumption is good when the algorithms are im­

plemented in digital computers, it falls apart when the implementations are carried 

out by optics. Depending on the architecture of the implementations, the degree of 

effectiveness of different algorithms suffered from limited dynamic ranges varies -

while the original algorithms may always succeed in finding a kernel that classifies 

all the training patterns correctly, the modified algorithms clue to limited dynamic 
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ranges may not. In Chapter IV, the effects of quantizing the training kernel of 

various algorithms are examined. In particular, the dynamics of the training pro­

cedures are studied. The dependence of the effectiveness of different algorithms are 

investigated. The results are quantified by comparing the probability of success in 

training the kernels of different algorithms. The average time required to arrive at 

proper kernels are also compared. 

In Chapter V, optical experimental results of the implementations of various 

correlators on binary devices are presented. The experiments include the imple­

mentation of the matched filter on a magneto-optic device (MOD, a binary device); 

a real-time programmable correlator built with an acousto-optic device (AOD), a 

MOD, and a charge coupuled device (CCD); and a rotation invariant filter realized 

by a MOD. The experimental results agree with the theoretical results obtained in 

the previous chapters. 



11 

References for Chapter I 

1. N. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying 

Systems, McGraw-Hill, New York (1965). 

2. M. Bongard, Pattern Recognition, Spartan Books, Washington, D.C. (1970). 

3. R. Duda and P. Hart, Pattern Classification and Scene Analysis, John Wiley 

and Sons, New York (1973). 

4. D. Rumelhart, J. McClelland, and the PDP Research Group, Parallel Dis­

tributed Processing: Explorations in the A1icrostructure of Cognition. Vol.1: 

Foundations, The MIT Press, Massachusetts (1986). 

5. J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collec­

tive Computational Abilities," Proc. Natl. Acad. Sci., USA, vol. 79, pp.2554-

2558 (1983). 

5. D.Casasent, "Coherent Optical Pattern Recognition," Proc. IEEE, 67, 813 

(1979). 

6. G. Turin,"An Introduction to Matched Filters," IRE Trans. Inform. Theory, 

IT-6, 311 (1960). 

7. A. Oppenheim, "The Importance of Phase in Signals," Proc. IEEE, 69, 529 

(1981 ). 

8. T. Huang, and J. Burnett, "The Importance of Phase in Image Processing Fil­

ters," IEEE Trans. Acoust., Speech Signal Processing, ASSP-23, 167 (1979). 

9. B. Cooper, "Correlators vVith Two-Bit Quantization," Aust J. of Phys, 23, 

521 (1969). H. Brown, and B. Markevitch, "Application of the Liquid Crystal 

Light Valve to Real-Time Optical Data Processing," Opt. Eng., 17, 371 (1978). 

10. B. Horowitz and F. Corbett, "The PROl\,1 - Theory and Applications for the 



12 

Pockels Readout Optical Modulator," Opt. Eng., 17, 353 (1978). 

11. C. Warde, A. Weiss, A. Fisher, and J. Thachara, "Optical Information Pro­

cessing Characteristics of the Microchannel Spatial Light Modulator," Appl. 

Opt., 20, 2066 (1981). 

12. W. Colburn and E. Tompkins, "Improved Thermoplastic Photoconductor De­

vices for Holographic Recording," Appl. Opt., 13, 2934 (1974). 

13. A. Vander Lugt, "Signal Detection by Complex Spatial Filtering," IEEE Trans 

Inf Th, IT-10, 139 (1964). 

14. T. Cover, "Geometrical and Statistical Properties of Systems of Linear Inequal­

ities with Applications in Pattern Recognition," IEEE Trans. Elec. Comp., 

EC-14, 326 (1965). 

15. A. Oppenheim and R. Schafer, Digital Signal Processing, Prentice-Hall, New 

Jersey (1975). 

16. M. Minsky and S. Papert, Perceptrons: An Introduction to Computational 

Geometry, MIT Press, Cambridge, Mass. (1969). 



13 

II. Binary Correlation Filters 

II.0. Introduction 

A correlator computes the correlation of a.n input pattern f ( x, y) and a refer­

ence pattern h(x, y). The cross-correlation g(x, y) is given as 

(11.0.1.) 

Here, we assume h and f are both real functions. When h(x, y) 1s identical to 

f(x, y), we say that the input is matched. It can be shown, by invoking the Schwartz 

inequality, that the center value of the correlation output, g(0, 0), of a matched filter 

is never less than any side-lobe value. Thus, matched filtering can be applied to 

pattern recognition. 

To measure the performance of these filters, various figures of merit can be 

used: 

a. the processing gain, defined as the ratio of the energy level of the corre­

lation peak to the average energy level of the side-lobe. It can be shown 

that the processing gain of a matched filter is proportional to the space 

bandwidth product (i.e., number of pixels in the discrete case). 

b. the signal-to-noise ratio, defined as the ratio of the energy level of the 

correlation peak to the average energy level of the side-lobe, under the 

condition that the input pattern is contaminated by additive gaussian 

white noise. It can be shown that its matched filter is the linear filter 

which has the highest signal-to-noise ratio. 
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c. the probability of error, defined as the probability that a misclassification 

may occur. 

In this chapter, we will investigate the effect on pattern identification due to 

thresholding the matched filter at the input plane; thresholding the input pattern; 

and thresholding the matched filter at the fourier plane. Through the computations 

of the three figures of merit mentioned in the previous paragraph, the performance 

of these correlators will be investigated. Their relative performances, compared to 

that of the matched filter, will also be examined. 

II. 1. Image Plane Binary Matched Filter 

In this section, we analyze the performance (subjected to the figures of merit 

defined earlier) when the reference filter is thresholded. By thresholding the filter, 

we mean that the function of the filter is mapped to a function having only binary 

and bipolar values, i.e., +1 and -1. Specifically, the rule of obtaining the reference 

filter can be given as 

where 

h(x,y) = ,B[J(x,y)] 

if X ~ O; 
if X < 0. 

(II.l.O.l.) 

Note that this algorithm preserves the zero-crossings information of the filter. For 

future reference, we denote this modified form of matched filter as the binary ( and 

bipolar to be specific) image space filter or simply as BIMF. 

Suppose, without loss of generality, the reference origin of the pattern to be 
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matched coincides with the origin of the input plane. Thus, a correlation peak 

at the output plane origin is expected. To demonstrate that this requirement is 

satisfied, consider eq.(II.0.1.) in the case when the reference is thresholded, consider 

eq.(11.0.1.). Substituting eq.(II.1.0.1) into eq.(11.0.1.), we have 

g(x, y) = j j J(l + x, rt+ y)fJ[f(l, r7)] dldrt (II.l.0.2.) 

By invoking the triangle inequality, we obtain 

!J I II I 
g(x, y) ~ IJ(l + x, T/ + y)j lfJ[J(l, r7)] ldldrt. 

I 11 I 
(II.l.0.3.) 

Since the reference filter can only assume values of +I and -1, hence ifJ[f(l, rt)]!= 1. 

Thus 

(II.l.0.4.) 

In other words, the correlation level at the center is higher then any other side-lobe 

level. 

II.1.1. Processing Gain of BIMF 

Even though we have shown that a. correlation peak exists, this result alone 

does not qualify a BIMF as a pattern detector. One reason is that we have no 

knowledge of how outstanding this correlation peak is. An objective measure of the 
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"outstandingness" of the correlation peak is the magnitude of the relative size of the 

peak to the side-lobe values, or equivalently, the processing gain of the correlator. 

For ease of computation, we will consider the discrete analog of a BIMF correlator. 

Let f(i,j), h(i,j), and g(i,j) be the sampled versions of J(x, y), h(x, y), and g(x, y), 

respectively. In its discrete form, the correlation operation becomes 

N N 

g(i',j') = L L f(i + i',j + j')h(i,j) 
j 

where N 2 is the number of samples in f and h and 

h(i,j) = t,[J(i,j)]. 

(II.1.1.1.) 

(II.1.1.2.) 

Assume that J( i, j) is a sample realization of a discrete sequence of independent, 

identically distributed gaussian random variables with zero mean and variance a}. 

Now, the definition of the processing gain, PG, is given as 

PG= E2 [g(O, O)] 
var [g( i', j'] ' 

(II.1.1.3.) 

where E[.] stands for the expected value operator and var[.] stands for the variance 

operator. The expected value of g(O, 0) can be obtained by considering eq.(II.1.1.1.) 

and eq.(II.1.1.2.): 

N N 

E[g(O, O)] = E[ L L f(i,j)t,[J(i,j)]] 
i J 

N N 

=LL E[if(i,j)J] (II.1.1.4.) 
j 

We assumed earlier that the probability density function of J( i, j) is given as 

- 00 < 0: < 00. 
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By simple transformation, it can be shown that the probability density function of 

If ( i, j) I is given as 

( 2 exp(-0'
2 

) for 0 ~ a < oo; I ✓21u,1 20} 

Pill= i 
l O for -oo < a < 0. 

Using the above equation, 

E[IJ(i,j)i] = ]
00 ;!; exp(-~

2 

)ada 
0 21r<J'J 2a1 

= ✓ ~af. 
7r 

Thus, 

The variance of g( i', j') is given as 

var [g( i', j')] = E [g2 
( i', j')] - E 2 [g( i', j')]. 

For i' f. 0, j' f. 0, 

and 

N N 

E[g(i',j')] = L L E[J(i + i',j+')] E[f'.J[J(i,j)]] 
j 

=0 

N N N N 

E[g2 (i',j')] = L L L L E[J(i + i',j + j') 

· f'.J[f(i,j)]J(i1 + i',j1 + /)t'.J[f(i1,ji)) 
N N N N N N 

(JJ.1.1.5.) 

(JJ.1.1.6.) 

(JJ.1.1.7.) 

(JJ.1.1.8.) 

=LL E[J2 (i + i',j + j')] + L L L L E[J(i + i',j + j') 
j j i1 11 

ii;ti ii ;tj 

(I J.1.1.9.) 
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Her we have used the fact that J(i + i',j + j') and f(i 1 + i',j1 + j') are statistically 

independent to evaluate 

Thus, according to eq.(II.1.1.3.), the processing gain of the BIMF, GA, is given as 

(I J.1.1.10.) 

Note that GA is a linear function of the number of samples, or discrete space­

bandwidth product. This result is encouraging, for it means the relative size of the 

correlation peak and side-lobe level can be made sufficient large by increasing the 

information content in the reference filter. It can be shown easily that the processing 

gain of the matched filter is equal to N 2 under the same statistical assumptions. As 

a comparison, the processing gain of the BIMF suffers only a modest loss of J ~. 
The result we obtained here does not only apply to input sequences of independent 

gaussian random variables. The order of GA remains to be N 2 for other input 

sequences of independent random variables with finite (non-zero) variances having 

symmetric probability density functions about the origin. 

II.1.2. Signal-to-Noise Ratio 

We have verified that the Bll\1F possesses image identification potential com­

parable to the conventional matched filter. Next, we will investigate the capability 

of the BIMF in recognizing patterns resembling the reference image stored in the 

filter. To facilitate the analysis, we will model the patterns resembling the reference 
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image by contaminating the input image by noise. The noise chosen here is an 

additive gaussian white random process with mean zero and variance o-~. Thus, 

instead off ( i, j), the input in this case is 

J(i,j) + n(i,j) 

where n( i, j) is the sampled sequence of the gaussian white noise. The reference 

filter is still given by eq.(II.1.1.2.). The correlation output becomes 

N N N N 

g(i',j') = L L J(i + i',j + j')h(i,j) + L L n(i + i',j + j')h(i,j). 
j j 

(II.1.2.1.) 

Unlike what we have shown in the last section, we can no longer guarantee that 

the center correlation level will be the highest among all output data points due to 

the presence of noise. A reasonable assumption is that the peak value should still 

be at the center when the noise level is low, whereas peaks may appear at other 

locations when the noise level is high. An objective measure, similar to the one 

used in the last section, is hence required to qualify the "outstandingness" of the 

center correlation level. To differentiate from the processing gain defined earlier, 

we define a new quantity known as the signal-to-noise ratio: 

SN R = E2 [g(O, O)] 
var[g( i', j'] 

The expected value of g( i', j') can be calculated as follows: 

N N N N 

(IJ.1.2.2.) 

E[g(i',j')] =LL E[f(i + i',j + j')h(i,j)] +LL E[n(i + i',j + j')h(i,j)]. 
j j 
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(I J.1.2.3.) 

The expected value of the first term on the RHS is identical to that in eq.(II.1.1.4.) 

and the answer is given in eq.(II.1.1.6.). As for the second term on the RHS, we may 

use the fact that n and h are independent to arrive at the answer zero. Combining 

these results, we have 

( N2 ✓2a fori'=0,j'=0; 
( ., "') J 1r f 

g i ,J = ) (I J.1.2.4.) 

l 0 for i' -f. 0, j' -=/:- 0. 

The evaluation of the variance is presented below: 

N N N N 

E[g2(i',j')] =LL LL E[f(i + i',j + j') 
i j i1 Jl 

· /3[f(i,j)]f(i1 + i',j1 + j')/3[f(i1,ji)J] 

N N N N [ 

+ 2 L L L L E f(i + i',j + j');,[f(i,j)] 
i j i1 j1 

· n(i1 + i',j1 + j');,[f(i1,ji)J] 

N N N N [ 

+L LL LE n(i+i',j+j') 
Z j i1 i1 

• /3[f(i,j)]n(i1 + i',j1 + j')/3[f(i1,J1)]] 

N N 

=LL E[f2 (i + i',j + j')] 
i j 

N N N N [ 

+LL L L E f(i + i',j + j') 
i j i1 h 

i1¢i )1¢) 

. ;,[f(i,j)]f(i1 + i',i1 + i');,[f(i1,idl] 



21 

N N 

+LL E[n 2 (i + i',j + j')] 
i j 

N N N N 

+LL L L E[ n(i + i',j + j') 
i j i1 J1 

i1 aci h ;cj 

. ,B[f(i,j)Jn(i1 + i',j1 + /),B[f(i1,j1)l] 

= N 2 (a} + a;) (JJ.1.2.5.) 

Again, we used the fact that f and n are statistically independent to deduce that 

E[f(i + i',j + j'),B[J(i,j)]n(i1 + i',j1 + j'),B[f(i1 ,ji)] = 0. 

Substituting eq.(II.1.2.4.) and eq.(II.1.2.5.) into eq.(II.1.2.2.), it follows that the 

SNR of the BIMF is given as 

(I J.1.2.6.) 

2 

Defining a new quantity SN Rin = 17

{, which is a reflection of the relative strength 
an 

of the input signal and noise energy, eq.(II.l.2.6l) can be rewritten as 

(JJ.1.2.7.) 

From the above equation we observe that for large SN Rin, i.e., the input signal 

level is high compared to the noise level, SN R1 is approximately equal to PG1 • As 

for small SN Rin , 

(JJ.1.2.8.) 

In comparison, the SN RM of the conventional matched filter is given: 

(I J.1.2.9.) 
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Here we note that the loss in SN R1 is also a constant factor of l. compared to 
7r 

SN RM. This indicates that the performance of the BIMF is comparable to that of 

the matched filter in identifying distorted images. 

II.1.3. Probability of Error 

Up to this point, we have only addressed the intra-class pattern identification 

capability of the BIMF. We have little knowledge of how the BIMF would perform 

if subjected to patterns other than the one that is stored. If we assume that the 

pattern stored is uncorrelated with all other possible input patterns, they appear to 

be noise to the filter. Their output levels are expected to be zero. A performance 

measure similar to the signal to noise ratio can be defined to quantify the inter­

class discrimination capability of the BIFM. A result similar to SN R 1 would be 

obtained. Instead of doing just that, we will calculate the probability of error to 

signify the performance of the BIFM of the concerned aspect. The problem that 

we will tackle concerns discrimination of two classes of patterns. An error is said to 

occur if a pattern belonging to one class is identified as a member of another class. 

The probability of error is defined as the probability that such an error may occur. 

Suppose we have two classes of patterns, f21 and f22 to be classified. Each 

of these classes will be represented by a single pattern: f2 1 by f 1 (i,j) and n2 by 

f 2 (i,j). The other elements in nm,m = 1,2 are distorted versions of fm(i,j). The 

distortion is modeled by an additive gaussian white noise of mean zero and variance 

,..,.2. 
Vn• 

J:n (i,j) = fm (i,j) + n(i, j) rn=l,2. (I I.1.3.1.) 
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The machine (Fig.lI.1.3.1.) used to classify n1 and n2 consists of two BIFMs. 

Each of the BIFM is generated from the algorithm described by eq.(II.1.1.2.) 

using the class representation pattern as the reference pattern. Thus BIFMl and 

BIFM2 are such that 

(II.l.3.2a.) 

and 

(I l.l.3.2b.) 

When f'(i,j), randomly chosen from the union of n1 and n2 , is applied to the 

machine, two outputs 91 and 92 are available, each corresponding to a different 

BIFM: 

and 

N N 

91 = L L f'(i,j)h1 (i,j) 
j 

N N 

92 =LL J'(i,j)h2(i,j) 
j 

(I I.l.3.3a.) 

(Il.l.3.3b.) 

To determine which class f' originated from, g1 and 92 are compared. f' is classified 

to be in nm, if 9m (0, 0) is a maximum. An error occurs if 9m (0, 0) > 9m' (0, 0) 

(m = 1, 2; m' = 2, 1) when f' actually comes from nm', and vice versa. 

and 

91 and 92 can also be expressed as 

N N 

91 =LL [J(i,j)h1(i,j) + n(i,j)h1(i,j)] 
j 

N N 

92 =LL [J(i,j)h2(i,j) + n(i,j)h2(i,j)] 
j 

(II.l.3.4a.) 

(I l.l.3.4b.) 
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g1=f•h1 
h1 

Max. m 
f 

m=l,2 

h2 
g2=f ·h2 

Figurc.II.1.3.1. Two-category classifier consists of two BIFMs. 
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where f can either be J1 or J2 • To simplify the following discussion, we may assume 

f = f1 with no loss of generality. By inspecting eq.(II.1.3.4), the cause of possible 

errors becomes visible. ·while the first term on the RHS is the uncontaminated 

correlation level, the second term may diminish g1 (0, 0) enough so that it is less 

than g2 (0, 0). 

Since n is independent of f m, when it passes the filters hm, all it sees are 

collections of + 1 and -1 which have practically no effect on its probability den­

sity functions. In other words, the probability density functions of n(i,j) remain 

gaussian. The summation over i and j is such that the effective noise term in the 

output is also a gaussian distribution (the sum of any number of independent gaus­

sian random variables is also gaussian). As a consequence, we have two gaussian 

random variables, g1 (0,0) and g2 (0,0), with means f · h1 and f · h2 , and variances 

var[n · hml, m = 1,2. 

The decision in favor of nm, m = 1, 2, is made whenever the dot-product of 

hm and f' is the maximum. Geometrically (Fig.II.1.3.2.), it can be interpreted as 

which hm f' is closer to. 

The equality of the two dot-products, 

hl · f' = h2 • f', 

defines a planar surface, Pl equidistant from the binary patterns h1 and h2 . Pl 

effectively divides the N-climensional space into two decision regions, R 1 and R2 • 

Other than comparing the clot-products, the location off' with respect to Pl will 

also equivalently determine which class f' belongs to. If f' is closer to h1 , then f' is 

classified to 0 1 and vice versa. The effect of the noise is such that it may put the f' 
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Figure II.1 .3.2. Geometric representation of decision surfaces in a two-dimensional 

space. 
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in the wrong decision region. Note that Pl is the optimum binary decision surface. 

It is because 

f. · h + 11 · h :S /fl + 11 • h, 

with the equality holds when h = ,B[f.). Pl, however, is not the optimum decision 

surface. The optimum decision surface, by definition, is the surface which will result 

in the minimum probability of error. It can be shown that the optimum decision 

surface is a plane equidistant from f 1 and h. By inspection, the optimum decision 

surface is achieved if the matched :filters are used. 

Since the mean off' is either f 1 or h, the probability of error is one-half the 

sum of the probabilities that the gaussian noise may put f' in R2 , given that the 

input is actually Ji or f' in R1 given fz: 

(II.l.3.5.) 

where G(., .) is the joint gaussian density function with mean fm, m = l, 2 and 

variance a-;,. The factor 1/2 comes from the fact that f' can be from n1 or n2 with 

equal probability. P€ is never less than the probability of error when the MF is 

used. The reason is that Pl usually does not coincide with the optimum decision 

surface. 

A more detailed form of P€ will be given in the following. Another way to 

express the plane defining the the decision surface is 

The unit vector normal to this plane is given as 

(I I.l.3.6.) 
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By transformation of coordinates, the evaluation of Pei can be reduced to a one­

dimensional problem. The transformation is such that one of the new coordinates, 

say a, is parallel to hu, whereas the rest are perpendicular to hu. Since the mid 

point of (h1 - h2 ) is also the intersection point of the decision plane and (h 1 - h2 ) 

(because h1 and h2 are of equal length), the origin of a can always be chosen to be 

The projection of n onto a is given as 

hu · n = L L hu(i,j)n(i,j) 
j 

(JJ.1.3.7.) 

The mean of the projection of the noise is zero. The variance of the projection of 

the noise is equal to 

a~P = E[[L L hu(i,j)n(i,j)J2
] 

i j 

= L L E[h; (i,j)]E[1i2(i,j)] 
j 

= a~ LL E[h;(i,j)] 
j 

(JJ.1.3.8.) 

Suppose l bits of h1 and h2 are different. By virtue of eq.(II.1.3.6.), the magnitude 

of each non-zero component of hu is equal to 1/-/l. Due to the square in E[h~ ( i, j)], 

the sign of hu ( i, j) has effect in the evaluation of the double summation in the last 

equation. Thus, eq.(II.1.3.8.) becomes 

(JJ.1.3.9.) 

But of the N 2 components of n( i, j), only l of them have non-zero projections onto 

hu, therefore 

(JJ.1.3.10.) 
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The projections of L and fz on hu are given as 

(II.1.3.lla.) 

and 

(I I.l.3.llb.) 

Note that lµ1 I = lµ2 I = µ. 

Substituting eq.(Il.1.3.7) through eq.(II.1.3.11.) in eq.(II.1.3.5.), the probabil­

ity of error becomes 

(II.1.3.12.) 

As a comparison, the probability of error of a matched filter is derived : The 

decision surface in this case is defined by the plane (Fig.II.1.3.2.) 

The unit vector normal to the decision plane is 

(f1 - f2) 
IIL-LII 

The variance of the projection of the noise is 

= a2 n 

The distance from either fi or f 2 to the decision plane is equal to 

1 
flm = 211L -Lil 

(I I.1.3.13.) 

(JI.1.3.14.) 

(I I.1.3.15.) 
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The probability of error is therefore given as 

1 ( ( a - Pm )
2 

) d 
. ~ exp - 2 a 
V L,'/( (J'n 2an 

(JJ.1.3.16.) 

In the expressions for Pc (eq.II.1.3.12.) and P0 n (eq.II.1.3.16.), the only differ­

ence is the means in the arguments of the integrands. In the case of Pc, p is the 

distance of one of the binary filters to the optimum binary decision surface, whereas 

in the other case, Pm is the distance of one of the matched filters to the optimum 

decision surface. Note that Pc (Pcm) decreases as the distance µ (Pm) increases. 

Assume that the matched filter and the binary filter have the same energy content 

(i.e. f1 ,2 always lie on the N 2 dimensional hypersphere centering at the origin and 

having a radius of N 2
). There are situations for which one probability is greater 

than the other and vice versa. Vaguely speaking, Pc and Pcm are of the "same order 

of magnitude." 

The only difference between Pc and Pcm is the distance of f 1 ,2 to the decision 
2 

surface Pcm -+ 0 as the ratio ;r -+ oo regardless of the exact positions of fi and 
m 

2 

f 2 • There are only two factors which can cause ~~' to increase. One of them is 
m 

the input signal-to-noise ratio. The other is the discrete space-bandwidth product. 

From the definition of Pl, we see that (L - f 2 ) always has a non-zero component 
2 2 2 

in the direction of hu. In general, as µ;n increases, so does ~1 and 1
; 2 • In other 

0'1n 17 np anp 

words, as Pcm -+ 0, Pc1 usually tends to O as well. It is only in the extreme situation 
2 

(Fig.II.1.3.3.) that the direction of increase of ;1f- is orthogonal to hu will Pcm -+ 0 
m 

while Pc1 remains a non-zero constant. 

This happens when the increase of ~ is due to the increase in magnitudes of 
am 

only a fraction, but not all, of the components of fm, m = 1, 2. If the increase in 
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• hz 

hu 

Figure II.1.3.3. Special situation in which the probability of error of the 

matched filter tends to zero but not that of the binary matched filter. 
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2 

~ is caused by an increase in N 2
, the extreme situation will not occur, because 

O'm 

we expect the input signal-to-noise ratio is roughly the same in each component of 

In this section, we have calculated the processing gain and the signal-to-noise 

ratio, and heuristically analyzed the probability of error. All of them indicate the 

same thing: the thresholding of the image plane matched filter does not significantly 

degrade the performance of the resultant filter in the task of pattern identification. 

II.2. Binary Input Binary Filter 

In this section, we investigate the effects of thresholding the input plane. If 

the input image is binary and essentially noise-free (text recognition, for example), 

then, of course, thresholding the input plane does not present any problem. If the 

input image is not binary but noise free, then the performance of the correlator 

will be identical to what we have shown in the last section, should a filter matched 

to the image before thresholding be used. On the other hand, if both the input 

and the filter are obtained by thresholding a noise-free image, we would have the 

equivalent of the matched filter for a binary image. One interesting case that we 

have not yet studied is a correlator implemented with a BIMF (binary image plane 

matched filter; section II.1.1.) in which the input is a thresholded noisy image. 

Again, let f ( i, j) be the image we wish to identify. Let the contamination off 

be the additive noise n( i, j). The statistics off and n are given in section II.LL 
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The thresholded input image is defined as 

b(i,j) = { +l 
-1 

if J(i,j) + n(i,j) 2: O; 
if J(i,j) + n(i,j) < 0. 

(JJ.2.0.1.) 

The filter h( i, j) is the BIMF described in eq.II.1.1.2. To write it down again, 

h(i,j) = { ~~ if f(i,j) 2: O; 
ifj(i,j)<O. 

(I J.2.0.2.) 

The correlation between the thresholded input and the BIMF is then given by 

N N 

g(i',j') =LL b(i + i',j + j')h(i,j) 
j 

( I I.2.0.3.) 

When the input image is noise free, the correlation above becomes the auto­

correlation of the thresholded pattern off. Naturally, a correlation peak identifying 

the presence off appears at the center of the output plane. In the presence of noise, 

however, there is no guarantee that such a peak will appear. To observe the effect of 

thresholding a noisy image on the correlation peak, the signal-to-noise ratio will be 

calculated. Note that in the absence of noise, the processing gain of the correlation 

given by eq.(II.2.0.3.) is N 2
, which should serve as a useful check for the SNR in 

the limit. 

II.2.1. Signal-to-Noise Ratio 

The expected value and the variance of the correlation in eq.II.2.0.3. can be 

calculated as follows: 

E[g(i',j')] = t t E[ b(i + i',j + j')h(i,j)]. (JJ.2.1.1.) 
J 
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For i' =/= 0, j' /- 0, b( i + i', j + j') and h( i, j) are uncorrelated and 

E[ b(i + i',j + j')h(i,j)] = E[ b(i + i',j + j')] E[ h(i,j)] 

=0 (II.2.1.2.) 

For i' = 0, j' = 0, b( i, j) and h( i, j) have different signs if either 

f(i,j) 2: 0 and f(i,j) + n(i,j) < 0 

or 

f(i,j) < 0 and f(i,j) + n(i,j) 2: 0 

The probability that b(i,j) and h(i,j) have different signs is therefore 

Pd= P[f(i,j) 2: 0,f(i,j) + n(i,j) < o] + P[f(i,j) < 0,f(i,j) + n(i,j) 2 o] 

Applying the Bayes rule, we have 

Pd= P[f(i,j) + n(i,j) < olf(i,j) 2: o] P[f(i,j) 2: o] 

+ P[f(i,j) + n(i,j) 2 olf(i,j) < o] P[f(i,j) < o] 

= ½{ P[f(i,j) + n(i,j) < Olf(i,j) 2: o] 

+ P[f(i,j) + n(i,j) 2: OIJ(i,j) < o]} 

(JI.2.1.3.) 

because P[f(i,j) 2: 0] = P[f(i,j) < 0] = 1/2. P[f(i,j) + n(i,j) < 0IJ(i,j) 2: o] 
can also be expressed as 

P[n(i,j) < -f(i,j)/J(i,j) 2: o] 
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Now n(i,j) is a gaussian distributed random variable and for f(i,j) fixed, the above 

probability is equal to the shaded area depicted in Fig.II.2.1.1. which can also be 

expressed as 

Since f(i,j) can attain values between O and oo determined by a gaussian 

distribution, 

P [!(i,j) + n(i,j) < 0 if(i,j) 2'. o] 

J 001-0, 1 -,2 1 - 2 
= v"[i exp(-. -2 )d, y'2:ii exp(~.a'd.4.) 

o -oo 21ro-n 2o-n 21ro-1 20j 

The above equation can also be expressed as 

where 

( O:') Joo 1 1 2 Q - = r.cexp( .=_) d,. 
O"n ~ v21r 2 

"n 

(II.2.1.5.) 

Differentiating eq.(II.2.1.5.) with respect to O"n, we have 

aa P [ f ( i, j) + n ( i, j) < 0 If ( i, j) 2 0] 
O"n 

(II.2.1.6.) 

Integrating the above equation with respect to O"n results in 

P [f(i,j) + n( i, j) < 0/J( i,j) 2'. 0] = -J-tan- 1 
( O"n) + C 

~7r 0- f 
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Figure II.2.1.1. A Gaussian distribution. The shaded area is equal to Ad. 
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where C is the integration constant. By matching the boundary condition that 

P[J(i,j) + n(i,j) < Olf(i,j) 2: o] ---+ 0 as 

we find that C = 0. Now by symmetry 

P[f(i,j) + n(i,j) < Olf(i,j) 2 o] = P[J(i,j) + n(i,j) 2 Oif(i,j) < o]. 

Therefore, 

1 l(O'n) Pd= -tan- - . 
21r a f 

(JJ.2.1.7.) 

The probability that b(i,j) and h(i,j) are of the same sign is 1- Pd, The expected 

value of the product of b( i, j) and h( i, j) when they have the same sign is 1. The 

expected value of the product of b( i, j) and h( i, j) when they have different signs is 

-1. Thus 

E[b(i,j)h(i,j)] = 1 - 2Pd 

1 = 1 - -tan-1 (SRN-:- 1
) 

7r in 
(I 1.2.l.8.) 

where SRNin = a1/an. Substituting eq.(II.2.1.8.) in eq.(II.2.1.1.) gives the follow­

ing result: 

The variance of g( i', j') can be obtained as follows: 

N N N N 

var[g(i',j')] =LL LL E[b(i' + i,j' + j)h(i,j)b(i' + i1,j' + ji)h(i1,ji)] 
j i1 jl 

N N 

=LL E[j2(i' + i,j' + j)h2 (i,j)] 
j 

(JJ.2.1.9.) 
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By using eq.(II.2.1.8.) and eq.(II.2.1.9.), the signal-to-noise ratio, defined by eq. 

(II.1.2.2.), of the BIMF, when the input is also thresholded, is given as 

(Il.2.1.10.) 

In order to appreciate the effects of thresholding, we compare this ratio with 

the signal-to-noise ratio that is obtained if the matched filter is used. Writing 

eq.(II.1.2.9.) again, 

SNR = N2SNR7n 
m 1 + SNR2 

in 

The two ratios, SN R 2 and SN Rm, are plotted in Figure.II.2.1.2. as a function 

of SN Rfn. Notice that the output SN R2 is larger for low SN Rin. Both ratios 

asymptotically converge N 2 as SN Rin gets large. Starting at the initial point of 

1/2, SNR2, however, increases at a lower rate with SNRin, and thus there is a 

crossover at approximately SN Rin = 2. At this point, the output SN Rs exceeds 

N 2 /2 (one-half of the number of pixels of the input image), and thus the loss 

in output SN R for SN Rin > 2 will not degrade appreciably the probability of 

detection in a typical application in which N 2 is a large number. 

The conclusions we can draw from this analysis are that, under the stated 

assumptions, thresholding the input in1age before it is applied to the correlator ac­

tually improves the performance if the input SN R is low, and that the performance 

is only marginally degraded if the input SN R is high compared to a correlator using 

a matched filter. Recall from section II.1.2 that the SN R of a correlator using a 

BIMF is 2/1r of that of the matched filter. Comparing SN R1 and SN R2, we see 

that thresholding the input actually reduces the negative effect of noise and thus it 
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is always preferable as far as the SN R is concerned. The assumptions used in the 

analyses are that the input image and the additive noise are both independent. 

II.2.2. Probability of Error of Two-Pattern Classification 

The probability of error for the problem of two-pattern classification discussed 

in section II.1.3 will be analyzed here for contrast. Note that the deviation from 

section II.1.3 is that the input image is thresholded here. Recall that the machine 

consists of BIMFl and BIMF2 given by 

(I /.2.2.la.) 

and 

h2 ( i , j) = ;3 [fz ( i, j)] . (1/.2.2.lb.) 

But here, the input is 

b(i,j) = /3[f(i,j) +n(i,j)] (I /.2.2.2.) 

where f( i, j) may belong either to D1 or D2 • Recall from section II.1.3. that only 

the dot-products, 91 and g2 are considered: 

and 

N N 

91 = L L b(i,j)h1 (i,j) 
.i 

N N 

g2 = L L b(i,j)h2 (i,j). 
j 

( I l.2.2.3a.) 

(I /.2.2.3b.) 

The decision rule remains the same: f is classified to D1 if g1 > g2 and vice versa. 

The ·effect of thresholding is such that the clot products are always between binary 



patterns. Thus, the decision rule can be modified to one that compares the hamming 

distances between b and the two reference patterns, h1 and h2 . 

Suppose Xi,j stands for the (i,j)-th variable of a N 2 dimensional space. The 

N 2 planes {xi,j = O} divides the N 2-dimensional space into 2N
2 

regions. We shall 

denote such region by the letter R (in 2-D, R is known as a quadrant, and in 3-D, 

an octant). Within each R, all points have the same sign, i.e., all points will be 

mapped to the same binary number when thresholded. In view of this property, 

it is clear that all points in the same R will be classified to !11 (!12 ) if the binary 

string of that R is closer in hamming distance to h1 (h2 ). (See Figure II.2.2.1.). 

The decision region of !11 , R 1 , therefore is a union of all the disjointed R's which 

have binary points closer to h1 in hamming distance than h2 • R2 , the decision region 

of !12 , is defined in a similar fashion. An error is said to occur if b lands in R1 ( R2 ) 

given the condition that f belongs to !12 (!11 ). 

There may be binary numbers that have the same dot-products with both h 1 

and h2 . (The R's containing these binary numbers are known as the ambiguity 

regions. An error is said to occur when the noisy input falls into any one of these 

ambiguity regions.) Let b be a binary vector such that 

or 

In other words, b is orthogonal to h1 - h2 . Suppose h1 differs h2 by l bits. Thus 

h 1 -h2 has only l non-zero components. To count the number of ambiguous regions, 
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R 3 : ambiguous region 

• 

• 

R4 : ambiguous region 

Figure II.2.2.1. Decision regions of a binary input binary filter in two-dimensional 

space. 
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we can therefore confine our attention to the l dimensional subspace projected by 

the l non-zero components of h 1 - h 2 . To every binary vector in a l dimensional 

space, there are only 2( l - l) orthogonal binary vectors. (The factor 2 comes from 

the fact that if .r is orthogonal to .§., so is -,r.) Since l is upperbounded by N 2 , the 

maximum possible number of ambiguous regions is 2(N2 
- 1) which is negligible 

compared to 2N
2

, the total number of R's, for large N 2 • 

Since the joint probability density function of the noise is gaussian, it is also 

symmetric about the origin. This means no R is more preferable to the others. It is 

therefore safe to neglect the contribution of the ambiguity regions to the probability 

of error. The probability of error is then equal to 

Pe=½{ P(f +n E R1if E D2) +P(f +n E R2lf E flt)} 'IT .. " 4 ' \ 1.L,.L,. ·) 

Here, we assume that P(fh) = P(D2 ) = 1/2. The additive noise has no effect 

on the N 2 
- l components for which h1 and h2 are identical. It is because the 

contributions of those N 2 
- l components of b to b • h1 and b • h2 are the same. As 

a result, only l noise components need to be considered. We may thus ignore those 

N 2 
- l bits of h1 and h2 in the evaluation of the probability of error. Let h~ and 

h~ bethel sub-parts of h1 and h2 respectively. Note that h~ = -h~. By invoking 

the symmetry of the probability density functions (which are gaussian) of the noise 

components, and the complementary property of h~ and h~, we have 

We may express Pe as follows: 

Pe = P(J + n E R1 If E D2) 

= j · · · J G({n(i,j)}; {f2 (i,j)})d{n(i,j)}. 
R1 
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The l dimensional subspace has a total of 21 R's. That means R 1 has 21- 1 R's. (It 

also means the L.H.S. of the above expression for the probability of error is a sum of 

i-1 integrals. For each of these R, the range of integration of each dummy variable 

(l of them) may either be R1 = ( -oo, OJ or Rt = [O, oo ). ·without loss of generality, 

assume ,B[fz(i,j)] = 1, Vi,j. Under this assumption, any R in R 1 must have more 

R1 than Rt. Otherwise, the binary vector representing that particular R would 

have a greater d ot product with h2 than h1 (in which case there is no error). Of 

the i-1 R's, there are one R with no Rt and l R1; (i) sign-ants with 1 Rt and 

C~1 ) H1; · · ·; (~) sign-ants with rn Rt, and (1_
1m) R1 where m is the greatest 

integer less than l. Since the noise components are statistically independent, we 

may consider the contributions due to individual components separately. For the 

range of integration of a dummy variable equals to R 1 +, the contribution of that 

noise component is given by 

+ Joo 1 ( (o:i,J-.fz(i,j))2)d 
Pi,.i = ~ exp - 2 2 o:i,.i 

0 V~K~n ~n 
(JI.2.2.5a.) 

For R1, the contribution of the corresponding component is given by 

p,-. = Jo 
i,J 

(I I.2.2.5b.) 
-oo 

The probability of error is therefore 

(II.2.2.6.) 
i,.i 

In general, the above expression is tedious to evaluate. However, we may gain some 

insight by assuming {f2 ( i, j)} to be independent gaussian random variables with 

mean zero and variance ~;, like we did in previous sections. Under the condition 



that ,B[fz(i,j)) = 1, the probability density function of f 2 (i,j) is 

i.e., 1 can only be positive. Using this statistical assumption on f2 (i,j), we have 

(II.2.2.7a.) 

and similarly 

Jo [Jo 1 (a-,)2 ] 1 1 2 
P/j = p- = J2i exp( -

2 2 )da J2i exp( - -
2 

)d, 
-oo -oo 0-n an 21ro-1 0-f 

(I I.2.2. 7b.) 

The terms inside the brackets in the above equations are the probabilities condi­

tioned on 1 , whereas the integrand outside the brackets is the probability density 

function of 1 . Note that the expressions in eq.(II.2.2.7a.) and eq.(II.2.2.7b.) are 

similar to that in eq.(II.2.1.4.). We may follow the same procedure from eq.(II.2.1.5.) 

to eq.(II.2.1.7.), i.e., first differentiate the RHS of the expressions with respect to an, 

then evaluate the integrals, and finally integrating with respect to an and matching 

the boundary conditions, and show that 

(II.2.2.8a.) 

and 

(II .2.2.8b.) 

where SNRin = o-1 /an. We may now analyze the asymptotic behavior by substi­

tuting eq.(Il.2.2.8.) into eq.(II.2.2.6.). 



For small SN Rin, i.e., O'n » a J, 

Eq.(II.2.2.6.) becomes 

2 

1 p- --t -
2 
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p+ --t ! 
2 

(II.2.2.9. 

This result agrees with intuition: when the noise level is high, using the machine to 

classify two patterns is just as good as flipping a coin. 

For large SN Rin , i.e., (J' n ~ Oj, 

p- --t 0 p+ --t 1 

Eq.(II.2.2.6.) can be approximated by the following expression: 

pl ~ (~) (P+ r (P-)1
-m 

~ (~) (P-/-m (I 1.2.2.10.) 

Substituting m ~ l/2 for large land invoking Stirling's formula, the above equation 

becomes 

✓ 2(2)1( 1 1)1. Pt ~ -
1 

- 2 2tan- (SN R";n ) 2 

1r 1r 
(IJ.2.2.11.) 

which tends to O as either SN Rin --t oo or l --t oo. 

II.3. Binary Fourier Plane Correlator 
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The correlation g(x', y') between f(x, y) and h(x, y) is given by eq.(II.0.1.) 

The correlation theorem states that the Fourier transform of G ( e, 'rJ) is given by the 

product of F(e, ry), the fourier transform off, and H*(e, r;), the complex conjugate 

of the fourier transform of h: 

where 

In accordance, 

a(e,rJ) = F(e,ry)H*(e,rJ) 

F(e,r,) = j j f(x,y)e-j 21r(xe+yry) dxdy 

H(!, T/) = j j h(x, y )e-j21r(xUyry) dxdy (IJ.3.1.) 

(I J.3.2.) 

We can see from eq.(II.3.1.) that the reference filter of a correlator can be realized 

in the fourier (frequency) plane. In such case, H* ( e, T/) is known as the frequency 

plane filter of which h ( x, y) is the impulse response. 

From eq.(II.3.1.), the matched filter in Fourier plane is expressed as 

H* ( e, r,) = F* ( e, r,) 

When f is applied to the correlator, the autocorrelation at the output plane can be 

expressed as 

(JJ.3.3.) 

Suppose we want to modify the frequency plane filter by performing a thresh­

olding operation on the filter. Immediately, we are confronted with the problem 
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that H* ( e, r,) is in general complex. This means that it is not possible to conserve 

the sign information of both the real and imaginary components of H by using only 

one bit of data. 

Consider the following algorithm for generating the binary frequency plane 

filter: 

B(e,rt) = Ii{ Re[H*(l,rt)]} 

= Ii{ Re[H(e, r7 )] } (II.3.5.) 

In this algorithm, all the information associated with Hi, the imaginary component 

of H, is discarded. Only the phase information of Hr, the real component of H, is 

conserved. In the following we examine the consequences of this information loss. 

The correlation g( x', y') between B and F can be expressed as 

g(x', y') = j j Fr(e, r7)B(e, r,)ej21r(x'Uy''f/) aedrt 

+ J J Fi(e, r,)B(e, r,)ej21r(x'e+Y'T/) aear, (I J.3.6.) 

where Fr and F';, are the real and imaginary parts of F respectively. If h is chosen 

to match J, then the first term in the above summation becomes 

By invoking the Schwartz inequality, it can be shown that the above term is always 

less than 
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which is the output correlation at the center. The expected value of the second 

term in eq.(II.3.6.) is zero, assuming that the real and imaginary components of 

F are uncorrelated. We therefore have a correlation peak at x' = O, y' = 0. This 

occurs if and only if F = H, and therefore this type of filter exhibits a property 

useful for pattern recognition similar to the matched filter. We shall call the filter 

generated by the algorithm described by eq.(II.3.5.) binary fourier (frequency) plane 

matched filter, or simply as BFMF. To further examine the property of BFMF, we 

will investigate the PG, SNR and Pl of the correlator in the following sections. 

II.3.1. Processing gain 

To simplify computations, we will again use the discrete analogs of input, filter 

and correlation output. We take f(n,ni),n,m = O, ... ,N-1 to be a sample 

realization of a white, gaussian process. Assume f (n, m) = 0 for N :S n, m :S 2N -1. 

The DFT off is defined as 

{ 

2N-1 2N-l 

F(k,l) = 
2

~ L L f(n,m)cos(:;(nk+ml)) 
n=O m=O 

2N-1 2N-1 } 

-j L L f(n,m)sin(:;(nk+ml)) (I J.3.1.1.) 
n:=O m=O 

Note that the discrete bandwidth of the DFT is taken to be 4N2
• The reason for 

so doing is to accommodate the full size of a NxN by NxN correlation which will 

result in an output pattern of 2Nx2N. The first term in eq.(II.3.1.1.) is the real 

part and the second term is the imaginary part of F. In accordance, the IDFT of 
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F(k, l) is given as 

l { 2N -1 2N -1 2 } 
f(n, m) = - L L F(k, l)exp( N1r (nk + ml)) . 

2N 2 
k=O l=O 

(JJ.3.1.2.) 

Here we analyze the statistics of Fr and F;. The linear transformation of a 

sequence of jointly gaussian random variables will always result in another sequence 

of jointly gaussian random variables. Because the DFT is a linear transformation, 

{ Fr ( k, l)} and { F; ( k, l)} are jointly gaussian. Furthermore, it can be shown that 

and 

E[Fr (k, l)] = 0, 

E[F;(k, !)] = 0 

E[Fr(k, l)~.(k1, li)] = 0 

E[Fi(k,l)Fi(k1,l1)] = 0 

E[Fi(k,l)Fr(k1,li)] = 0 

k =I= k1, l =I= l1 

k =I= k1 , l =I= li 

(I I.3.l.3a.) 

(II.3.l.3b.) 

which means {Fr(k,l)} and {Fi(k,l)} are statistically independent since they are 

jointly gaussian. It can also be shown that 

E[F;(k, l)] 
for (k, l) = (0, 0), (N, N); 

(I J.3.l.4a.) 

otherwise 

and 
for (k, l) = (0, 0), (N, N); 

(I I.3.l.4b.) 
otherwise 
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The correlation g( n', rn') is equal to 

l { 2N -1 2N -1 2 } 
g(n',rn') = 

2
N L L G(k,l)exp(

2
;(n'k+rn'l)) 

k=O l=O 

where 

G(k, !) = B(k, l)F(k, !) 

= IFr(k, l)I + jB(k, l)}1(k, l) (I I.3. l.5.) 

Recall that 

B(k,l) = (3[Fr(k,l)]. 

The first term on the RHS of the above equation is the signa.l term. The second 

term is considered to be the noise term because no information of Fi is stored in 

B so the second term can add an undesirable effect to the output. The mean of 

G( k, l) can be evaluated as follows: 

E[G(k, l)] = E[/Fr(k, l)/] + jE[B(k, l)] E[Fi(k, l)] 

= E [/Fr ( k, /)I] • (II.3.l.6.) 

Here we used the fact that Band }1 are uncorrelated. The probability density func­

tion of /Fr I is a one-sided gaussian distribution with variance a-; given by eq.II.3.l.4a. 

Hence 

Joo ✓2 0:2 E[IFr (k, l)/] = -
2 

exp( - -. -
2

) ada 
0 1rar 2ar 

(II.3.1.7.) 
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Substituting the result in eq.(II.3.1.4a.) and the above equation into eq.(II.3.1.6.), 

we have 
( ✓L. for (k, l) = (0, 0), (N, N); 

E[G(k,l)] = ~ 1r (11.3.1.8.) 
l u 1 otherwise. 
✓21r 

The expected value of g(n', m') is equal to the expected value of the inverse fourier 

transform of G(k, l): 

l { 2N-l 2N-l 2 
E[g(n',m')] = 

2
N L L E[G(k,l)]exp(

2
;(n'k+m'l)) 

k=O l=O 

l [ 2N -1 2 ] [ 2N -1 2 ] 
= 

2
N E[G(l.~, l)] L e:rp(

2
; n'k) L exp(

2
; m'l) 

k=O l=O 

Using eq.(II.3.1.8.), the above expression can also be written as 

In view of the fact that 
2N-1 
~ 21r , { ">N 
L..t exp(-n k) = ~ 

2N 0 
k=O 

if n' is a multiple of 2N; 
otherwise 

(11.3.1.9.) 

the second, third, and fourth term on the RI-IS of eq.(II.3.1.9.) are negligible com-

pared to the first term for large enough N. As a result 

( ✓2 Na for (n', rn') = (0, 0); 
E[g(n',m')]=~ ;- 1 (11.3.1.10.) 

l 0 otherwise. 
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The expected value of G2 ( k, l) may be obtained as follows: 

[ 
I 12] 

E[G2 (k,l)] = E liFr(k,l)I +jB(k,l)Fi(Jc,l)I 
I I 

= E[F/(k,l)] +E[B2 (k,l)F/(k,l)] 

(J'2 
f 

2 

where the last equality is a result of applying eq.II.3.1.4. The expected value of the 

square of g ( n', m') can be expressed as 

[ ] 
l 2N -1 2N -1 2N -1 2N -1 [ ] 

E g 2 (n',m') = 
4

N 2 L L L L E G(k,l)G(k1,li) 
k=O l=O k1 =O l1 =O 

j2n -j2~ 
· exp( 

2
N (n'k + m'l))exp( 

2
N (n'k1 + m'/1 )) 

2N-1 2N-1 r ] 
1 '°' '"',..., rr2,, -- ,2~( ·k ')) = 

4
N 2 L; L,.; .bl (i (k, l) exp(

2
N n' - +ml 

k=O l=O 

l 2N-l 2N-l 2 

= 4N2 L L a; 
k=O l=O 

0"2 
- _j_ 
- 2 (I 1.3.1.11.) 

Substituting eq.(II.3.1.10.) and eq.(II.3.1.11.) into eq.(II.1.1.3.), we have the 

processing gain, PG3 , of the BFMF: 

N2 
PG3 = r..::: 

v2n 

Comparing with PG1 given by eq.II.1.1.10., 

PG3 = 1/ over2PG1 • 

The explanation is straightforward: half of the information in f is discarded in 

formation of the BFMF. This is so because we assumed that the information content 
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in ls is the same as in la. PG3 will be identical to PG1 in the limiting situation 

1 = ls, i.e., no phase information will be lost in obtaining the BFMF. 

II.3.2. Signal-to-Noise Ratio 

When a sampled white gaussian white noise pattern, 'TJ(n, m), is added to 

l(n, m), the pattern to be recognized, the distorted input image becomes 

s(n, m) = l(n, m) + 'TJ(n, m) 

Suppose the fourier transform of 'TJ(n, m) is N(k, l). vVhen sis applied to the BFMF 

given by eq.(II.3.5.), the fourier transform of the output is given as 

G(k, l) = F(k, l)B(k, l) + N(k, l)B(k, l) (JJ.3.2.1.) 

The linearity of the filter allows us to consider the first and the second terms in the 

above equation separately. In other words, the output due to the sum of 1 and 'T/ is 

equal to the sum of the outputs due to 1 and 'T/ individually. The statistics of the 

output due to 1 have been analyzed in the last section. We now examine the effect 

of the noise on the output. 

Let 

and 

GN(k, l) = N(k, l)B(k, l) 

Gp(k, l) = F(k, l)B(k, l) 

g'f/ ( n', m') = FT- 1 
[ G N ( k, l)] 

91(n', rn') = FT- 1 [Gp(k, l)] 
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The mean of G N ( k, l) is equal to 

E[G,v(k, l)] = E[N(k, l)] [H(k, l)] = 0 

Thus the mean of g71 ( n', m') is equal to 

(I I.3.2.2.) 

Since N and F are uncorrelated (J and 'r/ are uncorrelated), the variance of g is 

equal to the sum of the variances of g71 and g f. The variance of g f is given by 

eq.(II.3.1.1.) The variance of g71 can be computed as follows: 

E[g;(n',m')] 
ZN-I ZN-I ZN-I 2N-1 

= 4!2 L L L L E[N(k,l)B(k,l)N*(kI,lI)B(kI,li)] 
k=O l=O k1 =O l1 =O 

(J27r( , / ·) (-j27r( I I )) · exp 
2
N n' k + m l) exp 

2
N n k1 + m li 

2N-1 2N-1 

= 4~2 L L E[IN(k, l)l
2

] 

k=O l=O 

l 2N-1 2N-1 2N-1 2N-1 

+ 4N2 L L L L E[N(k,l)B(k,l)N*(kI,lI)B(kI,lI)] 
k=O l=O k1 =0 11 =O 

k1 ,f.k !1 ,f.! 

j21r -j21r 
· exp( 

2
N (n'k + m'l))exp( 

2
N (n'k1 + m'li)) 

= E[IN(k, l)l
2

] 

where 

l 2N-1 2N-1 2N-1 2N-1 

E[IN(k,!)l
2

] = 
4

N 2 L L L L E[r7(n,m)ry(n1,m1)] 
n=O m=O n1 =O m1 =O 

j21r -j21r 
· exp( N (nk + ml))exp(---;;;:-(nik + mil)) 

2 21v 
l 2N-I 2N-I 

= 
4
N 2 L L E[1J 2 (n, m)] 

n=O m=O 

(I I.3.2.3.) 
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Substituting eq.(II.3.2.3.) and eq.II.(3.1.10.) into eq.(II.1.2.2.) the signal-to-noise 

ratio of the BFMF is given as 

where SNRin = a,/an. Note that SNR3 is one half of SNR1 • 

II.3.3. The Probablity of Error of Two-pattern Classification 

We will consider the probability of error of the classification of two patterns 

in this section. Two BFMFs, each corresponding to the pattern to be matched, 

will be used to implement two correlators. A noisy pattern, which may belong to 

either n1 or n2 , is applied to these two correlators. Again, only the data point 

at the center of the output plane will be monitored. The two output data points 

of the two correlators are then compared in magnitude. The input is classified to 

nm, m = 1, 2 if and only if the output data point of correlator m is maximum. The 

effect of the noise is such that the output data point of correlator m(m = 1, 2) is 

maximum when the input is actually a distorted member of nm' (m' = 2, 1). An 

error is declared if this happens. An expression for the probability of error will be 

derived. 

Since the binary filter is realized in the frequency plane, we will examine the 

probability of error by considering f, h, and n in the Fourier domain. Let F 1 and 

F 2 be the Fourier transforms of the two patterns to be recognized. Let H1 and H 2 

be the BFMFs generated from F 1 and F2 according to eq.(II.3.1.1). Suppose we 

wish to identify a distorted pattern f(') . rC') can be modeled as a pattern f (f may 
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be an element of either D1 or D2 ) contaminated by an additive gaussian white noise 

with mean zero and variance a-~: 

f_(') = f_ + 11 (JJ.3.3.1.) 

Let F(t), F, and N be the Fourier transforms off_('), f_, and n respectively. The 

output data points are given by the inverse fourier transform of the products of F(t) 

and H 1 , and f_(t) and H 2 , respectively. But since only the center pixel of the output 

plane are detected, the effective output points become 

(JJ.3.3.2a.) 

and 

(I J.3.3.2b.) 

Recall that Hm, m = 1, 2 is obtained by thresholding the real parts of Fm m = 1, 2. 

It can be shown that the real parts of the fourier transform of any real signal are 

symmetric. It follows that Hm is also symmetric. It can also be shown that the 

imaginary parts of the fourier transform of any real siganl is antisymmetric. Since 

the dot product of a symmetric signal and an antisymmetric signal is always zero, 

we may rewrite eq.(II.3.3.2.) as 

(II.3.3.3a.) 

and 

(I I.3.3.3b.) 

where F~ is the real part of F('). In view of eq.(II.:3.3.1.) 
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where Fr and N(r) are the real parts of F and N, respectively. 

The decision surface is defined to be the surface at which 

91 (0, 0) - 92(0, 0) = 0 

We call this surface P3. By equation (II.3.3.2.), P3 can also be defined by the 

expression 

(I I.3.3.4.) 

We shall denote the unit vector in the direction of (H1 -H2 ) by Hu. F~ is classified 

to 0 1 if it is on the positive side of P3, i.e., g1 (0, 0) > 92 (0, 0). F~ is classified to 0 2 

if it is on the negative side of P3. An error occurs when the addition of N(r) takes 

F(r) to the opposite side of P3. 

In retrospect, the formalism defined in this section bears a one-to-one corre­

spondence to that in section II.1.3: Hm m = 1, 2, corresponds to hm; F~ corre­

sponds to ff'); Nr corresponds to n; and P3 corresponds to Pl. Because of this 

resemblance, the results in section II.1.3 are also applicable here. The expression for 

Pe1 described in eq.(II.1.3.12.) can therefore be adapted to express the probability 

of error here. With minimal modification, the probability of error of the BFMF is 

given as 

(JJ.3.3.5.) 

where µm, m = 1, 2, is the projection of F,.m, rn = l, 2, onto Hu and anp is the 

variance of the projection of Nr onto Hu. In addition to having an expression 
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for Pe.3, the conclusion drawn in section II.1.3 must also be valid here too, i.e., in 

general, Pe.3 ---+ 0 as Pcm ---+ 0. 

II.4. Conclusion 

We have analyzed the effect of thresholding the image plane matched filter, the 

input pattern, and the fourier plane matched filter. The criteria for performance 

used in the analyses were processing gain, signal-to-noise ratio, and probability of 

error in a two-pattern classification problem. Under the influence of additive gaus­

sian white noise, the performance degradation in the various situations examined 

was shown to be minimal. The various correlators analyzed, in general, exhibit 

similar properties as demonstrated by the conventional matched filter. From the 

evaluations of all the objective performance measures for these correlators, it was 

clear that gray levels are unimportant compared to the degree of freedom ( the 

discrete space-bandwidth product). Given enough pixels to work with, we may 

conclude that thresholding the input and the matched filter do not induce great 

loss in performance. 
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III. Capacity of Optical Correlators 

III.0 Introduction 

In the field of pattern recognition, there are many applications where catego­

rizing of dissimilar objects (small mutual inner products) into the same class are 

desirable. Some examples are: recognition of the same object of different scales, 

orientations, and perspective angles. Usually, the solutions are application depen­

dent. However, a good general concept can still be obtained by considering the 

two-category classification problem. 

A two-category classifier can be described as follows. Suppose we have a set 

of dissimilar objects. Each one of the objects is assigned to one of two categories 

arbitrarily. Our goal here is to classify all the objects correctly without any a priori 

knowledge of their true identities. Any object of the set can be an input to the 

classifier. A binary number (0 or 1) returned by the classifier in turn determines 

which of the two classes the object belongs to. 

One measure of performance is the number of dissimilar objects that a two­

category classifier can handle without exceeding a certain margin of error. It is 

generally true that as a classifier tries to handle more objects, the accuracy of the 

decision of the cla.ssfier degrades. \iVe call this performance measure of a classifier 

its capacity or .A1c. We define .fife to be the maximum number of arbitrarily selected 

dissimilar objects that a classifier can identify with an arbitrarily small probability 

of error, given the degree of freedom, N (the number of input pixels), is large 
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enough. 

Note that a C-category classifier can be built by adjoining J{ ( a function of C; 

discussed in the following) 2-category classifiers. So instead of one output plane, 

there will be I{ output planes. Each output plane will result in one binary bit (1 or 0) 

when any pattern is input to the classifier. In essence, the output of the C-category 

classifier can be thought of as a K-bit binary vector. Since 2K distinct numbers 

can be represented, a minimum of J{ = log2 C 2-category classifiers is required to 

arbitrarily classify any M objects into C categories. A 2-category classifier can 

also be viewed as a one-bit output associative memory (a pattern resembling any 

pattern stored will result in the same response). By the same token, a C-category 

classifier can be viewed as a K-bit output holographic memory. The classification 

capacity Mc, discussed earlier, therefore, can also be used to characterize the storage 

capacity of such a K-bit output memory. 

In this chapter, we will investigate the storage capability of a 2-category clas­

sifier implemented by a correlation filter. Heuristically, the capacity of a classifier 

depends on a number of factors: 

1. the degrees of freedom, N; 

11. the statistics of the objects; 

111. the algorithm of generating the correlation filter; and 

1v. the complexity of the processing unit ( an array of neurons) at the output 

plane, e.g., the capacity would be higher if the output neurons are of the 

multi-level thresholding type. 

In the following sections, we will study what we refer to as the multiple exposure 
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correlator (MEC). A MEC is a correlator having the multiple exposure hologram 

(MEH) as its reference filter. MEH is generated as follows: 

m 

where {f(m)} is the set of patterns to be stored and w is the weight vector of 

the MEH. The capacity of the MEC when the output is confined to one pixel 

( center pixel) will be derived. In such case, the correlator is not shift-invariant, 

since all input patterns must be a.ligned at the origin. \i\Then more output pixels 

are monitored, the capacity of the MEC is expected to decrease. The capacity of 

the MEC, when translated input patterns are also allowed, will also be derived. 

And the reduction in capacity, clue to the incorporation of shift-invariance into the 

correlator, will be addressed. When the MEH is thresholded to ±1, we have a binary 

multiple exposure hologram, or BMEH. The storage capacity of the binary multiple 

exposure correlator (BMEC) is expected to be lower than that of the MEC. The 

capacities (with and without shift-invariance) of the BMEC will also be derived. 

III.I Inner-product Filter 

III.1.0 Basic Model 

The output of the inner-product filter, g, is given as 

(111.1.0.1) 

where w is the reference pattern, and f is the input pattern. At the output, g is 



subjected to thresholding. Whether g exceeds the threshold level or not determines 

to which class f. belongs. 

Eq(III.1.0.1 ) is also known as a linear discriminant function. It was shown 

by Cover that any classifier which implements a linear discriminant function has a 

storage capacity of 2N. It can also be shown that a linear discriminator which stores 

vectors within its capacity can always be obtained through some training algorithms 

using the vectors to be stored as the training set. The perceptron training algorithm 

and the adaline are examples of such training algorithms. It can be shown by 

inspecting these two algorithms that a trained weight vector is a linear combination 

of the training vectors: 

W =" Cl f(m) ~ rn_ 

m 

(II l.1.0.2) 

However, algorithms such as the perceptron and adaline typically require many 

iterations to train a weight vector. Therefore, a simpler and special case of the 

previous algorithm is often used: 

{ 
1 if f( m) belongs to class 1; 

Clm = Q -( ) if f m belongs to class 2. 
(Ill.1.0.3) 

As a matter of fact, the above equation is a precise definition of the MEH. Physically, 

the reference hologram can be realized by multiply- exposing a hologram to all the 

patterns in class 1. In this section, the capacity of the multiple exposure inner­

product filter will be derived. vVe shall begin the derivation with some formulation. 

III.1.1. Definitions and Assumptions 
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Let 

f n1 = {l~)} 

l n2 = {tm)} 

1h = l, ... , 111, 1 
11,=l, ... ,Jtf J 

be two sets of images to be classified. For simplicity, these images are assumed to be 

one-dimensional vectors each with N components. Suppose lm) and JJm) are the 

. h d h . th f f~ ( m) cl f-( m) . 1 l . . 1 N z-t an t e J- component o _ an _ , respective y, w 1ere z, J = , ... , . 

Assume{} to be statistically independent random variables, i.e., i(m) and J;m) are 

dependent if and only if the superscripts and the subscripts are identical (in which 

case, the two random variables are identical). Furthermore, assume that they have 

identical symmetric probability density functions with mean O and variance equal 

to <72
• 

III.1.2 Formulation for the Probability of Correctness 

Let <I> = {f(m) }, m = 1, ... , 2A1, be the set of input vectors. Define E]m) as 

the event that f_(m) is classified to nj, j = 1 or 2, given that f(m) actually belongs 

to nj. Note that E(m) is equivalent to the event 9~m) > T, given f.(m) E n1 or the 

event g~m) < T, given f(m) E n2 where g~m) is the inner-product of [<m) and wand 

T is the thresholding level. We define the probability of correctness, Pc, as 

(III.l.2.l.) 
m 

1.e., the probability that all vectors in <I> are detected correctly. It can be shown 

that Pc is independent of the order of which f(m) is presented to the correlator. 

Hence, without loss of generality, we may assume the first iv[ vectors in <I> to be 
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originally from !11 while the last 111 vectors are from !12 , i.e., assume 

f(M +1) = f(l) ..... f(2M) = f(M). 
- - ' ' - -

And subsequently, the probability of correctness becomes 

(111.1.2.2.) 

In the following sections, it will be shown that the events {E;m)} are statistically 

independent. Pc can then be written as j 

where 

2M 

II 
m=l m=l\1+1 

P[Eim)] = P[gt) > r] ni = 1, ... , 111; 

P[EJm)] = P[g6m) < r] m = 1\1 + 1, ... , 2111. 

(111.L2.3a.) 

(1Il.1.2.3b.) 

The joint cumulative probability functions of ~(m) corresponding to the MEC 

will be shown to be approximately jointly gaussian with diagonal covariance ma­

trices in the limit of large N. Pc can then be calculated using eq.(III.1.2.3.). The 

capacity of the MEC correlators can be derived by forcing Pc to one in the limit 

that N goes to infinity. 

III.1.3. Multivariate Central Limit Theorem 
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The multivariate central limit theorem will be used for deriving our results and, 

for this reason, we begin by quoting the theorem. 

Multivariate Central Limit Theorem (A1VCLT). 

Let ~ = (z1 , ... , ZM) be defined as 

Assume that each Ki is a N-component vector that is statistically independent of 

all otherst: 
N 

TT = ll P~;· 

Also, assume that each Ki has the same density function, say p':!.., with mean Q, 

covariance matrix A and characteristic function Fx: 
-X -

E[x.] = O· -i _, 

da. 

Then 

t The statistical independence of vectors means that any component of any vector 

Ki is statistically independent of all components of the remaining N - l vectors. 
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where A~ is the covariance matrix and F~ ( v) is the characteristic function of 

z: 

The probability density function of~, p~ is determined by taking the inverse 

Fourier transform of Fz. As in the case of the one-dimensional central limit theo­

rem, p~ does not always converge to gaussian form as N gets large. Whenever p!... 

does not contain impulses, the convergence occurs. The cumulative function of~, 

however, always becomes gaussian (provided A!.. exists). Since it is the cumulative 

function (integration of the probability density function) that we are going to use 

for deriving the probability of correctness ( or error), we need not be concerned with 

the limitation of the theorem on the probability density function. 

III.1.4. Joint Probability Density Function 

The output gbm) can be expressed as 

(III.l.4.1) 

by substituting eq.(III.1.2.lb.) into eq.(III.1.2.la.). From the definition of Et), 

it is apparent that to show { E]m)} to be statistically independent is equivalent 

to showing that {gt)} are statistically independent. Aside from the necessity of 

showing the required independence, the probability density functions of {gt)} also 

have to be derived in order to calculate the probability of correctness. All these can 

be accomplished by invoking the lVIVCLT. To prepare {gbm)} for the application of 
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the MVCLT, define a vector~: 

( 
(1) (m) (2.M)) 

~ = 9o , · · · , 9o , · · · , go · 

In addition, define a set of vectors {2£J, i = l, ... , N: 

With these definitions we write 

(JJJ.1.4.2.) 

The relations among~, 2f(i), gt), and im) wi are tabulated in Table III.1.4.1. 

In the table, the first entry of each column is equal to )N times the sum of 

the remaining entries of the same column, 

(m) 1 r(m) 1 (f(m) f(m) f(m) ) 
9o = ,.,,fN- ' W = ,.,jN 1 W1 + • • · + i Wi + • • • + N WN . 

The first entry of each row is a row vector of which the components are given by 

h . . ,· f h - (f(l) . f(m) . f(2.M) ·) t e remammg entnes o t e san1e row, e.g., xi - i Wi, ... , i Wi, ... , i Wi • 

By inspecting Table III.1.4.1., we learn that components from different rows ( or 

2£i), are statistically independent. ( Consider components from different rows and 

different columns. They are clearly statistically independent. Consider components 

from different rows but from the same column, e.g., lm) wi and f;m) Wj. They are 

also statistically independent since the subscripts are different.) The only possible 

dependent terms are confined in the same rows. As pointed out in section III.1.3., 

statistical dependent terms within the same vector do not affect the statistical 

independence of { xJ. In other words, the joint probability density function of all 
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~o 
(1) (m) (2M) 

9o . . . 9o ... 9o 

X1 
il) . W1 . . . Jim) . W1 ... 1PM) . W1 

. . . . .. 

xm il) 
i . wi ... j/m) . Wi . .. 1PM) . Wi 

. . . . .. 

XN Jt) •WN ... J½n) ·WN . .. J}:M) ·WN 

Table III.1.4.1. The first entry of each row stands for a row vector of which 

the components are given by the remaining entries of the same row, e.g., Ki = 

u?> Wi, ... 'lm) Wi, ... 'l2M) Wi)-
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the vectors {.~i} is equal to the product of the probability density functions of each 

individual 2fi: 

Because the probability density functions of {im)} are identical for each i, the 

probability density functions of { Wi} are also identical. Thus the probability density 

functions of {im) Wi} are also identical. This in turn implies that the probability 

density functions of the vectors {xJ are also identical: 

Px . = • · · = Px - = · • · = Px = Px 
-i -i -N -

Having all the required conditions statisfied, the MVCLT is invoked to declare that 

the joint cumulative probability function of~= (gb1
), ..• , gt), ... , gb2

M) ), or P~_( a), 

converges to gaussian form in the limit. If the probability density function of im) 
is continuous, the joint probability density function of E-, p'!!...(/3), is also gaussian in 

the limit, i.e., 

where A z is the covariance matrix and Ez is the mean vector of E.· Regardless of 

the continuity of j/m), the cumulative probability function of~, P'!!...(a) can always 

be written as 

(JJJ.1.4.3) 

in the limit. In general, in order to calculate the probability of correctness ( or error), 

an integral of the appropriate joint probability density function over some region 

will be evaluated. In other words, only the cumulative probability density function 
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is of interest. Hence, whether the probability density function conforms strictly to 

gaussian is immaterial in our investigation of the capacity (as was pointed out in 

the last section). 

III.1.5. Evaluation of the Mean Vector and the Covariance Matrix 

Let~; be the mean of 1fi• Recall that P?i.; = p?i.. Therefore, 

By the definition of£, 

l N 

µ =E[-'°' x.] 
17\T~ -i 

y JV i=l 

l N 

= 17\T L E[1£J 
vN i=l 

= -/Nµ . 
-x 

The m-th component ofµ , µm 1s given as 
:......x 

(111.l.5.l) 

(111.1.5.2.) 

Due to the fact that the probability density functions of {J/m) wi}, m = 1, ... , Af, 

are identical, the first M components in !!:..x must also be identical. Similarly, the 

last M components in µ are also identical. Thus, we need only consider two cases: 
-x 

i. m = l, ... ,Af. 

N 

µm = E[j/m) L J/1
)] 

l=l 
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= E[(im) )2 + I: im) J/1)] 
l-:j:m 

= (0-2 + I: E[f}m)]E[f}l)]) 
l-:j:m 

11. m = M + 1, ... ,2M. 

N 

µm = ✓N + lE[//m) L J?)] 
l=l 

N 

= v~N-+-1 L E[f/m)]E[JP)] 
l=I 

= 0. 

(III.l.5.3.) 

(III.1.5.4.) 

It follows that the first Af elements of p are identical and equal to o-2 
'-X 

while the last M elements are equal to 0: 

µ =(o-2, ... ,o-2,0, ... ,0). 
-x 

(III.l.5.5.) 

From eq.(III.1.5.1.) and eq.(III.1.5.5.), we have 

J-l = ( v'N a-
2

' ••• ' v'N o-2, 0' ... ' 0). -z 
(III.l.5.6.) 

Let Ax be the covariance matrix of JJ"!ic.: The normalization of E. by the factor 

}N in eq.(III.1.4.2) is such that 

Az = E [ (.~ - µ ? (E. - µ ) ] = -z -z 

= !E[(I:(xi-1:J)T(L(Xj -1:x))] 
i j 
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= ! E [ I: (2£i - ~l (2£i - ~)+I: I: (2£i - f!:.xf (xj - f!:.x)] 
i i #i 

= ~ ~ E[(2£i - ~f (2£i - f!:.x)] 
i 

(I I J.1.5.7.) 

because 

j i= i. 

~ can also be expressed as 

(I I I.1.5.8.) 

where the superscript i in 2£i is dropped because its statistics are invariant with re­

spect to i. The second term on the LHS in eq.(III.1.5.8.) can be obtained by simply 

taking the outer-product ofµ given by eq.(III.1.5.6.). Due to the configuration of 
'-X 

µ , all the elements except those with both their row count and column count less 
'-X 

than or equal to ]VJ in µT /t are zero: 
-X'-X 

( ~4 
a-4 0 ~\ 

t 
(1'4 (1'4 0 0 

(111.1.5.9.) f!:.x f!:.x = 0 0 0 0 

0 0 0 0 

The expected value of the outer-product of 2£ can be evaluated by taking care 

of its diagonal and off-diagaonal elements separately. Let (!m 1 ,m2 be the element at 

the m1 -th row and the rn 2 column of E[2£T 2£). 

(I I 1.1.5.10.) 
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For convenience, all the i subscripts in the above equation will be dropped in 

the process of calculating t2m 1 ,m 2 • It is legitimate to do so because the statistics 

of all lm) are identical. For the off-diagonal (row not equal to column) elements, 

calculation can further be divided into two cases: 

1. elements with either their row count or column count (or both) greater 

than M, i.e., m 1 > A1 or m 2 > A1 and m 1 =J. m 2 . Without loss of 

generality, assume m 1 > NI. Since w is composed only of j(m) with 

m~M, 

= 0. (I I I.1.5. l l.) 

11. elements with both their row count and column count no greater than l'vf, 

Ii 

+ L L E[lli)j<l2)]E[f(m1)]E[f(m2)] 
11 :;iem1 l2#m2 

= 0'4. 

As for the calculation of t2m,m , it can also be divided into two cases: 

(III.1.5.12.) 
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i. m>M. 

(!m,m = E [ (j(m) L f(li)) (j<m) L f(/ 2 ))] 

l1 l2 

=E[(f(m))2]E[L L jUdj(l2)] 
/1 /2 

=a2(L E[(f(li))2] +L L E[J<11 )]E[J<12
)]) 

/1 11 l2 #11 

=Ma4
• 

ii. m::; M. 

(!m,m = E[ (j(m) L jUd) (j(m) L J(/2))] 
/1 /2 

=E[u<m))4] + L E[u<m))2]E[(J<li))2] 
li#m 

+ L L E[u<m))2]E[f(li)]E[J<12 )] 

l1:;i:m l2;tm 
l2#1 

(I I I.l.5.13.) 

(JJJ.1.5.14.) 

Let {)m
1 

,m 2 be the element at the rn1 -th row and m 2-th column of Ax. From 

eq.(III.1.5.9), eq.(III.1.5.11.) and eq.(III.1.5.12.), it is clear that all the off-diagonal 

{)m
1

,m
2 

s are equal to 0. As for m,1 = m 2 = m, refering to eq. (III.1.4.9.), eq. 

(III.1.4.13.) and eq. (III.1.4.14.), 

dm,m = f E[ (f(m) )
4

] + (M - 2),,4 if m = 1, ... ,M; (I I J.1.5.15.) 

l M a 4 if m = A1 + 1, ... , 2li1. 
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Assuming E [ (f(m) )4 ] finite, the above equation becomes 

m = l, ... ,A;J, (I I 1.1.5.16.) 

for large enough lvl. The covariance matrix Az therefore is given as 

( lvf o-4 0 0 

A 
I 0 

- I =z I 

\ 0 

(I I J.1.5.17.) 

0 

I 
0 I 

J,.;J 0"4.) 

III.1.6. Evaluation of the Capacity 

Having shown that Az diagonal, we have actually shown that {g6m)} are statis­

tically independent in the limit that N tends to infinity. Specifically, if P (m) ( 0:111 ) 
9o 

stands for the cumulative probability function of the random variable 96m), then 

Pz(o:) = II P (m) (o:m), 
- 9o 

m 

and 

if m = 1, ... , Ji;J; 

if m = A1 + l, ... , 2A1. 

(III.1.5.l) 

Refering to eq.(III.1.2.2.) and eq.(III.1.6.1.), 
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T 

= 1 - J ~ exp[-(/Jm - ~a
2

)

2

] df3m, (III.1.6.2) 
21r _jl,,f a 2 2l\1 a 

And 

It is apparent that 

and 

where 

-oo 

m = 1, ... , l\1. 

P[EJm)] = P[gt) < T] 

= P (m) (7) 
Bo 

m = l\1 + 1, ... , 2li1. 

T 

J 1 -(/3- Na2
)

2 

P1 = 1 - ~ a2 exp [ 2l\1 a4 ] d/3 
-oo 

and 
T 

J 1 -/32 
P2 = ---eXJ?[--]d(J. 

✓21rl\1a2 2l\1a4 
-oo 

(III.1.6.3) 

(III.1.6.4a) 

(III.1.6.4b) 

(III.1.6.5a) 

(III.1.6.5b) 

Substituting eq.(III.1.6.5.) and eq.(III.1.6.6.) into eq.(III.1.2.2.), we have 

(I I I.1.6.6.) 
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Let p1 and p2 represent the integrands of Pi and A (eq.(III.1.6.5.)), respectively. 

Note that p1 and p2 have exactly the same shape, except p1 is shifted to the right 

by N a-2 (Fig.III.6.1.). 

Geometrically, Pi is equal to the area under p1 to the left of T whereas P2 is 

equal to the area under JJ2 to the right of T. It can be shown easily that Pi P2 is 

maximum when T equals one-half of the difference of the means of p1 and p2 • We 

therefore choose T = ½ N a-2 to maximize Pc. In this instance, 

Jr l -(/3- No-2)2 
Pi = P2 = 1 - -oo ~ o-2 exp[ 2111 a-4 ] d/3. (III.l.6.7.) 

And eq.(III.1.6.6.) can be written as 

(III.1.6.8.) 

where 

which is also known as the cumulative gaussian function. 

Recall that the goal of this section is to obtain a relation between lvf and N 

under the condition that Pc be arbitrarily close to 1 as N -+ oo. Assume Pc to be 

very close to 1. Also assume that N / A1 -+ oo as N -+ oo. (These assumptions, of 

course, have to be justified later.) Taking logarithms on both sides of eq.(III.1.6.8.), 

we have 

(I I 1.1.6.9.) 

For Pc to be very close to 1, Q( J /{1 ) has to be very small. We may thus invoke 

the approximation 

ln(l-u)~-u for small u. 
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0 Nu2 

Fig. III.6.1. P1 is equal to the area under p1 from T to oo whereas P2 is equal 

to the area under p2 from - oo to T. 
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Therefore, eq.(III.1.6.9.) becomes 

Using the approximation 

ln(PJ ~ -21\1Q( ✓ N ) . 
2.111 

Q(v) ~ _l_exp(-v
2
/2) 

,J'iir V 
for large u, 

eq.(III.1.6.9.) is reduced to 

ln(P) ~ -2.111-1- exp(-N/41\1). 
c ,J2ir ✓ N /21\1 

Taking logarithms on both sides of the above equation again, we have 

✓-1\1 N 
ln(c) ~ ln(l\1 -. ) - -

N L1.M' 

where 
✓-i 

C = - 2 ln(Pc)· 

(JJJ.1.6.10.) 

Assuming further that I ln( c) I ~ ln ( 1\1 J ~) , a transcendental equation relating 1\1 

and N is obtained: 

A1~ ✓-. 
8ln(l\1 ~) 

N 
(JJJ.1.6.11.) 

Since M :=; N, a lower bound for 1\1 can be obtained by substituting N for 1\1 on 

the RHS of eq.(III.1.6.11.): 

> N 
1\1~--. 

8lnN 

Substituting this lower bound of 1\1 for 1\1 on the RHS of eq.(III.1.6.11.), an upper 

bound for M is obtained: 

< N 
1\1 ~------. 

8lnN - 8ln(8lnN) 
(I I J.1.6.12.) 
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We can of course substitute this upper bound into eq.(III.1.6.11.) to obtain a tighter 

lower bound and continue in this fashion to derive a series solution. But doing so 

does not provide a return comparable to the effort involved. We shall hence invoke 

the large N approximation once again. For large enough N, the second term, 

8ln(8lnN), in the denominator on the RHS of eq.(III.1.6.12.) becomes negligible. 

In other words, the upper bound for M approaches the lower bound as N ---+ oo. 

Consequently, we have an approximate expression relating j\f and N: 

N 
A1';:::j--

8lnN 
as N ---+ oo. (III.1.6.13.) 

Now that we have an expression for _/II[, we have to use it to justify our previous 

assumptions. The assumption that N / J\!J ---+ oo as N ---+ oo is clearly valid. The 

assumption that Pc ---+ l as N ---+ oo can be verified easily by substituting expression 

(III.1.6.13.) into eq.(III.1.6.8.) and letting Ngo to infinity. As for the relative sizes 

of c and ln(M J M / N), it can be shown that c is of the order ln(lnN) which is 

negligible for large enough N. \rVith all the assumptions justified, we can only claim 

that a legitimate approximate expression relating N and J\!J has been found. An 

immediate question arises: how good is this approximation? The answer to this 

question can be found by considering an alternate expression for M: 

]\;fa = (1 + c)N 
SlnN 

where Eis some arbitrarily small constant. Apparently, 

Substituting li1a in eq.(III.1.6.8.), it can be shown that Pc ---+ 0 as N ---+ oo. This 

means that the expression obtained earlier is indeed a very good approximation. 
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That is to say 

N _,, (X) (JJJ.1.6.14.) 

is the capacity of the MEC with only one ( center) output pixel. 

III.2. Image Inner-product Filter 

III.2.0. Basic Model 

Suppose the medium used to record the MEH has a 1-bit (2 gray levels) dynamic 

range. The true hologram recorded w = ( w1 , ... , Wi, ... , w N) is then given by 

where 

N 

Wi = ,a[ L l 1
)]' 

l=l 

,B[x] = { ~1 
if X 2: O; 
if X < 0. 

(III.2.0.la) 

(III.2.0.lb) 

We refer to this hologram as the binary multiple exposure hologram (BMEH). 

Undoubtedly, the capacity of the BMEH is smaller than that of the MEH due 

to the information lost in the process of recording the MEH on a 1-bit dynamic 

range medium. However, we learned from Chapter II that thresholding a n1atched 

filter will only reduce the processing gain (peak to side-lobe ratio) by a constant 

factor. Now, the MEH is only a summation of matched filters. We have shown in 

section III.I that the probability of error, and hence, the capacity, is a function of 

the processing gain. We might therefore expect that the capacity is reduced only 
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by a constant factor when the MEI-I is thresholded. This is shown indeed to be the 

case. 

III.2.1 Similarities and Variations in Assumptions and Formulation 

The definitions of the two-category classification problem and the statistics of 

the input vectors are exactly the same as those described in the section III.1.2. 

The method that the two classes, n1 and n2 , of vectors are combined to form <I> 

remains unchanged. The operation performed by the binary classifier is still an 

inner-product: 

(m) - _l_w. r(m) 
9o - v7v- - , m = 1, ... , 2l'vf. 

The only variation is the algorithm under which w is generated. w in this case is 

the BMEH given in eq.(III.2.0.1). The formulation of the probability of correctness 

of a dot-product filter described in section III.1.3. was derived with no regard of 

the exact form of the filter and hence is also applicable here. Thus the equation 

expressing the probability of correctness ( eq.III.1.2.2.) is also valid here. 

To derive the capacity of the BMEC, we have to derive the solution for the 

probability of correctness Pc again. To derive Pc, we have to consider the statistics 

of {gbm) }. The derivation of the jointly gaussian nature of fot)} in section III.1.3 

did not require severe constraint on the exact form of w (Table III.1.4.1. ). The 

only property that was used was the fact that the i-th component of w must be 

generated from only the i-th components of {f(m) }. This requirement is certainly 

met by the binary weight vector discussed here. Due to the satisfaction of the above 
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requirement, we may conclude that the joint cumulative probability function of the 

. ( (1) (m) (2.111)) vector .£ given as .£ = g0 , ••• , g0 , ••• , g0 : 

is also gaussian. 

1 N 

Z=-'"'x. - v'N~ -1 

l 

(JJJ.2.1.la.) 

(JJJ.2.1.lb.) 

The exact form of the joint cumulative probability function of .£ is completely 

defined once we compute its mean vector and covariance matrix. In other words, 

under the condition that the i-th component of w is only generated from the i-th 

component of {f(m) }, the mean vector and covariance matrix of.£ are the only two 

things that are affected by the exact algorithm through which w is created. 

III.2.2 Evaluation of the Mean Vector and the Covariance Matrix 

We will first evaluate the mean of .£· Taking the expected value of equation 

(III.2.1.la.), we have 

µ = vNµ . 
-Z :-X 

(JJJ.2.2.1.) 

Let them-th component of f.l be µm: 
:-x 

(I I J.2.2.2.) 

For m = M + 1, ... , 211/f. 

(I I J.2.2.3.) 

because lm) is independent of Wi. 
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For m = 1, ... , M we have to determine the probability density function of 

wJ}m), say p(wf(m)) (the subscript i is dropped for convenience) in order to eval­

uate E[f}m) wi]. By Bayes rule, 

p(wj(m) = c) = P(w = llf(m) = c)p(f(m) = c) 

+ P( W = -1 lfm) = -c)p(f(m) = -c). (I JJ.2.2.4.) 

(p stands for the probability density function whereas P stands for the probability.) 
M 

w = 1 if and only if :Z:::: J(/) 2: 0, hence 
l 

where 
M 

h = - I: JU). 
l:j;m 

(JII.2.2.5.) 

By the central limit theorem, the cumulative probability function of h, 

Fh(c)=fc G(a;0,(.ll1-l)a2 )da forlargeM, (I I I.2.2.6.) 
-oo 

where G(a; 0, (.ll1 - l)a2
) is the gaussian distribution of the dummy variable 

a with mean zero and variance (.ll1 - 1 )a2 . The event "j(m) be no less than h 

under the condition that j(m) = c" is equivalent "h be less than c." Therefore 

P(f(m) 2: h/J(m) = c) is simply equal to the cunrnlative probability function of h 

evaluated at c. From eq.(III.2.2.5.), 

(JII.2.2.7a.) 
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Similarly, it is found that 

(I I l.2.2.7b.) 

Suppose Pi ( c) stands for the probability density function of the random variable 

j(m). Substituting P1(c) and eq.(III.2.2.7.) into eq.(III.2.2.4.), 

µm is obtained by integrating over p(wf(m) = c) from -oo to oo: 

µm = 21= P1(c)Fh(c)dc, 
-= 

(Ill.2.2.8.) 

(Ill.2.2.9.) 

where PJ ( c) is the probability density function of .f(m). To evaluate the above 

integral, first, we differentiate it with respect to A1: 

8µ -1 j = -c2 

8M
9 = y'2ir 1 c

2
PJ ( c)exp( 2(1\f ) 2 ) de. 

21ra(l\1 - 1)2 -= 1 -1 a 

Since var[PJ(c)] = a 2 ~ (M - l)a2 for finite a 2 and large enough 1\1, the 

exponential part of the above integrand practically equals to 1 the entire domain of 

PJ ( c). Consequently, 

-a 
~---~ ~1\1½. 

(I I l.2.2.10.) 

Integrating the above expression with respect to 1\1, we obtain 

✓-2 
/lm = J1![7r a+ I~. (JII.2.2.11.) 
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As M approaches infinity, the first term on the R.H.S of the above equation ap­

proaches zero. Therefore, µm = IC. If ,c is non-zero, it means that no matter how 

large the number of vectors stored, w will always have some preferred sign which is 

clearly nonsense. In other words, ;., cannot assume any other value but 0. Thus, 

(JJJ.2.2.12.) 

Substituting eq.(III.2.2.12.) and eq.(111.2.2.3) into eq.(111.2.2.1), we obtain 

✓- ✓-2N 2N 
µz = ( --a, ... , --a,0 ... ,0) . 

.!117r }.;f 7r 

As for the covariances, consider 

N N 

E[gti) 9bm 2
)] = !E[ 2-.; w;J/mi) I: Wjf]m2)] 

i j 

N N N 

= tE[I: J'/m1) J'/m2)] + t LI: E[wJi(mi)]E[wjfjm2)] 
i i j:-/=.i 

(JJJ.2.2.13.) 

Therefore, 

N 

var[gt1)gbm2)] = !~ E[J'/m1)]E[J'/m2)] =0. (JJJ.2.2.14.) 
i 

N 

var[(gt1))2] = !~ E[(J/mi))2] =0"2 (JJJ.2.2.15.) 
i 
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III.2.3. Evaluation of Capacity 

We have shown that 9bm 1
) and 9bm2

), m1 -=/- m2, are uncorrelated. Since {gbm)} 

are jointly gaussian, cross-correlations of {gbm)} equal to zero means that {gt)} 

are statistically independent. As we have noted earlier, the formulation of the 

probability of correctness of this section is the same as that in section III.1.3. Thus, 

showing {gt) } to be statistically independent implies that Pc here has the same 

form as given by eq.(III.1.6.8. ): 

Pc = (1 - Q(.)) 2M 

The only difference between the above equation and eq.(III.1.6.8.) is the argument 

of the cumulative gaussian function Q(.) which is one half of the processing gain 
,--

of the respective correlator outputs. For the BMEC, the processing gain is V ;Z-. 
Therefore, 

(JJJ.2.3.1.) 

Assuming that Pc is arbitrarily small for some large enough N, the procedure from 

eq.(III.1.6.9.) through eq.(III.1.6.11.) is repeated. The following transcendental 

equation is arrived at: 
N 

J\1,;::;;,----=-
41l" ln(l\1 ✓ ~) 

(JJJ.2.3.2.) 

Using the upper and lower bound argument presented in eq.(III.1.6.13.), the capac-

ity of the BMEC with one output pixel is found to be 

N 
Nfc2 = ---

41r ln N 
(I I J.2.3.3.) 

To verify the theoretical result of Afc2 , 100 computer trials were averaged to 

determine the capacity for various N. For each trial, two random vectors were 



90 

generated and summed. The sum was then thresholded to form the initial reference 

filter. Each pattern was tested to determine whether classification was performed 

correctly. If no error occurred, a new random vector was generated and added to 

the previous sum. The sum is again thresholded to form a new reference filter. 

Correlations with all patterns were done. The number of patterns in the reference 

filter was increased until a misclassification occured. At this point, the capacity was 

said to be one less than the number of patterns stored in the reference. 

The result is shown in Fig.III.2.3.1. The capacity is plotted as a function of the 

number of pixels, N, in the pattern. The small circles represent the experimental 

means of the results of the 100 trials. The vertical bars are the experimental stan-

<lard deviation of the results. The solid curve in the figure represents the theoretical 

result. Experimental simulations show good agreement with theoretical prediction. 

Identical computer simulation for the fully analog MEC was also done for com­

parison. Its results were also shown in Fig.III.2.3.1. Like 1Ylc2 , the experimental 

simulations for Mc1 agree well with the theoretical prediction. It is important to 

note that because the simulations were performed in the regime of small N, the 

transcendental equations (eq.(III.1.6.11.) and eq.(III.2.3.1.)) were used to plot the 

theoretical curves. 

Comparing eq.(III.2.3.3.) and eq.(III.1.6.14.), we see that the loss in storage 

capacity of the MEC of one output pixel clue to thresholding the filter is just a 

modest factor of 1.. Recall from Chapter II that the ratio of the correlation peak 
11" 

to the variance of the side-lobes of the binary matched filter is also equal to 1.. 
11" 

We noted earlier that the cause of errors in the MEC is the build-up of the cross-
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Fig.III.2.3.1. Capacity curves of analog and binary MEC. 
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talk as more patterns are stored in the reference. The peak-to-variance ratio is 

exactly the measure of the cross-talk level. Due to the fact that the input patterns 

are assumed to be statistically independent, the statistics of the output variables 

become gaussian. This means the chance for an error to occur is completely specified 

by the peak-to-variance ratio. The appearance of the factor ¾ in the ratio of the two 

capacities and the processing gain is therefore no accident. Note also that when 

the probability of correctness was derived to take on a gaussian form, the exact 

algorithm under which the filter was created was never used. The only requirement 

is that any component of the filter is generated only from the same components of 

the patterns stored. This infers that the probability of correctness of any correlator 

generated fulfilling the above requirement should take on the form of a gaussian 

distribution. Should the processing gain of a filter be of the order of Z., the order 

of the capacity of that filter will also be of 1:N. The MVCLT also holds for vectors of 

different joint density functions, so long as the vectors are statistically independent. 

IIl.3. Correlation Filter 

A 2-category classifier can be made insensitive to any shift in the input plane by 

implementing it with a correlation filter rather than a inner-product filter. In such 

case, we will have an output vector instead of one output point. Mathematically, 

each component, gk, of the output vector~ can be expressed as 

N 

gk = L Wifi+k, 

k 

(I I I.3.0.l.) 

where wi is the i-th component of the correlation filter w. In this section, we 

shall investigate the capacity of the correlation generated by the multiple exposure 
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algorithm, i.e., 

W = ~ f(m), (JJJ.3.0.2.) 
m 

When a vector f which was used to form w is applied to the correlator, we 

expect to see a strong correlation peak whose location corresponds to the origin 

of f. Whereas when a vector that was not used to form w is applied, only weak 

cross-correlation is expected. However, for a given space bandwidth product N, 

the cross-correlation and the side-lobes are expected to increase as the number of 

vectors stored increases. A digital simulation showing this effect is presented in 

Fig.III.3.1. 

In the simulation, one-dimensional vectors composed of 64 statistically inde­

pendent gaussian random variables, are used. Fig.III.3.la. shows the autocorre­

lation of a vector, say f(l). The peak at the center of the figure signifies that f(1) 

is recognized. Fig.III.3.1 b. shows the cross-correlation of f(l) and the reference 

filter formed by summing f(l) and 3 other vectors. Observe that the peak decreases 

slightly, whereas the side-lobes have increased. Since the peak is still above and 

the side-lobes are below the threshold level, which is chosen to be 0.5, f(l) is still 

said to be recognized. But in Fig.III.3.lc., as the filter is overloaded, two peaks are 

detected to be above the threshold level. Because there is no telling whether the 

output signifies a stored vector that is shifted, or a stored vector that is not shifted, 

or even a vector that is not stored at all, is presented at the input plane, an error is 

declared. We shall begin our investigation by stating the necessary definitions and 

assumptions. 
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III.3.1. Definitions and Assumptions 

Let 

~ n1 = {l~)} 

l n2 = {lm)} 

ni = 1, ... , l\!l, and 1 
in=l, ... ,111 J 

be two sets of one-dimensional vectors of N components to be classified. Suppose 

A(m) •(m) A(m) -(m) Ji and fj are the i-th and the j-th components of f and f , respectively, 

where i,j = -~, ... , ~. Assume that {J?7i)} and {/}m)} are statistically indepen­

dent for all i, j, m, m. Assume furthermore that these random variables are binary 

and bipolar valued (±1) with equal probabilities. 

L h d fA(m) . " d r~(iii) . " b h'f d kb' kb . . et eac an every_ m H 1 an _ m Hz e s 1 te its, A emg a urn-

formly distributed random number. Let <P be the set which contains all these shifted 

A(m) -(m) 
versions off and f . (We assume that only N output pixels are monitored, 

thus the maximum shift allowed in the input is also N. Note that there are a total 

of 2M N vectors in <I>.) As we have pointed out in section III.1.2, the ordering of 

the vectors in <I> does not affect the evaluation of the probability of correctness. We 

shall hence assume that the first 111 vectors in <I> are shifted versions of the vectors 

from n1 , and the last M vectors in <I> are shifted versions of the vectors from n2 . 

For simplicity, we shall rename all the vectors in <I> to be f(m), m = 1, ... , 2111. 

Thus 

m = 1, ... , 111; fii = 1, ... , 111, 

and 

m =NI+ l, ... , 21\1; rh = 1, ... , NJ. 

S ( ) _ ( ( rn) ( rn) ( rn) ) - 1 21\1· · l t uppose f2. rn - g0 , ... , g1 , ... , gN m - , ... , , , represents t 1e ou -
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put vector corresponding to f(m): 

(111.3.1.1.) 

where 
M 

Wi = L im) · 
m=l 

After ~(m) is obtained, every component of ~(m) is compared to a threshold level T. 

f(m) is classified to !11 if there is one and only one gkm) > T and f(m) is classified 

to !12 if there is gt) < T for all k. 

Now, an error occurs when any of the following happens: 

a ) m > M but gt) > T 

b ) m =:; M but no gt) > T 

c ) two or more gkm) > T for any m. 

d ) m =:; M and one and only one g[m) > T but the true shift in f(m) is not 

k. 

The performance of the correlator is said to be flawless if and only if the event 

C = {\Im= 1, ... , M, one and only one gt) > T and the true shift in f(m) is k; and 

\Im = M + l, ... , 2M, gt) < T for all k } is true. C can also be expressed as the 

conjunction of a group of events. Let Cm = fokm) > T and the true shift in f(m) is 

k} if f(m) belongs to ni} or Cm = fot) < T for all kif f(m) belongs to !12 }. Then 

m 

Cm can further be elaborated as 

C { (m) < (m) < r·g(m) > (m) < (m) < 
m = go 7 ; · · · ;gk-1 , k 7 ;gk+1 7 ; · · · ;gN T, 

true shift in f(m) = k} m, = 1, .. . ,1\1 
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or 

Cm = {9km) < T, \fk} m, = 111 + l, ... , 2111 

Let P[Cm] denote the probability that Cm is true. 

Form= 1, ... , M: Using Bayes rule, 

N 

P[Cm] = L P[{gt) < Tj •.. ; 9ti < Tj gkm) > Tj gk:i < Tj ... ; gt) < T, 
k=O 

ltrue shift inf(m) = k}]P[{true shift in f(m) = k}] 

In the following sections, we will show that the random variables (gam), .. ,g~m)) are 

statistically independent and jointly gaussian. In such case, 

P[{gbm) < Tj •.. ;gti < T;gt) > T;gti < Tj ... ;gt) < T, 

I, , .,., • ,.(m) ,,, 
jtrue s1111t Ill.!.' ·, = 1'J-J = Pm 

for all k. Assuming that the shift in f(m) is equally likely for all positions, 

We may therefore assume without loss of generality that k = 0 and thus 

The probability of correctness, P[C], is given as 

m 

In the later sections, we will show that {Cm} are statistically independent. 

After showing that, we can then write 

2M 

p[C] = II P[Cm] (I I 1.3.1.2.) 
m 
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and 

(III.3.1.3.) 

The probabilities P[Cm] will also be derived. 

III.3.2. Evaluation of the Probability of Correctness 

Let z be the vector 

( 
(1) (1) (2) (m) (2M)) 

9o , · · · ,gN ,go , ···,gt · · · ,gN 

Note that this vector is composed of all the output data points due to all the vectors 

from <I>. Construct a set of vectors {Ki} such that 

(I I 1.3.2.la.) 

In view of eq.(III.3.0.2.), 

(I I 1.3.2.lb.) 

If we can show that {Ki} are statistically independent, then we may invoke the 

MVCLT to obtain the joint probability density function of ~- To show that {Ki} 

are statistically independent is equivalent to showing that any component of Ki is 

independent of all the other components of the remaining vectors Kj, j f- i. In 

other words, we have to show that Jt:Z) Wi is independent of all the elements in the 

set A where 

A= {J;:twj},i,j = 1, ... ,N;j f- i;k,l = 1, ... ,N;n,m = 1, ... ,2M. 



99 

A can be divided into two subsets, A 1 and A2 : 

A 1 = { all terms containing Ji; 

all terms containing Ji~/ ; 

all terms containing Wi + l} 

and A 2 = A \A1 • Note that all the terms in A 2 are statistically independent of 

Jt:;/ wi. To show complete independence, we have to show that J?;/ wi is inde­

pendent of A1 and A2 simultaneously, which can be accomplished by showing the 

following: 

But Jt;} Wi is independent of A2 conditioned on A1 , thus 

Let 

Thus 

S1 = { all terms containing Ji;} 

S2 = { all terms containing Ji~/; } 

S3 = { all terms containing Wi + l} 

[f (m) 1A] - [f(m) 1S ·S' ·S l P i+l Wi I 1 - p i+l Wi I 1 , 2 , 3 

Using the fact that comfimfi + lm = ±1, we invoke the Bayes rule to obtain 

p[f/:i) wi = cl S1; S2; S3] = 

p[wi = cl S1; S2; S3; J?;/ = 1 ]P[J~~) = 1 l S1; S2; S3] 

p[wi = -clS1; 82; 83; J;t~) = -l]P[Ji~) = -1181; 82; 83] 
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In view of the definitions of S1 , S2 , and S3 , Wi is independent of S2 and S3 condi­

tioned on S1 . Hence the above equation becomes 

P[ .r(m)w· - c 1S · S' · S] -J i+l i - I 1, 2, 3 -

p[wi = cl S1]P[J/:Z) = 11 S1; S2; S3] 

+ p[wi = -clSiJP[j/_;:? = -llS1; S2; S3] (I I J.3.2.2.) 

To show that S1 is independent of wi is equivalent to showing that 

Using the definition for S1 , we have 

(IJJ.3.2.3.) 

a, b, ... #- i 

By invoking the Bayes rule again, 

p[S1lwi] =p[wa = u;wb = v; ... lwi;J}n) = l]P[Jt) = llwi] 

+ p[wa = -u; Wb = -v; ... lwi; J}n) = -l]P[ft) = -llwi] 

Here we have used the fact that p[wa = u] = p[wa = -u] due to the symmetry in 

the density function of J}m). Since J}n) can only be ±1, the sum within the {} in 

the above equation must be 1. Because p[wa] is symmetric and Wa is independent 

of f~n) 
i ' 
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Substituting all these results in eq.(III.3.2.3.), the following results: 

p[S1/wi] = p[waft)Jp[wbf/n)] ... 

= p[S1] 

In other words, Wi is independent of S1 • Using this result, eq.(III.3.2.2.) can be 

written as 
p[f/:Z) wi = c/ S1; S2; S3] = 

p[wi = c]P[l:Z) = l/S1;S2;S3] 

+p[wi = -c]P[l.:Z) = -l/S1;S2;S3] 

= p[wi] 

= p[f/:Z) Wi l 
We have indeed shown that {Ki} are statistically independent. 

Observe that eq.(III.3.2.1.) conforms with the expression of the MVCLT. As a 

consequence ~ approaches jointly gaussian form as N tends to infinity. The mean 

vector and the covariance matrix of ~ will be calculated in the next section. 

III.3.3. Evaluation of the Mean Vector and the Covariance Matrix 

The mean of the element gf m) is evaluated as follows: 

N 

E[g1(m)] = )w ~ E[fi~~) wi] = 0 
i 

l # 0 

N 

E[ (m)] - _1_ ~ E[f(m) ·] 
9o - JFi ~ i Wi 

i 

(III.3.3.l.) 

Note that eq.(III.3.3.1.) is identical to eq.(III.1.5.1.), therefore, 
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Thus the mean vector of~ is given as 

Note that there are N - I zeros between every two y'JV cr 2 for the first N 111 terms 

(so there are a total of M v'lV cr2 elements). The last N 111 terms of E~] are all 

zeros. 

The covariances of~ are computed as follows: 

where 

N N 

[ (m) (n)] 1 °"' °" E[f(m) f(n) ] var 91 gk = N w w i+t Wi j+k Wj 

i j 

N 

= ~ °"' E[j'~m) f~n) ( _.)2] N w i+l J+k Wi 
1: 

N N 

1 °"' °"' E[f(m) f(n) ] + N ~ w , i+l Wi j+k Wj 
i J 

j,pi 

for i + l = j + k and m = n; 
otherwise 

M M M 

E[(wi)2] = L E[(f/m))2] +LL E[f/m)]E[ft)J 
m m n 

=Ma-2 

From the above equation, we see that the covariance matrix of~ has only non-zero 

( and identical) diagonal terms. All the off-diagonal terms are zeros. Since ~ is 

jointly gaussian, we can therefore say that {g}m)} are statistically independent for 

all land m. 

III.3.4. Evaluation of Capacity 
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Due to the fact that {g;m)} are statistically independent, 

Now 

and 

(m) -1= 1 (a2 -vm) P[g0 > r] -
7 

v'2iiMexp(-
2

}.,f )da 

If we choose r = vm /2 then 

where 

,­
P[g~m) > r] = P[gim) < r] = 1 - Q(y 

2
~

1
) 

✓N 1= 1 a
2 

Q( -) = -exp(--)da 
2J'vf nr ,J'2i 2 

V'z'M 

Substituting the above equation into eq.(III.3.4.1.), 

(III.3.4.1.) 

(III.3.4.2a.) 

(I I I.3.4.2b.) 

(III.3.4.3.) 

(I I I .3.4.4.) 

By the statistical independence of {g;m) }, {Cm} are also statistically independent. 

In addition, P[Cm] are identical for all m because of the identical probability den­

sity functional forms of (gt), ... , gt')). From these statistical properties of Cm, 

eq.(III.3.1.2.) and eq.(III.3.4.4. ), it follows that 

✓N)2MN 
P[C] = ( 1 - Q( 2~~1 ) (I I I.3.4.5.) 



The capacity can be obtained by forcing P[C] arbitrarily close to 1. Follow­

ing the same procedure described by eq.(III.1.6.9.) through eq.(III.1.6.11.), the 

transcendental equation 
N 

lvf-;::::,------
Sln( 111 v'iJFI) 

is arrived at. Using the upper and lower bound argument described by equation 

(III.1.6.12. ), the capacity of the multiple exposure correlation hologram is found to 

be 

lvl= N 
l6ln(N) 

Comparing this result with the capacity of multiple exposure dot-product hologram 

(eq.(III.1.6.14.)), the cost of having shift invariance is only a reduction by a factor 

of 2 in the storage capacity. This result, however, should not be interpreted as 

the storage capacity of NM ( N shifts) patterns. It is because each shifted pattern 

cannot be counted as an independent individual pattern. For a shifted pattern 

is almost totally determined ( except for the amount of shift) once the unshifted 

pattern is defined. 

III.4. Binary Correlation Filter 

In this section, we will investigate the effect on storage capacity by thresholding 

the multiple exposure correlation filter described in section III.3. We will denote 

the binary multiple exposure correlator as BMEC and the reference hologram as 

BMEH. Apparently, the storage capa.city of the BMEC is lower than that of MEC 

due to thresholding and that of BMED due the addition of shift-invariance. The 

goal of this section is to derive the sotrage capacity of the BMEC. 
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III.4.1. Definitions and assumptions 

Same as section III.3.1 with the exception that the probability density function 

of lm) is symmetric about the origin and with variance a} here. 

III.4.2. Formulation of the Probability of Correctness 

Note that the formulation given in section III.3.2 did not place requirement on 

the form of the correlation filter. We may therefore use the entire formulation here 

without any modification. 

III.4.3. Evaluation of the Probability of Correctness 

The BMEH w = (w1 , ••• , Wi, ••. , WN) is defined as 

m=l 

which is identical to eq.(III.2.0.la.). The correlation output is given as 

N 
(m) '"""' f(m) 9t = LJ i Wi+l 

To obtain the probability of correctness, consider the vector £: 

( 
(1) (1) (2) (m) (2Nr)) 

£ = 9o , · · ·, 9N , 9o , · · ·, 91 · · ·, 9N 

Construct a set of vectors {Xi} such that 

(JJJ.4.3.1.) 

(III.4.3.2a.) 
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In view of eq.(III.4.3.1.), 

Compare eq.(III.4.3.2.) with eq.(III.3.2.1.). In eq.(III.3.2.1.), all the variables in 

f are binary and bipolar, and all the variables in w are symmetric about zero. In 

contrast, all the variables in f are symmetric about zero, and all the variables in 

w are binary and bipolar in eq.(III.4.3.2.). Recall that the proof of independence 

in section III.3. does not require the exact form w. The only requirement is that 

variables in w and f be statistically independent if their subscripts are different. 

This requirement is certainly satisfied here. Therefore, there is a one-to-one corre­

spondence between the problem in this section and that in section III.3.3. In other 

words, {g~m)} must also be jointly gaussian. The mean vector and the covariance 

matrix of£, however, depends on the exact form of w. This means the probability 

of correctness of the BMEC is different from that of the MEC. The mean vector, 

covariance matrix, and the probability of correctness are derived in the next section. 

III.4.4. Evaluation of of the Mean Vector and the Covariance Matrix 

The mean of the element gf m) is evaluated as follows: 

N 

E[gfm)] = )Ft~ E[f/m) ]E[wi + l] = 0 
i 

l -f- 0 

N 

E[ (m)] __ 1_ '°' E[J(m) ·] 
9o - '1N ~ i Wi 

i 

Note that eq.(III.4.4.1.) is identical to eq.(III.2.2.2.), therefore, 

E[/m)] = v'NE[(J.(m) )2] = ✓ 2N 
o i ~A1 

(III.4.4.1.) 
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Thus the mean vector of£ is given as 

Note that there are N - 1 zeros between every two ✓ ;Z. for the first NM terms. 

The last NM terms of E[E.] are all zeros. 

The covariances of£ are computed as follows: 

N N 

var[gjm) gt)] = ~ L L E[f/m) Wi + Zft) Wj + k] 

where 

i j 

N 

= ~ ~ E[(f/m) )2wi + lwj + k] 
i 

N N 

+ ;! ~ L E[f/m) Wi + Zft) Wj + k] 
i J 

j,t.i 

for i + l = j + k and m = n; 
otherwise 

From the above equation, we see that the covariance matrix of£ has only non-zero 

( and identical) diagonal terms. All the off-diagonal terms are zeros. Since £ is 

jointly gaussian, we can therefore say that {g1(m)} are statistically independent for 

all land m. 

III.4.4. Capacity 

Due to the similar forms of the joint probability density functions of£ of this 

section and that of section III.3., and the identical formulations in the probability of 
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correctness in section III.4. and III.3., the probability of correctness of the BMEC 

must be given as (refer to eq.III.3.) 

( ✓-)zMN 
P[C] = 1 - Q( :: ) 

where 

✓2N 1= l a
2 

Q( -) = -exp(--)da 
1rA1 12N v2Jr 2 

VrrKT 

The capacity can be obtained by forcing P[C] arbitrarily close to 1. Follow­

ing the same procedure described by eq.(III.1.6.9.) through eq.(III.1.6.11.), the 

transcendental equation 

is arrived at. Using the upper and lower bound argument described by equation 

(III.1.6.12. ), the capacity of the multiple exposure correlation hologram is found to 

be 
N 

111 = 81rln(N). 

Compare the capacity of the binary correlation filter and that of the fully analog 

correlation filter, we see that the loss in the binary correlation filter is also f. This 

loss is identical to that of the inner-product filter suffered from a 1-bit dynamic 

range. 
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IV. Quantization effects on training algorithms 

IV.O Introduction 

Suppose we have a finite set <f> of distinct patterns {x(l) ,x(2), ... , x(M) }. Let 

each pattern in <f> belong to one of two categories. This classification divides <f> into 

subsets f!i and !12 such that each pattern in Di belongs to category i for i = 1, 2. 

As we pointed out in the introduction of Chapter III, pattern classification can 

be achieved by a class of machines known as linear machines. Basically, a linear 

machine is the realization of a linear discriminant function g(x). g(x), on the other 

hand, is a real-valued linear function of the components of the input pattern x: 

(JVO.l) 

(Refer to Figure IV.0.1). 

The vector w = ( w1 , ... , WN) is the weight vector, and the element WN+i is the 

threshold level of g(x). When Xis subjected to a linear machine, the discriminant, 

or the value g(x) is computed. The discriminant is then applied to a decision unit 

which we refer to as a neuron. In general, we will take the neuron to be a hard 

thresholding device biased at zero, i.e., an output 1 results if the discriminant is 

more than zero while a output O will be obtained otherwise. (Note that WN+l in 

the above equation actually emulates a variable thresholding level.) Based on this 

architecture, X can be classified to either !11 or !12 depending on the output of the 

neuron. Without loss of generality, we may assume 

g(x) > o 
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g(~) 

--Q-- output 

1 

Figure IV.0.1. The schematic diagram of a linear discriminant function. 
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g(:~J < 0 (IV.0.2) 

If a linear machine can be found such that each of the patterns in <I> can be placed 

into the proper categories, we say that !11 and !12 are linearly separable. 

In order to correctly classify a set of objects into two categories according to 

some predetermined assignment, the correct w has to be determined. (The multiple 

exposure algorithm described in Chapter III is a special way of obtaining w.) We 

call the process of obtaining w "training." (Training is not a term confined to 

describing only the learning process of w of a linear machine. It applies to more 

complicated machines, e.g., multi-layer neural networks. But in the remainder of 

this chapter, we will focus only on single-layer linear machines.) 

It is evident that w is a function of the patterns to be classified. To train w, 

a cost (error) function E, which is usually a function of the input patterns, their 

desired responses, and w, is defined. This cost function, of course, has to reflect the 

goal to be achieved, e.g., classification of all input patterns correctly. For instance, 

E can be defined as 

where 

f(v)={~ 
if V < O; 
if V 2 0, 

(IV.0.3) 

is the transfer function of the output neuron, ti is the desired response for 2£(i), and 

the summation is over all input patterns. For the above example, we observe that E 

is never negative, becoming zero if all the actual reponses, f(w • 1£(i) ), coincide with 

the target responses. The objective of the training process now becomes the process 
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of minimizing the cost function. In general, input (training) patterns a.re subjected 

to the linear ma.chine in groups or in sequence in the training process. The weights 

Wi a.re then modified so that the cost is reduced. This process is continued until 

convergence (minimization) occurs, or the process is instructed to halt by some 

other criterion. 

Whereas the inner-product of a.n optical trainable linear ma.chine is always 

implemented by optics (in our case), the training process can be realized in several 

ways. Currently, the optical trainable linear machines that are under research can 

be divided into three types of architectures: 

1. Optical training. Both the training part and the dot-product part a.re 

done by optics. This can be very difficult since complex operations cannot 

usually be implemented by optics easily. 

2. Digital training. The weight vector is trained by a digital computer. The 

trained weight vector is then written onto a SLM. The recognition , or 

dot-product, part is achieved by optics. 

3. Electro-optic training. This architecture is a hybrid of (1.) and (2.). The 

training of the weight vector is achieved by utilizing optics and electronics 

simultaneously. While the optics handle the dot-product part (used for 

verifying the output response), the electronics is responsible for updating 

the weight vector. 

Aside from the time and extra hardware requirement we pointed out earlier, 

there are other practical concerns in the implementation of an optical trainable 

classifier. One of them is imposed by the limited dynamic range of physical devices. 
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Because of quantization, a training algorithm which works perfectly theoretically 

may produce unexpected results. Even when the weight vector is trained on a 

digital computer, it may not work properly when it is downloaded onto a realistic 

SLM. The purpose of this chapter is to analyze a) the effect caused by limited 

dynamic range on training, and b) the ability to classify when a realistic SLM is 

used to record the weight vector trained by algorithms that are proven to work 

theoretically. Due to the fact that quantization is a highly nonlinear operation, 

theoretical analysis is extremely difficult. Therefore, qualitative explanations and 

statistical results, in addition to some examples, will be given to illustrate the effects 

on different algorithms caused by devices with limited dynamic range. 

IV.l Quantization Effect on Architecture 1. 

IV.1.1 Description 

Suppose x is a pattern to be classified. To simplify discussion, we augment 

x by a (N + 1 )-th component ( WN+l in eq.IV.0.1.) whose value is always equal 

to unity. We shall denote this augmented pattern vector by the symbol y. The 

components of y will be given by y1 , y2 , ... , YN+i; Yi = xi for i = 1, ... , N, and 

YN+l = +l. A linear discriminant function of~ can now be written in terms of~ 

in the simple form 

where w = ( w1 , ... , WN, WN+i ). Vl/e may further simplify the notation by multiply-
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ing all vectors in !12 by -L The classification criterion then becomes 

(JV.Ll) 

A well known algorithm to train w is the perceptron algorithm. To train w, 

let {y(i)} be presented to the LDF in a cyclic sequence. The perceptron training 

algorithm can be described as follows: 

i.) assume one of the vectors y to be the initial w(0
). 

ii.) suppose w(k) stands for the training weight vector at the k-th iteration,k = 

0, 1, 2 ... , then 

where 
if w(k) • y(k) > O; 

if w(k) · y(k) ::; 0, 

and y(k) is a training pattern in the cyclic sequence. 

iii.) repeat ii.) until {y.} are all classified correctly. 
-i 

(JV.LL2) 

If {yJ is linearly separable, then it can be shown that the w trained by the 

perceptron algorithm will minimize E given by eq.(IV.0.3), assuming ti = ±1, to 

zero. In other words, w so trained will converge to a vector which is a solution 

of eq.(IV.Ll). If the number of vectors to be trained, 111, is not greater than the 

dimensionality, N, the average convergence time is usually linear with N (observed 

in our experiment). The dynamics of convergence is shown in Fig.IV.LL It can 

be shown that the solution region ( any vector in the solution region will classify 

{y.} correctly) in weight space is always convex. And the correction, given in ii.), 
-i 



118 

will always move the training weight vector toward the solution region. Hence, a 

solution weight vector will always result. 

In the proof of the perceptron convergence theorem, it is assumed that the 

components of w can take any real value. This assumption, however, cannot be 

abided by in any realistic implementation. If the implementation is realized on a 

digital computer, the quantization effect usually does not pose any serious problem. 

On the other hand, if the training procedure is implemented by an analog optical 

computer, the limited dynamic range of the medium used to record the trained w 

loses information about the training patterns. Imagine the recording medium having 

a dynamic range of I{ levels. In the N-dimensional weight space, the possible values 

that w may assume are represented by a grid of J{N points, This quantization effect 

imposes two problems on the training process. The first is that the solution region 

may not contain any of these allowed points. The second problem is caused by the 

nonlinear operation associated with the quantization effect. After each iteration, w 

must be one of the KN points (there are only KN allowable states in the recording 

medium). The quantization effect is such that the analog w (before being quantized) 

after the correction will be attracted to the closest discrete point on the grid. (See 

Fig.IV.1.2). 

When the analog w is not in the solution region, quantization does not nec­

essarily handicap the training procedure. (As a matter of fact, quantization may 

sometimes even take the analog w into the solution region.) Problems do occur 

whenever the analog w is in the solution region. Now as long as training continues, 

a quantized solution weight vector may still be obtained, that is, provided that it 

exists. However, if the correction is not large enough, the same quantized w may 



119 

C 

b a 

Figure IV.1.1.The dynamics of convergence of a perceptron. 
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Q(.) 

( B) 

correction 

( C ) 

corrections 

Figure IV.1.2. Quantization effect on training. (a) A typical solution region. 

(b) Correction not large enough - the same quantum point is resulted every time. 

( c) Corrections too large - overshooting and oscillation result. 
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result after each iteration. On the other hand, if the correction is so large that the 

w overshoots, then oscillation, between several quantized points lying outside of the 

solution region, may happen. In a regular perceptron, correction steps can also be 

so large that they overshoot the solution region. But the corrections always take 

the training w to the "wider" part (farther away from the origin) of the solution 

region and hence guarantee that w will eventually be in the solution region. In a 

dynamic range-limited medium, however, quantization can prevent the training w 

from moving toward the "wider" part of the solution region. In general, oscillation is 

what happens whenever a perceptron with limited dynamic range fails to converge. 

Since the input, or correction, is also dynamic range-limited, I< does not have to be 

infinite for w to be properly trained. As a matter of fact, if the components of the 

input patterns are binary- and bipolar-valued, then O(I<) = N bits per component 

is sufficient to dichotomize the input patterns of any assignment. 

IV.1.2 Examples 

Example a. It is difficult to say anything useful about the general behavior 

of w during the training process. Therefore, simulations will be primarily used to 

illustrate the effects of quantization. 

Suppose an optical system is built to implement the perceptron algorithm. 

Consider patterns with binary and bipolar components. If the recording medium 

were perfect, then the learning process is described by eq.(IV.1.2). Assume now 

that the recording medium for w has the same dynamic range as the input, i.e., 1 
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JJ[x] = { 1 
-1 

if X > O· - ' 
if X < 0. 

represent the binarizing effect of the recording medium. The updating rule for w 

given by eq.(IV.1.1.2) becomes, 

(JVl.2.1) 

where w?) is the i-th component of w(k) and y?) is the i-th component of y(k). 

Digital computation was done to simulate the algorithm described by equation 

(IV.1.2.1). For the simulation, random binary and bipolar sequences were generated 

to represent the input patterns. They are arbitrarily assigned to two classes. w is 

then trained according to eq.(IV.1.2.1), i.e., the training w is binarized after each 

correction. As pointed out in the previous section, some of the classification may not 

be realizable by w so trained. The simulation was programmed to stop at 10 times 

the number of iterations for a normal perceptron to converge (simulation performed 

as a control). Ms, the number of successful classifications out of a hundred trials, 

was recorded for each J\![, the number of vectors to be stored. The experiment 

was then repeated with the maximum number of iterations allowed set an order of 

magnitude higher than the previous simulation. J\![s was found to be the same as 

those previously obtained, indicating that l\1s is very close if not identical to the 

true number of trials that converge using this algorithm. J\![s was then normalized 

with respect to the total number of possible dichotomies that can be achieved by a 

binary weight vector ( obtained by testing all 2N points). We refer to this normalized 

Ms as Ps, the classification strength. 1\1 is also normalized with respect to N. The 

curve plotting Ps versus 1\1/N for N = 12 is shown in Fig.IV.1.2.1. 
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1. 2 
Performance Curves of Perceptrons with 1-bit D.R. 

1 

Figure IV.1.2.1. Pa versus M/N . 
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Simulations were stopped when 111 / N reached 1, because it can be shown that 

the capacity of a binary perceptron is upperbounded by N. (There are a total of 2M 

solution regions and 2N binary points in the N-dimensional space. Thus, if M > N, 

the average number of binary points per solution region, Ns = 2(N-M) , approaches 

0 for large enough N which implies the probability that any solution region will 

contain a binary point also approaches 0.) From Figure.IV.1.2.1, we observe that 

Ps decreases as 111 / N approaches 1. \"f\T e should realize that the perceptron algorithm 

has no control of where the training solution vector lands in the solution region as 

long as it ends up there. (For future reference, we will refer to the training vector 

before quantization as w'.) Whether w' in the solution region will be close to a 

binary solution point is therefore difficult to predict. As 111 / N approaches 1, N 8 

decreases to 1. The probability that w' will be quantized to a binary solution 

point thus becomes less and less as 111 increases. Curves of Ps for N = 16, 20 are 

also plotted in the same figure. Note that Ps is also a decreasing function of N. 

This phenomenon is entirely unexpected. vVe have no explanation as to why this 

phenomenon occurs. Now Ns can be written as 2N(I-Al/N) . Thus, for any fixed 

M / N, Ns increases exponentially with N. In other words, Ps should increase with 

N, which clearly contradicts what we observed. 

Example b. The second case studied in this section will illustrate the effect 

of limited dynamic range on targeting output responses to specific values. The 

example chosen is the Widrow-Hoff procedure. Basically, it is a gradient descent 

type algorithm which solves a system of linear equations. The requirement on w is 

such that : 

(JV.1.2.2) 
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where 

and t is the target response of {y(m) }. The algorithm can be described as the 

following: 

w(k) arbitrary 

(IV.1.2.3) 

where tk is the target response of y(k), w(k) is the training vector at the k-th 

iteration and Pk is the acceleration constant which is commonly chosen to be pif k. 

The rule given in eq.(IV.1.2.3) can be shown to be a sequence of weight vectors that 

converges to a limiting vector w satisfying 

which is a necessary condition for minimizing the cost function 

E - lly tll2 -11_W-_II · (IV.1.2.4.) 

Depending on the choice of 1, w can be trained to achieve different tasks. One 

example is the Fisher's linear discriminant, which is optimum in the sense that the 

average inter-class separation is maximized while the average intra-class separation 

is minimized. 

When the quantization effect of the recording medium is taken into account, 

the learning rule described by eq.(IV.1.2.3) becomes 

(IV.1.2.4) 
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where Q[.] (more than 2 levels) stands for the quantization operator, i.e., the analog 

w(k+l) is translated to the nearest quantized point. Digital experiments assuming 

different numbers of grey levels for each component of w(k) were performed. The 

training patterns used in the simulations were sequences of binary and bipolar 

random numbers. The sequences -were then randomly assigned to two classes with 

the target responses chosen to be +1 and -1, respectively. The first experiment 

was done assuming there were only 2 grey levels. As expected, oscillatory states 

with great hamming distances apart were reached within a few iterations. When 

these oscillatory states were used as w in the LDF, the actual responses due to the 

training patterns were remote from their desired values. Another experiment was 

done assuming 16 grey levels for the weights. This time, more stable results were 

observed. Though oscillations still occur at a later stage, the unstable states were 

generally fairly close. When the oscillatory states were chosen to be the weight 

vectors, the actual responses differ from the target responses on average by 25 

percent. As the dynamic range of w was increased to 10 bits, the maximum error 

in output responses is confined to less than 1 percent. 

IV.2 Quantization Effect on Architecture 2. 

IV.2.1 Description 

We see from the previous section that the effect of limited dynamic range im­

poses serious problems on the ability of classifying vectors and achieving an accurate 

target response. We now explore the possibility of executing the training procedure 
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with a digital computer while implementing the trained LDF optically. Since a dig­

ital computer has a much higher dynamic range, the problems that are encountered 

in optical training should not occur here. Nonetheless, we are not problem-free. 

Eventually, the trained weight vector has to be written on optical devices with 

limited dynamic range. There is no guarantee that after w is downloaded, all the 

correct responses will result when {y(i)} are input to the optical classifier. This is 

because given w', the solution region itself can be shaped ( convex only), located, 

and/or oriented in such a way that all the quantized solution vectors are farther 

away from w than the non-solution quantized points. To illustrate the effects of 

quantization, statistics on Ps will be presented. Qualitative explanations will also 

be given. 

Example c. Suppose a perceptron is being trained by a digital computer. Here, 

we assume that the trained weight vector will be written on a 1-bit device. Thus, 

w, trained by the digital computer, is generated by the updating rule given by 

eq.(IV.1.1.1). After it is downloaded onto the 1-bit device, the components of w 

become 

(JV.2.1.1) 

Digital expermients simulating eq.(IV.2.1.1) were performed with Jvl/ N rangmg 

from .5 to 1.0 for N=12,16,20. The average time for convergence before binarization 

of the components was short, usually a few iterations. In the digital experiment, 

{f(i)} were sequences of binary, bipolar random numbers. After b = ( ... ,bi, ... ) 

was obtained, the LDF was tested with the training patterns. Ps was recorded and 

plotted versus 1\1/ N (Fig.IV.2.1.1 ). 
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PERCEPTRON BINARIZED AFTER TRAINING 
1. 2 

1 

Figure IV.2.1.1. Pa versus M / N. 
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0 bserve that Ps rolls off as 111 / N approaches 1, and Ps decreases as N increases, 

exhibiting similar behavior as that shown on Fig.IV.1.2.1. Comparing Fig.IV.1.2.1. 

and Fig.IV.2.1.1, we observe that not only are the Ps curves in the latter case 

significantly higher than those of the former, they also decrease at a much lower 

rate as M / N increases. 

Example d. The simulation in this example is based on another distorted form 

of the Widrow-Hoff algorithm. Similar to the algorithm in Example c, w is first 

trained using a digital computer. The trained weight vector is then written on a 

dynamic range-limited device. The final form w is then given as 

(JV.2.1.2) 

where w(k) is obtained by the Widrow-Hoff algorithm (eq.(IV.1.2.3)). The same 

statistics as before for the training patterns were used here. The same target re­

sponses used in Example b were also used here. After eq.(IV.2.1.2) was imple­

mented, the LDF was tested by the training patterns. The errors of the actual 

responses compared to the target responses were recorded. For 2 and 16 grey­

leveled devices, the average errors obtained were comparable to those in Example 

b. In other words, the accuracy of the output response is not improved like that of 

Example c. 

IV.2.2 Examples 

Example e. Although the training methods described in section IV.2.1 are 

better than those described in section IV.I.I., they are still unsatisfactory. Ps are 

still considered to be low, especially as Af / N approaches 1. Other algorithms which 
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may improve P8 are explored here and in later sections. A logical assumption is 

that : 

if w is close to the "central portion" of the solution region, then the prob­

ability Ps that quantizing w will result in a binary solution vector should 

be high.(IV.2.1) 

Thus, it is natural to derive an algorithm which will train w to proceed toward 

the "central portion." The central portion of a solution region can be interpreted 

in many ways. Suppose we confine our attention to a hypersphere of radius N 

centered at the origin ( all binary, bipolar points are on the hypersphere) in the 

N-dimensional space. Any solution region intersects the hypersphere at a (N - !)­

dimensional hyperspherical surface. One way to define the central portion can then 

be the region close to the centroid of the ( N - I )-dimensional hyperspherical surface. 

One can also consider an energy function and define the central portion to be the 

region close to the energy minimum. Since energy is a common notion in numerical 

analysis (numerous algorithms were developed to minimize energy) and there is no 

obvious reason why one definition of central portion is superior to the others, we 

will explore an algorithm involving minimization of energy. 

Define the energy E of a classifier as 

M 

E = L (f(w · y(i)) - t(i))
2

, (JV.2.2.1.) 

where J(.) is the transfer function of the output neuron and t(i) is the desired 

response of y(i). (Note the difference between the energy function in eq.(IV.2.2.1.) 

and eq.(IV.1.2.4.) is the extra transfer function J(.) in eq.(IV.2.2.1.).) Again, 
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we will use the gradient descent method to minimize the above energy function. 

Mathematically, this algorithm is given as: 

where c is the acceleration constant and 

Since the derivative off(.) will be involved, the hard-thresholding function 

f(x)={~ 
if x < threshold; 
if x ~ threshold, 

can no longer be used. Instead the soft-thresholding function 

(JV.2.3) 

(JV.2.4) 

will be employed. Computer experiments were done to simulate this training pro­

cedure. Because of the nature of the tan- 1 function, complete minimization, if 

possible, will take a very long time. A new parameter £, hence, is introduced. Con­

vergence is declared whenever IJ(w · y(i)) - t(i) I < £. £ can then be viewed as a 

measure of the "closeness" of the trained w to the "central portion" of the solution 

region. Shown on Figure IV.2.2.1. are Ps versus M/N curves for N = 12,16,20 

and£= 0.1. 

These curves, m general, follow the behaviors with increasing lvl / N and N 

that we observed earlier. For comparison, the same curves with £ = 0.05 were 

also obtained and plotted on the same figure. As we have expected, the curves 

with a smaller c have a higher classifying strength. The average number of itera­

tions for convergence versus .111 / N for each of the same N's and e's were plotted 
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GRADIENT DESCENT ALGORITHM WITH 1-BIT D.R. (ERR=.1) 
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Figure IV.2.2.la. P8 versus M/N curves of gradient 

descent algorithm with I-bit dynamic range (e = .1 ) . 
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Figure IV.2.2.lb. P8 versus M / N curves of gradient 

descent algorithm with 1-bit dynamic range (c = .05). 
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on Figure.IV.2.2.2. Even though the average convergence time in the simulations 

presented here are orders of magnitude higher, Ps is only slightly higher than that 

of Example c. Consideration of the average convergence time versus the classifying 

strength shows that the usage of gradient descent procedure in classification ori­

ented problems is not very effective when the trained w is quantized. Last, but not 

least, is that the results presented here once again illustrate the relatively random 

relationship between the existence of a real valued solution weight vector and a 

quantized solution vector. 

IV.3 Quantization Effect on Architecture 3. 

IV.3.1 Examples 

Example f The training algorithms that we have considered so far either do not 

have the capability ( dynamic range) to accommodate training, or they totally ignore 

the quantization effect of the medium on which the trained w is to be stored. In 

this example, we consider a procedure which is implemented on a digital computer 

while the quantization effect is taken into account in the training process. This 

procedure is modified from the perceptron training algorithm. It can be divided 

into two parts: 

1. the training part. The correction part is identical to that of the perceptron 

algorithm: 

(IV.3.1.1) 
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11. the testing part. Correction is only needed if the binarized version of the 

training weight vector, b, does not provide the proper response when it is 

subjected to y(k): 

(IV.3.1.2) 

correction is needed whenever b(k) • y(k) is negative. 

Computer simulations with N = 12, 16, 20 were performed according to this 

algorithm. Statistics of the training patterns were generated as before. The results 

are presented in Figure IV.3.1.1. 

Two sets of graphs are presented. One set corresponds to 10 iterations (i.e., 

computer program stopped after 10 iterations whether convergence occurred or 

not) while the other set corresponds to 100 iterations. The general behaviors of 

Ps with respect to increasing lvf / N and N is observed here again. Furthermore, 

Ps also increases with respect to increasing the maximum number of iterations 

allowed, which is also expected. Compared to the result obtained in Example c, we 

observe the increase in Ps here is traded off for longer average training time (Figure 

IV.3.l.2abc.). Specifically, when the allowed training time of (f, 10 iterations) is 

only slightly longer than the average convergence time of ( c), Ps of the former is 

also only slightly longer than the latter. However, when the allowed training time 

of (f, 100 iterations) is an order of magnitude longer than the average convergence 

time of ( c), Ps of ( f) is a little less than 2 times that of ( c). Note that the same kind 

of trade-off is also visible in Example e. But the trade-off is less severe in Example f. 

Consideration of both Ps and average training time indicates that training methods 

used in ( c) and ( f) are most promising. 
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Performance Curves of Binary Perceptrons (max. iter.= 10N) 
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f erformance Curves of Binary Perceptrons (max. iter.=100N) 
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Figure IV.3.1.2a. Average number of iterations for convergence of the gradient 

descent algorithm. 
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Example g. The search for a binary solution vector is difficult. The problem is 

that it is difficult to design a training algorithm to achieve the task without detailed 

knowledge of the geometry of the solution region. But having such knowledge is 

intimately connected to knowing where a binary solution point is. We therefore 

have a cyclic quest: we cannot find something because we do not know what that 

thing is. Thus, in order to guarantee that a binary solution vector be found, the best 

way may be some kind of exhaustive search. On the other hand, we definitely have 

no interest of searching all the 2N points. A desirable initial state should therefore 

be reached before the search begins. A good choice for the initial state is an analog 

solution vector, since it can be easily obtained by the perceptron algorithm. 

Computer simulations were performed to test the usefulness of an exhaustive 

search. Statistics for the training patterns were identical to what we used through­

out this chapter. An analog solution vector was first obtained by use of the percep­

tron algorithm. This initial vector was then binarized and tested by the training 

patterns. If misclassification occurred, then the first bit of the initial binary vector 

was flipped. The resultant binary vector was then tested by the training patterns. 

If misclassification still occurred, the first bit was flipped back to its original value. 

The second bit was then flipped. The procedure was then repeated until all bits 

had been flipped or no misclassification happened. If a binary solution vector still 

had not been found, the procedure was repeated with t,vo bits flipped and so on. 

The experiment was done with I and 2 bits flipped. In either case, the number of 

successful trials were recorded. The results are shown in Figure IV.3.1.3. 

Observe that the results obtained with 2 bits flipped is better than those with 

only I-bit flipped. While the Ps curves still roll off as A1 / N increases when only 1-
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Performance Curves of Random Bit Flip Algorithm 

Figure IV.3.l.3a. Ps versus M/ N of the 

random bit flip algorithm (1-bit flipped) . 

.2 .4 .6 

N= 12 

.8 1 

ratio of # of patterns to I of dimensions (M/N) 

N = 20 

1. 2 



1. 2 

1 

T.l • 8 
Q) 
Cl 
'­cu 
> 
C 
0 
u 
ID .... 
C0 -!:; .6 -0 

cu 
Cl 
C0 
+' 
C 
cu 
u 
'­cu 
C. • 4 

.2 

142 

Performance Curves of Random Bit Flip Algorithm 

Figure IV.3.l.3b. P8 versus M / N of the 

random bit flip algorithm (2-bit flipped). 
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bit was flipped, the same Ps curves remain relatively flat when 2 bits were flipped. 

This phenomenon is only true for N = 12 and 16, which signifies that a binary 

solution vector on the average is not far away from the initial analog vector (in 

hamming distance). But as N increases, e.g., 20, so does the average hamming 

distance between a binary solution vector and the initial analog vector. This means 

more bits had to be flipped in order to obtain a Ps curve with less gradient. As a 

whole, the Ps curves obtained in this example are the highest among all that are 

obtained in this chapter. It is important to note that this algorithm does not place 

an upper bound other than Non the number of bits that have to be flipped in order 

to arrive at a binary solution vector. Examples can be constructed to illustrate this 

point. Refer to Figure. IV.3.1.4. 

This is a conformal mapping of a hypersphere of N = 3 onto a 2-dimensional 

plane. Since the binary points are equidistant from the origin, they all fit on the 

3-dimensional sphere and are denoted by small circles. The longitude and latitude 

represent the intersections of the sphere and the planes X1 = 0; X2 = 0; X3 = 0. 

The solution region is depicted by the polygon in the middle of the graph. The 

edges of the solution region are not straight because they are conformally mapped 

( compare with shortest distance lines between two points on a world atlas). As can 

be seen on the graph, the only binary solution vector is at the right-most corner 

of the polygon. If the initial vector is at the point indicated by the X, then the 

bits needed to be flipped in order to arrive at the binary solution vector of 3. This 

means a complete exhaustive search has to be done. 

IV.4. Conclusion. 
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(1,1,1) (1,-1,1) (1,-1,-1) (1,1,-1) 

• 

X 

• 
(-1,1,l) (-1,-1,1) 

Figure IV.3.1.4. Point x is the initial w. Since x is in the octant opposite to 

the one which conatains (-1,+1,-1), the only solution point, all the bits have to be· 

flipped in order to get to (-1,+1,-1). 
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In this chapter, we analyzed different algorithms subjected to the quantization 

effect of a realistic device on which the weight vector is to be trained or written. 

We have come to the conclusion that devices with very limited dynamic range 

should not be used to implement complicated training algorithms. However, those 

devices are still suitable for the exhaustive search described in Example g. It is 

because no information is lost in the updating of w. As a matter of fact there is 

no information, aside from the output response of right or wrong, available to the 

updating rule in this kind of procedure. Observations about the descending nature 

of Ps as M / N and N increase were also made. Although the training patterns 

upon which the simulations were run were generated from gaussian random number 

generators, we believe that the descending property of Ps should remain valid for 

other input statistics for the algorithms considered. The reason for this is the 

probabilistic nature of quantizing a vector which is intrinsic to all problems. Finally, 

it is important to note that the results obtained in this chapter should provide a 

useful lower bound for the performance of linear machines with higher but still 

limited dynamic range. 
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V. Implementation of Optical Correlators 

V.O Introduction 

Recall that the image correlation g(x,y) between two patterns f(x,y) and 

h(x,y) is defined as 

g(x, y) = j j f(x + x, y + y)h*(x, y)dxdy. 

In the Fourier domain, 

G ( u' V) = F ( u' V) H* ( u' V) 

where 

G(u,v) = J J g(x,y)e-j 21r(ux+vy) dxcly 

F( u, V) = J J f(x, y )e-j21r(ux+vy) dxdy 

are the Fourier transforms of f(x, y) and g(x, y), and 

H*(u,v) = [ J J h(x,y)e-j2 1r(ux+vy) dxdy] * 

is the complex conjugate of the Fourier transform of h(x, y). Due to the Fourier 

transforming property of a lens, correlation between patterns with high space­

bandwidth product can be implemented by optics in a simple way. A schematic 

diagram of the classic Vander Lugt correlator is shown in Figure I.l. In this ar­

chitecture, f(x,y) on plane Pi is Fourier transformed by lens L1 . F(u,v) is then 

multiplied by H* ( u, v) which is recorded on plane P 2 • The optical product is finally 

inverse Fourier transformed by lens L2 to produce g(x, y) at the output plane P3 • 
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The concept of matched filtering was first brought up in the field of commu­

nication: suppose a signal, contaminated by additive gaussian white noise, is to be 

detected by a matched filter. It can be shown, by invoking the Schwarz inequality, 

that the ratio of signal energy to average noise energy is maximized by the matched 

filter. In the field of pattern recognition, however, the interpretation of matched 

filtering is slightly different. Suppose that a Fourier transform hologram off ( x, y) 

is synthesized and placed at A. The amplitude transmittance function of the holo­

gram should contain a term which is proportional to F* ( u, v ). Consider the the 

field distribution transmitted by the hologram when the signal f is presented to Pi. 

Incident on the hologram is a field distribution proportional to F, and transmitted 

by the hologram is a field distribution proportional to JIFll 2
• This latter quantity is 

real, which means that the hologram cancels all the phase information of F. Thus 

the transmitted field distribution is a nonuniform plane wave. L2 then focuses this 

plane wave to a bright spot at P3 • When an input signal other than f is present, 

the phase information will in general not be matched by the hologram and the 

transmitted field distribution will not be brought to a bright focus by L2 • Thus the 

presence of the signal f can be detected by measuring the intensity of light at the 

focal point of L 2 • 

To realize a pattern classifier by implementing the Vander Lugt correlator, the 

filter matched to the pattern to be detected has to be available. This can be done by 

using a photograph of the pattern to record the filter. Unfortunately, this method 

of implementing the reference filter does not have a great deal of practical value. 

It is because few realistic problems can be solved with only one stored pattern. 

While most problems require classes of dissimilar objects to be identified, it is im-
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portant that a large number of reference filters be available and be presented at P2 

with convenience. The availability of the reference filters is a definite requirement 

and cannot be avoided. Since the patterns to be detected must be known prior to 

detection, the Fourier transforms of the patterns can be computed and recorded. 

However, recording the matched filters on photographic media is considered unde­

sirable. For it means a mechanical device has to be involved in order for the filters 

to be changed. This is not only a question of elegance but also one of practical­

ity. The reason is that in order for the correlator to work properly, the origin of 

the matched filters has to be aligned with the rest of the optical system perfectly. 

The problem of changing the filters without disrupting the optical system can be 

solved if a spatial light modulator (SLM) is used. Basically, the function of a SLM 

is similar to a photographic plate: light transmitting through ( or reflecting from) 

a SLM is modulated according to the information recorded. The major difference, 

which makes a SLM more preferable, is that the information recorded can be mod­

ified by some external means, e.g., electronics control. (\i\Te shall call this property 

programmability.) Therefore, by placing a SLM at P2 , we have an optical system 

that can remain aligned as we change filters. The filters, of course, are stored in 

some memory bank interfaced to the SLM which can be accessed with ease. This 

arrangement provides the additional advantage that complicated filters, other than 

matched filters, designed by a digital computer can be programmed onto the SLM 

without much difficulty. 

To make the optical correlator really attractive, another SLM should be placed 

at Pi to allow real-time update of the input pattern. This SLM should be interfaced 

with some input device, a video camera for example. In addition, the input SLM 
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can also be interfaced to some processors, should image preprocessing be desired. 

Finally, an image detector should be placed at P3 • This image detector should be 

capable of recording the correlation output in real time. Not only will this detector 

allow remote monitoring of the output plane, by interfacing the detector with other 

processors, additional processing of the correlation output can be carried out. 

Summing up all the possibilities provided by the input SLM, reference SLM, 

and the output detector, we have: 

1. real-time input; 

11. preprocessing of input patterns; 

m. real-time filters update; 

1v. convenience for complicated, designed filters to be programmed; 

v. remote monitoring and recording of correlation outputs; and 

v1. postprocessing of correlation outputs. We shall call the correlators satis­

fying these requirements real-time programmable correlators. 

Given the input SLM, the reference SLM, and the image detector, a real-time 

programmable correlator can be built. The extent of success of the correlator, 

however, depends on the quality of these devices. The following is a list of criteria 

used to qualify a SLM or a detector: 

1. space-bandwidth product, the number of pixels available to represent a 

pattern. Besides having the ability to represent complicated real life image, 

pattern recognition, and information theories state that the higher the 

space-bandwidth product, the higher will be the capability of the filter 

and the signal-to-noise ratio of the output; 
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11. optical efficiency, the amount of useful optical power; 

m. speed, how fast can the information be updated; 

1v. dynamic range, the number of grey levels available; 

v. the linearity of the transfer function of the device ( only applicable if the 

device is not binary); 

v1. optical flatness of the device, important becaue the Vander Lugt correlator 

is a coherent system. Even if the optical flatness can be improved by other 

means, a hologram to correct the distortion, for example, it usually means 

more components are required; 

v11. resolution, the size of each pixel. If the pixel size of one SLM is large, 

then either the pixel size of the other SLM has to be small or extra optical 

components have to be used to match the sizes of the pixels; 

vm. modulation depth, a measure of maximum modulation compared to no 

modulation. A modulation depth of 1 is perfect whereas a modulation 

depth of O is useless; 

1x. uniformity, the respective performances of different pixels under the same 

excitation; 

x. the ability to modulate or process bipolar signals; 

x1. cost; 

x11. life-time of the recorded signal, the longer the more desirable; 

xm. the size of the device; 

xiv. the ease of interfacing with external circuit, i.e., the amount of electronics 

required; 

xv. the change in behavior due to change in environment or the device itself 
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(it is possible that the heat generated by the device when operating at 

high speed may change the transfer function of the pixels); 

xv1. power requirement; 

xvn. the immunity to noise, optical or electronic; 

xvm. optical frequency response, determines the useable source (usually visible 

spectrum is more desirable). 

Since the invention of television, the technology of image detectors has ad­

vanced to a state that most detectors have proven themselves according to the 

above criteria. On the other hand, the SLl\1 technology, clue to its short history, is 

still relatively immature. In recent years, several SLMs have been developed. The 

state of the art of these devices, however, remains a major obstacle limiting the 

accuracy, processing power, and practica.lity of optical image correlators. 

In this chapter, we investigate the possibility of using some of these devices to 

implement optical image correlators. The principles of operation of these devices 

will be explained. Their potential as SLMs will be addressed. Their advantages 

and limitations will also be commented upon. The optical characteristics of these 

devices will be analyzed and demonstrated. Experimental results will be presented. 

Computer analyses and experimental results using these devices, at the input plane 

and reference plane, to implement correlators will also be presented. A 2-D optical 

correlation method, in which the 2-D processing space is constructed by one spatial 

dimension and time, will be introduced. The use of only one spatial dimension, with 

the Time-and Space-Integrating (TSI) method, allows 1-D spatial light modulators 

and 1-D time correlators to be incorporated in the synthesis of the 2-D processor. 



Specifically, the acousto-optic device will be used as a SLM, and a CCD detector 

array will be used as an array of optically addressed 1-D correlators. Advantages 

and limitations of this architecture will be addressed. Experimental results of the 

optical implementation of this architecture will be presented. In addition, rotation 

invariant filters will be addressed. Computer and optical experimental results will 

be presented. 

V.l Magneto-Optic Device as a SLM 

V.1.1 Description of the Device 

The Litton magneto-optic device (MOD) consists of a two-dimensional array 

of magneto-optic modulators that are fabricated monolithically on the same non­

magnetic substrate. (The one that is used in the following experiment has 128X128 

elements.) Each element of the array can be individually addressed electronically 

through an array of crossed electrodes. The structure of the MOD is shown schemat­

ically in Figure V.1.1.1. 

When current is applied to a pair of crossed electrodes, a sufficiently high 

magnetic field is produced at the location where the two electrodes cross so that the 

magnetization of the pixel at that location is aligned with the applied magnetic field. 

Only one of the four pixels that surround the position where each pair of electrodes 

cross is affected because the lowerright corner in each pixel is ion-implanted and 

this reduces the strength of the applied magnetic field that is required to initiate the 

magnetization switching. Each pixel of the array can be magnetized in a direction 
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perpendicular to the surface in either polarity. Two pixels of the MOD, magnetized 

in opposite polarities, are shown in Figure V .1.1.2. 

The pixels are illuminated with a plane wave polarized in the y direction. The 

propagation of light through the magnetized medium results in a rotation of the 

plane of polarization by an angle 0 about the z-axis due to the Faraday effect. 

The direction of the Faraday rotation is opposite for the two stable magnetization 

states, as shown in Figure V.1.1.2. The light that is transmitted through the MOD 

is normally viewed through an analyzer that is oriented to block one of the rotated 

polarizations. A portion of the incident light is transmitted through pixels that are 

magnetized in the opposite direction, and thus an image of the binary pattern that is 

stored in the MOD is observed. This method for observing the stored image provides 

maximum contrast and is therefore optimum for display applications. In information 

processing, however, we are interested in the information content. If we examine the 

x and y components of the two rotated polarizations in Figure V.1.1.2, we realize 

that the y component (parallel to the incident polarization) is not affected by the 

magnetization state of the pixel. Thus, the portion of the transmitted light that is 

polarized in the y direction is unmodulated and acts as a uniform background bias. 

The direction ( or, equivalently, the polarity) of the orthogonal, or x, component 

is determined by the polarity of the magnetization of the pixel. Therefore, the 

information that is recorded on the MOD is transferred to the x polarization only. 

Bipolar modulation of the light amplitude can be obtained if the MOD is used 

in conjunction with an analyzer oriented to transmit the x polarization. Bipolar 

modulation of the light amplitude can be obtained if the MOD is used in conjunction 

with an analyzer oriented to transmit the x polarization. Bipolar modulation is 
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generally desirable in optical processing systems since it eliminates the need for the 

bias that is typically used to represent bipolar signals. 

Listed below are the advantages and limitations of the LIGHT-MOD. 

Advantages: 

1. cost can be very low if mass produced because its fabrication is based on 

standard epitaxial fabrication techniques. 

11. random-accessibility of individual pixels. 

111. pixel switching is logic driven, therefore the modulators are relatively im­

mune to electronic noise. 

1v. compact (6"X6"X2.5"). 

v. can be interfaced to micro-computer easily. 

v1. optically flat. 

v. high monochromatic light contrast (1000:1). 

v1. high speed ( ~300 frames per second for a 128X128 device). 

v. parallel addressability of pixels of the same row or column. 

v1. recorded information is nonvolatile, so no refreshing is required. 

v11. good uniformity (because of the semi-conductor technology). 

vm. can modulate bipolar signal. 

Limitations: 
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1. 1 bit-dynamic range. 

11. low optical efficiency ( ~4 percent, this figure includes blocking by the 

output analyzer). 

m. space-bandwidth product not high enough (128Xl28). 

1v. pixel size, (PJ ~ 100µm), not small enough. If a MOD is used as a Fourier 

plane SLM, then the input pixel size, Pi ~ 101-tm, for a lens with focal 

length, F=20 cm and the wavelength of the illumation, A=633 nm. This 

result is obtained by using the equation 

,\F 
Pi= ---

128pf. 

Because SLM with resolution of 100 lines/mm is not available, either lens 

with bigger F (thus lower numerical aperture), or more lenses have to be 

used in order to match the pixel size of the input and the reference. Either 

case means further reduction in optical efficiency and larger optical system. 

v. the switching threshold of pixels is very sensitive to the heat the device 

itself generates while operating. This means "warm up" is needed for the 

device to reach a steady state or more equipment is required to control the 

operating temperature of the device. 

V.1.2. Optical Experiment 

A simple experiment was performed to den1onstrate the bipolar modulation 

property of the MOD. A grating was recorded on a device with 48x48 pixels by 

magnetizing alternate colmm1s in opposite directions. The Fourier transform and 
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the image of this grating were optically formed for different settings of the analyzer. 

The results of the experiment are shown in Figure V.1.2.1. 

In Figure V.1.2.la the analyzer was set parallel to the incident polarization. 

The diffraction pattern in this case is clue to the pixel structure of the MOD; 

the pattern is symmetric in the two dimensions, indicating that the 1-D grating 

information is not present. The photographs in Figure V.1.2.lb were recorded by 

setting the analyzer perpendicular to the incident polarization. The diffraction 

pattern in this case is that of a bipolar or binary-valued phase grating. Notice that 

the DC component is absent in the diffraction pattern in Figure V.1.2.lb. There 

is no contrast in the corresponding image in this case since the intensity of the 

bipolar modulation is detected. When the analyzer is set so that one of the rotated 

polarizations is blocked (Figure V .1. 2. le), the contrast is maximized in the image 

and the Fourier transform becomes that of a conventional amplitude grating. In 

all the diffraction patterns, the sizes of the diffracted spots are circular, small, and 

similar. This observation indicates that the device is indeed optically flat and the 

pixels' characteristics are uniform. 

V.1.3. Computer Simulation 

Because of the binary nature of the MOD, quantization noise is inevitable. For 

most images, the quantization noise level increases as the number of bits used to 

represent each data point decreases. The exceptions are binary and half-tone im­

ages. In signal processing, how close a quantized image represents a real image is 

only of secondary importance. Of primary importance is how a quantized represen-
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Figure V.1.2.1. The different settings of the analyzer and the corresponding 

diffraction patterns. a.) The analyzer was set parallel to the incident polarization. 

b.) The analyzer was set perpendicular to the incident polarization. c.) The 

analyzer is set so that one of the rotated polarizations is blocked. 
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tation affects the processed output. For example, one figure of merit in correlation 

is the signal-to-side-lobe (Chapter II). ·while it is true that the signal-to-side-lobe 

ratio also decreases as the number of bit planes in a quantized image decreases, 

the precise effect of quantization noise remains to be determined. But with only a 

little a priori knowledge of the image to be quantized, precise determination of the 

quantization effect is very difficult. To observe the contribution of each bit plane to 

the peak-to-side-lobe ratio, one of the best methods is perhaps to obtain the correla­

tion of a real-life image and its quantized representation. Digital experiments were 

performed to illustrate this effect. The real-life image is shown in Figure V.1.3.1. 

The infrared image in the box in Figure V.1.3.1. is a bird's-eye view of a power 

plant. To obtain the quantized representation of the power plant image, the box is 

divided into a uniform grid of 128 by 128 elements. Each element is then digitized 

to a 7-bit binary word. The discrete Fourier transform (DFT) of the digitized image 

is computed and only the sign bit and the 6 most significant bits ( a total of 7 bits) 

of each sample of the DFT are saved. 7 frequency plane filters are then formed by 

adding different numbers of bit planes of the DFT: the first one is formed by just 

the sign bit of the DFT; the second one is formed by the sign bit and the most 

significant bit; and each additional filter is formed by adding one more bit at a time 

so the 7th filter has all the bit planes of the DFT saved. Correlations are obtained 

between the 7-bit digitized image and the 7-frequency plane filters. The significant 

part of the result is shown in Figure V.1.3.2. 

Figure V.1.3.2a is the correlation output of the 7 bit image and the 1st filter 

(formed by only the sign bit). In this case, the peak-to-side-lobe ratio is about 11. 

Shown in Figure V.1.3.2b is the correlation output between the 7-bit image and 
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Figure V.1.3.1. The bird's eye view of a power plant. 
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51:r.: ¥i~, I) I S.D.[y(i, t)J: 14.685~4 

t : 3 

SNR: 9(0,t) I S.D.!9(i,t)l : 15.676~~ 

t : 7 

Figure V.1.3.2. The correlation outputs of the powe1· plant and the filters 

formed by different of bit planes of the DFT of the power plant. 
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the 2nd filter. The peak to side lobe ratio in this case increases to about 13. The 

correlation output, when the 7th filter is used, is shown in Figure V.l.3.2d. The 

peak-to-side-lobe ratio of which case is about 16. Observe that when the number of 

bits in the frequency plane filter increases to 4, the peak-to-side-lobe ratio begins 

to saturate. This is a good sign since it means not too many bits are required in 

order to obtain a less than 5 percent decrease in peak-to-side-lobe ratio. Another 

promising observation is that the peak-to-side-lobe ratio is only reduced by 1/3 when 

only the sign bit representation is used. Note that this result agrees amazingly well 

with the theory obtained in Chapter II, even though the theory is based on images 

composed of white gaussian random numbers. Digital experiments with other real­

life images ( a bridge, an oil tank, and an oil field) were also obtained. The results 

are shown in Figure V.1.3.3. through Figure V.1.3.5. In those cases, the greatest 

loss in peak-to-side-lobe ratio, when only the sign bit representation is used, is 

about 1/2 (oil field). The best result is obtained from the simulation done with the 

bridge. The peak-to-side-lobe ratio in this case only suffers a modest loss of about 

10 percent. Nonetheless, in all simulations, the peak-to-side-lobe ratio is acceptable 

when only the sign bit representation for the frequency plane filter was used. 

V.1.4. Optical Experiment 

Image correlation using the binary filter was also demonstrated experimentally 

with an optical system using the MOD. A CGH of the letter "0" was recorded 

according to eq.(II.1.1.2.) on a 128x128 MOD. A photograph of the hologram is 

shown in Fig.V.1.4.la. and its optical reconstruction is shown in Fig.V.1.4.lb. 
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SHR: g(0,t) / S.D.[g(i,t)J: 11,86579 

t : 3 

SNR: g(0,t) / S.D.[g(i,t)J: 11.89232 

t : 7 

Figure V.1.3.3. Cross-correlations of a bridge and the filters formed by usmg 

different number of bit planes of the DFT of the image itself. 
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SNJI: g(0,tl / S.D.[g(i,t)J: 14.68534 

t : 3 

SNR: g(0,tl / S,D,[g(i,tll: 15.67602 

t : 7 

Figure V.1.3.4. Cross-correlations of an oil tank and the filters formed by using 

different number of bit planes of the DFT of the image itself. 
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SNR: g(0,t) I S.D.[g(i,t)J: 9,85687 

t : 3 

SNR: g(0,t) I S,D.[g(i,t)J: 19.63439 

t : 7 

Figure V.1.3.5. Cross-correlations of an oil field and the filters formes by using 

different number of bit planes of the DFT of the image itself. 
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Figure V.1.4.1. A computer-generated hologram of the letter "0" recorded on 

the MOD, and its reconstruction. 
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An interesting feature of this hologram is that the primary reconstruction ap­

pears on-axis. This happens because the transm.ittance of this CGH is real and 

bipolar (not complex), and since bipolar signals can be directly recorded on the 

MOD, it is not necessary to record the hologram on a high spatial frequency ear­

ner. The reconstruction is of remarkably good quality considering the extreme 

quantization that is involved in eq.(II.1.1.2.). The success in the reconstruction is 

due to two factors. One of them is the symmetry of the letter "0," which means 

that there is no loss in phase information of the Fourier transform of the letter. 

The other is due to the simplicity of the letter "0." The true 2-D Fourier trans­

form of the letter "0" resembles a 2-D sinusoidal function, which means not much 

amplitude information is lost through the quantization process. Note that multiple 

orders are observed because of the sampling of the pixels of the MOD. 

To perform an optical correlation, the hologram of Figure V.1.4.la. was placed 

at the Fourier plane of a Vander Lugt system, and a transparency of the object 

shown in Fig.V.l.4.2a. was placed at the input plane. 

The transparency used in the experiment was approximately lcmxl .5cm, and 

the focal length of the Fourier transform lens was 200111111. The correlation shown 

in Fig.V.l.4.2b. was obtained using a 5mW HeNe laser. A strong autocorrelation 

peak is obtained in each occurrence of the letter "0" in the input pattern; weaker 

spurious peaks due to the sampling in the hologram are also obtained. The value 

of the correlation function away from the peaks is at a comfortably low level; no 

attempt was made to compare the background level obtained here with that of the 

ideal matched filter. A considerable degree of variance was observed, which we 

attribute partially to the sensitivity of the MOD to the angle of incidence of the 
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Figure V.1.4.2. (b.) The cross-correlation of (a.) and the CGH of the letter 

"0". 
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illuminating light. The space variance limits the size of the input transparency. In 

our experiment we obtained satisfactory results over a 4 cm2 area at the input plane 

using a Fourier transform lens with a 200 mm focal length. 

Optical correlation was also performed on the image of the power plant and its 

binary Fourier plane matched filter. The result is shown in Figure V.1.4.3. 

The image of the power plant is shown in Figure V.1.3.1. Its binary Fourier 

plane matched filter is shown in Figure V.l.4.3a. Since the reconstruction of the 

filter does not resemble the power plant at all, it is not shown here. The sharp 

correlation peak is shown in Figure V.1.4.3b. 

These experiments support the results of our earlier analysis that a binary 

spatial filter can provide satisfactory performance. But they also demonstrate that 

the MOD has sufficient phase uniformity to be used as a holographic optical element. 

V.2. A Real-Time Programmable Correlator 

The TSI 2-D correlator architecture is presented in this section. Before we 

commence the description, we will briefly review the fundamentals of operation of 

the two key components of the proposed architecture: AOD (acousto-optic device) 

and CCD ( charge-coupled device) detector arrays. This will allow us to establish the 

notational convention we will be using, and will in genera.I facilitate the presentation. 

V.2.1. Description of AOD 
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Figure V.1.4.3. The optical correlation of the power plant and its binary Fourier 

plane matched filter. 
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A schematic diagram of an acousto-optic deflector operating 111 the Bragg 

regime is shown in Figure V.2.1.1. 

The voltage applied to the piezo-electric transducer is denoted by s(t). The 

signal s(t) has the form s(t) = a(t)cos[w0 t + <,b(t)] where the complex envelope 

a(t) = a(t)ei,t,(t) is the modulating signal and w0 /21r is the center frequency of the 

AOD for which the Bragg phase matching is satisfied . 

. 
0 

AWo 
sin b = --

41rv 

where A is the wavelength of light in the acousto-optic crystal and 0b is the angle 

of incidence of the optical plane wave. The acoustic wave that is generated at the 

transducer induces a variation in the index of refraction of the acousto-optic crys­

tal proportional to s(t - ; ), where v is the speed of sound in the crystal in the 

direction of acoustic wave propagation x'. The spatial variation in the index of re­

fraction causes a portion of the incident beam to be diffracted. In the Bragg regime, 

essentially all the diffracted energy is concentrated in the first order. For relatively 

weak modulation level (small change in the index of refraction) the amplitude of 

the diffracted light, E(x, t), is given by 

x'-A/2 x' '-'( x') . ( x') .2,rsin0bx' 
E(x',t) ~ c1rect( A )a(t- -;)e3

'1' t-,, e3w0 t-,, e3 

x' - A/2 x' . x' . 2rrsin0bx' = c1rect(----)a(t - -)eJwo(t-,,) e3 >-
A V 

(V.2.1.1.) 

In eq.(V.2.1.1.), c1 is a constant and A is the aperture of the AOD. Thus, the 

amplitude of the diffracted light is modulated by the complex signal a(t-:) over the 

spatial window A, is Doppler shifted by the travelling acoustic wave by w0 /21r, and is 

deflected around the Bragg angle 0b. For the rest of our discussion we will not carry 
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Figure V.2.1.1. Acousto-Optic Deflector. 
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. 21rsin0bx' 

the deflection term e3 A in the equations since it does not affect the operation 

of the system we will describe. In eq.(V.2.1.1.) the origin of the x' coorrdinate is 

at the piezoelelectric transducer, and x' increases away from the transducer. In our 

analysis it is more convenient to use the coorrdinate transformation x = -x' + A. 

In the x coordinate system, the origin is at the far end of the acousto-optical and 

x increases toward the transducer. Eq(V.2.1.1.) can be written as follows: 

x -A/2 x A -
E(x, t) = c1 rect( A )a(t + - - -eJwot ). 

V V 
(V.2.1.2.) 

We will use the above equation in the rest of our discussion. 

V.2.2. Description of CCD 

A CCD array is formed by a linear cascade of many pixels. Two-dimensional 

arrays are formed by growing side-by-side on the same chip a large number of linear 

arrays. Each pixel consists of three adjacent Metal Oxide Semiconductor (MOS) 

junctions. A positive voltage Vi is applied to the first stage of each pixel during ex­

posure. The positive voltage repels the majority carrier (holes in this case) and cre­

ates a depletion region below the oxide layer. The structure is illuminated through 

the transparent electrode and gate structure. Incident photons create electron-hole 

pairs in the semiconductor. The photogenerated positive carriers are repelled into 

the bulk of the semiconductor while the negative electrons in the vicinity of each 

pixel accumulate in the depletion region of the first stage of each pixel. The accumu­

lated charge is a measure of the intensity of the illumination at each pixel location. 

After exposure, the voltage Vi is lowered and simultaneously a positive voltage ½ 
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is applied to the middle stage at each pixel. With Vi_ lowered, the charge in the first 

stage starts spreading, due to self-repulsion and diffusion, and drifts to the middle 

electrode where the positive voltage V2 holds the charge together. When the CCD 

is operated as an image sensor, after a single exposure, each charge is shifted in the 

same manner through the entire array, until it reaches the output stage where it is 

measured. In our system, the CCD array will be exposed periodically. After each 

exposure the charge that is accumulated in the first stage of each pixel is shifted by 

only 3 stages of 1 pixel. Let the intensity of the illuminating light at the location y 

during the nth exposure be denoted by I( n, y ). The charge generated at the pixel 

located at y during the nth exposure is proportional to I( n, y ). After N exposures 

(N ~ n), the charge I(n,y) shifts by N-n pixels or by a distance (N -n)6y in the 

y direction. 6y is the pixel separation. Thus the charge that is accumulated in the 

CCD as a function of pixel position y after N exposures, is given by 

N 

Q(y) = L I[n, y + (n - N)6y], (V.2.2.1.) 
n=l 

for y = 0 to M6y, where Mis the number of pixels in the CCD and I(n,y) = 0 

for all y ~ 0. The maximum number of exposures N for which the addition in eq 

(V.2.2.1.) can be performed is equal to 111. 

V.2.3. Description of Operation 

The proposed system architecture is shown in Figure V.2.3.1. 

We will demonstrate that this system computes the cross-correlation g( e, r7) of 
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two complex functions f(x, y) and h(x, y ): 

g(l,11)=] j f(x,y)h(x+l,y+r,)dxdy. 

The operation of the correlator in Figure V.2.3.1. can be summarized as follows: 

The optical portion of the system is a multichannel 1-D correlator that correlates one 

row of the function f(x, y) with all rows of the function h(x, y ). The AOD is used to 

enter all rows of f(x,y) sequentially in the optical system. The 1-D correlations are 

integrated appropriately by operating the CCD in the shift-and-add mode described 

above, to form the full 2-D correlation. In most image recognition applications, the 

input scene and the filter functions are real. For this reason and in order to present 

the principles of operation of the proposed system more clearly, we will restrict our 

analysis initially to real functions f and h. For the sake of completeness, we will 

describe the operation of the system with complex signals f and h at the end of 

this section. 

The 1-D Fourier transform of a transparency with amplitude transmittance 

h( x, y) is formed with an astigmatic lens system which transforms in the x-direction 

and images along y. A hologram of the resulting light amplitude distribution is 

formed by recording its interference with a plane wave reference on photographic 

film or any other suitable device. The amplitude transmittance of the developed 

hologram is proportional to 

IBexp(-j21rsin0hFfx) +H(fx,Y)l
2 

= B 2 + IH(fx,Y)l
2 

+ BH* Ux, y)exp(-j21rsin0hF fx) 

+ BH(fx, y )exp(j21r sin0h F fx ), 
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where 

H(fx,Y) = j h(x,y)exp(-j21rfxx)dx, (V.2.3.1.) 

Bh is the angle of incidence on the hologram of the reference beam, B is its am­

plitude, F is the focal length of the lens in the x-direction, and f x is the spatial 

frequency variable which is linearly related to the spatial variable x' in the plane of 

the hologram Ux = {~ ). In eq.(V.2.3.1.), only the term containing H* contributes 

to the correlation and the remaining terms are blocked out in the optical system. 

Thus the effective complex transmittance of the hologram can be written as 

(V.2.3.2.) 

This hologram is placed in plane P2 of Figure V.2.3.1. The image f(x, y) is scanned 

in a raster format to produce a temporal electronic signal ,( t). The raster signal 

r(t) is related to the 2-D function f(x, y) by the following equation. 

r(t) = f[(t - (n - l)T)vs, n8y]; 

n =l, ... ,N, (V.2.3.3.) 

where Vs is the scanning velocity of the device (such as a TV camera) that produces 

the raster signal, T is the duration of each raster line ( Vs T is the size of f ( x, y) in 

the x-direction), and 8y is the resolution of f(x,y) in they-direction (N8y is the 

size of J(x, y) in they-direction). In eq.(V.2.3.3.) we assume that f(x, y) = 0 for 

x > V 8 T and x < 0. r(t) is heterodyned to the center frequency w0 and applied to 

the AOD in plane Pi of Figure V.2.3.1. The modulation ta (x, t) introduced by the 

AOD on the amplitude of the diffracted light can be found by substituting a(t) by 
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r(t) in equation (V.2.3.2). 

x - a/2 x A -
ta(x,i)=c1rect( A )r(t+---)eJwot; 

V V 

x -A/2 x A -= c1rect A f[(t+ - - - - nT)vx,n8y]eJwot 
V V 

(V.2.3.4.) 

We set A= vsT, i.e., the aperture of the AOD can accommodate exactly one raster 

line of f(x,y)/4. For convenience, we also set Vx = v. At time instances t = nT the 

modulation of the AOD is given by 

Ta(x,nT) = c1f(x,n8y)exp(jwonT) 

x -A/2 x A . = c1rect( T )J[(nT + - - - - nT + T)v,n8y]exp(;w0 nT).(V.2.3.5.) 
V V V 

The rect function can be dropped in eq.(V.2.3.5.) since J(x,y) was defined to be 

nonzero for O < x < vT. Thus, at times t = nT a single line of the function f(x, y) 

modulated spatially the light diffracted by the AOD. A pulsed light source is used 

in the system to illuminate the AOD only at the instances t = nT. The temporal 

modulation of the source can be written as 

t-nT 
is(t) = rect(--) 

T 
n = l, ... ,N (V.2.3.6.) 

where T is the duration of each light pulse, and the pulse shape has been approxi­

mated by a rectangular function. The light diffracted by the AOD is modulated by 

the product of eqs.(V.2.3.4.) and (V.2.3.6.). \1/e denote this modulation function 

by isa (x, t). For ¼ larger than the bandwidth of r(t), isa can be approximated by 

isa(x,a) = is(i)ta(x,t) 

. t- nT x = exp(;w0 t)rect(--)f[(t + - - nT)v, n8y] 
T V 

. t-nT 
~ f(x, n8y)exp(Jw0t)rect(--). 

T 
(V.2.3.7.) 
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Lens L 1 in Figure V.2.3.1. is used to collimate the above light distribution in 

the vertical direction so that it illuminates the hologram in plane P2 uniformly in 

the y-direction. Lens L2 takes the Fourier transform in the x-direction. Thus the 

amplitude of the light entering plane Pz is modulated by 

t:aUx,t,n) = J tsa(x,t)exp(-j21rfxx)dx 

t-nT = F(fx, n5y)exp(jwot)rect(--) 
r 

(V.2.3.8.) 

The light immediately after plane P2 is modulated by the product of eqs.(V.2.3.8.) 

and (VI.2.3.2.). The astigmatic lens system L3 images plane P2 onto the output 

plane P3 in they-direction, while it performs the Fourier transform in the horizontal 

(x) direction. The amplitude of the light at plane P3 is given by 

td(x, Y, t, n) = j t:a Ux, t, n)th(f(x, y)exp(-j21rfxx' dfx 

= c2 exp(jw0 t)rect[t - nT] 

· j F(fx, noy )I-I* Ux, y )exp[-j21r( sin0hF + x')fx ]dfx 

= c2 exp(jw0 t)rect( t -rnT) j f(x,n5y)h(x + x,y)dx (V.2.3.9.) 

where x = x' +sin0hF is the horizontal spatial coordinate in P3 and c2 is a constant. 

The convolution theorem was used to obtain the last form of eq.(V.2.3.9.). The 

output light distribution is detected interferometrically by the CCD detector array 

at the output plane in order to obtain a signal proportional to eq.(V.2.3.9.). A 

reference beam derived from the same source is heterodyned to the center frequency 

w0 of the AOD and is made incident on the detector at an angle 0d. The amplitude 

of the reference beam is described by 

(V.2.3.10.) 
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The signal I(x, y, n) that is detected by the CCD is proportional to the time inte­

grated intensity of the sum of eqs(V.2.3.9.) and (V.2.3.10.): 

I(x,y,n) =c3J Jtd+trJ
2
dt 

= jnT+r JAexp(j21rf0 x + j J(x,noy)h(x + x,y)dxj 2 dt 
nT 

=rc3[A2 +lf J(x,n8y)h(x+x,y)dxj
2 

+2A[j J(x,n8y)h(x+x,y)dx]cos(21rJ0 x)], (V.2.3.11.) 

where Jo = sin0d/ >... The third term in the above equation is the 1-D correlation 

of then-th row of J(x,y) with all the rows of h(x,y). The correlation forms on 

the spatial carrier J0 • Since both J and h are real functions, only the amplitude 

of the fringe pattern is modulated. In the y-direction, the CCD is operated in the 

shift-and-add mode described earlier. The charge that is accumulated in the CCD 

after N light pulses can be found by substituting eq.(V.2.3.11.) in eq.(V.2.2.1.) 

N 

Q(x, y) = L I[x, n, y + (n - N)oy] 
n=l 

N 

= c4[NA2 + L I J J(x,noy)h(x + x,y + (n - N)oyj
2 

n=l 

N 

+2A[L J J(x,n8y) 

· h(x + x,y + noy- N8y)dx]cos(21rJ0 x)]. (V.2.3.12.) 

The third term in eq.(V.2.3.11.) forms on a spatial carrier of frequency J0 • By 

setting Jo equal or larger to the bandwidth of J(x, y) this term can be separated 

from the other two baseband terms by electronic filtering after the signal from the 
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CCD is converted to a video signal. The envelope of the carrier in eq.(V.2.3.12.) 

is recognized to be the 2-D correlation with the integration over the continuous 

variable y replaced by the summation over the discrete variable n8y. The correlation 

pattern is shifted by the constant N 8y in the y-direction. For a CCD detector with 

N horizontal rows, this means that each slice of the correlation pattern is formed 

sequentially at the last row of the device. A fast horizontal CCD transfers each line 

of the 2-D correlation to the output stage of the device where it can be displayed 

or further processed electronically. 

V.2.4. Adaptation of the Architecture 

In the proposed system, it is important to select the amplitude A of the ref­

erence beam in an optimum manner. Ideally we would like to choose A such that 

the peak value of the correlation function in eq.(V.2.3.12.) is equal to NA, in or­

der to utilize fully the dynamic range of the detector. At the same time, we must 

choose A large enough so that the interference pattern formed during each light 

pulse is recorded linearly. Depending on the type of images being processed, the 

peak value of the signal recorded during each pulse can vary significantly from pulse 

to pulse. If this is the case, we will be forced to choose a value for A which can 

be significantly higher than the optimum. As a result, the bias would be greater 

than the peak value of the correlation in eq.(V.2.3.12.) with a corresponding loss 

in the dynamic range in which the signal can be detected. In these instances, it is 

preferable to use a reference beam whose amplitude depends on the energy of each 

line of the input function, and thus varies temporally and/ or spatially. The fringe 
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pattern cos[21rf0 x] in eq.(V.2.3.11.) must remain stationary from pulse to pulse, 

i.e., it must not depend on n. Any jitter in the location of the fringes will cause the 

signal term in eq.(V.2.3.12.) to decrease when the summation over n is performed. 

Two factors can adversely affect the stability of the fringe pattern: mechanical in­

stability of the optical system and instability in electronic timing circuits. The bias 

build-up and the requirement for stability in the system are consequences of the 

use of interferometric detection in the system. We are considering several methods 

by which the additional complexity that is introduced by interferometric detection 

can be avoided. For instance, let us suppose that interferometric detection was not 

used at all. In this case the signal accumulated at the CCD is given by 

N 

Q(x, y) = I: I j J(x, n8y)h(x + x, y + n8y)dxl
2

• (V.2.4.1.) 
n=l 

The difference between the above function and the correlation contained in equa­

tion (V.2.3.12.) is that in eq.(V.2.4.1.) the 1-D correlation is squared before the 

summation over n is performed. It can be shown using the Schwarz inequality that 

the function in eq.(V.2.4.1.) is maximized when J = h and the peak value occurs 

at x = 0 and y = 0. In other words, this function exhibits some of the properties 

that make the correlation function useful for pattern recognition applications. 

The most obvious way to introduce a programmable reference to the TDI cor­

relator is by recording the 1-D Fourier transform hologram on a SLM rather than 

on photographic film. One good candidate for the real-time SLM is the Litton 

LIGHT-MOD. Its use as a spatial filter in optical correlators has been investigated 

in previous sections. The algorithm used to generate a 2-D suboptimum binary 

and bipolar filter has been verified both theoretically and experimentally. However, 
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in the TDI case, we need a slightly different algorithm for the generation of the 

reference filter. Since only one dimension of the correlation is done using the space 

integrating capability of optics in the TDI operation, only a 1-D Fourier transform 

of the image to be matched is required. The modified algorithm can be described 

as follows: 

H(u,y) = ,a[Re[F(u,y)]] 

where 

F( u~ y) = j f(x, y )en; ux dx. 

f(x, y) is the pattern to be matched. In other words, the reference filter is obtained 

by taking the sign information of the real component of the Fourier transform of 

f(x, y) in only the x direction. This modification in generating a binary and bipolar 

reference filter actually benefits the peak-to-side-lobe ratio of the correlation. It is 

because only a 1-D Fourier transform is required and, thus, only half of the infor­

mation associated with the antisymmetric component of the pattern is discarded in 

the quantization process. The relative amount of information loss can perhaps be 

better illustrated by considering the following special case: suppose f ( x, y) can be 

written as fx(x)fy(y). The reference filter is hence given as 

(V.2.4.2.) 

where 

It is clear from eq.(V.2.1.1.) that only the information associated with the imaginary 

component of Fx ( u) is totally discarded. As a comparison, all the information 
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associated with the antisymmetric component of f(x, y) is destroyed in a 2-D binary 

and bipolar reference filter. 

V.2.5. Optical Experiment 

We will begin this section by briefly describing the operation of the electronic 

timing circuit. Before a correlation commences, the reference filter is written onto 

the MOD. Since the pattern to be recognized is input via a raster scan TV camera, 

a TDI cycle is triggered by the frame ( vertical) sync of the video signal. The video 

signal is multiplexed by a carrier frequency before applying to the AOD. As only one 

video line ( the separnnations of video lines are denoted by the horizontal sync of the 

video signal; there are 512 video lines in a US commercial TV) is entirely within the 

window of the AOD, the pulsed light source is triggered. The triggering is achieved 

by properly delaying the horizontal sync of the same video line. The pulsing of the 

light source practically "freezes" the information of the video line. The constraint 

on the pulse width will be discussed later. The 1-D correlation achieved by the space 

integrating technique is recorded on the CCD detector. As soon as the pulsed light 

level is dropped back to zero, the detected signal is ready to be shifted downward by 

one line. (The shifting operation of the CCD is explained in section .. ) The shifting 

is triggered from the same horizontal sync properly delayed. The only requirement 

is that the shifting operation has to finish before the next light pulse is triggered. 

When the shifting is complete, the readout register of the CCD detector contains 

one video line of the 2-D correlation output to be obtained. The rest of the lines of 

the 2-D correlation output are obtained in the identical manner. At the end of one 
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input frame, a complete frame of the entire TDI correlation is acquired. Because 

its format is compatible with a standard video signal, the output signal line of the 

CCD detector can be connected to a video monitor, which allows the real time TDI 

correlation to be observed. 

We now describe the experimental setup. The reason for the choice of the 

optical components and the width of the light pulse will be given later. In the 

experiment, the light source is a 1 W argon laser with the line 514 nm selected. 

To provide the light pulse, a glass AOD with a center frequency of 40 MHz is 

used. The raw beam from the argon laser is focused at the center of the glass 

crystal. A light pulse diffracting at the Bragg angle was obtained when a 15 kHz 

sin wave modulated by a 100 ns square pulse is applied to the transducer of the 

glass AOD. An approximate of 50 percent diffraction efficiency was obtained. The 

pulsewidth was chosen to be lO0ns simply because it has to be no longer than 2 

times the inverse of the bandwidth of the video signal so that the motion of the 

signal in the light diffracted by the AOD can be neglected. The video bandwidth 

in this experiment was less than 5MHz. The video signal from the TV camera 

was heterodyned to the center frequency of the input AOD (50MHz), amplified, 

and applied to the AOD. The acousto-optic device in this experiment was a Te02 

( crystal technology #4050S) device with 35 MHz bandwidth and 70 microsecond 

delay. This was more than adequate to accommodate one standard video line (63 

microseconds and 5 MHz). After approximately 52. 7 microseconds from the start 

of the horizontal clock, the signal in the AOD is an acoustic replica of the video line 

from the input image. At that instant the light pulse is fired to produce a readout 

of the signal in the AOD. 
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The light diffracted by the AOD was Fourier transformed in the horizontal 

direction and imaged vertically to illuminate the binary and bipolar one-dimensional 

Fourier transform hologram written on the MOD. The optical system chosen to 

handle this job has an effective focal length of 3.2 m in the horizontal direction 

and a magnification of 1 in the vertical direction. The vertical magnification is 1 

simply because the height of the AOD window and the MOD are both 1cm. With 

the effective focal length of the Fourier transform lens system of 3.2 m, the effective 

aperture size of the AOD can be obtained by using the following equation: 

where r is the resolution of the MOD which is 64 line pairs per mm. Substituting 

,\ = 514nm, F = 3.2m and r = 64lp/mm into the above equation, we have A= 36µs 

which is about 50 percent of the total useable window of the AOD. In this case the 

pixel size of the input signal on the AOD is .28µs, about .4 percent of the total 

aperture. This is the reason that such an effective long focal length is required. For 

any pixel size less than this determined value, the optical power diffracted would 

not be sufficient. Recall that the optical efficiency of the MOD is only 4 percent. 

The effective focal length and magnification requirement on the lens system was 

fulfilled by using three spherical lenses with focal lengths of 40cm, 5cm, and 40cm, 

and a concave cylindrical lens with focal length of 20cm, respectively . 

The light transmitted through the MOD is inverse Fourier transformed in the 

horizontal direction and imaged in the vertical direction onto the CCD. The CCD 

detector used in the experiment was a SONY XC-37 whose driving electronics were 

modified to allow us to scroll the charge on the CCD continuously during each frame. 
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This CCD camera has 384 pixels in the horizontal direction and 491 pixels in the 

scrolling direction. To ensure that the resolution of the correlation output does not 

exceed that of the CCD camera. A Fourier transform lens of 20cm ( obtained by 

using eq .. ) focal length was used. The imaging on the vertical direction is achieved 

by an additional 7 .6 cm focal length cylindrical lens. The scrolling action of the 

CCD completes the 2-D correlation as described earlier, and the full 2-D correlation 

is produced at 30 frames per second and displayed on a monitor. 

The experimental result, demonstrating the TDI mode 2-D correlation using 

the experimental setup described in the previous paragraph, was obtained. The 

result is shown in Figure V.2.5.2. The input pattern that was imaged onto the TV 

camera was the letter X shown in Figure V.2.5.2a. The one-dimensional Fourier 

transform hologram of the letter X, computed and then recorded on the MOD, is 

shown in Figure V.2.5.2b. The autocorrelation of the letter X that was produced 

in real-time as a video signal by the CCD and displayed on a monitor, is shown in 

Figure V.2.5.2c. 

V.3. Binary Rotation Invariant Filters 

The correlation methods that we have examined so far only work when the 

orientation of the input object is known. In many applications, however, the ob­

ject's orientation, in addition to its location, is usually not specified. One method 

to detect a rotated object is through the use of Mellin transform. This method ba­

sically makes use of a cartesian to polar coordinate transformation and thus trades 
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shift-invariant for rotation invariant correlation. Another technique which allows 

both location- and orientation-insensitive correlation involves circular harmonics 

decomposition. In this section, we will investigate the possibility of using a binary 

version of this rotation and translation invariant technique for correlation. We will 

begin by reviewing the fundamentals of circular harmonic expansion. 

V.3.1. Basic Theory 

Mathematically, any pattern in polar coordinate f(r, 0) can be decomposed 

into its circular harmonic components: 

00 

f(ri 0) = L f m (r )exp(jm0) 
m=-oo 

where 

1 1211" 
fm (r) = - J(r, 0)exp(-jm0)d0. 

21r 0 
(V.3.1.1.) 

Note that the coefficient fm (r) of each circular harmonic component exp(jm0) is 

not a function of 0. If f(r, 0) is rotated by an angle a, then 

00 

f(r, 0 +a)= L fm (r)exp(jm0)exp(jma) (V.3.1.2.) 
m=-oo 

The circular harmonic components are all orthogonal, for n -=/=- m: 

1
211" 

fm (r)exp(jm0)fn(r)exp(jn0)d0 = 0, 
0 

m-f=.n. 

The effect induced on the correlation output when one of the inputs is rotated 

by angle of a can be illustrated by considering the following: Let f1 ( x, y) and 
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f ,:,,(x, y) denote f (r, 0) and f(r, 0+a) in cartesian coordinates. The cross-correlation 

between f 1 and fa is given as 

(V.3.1.3.) 

When a = 0, the autocorrelation peak R0 (0, 0) appears at x = 0, y = 0. For an 

arbitrary value of a, however, 

(V.3.1.4.) 

In general, Ra (0, 0) is drastically reduced for a f=. 0 We will refer to Ra (0, 0) as the 

center correlation value. 

The influence of the rotation angle a on the center correlation value can be 

shown by rewriting eq.(V.3.1.4.) in polar coordinates. Let C(a) denote Ra(0,0) in 

polar coordinates. Then 

Joo J 211" 
C(a) = rdr J(r, 0 + a)f(r, 0)d0. 

0 0 
(V.3.1.5.) 

Substituting the circular harmonic expansion of f(r,0) given by eq.(V.3.1.1.) into 

eq.(V.3.1.5.) yields 

C(a) = j 
00 

r [ E fm (r) j 
2

11" f(r, 0 + a)exp(-jm0)d0] dr. 
0 m=-oo 0 

In view of eq.(V.3.1.2.), we can write the above equation as 

00 

m=-oo 

exp(jma) j 
00 

rlfm (r)j
2 
dr. 

0 

(V3.l.6.) 

Eq.(V.3.1.6.) expresses the center correlation value in the form of a summation of 

the contribution from all the circular harmonic components. Such a summation 

does not, in general, remain constant when a varies. 
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After realizing that the cause of variation of the center correlation is the con­

tributions to the correlation from all of the circular harmonic components, it is 

natural to suggest that only a single circular harmonic is used as the reference fil­

ter. Suppose h(r, 0) = fm (r)exp(jm0) is the reference filter in a correlator. The 

center correlation between f(r,0 + a) and h(r,0) can be expressed as 

where 

(V.3.1.7.) 

The output intensity 

is constant independent of the orientation of f, which indicates that circular har­

monics may be suitable for rotation invariant pattern detection. 

Translation invariance can also be incorporated in a correlator using a circu­

lar harmonic component as the reference filter. This additional invariance can be 

achieved by simply utilizing the Fourier transform of the circular harmonic selected 

as the reference pattern. It can be shown that the Fourier transform of the m-th 

order circular harmonic is given as 

(V.3.l.8a.) 

where (p, 0) are polar coordinates in Fourier space, 

(V.3.l.8b.) 
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and Jm (.) is the m-th order Bessel function. 

The circular harmonics components of a real image, in general, are gray valued 

complex functions. From eq.(V.3.1.8.), their Fourier transforms are also gray-valued 

and complex. Thus, the algorithm for generating the rotation and translation in­

variant filter has to be modified if a binary and bipolar SLM is used to record the 

reference. The procedure used for generating the suboptimum matched filter de­

scribed in Chapter II can be employed here as well. Suppose the m-th order circular 

harmonic of f(r,0) is to be matched. Adapting eq.(II.1.2.1.) to suit the present 

task, the Fourier transform reference filter H (p, 0) in polar coordinates is given as 

(V.3.1.9.) 

From here on, the filter given by the above equation will be addressed as them-th 

order binary Fourier transform circular harmonic filter or abbreviated as the m-th 

BFTCHF. 

Recall that if the input image to be correlated is a symmetric function, i.e., 

f(x,y) = f(-x, -y) 

in cartesian coordinates or in polar coordinates 

J(r, 0) = f(r, 0 + 1r ), 

then there is no loss in information associated with the antisymmetric component of 

f when the binary suboptimum Fourier transform filter is formed. It is because the 

Fourier transform of a symmetric function has no imaginary component. As for the 
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circular harmonic filter, except for the 0-th order, the other circular harmonic com­

ponents are complex. It is therefore natural to assume that some phase information 

associated with a circular harmonic component is lost when the filter described by 

eq.(V.3.1.9.) is implemented. While it is true that the entire correlation output will 

be different if the phase information of the imaginary component can be retained, 

the center correlation value, fortunately, is not affected. Consider the coefficient of 

them-th order circular harmonic. From equation (V.3.1.1.), 

l J 21r . f 21r 
fm(r) = - J(r,0)cos(m0)d0. + 

2
J J(r,0)sin(m0)d0. 

21r O 7r 0 

But since f is symmetric, the second term on the RHS of the above equation is 

zero. In other words, fm(r) is real. In view of eq.(V.3.1.Sb.), Fm(P) is also real. 

Applying this result to eq.(V.3.1.9.), we obtain 

H(p, 0) = /3 [ (-l)m Fm (p )cos(m0)]. (V.3.1.10.) 

Now the Fourier transform of the circular harmonic decomposition of f(r, 0) is given 

as 
00 

n=-co 
n even 

where Fn (p) is given by eq.(V.3.1.Sb.) and n is even because f(r, 0) is symmetric. 

When f(r,0) is applied to the filter described by eq.(V.3.1.10.), the correlation 

output Cm ( r, 0) can be expressed as 

Cm(r,0) = FT- 1 [F(p,0)H(p,0)] 

f Joo [ J 21r ejn0 (3[cos(m0)] ejprcos(0-0) d0] 
n=-oo O 0 

n even 

(V.3.1.11.) 
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Thus the center correlation value is given as 

Cm(O,0)= I: J00 [J 2

1r ejn°;,[cos(m0)]d0](-ltFn(P)fJ[(-l)mFm(P)]rdr 
n=-= 0 0 

n even 

(V.3.1.12.) 

But, because /J[cos(m0)], cos(n0) and sin(n0) are orthogonal, i.e., 

J 
21r 

cos(n0)t,[cos(m0)] d0 = 0 
0 

n-=f.m; 

f 
21r 

0 

sin(n0)t,[cos(m0)] d0 = 0 Vn,m, 

eq.(V.3.1.12.) can be reduced to 

(V.3.1.13.) 

Now, the integral enclosed by the brackets in the above equation is identical to 

J 
21r 

lsin(m0)ld0 
0 

Therefore, eq.(V.3.1.13.) can also be written as 

(V.3.1.14.) 

which is exactly the center correlation value that would result if the reference filter 

is obtained by applying the beta function, /J(.), to the imaginary component of the 

Fourier transform of them-th order circular harmonics off. In view of this identity, 

we may conclude that practically no information is lost as far as the center corre­

lation value is concerned. When f is not symmetric, all the information associated 

with its antisymmetric component will be discarded in the process of generating the 
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BFTCHF. But just as in the procedure of obtaining the binary matched filter, all 

the phase information accompanying the symmetric component of f is conserved 

when the BFTCHF is produced. 

V.3.2. Computer Simulation 

To observe the performance of BFTCHFs in recognizing patterns, digital ex­

periments were carried out. The pattern to be identified in the experiment is the 

character "A." To generate the reference filters, a computer image of the character 

"A" was first synthesized. Let J(ll:::.r, kl:::.0), l = 0, ... , 119, k = 0, ... , 15, denote 

the 2-D pattern of "A" in polar coordinates. f is then decomposed into its circu­

lar harmonic components. The following discrete modification of eq.(V.3.1.1.) was 

used to compute the circular harmonic component coefficients: 

119 

f m (11:::.r) = L J(ll:::.r, kl:::.0)ejmk.6e 1:::.0 (V3.2.1.) 
k=O 

where 1:::.0 = 1
2
2~ and l:::.r = 1. Using eq.(V.3.2.1.), the 0th circular harmonic 

components were obtained. The circular harmonic was then transformed from polar 

coordinates to cartesian coordinates resulting in an array of 32X32 data points. 

This array was further expanded into another array of 128X128 data points by 

patching zeros for the extra data points. The DFT of this circular harmonic in 

cartesian coordinates was computed. Reference filter was generated according to 

eq. (V.3.1.9. )(Fig.V.3.2.la.) 

To test the effectiveness of this reference filter, two test patterns were used. 

The first test pattern contains 4 "A''s in different orientations (Fig.V.3.2.1 b.). The 
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Figure V.3.2.la,b,c. 
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Figure V.3.2.ld,e,f. 
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second test pattern contains the characters "A," "B," "C" and "D" (Fig.V.3.2.ld.). 

These two test patterns were correlated with the reference filter (Fig.V.3.2.la.), 

respectively. The results were obtained. Shown in Figure V.3.2.lc. is the isometric 

plot of the correlation output when the input is the first test pattern. Four peaks 

corresponding to the locations of the differently oriented "A''s are visible. This 

simulation result demonstrates that the O-th BFTCHF possesses the rotation and 

translation invariant recognition capability. The correlation output when the second 

test pattern is applied to the reference filter is shown in Fig.V.3.2.le. Besides 

the highest peak at the left-most corner which is due to the character "A," peaks 

of smaller magnitudes due to the characters "B" and "C" are also visible. The 

comparable magnitudes of the peaks hardly qualify the O-th BFTCHF as an inter­

class discriminator. Experiments were repeated with BFTCHF obtained from the 

1st and 2nd order circular harmonics. The results were not promising. No peak 

of outstanding magnitude was visible. Shown in Figure V.3.2.lf is the correlation 

between test pattern 1 and the 1-st order BFTCHF. 

To explain the difference in performance between the O-th BFTCHF and the 

BFTCHFs of the other orders, consider the following fact. Suppose h(r) is a 2-D 

circularly symmetric pattern which is only a function of r. It can be shown that 

J 
21!" Joo 

IJ(r,0) - h(r)l
2
rdrd0 

0 0 

is a minimum if and only if 

h(r) = fo(r) 

where Jo (r) is the O-th order circular harmonic of f (r, 0). In the "closeness" sense 

of f 0 (r) is to f(r, 0), it is no surprise that O-th BFTCHF outperforms the other 
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BFTCHFs. Moreover, unlike the non-zeroth orders, the Fourier transform of the 

zeroth order circular harmonic is always symmetric and real regardless of the sym­

metry of f(r, 0). Thus, when the real part of the Fourier transforms of the circular 

harmonics are quantized to + 1 or -1 to form the reference filters, the 0-th BFTCHF 

is always the one with the minimum loss in information. 

V.3.3. Optical Implementation 

An optical correlation between the letter "A" and its 0-th BFTCHF was per­

formed. A Vander Lugt correlator was used. The 0-th BFTCHF was obtained 

through the use of a computer following the procedure outlined in the previous sec­

tion. The only deviation was that the initial size of the computer image is 128X128 

instead of 32X32. After obtaining the reference filter, it was programmed onto the 

Litton LIGHT MOD located at the Fourier plane. A negative transparency of the 

letter "A" of the right size was then placed at the input plane. The correlation 

output was imaged on a SONY CCD camera and was observed on a TV monitor. 

The result is shown in Figure V.3.3.1. The bright spot in the middle of the figure 

is the correlation peak. The lines are the off-center correlation structure. To verify 

the rotation invariant property of the reference filter, the input image was rotated. 

It was observed that the lines of the correlation rotated in the same direction and 

at the same speed as the input image. It was also observed that the rotations of 

the lines were about the correlation peak which remained stationary. 
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. (a) 

. (b) 

(c) 

Figure V.3.3.1. The cross-correlation of the letter "A" and its 0-th order 

BFTCHF. 
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