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Abstract 

 My studies focused on the self and cross reactions of peroxy radicals (RO2). 

These are important gas phase reactions in the atmosphere when concentrations of 

nitrogen oxides are low. Hydroperoxide products of these reactions can undergo further 

reaction to form aerosol precursors, making RO2 reactions critical to aerosol formation as 

well. The occurrence of multiple simultaneous reactions is frequently unavoidable when 

working with radical reactions. Self reactions of RO2 further complicate matters by 

producing another peroxy radical (HO2) through one of their product channels. Time 

resolved spectroscopic probes in the ultraviolet and near-infrared, specifically targeting 

each reactant, were used to measure the rate coefficients for the self and cross reactions 

of HO2 and ethyl peroxy radicals (C2H5O2). In addition the product branching fraction 

leading to HO2 was determined for the C2H5O2 self reaction with results very different 

from the literature.  

 Further work on the self reaction branching fractions of methyl peroxy, ethyl 

peroxy, and propyl peroxy was done to try and resolve the discrepancy with the literature. 

A photoionization mass spectrometry technique was used to monitor all of the stable 

reaction products on the timescale of the reaction. The literature work had used end 

product studies after the reactions had completed to measure all of the stable products. 

Results from the photoionization studies appear to agree with the spectroscopic work for 

the C2H5O2 self reaction, indicating that additional secondary chemistry may have 

skewed the results in the literature. 

 Aerosol nucleation observed in low temperature experiments on the HO2 self 

reaction was another area of work. Radical chemistry is the main driver of gas phase 
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atmospheric cycles, but is not currently thought to be at the center of new particle 

formation. Radical-molecule complexes between HO2 and a number of species including 

methanol, water, and acetone could act as particle seeds at low temperature due to the 

stability of their hydrogen bonds. Most of the nucleation work described is on the HO2 - 

methanol complex, but all three were investigated. Lastly, the experimental calibrations 

and general procedures that went on throughout all this work are described. 
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