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Abstract

In this thesis we study pressure fluctuations associated with large-scale coherent structures in tur-

bulent round and serrated jets. Linear disturbances to the turbulent mean flow of the round jet

are modeled via linear stability analysis and the Parabolized Stability Equations (PSE). We show

that PSE provides better agreement with near-field microphone-array data at low frequencies than

previous models based on linear stability theory. We examine the extent to which microphone data

is contaminated by fluctuations uncorrelated with large-scale structures. By filtering out the un-

correlated fluctuations, via the proper orthogonal decomposition (POD), better agreement between

data and theory is obtained. We next extend the linear stability analysis of round jets to include the

effects of azimuthal inhomogeneities of serrated jets. We solve the resulting system of equations and

find new modes, associated with the streamwise vorticity of the serrated-jet mean flow. All unsta-

ble modes of the serrated jet are stabilized, potentially explaining the noise reduction achieved by

such jets. We also compare these predictions to POD-filtered microphone measurements, generally

finding good agreement.
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Chapter 1

Introduction

1.1 Motivation

The turbojet engine heralded a new era in commercial and military aviation. Inefficient and noisy

compared to today’s turbofan engine, the turbojet enabled faster flight than had previously been

possible. The increased noise levels fueled interest in noise reduction technologies and research into

the jet noise generation and radiation process became increasingly active. This culminated in the

birth of a new field, Aeroacoustics, widely credited to Sir James Lighthill (Lighthill, 1952).

Great strides have been made in noise reduction both via theory and experiment, the most

significant of which has been the advent of the turbofan engine in which a large proportion of the

air-flow bypasses the central turbojet, flowing around it inside an outer duct at a much lower speed.

This reduces the average exhaust speed required to produce a given thrust, significantly increasing

fuel efficiency and retarding noise emission. Other approaches to noise reduction have also been

pursued, most of which involve the passive or active manipulation of the thin boundary layer near

the nozzle lip. These devices generally alter the jet turbulence such that peak-noise levels (which

occur at low-frequencies and aft-angles; see figures 1.1 and 1.2) are lowered. The noise reduction

at low frequency is usually accompanied by a slight noise increase, due to heightened near-nozzle

turbulence levels, at higher frequencies. This topic is explored further in chapter 4.

Early design for noise reduction was largely an empirical effort. As computing power has in-

creased, the realm of computable (in a reasonable time-frame) processes has gotten larger by leaps
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and bounds; simulations now play a vital role in most all design efforts. Direct numerical simulations

of realistic jets (i.e., having asymptotically high Reynolds numbers) are challenging if not impossi-

ble, even with today’s computing resources. As pointed out by Colonius & Lele (2004), aeroacoustic

noise prediction is particularly difficult, largely due to wide separations in length scales (of acoustic

waves and their sources) as well as in energy, the radiated acoustic energy being a minute fraction

of the flow energy. Modeling efforts such as Large Eddy Simulation, intended to capture the most

energetic scales, provide promising results (Bodony & Lele, 2005, 2008).

Phenomenological understanding of the jet noise process, allowing more accurate, theory-based

modeling assumptions, is crucial to further development in this area. In particular, the radiation of

sound by the large-scale coherent structures in shear flows is incompletely understood. To what ex-

tent can these structures and their radiation be ascribed to (and predicted by) the Kelvin-Helmholtz

instability of the mean flow, particularly for turbulent jets? This is the central question of this thesis.

In addition to scientific interest, improved understanding of the behavior and origins of large-scale

coherent structures might allow for improved control laws for noise reduction, such as defining a

metric for the optimization of a chevron nozzle geometry, or the fast, approximate prediction of

noise from coherent turbulence.

1.2 Features of Jet Noise

Figure 1.1 illustrates features of jet engine exhaust relevant to sound generation and propagation.

For simplicity we ignore the effects of co-flow; the figure shows a turbojet, rather than the turbofan

commonly used in practice. The turbofan has an additional shear layer shrouding the inner shear

layer. The outer shear layer refracts sound generated in the core but also represents an additional

source of sound. These additional effects are qualitatively similar to the core processes on which we

focus henceforth. We also assume the absence of shock-associated noise, which can be important at

supersonic conditions.

Aerodynamic generation of sound refers to that generated by the unsteady motions within the

flow. Such fluctuations are found throughout the airstream exiting an engine. The boundary layer in-
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Figure 1.1: A qualitative illustration of turbojet exhaust and sound-related processes. The diverging
lines represent the edges of the jet shear layer.

side the nozzle contains unstable motions (instabilities) of viscous origin, while the flow away from the

wall contains entropic (hot spots) and vortical fluctuations generated during combustion and passage

through the turbine stages. As the flow exits the nozzle, the boundary layer relaxes to an axisym-

metric shear layer, susceptible to Kelvin-Helmholtz instability. Such instabilities are exited by the

turbulent fluctuations present at the exit and grow into large-scale turbulence structures, illustrated

in figure 1.1. These structures radiate primarily in the downstream direction and are responsible for

the peak levels of sound (Mollo-Christensen, 1967; Moore, 1977; Troutt & McLaughlin, 1982). At the

same time, fine-scale turbulent fluctuations grow in intensity and radiate sound. Their radiation is

less directive than that from large-scale structures and peaks at a higher frequency. Figure 1.2 illus-

trates pressure measurements taken along an arc in the far-field of a M∞ = Ujet/a∞ = 1.5, heated

(Tjet/T∞ = 2.7) jet. These measurements have been Fourier-transformed in time and azimuthal

angle θ; the figure shows axisymmetric (i.e., having azimuthal wavenumber m = 0) fluctuations of

frequency St = fD/Ujet = 0.25. Radiation peaks at low angles φ to the axis where it is highly

directive. At higher angles (near the sideline) the curve flattens out, a testament to the isotropic

nature of radiation to these angles. Note that the peak fluctuations in this case are roughly 25dB

or 270 times greater in power than those near the sidelines. This directivity is further exaggerated

at still higher Mach numbers and diminished at lower Mach numbers (see figure 1.3).
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Figure 1.2: Acoustic power measurements of a heated M∞ = 1.5 jet with temperature ratio
Tjet/T∞ = 2.7. Azimuthal mode m = 0 and frequency St = 0.25. Data obtained from measurements
of Suzuki & Colonius (2006).

φ

1.3 Theoretical Background

1.3.1 Aeroacoustics of Jets

There are several excellent and exhaustive review articles in the literature on aeroacoustics and

jet noise. Examples include Crighton (1975), Ffowcs-Williams (1977), Lilley (1991), Tam (1995),

and Tam (1998), to name but a few. Major reviews of computational aeroacoustics are given by

Colonius & Lele (2004) and Wang et al. (2006). In what follows we recount some important concepts

and developments.

In the 1950’s, Lighthill (1952, 1954) developed his theory of Aeroacoustics: the study of sound

generated “...as a byproduct of an airflow, as distinct from sound generated by the vibration of

a solid.” Lighthill’s insight was that, for sound waves of small amplitude, and in the absence

of a resonant mechanism1, sound generation can be studied separately from its propagation. He

formalized this by linearizing the Navier-Stokes equations about a known mean flow and separating

1Two examples of such resonance are self-sustaining oscillations in flows over open cavities (e.g., Rowley et al.,
2002) and the thermo-acoustic instability of the Rijke tube (e.g., Balasubramanian & Sujith, 2008).
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operators according to their character; propagation on one side, everything else (the sources) on the

other:

Lq = S(q). (1.1)

The linear operator L is referred to as the propagator, S represents the nonlinear sources of sound

and q is the vector of flow variables. This separation between source and propagation is now known

as the Acoustic Analogy: the resultant acoustic field is equivalent to that which would be realized

in a quiescent medium (see below) in the presence of an externally applied stress, contained within

S. We note that equation (1.1) is an exact relation and so is the acoustic analogy; the question

becomes one of the veracity of source modeling2.

Lighthill studied the propagation of sound in a quiescent medium with embedded quadrupole

sources, in which case equation (1.1) becomes (Lighthill’s equation)

∂2ρ

∂t2
− a2

∞∇2ρ =
∂2Tij

∂xi ∂xj

, (1.2)

where ρ is the density and Tij is Lighthill’s turbulence stress tensor, given by

Tij = ρuiuj + (p − ρa2
∞)δij − τij , (1.3)

where a∞ is the ambient speed of sound; p and ui are the pressure and velocity in direction i,

respectively; δij is the Kronecker delta; and τij is the viscous stress tensor.

Using dimensional analysis, Lighthill showed that the acoustic power radiated by a flow with

typical velocity Ujet should be proportional to U8
jet. Lighthill also showed that, due to the effects of

(quadrupole) source convection, the radiation is augmented by a factor of |1 − M∞ cosφ|−5, where

M∞ = Ujet/a∞ is the acoustic Mach number and φ is the angle between the stationary observer

and the source at the time of sound emission (see figure 1.2). The augmenting factor represents

the Doppler effect, causing enhanced radiation in the direction of the flow and reduced radiation

2It should be noted that the source description is not unique, i.e., the sources should be regarded as equivalent

sources.
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in the other (waves “pile up” ahead of the source). Ffowcs-Williams (1963) investigated the effects

of source convection and found that, at supersonic convection speeds, the Doppler factor alters the

U8
jet radiation power dependence to U3

jet. These two power laws have been described as the most

important results of the classical acoustic analogy theory (Tam, 1998).

As mentioned above, Lighthill’s formulation of the acoustic analogy embedded sources in an

otherwise quiescent medium. This is an appropriate assumption to make in a uniform stream

containing turbulent fluctuations. In a real jet, however, the sound generated within the core is

affected by the shear layer upon passage through it. This can be visualized by imagining a wave

front traveling within, and in parallel to the shear layer. Portions of the wave front situated closer

to the centerline will travel faster than outer portions as they are embedded in a higher-speed flow.

Such fronts are therefore deflected outwards. This effect is further enhanced in heated jets due to

the radial decay of sound speed3. This results in the so-called cone of silence: a region close to the

downstream direction (at small φ) into which sound generated within the jet core cannot propagate.

To account for the refraction by the mean flow, the propagator L must be modified from the

homogeneous version in equation (1.2). Lilley (1974) suggested that the appropriate propagator is

the set of the linearized Euler equations, which include radial inhomogeneities in the mean flow. This

approach gained popularity and became known as the Modified Acoustic Analogy. Goldstein (1984)

suggested a different approach in which no attempt is made to separate the sources of sound from

its subsequent propagation. Here the full equations are linearized from the outset about a known

mean flow and an initial value problem is solved. This approach, while taking a different viewpoint,

usually leads to similar predictions to those of the modified acoustic analogy. Goldstein (2003)

later generalized Lighthill’s acoustic analogy by showing that there is an exact analogy between the

fluctuations in any real flow and the linear inviscid fluctuations about an arbitrary base flow produced

by externally imposed stress and energy flux perturbations (as opposed to Lighthill’s quadrupoles).

Further complicating is the presence of solid bodies, such as the nozzle. The interaction between

the nozzle and the shear layer can serve as an additional source of sound, referred to as excess noise

3The reverse is true for cooled jets, although this case is not of practical importance.
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(Crighton, 1972). Using vortex-sound theory (Möhring, 1978), Bridges & Hussain (1992) calculated

the extinction angle (a single angle into which no sound can radiate; not the same as the cone

of silence), and hypothesized that the observed differences between theoretical and experimental

values thereof were due to the presence of the nozzle in the experimental jet. Bridges & Hussain

(1995) later showed that the nozzle-flow interaction forms a dipole whose radiated sound can have

comparable power to the quadrupole sound in the free-stream.

As hinted at in the above, the radiated sound from a flow depends sensitively on its sources

as well as the medium through which it passes as it travels from source to observer. Prior to

the 1970’s, the prevailing view of turbulence was one of an agglomeration of incoherent, fine-scale

fluctuations. The radiated field, the result of the interaction of such motions, should then exhibit

similar incoherence. This is not the case, as discovered by Mollo-Christensen (1967), who found that

pressure fluctuations outside a fully turbulent jet appear in well-defined wave-packets. Presumably

this implies that at least a part of the source-field is indeed coherent. Crow & Champagne (1971),

spurred on by earlier hints of orderly structures, studied jet turbulence and found “vortex puffs”

that appeared in a coherent manner when forced at their most unstable frequency. This was the

case even at Reynolds numbers as high as Re = (UD/ν)jet = 105. Further evidence was provided

by Brown & Roshko (1974) and Winant & Browand (1974) who studied planar mixing layers of

different densities and velocities. We note that the appearance of large-scale structures in laminar

jets had been studied and described long before the work of Crow & Champagne. Such jets develop

instability as the Reynolds number is increased; the axisymmetric shear layer rolls up into vortices

before transition to turbulence. The persistence of such structures through transition was however

not accepted until the 1970’s.

The modified acoustic analogy is in theory capable of predicting noise from both large- and

fine-scale turbulent motions. However, this requires complete knowledge of the source terms which

in practice is not available, particularly for the large-scale turbulence. This explains why methods

based on the modified acoustic analogy have been most successful in predicting sideline noise. There

is however a considerable body of work dealing with theoretical models of large scale coherent
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structures. This is the subject of the next section.

1.3.2 Instability Models of Large-Scale Coherent Structures

Roughly speaking, a flow is said to be unstable when small disturbances introduced into the flow can

grow over time. This notion can be infused with rigour via the introduction of a metric for growth.

A flow can then be stable with respect to one metric but unstable with respect to another (e.g.,

not all Lyapunov-stable configurations are asymptotically stable). Such distinctions are however not

necessary in the present context.

Flow instabilities generally occur as the result of an imbalance between external forces, inertia,

and viscous stresses (Drazin & Reid, 1969) and every type of flow instability is capable of producing

large-scale coherent structures (Hussain, 1983). Free shear flows such as the jet are susceptible to the

Kelvin-Helmholtz instability and most attempts at providing theoretical models for the development

of large-scale coherent structures in such flows are based upon this. The resulting fluctuations are

then typically computed via linear stability analysis (see section 2.3.1), where the mean flow is

assumed to be parallel, or nearly so.

Turbulence statistics in parallel flows are stationary, both with respect to streamwise distance x

and time t. For such cases the solution is separable and exhibits complex-exponential dependence

on these coordinates, with complex wavenumber α and frequency ω respectively4. Free shear layers

are of course not parallel, but for small spreading rates the parallel-flow assumption is reasonable.

One of the first investigations on the linear stability of jets was that of Batchelor & Gill (1962).

They determined the stability of a jet in the two extremes: very near the nozzle, and far downstream

in the developed region (see figure 1.1). They modeled the near nozzle shear layer as a cylindrical

vortex sheet and the far jet as a parabola (no potential core). As expected, they found the vortex

sheet to be unstable to disturbances of all frequencies St and azimuthal wavenumbers m, while they

proved that the far jet is only unstable to disturbances with m = 1. They were however unable to

predict the formation of vortex puffs (rings), reported that same year by Reynolds (1962) in his study

4α and ω are respectively complex and real for spatially growing waves while the converse is true for temporally
growing waves. In general they can both be complex; see section 2.3.1.
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of a low Reynolds number (Re < 300) jet. Crow & Champagne performed linear stability analysis to

supplement their experimental study. They solved both the temporal and spatial stability problems

and successfully predicted the phase-velocity of the most unstable wave using the temporal approach,

while the spatial prediction did not match experiment. This lead them to conclude that the spatial

approach is not appropriate. However, as pointed out by Mattingly & Chang, Crow & Champagne

based their analysis on a top-hat profile (a vortex sheet), which does not faithfully represent a typical

transverse velocity profile of a real jet. This was also the reason why the analysis of Batchelor & Gill

did not anticipate the formation of the vortex rings. Mattingly & Chang based their analysis on

experimentally determined velocity profiles of a Re = 300 jet. To partially incorporate the effects

of streamwise variation in the flow, they solved the spatial stability problem at successive cross-

sections throughout the jet. Near the nozzle they find the m = 0 mode to be most unstable,

followed closely by m = 1. This is reversed further downstream, in agreement with the results

of Batchelor & Gill. Mattingly & Chang find good agreement between theory and experiment in

terms of growth rates, axial wavelengths, and intensity of fluctuations (where the eigenfunction is

compared to measurements).

As mentioned above, Mattingly & Chang performed their analysis at various cross-sections of the

jet. This approach, referred to as the locally-parallel assumption, takes advantage of the fact that

while the statistics might vary between widely separated points, relative to the wavelength of the

disturbance in question, they do not vary much locally. Higher-order expansions such as multiple-

scales analysis and the parabolized stability equations, discussed in section 2.3.2 and chapter 3,

further take into account such variations. Crighton & Gaster (1976) used multiple-scales analysis

and found good agreeance with the measurements of Crow & Champagne. This work was however

limited to axisymmetric and incompressible disturbances, while disturbances with m = 1 play a

significant role in the shear layer instability of a jet, particularly in the developed region. This

had been predicted by Batchelor & Gill and was verified experimentally by Mattingly & Chang and

further by Moore (1977).

The existence of large-scale coherent structures and, in particular, their persistence through
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transition was widely accepted in the late 1970’s. Their modeling via the linear instabilities of the

turbulent mean flow profiles had enjoyed success, particularly in predicting the wavelength of the

most unstable disturbance, typically occurring at Strouhal numbers between 0.3 and 0.4 (depending

on the flow condition). While the relevance of these flow structures to the radiated sound seemed

reasonable, little work had been done to elucidate such connections or indeed make predictions. This

is the topic of the next section.

1.3.3 Noise Generation by Large-Scale Coherent Structures

One consequence of Lighthill’s analysis (Lighthill, 1952) was the U8
jet power law for low-speed jets.

This has been experimentally verified, but only for very clean jets; the law fails at relatively low

exit disturbance levels. This is due to flow instabilities that get excited by the broadband noise at

the exit and subsequently grow, altering the jet turbulence away from that assumed by Lighthill. It

is thus clear that coherent motions affect the radiated sound indirectly, even in the case that they

themselves do not radiate sound.

It is equally clear that the radiation efficiency of a source is heavily dependent upon its convection

speed. Figure 1.3 shows far-field pressure measurements for two equally heated jets; one having

M∞ = 0.5 and the other M∞ = 1.5. Enormous differences are found in peak power: the peak levels

on the two measurements are roughly 38dB apart (the ratio is 6300). Also apparent is variation

in directivity: the max/min power ratio is 25db for the high-speed jet, and 13dB for the other.

Apparently the directivity of radiation, as well as the power, is strongly dependent upon Ujet (and

a∞, fixed here).

Troutt & McLaughlin (1982) studied a M∞ = 2.1 jet and found that the large-scale structures

are responsible for the peak noise at this condition and that they radiate primarily in the downstream

direction. Via ray-tracing, they further found that the sound generated by these structures originates

in the region where they saturate in amplitude and subsequently decay. They hypothesize that the

dominant sources of large-scale sound are Mach wave radiation and the breakdown of the associated

structures as they lose their coherence via nonlinear interactions. Mach wave radiation is associated
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Figure 1.3: Acoustic power measurements for two heated jets at M∞ = 0.5 and 1.5; temperature
ratio Tjet/T∞ = 2.7. Azimuthal mode m = 0 and frequency St = 0.25. Data obtained from
measurements of Suzuki & Colonius (2006).

with supersonically convecting disturbances and as such does not appear in subsonic flows (but see

below). The latter mechanism does, however, and it has been suggested (Hussain, 1983, 1986) that

this may be the dominant source of sound, at least at subsonic conditions.

Despite the absence of Mach wave radiation from subsonic flows, such flows share many similar-

ities with supersonic flows in terms of sound radiation. Laufer & Yen (1983) studied a low Mach

number jet and found the associated radiation to originate from the nonlinear saturation of large-

scale structures and to be highly directional in character, just as was found at supersonic conditions.

Crighton & Huerre (1990) later explored this theoretically, finding the directivity to be associated

with the non-compactness5 of the source region. In fact, they found super-directivity: the directivity

pattern depends exponentially on cos (φ), where φ is measured from the downstream direction.

The highly directive nature of the noise of large-scale coherent structures, contrasted with the

isotropic nature of that of the smaller scales, hints at the possibility that the spectra of the two

components might be separated. To this end, Tam et al. (1996) analyzed a large database of mea-

sured jet noise spectra. They did indeed find two distinct spectra; that dominating at sideline angles

5A source region of spatial extent L is acoustically compact if L ≪ λ where λ is the largest radiated wavelength.
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(φ = 90◦, say), and that at low angles (φ = 30◦, say). The two spectra have qualitative and quan-

titative differences: the sideline spectrum is relatively flat and peaks at higher frequencies while

the downstream spectrum has a distinct peak at lower frequencies. Further, they also found that

the spectra collapse across different operating conditions when scaled with their respective peak fre-

quencies. Perhaps most interesting was their finding that the Mach number did not matter: the two

components exist for both subsonic and supersonic jets, suggesting that the mechanisms for noise

generation may be the same. Thus, while the effectiveness of radiation from large-scale structures

at lower speeds might be reduced, it occurs via a similar mechanism: Mach wave radiation persists

through the sonic point.

The acoustic analogy and modified versions thereof have enjoyed the greatest success in predicting

turbulent mixing noise produced by fine-scale turbulence. This is due to the nature of the quadrapole

source modeling for each type of motion: the nearly isotropic and broadband incoherent motions

are statistically simpler than the anisotropic and narrow-band coherent motions, easily correlated

over distances comparable to the transverse support of the jet (although this depends on forcing

conditions). The locally-parallel linear instability wave, while a valid approximation in the near-

field, has no far-field. To obtain predictions based on this solution it must be matched with an

outer solution (to the wave equation), valid in the far field. Tam & Morris (1980) did this for a

supersonic planar layer, additionally using the multiple-scales approach to model the effects of mean-

flow divergence. They obtained qualitative agreement with experimental data, particularly in terms

of directivity. Tam & Burton (1984) performed a similar analysis for an axisymmetric supersonic

jet and obtained favourable comparisons with experiments. Higher order approximations, involving

the Parabolized Stability Equations (PSE, see section 2.3.2) result in further improvements.

Subsonic conditions however still represent a challenge for instability-based methods as the far-

field is absent from the solution, even for the PSE. The near-field is well modeled, though, allowing

the inner instability solution to be coupled with projection methods (e.g., via a Kirchhoff-surface)

(Cheung & Lele, 2009) to deliver reasonable far-field approximations.
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1.4 Thesis Outline

In chapter 2 we summarize the computational methodology as well as the data-processing procedures

employed in this thesis.

As described in section 1.3.2, large-scale coherent structures in jets have traditionally been mod-

eled based on the Kelvin-Helmholtz instability of the jet shear layer. Such efforts have been success-

ful, particularly for forced jets at relatively low Reynolds number (e.g., Mattingly & Chang, 1974).

At unforced conditions (i.e., for “natural jets”), such disturbances are correlated over shorter spatial

and temporal length scales. This is exaggerated at higher Reynolds numbers where, additionally,

the fractional energy with large scale coherent structures is diminished due to increased produc-

tion of fine-scale turbulence. This renders the decomposition of turbulence ambiguous at best and

meaningless at worst.

But this is only the case in the region of intense turbulence, such as in the shear layer. As

recognized by Suzuki & Colonius (2006), pressure fluctuations from different sources (e.g., instability

waves and quadrupoles) have different spatial decay characteristics. While such disturbances might

not be separated in a unique manner at one location, they might be at another, due to one decaying

faster than the other. In particular, Suzuki & Colonius recognized that, outside the shear layer, there

is a region (the “linear hydrodynamic region”) where hydrodynamic pressure fluctuations, associated

with instability waves, dominate the pressure field. This is illustrated in figure 3.1.

Using a caged microphone array, Suzuki & Colonius made measurements in the linear hydrody-

namic region and compared them to predictions based on locally-parallel linear stability analysis.

They obtained excellent agreement near the most unstable frequency. In chapter 3 we apply the

Parabolized Stability Equations to the same problem and demonstrate significant advantages over

the locally-parallel solution. In addition, we decompose the microphone measurements using the

Proper Orthogonal Decomposition and show how agreement can be extended even beyond the po-

tential core in some cases.

Nozzle serrations generate streamwise vorticity, promoting the mixing of the jet fluid with the

ambient and shortening the potential core. They also reduce noise at low frequencies and aft angles,
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but increase noise at high frequencies. Sound radiated at low frequencies and aft-angles is associated

with large-scale coherent structures convecting within the jet. The streamwise vorticity, induced by

the serrations, interrupts the noise generation by large-scale structures, perhaps by retarding their

initial growth. It therefore seems reasonable to assume that linear stability analysis can offer some

understanding of the effects of serrations on coherent motions in the flow, particularly in light of

the demonstrated success of such analysis for round jets (chapter 3). In chapter 4 we extend the

locally-parallel framework for axisymmetric jets to serrated jets, such as those produced by chevron

nozzles. We explore the effects of azimuthal asymmetry on linear stability characteristics and also

compare predictions to caged-array measurements.

In chapter 5 we summarize the conclusions drawn from our work.

1.5 Publications

The following journal articles and conference proceedings are based on the work described in this

thesis:

1.5.1 Journal Publications

1. K. Gudmundsson and T. Colonius. 2010 “Instability Wave Models for the Near Field Fluctu-

ations of Turbulent Jets,” in preparation J. Fluid Mech.

2. K. Gudmundsson and T. Colonius. 2010 “The Effects of Nozzle Serrations on the Linear

Stability of Turbulent Jets,” in preparation, J. Fluid Mech.

1.5.2 Conference Proceedings

1. R.H. Schlinker, R.A. Reba, J.C. Simonich, T. Colonius, K. Gudmundsson and F. Ladeinde.

“Towards prediction and control of large-scale turbulent structure supersonic jet noise,” The

ASME Turbo Expo 2009, Orlando, Florida, June 2009. ASME Paper 2009-60300.

2. K. Gudmundsson and T. Colonius. “Parabolized stability equation models for turbulent jets



15

and their radiated sound,” The 15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida,

May 2009. AIAA Paper 2009-3380.

3. R.H. Schlinker, J.C. Simonich, D.W. Shannon, R.A. Reba, T. Colonius, K. Gudmundsson and

F. Ladeinde. “Supersonic jet noise from round and chevron nozzles: experimental studies,”

The 15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida, May 2009. AIAA Paper

2009-3257.

4. K. Gudmundsson and T. Colonius. “Spatial stability analysis of chevron jet profiles,” The 13th

AIAA/CEAS Aeroacoustics Conference, Rome, Italy, May 2007. AIAA Paper 2007-3599.

5. K. Gudmundsson and T. Colonius. “Linear stability analysis of chevron jet profiles,” ASME

Joint U.S.-European Fluids Engineering Summer Meeting, Miami, Florida, July 2006. ASME

Paper 2006-98485.
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Chapter 2

Computational Models and

Experimental Data

2.1 The Governing Equations

The flows investigated in this study are governed by the compressible Navier-Stokes equations. We

non-dimensionalize independent variables as

x =
x∗

D
; r =

r∗

D
; t =

t∗a∞

D
, (2.1)

where stars denote dimensional variables, D denotes the nozzle diameter, x and r respectively denote

the streamwise and radial coordinates, t denotes time, and a∞ denotes speed of sound in the ambient.

The coordinate system is illustrated in figure 2.1. Dependent variables are non-dimensionalized as

u =
u∗

a∞
; ρ =

ρ∗

ρ∞
; p =

p∗

ρ∞a2
∞

; T =
cpT

∗

a2
∞

, (2.2)

where ρ∞ denotes ambient density, u denotes any of the velocities ux, ur or uθ, T denotes tempera-

ture, cp represents specific heat at constant pressure; and p denotes pressure.
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Figure 2.1: The coordinate system used in this thesis.

So scaled, the governing equations, including the equation of state for an ideal gas, are given by

ρ
Dux

Dt
= − ∂p

∂x
+

1

Re
Vx, (2.3)

ρ

(
Dur

Dt
− u2

θ

r

)
= −∂p

∂r
+

1

Re
Vr, (2.4)

ρ

(
Duθ

Dt
+

uruθ

r

)
= −1

r

∂p

∂θ
+

1

Re
Vθ, (2.5)

ρ

(
DT

Dt
+ (γ − 1)T ∇ · u

)
=

γ

Re
Φ +

γ

Re Pr
∇ ·Q, (2.6)

Dρ

Dt
+ ρ∇ · u = 0, (2.7)

p =
γ − 1

γ
ρT , (2.8)

where γ is the ratio of specific heats, taken as 1.4 in the current simulations. The Reynolds number

is defined as Re = UjetD/νjet and the Prandtl number as Pr = µ∞cp/k∞ = 0.72. We neglect

temperature dependence of viscosity as the experimental jets in our study are either near-isothermal

or modestly heated. ∇ is the divergence operator, given by

∇ · f =
∂fx

∂x
+

1

r

∂(rfr)

∂r
+

1

r

∂fθ

∂θ
, (2.9)
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where f = (fx, fr, fθ). The convective derivative is given by

D

Dt
=

∂

∂t
+ ux

∂

∂x
+ ur

∂

∂r
+

uθ

r

∂

∂θ
. (2.10)

V, Φ, and Q represent the viscous terms, viscous dissipation, and heat fluxes, respectively. The first

two are written in terms of the symmetric viscous stress tensor τ , which in cylindrical coordinates

is given by

τxx = 2µM∞

(
∂ux

∂x
− 1

3
Θ

)
, (2.11)

τrr = 2µM∞

(
∂ur

∂r
− 1

3
Θ

)
, (2.12)

τθθ = 2µM∞

(
1

r

∂uθ

∂θ
+

ur

r
− 1

3
Θ

)
, (2.13)

τxr = µM∞

(
∂ur

∂x
+

∂ux

∂r

)
, (2.14)

τxθ = µM∞

(
∂uθ

∂x
+

1

r

∂ux

∂θ

)
, (2.15)

τrθ = µM∞

(
∂uθ

∂r
+

1

r

∂ur

∂θ
− uθ

r

)
, (2.16)

where Θ = ∇ · u is the dilatation. The viscous terms in V are then given by

Vx = ∇ · (τxx, τxr, τxθ), (2.17)

Vr = ∇ · (τxr, τrr, τrθ) −
τθθ

r
, (2.18)

Vθ = ∇ · (τxθ, τrθ, τθθ) +
τrθ

r
, (2.19)

and the scalar dissipation function Φ by

Φ = τxx

∂ux

∂x
+ τxr

∂ur

∂x
+ τxθ

∂uθ

∂x
(2.20)

+ τxr

∂ux

∂r
+ τrr

∂ur

∂x
+ τrθ

∂uθ

∂x

+
τxθ

r

∂ux

∂θ
+

τrθ − uθ/r

r

∂ur

∂θ
+

τθθ + ur/r

r

∂uθ

∂θ
.
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The heat flux Q in equation (2.6) is given by Fourier’s law:

Q = µM∞

(
∂

∂x
,

∂

∂r
,

1

r

∂

∂θ

)
T (2.21)

2.2 Linearization

The Navier-Stokes equations, equations (2.3) through (2.6), accurately describe the evolution of

continuous Newtonian fluids. This covers most cases of practical interest, including the generation

and propagation of sound under the flow conditions considered in this work. A common approach

in the analysis of such nonlinear systems is linearization, in which small perturbations to a time-

invariant (equilibrium) state are scrutinized for stability. We decompose the solution q as

q(x, t) = q(x) + q′(x, t), (2.22)

where q and q′ respectively denote the time-invariant and (low-energy) fluctuating states. Questions

regarding the evolution of small perturbations to the equilibrium state may then be addressed via

the solution (q′) of the linearized Navier-Stokes equations. If the linear solution is unstable then the

nonlinear solution is also unstable. Linear stability does not necessarily imply nonlinear stability,

however, as nonlinear bifurcations to other states may occur.

The results of stability analysis are sensitive to the choice of mean flow. If the mean flow is

thought to be laminar then solutions to the boundary-layer equations (e.g., the Blasius boundary-

layer) can be used. This is not the case here as the present jets are highly turbulent (see Reynolds

number in table 2.1) and the effects of this on the mean flow must be accounted for. To this end, one

could use equilibrium-solutions to the Navier-Stokes equations, but these are not available for the

turbulent jets in our study, as they have Reynolds-numbers far beyond the capabilities of present

methods and equipment. We can however compute the mean flow from experimental measurements
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of such flows. This is particularly attractive as nonlinear effects are then partially included via their

effect on the time-invariant state. This partially explains the effectiveness of the linear simulations

in this work, discussed in the subsequent chapters.

Under the normalization introduced in equation (2.2), the decomposition in equation (2.22)

becomes

ux = ux + u′
x, (2.23)

ur = ur + u′
r, (2.24)

uθ = u′
θ (no mean swirl; uθ = 0), (2.25)

T =
1

γ − 1
+ T ′, (2.26)

ρ = 1 + ρ′, (2.27)

p =
1

γ
+ p′ (2.28)

We proceed by substituting this decomposition into equations (2.3) through (2.8) and subtracting

the mean:

ρ

(
Du′

x

Dt
+

∂ux

∂x
u′

x +
∂ux

∂r
u′

r +
1

r

∂ux

∂θ
u′

θ

)
= −∂p′

∂x
+

1

Re
V ′

x + fx, (2.29)

ρ

(
Du′

r

Dt
+

∂ur

∂x
u′

x +
∂ur

∂r
u′

r +
1

r

∂ur

∂θ
u′

θ

)
= −∂p′

∂r
+

1

Re
V ′

r + fr, (2.30)

ρ

(
Du′

θ

Dt
+

uru
′
θ

r

)
= −1

r

∂p′

∂θ
+

1

Re
V ′

θ + fθ, (2.31)

ρ

(
DT ′

Dt
+ (γ − 1)

(
T ∇ · u′ + T ′∇ · u

))
=

γ

Re
Φ′ +

γ

Re Pr
∇ ·Q′ + fT , (2.32)

Dρ′

Dt
+ ρ∇ · u′ + ρ′ ∇ · u = fρ, (2.33)

p′ =
γ − 1

γ
(Tρ′ + ρT ′), (2.34)

where the linearized convective derivative is given by

D

Dt
=

∂

∂t
+ ux

∂

∂x
+ ur

∂

∂r
. (2.35)
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Here we have collected all nonlinear fluctuating terms (e.g., u′
ru

′
θ/r) into the vector f on the right

hand side. Also note that the dissipation function Φ is nonlinear; such terms are included in fT ,

with the linear part contained in Φ′. In this work we restrict our attention to linear disturbances

and so do not discuss f further.

2.3 Modeling of Large-Scale Fluctuations

The system given in equations (2.29) through (2.34) is as exact as the nonlinear system in equa-

tions (2.3) through (2.8). This is because the nonlinear terms f are still present; only upon setting

this term to zero do we obtain a truly linear system, the solution to which can be considered an ad-

equate approximation to the full system, granted small amplitudes. Despite the great simplification

resulting from the linearization step we wish to make further modeling approximations, exploiting

our physical understanding to obtain as simple a problem as possible. This is not only for compu-

tational expedience but also to test our hypothesis as to the form of dominant fluctuations. This is

the subject of the next two sections.

2.3.1 Normal Modes

Parallel mean flows are hypothetical flows in which all streamlines are parallel and aligned with the

streamwise coordinate x. In such cases the mean flow vector is given by

q(x) = (ux(r, θ), 0, 0, ρ(r, θ), T (r, θ)). (2.36)

It follows that the mean flow is only sheared in the radial and azimuthal directions. The analysis of

disturbances to such mean flows is generally referred to as linear stability analysis, or LST for short.

For simplicity we drop the prime on fluctuating variables in what follows, retaining the over-line to
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denote the mean variable. The linearized equations become

ρ

(
Dux

Dt
+

∂ux

∂r
ur +

1

r

∂ux

∂θ
uθ

)
= − ∂p

∂x
+

1

Re
Vx, (2.37)

ρ
Dur

Dt
= −∂p

∂r
+

1

Re
Vr, (2.38)

ρ
Duθ

Dt
= −1

r

∂p

∂θ
+

1

Re
Vθ, (2.39)

ρ

(
DT

Dt
+ (γ − 1)T ∇ · u

)
=

γ

Re
Φ +

γ

Re Pr
∇ ·Q, (2.40)

Dρ

Dt
+ ρ∇ · u = 0, (2.41)

p =
γ − 1

γ
(Tρ + ρT ), (2.42)

where the linearized convective derivative is further simplified to

D

Dt
=

∂

∂t
+ ux

∂

∂x
. (2.43)

We can write the system defined by equations (2.37) through (2.41) in matrix form as

∂q

∂t
+ A(q)

∂q

∂r
+ B(q)

∂q

∂x
+ C(q)

∂q

∂θ
+ D(q)q = 0, (2.44)

where we have now dropped terms relating to viscosity and heat conduction. This is because we’re

ultimately interested in the inviscid instabilities of the mean flow profiles under question.

Since the matrices A through D in equation (2.44) do not depend on time or the axial coordinate,

it follows that the solution is separable in these directions and is of the form

q(x, t) = q̃(r, θ) eiαx e−iωt, (2.45)

where α and ω are potentially complex constants, the negative sign on ω being a matter of convention.

If q is also homogeneous in the azimuthal direction (i.e., ∂θq = 0) then q̃(r, θ) can be further

decomposed so that

q(x, t) = q̂(r) eiαx eimθ e−iωt, (2.46)
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where only integral values of m are permissible (so that the solution is 2π-periodic in θ). For general

q equation (2.46) becomes a double integral over ω-α space, summed over all m’s. However in a linear

context each of these waves evolves independently, allowing the study of individual components as

we do in equation (2.46). Azimuthal inhomogeneities in q are considered in chapter 4.

Substituting equation (2.46) into equation (2.44) we obtain

A
d q̂

dr
+ (−iωI + iαB + imC + D) q̂ = 0. (2.47)

The parameters α = αr + iαi and ω = ωr + iωi are as yet unknown and one or the other must be

specified in order that a solution be obtained. The specified parameter is generally chosen to be

real, and the unknown parameter will in general be complex.

In temporal stability analysis we choose the streamwise wavenumber αr, setting αi = 0, and

solve for the angular frequency ω. The solution will then grow in time at a fixed location if the

growth-rate ωi is positive. Rearranging equation (2.47), we obtain

(
A

d

dr
+ iαB + imC + D

)
q̂ = iωq̂, (2.48)

an eigenvalue problem, with iω being the eigenvalues and q̂ the eigenvectors.

In spatial stability analysis we choose the angular frequency ωr, setting ωi = 0, and solve for

the streamwise wavenumber αr and growth-rate αi. The solution will then grow in the streamwise

direction at a fixed time if −αi > 0. Again rearranging equation (2.47), we obtain

(
A

d

dr
+ iωI + imC + D

)
q̂ = −iαBq̂, (2.49)

so that we now have a generalized eigenvalue problem.

In either the spatial or temporal approach the eigenvalue-eigenvector pairs are referred to as the

normal modes of the linearized equations. These modes, if unstable, are assumed to dominate the

large-scale dynamics of small-amplitude perturbations in weakly spreading flows. In convectively
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unstable flows such as free shear layers, disturbances grow as they are convected downstream with

the flow, but not at a fixed location (see excellent review by Ho & Huerre, 1984). The spatial

approach is therefore the appropriate choice for such flows and is adopted in the current work.

While equation (2.49) is well suited to illustrate the eigenvalue-nature of the problem, it is not

in the format best suited for its solution. Rather, we eliminate all variables but pressure from the

system to obtain a single ODE, the Rayleigh equation:

1

r

d

dr

(
r
dp̂

dr

)
−

(
2∂rux

α ux − ω
+

∂rρ

ρ

)
dp̂

dr
−

(
m2

r2
+ α2 − ρ(αux − ω)2

)
p̂ = 0. (2.50)

The mean shear ∂rux vanishes as r → 0 and r → ∞ so that this becomes

1

r

d

dr

(
r
dp̂

dr

)
−

(
m2

r2
+ α2 − ρ(α ux − ω)2

)
p̂ = 0. (2.51)

Equation (2.51) is Bessel’s equation, whose solutions are the Bessel functions of the first and second

kind and linear combinations thereof. The boundary conditions for equation (2.50) follow from this:

as r → 0 p̂(r) ∼ Jm

(√
ρ(M∞ α − ω)2 − α2 r

)
, (2.52)

and

as r → ∞ p̂(r) ∼ H2
m

(√
w2 − α2 r

)
, (2.53)

where Jm and H2
m are the m-th order Bessel function of the first kind, and Hankel function of

the second kind, respectively. The two-point boundary problem formed by equation (2.50) and

equations (2.52) and (2.53) is solved via a shooting procedure, described in detail in appendix A.

Briefly, given an input frequency ω and an initial guess α0, equation (2.50) is integrated from

the axis (using equation (2.52) as a starting condition) into the far field where we check whether

equation (2.53) is satisfied. If it is not, changes are made to the guess and the process is repeated

until convergence is obtained. Special care has to be taken near the critical layer at r = rc, where

α ux(rc) − ω = 0. This is a regular singular point of equation (2.50) and is only a problem when
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computing neutral or near-neutral modes, where the growth-rate αi vanishes. The path of integration

must then be deformed to avoid the singularity. This procedure is described in section A.1.2.

The shooting procedure is relatively fast and therefore suitable when a succession of values α(ω)

are desired along a curve ω, as the starting guess α0(w+∆ω) will generally be close to α(ω), resulting

in rapid convergence. There are other cases however when we care less about speed and more about

obtaining the entire eigenvalue spectrum for each ω. Depending on the initial guess, the shooting

procedure will generally converge to the most unstable eigenvalue, leaving others hard to find.

We therefore also solve equation (2.50) directly: the eigenvalue problem is discretized and solved

via a matrix eigenvalue solver. In this case we rearrange the Rayleigh equation into a cubic gener-

alized eigenvalue problem:

(f3α
3 + f2α

2 + f1α
1 + f0)p̂ = 0. (2.54)

This system is linearized before application of the eigenvalue solver. This is described in section A.2.1,

where the coefficients fj can also be found.

Figure 2.2 shows a typical eigenspectra for the analytical mean flow profile given in equation (3.1),

computed via the direct method. This profile is axisymmetric and, for the profile parameters chosen

in this example (R = 0.5; uc = 1; δ = 0.1), has only one inflection point and so only one unstable

mode, shown in the figure. This example also illustrates another property of the Rayleigh equation:

if (α, p̂) is a solution then the complex conjugate (α∗, p̂∗) is as well. Note the neutral mode (having

αi = 0) in figure 2.2. This mode is not a shear layer mode but a vortical mode, contained entirely

within the jet core. This mode is passively advected with the flow at phase-speed cp = M∞.

Figure 2.3 shows typical eigenfunctions p̂, ûx, and ûr, based on the same conditions. p̂(r) is computed

directly from the Rayleigh equation, while the other two are computed via substitution of p̂(r) back

into the original system (2.37-2.42). These eigenfunctions exhibit the expected behavior away from

the shear layer, as indicated by the asymptotics in equations (2.52) and (2.53).
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Phase Speed, cp = ω/αr
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Figure 2.2: Typical eigenspectra of equation (3.1) calculated via the direct method. Only one
unstable mode exists for this flow profile. The neutral mode is not a shear layer mode but a vortical
mode, entirely contained within the jet core. This is for m = 0, St = 0.35 and M∞ = 0.5.
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Figure 2.3: Radial decay of typical LST eigenfunctions of equation (3.1): , |p̂(r)|; , |ûx(r)|;
, |ûr(r)|. This is for m = 0, St = 0.35 and M∞ = 0.5.
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2.3.2 The Parabolized Stability Equations

Strictly speaking, the decomposition described in the previous section is only valid for parallel flows.

Free shear layers are not parallel however. They have a finite spread rate ε = ∆δ/∆x, where δ is

some measure of shear layer thickness. Any statistic s depending on δ will then vary in proportion

to the spread rate as

∂

∂x
s(δ(x)) = εs′(δ(x)). (2.55)

Over a distance ∆x such statistics will then vary as much as O(ε∆x). Flows with modest spread

rates can then be considered to be approximately locally-parallel: the LST of the previous section

can be repeated at successive cross sections of the flow to approximate the “global” eigenfunction

(see section 3.2.2). This approach has been quite successful in reproducing experimental trends, as

described in section 1.3.2.

The accuracy of locally-parallel concept depends not only on the spread rate of the flow but also

on the wavelength λ = 2π/αr of the disturbance in question: how large is ελ? λ scales approximately

inversely with frequency ω so that the locally-parallel approximation is acceptable at sufficiently high

ω and increasingly strained for smaller ω.

It thus stands to reason that predictions of LST would be improved by explicitly acknowledging

mean-flow divergence by retaining such terms in the linearized equations. The Parabolized Stability

Equations (PSE) do just this. Here the equations are linearized about a mean flow

q(x) = (ux(x, r), ur(x, r), 0, ρ(x, r), T (x, r)), (2.56)

where the x-dependence implies that ∂xq 6= 0 at all x, opposite to that in LST. As we are no longer

assuming streamwise homogeneity, a separation of the form of equation (2.46) is no longer possible.

However, the mean flow is still homogeneous in θ and t so that

q(x, t) = q̃(x, r) eimθ e−iωt. (2.57)
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Building on ideas from multiple-scales analysis, Bertolotti & Herbert (1991) suggested the function

q̃(x, r) be separated into a function varying streamwise at a similar rate as the mean flow and a

rapidly varying function capturing the wave-like behavior of the large-scale structure:

q(x, t) = q̂(x, r) ei
R

x α(ξ) d xi eimθ e−iωt. (2.58)

This assumption represents the parabolization of the linearized equations and allows a marching

solution, the x-coordinate becoming time-like. We note however that the resulting equations for the

q̂ are not completely parabolic, as discussed by Li & Malik (1996, 1997). This results in constraints

on the smallest allowable marching-step ∆x,

∆x ≥ 1

|αr|
. (2.59)

Substituting the decomposition given by equation (2.58) into equations (2.29) - (2.34) we obtain

in symbolic form the system of equations governing the evolution of shape-functions q̂(x, r):

(A(q, α, ω) + B(q)) q̂ + C(q)
∂q̂

∂x
+ D(q)

∂q̂

∂r
=

1

Re
E(q) q̂. (2.60)

Expressions for the operators A through E may be found in appendix B.

We discretize this system using fourth-order central differences in the radial direction, closing the

domain with the characteristic boundary conditions of Thompson (1987). While previous studies

(Herbert, 1994) have shown that boundary conditions based on asymptotic decay rates from LST are

sufficient, we find the characteristic formulation to be more robust, allowing a smaller computational

domain. The streamwise derivative is approximated via first-order implicit Euler differences. The

solution q̂j+1 at xj+1 is then obtained from that at xj via the solution of

(
∆x

(
A + B + D

d

dr
− 1

Re
E

)
+ C

)

j+1

q̂j+1 = Cj+1q̂j . (2.61)
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Figure 2.4: (a) Spatial growth-rates, (b) wavenumbers, and (c) eigenfunctions obtained via ( )
LST and (◦) PSE. Solid and dashed lines respectively correspond to azimuthal modes m = 0 and 1.
Mean flow based on a parallel tanh profile with M∞ = 0.5.

Note that if ∂xq = ur = 0 we recover the linear stability equations. This serves as a useful check of

the PSE implementation, as shown in figure 2.4.

The decomposition in equation (2.58) is ambiguous in that the streamwise development of q can

be absorbed into either the shape-function q̂(x, r) or the wavenumber/growth-rate α(x). The PSE

equations (2.60) do not impose any constraints on α; an additional condition must be supplied. In

LST the logarithmic streamwise derivative of q is given by

− i ∂x log q = α, (2.62)

while the corresponding PSE quantity is

− i ∂x log q = α − i
∂xq̂x

q̂
. (2.63)
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The ambiguity in α can be resolved by observing that the PSE definition thereof should be a natural

extension of the one in parallel flow. This cannot be accomplished pointwise but only in an integral

sense, as equation (2.63) depends on the transverse coordinate r. We multiply equation (2.63) by

q̂∗q̂ r, integrate over the radial domain and divide by the integrated energy of q̂:

∫ ∞

0 −i|q̂|2∂x log (q) r dr∫ ∞

0 |q̂|2 r dr
= α − i

∫ ∞

0 q̂∗∂xq̂ r dr∫ ∞

0 |q̂|2 r dr
. (2.64)

If we can now choose α such that
∫ ∞

0

q̂
∂q̂∗

∂x
rd r = 0, (2.65)

the definition of α for the PSE becomes

α = −i

∫ ∞

0 −i|q̂|2∂x logq r dr∫ ∞

0 |q̂|2 r dr
. (2.66)

This includes equation (2.62) as a special case and provides an algorithm for updating αj+1 as:

αj+1
n+1 = αj+1

n − i

∆x

∫ ∞

0
(q̂j+1

n )∗(q̂j+1
n − q̂j) r dr

∫ ∞

0
|q̂j+1

n |2 r dr
(2.67)

We now iterate between equation (2.61) and equation (2.67) to advance the solution from xj to xj+1.

The constraint in equation (2.65) removes any exponential factor from the shape functions q̂,

ensuring their slow (algebraic) streamwise variation. This can be seen by viewing the constraint as

an inner product:

〈q̂, ∂xq̂〉 =

∫ ∞

0

q̂
∂q̂∗

∂x
r dr. (2.68)

If the projection of ∂xq̂ onto q̂ is nonzero then ∂xq̂ = γq̂ + β, where γ 6= 0 is a constant and β

satisfies 〈q̂, β〉 = 0. The normalization condition becomes

〈q̂, γq̂ + β〉 = γ∗||q̂||2 + 〈q̂, β〉 = γ∗||q̂||2 = 0. (2.69)
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But ||q̂|| 6= 0 so that we must have γ = 0. In essence, γ has been absorbed into iα: q̂ can only

change algebraically.

Initial conditions (q̂, α)x0
optimally come from a solution which includes the local effects of flow

spread. Day et al. (2001) used asymptotic expansions to this end, but found minor benefits over

the LST solution based on the initial profiles ux(x0, r) and ρ(x0, r). In this work we also use the

solution to equation (2.50) as an initial condition. Before starting the marching procedure, we take

the additional step of solving system (2.61) without non-parallel terms, but including viscous terms.

This allows the linear stability solution to adjust to the effects of viscosity and reduces transients in

the marching solution.

2.4 The Proper Orthogonal Decomposition

We briefly outline the POD procedure as introduced in the context of fluid mechanics by Lumley

(1967) and used by numerous authors since. Given a set of N instantaneous field measurements of

pressure or velocity (or any other variable), uk, what is the “best” low-dimensional representation

of these measurements?

Imagine a cloud of randomly placed points (measurements) of zero mean in the (x, y) plane. Since

the pairs (xj , yj) are randomly distributed, the cloud will be disc-shaped, no bias towards either the

x- or the y-axis. In other words, neither axis captures a greater proportion of the signal variance . If

we now introduce a relationship between x and y such that the cloud is stretched into an ellipse with

the major axis aligned with the x-axis, then the x-axis captures, or explains, a greater portion of the

total variance than does the y-axis. Thus, if we are interested in a low-dimensional approximation

of the data by discarding either coordinate, we are better off retaining the x-coordinate of each

measurement. This idea can be generalized to any linear vector space, the “axes” now becoming

functions φ. The POD is an automated way of finding these successive axes of decreasing variance

or energy.

Mathematically, the problem is to determine the function φ having maximal mean-squared pro-

jection upon the set of measurements. φ can then be interpreted as the most likely occurrence, or
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the expected value of the uk, and is a linear combination thereof:

φj =

N∑

k=1

cj
kuk. (2.70)

Taking the inner product of equation (2.70) with itself,

〈φj , φj〉 = 〈
∑

k

cj
kuk,

∑

l

cj
l ul〉 (2.71)

=
∑

k

∑

l

cj
kcj∗

l < uk,ul >

=
∑

l

cj∗
l (Mcj)l

= cj∗Mcj ,

where Mkl = 〈ul,uk〉. We wish to optimize 〈φj , φj〉 = ||φj ||2 over cj while keeping the latter finite,

cj∗cj = 1, say. We thus add a Lagrange multiplier λ,

||φj ||2 = cj∗Mcj − λj(cj∗cj − 1). (2.72)

Taking derivatives with respect to cj we obtain

Mcj = λjcj . (2.73)

The Lagrange multipliers λ are the eigenvalues, and the coefficients cj the eigenvectors of the

covariance-matrix M. Note that since M is Hermitian (Mij = M∗
ji) the eigenvalues λj are real

and eigenvectors cj corresponding to different eigenvalues are orthonormal. M is also positive defi-

nite so that all the eigenvalues are positive. They represent modal-energy as from equation (2.71),

||φj ||2 = cj∗Mcj = cj∗λjcj = λj , (2.74)

since cj∗cj = 1. We obtain the POD-modes φj by substituting the eigenvector cj into equa-
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tion (2.70). The basis functions φj are an optimal representation of the set uk in the sense that

projection onto other basis of the same dimension will result in greater error. For homogeneous di-

rections it is well known that the Fourier basis is optimal and must therefore equal the POD basis. In

this sense, the POD basis be considered a natural extension of the Fourier basis to non-homogeneous

directions.

The choice of inner product in equation (2.71) is problem specific and depends on geometry as

well as the variables of interest. Different inner products can lead to different energy decomposition

by azimuthal mode, for example. This is discussed further in chapter 3 and 4.

2.5 Experimental Data

The experimental jets analyzed in this thesis were probed via stereo Particle Image Velocimetry

(PIV) and a caged microphone array. These are described below.

2.5.1 Velocimetry

We investigated two pairs of heated and cold round jets at acoustic Mach numbers M∞ of 0.5 and

0.9, and a single cold serrated (chevron) jet at M∞ = 0.9. The flow conditions are listed in table 2.1.

Velocity data were obtained from stereo PIV measurements conducted by Bridges & Wernet (2003)

in the Small Hot Jet Acoustic Rig (SHJAR) at the NASA Glenn Research Center.

Measurements were made both in the streamwise (i.e., x-y) and cross-stream (y-z) planes, with

streamwise and cross-stream resolution of 0.04D and 0.03D, respectively. The round jets analyzed in

this study were measured in the streamwise plane while the serrated jet was measured in cross-stream

planes to capture its azimuthal structure. Mean flow field surveys for the round jets are shown in

figure 2.5, and figure 4.3 for the serrated jet. The mean flows consist of an ensemble average of

200 instantaneous measurements taken 0.1s apart. These measurements can be considered to be

uncorrelated as the time between shots far exceeds the eddy pass-through time (the slowest jet

travels roughly 350D in 0.1s).
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Set Point M∞ Tjet/T∞ Re PIV for Round/Serrated?

3 0.5 0.96 7 × 105 Yes/No
23 0.5 1.76 2 × 105 Yes/No
7 0.9 0.85 16 × 105 Yes/Yes
27 0.9 1.76 4 × 105 Yes/No

Table 2.1: Flow conditions investigated in this study. Set points are as defined by Tanna (1977).

A detailed review of the PIV-camera setup, flow seeding, and data processing may be found in

Bridges & Wernet (2003).

Temperature measurements were not available and were estimated from velocity via the Crocco-

Busemann relation,

T

T∞
= −u2

x

2
+

(
1

γ − 1

(
Tjet

T∞
− 1

)
+

M2
∞

2

)
ux

M∞
+

1

γ − 1
. (2.75)

Transverse velocity profiles were estimated from the mass-conservation equation.

2.5.2 Pressure Measurements

Pressure measurements were obtained from a caged microphone array, shown in figure 2.6, at NASA

Glenn’s SHJAR facility. This array consists of thirteen concentric rings arranged on a conically

expanding surface with the cone angle (11.2◦) set to be slightly greater than the spread-angle of the

jet shear layer. Each ring carries six microphones distributed evenly around the perimeter, allowing

the accurate resolution of the most energetic azimuthal modes, m = 0 − 2. To minimize aliasing,

each ring is shifted 30◦relative to the adjacent ring. The cone angle is fixed so that the relative angle

between the jet and the array varies slightly with the jet operating conditions, the effects of which

are discussed in section 3.4.1. The radius of the array was chosen such as to place the microphones

in the linear-hydrodynamic regime, where pressure fluctuations are largely hydrodynamic, as shown

in figure 3.1 and discussed in section 3.1.

An extensive review of the array design, experimental setup, and data sampling and processing

may be found in Suzuki & Colonius (2006).
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Figure 2.5: Contours of axial velocity ux/Ujet for the four jets in table 2.1. Contours are in equal
increments from 0.1 through 0.99.
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Figure 2.6: The Small Hot Jet Acoustic Rig (SHJAR) and Hydrodynamic Array at the NASA Glenn
Research Center.
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Chapter 3

Instability Wave Models of

Large-Scale Pressure Fluctuations

3.1 Introduction

Large-scale coherent structures in jets have traditionally been modeled based on the Kelvin-Helmholtz

instability of the jet shear layer. Such efforts have been successful, particularly for forced jets at

relatively low Reynolds numbers (e.g., Mattingly & Chang, 1974). At unforced conditions (i.e., for

“natural jets”), such disturbances are correlated over shorter spatial and temporal length scales,

making their unbiased detection challenging. This is further confounded at higher Reynolds num-

bers where the relative energy associated with large-scale coherent structures is diminished due to

increased production of fine scale turbulence. This can render the decomposition of turbulence

ambiguous at best and meaningless at worst.

But this is only the case in regions of intense turbulence, such as in the shear layer. As noted

by Suzuki & Colonius (2006), pressure fluctuations arising from different sources (e.g., instability

waves and quadrupoles) have different spatial decay characteristics. While such disturbances might

not be separated in a unique manner at one location, they might be at another. This is illustrated in

figure 3.1, which shows the radial decay of pressure fluctuations in a turbulent jet. The figure shows

two crossover points, the first from a region dominated by nonlinear fluctuation levels to an outer,

linear region where pressure levels fall off exponentially with radius. These regions are collectively

referred to as the hydrodynamic regime, alluding to the mostly non-propagative character of the
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Figure 3.1: Radial distribution of pressure fluctuations of the axisymmetric mode in a turbulent jet.
Shown is a hypothetical rms-pressure distribution ( ), along with a locally-parallel eigenfunction
from linear stability analysis ( ). Indicated are the regions demarcated by type of dominating
pressure fluctuations: nonlinear/linear hydrodynamic (evanescent) and acoustic.

resident fluctuations. The next crossover is from the linear hydrodynamic to the acoustic region

in which pressure fluctuations propagate at the ambient speed of sound while decaying in inverse

proportion to radius.

Suzuki & Colonius recognized that the signatures of convected large-scale coherent structures

should be embedded in, and dominate the linear hydrodynamic region. Placing microphones in this

region (where the two lines are aligned in figure 3.1) might thus allow their indirect detection and

study. In particular, their amplitude and phase-angle might be deduced by fitting a model to the

measured data. Using the caged microphone array described in section 2.5.2, Suzuki & Colonius

made such measurements and compared them to a locally-parallel linear stability model. They

obtained excellent agreement near the most unstable frequency (see figure 3.8 and discussion in

section 3.3.2). The agreement at sub-peak frequencies was not as favourable however, particularly

for the axisymmetric mode. This is at least in part due to the nature of the locally-parallel flow

assumption (discussed in sections 1.3.2 and 2.3.2) and as such the predictions should be amenable
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to improvement via the inclusion of non-parallel effects.

The Parabolized Stability Equations (PSE), introduced by Bertolotti & Herbert (1991), repre-

sent a refinement of the locally-parallel approach whereby both non-parallel and non-linear effects

can be retained in the analysis of slowly spreading, convectively unstable flows such as boundary

layers (Bertolotti & Herbert, 1991; Bertolotti et al., 1992; Chang et al., 1993), planar mixing lay-

ers (Day et al., 2001; Cheung & Lele, 2009) and jets (Balakumar, 1998; Yen & Messersmith, 1998;

Malik & Chang, 2000; Ray et al., 2009; Gudmundsson & Colonius, 2009).

The PSE have been used successfully to predict the far-field behavior of supersonic laminar jet

flows. Subsonic conditions however still represent a challenge for instability-based methods as the

far field is absent from the solution, even for the PSE. The near field is well modeled, though,

allowing the inner instability solution to be coupled with projection methods (Balakumar, 1998;

Cheung & Lele, 2009) to deliver reasonable far field approximations, at least in qualitative terms.

Limitations on far field predictions are however not a concern in the current work, as our immediate

scope is the near field of large scale coherent structures and their modeling via the Kelvin-Helmholtz

instability of the inflectional mean flow profiles.

In section 3.2 we describe some of the data-processing procedures used in this thesis. In sec-

tion 3.3 we discuss the effects of mean flow divergence, both in terms of stability characteristics and

comparison to experiment. In section 3.4 we discuss the nature of the pressure measurements in

this study and our application of the proper orthogonal decomposition. In section 3.5 we describe

the effects of filtering measurements via the POD, and compare these with the prediction of PSE.

Finally, in section 3.6 we summarize our findings.

3.2 Preliminaries

3.2.1 Processing of PIV Data

To avoid numerical issues (stemming from non-smooth measurements) in the solution of the PSE sys-

tem (2.61) we fit the PIV mean flow with a Gaussian profile similar to that used by Troutt & McLaughlin
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Figure 3.2: Profile parameters R(x), δ(x) and uc(x) as determined from PIV measurements (symbols)
of the cold M∞ = 0.9 jet and fitted with a cubic polynomial (lines) to ensure smooth axial variation
of ux.

(1982) and Tam & Burton (1984),

ux

Ujet

=






1 if r < R(x)

uc(x) exp
(
− (r−R(x))2

δ(x)2

)
otherwise.

(3.1)

The profile parameters R(x), δ(x), and uc(x) are determined from the PIV data via least-squares:

we define a 3D parameter-grid and search over this space for the best solution. To ensure smooth

axial variation of ux we fit the profile parameters with a cubic polynomial, an example of which is

shown in figure 3.2 for the cold M∞ = 0.9 jet. Figure 3.3 shows the excellent fits so obtained for

this jet; similar results are obtained at other flow conditions. Analogous results can be obtained

in the core region with the hyperbolic-tangent function (Suzuki & Colonius, 2006) but this match

deteriorates as the jet takes on a Gaussian shape further downstream.
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Figure 3.3: PIV measurements (symbols) of axial velocity for the cold M∞ = 0.9 jet, matched with
the profile of equation (3.1) (lines). Shown are axial stations x/D = 1.0 (◦), 4.0 (△), and 8.0 (∗).
Every fourth data point is shown.

3.2.2 Normalization of Predictions

In what follows we respectively denote measured and computed quantities with upper and lowercase

letters. The time series P (x, r, θ, t) from the 78-microphone array is decomposed into its azimuthal

and temporal harmonics:

P (x, r, θ, t) =
∑

m

∫
P̃mω(x, r) eimθ e−iωt dω. (3.2)

We compare P̃mω with the PSE equivalent,

p̃mω = Amω p̂mω(x, r)ei
R

x
αmω(ξ) dξ, (3.3)

where the complex number Amω represents the initial amplitude and phase of the PSE solution q̂1.

The system governing the evolution of p̂mω is linear and does not depend on, or predict Amω.

1Note that the shape functions are first (arbitrarily) normalized such that ûr is real-valued at r = 1/2 and
maxr (q̂) = 1.
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This we determine from the measured data. Suzuki & Colonius used a beam-forming procedure

whereby Amω was chosen to maximize the phase-match between the microphone data and their

LST prediction. We determine Amω via amplitude-matching, choosing Amω as that minimizing the

error defined as

J(Amω) =

Nring∑

j=1

|P̃ j
mω − p̃j

mω|2, (3.4)

where P̃ j
mω and p̃j

mω respectively denote measurements and predictions at x = xj , and Nring denotes

the number of microphone rings. This results in the estimate

Amω =

∑Nring

j=1 |p̃j
mωP̃ j

mω|∑Nring

j=1 |p̃j
mω|2

, (3.5)

Phase-matching is in general expected to return lower estimates of Amω as it attempts to filter out

contributions from events uncorrelated with the instability waves in the flow. We choose the simpler

amplitude-matching as we are primarily interested in comparing the shapes of measurements and

predictions, a favourable match indicating dominance of instability waves in the pressure signal.

The LST solution is computed at various axial stations x, assuming locally-parallel flow. To

emulate the PSE expansion in equation (3.3) we construct a “global” LST eigenfunction

p̃mω = Amω

p̂mω(r, |x)

maxr |p̂mω(r, |x)| ei
R

x
αmω(ξ) dξ, (3.6)

where p̂mω(r, |x) and αmω(x) are respectively the local LST eigenfunction and eigenvalue for mode

(m, ω), computed at axial station x.

3.3 Effects of Mean Flow Divergence

Using the cold M∞ = 0.5 jet as an illustrative example, we discuss some of the effects of mean flow

divergence in the following sections.
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3.3.1 Stability Characteristics

Figure 3.4 shows growth-rates −αi and streamwise wavenumbers αr for the cold M∞ = 0.5 jet,

computed via both LST and PSE. The initial condition for the PSE simulation is computed using

the locally-parallel assumption with viscous terms included (see section 2.3.2), explaining why the

two agree closely near the nozzle, with PSE growth-rates being slightly lower due to viscous damping.

Significant differences appear as the two solutions evolve downstream. Most notable is the desta-

bilizing effect of mean flow divergence: growth-rates are increased and the neutral point (where

αi = 0) is offset downstream. The degree to which this occurs depends on the azimuthal wavenum-

ber m, with higher-m modes being increasingly affected. Streamwise wavenumbers are similarly

increased, although the dependence on azimuthal wavenumber seems reversed as compared to that

of the growth-rate. These results are consistent with those of Malik & Chang (2000) who stud-

ied a low Reynolds number supersonic jet. Bertolotti et al. (1992) also found similar effects in the

incompressible Blasius boundary layer.

The Rayleigh equation (2.50) and the more general PSE equations (2.60) differ locally by non-

parallel terms such as ∂xux and ur. They also differ globally in that history effects (the accumulation

of upstream influences) are included by the PSE2. One might then wonder whether the destabilization

and shortening of unstable waves (as αr is larger) is a local or a global effect. This can be addressed

by removing all non-parallel terms from the PSE, retaining only the history effect. The results in

figure 3.5 indicate that this alteration has a limited impact, showing that history effects, rather than

the local effects of additional shear, are largely responsible for the observed differences between LST

and PSE. Figure 3.5 shows an m = 0 case at St = 0.35 but we note that similar effects are observed

at other conditions.

The shape-functions p̂ play a vital role in determining the spatial distribution of pressure fluctu-

ations. Figure 3.6 shows a comparison of shape-functions computed via LST and PSE, at St = 0.35

and cross-section x/D = 2. Significant differences are observed away from the shear layer, both

within the jet core and in the far field, particularly for the m = 0 mode. This is a direct consequence

2The current implementations of the LST and PSE further differ by the inclusion of viscous effects by the latter.
This does not bear on the current discussion however.
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Figure 3.4: growth-rates and wavenumbers for the cold M∞ = 0.5 jet: , LST; , PSE.
Azimuthal wavenumbers m = 0-2 at frequency St = 0.35.
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Figure 3.5: Growth-rates −αi and wavenumbers αr for the cold M∞ = 0.5 jet: , LST; , PSE;
PSE with non-parallel terms zeroed. Azimuthal wavenumber m = 0 at frequency St = 0.35.
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Figure 3.6: Amplitude of eigenfunctions p̂mω for the cold M∞ = 0.5 jet, computed via ( ) LST
and ( ) PSE, at azimuthal wavenumbers m = 0-2, frequency St = 0.35 and cross-section x/D = 2.
Note that p̂mω is arbitrarily normalized and is shifted here for readability.

of PSE’s larger αr-estimate, on which the asymptotics in equations (2.52) and (2.53) depend.

The next step in the analysis is to look at the pressure variable p̃mω, defined in equation (3.3).

This variable combines the effects of α and p̂, giving the physical-space distribution of pressure.

Figure 3.7 shows |p̃mω| computed via the two methods, along two constant radii. Disturbances

close to the shear layer (the r/D = 0.5 curve) are greatly amplified under the PSE approximation.

Further out from the axis, the faster decay of the PSE shape-function partially compensates for the

increased growth-rate, particularly for m = 0. Also note the different saturation location estimates.

LST undershoots these in all cases and increasingly so with higher m. This is a consequence of

LST’s premature growth-rate decay and passage through the neutral point.

Aside from the more realistic physical modeling of the PSE, the method has some numerical

advantages over the LST. The computation of neutral and stable modes in particular is no issue for

the PSE. In LST however, special care has to be taken near αi = 0, where α ux(r) − ω can vanish

at some r = rc, called the critical layer (Tam & Morris, 1980). rc is a regular singular point of

equation (2.50) and requires a branch cut to be made in the complex r plane to obtain a continuous

solution. This procedure, described in section A.1.2, was carried out in the LST computation of
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Figure 3.7: Pressure amplitude along constant radii for the cold M∞ = 0.5 jet: , LST; ,
PSE, at frequency St = 0.35. All amplitudes scaled so that |p̃mω(x0, r)| = 1.

neutral and stable modes in this thesis. Even when taking such precautions the calculation cannot

be carried on indefinitely in the streamwise direction, as the path deformation required becomes

comparable to the jet diameter. This is why LST computations are terminated at x/D = 5 in

figure 3.8.

3.3.2 Comparison with Experiments

A subset of the LST predictions p̃mω of Suzuki & Colonius (2006) is reproduced in figure 3.8 and

compared with their pressure measurements P̃mω. This figure corresponds to figure 12 in their paper.

Note however that the current LST results differ slightly from those of Suzuki & Colonius, for two

reasons. Firstly, they use a hyperbolic-tangent function to approximate the PIV mean flow while

we use the Gaussian function described in section 3.2.1. The two approaches result in very similar

approximations near the nozzle; we choose the more general Gaussian shape as we are interested

in extending their predictions beyond the potential core, into the developed region. Secondly, our

amplitudes Amω are generally higher as we employ amplitude-matching rather than phase-matching.
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The latter approach results in lower amplitudes as it attempts to filter out contributions from events

uncorrelated with the instability waves in the flow. We choose the simpler amplitude-matching as

we are primarily interested in comparing the shapes of measurements and predictions, a favourable

match indicating dominance of instability waves in the pressure signal.

Figure 3.8 shows the evolution of pressure amplitude and phase angle for the cold M∞ = 0.5

jet at azimuthal wavenumbers m = 0-2 and frequencies St = 0.25, 0.35, and 0.50. Amplitude

predictions generally improve with increasing frequency, at least within the range shown here (but

see section 3.5.1). Compared with the data, LST growth-rates seem underpredicted, particularly at

low frequencies. The m = 1 predictions do fairly well, however, and do not seem to suffer much from

the locally-parallel assumption employed in the LST, at least not at and above the most unstable

frequency. The axial location of saturation is captured in most cases (note that these measurements

are taken on the surface of a cone, causing saturation to occur at an earlier streamwise location than

would be recorded on a cylinder as in figure 3.7).

The phase-angle predictions at low frequencies are excellent for all azimuthal wavenumbers.

Upstream and downstream of saturation, the phase-angle measurements level off, however, the

region of good match becoming increasingly narrower with frequency. This is due to the effects

of acoustic disturbances, discussed below.

Figure 3.9 shows the evolution of pressure amplitude for the same flow condition, this time

including the predictions of PSE. Drastic improvements are offered by the PSE, particularly at lower

frequencies. This is at least in part due to the higher growth-rate estimates of the PSE, as discussed

in the previous section. Note however the differing improvements for the different azimuthal modes:

m = 0 and m = 2 are significantly impacted, m = 1 only mildly so. The m = 1 mode is of course

already reasonably well predicted by LST, leaving less room for improvement. But why does the

LST do worse for m = 0 and m = 2, skipping over m = 1? Clearly this has to do with mean flow

divergence and we suggest the following causes.

The m = 0 mode of LST is adversely affected by non-parallelism due to its boundary condition

at the axis. As mean flow gradients vanish near the axis, the Rayleigh equation (2.50) is reduced to
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Figure 3.8: Pressure amplitude and phase-angle along the microphone array for the cold M∞ = 0.5
jet. Measurements denoted by symbols and predictions by lines: ∗, , m = 0; +, , m = 1; ◦,

, at frequencies (i) St = 0.25; (ii) St = 0.35; (iii) St = 0.5.
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Bessel’s equation,

1

r

d

dr

(
r
dp̂

dr

)
−

(
m2

r2
+ α2 − ρ(α M∞ − ω)2

)
p̂ = 0. (3.7)

As r → 0 this becomes

r2 d2p̂

dr2
+ r

dp̂

dr
− m2p̂ = 0, (3.8)

also called Euler’s differential equation, with solution p̂ = Cr|m| for any constant C. Thus, m = 0

is the only non-vanishing mode at the axis3 (as can be seen in figure 3.6). This mode is sensitive

to and scales with the nozzle diameter D, which is much larger than the shear layer thickness δ, at

least in the core region. These waves will be longer (have smaller streamwise wavenumbers αr) and

experience greater mean flow variance over a wavelength as compared to the shorter m 6= 0 waves

(of the same frequency) and hence will be more sensitive to non-parallel effects. These arguments

apply more to the wavenumber αr than the growth-rate −αi, as the latter still depends heavily on

the shear. This can be seen in figure 3.4: out of m = 0 to 2, the m = 0 growth-rate and wavenumber

are respectively the least and most affected by non-parallel effects.

The 3D modes (m 6= 0) vanish within the jet core and so do not directly feel the effects of the

jet diameter, aside from its effect on the curvature of the shear layer, with which they scale. These

modes are increasingly affected by non-parallel effects: it happens that the m = 1 mode is the first

to be independent of nozzle-diameter and as such does better than the m = 2 mode. Conversely,

the 2D mode (zero spanwise wavenumber) in a planar mixing-layer or a flat-plate boundary layer

would be the least affected by non-parallel effects as it has no special additional length-scale. This

can be seen, e.g., in the results of Bertolotti et al. (1992) who studied the Blasius boundary layer.

The PSE predictions for this case can be described as excellent. Note however the departure

of amplitude predictions from the microphone data starting at x/D ≈ 4 (depending on frequency),

where disturbances have saturated. This is also due to acoustic contamination, briefly touched on

above in relation to the phase-angle predictions in figure 3.8. This is the topic of the next section.

3This can also be seen on physical grounds: if m 6= 0 modes had a presence at the axis the solution p̂(r) exp (imθ)
would be discontinuous as r → 0.
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Figure 3.9: Pressure amplitude along the microphone array for the cold M∞ = 0.5 jet. Predictions
of ( ) LST and ( ) PSE compared with (◦) measurements, at frequencies (i) St = 0.25; (ii)
St = 0.35; (iii) St = 0.5. Note m-dependence of ordinate.
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Figure 3.10: Contours of ux/Ujet = 0.01 for the cold ( ) M∞ = 0.5 and ( ) 0.9 jets, along
with (◦) microphone positions.

3.4 The Nature and Treatment of The Pressure Measurements

We wish to evaluate the degree to which the hydrodynamic pressure field is consistent with instabili-

ties evolving in the turbulent flow. To this end we need a good model for the evolution of instabilities

and a way to decompose the measurements by their character: hydrodynamic or acoustic. Neither

task is trivial and the latter is discussed below.

3.4.1 Composition and Complexity of the Measured Data

The microphone array was designed such as to place the microphones in the linear hydrodynamic

regime (see figure 3.1) where pressure fluctuations are largely hydrodynamic. However, the extent

and location of this regime varies with the flow condition, while the cone-angle of the array is fixed.

This is illustrated in figure 3.10, where the contours of ux/Ujet = 0.01 for two different jets can be

seen to align differently with the array. Microphone placement is particularly difficult for the higher

speed jets as fluctuations in the near field scale with M2
∞, while far field fluctuations scale as M4

∞.

This narrows the radial extent of the hydrodynamic regime and means more microphones will be

situated in the acoustic regime. Since measurements are difficult and the resulting data non-perfect,

a post-processing technique is needed.

Acoustic disturbances in the region where ux ≪ Ujet have sonic phase-speeds and propagate

isotropically from their source. Hydrodynamic disturbances on the other hand have subsonic phase-
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speeds (in subsonic and mildly supersonic flows) and the amplitude of their acoustic radiation is

biased towards the flow direction. It thus seems natural to decompose the pressure measurements

on the basis of phase-speed and/or directivity. Tinney & Jordan (2008) performed an experiment

where the near field pressure of three co-axial subsonic jets was measured with a microphone ar-

ray similar to the one in the current experiments, but with a significantly higher spatial resolution

(48 microphones on a line array along with a movable ring carrying 15 microphones) and extent.

Tinney & Jordan Fourier transform their data in time and azimuthal angle, and also in the stream-

wise coordinate, obtaining a wavenumber spectra αr. Using this estimate of αr, they propose to

decompose measurements P into two components on the basis of phase-speed cp = ω/αr,

P = P{cp < a∞} + P{cp ≥ a∞}, (3.9)

Such a decomposition is shown in figure 3.11, for the hot M∞ = 0.9 jet of this study. This figure

shows contours of measured and decomposed pressure for the 13 microphones, as a function of time.

The subsonic and supersonic components respectively have the expected slopes dx/dt = 0.6 Ujet (the

convective velocity), and a∞.

While this decomposition is capable of producing qualitatively accurate results, it is less fit in

quantitative terms (i.e., for comparing LST or PSE predictions to the hydrodynamic component

P{cp < a∞}). This is due to the limited streamwise resolution and, more importantly, the limited

streamwise extent of the microphone array (truncation of the source region spawns high wavenum-

bers, essentially due to Gibbs phenomena).

An alternative approach is to examine two-point correlations in the measurements. The mi-

crophone data consists of a very large number of instantaneous zero-mean pressure measurements

P (x, r, θ, t), each of which can be considered to be a convolution of the fluctuation field within the jet

(George et al., 1984). In particular the measurements can be triply-decomposed (Hussain & Reynolds,

1970) as

P = P + P ′ + P ′′ (3.10)
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Figure 3.11: Instantaneous snapshots of m = 0 perturbation pressure and its Fourier-decomposition
by phase-speed cp. From left: total, subsonic, and supersonic pressure. The heavy lines in the
subsonic and supersonic plots respectively have reciprocal slopes dx/dt = 0.6Ujet (the convective
velocity), and dx/dt = a∞ (ambient speed of sound). This data is taken from measurements of the
hot M∞ = 0.9 jet.
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where P = 0 is the time-average; P ′ is the phase-average4, and P ′′ is the remainder. P ′ and P ′′

then respectively represent the coherent and incoherent components of the signal.

The triple-decomposition in equation (3.10) is a more general version of the (double) decompo-

sition in equation (2.22), repeated here:

q = q + q′. (3.11)

This we used to linearize the governing equations and subsequently assumed coherence upon the

fluctuations by modeling them as waves. The question now becomes, how can we filter P ′′ from the

measurements P , so that we may compare P ′ to the prediction p′?

The excitation of convected instabilities in unforced flows is a random process. The resultant

instabilities thus have random amplitude and phase. Via forcing, these instabilities can be organized

or phase-locked such that they appear in a relatively orderly manner at any given location and

time. The phase-average can then easily be computed, with the forcing mechanism providing the

phase (or lag) about which to average. In unforced flow the phase-average will be zero however, as

instantaneously spatially-coherent structures will not appear in a time-coherent manner at a fixed

location (they have random phase). In terms of the triple decomposition this means that the entire

fluctuating energy is lumped into the remainder P ′′. The microphone data in figure 3.9 is essentially

the Fourier transform of P ′′.

Over a large number of realizations however, fluctuations in unforced flows will occur in a “typical”

manner, i.e., an average spatial distribution of energy may converge. This is certainly the case in

statistically stationary flows, by definition. The challenge is to separate this energy into those

associated with P ′ and P ′′. The POD, described in section 2.4, provides an optimal mechanism by

which a set of measurements may be separated into uncorrelated components and, as such, suits the

problem at hand.

4The phase-average is a time-average where the wave is sampled not continuously but at fixed intervals τ , corre-
sponding to the period of the wave of interest.
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3.4.2 Filtering via the POD

Our application of the POD to the microphone data differs slightly from that described in section 2.4

in that we perform the POD in frequency-space rather than in time. Thus, instead of doing a POD

of the set of instantaneous snapshots P (x, r, θ, t), we divide these series into ensembles, frequency-

transforming each5 and then perform the POD on this set.

We briefly outline the POD procedure here; refer back to section 2.4 for a more complete treat-

ment. For clarity of presentation we omit the subscript pair mω from all variables in what follows.

The cross-spectral density tensor is defined as

Rk
ij = P̃ i∗

k · P̃ j
k , (3.12)

where i and j range from 1 through Nring, and P̃ j
k is the transformed measurement in ensemble k,

evaluated at x = xj . We then form the ensemble-averaged cross-spectral density tensor,

R = 〈Rk〉 =
1

Nens

Nens∑

k=1

Rk (3.13)

and solve the eigenvalue problem

R x = λx. (3.14)

By construction, R is Hermitian and positive definite so that λj ≥ 0 and eigenvectors corresponding

to different eigenvalues are orthonormal. The λj are ordered such that λj+1 ≤ λj . A faster rate of

decay of the λj series indicates a higher correlation or coherence in the data. This is because the

POD-modes xi are uncorrelated, which follows from their orthonormality: 〈xi, xj〉 = δij , where δij

is the Kronecker-delta.

The cross-spectral density tensor R can be reconstructed from the POD-modes,

Rij =

Nring∑

n=1

λnxi(n)∗ xj(n). (3.15)

5The measurements ePmω reported in figures 3.8 and 3.9 are based on the ensemble-average of this set.
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This decomposition allows the POD-filtering of the measured data P̃ , where only the highest-energy

mode is retained,

POD(P̃ ) =
√

λ1 x1. (3.16)

The application of the POD to the present data is discussed in the next section.

3.5 Comparisons with POD-Filtered Data

In the following sections we respectively denote measured and computed quantities with upper and

lowercase letters. For readability we suspend the subscript mω.

3.5.1 The Cold M∞ = 0.5 Jet

Figures 3.12 and 3.13 respectively show the evolution of pressure amplitude and phase along the

microphone array for the cold M∞ = 0.5 jet. Included in these figures are the ensemble-averaged data

〈P̃ 〉, the POD-filtered data POD(P̃ ), and the scaled PSE-prediction p̃. As was noted in section 3.3.2,

the PSE-predictions match the ensemble-average well up to saturation of the peak the two diverge,

presumably due to acoustic contamination of the measurements, and increasingly so with larger m or

ω. The acoustic character of the contamination is most readily seen in the phase-angle measurements

in figure 3.13. The phase-speed is inversely proportional to the slope of these curves. In some cases,

such as at frequency St = 0.35, the phase-angle measurement is nearly horizontal, indicating infinite

phase-speed. It is of course not the case that these fluctuations propagate with such speed but

rather that they propagate near-normally to the array, hitting several microphones simultaneously.

A wave front traveling in parallel to the array would be measured as traveling at the ambient speed

of sound.

We now turn our attention to the POD-filtered measurements. The effectiveness of the filtering

is striking in some cases, such as at St = 0.35. The POD-filtered phase-angle follows the PSE-

predictions near-exactly, and similarly for the amplitude. Also impressive is the broad range of

frequencies and azimuthal modes over which the predictions largely capture the POD-filtered evo-
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lution, even at frequencies as high as St = 0.65. This frequency is considerably removed from that

at the peak.

Particularly interesting is the broad spatial range of match, even beyond the closure of the

potential core (which occurs at x/D ≈ 6.4 as can be seen in figure 2.5). This is partly counter-

intuitive, as one would expect nonlinearities to become significant as disturbances grow to saturation.

Recall that the mean flow q(x) used in the solution of the PSE equations is obtained from PIV

measurements of the turbulent flows in our study. Nonlinear phenomena such as vortex pairing are

then implicitly accounted for through their imprint on the mean flow evolution. Their inclusion is

only partial, though, as the interactions of large-scale fluctuations with each other and with fine-scale

turbulence are not considered by the linear PSE. The wide spatial range of favourable match is thus

interesting, as it indicates that nonlinear interactions are mostly important in terms of their impact

on the mean flow evolution, at least at this flow condition and some of the considered frequencies.

Using mean flow from a DNS of a cold Re = 2000, M∞ = 2 jet, Mohseni et al. (2002) solved

the linearized Navier-Stokes (LNS) equations and compared the linear solution to the fluctuating

component of the DNS. This is similar to the current approach, aside from the additional assumptions

needed in reducing the LNS to the linear PSE. Mohseni et al. found that LNS fluctuations generally

match the DNS in terms of directivity and peak Strouhal numbers. The LNS underpredicts growth-

rates and sound-pressure levels however, with the exception of those near the peak frequency of the

m = 1 mode. They thus conclude that nonlinear interactions must be accounted for in order to

obtain accurate growth-rates.

The current results run somewhat counter to this and we hypothesize that the difference lies with

the effects of compressibility, one of which is stabilization: growth-rates decay with increasing Mach

number. It is likely that linear instabilities dominate low-amplitude dynamics to a lesser extent

under such circumstances, the evolution proceeding via more subtle mechanisms such as modal

interactions. Nonlinearities are thus increasingly important at higher Mach-numbers.

Something curious happens far downstream for m = 2 and St = 0.65, where the POD-filtered

amplitude is seen to rise slightly after having decayed, and the corresponding phase-angle levels off,
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much as the ensemble-average. This phenomena is more pronounced for the heated and higher-speed

jets and is discussed in the next sections.

3.5.2 The Cold M∞ = 0.9 and Hot M∞ = 0.5 Jets

Figure 3.14 shows evolution of pressure amplitude and phase at St = 0.35 along the microphone

array for the cold M∞ = 0.9 jet. As for the cold M∞ = 0.5 jet, the benefits of POD-filtering are

considerable (compare figure 3.14 with part (ii) of figures 3.12 and 3.13). The relative improvement

is greater for the higher-speed jet, though, as it is more contaminated. This is because hydrodynamic

pressure scales as M2
∞, while acoustic pressure scales as M4

∞, increasing the acoustic proportion of

the signal6.

It is well known that heating has a destabilizing effect on free shear layers. This is illustrated

in figure 3.15, where we compare growth-rates of the hot and cold M∞ = 0.5 jets. All azimuthal

modes are amplified with heating but none so much as the axisymmetric mode, whose maximum

growth-rate is nearly doubled. This destabilization and m-dependence thereof can also be seen in

the measurements of the two M∞ = 0.5 jets in figures 3.12 and 3.15.

It has been shown (Monkewitz & Sohn, 1988; Lesshafft & Huerre, 2007) that sufficiently heated

round jets are susceptible to absolute instability, where a disturbance grows exponentially in time

while remaining fixed where it was generated (i.e., it has zero phase-speed). We note however

that absolute instability is precluded for the hot jets in this work, both due to their relatively low

temperature ratio of Tjet/T∞ = 1.76, and their high-speed.

Figure 3.16 shows evolution of pressure amplitude and phase at St = 0.35 along the microphone

array for the hot M∞ = 0.5 jet. The match between the PSE-prediction and the POD-filtered

measurements is again remarkable, particularly given the higher level of acoustic contamination as

compared with the cold M∞ = 0.5 jet (compare figure 3.16 with part (ii) of figures 3.12 and 3.13).

Note however the apparently mixed hydrodynamic-acoustic nature of the m = 2 POD-filtered pres-

sure at this flow condition. The phase-angle prediction is very good past saturation, after which the

6The M2
∞

scaling can be observed in the current measurements: the maximum amplitude of the M∞ = 0.5 signal
at m = 0, St = 0.35 is ∼ 6Pa → (0.9/0.5)2 · 6 ≈ 19.5Pa, which compares well with the ∼ 20Pa recorded for the
M∞ = 0.9 jet in figure 3.14.
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Figure 3.12: Pressure amplitude along the microphone array for the cold M∞ = 0.5 jet: (◦) ensemble-
average; (�) first POD-mode; ( ) PSE-predictions, at frequencies (i) St = 0.25; (ii) St = 0.35;
(iii) St = 0.5; (iv) St = 0.65. Note m-dependence of ordinate.
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Figure 3.13: Phase-angle along the microphone array for the cold M∞ = 0.5 jet: (◦) ensemble-
average; (�) first POD-mode; ( ) PSE-predictions, at frequencies (i) St = 0.25; (ii) St = 0.35;
(iii) St = 0.5; (iv) St = 0.65.
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Figure 3.14: Pressure amplitude and phase-angle along the microphone array for the cold M∞ = 0.9
jet: ◦, measurements; �, first POD-mode; , PSE, at frequency St = 0.35.

POD-filtered phase levels off similarly to the ensemble-average. At the same streamwise location

the POD-filtered amplitude grows slightly after having decayed earlier.

Comparing the increase in acoustic content between the cold M∞ = 0.5 and 0.9 pair on one

hand, and the cold and hot M∞ = 0.5 pair on the other, it appears the heating induces even more

acoustic content than the higher speed. The high-speed heated jet suffers maximally from this and

is discussed in the next section.
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Figure 3.15: Growth-rates −αi for the ( ) cold and ( ) hot M∞ = 0.5 jets, at frequency
St = 0.35.



62

|P̃mω|

m = 0

∠P̃mω

m = 1

x/D

m = 2

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

0 2 4 6 8

-5

5

15

25

0

2

4

6

-5

5

15

25

0

2

4

6

-5

5

15

25

0

2

4

6

Figure 3.16: Pressure amplitude and phase-angle along the microphone array for the hot M∞ = 0.5
jet: ◦, measurements; �, first POD-mode; , PSE, at frequency St = 0.35.

3.5.3 The Hot M∞ = 0.9 Jet

Here we look at the last remaining flow condition in table 2.1, the hot M∞ = 0.9 jet. Figures 3.17

and 3.18 respectively show the evolution of pressure amplitude and phase along the microphone

array. Nearly all of the frequencies and azimuthal modes for this jet suffer considerably from acoustic

contamination of the signal. It is only the axisymmetric mode, and low frequencies of the m = 1

mode that are effectively filtered by the POD. The m = 2 POD-filtered mode appears mostly

acoustic, even at the lowest frequency considered.

The POD separates a given set of measurements into uncorrelated components that can be or-

dered by their energy, represented by their respective eigenvalues λj (see section 3.4.2). In our

application of the POD above we compared the PSE-predictions to the highest-energy POD-mode

(which has energy λ1), discarding all others. Thus when we say that high order modes are in-

effectively filtered by the POD, we are saying that for these modes the acoustic component has

comparable, or even greater energy (e.g., for m = 2 at St = 0.5) than the hydrodynamic one. The

energy separation is frequency dependent and comparable energies can be found at all flow condi-

tions, even for the ’cleanest’ flow in this study, the cold M∞ = 0.5 jet (e.g., m = 2 at St = 0.65
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Figure 3.17: Pressure amplitude along the microphone array for the hot M∞ = 0.9 jet: ◦, measure-
ments; �, first POD-mode; , PSE, at frequencies (i) St = 0.25; (ii) St = 0.35; (iii) St = 0.5.

in figure 3.12). In this regard there is nothing special about the hot high-speed jet, aside from the

severity of contamination and the extended range of affected modes.

Figure 3.19 shows the POD energy-spectra of two extremal jets: cold M∞ = 0.5 and hot M∞ =

0.9. These spectra have been normalized by the total energy of each mode (m, ω),

||P̃mω ||2 =

N∑

k=1

λk. (3.17)

The ratio λj/
∑N

k=1 λk thus represents the fraction of energy contained in POD-mode j. The

spectral-decay is consistent with the behavior already deduced in the comparisons above. At the

lowest frequencies the two spectra behave similarly. With increasing frequency the two spectra

diverge however, with the slower jet having faster spectral-decay in all cases. Fast spectral-decay

indicates greater coherence in the data, while, in the other extreme, a randomly composed data-set

has a nearly flat spectrum. The slower jet is thus in some sense simpler or more coherent than the



64

m = 0

(i)

m = 1 m = 2

P
ha

se
A

ng
le

[r
ad

]

(ii)

x/D

(iii)

x/D x/D

0 2 4 6 80 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 80 2 4 6 8

0 2 4 6 80 2 4 6 80 2 4 6 8

-5

10

25

-5

10

25

-5

10

25

-5

10

25

-5

10

25

-5

10

25

-5

10

25

-5

10

25

-5

10

25

Figure 3.18: Pressure phase along the microphone array for the hot M∞ = 0.9 jet: ◦, measurements;
�, first POD-mode; , PSE, at frequencies (i) St = 0.25; (ii) St = 0.35; (iii) St = 0.5.

other.

Let us use the m = 1 mode of frequency St = 0.5 (plot (iii) in figure 3.19) as an example in what

follows. The first POD-mode captures 75% of the slower jet’s energy. After j = 1, the spectra is

relatively flat; these trailing components represent low-energy noise. Now look back at the PSE-POD

comparison in figure 3.12 (iii): the prediction is near-flawless. The first POD-mod of the higher-

speed jet only contains 45% of the energy. To get up to 75% energy-content we need to the first three

modes, after which the spectra levels out. The PSE-POD comparison in this case (figure 3.17 (iii))

was not favorable and in fact the first POD-mode looks nothing like the hydrodynamic component.

Looking at the spectra for this case, one might thus conjecture that the hydrodynamic component

is contained in the second or even third POD-mode. Figure 3.20 shows that this is indeed the case.

Figure 3.20 shows the pressure amplitude and phase-angle comparisons for the two jets under

discussion, at m = 1 and St = 0.5. We omit the ensemble-average but rather show the first three

POD-modes along with the PSE-prediction. The comparison between the PSE-prediction and the
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first POD-mode of the slower jet is excellent as we had indeed already seen in figure 3.12 (iii). The

second and third POD-modes have some hydrodynamic qualities, such as growth and decay in a

similar span as the first POD-mode, and a convective phase-speed (i.e., slower than acoustic). But

this is only the case in the growth-phase. After this point both modes are clearly acoustic, as judged

by the phase-speed (low slope of the phase-angle curve).

Turning now to the higher-speed jet, we first note that while the first POD-mode is slightly

hydrodynamic in the first two diameters, it is acoustic there after. This is interesting as this mode

is the most energetic, having roughly 45% of total energy. As we had noted in (figure 3.17 (iii)),

this mode does not compare well with the PSE-prediction. Remarkably, though, the second POD-

mode does. In fact, the comparison with this mode is quite good, both in terms of amplitude and

phase-angle. This mode has roughly 30% of the total energy but note however that it is indeed

the most energetic past saturation. Thereafter, it takes on some acoustic qualities, such as higher

phase-speed. The third POD-mode in this case seems acoustic throughout.

Apparent throughout the discussion above is the fact that POD-modes seem capable of being

simultaneously hydrodynamic and acoustic. This can be deduced by the spatial properties of the

eigenvectors xj in equation (3.16). The most telling indicator is the slope of the phase-angle curve

(phase-speed). This has spatial variance such that a single mode might be convective upstream and

acoustic downstream. Recall that the POD breaks the data-set up into uncorrelated (orthogonal)

pieces or modes, the POD-modes. Each POD-mode then represents a set of points which are

consistently in phase (they are correlated). The above results then indicate a strong correlation

between hydrodynamic waves and acoustic waves. But this is surprising as one would think that

hydrodynamic-hydrodynamic and acoustic-acoustic correlations should dominate the high-energy

modes, followed by trailing hydrodynamic-acoustic correlations. But this is not the case and indicates

that the acoustic part of the instability wave has comparable energy with the non-radiating part for

this flow condition.
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Figure 3.20: Pressure amplitude and phase-angle along the microphone array for the (i) cold M∞ =
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with ( ) PSE-predictions, at m = 1 and St = 0.35. PSE amplitudes of cold and hot jets chosen
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3.6 Summary

In this chapter we investigated the linear dynamics of large-scale structures in the near-field of

turbulent subsonic round jets. Using mean flows based on ensemble-averaged PIV measurements

(Bridges & Wernet, 2003) we computed near-field fluctuations via the linear stability equations

(LST) and the parabolized stability equations (PSE). We analyzed two pairs of hot and cold

M∞ = 0.5 and 0.9 jets, listed in table 2.1. We compared our predictions to near-field micro-

phone measurements (Suzuki & Colonius, 2006) performed using the caged-array at NASA Glenn’s

SHJAR facility.

We found that LST underestimates growth-rates and overestimates wavenumbers. It thus pre-

dicts more stable and longer waves than is the case in actuality. This causes premature saturation

as the neutral-point is shifted upstream. We showed that this is due to LST’s negligence of history

effects, rather than the omission of additional non-parallel shear-terms such as ∂xux. These have

only a weak effect on the evolution. The locally-parallel flow assumption affects all azimuthal modes,

particularly at sub-peak frequencies. The m = 1 mode performs the best and is less affected than

m = 0 and 2. This non-monotonic m-dependence of the effects of the locally-parallel flow is curious.

We hypothesized that the m = 0 mode is impacted due to its dependence on the nozzle-diameter D,

resulting in longer wavelengths. The m 6= 0 modes are increasingly affected by non-parallel effects:

it happens that the m = 1 mode is the first to be independent of nozzle-diameter and as such does

better than the m = 2 mode. Conversely, the 2D mode (zero spanwise wavenumber) in a planar

mixing-layer or a flat-plate boundary layer would be the least affected by non-parallel effects as it

has no special additional length-scale. This can be seen, e.g., in the results of Bertolotti et al. (1992)

who studied the Blasius boundary layer.

Next we compared pressure predictions of LST to those of PSE for the cold M∞ = 0.5 jet. The

LST does well at and above the peak-frequency, but great improvements by the PSE are observed

at lower frequencies, particularly for m = 0 and 2.

The microphone data is comprised of both hydrodynamic and acoustic pressure fluctuations. The

POD allows the separation of the data into uncorrelated components. We performed this analysis
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and compared PSE predictions to the most energetic POD-mode. The comparisons so obtained were

greatly improved, particularly for the higher-speed and heated jets which had appeared the most

contaminated. For the cold jets the PSE predictions match very well, even beyond the end of the

potential core. Particularly interesting is the broad spatial range of match. This is partly counter-

intuitive, as one would expect nonlinearities to become significant as disturbances grow to saturation.

Recall that the we use ensemble-average PIV measurements in solving the PSE. Nonlinearities are

thus implicitly included via their imprint on the mean flow evolution. Their inclusion is only partial,

though, as the interactions of large-scale fluctuations with each other and with fine-scale turbulence

are not considered by the linear PSE. Our results thus indicates that nonlinear interactions are

mostly important in terms of their impact on the mean flow evolution, at least at this flow condition

and some of the considered frequencies. We noted that this seems to run counter to the results

of Mohseni et al. (2002) and hypothesized that the difference lies with the increased importance of

modal interactions at higher speeds, due to stabilization of large-scale structures.

We observed POD-modes of mixed hydrodynamic and acoustic nature, indicating a significant

correlation between hydrodynamic waves and acoustic waves. We hypothesized that the acoustic

portion of these POD modes represents the Mach wave radiation of the large-scale structure. Oth-

erwise, these components would not be consistently in phase (correlated) and could not “live” within

the same POD-mode.

While there remain some discrepancies between data and PSE, particularly for the axisymmetric

mode at the lowest frequencies, the PSE seems to provide an accurate representation of the stream-

wise evolution of pressure fluctuations well past the close of the potential core. It is possible, for

example, that the inclusion of nonlinear effects will result in better agreement, and this is presently

being pursued. It remains to compare the directly measured far-field sound by what would be im-

plied by the near field fluctuations from PSE. PSE does not directly provide the acoustic far field

(especially at subsonic speeds), but acoustic analogy and Kirchhoff-surface type approaches have

been developed for this purpose (Balakumar, 1998; Reba et al., 2010). In particular, Reba et al.

(2010) have successfully developed a Kirchhoff-surface approach and applied it to predicting sound
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from the same near-field microphone array data used in the present study.
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Chapter 4

The Effects of Nozzle Serrations on

the Linear Stability of Turbulent Jets

4.1 Introduction

Great strides have been made in jet noise reduction both via theory and experiment. Most significant

of these was the advent of the turbofan engine in which a large proportion of the air flow bypasses

the central turbojet to flow inside an outer duct at a much lower speed. This reduces the average

exhaust speed required to produce a given thrust, significantly increasing fuel efficiency and retarding

noise emission. More subtle approaches to noise reduction have also been pursued, most of which

involve the manipulation of the thin boundary layer on the inside of the nozzle. This is commonly

accomplished via the introduction of serrations into the nozzle lip.

The effects of nozzle serrations on the evolution and mean flow characteristics of mixing layers

have been studied by various researchers. The serrations, shown in figure 4.1, generate stream-

wise vorticity, promoting the mixing of the jet fluid with the ambient and shortening the potential

core (Bradbury & Khadem, 1975; Zaman et al., 1993; Reeder & Samimy, 1996; Bohl & Foss, 1999).

They also reduce noise at low frequencies and aft angles, but increase noise at high frequencies

(Bridges & Brown, 2004; Callender et al., 2005; Alkislar et al., 2007). The noise penalty at higher

frequencies is due to heightened near-nozzle turbulence levels that in turn correlate positively with

the magnitude of streamwise vorticity (Foss & Zaman, 1999), as does the noise reduction at low

frequencies.
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Sound radiated at low frequencies and aft-angles is associated with large-scale coherent struc-

tures convecting within the jet (Moore, 1977; Troutt & McLaughlin, 1982; Laufer & Yen, 1983;

Crighton & Huerre, 1990; Tam et al., 1996; Goldstein, 2003). As the jet exits the nozzle, the bound-

ary layer relaxes to a free shear layer, susceptible to Kelvin-Helmholtz instability. Such instabilities

get exited by the chaotic fluctuations present at the exit and grow into large-scale coherent structures

(Mattingly & Chang, 1974; Crighton & Gaster, 1976; Mankbadi & Liu, 1981). As they grow they

roll up via subharmonic pairing, forming axisymmetric and helical rings (Crow & Champagne, 1971)

that eventually loose their coherence via vortex instabilities (Widnall & Tsai, 1977) and nonlinear

interactions. As discussed in section 1.3.3, large-scale coherent structures radiate sound during their

growth phase (Mach-wave radiation) as well as during their decay and ultimate demise. It has been

suggested that the breakdown of such structures may be the dominant source of sound at subsonic

conditions (Hussain, 1983, 1986). It appears that the streamwise vorticity induced by the serrations

interrupts these processes, perhaps by retarding the initial growth of large-scale structures.

The early development of large-scale coherent structures is largely linear. Several studies have

shown the velocity and pressure fluctuations of forced jets to be well approximated by the eigenfunc-

tions of the Rayleigh (inviscid Orr-Sommerfeld) equation (Mattingly & Chang, 1974; Zaman et al.,

1980; Petersen & Samet, 1988), where the spatial stability problem is solved. As discussed in sec-

tion 3.1, disturbances in natural jets are correlated over shorter spatial and temporal length scales,

making their unbiased detection challenging. This is further confounded at higher Reynolds num-

bers where the relative energy associated with large-scale coherent structures is diminished due to

increased production of fine-scale turbulence. However, Suzuki & Colonius (2006) found good agree-

ment near the most amplified frequency between pressure predictions of linear stability analysis and

measurements from a near-field microphone array, indicating that energy transfer between coher-

ent and incoherent motions has only minor effects on the former, even for natural jets. Using the

parabolized stability equations to model instability waves and the proper orthogonal decomposition

to filter the microphone data, Gudmundsson & Colonius (2010a) showed that the agreement ob-

tained by Suzuki & Colonius can be extended even beyond the closure of the potential core. This is
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discussed in detail in chapter 3.

It therefore seems reasonable to assume linear stability analysis can offer some understanding of

the effects of serrations on coherent motions in the flow. Standard linear stability analysis considers,

at each streamwise position, a one dimensional, two-point boundary value problem amenable to

direct matrix solution or shooting algorithms. The Rayleigh equation (2.50), along with appropriate

boundary conditions, is an example of such a boundary value problem. The serrated jet on the

other hand is inhomogeneous in both coordinate directions normal to the stream. This is a technical

difficulty, though, and not a theoretical one; in section 4.2 we show that the stability problem for

the serrated jet is governed by a system of coupled Rayleigh-like ordinary differential equations.

Linear stability analysis of quasi-parallel flows assumes a negligible spread rate over typical

fluctuation length-scales, so that cross sections of the jet are analyzed as if each one was a sample

from a parallel mean flow. Quasi-parallel analysis can be considered to form the first term in

an asymptotic expansion using the flow spread rate as the expansion parameter. The analysis

can subsequently be refined by expanding the solution to higher order (e.g., Tam & Morris, 1980).

Figure 4.2 shows the momentum thickness θ/D, defined as

θ

D
=

∫ ∞

0

ux

Ujet

(
1 − ux

Ujet

)
rdr, (4.1)

for the round and serrated jets included in this study (M∞ = 0.9, Tjet/T∞ = 0.85, and Re = 1.6·106).

The serrated jet has a higher spread rate initially, approaching that of the axisymmetric jet further

downstream. The locally-parallel mean flow assumption is thus, a priori, somewhat more suspect for

the serrated jet than the round jet. However, in light of the demonstrated success of such analysis

for round jets, its application to the the serrated jet is certainly reasonable.

In section 4.2 we derive the linear stability problem for the serrated jet and discuss some of its

properties. In section 4.3 we solve the stability problem for a pair of subsonic round and serrated

jets, and investigate the resultant modes. In section 4.4 we compare our LST predictions to both

unprocessed and POD-filtered microphone measurements. Finally, we summarize our findings in
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Figure 4.1: The (left) round and (right) serrated nozzles used in this study. The serrated nozzle
was fabricated from a standard 2-inch diameter round nozzle, the same type as shown here. Serial
numbers are as defined by Bridges & Wernet (2003).

section 4.5.

4.2 The Linear Stability Problem for The Serrated Jet

The serrated jet is inhomogeneous in both coordinate directions normal to the stream, shown in

figure 4.3. This means that the associated stability problem is of higher dimension than that of

the axisymmetric jet. Kawahara et al. (2003) solved the (temporal) linear stability problem for a

corrugated vortex sheet near a wall, which can be considered to be the planar version of a serrated

top-hat (vortex-sheet) jet profile. Here we formulate and solve the more general problem that

includes finite shear-layer thickness.

The initial development in the below is similar to that in section 2.3.1 and is partially reproduced

here for continuity. As for the round jet, we decompose the nonlinear flow q = (ux, ur, uθ, ρ, T, p)1

as

q = q + q′. (4.2)

q′ is a low-amplitude perturbation to the time-average q,

q(r, θ) = (ux(r, θ), 0, 0, ρ(r, θ), T (r, θ),
1

γ
), (4.3)

1The three thermodynamic variables ρ, T and p are included here for completeness. Of course, any two of these
determine the third.
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Figure 4.2: Momentum thickness of the (◦) round jet and (�) (azimuthally-averaged) serrated jet.
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Figure 4.3: Ensemble-averaged PIV measurements of streamwise velocity ux for the (left) round and
(right) serrated nozzles. Cross-sections (a)-(f) are taken at axial stations x/D = 0.1, 0.5, 1.0, 2.0, 3.5
and 5.0, respectively. Contour levels are in even increments from 0.1 to 0.9Ujet. M∞ = 0.9,
Tjet/T∞ = 0.85, and Re = 1.6 · 106 (SP7 in table 2.1).
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where, in contrast to treatment for the round jet, we now include azimuthal inhomogeneities. For

clarity of presentation we drop the prime on fluctuating variables in what follows, retaining the over-

line to denote the mean variable. Since the mean flow is homogeneous in the streamwise direction

x and time t, it follows that the perturbations may be decomposed as

q(x, t) = q̃(r, θ) eiαx e−iωt, (4.4)

so that the solution q(x, t) is wavelike in x and t. α and ω are in general complex. αr and ωr denote

wavenumber and frequency, respectively, while αi and ωi denote spatial and temporal growth rates,

respectively.

There are two common approaches to the stability problem. In the temporal approach, we

assume α is real and search for temporally unstable solutions (disturbances grow in time at a fixed

location), while in the spatial approach, we assume ω is real and search for spatially unstable solutions

(disturbances grow in the flow direction at a fixed time). The spatial approach is physically akin to

a disturbance being excited at a fixed location, growing as it moves with the flow and is thus more

relevant to the analysis of convectively unstable flows such the jet (Huerre & Monkewitz, 1990).

Substituting the decomposition in equation (4.4) into the linearized system of equations (2.37) -

(2.42) and eliminating all variables but pressure, we obtain the partial differential equation governing

linear (low amplitude) pressure perturbations

1

r

∂

∂r

(
r
∂p̃

∂r

)
+

1

r2

∂2p̃

∂θ2
− f

∂p̃

∂r
− g

1

r2

∂p̃

∂θ
− h p̃ = 0, (4.5)

where the f , g and h depend on the mean flow according to

f(r, θ) =
2α

αux − ω

∂ux

∂r
+

1

ρ

∂ρ

∂r
(4.6)

g(r, θ) =
2α

αux − ω

∂ux

∂θ
+

1

ρ

∂ρ

∂θ
(4.7)

h(r, θ) = α2 − ρ (αux − ω)
2
, (4.8)
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where we have ignored the (stabilizing) effects of viscosity. Taking the azimuthal Fourier-transform

of equation (4.5) we obtain

1

r

d

dr

(
r
dp̂m

dr

)
− m2

r2
p̂m −

∞∑

n=−∞

(
f̂n

d

dr
+ i(m − n)

1

r2
ĝn + ĥn

)
p̂m−n = 0, (4.9)

where

p̂m(r) =
1

2π

∫ 2π

0

p̃(r, θ) e−imθ dθ, (4.10)

and

p̃(r, θ) =
∑

m

p̂m(r) eimθ, (4.11)

and similarly for other variables.

The serrated jet of this study has Nl = 6 lobes. Figure 4.4 (a) shows the normalized kinetic

energy-spectrum ||ûj ||2/||û0||2, where ûj is the j-th azimuthal Fourier-coefficient of ux,and the energy

norm is defined as

||ûj ||2 =

∫ ∞

0

|ûj |2 rdr. (4.12)

As expected the spectrum is dominated by the axisymmetric component, followed by j = 6 and 12.

There is negligible energy in modes that are not multiples of six so we can neglect such terms with

little error:

ux(r, θ) =
∑

j

ûj eijθ (4.13)

≈
∑

j

û6j ei6jθ . (4.14)

This is illustrated in figure 4.4 (b), showing contours of ux at x/D = 1 for both the full expansion

of equation (4.13) and the approximation in equation (4.14).

For general ux(r, θ) the system (4.9) of ODEs is potentially dense (large number of equations

needed for convergence). For the serrated jet however it is sparse as the functions f , g and h(r, θ)

in equations (4.6) through (4.8) inherit the symmetry of ux. This simplifies the convolutions in



78

j
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Figure 4.4: (a) Normalized kinetic energy-spectrum for the serrated-jet mean flow at x/D = 1.
(b) Contours of ( ) filtered and ( ) unfiltered mean flow ux, where in filtering we retain only
modes in multiples of 6. Contour levels are in even increments from 0.1 to 0.9Ujet.

system (4.9) in that f̂n(r) = 0 if n 6= kNl where k is any integer; similarly for ĝn(r) and ĥn(r).

Using this in system (4.9) and truncating the summation we obtain the Rayleigh system for a serrated

jet with Nl lobes:

1

r

d

dr

(
r
dp̂m

dr

)
− m2

r2
p̂m −

N∑

j=N

(
f̂Nlj

d

dr
+ i(m − Nlj)

1

r2
ĝNlj + ĥNlj

)
p̂m−Nlj = 0, (4.15)

where the summation limit N depends on the azimuthal complexity of the mean flow, starting with

N = 0 for the round jet.

As is evident from the Rayleigh-system (4.15), the lobes of the serrated jet couple certain insta-

bility modes. As an example, consider the case where m = 0, and Nl = 6: p̂0 depends upon p̂−6,

p̂6 and so forth. This is illustrated in table 4.1, which shows how the different azimuthal modes are

coupled when Nl = 6.

The set of 1D-eigenfunctions {p̂m−Nlj}N
j=−N , constituting the solution to the Rayleigh-system,

combines to form a 2D-eigenfunction in r-θ space as

p̃(r, θ|m) =

N∑

j=−N

p̂m−Nlj(r) ei(m−Nlj)θ. (4.16)

The m in p̃(r, θ|m) is not meant to demarcate p̃(r, θ|m) as being the m-th azimuthal component
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Input m Coupled modes

0 . . . -12 -6 0 6 12 . . .
1 . . . -11 -5 1 7 13 . . .
2 . . . -10 -4 2 8 14 . . .
3 . . . -9 -3 3 9 15 . . .
4 . . . -8 -2 4 10 16 . . . c.c. of m = −2
5 . . . -7 -1 5 11 17 . . . c.c. of m = −1
...

...
...

Table 4.1: The coupling of serrated-jet azimuthal modes when Nl = 6. Note that the solution for
+m is the complex-conjugate (c.c.) of that for −m.

of the overall perturbation p̃(r, θ) in equation (4.5), as is the case for round jets. For the serrated

jet, m denotes the lowest-order azimuthal mode in the coupled set {p̂m−Nlj}N
j=−N that results from

Fourier-transforming equation (4.5) at any of the azimuthal wavenumbers {m−Nlj}N
j=−N . We use

this terminology in what follows.

Given that the solution for +m is the complex-conjugate of that for −m, we can deduce from

table 4.1 that we need only consider p̃(r, θ|m) for m = 0 through m = 3. We can then rewrite the

decomposition of p̃ in equation (4.11):

p̃(r, θ) =
∑

k

p̂k(r) eikθ

=

3∑

m=−3

p̃(r, θ|m), (4.17)

where we note that, for the round jet, p̃(r, θ|m) = p̂m(r) exp (imθ).

It is well known that an axisymmetric shear layer with a single inflectional point has at most

one unstable mode for each (m, ω) pair (Batchelor & Gill, 1962). While the azimuthal modes of the

serrated jet are such that we only need to consider m = 0-3 (for Nl = 6), it is possible to have more

than one unstable solution for each m, so that we obtain a series of coupled sets {p̂k
m−Nlj

}N
j=−N ,

where k denotes the set corresponding to eigenvalue αk. This is indeed the case, as we shall see in

section 4.3.

As r → 0 and r → ∞, the modes p̂m of system (4.15) uncouple, each of them independently obey-

ing the round-jet Rayleigh equation (2.50). We have already determined the boundary conditions
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for this case and they are given by equations (2.52) and (2.53).

System (4.15), along with boundary conditions, equations (2.52) and (2.53), forms the two-point

boundary value problem constituting the linear stability problem for the serrated jet. We solve this

problem in the two ways described in section 2.3.1, via shooting and via a matrix value solver. Some

of the details of these are respectively described in section A.1.3 and section A.2.

4.3 Effects of Nozzle Serrations on Stability Characteristics

4.3.1 The Experimental Jets

We solve the linear stability problem (LST) for the round and serrated jets at acoustic Mach number

M∞ = 0.9, temperature ratio Tjet/T∞ = 0.85, and Reynolds number Re = UjetD/νjet = 1.6 · 106.

This corresponds to flow condition SP7 in table 2.1. The mean flow ux is obtained from ensemble-

averaged stereo-PIV measurements performed at NASA-Glenn’s SHJAR facility. The PIV data is

obtained on a Cartesian grid, giving the mean flow as a function of y and z (see coordinate system

in figure 2.1). As described in the previous section, we require the mean flow ux on a polar grid.

We interpolate between the two systems using cubic splines, obtaining ux(r, θ) from ux(y, z). Radial

derivatives were then computed using fourth-order central differences while azimuthal derivatives

were computed in Fourier-space. Refer to discussion in section 2.5.1 for more information on the

data treatment.

4.3.2 The Eigensystems of the Two Jets

Figure 4.5 shows the eigenvalue spectra at cross-sections x/D = 0.5 and 2, at frequency St =

0.35. These results were obtained via the direct method (described in section A.2), which computes

the entire spectrum of the Rayleigh operator. As a shorthand in the following discussion let us

respectively refer to the unstable modes of the round and serrated jets as “r-modes” and “s-modes”.

However, when discussing a single jet at length we will drop the distinction.

First we note the number of unstable modes observed for the two jets. For the round jet there
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Figure 4.5: Eigenspectra of the (∗) round and (△) serrated jets at frequency St = 0.35. Eigenfunc-
tions p̃(r, θ|m) corresponding to modes (i)-(iii) are shown in figure 4.8.

is only a single unstable mode for each azimuthal wavenumber m and frequency St, as has been

shown in the past (e.g., Batchelor & Gill, 1962; Mattingly & Chang, 1974). This is not the case for

the serrated jet, which has one additional mode for m = 0 (recall from the previous section that an

s-mode with m = 0 is not necessarily axisymmetric; see equation (4.16)), and two additional modes

for m = 1, 2, and 3 (not shown). m = 4 is coupled with m = 2 so that any statement about either

one includes the other (see table 4.1).

Second, we note the growth-rates −αi and phase-speeds cp = ω/αr of the two sets of modes.

Near the nozzle, the most unstable s-mode for m = 0 has a higher growth-rate than the r-mode

but this is the only instance where this occurs, at this frequency. At x/D = 2 the s-modes are all

considerably more stable than the r-mode. The most unstable s-modes have a lower phase-speed

than the r-modes in all cases at x/D = 0.5, while the more stable s-modes generally straddle the

phase-speed of the r-mode. At x/D = 2, however, the most unstable s-mode now has a higher

phase-speed than the r-mode.

We thus see significant evolution in the stability characteristics of the serrated jet between x/D =



82

−αi

x/D = 0.5

cp

x/D = 1.0

St

x/D = 2.0

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

2.5

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

2.5

0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

2.5

Figure 4.6: Growth-rates −αi and phase-speeds cp = ω/αr for the ( ) r-mode and ( ) the
most unstable s-mode, at m = 0.

0.5 and 2. The s-modes decay more rapidly than the r-modes and their phase-speed changes as well.

We might also ask how this changes as function of frequency. Figure 4.6 shows the growth-rates and

phase-speeds of the most unstable s-mode, and the r-mode ,for m = 0 at x/D = 0.5, 1 and 2. These

results are computed via the shooting method. The most unstable s-mode is again observed to have

a higher growth-rate at x/D = 0.5, although a cross-over occurs at St = 0.5. At x/D = 1 the s-mode

has a lower growth-rate at all frequencies of interest and decays even more rapidly thereafter. The

s-mode has a lower phase-speeds than the r-mode, although a cross-over is observed at x/D = 2.

The significance of the phase-speeds of the different modes is discussed in the next section.

In addition to noting the number of unstable modes and their relative coordinates in spectral-

space, we are also interested in their respective eigenfunctions p̃(r, θ|m), which represent the inverse

transform (from (r, m) to (r, θ)) of the radial eigenfunctions {p̂m−Nlj(r)}N
j=−N , the solution of the

Rayleigh-system. As there is more than one unstable s-mode, let us enumerate them by index k as

p̃ k(r, θ|m).

Figure 4.7 shows the eigenfunctions p̃(r, θ|m) for the round jet at x/D = 0.5. Shown are azimuthal
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modes m = 0-2, which have the expected monopole, dipole and quadrupole behavior, respectively.

The s-modes at x/D = 0.5 in figure 4.5 are labeled (i)-(iii); their respective eigenfunctions are shown

in figure 4.8. Let us first compare p̃ 1(r, θ|m) with the r-modes. First to note is the considerably more

complex azimuthal structure of the s-modes. Away from the shear layer they are similar however.

The s-mode for m = 0, for example, is axisymmetric near the axis and in the far field. Even within

the shear layer the r- and s-modes are similar in that both are dominated by their respective m-type

behavior (e.g., m = 1 is a modified dipole). We can rewrite equation (4.16) as

p̃(r, θ|m) =
N∑

j=−N

p̂m−Nlj(r) ei(m−Nlj)θ

=




N∑

j=−N

p̂m−Nlj(r) e−iNljθ


 eimθ, (4.18)

while that for the round jet is simply

p̃(r, θ|m) = p̂m(r) eimθ. (4.19)

This illustrates two things. First, we see more clearly how the serrated-jet eigenfunction in equa-

tion (4.16), rewritten as equation (4.18), is an extension of that for the round jet. Secondly, we see

that the j 6= 0 components of the sum in equation (4.18) are mostly supported within the shear

layer, decaying rapidly outside of it.

The remaining s-modes in figure 4.5 (ii-iii) are qualitatively similar, at least superficially. Differ-

ences can be noted from their contours, however. For example, mode (ii) decays radially at a lower

rate, and (iii) at a higher rate than (i). There is another and more subtle difference between the

modes: their orientation. In particular, mode (ii) seems rotated by 30◦ compared with mode (i).

This is significant as the orientation is relative to the mean flow. This serves as a hint as to their

respective origins, discussed in the next section.
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Figure 4.7: Eigenfunctions p̃(r, θ|m) of the round jet at x/D = 0.5 and St = 0.35.

4.3.3 Comparison along Radial Slices

In this section we consider radial sections of the serrated-jet eigenfunctions p̃ k(r, θ|m) in figure 4.8.

From the contours we observed some differences in terms of radial decay-rates, azimuthal complexity

(i.e., the relative magnitude of the j 6= 0 components of the eigenfunction in equation (4.18)), and

orientation. The orientation is significant as it is relative to the mean flow.

The mean flow of the serrated jet has two extremal radii θj , shown in figure 4.9 (a), along with

the contours of the mean flow at x/D = 0.5. The θ1 = 0◦ radius passes through the center of a

lobe, coinciding with the azimuthal location of the maximal azimuthal shear ∂θux, and the minimal

radial shear ∂rux. The θ2 = 30◦ radius passes through the middle of the valley between two lobes

and coincides with minθ ∂θux and maxθ ∂rux. Figure 4.9 (b) shows the mean flow evaluated along

the two radial sections; the differing radial shear is apparent.

Figure 4.10 shows the amplitude of the s-modes p̃ k(r, θ|m), evaluated along the two radii. The

eigenfunctions have arbitrary normalization; here we have normalized the two sections such that the

maximum of the two is unity. Their relative magnitude is then set by the Rayleigh-system.

The first observation we make is that the first mode p̃ 1(r, θ|m) peaks at θ2 for all m, while

the second and third modes peak at θ1. The first and most unstable s-mode is thus principally

associated with radial shear—azimuthal vorticity—and is akin to the r-mode. The higher s-modes

are principally associated with azimuthal shear—streamwise vorticity—and no analogous r-mode
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Figure 4.8: Eigenfunctions p̃(r, θ|m) (from equation (4.16)) of the serrated jet at x/D = 0.5 and
St = 0.35. Modes (i)-(iii) correspond respectively to numbered modes in figure 4.5.
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Figure 4.9: (a) Contours of the serrated-jet mean flow ux at x/D = 0.5, overlaid with the two radii
( ) θ1 = 0◦ and ( ) θ2 = 30◦. (b) ux evaluated along the two radii.

exists.

The second observation we make regards phase-speed. We focus on the s-mode for m = 0;

analogous observations can be made for m = 1 and 2. Note the radial location of peak-pressure

from figure 4.10. The second mode peaks at a larger radius than the first. Figure 4.11 shows the

peak-locations in relation to the mean flow, along the two radial sections. At θ = 0◦ the dominant,

streamwise-vorticity mode peaks where the mean flow is flowing at ux ≈ Ujet. At θ = 30◦ the

dominant, azimuthal-vorticity mode peaks at ux ≈ 0.4Ujet. Remember that instability waves are

convected with the flow. The convection speed is not constant, however, and varies as the mean flow

varies with radial location. The phase-speed of a mode is thus a weighted average of the mean-flow

velocity across the support of that mode, the weights being determined by the Rayleigh-equation.

This is why the phase-speeds of the first and second modes are not 0.4Ujet and Ujet, respectively

according to ux where these modes peak. The ux at peak-pressure will however weigh heavier than

others, and serves as a proxy to phase-speed. This explains the lower phase-speed of the first s-mode

as compared to the second. Figure 4.12 show analogous results for the round jet. The m = 0 mode

peaks where ux ≈ 0.7Ujet, explaining why it has a higher phase-speed than the first s-mode, and

a lower phase-speed than the second s-mode. Additionally, the r-modes of m = 0, 1, and 2 have

successively decreasing ux at their respective peaks, again consistent with the spectral information

in the previous section.
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Figure 4.10: Serrated-jet eigenfunctions p̃(r, θ|m) evaluated along the two radii ( ) θ1 = 0◦ and
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Figure 4.11: ( ) Serrated-jet mean flow ux and amplitude of eigenfunctions ( ) p̃ 1(r, θ|m = 0)
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Figure 4.12: ( ) Round-jet mean flow ux and amplitude of eigenfunctions (�) p̃(r, θ|m = 0), (◦)
p̃(r, θ|m = 1), and (△) p̃(r, θ|m = 2). x/D = 0.5 and St = 0.35.

4.4 Comparison with Experiments

Here we compare the predictions of LST to pressure measurements made in the the facility described

in section 2.5.2. These measurements are from the same set of data as used in chapter 3; please refer

to section 3.1 for further details thereunto. LST amplitudes are determined via amplitude-matching,

described in section 3.2.2.

4.4.1 Microphone Data

In comparing the LST predictions with the microphone measurements we are faced with the question

of how to combine the azimuthal- and streamwise-vorticity modes to make up an instability wave.

After all, the combined instability wave, the one in the data, will be the sum of all instabilities

(and other fluctuations) within the data. As the streamwise-vorticity modes are associated with the

azimuthal structure of the mean flow, they only persist up to roughly half the potential-core length.

In addition, they have much lower growth rates than the azimuthal-vorticity modes, on which we

focus.
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Figures 4.13 and 4.14 respectively show the evolution of pressure amplitude and phase-angle for

the two jets, at azimuthal wavenumbers m = 0 and frequencies St = 0.25, 0.35, and 0.50. Note the

distinctive shape of the LST prediction for the serrated jet. Remaining flat up to roughly x/D = 1,

it jumps somewhat abruptly to reach a peak shortly after x/D = 2, while the round jet prediction

develops more smoothly. The reason for this lies with the geometry of the microphone array, as

compared to the eigenfunctions. This is illustrated in figure 4.15, which shows the amplitude-

contours of the eigenfunctions for the two jets, along with the microphone array.

The phase-angle predictions for the two jets are very similar and comparable to those described

in chapter 3. Amplitude predictions are similarly comparable, although the data for serrated jet

seems contaminated beyond that for the round jet. Both jets suffer acoustic contamination, partic-

ularly after saturation, but the serrated jet has an additional ring-to-ring zig-zag pattern. Similar

observations can be made for the m = 1 mode, shown in figures 4.16 and 4.17.

Figure 4.18 shows contours of total-turbulence (root-mean-square of all velocity fluctuations from

PIV) at x/D = 2 for the two jets, along with the microphone ring at the same location. Due to its

higher spread-rate, the serrated jet is closer to the array, which explains the higher pressure-levels

observed in the data. To minimize aliazing in the data, each ring is shifted azimuthally by 30◦

relative to the adjacent rings. The figure shows how this shift can place the microphones on one ring

closer to the mean flow than those on the next, potentially explaining the zig-zag pattern observed

in the data.

4.4.2 POD-Filtered Data

As in chapter 3 we perform a POD of the microphone data. Figure 4.19 shows the POD energy-

spectra of two jets. These spectra have been normalized by the total energy of each mode (m, ω). The

ratio λj/
∑N

k=1 λk thus represents the fraction of energy contained in POD-mode j. The spectral-

decay of the serrated jet is considerably slower than for the round jet, and increasingly so with

higher frequency. Fast spectral-decay indicates greater coherence in the data, while, in the other

extreme, a randomly composed data-set has a nearly flat spectrum. The round jet is thus in some
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Figure 4.13: Pressure amplitude along the microphone array for the (i) round and (ii) serrated jets.
Predictions of ( ) LST compared with (◦) measurements, at m = 0.
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Figure 4.14: Pressure phase-angle along the microphone array for the (i) round and (ii) serrated
jets. Predictions of ( ) LST compared with (◦) measurements, at m = 0.
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overlaid. m = 0 and St = 0.35.
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Figure 4.16: Pressure amplitude along the microphone array for the (i) round and (ii) serrated jets.
Predictions of ( ) LST compared with (◦) measurements, at m = 1.
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Figure 4.17: Pressure phase-angle along the microphone array for the (i) round and (ii) serrated
jets. Predictions of ( ) LST compared with (◦) measurements, at m = 1.
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Figure 4.18: Amplitude-contours of total-turbulence levels for the (left) round and (right) serrated
jets, along with the microphone ring at x/D = 2. The bullets on the ring denote its six microphones
while the stars denote those on an adjacent ring.

sense simpler or more coherent than the other.

We now compare LST prediction to the POD-filtered measurements (see section 2.4), where only

the highest-energy POD-mode is retained. Figures 4.20 and 4.21 respectively show the evolution

of POD-filtered pressure amplitude and phase-angle for the two jets, at azimuthal wavenumbers

m = 0 and frequencies St = 0.25, 0.35, and 0.50. Striking comparison improvements are obtained,

particularly for the peak-frequency of the serrated jet (St = 0.35). Note that the prediction-jump

around x/D = 2 for the serrated-jet, described in the previous section, is now visible as well in the

filtered amplitude data. The phase-predictions for the two jets are both excellent.

Figures 4.22 and 4.23 show similar comparisons for m = 1. The improvement in comparisons

is not as significant as for the m = 0 mode. Particularly curious are the large-amplitude jumps

(or sharp peaks) for serrated jet, visible in figure 4.22 (ii). This phenomena also appears for the

m = 0 mode but on a smaller scale. The phase-predictions are again excellent, indicating that the

microphone data is again mostly comprised of instability waves. The jump is however not explained

by our LST model and its origin is not clear. It is correlated with the instability waves in the flow (in

the data, that is) however, and might be related to the collapse of the streamwise-vorticity modes.
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Figure 4.19: Normalized POD-spectra for the (∗) round and (�) serrated jets.
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Figure 4.20: Pressure amplitude along the microphone array for the (i) round and (ii) serrated jets.
Predictions of ( ) LST compared with (◦) 1st POD-mode, at m = 0.
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Figure 4.21: Pressure phase-angle along the microphone array for the (i) round and (ii) serrated
jets. Predictions of ( ) LST compared with (◦) 1st POD-mode, at m = 0.
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Figure 4.22: Pressure amplitude along the microphone array for the (i) round and (ii) serrated jets.
Predictions of ( ) LST compared with (◦) 1st POD-mode, at m = 1.
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Figure 4.23: Pressure phase-angle along the microphone array for the (i) round and (ii) serrated
jets. Predictions of ( ) LST compared with (◦) 1st POD-mode, at m = 1.

4.5 Summary

In this chapter we have investigated the linear dynamics of large-scale structures in the near-field

of a pair of turbulent round and serrated jets. We extended the Rayleigh-equation to include

azimuthal inhomogeneities. This results in a system of ordinary differential equations, the Rayleigh-

system (4.15). We solve this system using both shooting and direct methods.

Using mean flows based on ensemble-averaged PIV measurements (Bridges & Wernet, 2003) we

computed the stability characteristics of the two jets. We found that the serrated jet has more

unstable modes than the round jet. In particular, new modes arise, associated with the azimuthal

shear of the mean flow, thus corresponding to streamwise vorticity. The most unstable modes of

the serrated jet are associated with the radial shear of the mean flow, corresponding to azimuthal

vorticity. The streamwise-vorticity modes peaks are situated in the lobes of the serrated jet and

therefore have higher phase-speed than the more unstable modes. Serrated-jet growth-rates are

damped in nearly all cases.

We compared our LST predictions to near-field microphone measurements (Suzuki & Colonius,
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2006) performed using the caged-array at NASA Glenn’s SHJAR facility. We found the LST pre-

dictions to correspond reasonably well with the microphone measurements, particularly in terms of

the phase-angle. As in the study described in chapter 3 we found the data to be contaminated by

acoustic fluctuations, and this seems to affect the serrated jet more than the round jet.

As in section 3.5.3, we filtered the microphone data via the POD. The spectral-decay is con-

siderably slower for the serrated jet than the round. This is indicative of the greater complexity

or, alternatively, less coherence of the former than the latter. We compared LST predictions to

the most energetic POD mode and found striking improvements for the m = 0 mode. Particularly

impressive is the ability of the LST prediction to capture the rapid rise in amplitude (see St = 0.35

in figure 4.20 (ii)) that occurs do to the proximity of the array to the serrated jet (figure 4.15).

The amplitude-comparison improvements for m = 1 are not as considerable, although the phase-

prediction is excellent. The POD-filtered amplitude has a sharp peak or jump that is not reproduced

by the prediction and remains unexplained. The jump is correlated with the instability waves in the

flow (in the data, that is) however, and might be related to the collapse of the streamwise-vorticity

modes, which are quickly stabilized.

The work in this chapter will be published in Gudmundsson & Colonius (2010b).
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Chapter 5

Concluding Remarks

5.1 Summary

In this work we studied the linear dynamics of large-scale coherent structures in turbulent jets

from round and serrated nozzles. Linear disturbances to the turbulent mean flows were modeled via

linear stability analysis. Additionally, the more accurate Parabolized Stability Equations (PSE) were

solved for the fluctuations of a round jet. We compared our predictions to near-field microphone

measurements (Suzuki & Colonius, 2006) performed using the caged-array at NASA Glenn’s SHJAR

facility. By filtering out the uncorrelated fluctuations, via the proper orthogonal decomposition

(POD), better agreement between data and theory was obtained.

The two sections below summarize the conclusions of chapter 3 and chapter 4.

5.1.1 Instability Wave Models of Large-Scale Pressure Fluctuations

In this chapter we investigated the linear dynamics of large-scale structures in the near-field of

turbulent subsonic round jets. Using mean flows based on ensemble-averaged PIV measurements

(Bridges & Wernet, 2003) we computed near-field fluctuations via the linear stability equations

(LST) and the parabolized stability equations (PSE). We analyzed two pairs of hot and cold M∞ =

0.5 and 0.9 jets, listed in table 2.1.

We found that LST underestimates growth-rates and overestimates wavenumbers. It thus pre-

dicts more stable and longer waves than is the case in actuality. This causes premature saturation
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as the neutral-point is shifted upstream. We showed that this is due to LST’s negligence of history

effects, rather than the omission of additional non-parallel shear-terms such as ∂xux. These have

only a weak effect on the evolution. The locally-parallel flow assumption affects all azimuthal modes,

particularly at sub-peak frequencies. The m = 1 mode performs the best and is less affected than

m = 0 and 2. This non-monotonic m-dependence of the effects of the locally-parallel flow is curious.

We hypothesized that the m = 0 mode is impacted due to its dependence on the nozzle-diameter D,

resulting in longer wavelengths. The m 6= 0 modes are increasingly affected by non-parallel effects:

it happens that the m = 1 mode is the first to be independent of nozzle-diameter and as such does

better than the m = 2 mode. Conversely, the 2D mode (zero spanwise wavenumber) in a planar

mixing-layer or a flat-plate boundary layer would be the least affected by non-parallel effects as it

has no special additional length-scale. This can be seen, e.g., in the results of Bertolotti et al. (1992)

who studied the Blasius boundary layer.

Next we compared pressure predictions of LST to those of PSE for the cold M∞ = 0.5 jet. The

LST does well at and above the peak-frequency, but great improvements by the PSE are observed

at lower frequencies, particularly for m = 0 and 2.

We compared PSE predictions to the most energetic POD-mode. The comparisons so obtained

were greatly improved, particularly for the higher-speed and heated jets which had appeared the

most contaminated. For the cold jets the PSE predictions match very well, even beyond the end of

the potential core. These results indicate that nonlinear interactions are mostly important in terms

of their impact on mean flow evolution, at least at these flow conditions and some of the considered

frequencies. We noted that this seems to run counter to the results of Mohseni et al. (2002) and

hypothesized that the difference lies with the increased importance of modal interactions at higher

speeds, due to stabilization of large-scale structures.

We observed POD-modes of mixed hydrodynamic and acoustic nature, indicating a significant

correlation between hydrodynamic waves and acoustic waves. We hypothesized that the acoustic

portion of these POD modes represents the Mach wave radiation of the large-scale structure. Oth-

erwise, these components would not be consistently in phase (correlated) and could not “live” within
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the same POD-mode.

The work described in chapter 3 will be published as Gudmundsson & Colonius (2010a).

5.1.2 The Effects of Nozzle Serrations on the Linear Stability of Turbu-

lent Jets

In this chapter we investigated the linear dynamics of large-scale structures in the near-field of a pair

of turbulent round and serrated jets. We extended the Rayleigh-equation to include azimuthal inho-

mogeneities. This results in a system of ordinary differential equations, the Rayleigh-system (4.15).

We solve this system using both shooting and direct methods.

Using mean flows based on ensemble-averaged PIV measurements (Bridges & Wernet, 2003) we

computed the stability characteristics of the two jets. We found that the serrated jet has more

unstable modes than the round jet. In particular, new modes arise, associated with the azimuthal

shear of the mean flow, thus corresponding to streamwise vorticity. The most unstable modes of

the serrated jet are associated with the radial shear of the mean flow, corresponding to azimuthal

vorticity. The streamwise-vorticity modes peaks are situated in the lobes of the serrated jet and

therefore have higher phase-speed than the more unstable modes. Serrated-jet growth-rates are

damped in nearly all cases.

We compared our LST predictions to near-field microphone measurements (Suzuki & Colonius,

2006) performed using the caged-array at NASA Glenn’s SHJAR facility. We found the LST pre-

dictions to correspond reasonably well with the microphone measurements, particularly in terms of

the phase-angle. As in the study described in chapter 3 we found the data to be contaminated by

acoustic fluctuations, and this seems to affect the serrated jet more than the round jet.

We filtered the microphone data via the POD. The spectral-decay is considerably slower for

the serrated jet than the round. This is indicative of the greater complexity or, alternatively, less

coherence of the former than the latter. We compared LST predictions to the most energetic POD

mode and found striking improvements for the m = 0 mode. Particularly impressive is the ability

of the LST prediction to capture the rapid rise in amplitude (see St = 0.35 in figure 4.20 (ii)) that
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occurs do to the proximity of the array to the serrated jet (figure 4.15). The amplitude-comparison

improvements for m = 1 are not as considerable, although the phase-prediction is excellent. The

POD-filtered amplitude has a sharp peak or jump that is not reproduced by the prediction and

remains unexplained. The jump is correlated with the instability waves in the flow (in the data,

that is) however, and might be related to the collapse of the streamwise-vorticity modes, which are

quickly stabilized.

The work described in chapter 4 will be published as Gudmundsson & Colonius (2010b).



102

Appendix A

Solving the Rayleigh System

A.1 The Shooting Solution

A.1.1 The Round Jet

The Rayleigh equation (2.50), along with boundary conditions give in equations (2.52) and (2.53),

prescribes the form of p̂(r) for the round jet. Given inputs ω, m, ux and ρ, and an initial guess for

the eigenvalue α0, the shooting procedure is as follows:

1. Generate p̂ and its derivative at axis. Note that the Rayleigh equation has a regular singular

point at r = 0 so we start the procedure at 0 < ǫ ≪ D:

p̂(ǫ) = Jm(βǫ) (A.1)

dp̂

dr
(ǫ) = βJm−1(βǫ) − m

ǫ
Jm(βǫ) (A.2)

where β =
√

ρ(M∞ α − ω)2 − α2. Taking ǫ = 0.01D is in our experience sufficient to obtain a

converged solution.

2. Integrate outwards to r = R, using the 4th-order Runge-Kutta (or any other suitable) algo-

rithm. We find R ≈ 3D to be sufficiently large.
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3. At r = R the solution should be proportional to the Hankel function of the second kind:

p̂(R) = H2
m(γR), (A.3)

dp̂

dr
(R) = γH2

m−1(γR) − m

R
H2

m(γR), (A.4)

where γ =
√

w2 − α2. These relations can only be simultaneously satisfied if

G(α) ≡
(

p̂
dH2

m

dr
− dp̂

dr
H2

m

)

r=R

= 0. (A.5)

The function G(α) is the dispersion relation and we will use Newton-Rhapson to find its roots.

Given G(αn), we expand G(αn+1) in a Taylor series as

G(αn+1) = G(αn) +
dG

dα

∣∣∣∣
αn

∆α + O(∆α2). (A.6)

If G(αn+1) = 0 (i.e., we found the root) then

αn+1 = αn − G

dG/dα

∣∣∣∣
αn

. (A.7)

We iterate upon this equation until |αn+1 − αn| < 10−9. The derivative dG/dα is evaluated

by carrying out the α-derivative in equation (A.5). The linear system to be integrated is the

enlarged to accommodate the α-derivative of p̂.

A.1.2 The Critical Layer

The radial location r∗ where αux(r∗) − ω = 0 is referred to as the critical layer. It is a logarithmic

singular point of the inviscid equations (Tam & Morris, 1980). With the inclusion of viscosity the

discontinuity is smoothed out but a sharp layer remains. This layer serves as a source of various

unstable modes, including a continuous spectrum.

We have to stay clear of this layer in our solution of the Rayleigh equation. We do this by
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deforming the path of integration around the branch point as

r̂(r) = r − i(∆ − Im(r∗) exp

(
− (r − Re(r∗)).2

σ2

)
, (A.8)

where we chose ∆ = 0.05 and σ = 0.1 (by trial and error).

The critical layer r∗ in equation (A.8) depends on the solution (α, p̂). The r∗-estimate is thus

updated on each pass through the steps in section A.1, and is obtained by the solution of

αnux(r) − ω = 0, (A.9)

given the guess αn. Note that this requires evaluating the mean flow ux at complex-valued r. This

is no issue when using analytical functions to approximate the mean flow as in equation (3.1). The

root r∗ can then be determined via the Newton-Rhapson method or any other suitable nonlinear-

equation solver. If an analytical approximation is not available, as for the serrated jet, we can also

fit a local polynomial to the data and evaluate this at the complex values of r needed. The latter

case is ill-behaved as the polynomial-extrapolation off the real-axis is somewhat unpredictable.

Figure A.1 illustrates the solution α(ω) so obtained, along with r∗(ω), for an analytical profile.

Note that Im(α) = Im(r∗) = 0 at the same frequency, as expected. Also note that we must always

deform the path in the same direction (i.e., we can’t start deforming the path into the upper plane

when Im(r∗) passes through zero) so as to remain on the same solution-branch. For very damped

waves the deformation can become significant and comparable to the jet diameter. This is the reason

why LST computations are terminated at x/D = 5 in figure 3.8.

A.1.3 The Serrated Jet

The shooting procedure for the serrated jet shares many similarities with that of the round jet,

described in section A.1.

The essential difference is that α (in the spatial approach) is not the only unknown; the pressure

amplitudes at the boundaries are unknown as well. For the round nozzle this is immaterial as the
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Figure A.1: (a) The growth rate −αi and (b) imaginary-part of the critical layer r∗ for the M∞ = 0.5
jet at x/D = 3.5.

(one) governing equation is homogeneous. The boundary conditions for the serrated jet are the same

as for the round jet, as there is no coupling far away from the shear layer, as well as near the axis.

However, even if the individual modes in the Rayleigh-system (4.15) are homogeneous and uncoupled

in the two radial extremes, their relative complex-valued pressure amplitudes are not arbitrary and

are determined by their interaction within the shear layer. One of these amplitudes is arbitrary,

as the system is homogeneous. For a system of size 2N + 1 (where N is the summation limit in

system (4.15)), we thus have 2N + 1 unknowns; the 2N complex-amplitudes and the eigenvalue.

We enlarge the system to be integrated by creating the variable p̂2N+2 = α and setting dp̂2N+2/dr =

0. We now supply a guess for the 2N relative pressure values along with the eigenvalue and put

these values into a vector v, say. This gives us a full set of initial conditions to start the integration.

Once we reach the other boundary, we define a vector-valued function G(v) of size 2N + 1, that is

to be zeroed. Expanding in Taylor series,

G(v + δv) = G(v) + Jδv + O(δv2), (A.10)

where

Jij =
∂Gi

∂vj

. (A.11)



106

Assuming G(v + δv) = 0 (as if the root has been found), we solve

Jδv = −G, (A.12)

for δv, and update v according to

vn+1 = vn + δv, (A.13)

and iterate until convergence has been obtained.

The algorithm, in summary:

1. Guess values for 2N + 1 vector v

2. Generate pressure/derivative values using boundary conditions:

p̂n(ǫ) = Jn(βǫ) (A.14)

dp̂n

dr
(ǫ) = βJm−1(ǫ) −

m

ǫ
Jn(βǫ) (A.15)

where β =
√

ρ(M∞ α − ω)2 − α2. We normalize these by their respective guess-values in v:

p̂n(ǫ) = vn (A.16)

dp̂n

dr
(ǫ) = vn

(
βJm−1(ǫ) −

m

ǫ
Jn(βǫ)

)
/Jn(βǫ), (A.17)

and the extra variable is p̂2N+2 = α = v2N+1.

3. Integrate through jet towards r = R.

4. Construct vector G(v) (denote analytical boundary conditions by A):

Gn = p̂n

dAn

dr
− dp̂n

dr
An, n = 1, . . . , 2N + 1 (A.18)

(A.19)



107

5. Calculate partial derivatives of G:

Jij =
∂Gi

∂vj

=
Gi(v1, ..,vj + δ, . . . ,v2N+1) − Gi(v1, ..,vj , . . . ,v2N+1)

δ
, (A.20)

where Gi(v1, ..,vj + δ, . . . ,v2N+1) has to be calculated by integrating again (going through

point 1-4).

6. Solve Jδv = −G, and calculate vn+1 = vn + δv.

7. Go to 1 until converged.

A.2 The Direct Solution

Here we rearrange the Rayleigh equation (round: equation (2.50); serrated: equation (4.15)) to form

the generalized nonlinear and cubic eigenvalue problem

(f3α
3 + f2α

2 + f1α
1 + f0)p̂ = 0, (A.21)

where the coefficients fj for the two jets are given in the next sections.

We discretize equation (A.21) using Chebyshev-polynomials, with the same boundary conditions

as before (equations (2.52) and (2.53). This results in the discreet version of the problem above:

(F3α
3 + F2α

2 + F1α
1 + F0)p = 0, (A.22)

where the Fj are matrices. To linearize the problem we rearrange it as follows:




0 I 0

0 0 I

−F0 −F1 −F2







p

αp

α2p




= α




0 I 0

0 0 I

0 0 F3







p

αp

α2p




, (A.23)
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Figure A.2: (a) The unfiltered and (b) filtered eigenvalue spectra α = αr + iαi (abscissa shows
phase-speed cp = ω/αr) for the cold M∞ = 0.9 round jet at x/D = 0.5, m = 0 and St = 0.35.

or

Aq = αBq. (A.24)

These matrices are singular where the mean flow ux vanishes and so will have very large-amplitude

(infinite, in theory) eigenvalues. This is illustrated in figure A.2 (a). To pick the physical eigenvalues

out of the full spectra we examine the respective eigenvectors, accepting those that have the appro-

priate far-field behavior. The physical eigenvalues are shown in figure A.2 (b), where only a single

unstable mode is found. This is appropriate as this test is for a round jet with a single inflection

point.

A.2.1 The Round Jet

The coefficients fj for the round jet follow:

f3 = (ρu2
x − 1)ux, (A.25)

f2 = −(3ρu2
x − 1)ω, (A.26)

f1 =

(
− d2

dr2
−

(
1

r
− ∂rρ

ρ

)
d

dr
+

m2

r2
− ρω2

)
ω, (A.27)

f0 = ux

d2

dr2
+

(
ux

r
− 2∂rux − ux

∂rρ

ρ

)
d

dr
−

(
m2

r2
− 3ρω2

)
ux. (A.28)
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A.2.2 The Serrated Jet

The coefficients fj for the serrated jet follow. Note that these are given in (r, θ)-space:

f3 = (ρu2
x − 1)ux, (A.29)

f2 = −(3ρu2
x − 1)ω, (A.30)

f1 = ux

(
∂2

∂r2
+

1

r2

∂2

∂θ2

)
−

(
2∂rux + ux

(
1

r
+

∂rρ

ρ

))
∂

∂r
(A.31)

− 1

r2

(
2∂θux + ux

∂θρ

ρ

)
∂

∂θ
+ 3ρω2ux, (A.32)

f0 = −
(
− ∂2

∂r2
+

1

r2

∂2

∂θ2
+

(
1

r
− ∂rρ

ρ

)
∂

∂r
− 1

r2

∂θρ

ρ

∂

∂θ

)
ω − ρω3. (A.33)
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Appendix B

The PSE Operators

Here we give the forms of the operators A through E in equation (2.60), repeated here:

(A(q, α, ω) + B(q)) q̂ + C(q)
∂q̂

∂x
+ D(q)

∂q̂

∂r
=

1

Re
E(q) q̂, (B.1)

where α and ω respectively denote streamwise wavenumber/growth-rate and frequency, and q is the

mean flow, given by

q(x) = (ux(x, r), ur(x, r), 0, ρ(x, r), T (x, r)). (B.2)

For notational convenience, let us make the following definitions:

1. u = ux, and v = ur. Spatial derivatives in x and r are then denoted by a subscript, ux = ∂xu,

ur = ∂ru, and so forth.

2. β = αu − ω.

B.1 Operator A

A =




ρ ux ρ ur 0 0 0

ρ vx ρ vr 0 ρr (γ − 1)/γ T r (γ − 1)/γ

0 0 ρ v/r 0 0

ρ T x ρ T r + 1/r 0 ρ(γ − 1)(ux + vr + v/r) 0

ρx ρr + ρ/r 0 0 ux + vr + v/r




(B.3)
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B.2 Operator B

B =




iρ β 0 0 iαρ (γ − 1)/γ iαT (γ − 1)/γ

0 iρ β 0 0

0 0 iρ β imρ(γ − 1)/γ imT (γ − 1)/γ

iα 0 im/r iρ β 0

iα ρ 0 imρ/r 0 iβ




(B.4)

B.3 Operator C

C =




ρ u 0 0 0 0

0 ρ u 0 0 0

0 0 ρ u 0 0

1 0 0 ρ u 0

ρ 0 0 0 u




(B.5)

B.4 Operator D

D =




ρ v 0 0 0 0

0 ρ v 0 ρ (γ − 1)/γ ρ (γ − 1)/γ

0 0 ρ v 0 0

0 1 0 ρ v 0

0 ρ 0 0 v




(B.6)

B.5 Operator E

The operator E is decomposed as

E = E2
d2

dr2
+ E1

d

dr
+ E0, (B.7)

where, in addition to linearization we have applied the thin-shear layer approximation (retain only

diagonal terms in the shear-stress).
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E2 = M∞




1 0 0 0 0

0 2/3 0 0

0 0 1 0 0

0 0 0 γ/(M∞Pr) 0

0 0 0 0 0




, (B.8)

E1 = M∞




1/r 0 0 0 0

0 2/(3r) 0 0

0 0 0 0 0

2γur 4γ(2vr/3 − v/(6r)) 0 0 γ/(rM∞Pr)

0 0 0 0 0




, (B.9)

and

E0 = M∞




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 −2M∞γ/(3r)vr 0 0 0

0 0 0 0 0




. (B.10)
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