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Abstract

The dynamic back-action caused by electromagnetic forces (radiation pressure) in op-

tical and microwave cavities is of growing interest. Back-action cooling, for example,

is being pursued as a means of achieving the quantum ground state of macroscopic

mechanical oscillators. Work in the optical domain has revolved around millimeter-

or micrometer-scale structures using the radiation pressure force. By comparison, in

microwave devices, low-loss superconducting structures have been used for gradient-

force-mediated coupling to a nanomechanical oscillator of picogram mass. In this

thesis, two different nanometer-scale structures that use combinations of gradient and

radiation pressure optical forces are described theoretically and demonstrated exper-

imentally. These structures merge the fields of cavity optomechanics and nanome-

chanics into nano-optomechanical systsms (NOMS).

The first device, the Zipper optomechanical cavity, consists of a pair of doubly-

clamped nanoscale beams separated by approximately 100 nanometers, each beam

having a mass of 20 picograms and being patterned with a quasi-1D photonic crystal

bandgap cavity. The optical mode of the coupled system is exquisitely sensitive to

differential motion of the beams, producing optomechanical coupling right at the

fundamental limit set by optical diffraction. The mechanical modes of the beam

probed with a background sensitivity only a factor of 4 above the standard quantum

limit, and the application of less than a milliwatt of optical power is shown to increase

the mechanical rigidity of the system by almost an order of magnitude.

The second device focuses on just one of the doubly-clamped nanoscale beams of

the Zipper. We show that, in addition to a photonic bandgap cavity, the periodic

patterning of the beam also produces a phononic bandgap cavity with localized me-
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chanical modes having frequencies in the microwave regime. We call these photonic

and phononic crystal bandgap cavities optomechanical crystals. Because the optical

and mechanical modes occupy a volume more than 100,000 times smaller than the vol-

ume of a single human cell, the optomechanical interaction in this system is again at

the fundamental limit set by optical diffraction. The miniscule effective volume of the

mechanical mode corresponds to effective motional masses in the femtogram regime,

which, coupled with the enormous optomechanical interaction and high optical and

mechanical quality factors, allows transduction of microwave-frequency mechanical

motion nearly at the standard quantum limit, with the standard quantum limit easily

within reach with simple modifications of the experimental apparatus. The combi-

nation of the small motional mass and strong optomechanical coupling allows each

trapped photon to drive motion of an acoustic mode with a force more than 15 times

the weight of the structure. This provides a powerful method for optically actuat-

ing microwave-frequency mechanical oscillators on a chip, and we demonstrate an

on-chip phonon laser that emits over 1012 microwave-frequency phonons per second

with a ratio of frequency to linewidth of 2 millioncharacteristics similar to those of the

first optical lasers. With the ability to readily interconvert photons and microwave-

frequency phonons on the surface of a microchip, new chip-scale technologies can be

created. We discuss the future of optomechanical crystals and provide new methods

of calculating all the otptomechanical properties of the structures.
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Chapter 1

Framework

This thesis dissertation is based on four papers [1–4]. These papers describe theoret-

ical and experimental work in cavity optomechanics as they relate to various kinds

of photonic crystals, especially patterned nanoscale beams. In this introduction, I

hope to briefly describe the significance of this work and how it fits into the fields of

cavity optomechanics and the study of mesoscopic mechanical oscillators [5–7]. I will

then present some background necessary to understand the optics, mechanics, and

optomechanics of these systems.

1.1 Introduction

The significance of this work to the field of cavity optomechanics and mesoscale

mechanical oscillators close to the ground state is many-fold, but I will try to give a

short summary here. As I am trying to highlight the merit of our work, I will clearly

focus on the aspects that frame the systems of this work in the best possible light.

This is not meant to disparage other systems, as the variety and complexity of all

these systems and the problems they are being used to solve allow for many ways to

skin virtually every mesoscopic optomechanical cat.
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L
δx

m

k
Figure 1.1: Fabry-Perot canonical optomechanical system.

1.1.1 A Very Brief Description of the Sensitivity of Optome-

chanical Systems

Consider the Fabry-Perot cavity in Fig. 1.1 with one of its mirrors attached to a spring.

We will imagine using this cavity as both a force sensor and a displacement sensor.

The cavity supports many optical modes with frequencies down to the fundamental

mode of frequency νo = c/2L, where L is the length of the cavity (the spacing

between the mirrors). For a displacement of one of the mirrors, δx (along the axis of

the cavity), the frequency of the optical mode will shift by νoδx/L = δνo. This is the

essence of optomechanical coupling: a mechanical displacement of the cavity induces

a change in the state of the light. In this case, one can see that to maximize the

effect of a given δx, one wants to use the largest possible frequency1 and the smallest

possible cavity length.

The frequency shift of the optical cavity induced by the optomechanical coupling

will cause photons in the cavity to accumulate a phase shift proportional to the time

the photons spend in the cavity2, τ . Since our method of measuring displacement

will involve some form of mixing theses phase-shifted photons from the cavity with

reference photons to measure their interference, we want this accumulated phase

1Consider that the wavelength of light is our “ruler” with which we measure displacements. The
smaller the wavelength of light (i.e., the higher the frequency), the finer the tick marks on our ruler,
and, thus, the greater our ability to measure changes in length.

2If photons travel the extra length every round trip, then we want to increase the number of
round trips–and thus the time–that the photons spend in the cavity
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shift to be as large as possible. The photon lifetime, τ , is related to the quality

factor, Q, of the optical resonator by 2πνoτ = Q. For the Fabry-Perot cavity with

vacuum between the mirrors, the only losses occur at the mirrors themselves; thus,

lengthening the cavity increases Q and exactly cancels the corresponding reduction in

optomechanical coupling, making the displacement sensitivity independent of length3

However, for monolithic optical cavities, the losses are often dominated by absorption

and scattering in the material that guides the light; thus, for a monolithic cavities,

Q is often independent of the length. When this is the case, clearly the displacement

sensitivity increases as the length of the cavity decreases. This is the motivation

behind nanoscale cavities, where very high optical quality factors can be created in

very small (often diffraction-limited) optical resonators. This provides extremely high

displacement sensitivity.

A good force sensor is simply a good displacement sensor with a high force respon-

sivity. Thus, we want to keep all the properties that made the cavity optomechanical

system a good displacement sensor (small L, large νo, large Q) and add force respon-

sivity. If we consider the force responsivity of a simple harmonic oscillator driven by

an impulse or sinusoidal external force, then we can see that we want to minimize the

inertial mass of the system4, meff , minimize the mechanical stiffness, and minimize

the mechanical energy loss rate. Minimizing meff is most simply accomplished by

reducing the size of the system, which has the benefit of simultaneously increasing

the displacement sensitivity. Since the mechanical stiffness is proportional to meffν
2
m,

where νm is the frequency of the mechanical oscillator, then minimizing meff also

means the system is less stiff for a fixed frequency. Unfortunately, for the flexural

modes of nanostructures that we will actually consider in this work, decreasing the

system size almost universally increases the mechanical frequency; i.e., it makes the

structure more mechanically stiff. However, for many reasons5, high-frequency opera-

tion is actually desirable. The best one can do for a flexural vibration with mechanical

3This is what allows for the exquisite sensitivity of the kilometer-scale gravitational wave inter-
ferometers, such as LIGO.

4The relevant mass is the effective motional mass.
5Most notably: lowering thermal occupancy for measuring quantum effects and technological

applications, where relevant frequencies are typically in the gigahertz regime.
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Figure 1.2: SEM image of the “Zipper” optomechanical cavity with the y-component
of the electric field superposed on the structure.

frequency νm and fixed mass density is to make the size of the system approximately

(λsound/2)3, which is the smallest that the structure can be while still supporting me-

chanical resonances of wavelength λsound. In addition to making the structure stiff,

reducing the system size often increases mechanical loss by increasing the fraction of

energy in the part of the resonator that contacts the outside world (the structural

supports). However, we will show that, in fact, the structure or its supports can often

be engineered to avoid these problems by using complete phononic bandgaps, which

will thus remove one of the major barriers to reducing system size.

Thus, if we want the penultimate displacement and force sensor in a cavity op-

tomechanical system, we want to make a very small system that can somehow manage

to maintain high quality optical and mechanical resonances (low losses). This is a

large part of what motivates creating truly nanoscale structures with high-quality

optical and mechanical resonances.



5

1.1.2 The Significance of This Work

First, in two large jumps, we were able to reduce the effective motional mass of

cavity optomechanical systems by more than five orders of magnitude. The state-

of-the-art cavity optomechanical system, the microtoroid [5], for several years had

the smallest effective motional mass in an optomechanical system: approximately 10

nanograms. Our first serious foray into the field of cavity optomechanics was the

“Zipper” (Fig. 1.2), which is a pair of nanoscale beams separated by roughly 100

nanometers, with a photonic bandgap patterned into the beams to localize and store

light. This system had an effective motional mass of about 20 picograms, which was

an improvement of about 3 orders of magnitude in mass. This was quickly followed by

a second “system”, the optomechanical crystal, which employed the photonic bandgap

cavity of the “Zipper” as a phononic bandgap cavity, localizing many acoustic res-

onances to the same small region in the center of the structure that was previously

used to localize light. This localization reduced the mass of the oscillator from the

mass of an entire beam (10 picograms) to the mass of just a few of the crossbars

in the center, which brought the mass of the system down to about 50 femtograms.

Since the system’s response to external forces and internal radiation pressure forces

is inversely proportional to the effective motional mass, this reduction of a factor of

200,000 over the previous state-of-the-art microoptomechanical systems [5–7] dramat-

ically increases the force sensitivity of cavity optomechanical systems.

Next, while reducing the mass of the system by decreasing the system “size”,

we simultaneously decreased the critical optomechanical length (while maintaining

very high optical quality factors). This produced a large increase in the displacement

sensitivity, as discussed above. Compared to the microtoroid, this was a decrease

in the effective length (and a corresponding increase in the displacement-to-phase

transduction) of approximately a factor of 10.

For many measurements, we will show that the sensitivity of the cavity optome-

chanical system scales inversely with the product meffL
2
OM, where LOM is the optome-

chanical length of the structure (the length of the Fabry-Perot cavity; the radius of
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the microtoroid cavity; related to the spacing of the “Zipper” cavity). This makes

these systems extremely effective transducers of force and displacement.

The small mass and high sensitivity to motion means that these systems can

be used for structures that are much higher frequency than what was previously

possible. While gigahertz optomechanical systems had been previoulsy reported [8,9],

optomechanical crystals have the potential for quantum-limited motion sensitivity at

these high frequencies. As will be discussed in more detail in subsequent chapters, this

makes these systems good candidates for observing relatively “hot” objects in their

quantum mechanical ground state and opens up many possibilities for technological

applications.

Finally, while the field of phononic crystal microstructures and nanostructures is

quickly advancing [10], high-frequency operation has been quite limited by electrome-

chanical detection techniques, which involves integration of piezoelectric couplers.

Optomechanical crystals allow for low-noise optical measurement of high-frequency

phononic crystal waveguides and resonators in any essentially any material with an

optical window. In addition, the concepts of dynamical back-action of cavity op-

tomechanics [5] provide methods for manipulating the motion (e.g. amplifying or

damping) of phononic crystal systems. By using cavity optomechanical techniques to

amplify mechanical motion, optomechanical crystals can be used to produce phonons;

by using cavity optomechanical techniques to damp mechanical motion, optomechan-

ical crystals can be used to selectively extract phonons. In the quantum picture,

this amounts to the ready interconversion of photons and high-frequency phonons.

Since the cavity optomechanical systems demonstrated in this work are planar, chip-

scale structures, they (and analogous systems) provide a new novel architecture for

the generation, routing, and interaction of photons and phonons on the surface of a

microchip.
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Figure 1.3: Optical (top) and acoustic (bottom) modes of a photonic and phononic
crystal nanobeam. The optical mode shown is the fundamental mode of the pho-
tonic bandgap cavity. The acoustic mode is a localized “accordion” vibration of the
phononic bandgap cavity.

1.2 The Optical and Mechanical Systems

Cavity optomechanics involves the mutual coupling of an optical mode to a mechanical

mode of a deformable structure. The canonical system is typically a Fabry-Perot

cavity with a movable mirror [11] or, more recently, a microtoroid cavity undergoing

radial breathing motion [12]. Here, however, we will focus on a nanoscale dielectric

beam (or a pair of such beams) suspended on both sides from a large substrate

and having a periodic pattern of vertical holes that form a photonic and phononic

bandgap cavity6. The optical and acoustic modes, examples of which are shown in

Fig. 1.3, will be the solutions of the electromagnetic and acoustic wave equations of the

structure, and the coupling between them will be determined by a single parameter

that characterizes the dispersion of the optical mode due to the displacement of the

mechanical mode.

1.2.1 Geometry

The general geometry of the photonic and phononic crystal nanobeam is shown in

Fig. 1.4(a). A beam of nanoscale cross-section is attached (flush) on both ends to a

large substrate of identical material and thickness. The structure is symmetric about

the xy, xz, and yz planes that pass through the center of the structure (which we

will also call the origin). The nanobeam, whose geometric parameters are labeled

6For many applications, the wavelength of the acoustic mode will be much larger than the period-
icity, in which case it will not significantly interact with the holes except to change the mode-averaged
mechanical properties of the material
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Figure 1.4: (a) General geometry of a photonic and phononic crystal nanobeam. (b)
Spacing of holes in and outside of the defect.

in Fig. 1.4(b), contains a quasi-periodic pattern of NTotal holes with periodicity Λ,

with the center of the structure being a hole (NTotal is odd). For some odd number

of holes, NDefect, the spacing between the holes is reduced quadratically around the

center hole, such as is shown in Figs. 1.4(c) and (d)7. As shown in Fig. 1.4(a), the

structure is effectively divided into several portions that will be referred to extensively.

The defect is the region in the center where the “periodicity” is varied from Λ to ΛD.

7This is just one of many examples of a method for forming a photonic and phononic bandbap
cavity in a dielectric nanobeam [13, 14], but it is the only method that will be used in this work.
Other methods include changing the hole size, the width, or any combination. In addition, it is also
possible to achieve high optical quality factors without a “smooth” defect [13].
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The mirrors are the two lengths of the structure on either side of the defect with

an array of holes with periodicity Λ. The substrate or pad is the large (essentially

infinite) region on either side of the nanobeam from which it is suspended. The

contacts are the points where the nanobeam attaches to (or contacts) the substrate.

These “portions” of the structure form different regions with qualitatively different

electromagnetic and acoustic eigenmodes. The modes of the system are most easily

understood by building up the global solution from an understanding of the solutions

in these regions, separately.

1.2.2 Electromagnetic and Acoustic Eigenvalue Problems

The displacements associated with the deformations of mesoscopic optomechanical

systems are generally quite small relative to the structural features, even if the small

deformations cause large dispersive shifts of the electromagnetic eigenmodes of the

structure. In addition, the frequencies of the optical fields are larger than those of the

acoustic fields by at least four orders of magnitude. For these reasons, optomechanical

interactions these systems are well-described by a perturbative coupling between the

electric and acoustic eigenmodes of the structure in the absence of mechanical motion.

The acoustic displacement field, Q̃(r, t), and magnetic induction field, H̃(r, t), can

both be formulated in terms of eigenvalue problems of their wave equations in the

absence of sources. We will assume that the electromagnetic and acoustic properties of

the dielectric material are homogenous, locally isotropic (the macroscopic structural

geometry clearly breaks the condition of global isotropy), linear, non-piezoelectric,

non-magnetic, and free of sources. The fields are also harmonic8, and only the spatial

parts of the fields will be dealt with from here forward; the time-dependence of all

fields will be related to their spatial part as F̃(r, t) = F(r)e−iωt.

8Even losses, spatially dependent or otherwise, can be treated as a perturbation on the lossless,
harmonic fields, as long as they are not too large. However, we will use numerical techniques
to calculate the self-consistent solutions including losses non-perturbatively when we turn to the
question of mechanical losses in defect modes of phononic crystals.
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1.2.2.1 Acoustic Eigenvalue Problem

Under the above conditions, the acoustic displacement field satisfies the eigenvalue

equation [15]

∇ ·
(
c : ∇sQ(r)

)
= −ρΩ2

mQ(r) , (1.1)

where ρ is the mass density, Ωm is the angular frequency of the acoustic field, ∇s ≡(
∇+∇T

)
/2 is the symmetric gradient operator, the colon denotes the double scalar

(a.k.a. double dot) product of a fourth rank and a second rank tensor, and c is the

(fourth rank) elasticity tensor.

In reduced Voigt notation, the differential operators and elasticity tensor reduce to

2-dimensional matrices, and the wave equation can be written as a matrix equation.

As we are treating the material as isotropic, the elasticity tensor reduces in Voigt

notation to [15]

c−1 =
1

E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)


, (1.2)

where E is Young’s modulus and ν is Poisson’s ratio. The symmetric gradient reduces

to

∇S → ∇Jj =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x

∂
∂y

∂
∂x

0


, (1.3)
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and the divergence reduces to

∇· → ∇iJ =


∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0

 . (1.4)

In this reduced Voigt notation, the eigenvalue equation reduces to

∇iKcKL∇LjQj = −ρΩ2
mQi . (1.5)

It is instructive to see the acoustic wave equation written out in component form

in regions of spatially constant elasticity. Performing the matrix multiplication yields

−k2
mQx =

(
2(ν − 1)

∂2

∂x2
+ (2ν − 1)

(
∂2

∂y2
+

∂2

∂z2

))
Qx −

∂2

∂x∂y
Qy −

∂2

∂x∂z
Qz (1.6)

−k2
mQy =

(
2(ν − 1)

∂2

∂y2
+ (2ν − 1)

(
∂2

∂x2
+

∂2

∂z2

))
Qy −

∂2

∂y∂x
Qx −

∂2

∂y∂z
Qz (1.7)

−k2
mQz =

(
2(ν − 1)

∂2

∂z2
+ (2ν − 1)

(
∂2

∂x2
+

∂2

∂y2

))
Qz −

∂2

∂z∂x
Qx −

∂2

∂z∂y
Qy (1.8)

where

km ≡
Ωm

vm
(1.9)

and

vm =

(
E

2(2ν − 1)(ν + 1)ρ

)1/2

(1.10)

is the bulk phase velocity for the material at the frequency of the mode (the speed of

sound).



12

1.2.2.2 Electromagnetic Eigenvalue Problem

Also under the above conditions, Maxwell’s equations can be reduced to an eigenvalue-

type wave equation for the magnetic induction field H(r) ≡ µ−1
0 B(r) [14],

∇×
(

1

n2(r)
∇×H(r)

)
=
ω2
o

c2
H(r) , (1.11)

where ωo is the frequency of the optical fields, and n2(r) ≡ ε(r)/ε0 is the squared

index of refraction. This, together with the transversality constraint, ∇ ·H(r) = 0,

completely specifies the magnetic induction.

In regions of spatially constant index of refraction, the component form of the

electromagnetic eigenvalue problem becomes

−k2
oHx =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Hx (1.12)

−k2
oHy =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Hy (1.13)

−k2
oHz =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Hz (1.14)

where

ko ≡
ωo
vo

(1.15)

and

vo = c/n (1.16)

is the bulk phase velocity for the material at the frequency of the mode.

Maxwell’s equations, together with the harmonic time dependence, allow the elec-

tric field to then be calculated directly from the magnetic eigenfields without solving

the separate eigenvalue problem for the electric field [14], which gives
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E(r) =
i

ωo

1

ε(r)
∇×H(r) . (1.17)

1.2.3 Symmetries of the Eigenvalue Problems

We wish to examine the symmetries of the electromagnetic and acoustic eigenvalue

problems; i.e., those coordinate transformations that leave the eigenvalue problems

unchanged. Consider an operator Ô that acts on vector fields as ÔF(r) ≡ OF(O−1r),

where O is a cartesian matrix representation of Ô. We will generally want to know

whether the electromagnetic and acoustic eigenvalue problems are invariant under

the transformation described by an operator and what properties these symmetries

give to the modes.

1.2.3.1 Illustrative Example: Mirror Symmetry of the Eigenvalue Prob-

lems

As an example, we will consider the operator σ̂x, which has the cartesian representa-

tion

σx =


−1 0 0

0 1 0

0 0 1

 . (1.18)

when acting on polar (covariant) vectors, such as Q, E, and r. When acting on axial

(contravariant) vectors, such as H, σ̂x takes the form,

σx =


1 0 0

0 −1 0

0 0 −1

 . (1.19)

The effect of σ̂x on the acoustic eigenvalue equation is thus captured by the compo-

nents of Q transforming as {Qx, Qy, Qz} → {−Qx, Qy, Qz}, while differentials trans-

form as {dx, dy, dz} → {−dx, dy, dz} (second differentials are thus unchanged; i.e.,
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{dx2, dy2, dz2} → {dx2, dy2, dz2}). Thus, in regions of space where the elasticity is

constant, one can easily inspect Eqs. (1.6)-(1.8) and see that the eigenvalue problem

is invariant under the transformation9.

Similarly, the effect of σ̂x on the electromagnetic eigenvalue equation is captured

by the components of H transforming as {Hx, Hy, Hz} → {Hx,−Hy,−Hz}, with

differentials and second differentials transforming as described above. Thus, in regions

of space where the index of refraction is constant, one can easily inspect Eqs. (1.12)-

(1.14) and see that the electromagnetic eigenvalue problem is invariant under the

transformation as well.

1.2.3.2 Differential Operators: Symmetries in Vector-Valued Function

Spaces

If we consider the eigenvalue equations being generated by differential operators that

act on the space of vector-valued functions, then we correspondingly want to consider

the symmetries of the differential operators

Ξ̂m ≡ ∇ · c : ∇s (1.20)

and

Ξ̂o ≡ ∇×
1

n2
∇× . (1.21)

The eigenvalue equations thus take the form Ξ̂F(r) = λF(r), with F being either Q

or H, and the corresponding eigenvalue, λ.

1.2.3.3 Hermiticity

With the inner product in the space of vector-valued functions defined as

< F|G >≡
∫

d3rF∗(r) ·G(r) , (1.22)

9the new equations are implicitly in the new coordinate system as, for example, Qx(x, y, z) →
−Qx(−x, y, z) or Qj(x, y, z)→ Qj(−x, y, z), where j is y or z.
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one can easily show10 that both Ξ̂m and Ξ̂o satisfy < F |Ξ̂G >=< Ξ̂F |G > for all

vector fields F and G. In other words, both Ξ̂m and Ξ̂o are Hermetian.

Hermiticity endows them with two important properties11: the eigenvalues are

real, and the inner product of any two eigenmodes with different eigenvalues is zero

(i.e., nondegenerate modes are orthogonal). In fact, all eigenmodes of a Hermetian

operator are orthogonal. It is clear that degenerate modes form a subspace of lin-

early dependent vectors, since each of the degenerate modes must be orthogonal to

all other modes with different eigenvalues. Thus we can simply use Gram-Schmidt

orthogonalization to generate linear combinations of the degenerate eigenvectors that

are orthogonal. We conclude that we can always construct a set of eigenvectors of a

Hermetian operator that are mutually orthogonal, regardless of degeneracies.

1.2.3.4 Commutativity of Operators and Symmetry Classification of Modes

Because of the invariance of the eigenvalue equations with respect to the operator σ̂x,

we can either 1) operate on the eigenvector directly with the differential operator or

2) reflect the coordinate system, operate with the differential operator, and then do

the inverse reflection on the coordinate system (which is the same as the reflection)

to return the system to the original coordinate system. The invariance of the eigen-

value equations guarantees that either of these operations both produce the same

eigenvector. Mathematically, this statement is represented as

Ξ̂mQ(r) = σ̂−1
x Ξ̂mσ̂xQ(r) (1.23)

for the acoustic eigenvalue problem, and

Ξ̂oH(r) = σ̂−1
x Ξ̂oσ̂xH(r) . (1.24)

10The proof for either the acoustic or electromagnetic differential operator involves two applica-
tions of inegration by parts. It also mandates that the modes either go to zero at large distances or
that they are periodic in any direction for which they do not go to zero, such that the integrals of
fields vanishes on the surfaces of integration volumes. See, for example, reference [14].

11We state the following properties of Hermetian operators without proof, but these proofs can
be looked up in any book on linear algebra or quantum mechanics.
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for the electromagnetic eigenvalue problem.

This leads to the concept of commutation; i.e., with the definition [Â, B̂]F(r) ≡

ÂB̂F(r)− B̂ÂF(r), then we have

[σx, Ξ̂m]Q(r) = 0 (1.25)

and

[σx, Ξ̂o]H(r) = 0 . (1.26)

The commutation of operators allows a further classification of the solutions as

follows12. Consider a particular acoustic mode, Q(r), which is a solution of the

eigenvalue problem with eigenvalue λ; i.e., Ξ̂mQ(r) = λQ(r). Then, a commuting

operator Â satisfies

[Â, Ξ̂m]Q(r) = 0 (1.27)

= ÂΞ̂mQ(r)− Ξ̂mÂQ(r)

= ÂλQ(r)− Ξ̂mÂQ(r)

= λ

(
ÂQ(r)

)
− Ξ̂m

(
ÂQ(r)

)
.

The last of these equations means that ÂQ(r) is also an eigenvector with eigenvalue

λ. If this eigenvalue has no degeneracies, then this guarantees that Q(r) and ÂQ(r)

can be different only by a multiplicative factor. If we call this factor α, then we have

demonstrated (for the case of no degeneracy) that ÂQ(r) = αQ(r); that is, Q(r) is

an eigenvector of the operator Â with eigenvalue α.

12We will use the acoustic eigenvalue problem as an example, but it clearly applies in an analogous
way to the electromagnetic eigenvalue problem



17

1.2.3.5 Mirror Symmetry Revisited

In the case of the mirror operator, σ̂x, which we have already shown commutes with

Ξ̂m, we will call the eigenvalue the parity, px, of Q(r). Because two applications of the

mirror operator maps the coordinate system back into itself (or, in covariant form,

σxσx = 1, where 1 is the identity matrix), one can easily see that p2
x = 1, which

means px = ±1. With this restriction on the eigenvalue, we can extract information

about the spatial parity of the components of Q(r). Consider the eigenvalue px = 1.

This implies that σxQ(σxr) = Q(r)13. This breaks into three separate conditions:

Qx(−x, y, z) = −Qx(x, y, z) (1.28)

Qy(−x, y, z) = Qy(x, y, z) (1.29)

Qz(−x, y, z) = Qz(x, y, z) . (1.30)

Similarly, for px = −1, we must have

Qx(−x, y, z) = Qx(x, y, z) (1.31)

Qy(−x, y, z) = −Qy(x, y, z) (1.32)

Qz(−x, y, z) = −Qz(x, y, z) . (1.33)

So the parity of the vector field also sets certain restrictions on whether each com-

ponent is even or odd about the symmetry plane. Analogous relations hold for any

mirror operator, and this fact will be important for determining the polarization prop-

erties of acoustic and electromagnetic modes, as well as the coupling between acoustic

and electromagnetic modes.

An important point to make about scalar parities of vector field components is that

the magnetic field (or magnetic induction field) is a contravariant second rank tensor

(axial vector), and it is the contravariant representation of the σ̂ operators that must

13Note that σ−1
x = σx.
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be considered to ascertain the scalar parities of the vector field components. This is

simple to do, since the contravariant representation of a mirror operator will just be

equal to the negative of the covariant representation. As an example, if the mode has

px = +1, we have for the magnetic induction field:

Hx(−x, y, z) = Hx(x, y, z) (1.34)

Hy(−x, y, z) = −Hy(x, y, z) (1.35)

Hz(−x, y, z) = −Hz(x, y, z) . (1.36)

For px = −1,

Hx(−x, y, z) = −Hx(x, y, z) (1.37)

Hy(−x, y, z) = Hy(x, y, z) (1.38)

Hz(−x, y, z) = Hz(x, y, z) . (1.39)

1.2.3.6 Bonded and Anti-Bonded Optical Modes of the “Zipper”

x

y

Figure 1.5: Ey(x, y, z = 0) for the “bonded” (top) and “anti-bonded” (bottom) optical
modes of the “Zipper” cavity.

The dominant optical field in this work will always be the y-component of a pz =
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+1 (TE-like) electric field. For the case of the “Zipper” cavity, we will often discuss the

difference between “bonded” and “anti-bonded” modes. This analogy derives from a

scalar mirror symmetry of electron wavefunctions in covalent bonding of molecules.

In this work, “bondedness” refers to is the parity of Ey with respect to the σ̂y mirror

plane, since it is this field component that causes the bulk of the energy splitting of

optical modes when the gap between the nanobeams is smaller than a wavelength.

Referring to Fig. 1.5, we will call the mode with Ey(x,−y, z) = Ey(x, y, z) “bonded”,

and the mode with Ey(x,−y, z) = −Ey(x, y, z) “antibonded”14. The confusion comes

about because of the ambiguity in referring to the scalar parity of Ey or the vector

parity of the whole field; thus, the mode with py = +1 is often mistaken for “bonded”

and the py = −1 mode for “anti-bonded”. However, one can see that for py = +1, we

have

Ex(x,−y, z) = Ex(x, y, z) (1.40)

Ey(x,−y, z) = −Ey(x, y, z) (1.41)

Ez(x,−y, z) = Ez(x, y, z) , (1.42)

whereas for py = −1, we have

Ex(x,−y, z) = −Ex(x, y, z) (1.43)

Ey(x,−y, z) = Ey(x, y, z) (1.44)

Ez(x,−y, z) = −Ez(x, y, z) . (1.45)

So we see from the scalar parity of the dominant field component (Ey) that, actually,

the mode with py = −1 is bonded, and the py = +1 mode is antibonded. Nevertheless,

we will still refer to the bonded field as TE+, but the reader must keep in mind that

14The easiest way to identify the modes is from the fact that the anti-bonded mode has
Ey(x, 0, z) = 0, as necessitated by its scalar parity with respect to the σ̂y mirror plane.
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the plus does not refer to py = +1.

It is worthwhile to quickly note the mirror symmetries px and pz of these fields, as

these will be the same for both the bonded and anti-bonded modes of the “Zipper”, as

well as the optical modes of a single beam. First, all the modes will be TE-like. This

means the modes of all these structures have pz = +1; i.e., they have the following

parity with respect to the σ̂z mirror plane:

Ex(x, y,−z) = Ex(x, y, z) (1.46)

Ey(x, y,−z) = Ey(x, y, z) (1.47)

Ez(x, y,−z) = −Ez(x, y, z) . (1.48)

Second, to minimize optical losses15, the localized optical modes are chosen to have

Ey(−x, y, z) = −Ey(x, y, z). This corresponds to px = −1, for which we have

Ex(−x, y, z) = Ex(x, y, z) (1.49)

Ey(−x, y, z) = −Ey(x, y, z) (1.50)

Ez(−x, y, z) = −Ez(x, y, z) . (1.51)

1.2.3.7 Other Symmetries of the Eigenvalue Equations and Point Groups

By methods similar to those in § 1.2.3.1, one can verify that the eigenvalue problems in

uniform media are also invariant under all reflections, translations, proper rotations,

inversions, and improper rotations16.

With the addition of geometric structure (such as the nanobeam), the spatial

symmetries of the eigenvalue problems and the solutions will be limited by the sym-

metries of the geometric structure, which is typically some set of rotation, mirror, and

15This will be explained in detail in Chapter 2
16An improper rotation is the combination of a rotation about an axis and a reflection in a plane

perpendicular to the axis. This is also known as a rotary reflection.
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inversion symmetries known as the point group of the system. We will now turn to

analyzing those symmetries in nanobeams and examining how they affect the modes

of the system.

1.2.4 Modes and Symmetries of the Projected Mirror Por-

tions

z=0 y=0

Λ

Figure 1.6: Geometry of the “projection” of a nanobeam, showing the periodicity Λ
and mirror symmetry planes, z = 0 and y = 0.

Localization of electromagnetic and acoustic energy to the defect region in these

nanobeam band gap cavities occurs because propagation in the mirror portions is

inhibited for certain ranges of frequencies. Thus an understanding of the acoustic

and electromagnetic properties of the mirror portions is critical to understanding the

behavior of localized modes.

The mirror portions are periodic such that the elasticity tensor and dielectric func-

tion are invariant with respect to translations of length Λ. If we consider extending

the mirror portion infinitely in both directions (±x), then this construction that has

perfect periodicity, Λ, has solutions that satisfy Bloch’s theorem. We will call such

an extension of the mirror portion a projection. An illustration of the projection

geometry is shown in Fig. 1.6.
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1.2.4.1 Photonic and Phononic Bands of the Projection

The projection of the nanobeam optomechanical crystal has discrete periodicity, sat-

isfying n2(r) = n2(r + lΛx̂) and c(r) = c(r + lΛx̂), where Λ is the periodicity of the

lattice and l is an integer.

Consider an operator that performs discrete translational coordinate transforma-

tions on functons of any tensorial rank, the shift of length Λ being in the x̂ direction,

T̂Λf(r) ≡ f(r + Λx̂) . (1.52)

For the projection, T̂Λn
2(r) = n2(r) and T̂Λc(r) = c(r) by definition. Together

with the fact that differentials are not affected by constant shifts of the coordinate

system, this also implies T̂ΛΞ̂m = Ξ̂m and T̂ΛΞ̂m = Ξ̂m in the projection. From this,

it is easy to show that [T̂ , Ξ̂m] = 0 and [T̂ , Ξ̂m] = 0. From § 1.2.3.4, we know that

the eigenvectors of the system are also eigenvectors of T̂Λ, and we can classify the

solutions according to their eigenvalues of T̂Λ.

From Bloch’s theorem17, we know that the solutions of the can be expressed as

F(r) = u(r)eikx , (1.53)

where u(r) = u(r +mΛx̂) is called the Bloch function. This implies that

T̂ΛF (r) = eikΛF (r) . (1.54)

These solutions can thus be classified according to a wave vector, kx̂. Because of

the periodicity of eikΛ, all unique eigenvalues are contained in the domain, k ∈

[−π/Λ, π/Λ], which is called the first Brillouin zone18. The Bloch function will sat-

isfy a separate differential equation that determines the frequency of the mode as a

function of the k-vector. As the Bloch function is restricted to a finite region of space

17See, for instance, [14].
18Time-reversal symmetry and the fact that the frequencies (which are eigenvalues of Hermetian

operators) are necessarily real guarantee that positive and negative wave vectors yield identical
solutions. This allows the solutions to be further restricted to the first half of the first Brillouin
zone, k ∈ [0, π/Λ].
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(the unit cell) by its periodicity, the solutions for a given k have a discrete spectrum

of eigenfrequencies. Thus the eigenfrequencies for the acoustic and electromagnetic

modes of the mirror form bands, which we will label by a band index19, n. A diagram

that gives the spectrum of frequencies as a function of k in the first Brillouin zone20

will be called the band diagram of the structure.

1.2.4.2 Mirror Symmetries of the Projection

In addition to translational symmetry, the projection is also symmetric about the

y = 0 and z = 0 planes, as shown in Fig. 1.6. As in § 1.2.3.1 and § 1.2.3.5, the mirror

operators, σy and σz, which have covariant representations

σy =


1 0 0

0 −1 0

0 0 1

 σz =


1 0 0

0 1 0

0 0 −1

 , (1.55)

commute with the operators Ξ̂m and Ξ̂o. The electromagnetic and acoustic modes in

the projection can thus be further classified with respect to their vector parity about

these planes, each solution having an eigenvalue of the mirror operator such that

σjQ(σ−1r) = pjQ(r), where j can be y or z, and pj = ±1. We accordingly classify

the solutions to the wave equation by the wave vector k ∈ [0, π/Λ], py, and pz.

The band diagram for the acoustic modes of a nanobeam’s projection is shown

in Fig. 1.7, with the first ten band indices, n, labeled a to j, pz indicated by color,

and py indicated by line shape. The mechanical displacement profiles of the unit cell

are shown for each band at Γ and X. In the band diagram, the mirror symmetry σz,

(across the plane defined by z = 0) is indicated by color: red corresponds to even

vector parity (pz = 1) and blue to odd vector parity (pz = −1). Mirror symmetry

σy (across the plane defined by y = 0) plane is indicated by the line shape: solid

corresponds to even vector parity (py = 1) and dashed to odd vector parity (py = −1).

19Although the band indices may label the frequencies at a given value of k in order of increasing
frequency, the bands may cross; so this will not hold in general for all values of k.

20The two high symmetry points of the first Brillouin zone in a 1D periodic structure are often
assigned the names Γ for k = 0 and X for k = π/Λ.
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Λ 0 1Normalized |Q|

Figure 1.7: Mechanical band diagram and corresponding normalized displacement
profiles of the unit cell at the Γ (k = 0) and X (k = π/Λ) points. Color and linestyle
indicate the symmetries with respect to σ̂z and σ̂y, respectively (see text for details).

The mechanical mode profiles are all viewed from a direction normal to the z = 0

plane unless labeled “yz”, in which case the viewing angle is normal to the x = 0

plane. The pinch, accordion, and breathing mode bands are b, i, and j, respectively.

As torsional modes can be difficult to interpret without isometric views, it is noted

for the reader that the mechanical modes for band e at X, band f at Γ, and band h

at X are all torsional mechanical modes.

The band diagram for the optical modes of a nanobeam’s projection is shown

in Fig. 1.8, with the first four band indices, n, labeled a to d, and py indicated

by line shape21. As will be the case in all of this work, the structures are much

21As in the case of the Fig. 1.7, solid corresponds to even vector parity (py = 1) and dashed to
odd vector parity (py = −1).
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Figure 1.8: Optical band diagram and corresponding normalized displacement profiles
of the unit cell at the Γ (k = 0) and X (k = π/Λ) points. Color and linestyle indicate
the symmetries with respect to σ̂z and σ̂y, respectively (see text for details). The field
profiles shown correspond to Ey(x, y, z = 0).

thinner than they are wide, which makes the energy required to have odd z vector

parity very large; thus the TM-like (z-odd) modes of the structure do not exist at

relevant frequencies. The profile of Ey(x, y, z = 0) for four unit cells are shown for

the fundamental (valence) y-even and y-odd bands at the X point22.

The optical band diagram also displays another important feature of the optical

modes: index guiding. The shaded area of the band diagram, which is called the

light cone, corresponds to the region ωo > ck. The line itself, ωo = ck, is called the

light line. Above the light line, the modes of the nanobeam are propagating in the

direction transverse to the waveguide (x). Below the light line, the modes are guided

by the index contrast between the material and the air. The concept of index guiding

will play a critical role in the localization of optical modes.

22The conduction band modes look very similar but have their maxima in the air and nodes in
the material
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1.2.5 Localized Modes and Symmetries

Breathing Mode

Accordian Mode

Pinch Mode

Fundamental Optical

Second Order Optical Mode

Third Order Optical Mode

Localized Optical Modes

Localized Acoustic Modes

Figure 1.9: Exemplary localized modes of the nanobeam optomechanical crystal.

As described in § 1.2.1 and shown in Fig. 1.4, the defect in the structure (see

Fig. 1.4) breaks the discrete periodicity of the mirror section in the x direction,

and the solutions to the wave equation (Eq. 1.1) for the structure can no longer be

classified by wave vectors and band indices. The structure still retains its σ̂y and σ̂z

mirror symmetries. In addition, the structure now has a third mirror plane, σ̂x (the

plane x = 0), which divides the structure in half in the x direction. As discussed as a

general example in § 1.2.3.1, Ξ̂m and Ξ̂o commute with the mirror operator, σ̂x, where
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σx =


−1 0 0

0 1 0

0 0 1

 (1.56)

is the second rank covariant representation of σ̂x. Each solution of the wave equation

of the full structure is thus an eigenvector of σ̂j, with corresponding vector parity

pj = ±1, j ∈ [x, y, z].

The solutions to the wave equations in the defect can be viewed as being drawn

from the band edges of the projection. Localized modes are formed whenever the

modes of the defect exist at a frequency for which the density of states in the projection

is small or zero. Thus, many localized mechanical modes are formed at the various

band edges. Manifolds of localized modes have identical parities with respect to σy

and σz, and the parity with respect to σx alternates as one climbs the ladder of states

in the manifold.

Examples of localized modes are shown in Fig. 1.9. The three optical modes are

derived from the X point of the “a” band of Fig. 1.8. The mechanical modes, which

all have px = py = pz = +1, are derived from various bandedges of Fig. 1.7: breathing,

band “j”, Γ point; accordion, band “i”, Γ point; and pinch, band “b”, X point.

1.2.6 Mode Amplitudes, Effective Mode Volumes, and Effec-

tive Mass

The optical mode is characterized by a resonant frequency ωo = 2πνo and electric field

E(r). The mechanical mode is characterized by a resonant frequency Ωm = 2πνm and

displacement field Q(r), where Q(r) is the vector displacement describing perpendic-

ular displacements of the boundaries of volume elements. The cavity optomechanical

interactions of the distributed structure and its spatially-dependent vector fields, E(r)

and Q(r), can be reduced to a description of two scalar mode amplitudes and their

associated mode volumes, with the coupling of the amplitudes parameterized by a

single coupling coefficient, gOM.
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The mode amplitude, c, and complex vector field profile, e(r), are defined such

that the complex electric field is E(r) = ce(r) (the physical field is given by the

real part of E(r)eiωt). For pedagogical reasons, the amplitude c is normalized such

that the time averaged electromagnetic energy is equal to |c|2; i.e. U = |c|2 =

1
2

∫
dV ε |E|2. This forces e to be normalized such that 1 = 1

2

∫
dV ε |e|2. In cavity

quantum electrodynamics, one typically defines an effective optical mode volume,

Vo =
∫

dV

( √
ε|E|

max(|√εE|)

)2

, in order to gauge the strength of light-matter interactions.

The mechanical vibration’s amplitude, α, and mode profile (displacement), q(r),

are defined such that Q(r) = αq(r). Here, α is defined as the largest displacement

that occurs anywhere for the mechanical field, Q(r), so that max(|q(r)|) = 1. The

mode amplitude, α, must also represent the amplitude of the generalized position,

β(t) = α cos(Ωt), and generalized momentum, meff β̇(t), of a simple harmonic oscilla-

tor with an energy, Emechanical = meff

2
(Ω2β2+β̇2). Our particular choice of α determines

the mechanical mode’s effective volume, Vm, and effective mass, meff ≡ ρVm, since

this choice of α requires the complimentary definition meff = ρ
∫

dV
(

|Q|
max(|Q|)

)2

. To

see this note that, at the classical turn-around point, integrating the potential en-

ergy of each volume element must give the total potential energy. Thus Emechanical =

1
2
Ω2
∫
ρ|Q(r)|2dV = 1

2
meffΩ2α2, or, in other words, meffα

2 =
∫
ρ|Q(r)|2dV . One

can arbitrarily choose the definition of the amplitude or the mass, but choosing one

determines the other. In addition, α is the amplitude of zero-point motion of the

canonical position operator in a quantized treatment. For a system like a localized

mode of a phononic crystal defect cavity, where only a very small, localized portion of

the total mass undergoes appreciable motion, the most sensible choice of the mass is

the amplitude-squared weighted density integral, which, as stated above, is the choice

of mass associated with α = max(|Q(r)|).
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1.2.7 Optical Coupling Between a Standing Wave Resonator

and a Traveling Wave Input

The optical cavities in this work will be fed optical power via a nanoscale tapered and

dimpled optical fiber [16]. This makes it critical to have a description of the coupling

between the waveguide (traveling wave) mode of the fiber and standing wave mode

of the resonator. We will be concerned with describing the energy loading of the

cavity given experimentally-measurable quantities; we will not be concerned with

calculating the coupling rates from the fields, which is the subject of coupled mode

theory, excellent treatments of which can be found in References [14,17,18].

Consider an optical cavity with two traveling waves represented by the amplitudes,

ã and b̃, with degenerate frequency ωo. The field ã is fed optical energy at rate κe by

an external driving field, represented by s̃ = se−iωt, where |s̃|2 ≡ P0, where P0 is the

incident power. Each of the fields, ã and b̃, experience an identical energy loss rate,

κ ≡ κi + κe, albeit into different channels: ã couples into the direction of the input

field (transmission channel), s̃ = se−iωt, while b̃ couples into the backward direction

(reflected channel). In addition, the two fields are coupled together with coherent

coupling rate βeiη, where Im {β} = 0. The amplitudes obey the coupled differential

equations [14,18]

˙̃a = −iωoã+ iβeiη b̃− κ

2
ã+ i

√
κes̃ (1.57)

˙̃b = −iωob̃+ iβe−iηã− κ

2
b̃ . (1.58)

In a frame rotating with s̃, we define the envelopes, a and b, such that ã = ae−iωt

and b̃ = be−iωt. These envelopes then obey the differential equations

ȧ = i∆0a+ iβeiηb− κ

2
a+ i

√
κes (1.59)

ḃ = i∆0b+ iβe−iηa− κ

2
b , (1.60)
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where ∆0 ≡ ω − ωo (blue detuning for ∆ > 0).

The steady state amplitudes are found from setting the time derivatives to zero.

This gives the solutions

a =
i
√
κe

κ
2
− i∆0 + β2

κ
2
−i∆0

s (1.61)

b =
iβe−iη

κ
2
− i∆0

a . (1.62)

When β � κ (as is the case in photonic crystals, where β is equal to the band gap),

there is no appreciable amplitude in either mode until ∆0 ≈ ±β. In this case, it can

be easily shown that b ≈ ±e−iηa; in other words, the two fields have equal energies,

and we expect they form a standing wave.

With the above in mind, it is useful to make a change of basis:

c =
1√
2

(
a+ eiηb

)
↔ a =

1√
2

(c+ d) (1.63)

d =
1√
2

(
a− eiηb

)
↔ b =

e−iη√
2

(c− d) . (1.64)

One can already see the utility, since, if b = e−iηa (∆0 = β), d = 0, whereas if

b = −e−iηa (∆0 = −β), c = 0. Thus we expect the two fields to decouple. In

particular, it can easily be shown that

ċ = −
(κ

2
+ i(∆0 − β)

)
c+ i

√
κe
2
s (1.65)

ḋ = −
(κ

2
+ i(∆0 + β)

)
d+ i

√
κe
2
s . (1.66)

These two two fields are, in fact, decoupled; each standing wave amplitude behaves as

an independent field with the original loss rate, κ = κi + κe, but only half the input

coupling energy rate (i.e. the coefficient in front of the input field is now proportional
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to
√
κe/2). We can now work with a single standing wave amplitude, and the other

will never be populated as long as β � κ, which is always the case in practice. The

master equation for the standing wave amplitude is thus

ċ = −
(κ

2
+ i∆

)
c+ i

√
κe
2
s , (1.67)

where ∆ ≡ ∆0 − β = ω − (ωo + β).

To find the cavity energy, one must construct the electric field, E = aeikx+be−ikx.

Then the total (time-averaged) electromagnetic energy density is

u =
1

2
ε0 |E|2 =

ε0
2

(
|a|2 + |b|2 + 2 cos(2kx)Re {ab∗} − 2 sin(2kx)Im {ab∗}

)
. (1.68)

The total cavity energy is then

U =

∫
V

udV ≈ ε0V

2

(
|a|2 + |b|2

)
, (1.69)

where the equation is exact on resonance and approximately true off resonance for

a high-Q cavity, in the sense that the change in k as it is varied from resonance to

∆ = κ is proportional to 1/Q. Thus, if one sets a →
√

2U
ε0V

a (and similarly for b),

then U = |a|2 + |b|2.

Because the transformation between standing waves and traveling waves is unitary,

|a|2 + |b|2 = |c|2 + |d|2, and, thus, we can finally conclude that

U = |c|2 + |d|2 ≈ |c|2 . (1.70)

The steady-state solution to (1.67) is

c =
i
√

κe
2
s

κ
2

+ i∆
, (1.71)

and, thus, the cavity energy is
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U = |c|2 =
2(κe/κ

2)

1 + 4
(

∆
κ

)2P0 . (1.72)

In order to determine the cavity energy experimentally, one must determine the ratio

κe/κ. It will now be shown that this quantity is readily measurable via the on-

resonance transmission of the cavity mode.

The field transmitted past the waveguide is sout = ise−iωt−
√

κe
2
cp(t) [14,18], and

so the transmission coefficent, T = |sout/s|2 is

T =
∣∣∣1 + i

√
κe
a

s

∣∣∣2 , (1.73)

and, thus, in our approximation where only c has appreciable amplitude (which is

essentially exact in the experimental realizations in this work),

T ≈
∣∣∣∣1 + i

√
κe
2

c

s

∣∣∣∣2 =

∣∣∣∣1− κe
2

1
κ
2

+ i∆

∣∣∣∣2 =

∣∣∣∣∣1− κe/κ

1 + 2i∆
κ

∣∣∣∣∣
2

. (1.74)

As stated above, the quantity, T0 ≡ T (∆ = 0), allows one to experimentally relate

the external coupling rate (i.e. the ratio κe/κ) to the resonant transmission depth.

In particular,

T0 = (1− κe
κ

)2 , (1.75)

and, since κe ≤ κ, it follows that

κe
κ

= 1−
√
T0 . (1.76)

With this expression, one can readily use equation 1.72 to calculate the optical cavity

energy.

Another useful relation is the relative linewidth, κ/κi = 1/
√
T0, which describes

the broadening of the resonance due to extrinsic coupling (this follows trivially from

the definition κ = κe + κi).
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Figure 1.10: Simulated coupling of a traveling wave mode to a standing wave mode.
The transmission spectra in c correspond to the colored circles in the other three
plots.

1.3 Cavity Optomechanics

1.3.1 Dispersive Coupling Between the Mechanical and Op-

tical Modes

The optomechanical coupling affects the optical mode by tuning its resonant frequency

as a function of displacement, ωo(α); whereas the coupling affects the mechanical

mode by applying a force, which is expressed as a gradient of the cavity energy,

d |c|2 /dα. The optical resonant frequency is usually expanded in orders of the (small)
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displacement, α around some equilibrium displacement, α0.

ωo(α) = ωo

∣∣∣
α=α0

+ (α− α0)
dωo

dα

∣∣∣
α=α0

+
1

2
(α− α0)2 d2ωo

dα2

∣∣∣
α=α0

+ ... (1.77)

In the case that the terms higher than first order can be neglected, this equation

simplifies to

ωo(α) = ωo

∣∣∣
α=α0

+(α−α0)
dωo

dα

∣∣∣
α=α0

≡ ωo +(α−α0)gOM ≡ ωo +(α−α0)
ωo

LOM

, (1.78)

where ωo ≡ ωo

∣∣∣
α=α0

is the equilibrium resonance frequency of the optical mode,

gOM ≡ dωo

dα

∣∣∣
α=α0

is the derivative of the resonance frequency of the optical mode

evaluated at equilibrium, and LOM is the effective optomechanical length of the system.

The effective length, LOM, is a universal parameter that relates displacement to a

change in optical frequency (i.e. α/LOM = δωo/ωo). From the definition, L−1
OM ≡

1
ωo

dωo

dα

∣∣∣
α=α0

= gOM/ω0, one can see that reducing LOM maximizes the optomechanical

coupling. Moreover, this optomechanical coupling length is “diffraction limited” to

λo/(2neff), where λo is the free space optical wavelength and neff is the effective index

of the optical mode. It is simple to show that LOM is equal to the spacing between

the mirrors of a Fabry-Perot cavity when one mirror is allowed to move along the

cavity axis or the radius of a microtoroid/microdisk for a radial breathing motion,

which clearly has a lower limit of half the optical wavelength. For a “Zipper” cavity or

double-microdisk, LOM is an exponentially decreasing function of the spacing between

the coupled elements, with LOM approaching half the effective optical wavelength of

light in the material as the spacing approaches zero.

In terms of the coupling parameters, then, the optical force can be written as

|Foptical| =
d |c|2

dα
=

d |c|2

dωo

dωo

dα
=
|c|2

ωo

dωo

dα
=
|c|2

LOM

. (1.79)

The perturbation theory of Maxwell’s equations with shifting material boundaries
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[19] allows one to calculate the derivative of the resonant frequency of a structure’s

optical modes with respect to some parameterization of a surface deformation, h(α; r),

perpendicular to the surface of the structure. This results in the derivative of the

dispersion with respect to alpha being equal to

dωo

dα
=
ωo

2

∫
dA

dh

dα

[
∆ε
∣∣E‖∣∣2 −∆(ε−1) |D⊥|2

]
∫

dV ε |E|2
. (1.80)

Thus, if the result of a mechanical simulation is the displacement field, Q(r) =

αq(r) ≡ αQ(r)/max(|Q|), then using the definition of the effective optomechanical

coupling length, LOM, and accounting for field normalizations,

1

LOM

=
1

4

∫
dA (q · n̂)

[
∆ε
∣∣e‖∣∣2 −∆(ε−1) |d⊥|2

]
(1.81)

where d = εe, n̂ is the unit normal vector on the surface of the unperturbed cavity,

∆ε = ε1− ε2, ∆(ε−1) = ε−1
1 − ε−1

2 , ε1 is the dielectric constant of the structure, and ε2

is the dielectric constant of the surrounding medium.

To calculate LOM by deforming the structure, one must simulate the fields with a

deformation amplitude, α, that is large enough to be detectable numerically but small

enough that higher order dispersion does not affect the frequency shift. To verify

that higher order dispersion is not included, one must simulate the optical fields

for a range of displacement amplitudes and extract the linear dispersion. Because

perturbation theory can calculate the linear term exactly from a single calculation

using the undeformed structure, this method has clear advantages over numerical

methods using finite deformations.
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1.3.2 Coupled Equations of Cavity Optomechanics

For a harmonic optical field E(r)23, which is described by the mode amplitude c, and

a displacement (acoustic) field Q(r), described by mode amplitude α, the optome-

chanical interaction of linear order (terms of order d2ωo/dα
2 and higher are neglected

and α0 ≡ 0) of the fields is governed by the coupled differential equations

ċ(t) =
(
−κ

2
− iωo

(
1∓ α(t)

LOM

))
c(t) + i

√
κe
2
se−iωt (1.82)

α̈ + Γiα̇ + Ω2α = ± |c|2
meffLOM

(1.83)

where κ ≡ κi +κext, κi ≡ ωo/Qop,i is the intrinsic optical loss rate of the of the cavity;

κext is the extrinsic coupling rate between the optical input field and the optical cavity

field; s is the amplitude of the input field, normalized such that |s|2 ≡ P0 is the

optical input power impinging on the cavity; Ω is the acoustic resonance frequency

of the cavity24; Γ ≡ Ω/Qm,i is the intrinsic acoustic loss rate of the cavity; and

meff ≡ ρVacoustic is the effective mass of the acoustic mode of the cavity, being the

product of the mass density and the effective volume of the acoustic mode. Here we

use the convention that the optical resonance frequency is decreasing with increasing

α and the optical force is the positive gradient of the cavity energy; this is the typical

convention, but it is completely arbitrary25.

23This work will apply to a standing wave optical mode coupled to a traveling wave input field
(as discussed in section 1.2.7. To map all the equations derived below to a traveling wave optical
mode that is co-directionally-coupled to a traveling wave input field (with no parasitic coupling),
one must substitute κe/2 → κe, along with the different relation for κe/κ. However, this is all one
must do to move back and forth between these two pictures.

24Because the acoustic differential equation is second order, the damping coefficient that multiplies
the velocity is the energy loss rate, not the amplitude loss rate. Thus Γ is the linewidth of the power
spectrum of the acoustic mode. The distinction is important, as it can be confusing since it is κ/2
that appears as the damping coefficient in the first-order optical differential equation, but κ is the
linewidth (energy damping rate).

25This is essentially a statement that the direction that positive α points is arbitrary. The combi-
nation of the signs in the coupled differential equations, however, is not arbitrary. One must change
the sign of both to make physical sense, since, for instance, whether blue or red detuning induces
mechanical gain will be changed if one is changed without the other.
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1.3.3 Sideband Formalism

One approximate method of solving the linear equations of optomechanics (1.82) and

(1.83) is to treat the acoustic mode as a small perturbation of the optical mode, find

the effect of the acoustic mode on the optical field, and then calculate what effect the

perturbed optical mode has on the acoustic mode. Starting with the premise that

the displacement, α, is sinusoidal; i.e.

α(t) = α0 sin(Ωt) , (1.84)

the mode amplitude, c, is thus described by

ċ(t) =

(
−κ

2
− iωo

(
1− α(t)

LOM

))
c(t) + i

√
κe
2
se−iωt . (1.85)

1.3.3.1 Formal Solution

The homogeneous solution to (1.85) is

ch(t) = C0 exp

((
−κ

2
− iωo

)
t− i α0

LOM

ωo

Ω
cos(Ωt)

)
. (1.86)

The particular solution to (1.85) can take the form cp(t) = C(t)ch(t), satisfying

Ċ(t) =
1

ch(t)
i

√
κe
2
se−iωt = is

√
κe
2

exp

((κ
2

+ iωo

)
t+ i

α0

LOM

ωo

Ω
cos(Ωt)− iωt

)
,

(1.87)

where C0 has been absorbed into C(t).

Introducing the modulation index

β ≡ α0

LOM

ωo

Ω
, (1.88)

the cosine part of the argument of the exponential can be expanded into Bessel

functions as
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exp (±iβ cos(Ωt)) =
+∞∑

n=−∞

(±i)nJn(β)einΩt , (1.89)

which is known as the Jacobi-Anger expansion. This allows straight-forward integra-

tion of C; to wit,

C(t) = is

√
κe
2

+∞∑
n=−∞

inJn(β)
κ
2

+ i(nΩ−∆)
ei(

κ
2

+nΩ−ω+ωo)t . (1.90)

Thus

cp(t) = C(t)ch(t) = is

√
κe
2

+∞∑
n=−∞

inJn(β)
κ
2

+ i(nΩ−∆)
ei(nΩ−ω)t+iβ cos(Ωt) . (1.91)

The general solution is then c(t) = ch(t) + cp(t). As ch(t) is exponentially damped

at rate κ, the general solution rapidly converges to cp(t), which is the steady-state

solution. This optical mode amplitude can thus be used to compute the various

properties of the optomechanical system.

1.3.3.2 The Transmission of an Oscillating Cavity

The steady state power exiting the cavity is

sout = ise−iωt −
√
κe
2
cp(t) , (1.92)

and thus

|sout|2 = |−isout|2 =

∣∣∣∣se−iωt + i

√
κe
2
cp(t)

∣∣∣∣2 = |s|2 +
κe
2
|cp(t)|2 − 2Im

{√
κe
2
cps
∗eiωt

}
(1.93)

with
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−2Im

{√
κe
2
cps
∗eiωt

}
= −κe |s|2 Re

{∑
n,m

i(n−m)Jn(β)Jm(β)
κ
2

+ i(nΩ−∆)
ei(n+m)Ωt

}
(1.94)

and

|cp(t)|2 =
κe
2
|s|2
∑
n,m

i(n−m)Jn(β)Jm(β)(
κ
2

+ i(nΩ−∆)
) (

κ
2
− i(mΩ−∆)

)ei(n−m)Ωt . (1.95)

1.3.3.3 RF Spectrum of the First Order Sidebands

The experimental arrangement in this work is such that the optical mode is observed

by weakly populating the cavity with photons via the tapered optical fiber waveg-

uide and then collecting the transmitted photons via the same waveguide. The RF

spectrum of the power transmitted, |sout|2, is obtained by simple photomixing on

an avalanche photodiode (APD). This RF spectrum contains information about the

mechanical modes because the mechanical modes modulate the optical mode via the

optomechanical coupling. The modulation manifests as a set of sidebands created

in the cavity that are transmitted and detected at the APD. If the amount of op-

tical modulation, β, is small (i.e. β � 1), only the first sideband contributes, as

Jn(β → 0) ≈ 1
n!

(
β
2

)n
. In this case, only the product J0(β)J±1(β) contributes to the

signal, and we thus need only consider terms with n = 0,m = ±1 and n = ±1,m = 0

(terms with n = 0,m = 0 are DC and do not contribute to the RF spectrum). Also

note that, for β � 1, J0(β) ≈ 1, and J±1(β) ≈ ±β
2
. As an example, for the breathing

mode of a silicon nanobeam, one can have ωo/Ω ≈ 105 and, with α given by the

thermal amplitude of oscillation α =
√
kBT/meffΩ2, α/LOM ≈ 2 ∗ 10−13 m/5 ∗ 10−6

m= 5 ∗ 10−8, β ≈ 5 ∗ 10−3. Note that this condition is independent of the degree

of sideband resolution, which is Ω/(κ/2); the system can have small modulation in

either the sideband-resolved or sideband-unresolved regimes.

In this small modulation approximation, the power oscillating at Ω is
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|sout,Ω|2

|s|2
= −κeRe

{
−i(β/2)e−iΩt

κ
2
− i∆

+
−i(β/2)e+iΩt

κ
2
− i∆

+
i(β/2)e+iΩt

κ
2

+ i(Ω−∆)
+

i(β/2)e−iΩt

κ
2

+ i(−Ω−∆)

}
+
(κe

2

)2
{

−i(β/2)e−iΩt(
κ
2
− i∆

) (
κ
2
− i(Ω−∆)

)}

+
(κe

2

)2
{

−i(β/2)e+iΩt(
κ
2
− i∆

) (
κ
2

+ i(Ω + ∆)
)}

+
(κe

2

)2
{

i(β/2)e+iΩt(
κ
2

+ i(Ω−∆)
) (

κ
2

+ i∆
)}

+
(κe

2

)2
{

i(β/2)e−iΩt(
κ
2
− i(Ω + ∆)

) (
κ
2

+ i∆
)} . (1.96)

This expression can be simplified by combining the terms proportional to (κe/2)2

(those four terms are really just two terms plus their complex conjugates, which can

be written as twice the real part of one term). With this simplification, one finds

|sout,Ω|2

|s|2
= −κeRe

{
−i(β/2)e−iΩt

κ
2
− i∆

+
−i(β/2)e+iΩt

κ
2
− i∆

+
i(β/2)e+iΩt

κ
2

+ i(Ω−∆)
+

i(β/2)e−iΩt

κ
2

+ i(−Ω−∆)

}
+
κ2
e

2
Re

{
−i(β/2)e−iΩt(

κ
2
− i∆

) (
κ
2
− i(Ω−∆)

) +
−i(β/2)e+iΩt(

κ
2
− i∆

) (
κ
2

+ i(Ω + ∆)
)}

≡ −κeX +
κ2
e

2
Y . (1.97)

At this point, we must break this into two terms proportional to sin(Ωt) and cos(Ωt).

Then the quadrature sum of those terms will be equal to the total power at Ω.

These terms can be expanded and then simplified to yield
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X = −16β∆Ω
Ω(4∆2 − 3κ2 − 4Ω2) cos(Ωt) + κ(4∆2 + κ2) sin(Ωt)

(κ2 + 4∆2) (16∆4 + 8∆2(κ2 − 4Ω2) + (κ2 + 4Ω2)2)

= − cos(Ωt)

[
− β

2

(
2∆(

κ
2

)2
+ ∆2

+
Ω−∆(

κ
2

)2
+ (Ω−∆)2

− Ω + ∆(
κ
2

)2
+ (Ω + ∆)2

)]

− sin(Ωt)

[
βκ

4

(
1(

κ
2

)2
+ (Ω−∆)2

− 1(
κ
2

)2
+ (Ω + ∆)2

)]
(1.98)

Y = (β/2)

[
− cos(Ωt)

(
−κΩ/2(

(κ
2
)2 −∆(Ω−∆)

)2
+
(
κ
2
Ω
)2 +

κΩ/2(
(κ

2
)2 + ∆(Ω + ∆)

)2
+
(
κ
2
Ω
)2

)

− sin(Ωt)

(
(κ

2
)2 −∆(Ω−∆)(

(κ
2
)2 −∆(Ω−∆)

)2
+
(
κ
2
Ω
)2 −

(κ
2
)2 + ∆(Ω + ∆)(

(κ
2
)2 + ∆(Ω + ∆)

)2
+
(
κ
2
Ω
)2

)]

= (β/2)

[
cos(Ωt)

(
2κ

κ2 + 4∆2

)(
Ω

(κ
2
)2 + (Ω−∆)2

− Ω

(κ
2
)2 + (Ω + ∆)2

)

+ sin(Ωt)

(
4Ω

κ2 + 4∆2

)(
Ω−∆

(κ
2
)2 + (Ω−∆)2

− Ω + ∆

(κ
2
)2 + (Ω + ∆)2

)]
. (1.99)

So finally, we have

|sout,Ω|2

|s|2
= cos(Ωt)

[
κeβ

2

(
− 2∆(

κ
2

)2
+ ∆2

− Ω−∆(
κ
2

)2
+ (Ω−∆)2

+
Ω + ∆(

κ
2

)2
+ (Ω + ∆)2

)

+β
κ2
e

4

(
2κ

κ2 + 4∆2

)(
Ω

(κ
2
)2 + (Ω−∆)2

− Ω

(κ
2
)2 + (Ω + ∆)2

)]

+ sin(Ωt)

[
κeβ

2

(
κ/2(

κ
2

)2
+ (Ω−∆)2

− κ/2(
κ
2

)2
+ (Ω + ∆)2

)
(1.100)

+β
κ2
e

4

(
4Ω

κ2 + 4∆2

)(
Ω−∆

(κ
2
)2 + (Ω−∆)2

− Ω + ∆

(κ
2
)2 + (Ω + ∆)2

)]
.

If we say then, that
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|sout,Ω|2

|s|2
= cos(Ωt)Acos + sin(Ωt)Asin , (1.101)

then the total power at frequency Ω (in both quadratures) is

|sout,Ω|2 = |s|2
√
A2
cos + A2

sin . (1.102)

1.3.3.4 Optical Forces

Referring to equations (1.79) and (1.91), the optical force is equal to

|cp(t)|2 /LOM =
κe

2LOM

|s|2
∑
n,m

i(n−m)Jn(β)Jm(β)(
κ
2

+ i(nΩ−∆)
) (

κ
2
− i(mΩ−∆)

)ei(n−m)Ωt . (1.103)

We will again work in the limit of small modulation depth (β � 1). In this caase, the

DC force is found by considering the term for which m = n = 0 (the next DC term is

m = n = ±1, which is of order β2), which is simply proportional to the unperturbed

cavity energy,

Foptical,DC =
1

LOM

2(κe/κ
2)

1 + 4
(

∆
κ

)2P0 . (1.104)

In the limit of small modulation, just as in the consideration of the RF trans-

mission spectrum, there will be four terms at frequency Ω. These are the same four

terms, and, in fact, in this approximation, |cp(t)|2 = |s|2 κeY (see Eq. (1.99)). Thus

the RF force is
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Foptical,Ω ≡ FQ cos(Ωt) + FI sin(Ωt) = FQ
α̇

Ωα0

+ FI
α

α0

(1.105)

= |s|2 κeβ

2LOM

[
cos(Ωt)

(
2κ

κ2 + 4∆2

)(
Ω

(κ
2
)2 + (Ω−∆)2

− Ω

(κ
2
)2 + (Ω + ∆)2

)

+ sin(Ωt)

(
4Ω

κ2 + 4∆2

)(
Ω−∆

(κ
2
)2 + (Ω−∆)2

− Ω + ∆

(κ
2
)2 + (Ω + ∆)2

)]
,

where FQ and FI are the in-quadrature and in-phase components of the force, respec-

tively.

We can now rewrite the differential equation for the acoustic mode, Eq. (1.83), to

include the effects of the optical mode.

α̈ + Γiα̇ + Ω2α =
1

meff

(
FQ

α̇

Ωα0

+ FI
α

α0

+ FDC

)
(1.106)

Thus, we can rewrite the acoustic mode amplitude’s differential equation as

α̈ + (Γi + Γ)α̇ +
(
Ω2 + δΩ2

)
α =

1

meff

FDC , (1.107)

with

Γ ≡ − 1

meffΩα0

FQ (1.108)

δ(Ω2) ≈ 2ΩδΩ ≡ − 1

meffα0

FI (1.109)

Γ = − ωo

ΩL2
OMmeff

(
2κe |s|2

κ2 + 4∆2

)(
κ/2

(κ
2
)2 + (Ω−∆)2 −

κ/2

(κ
2
)2 + (Ω + ∆)2

)
(1.110)

δΩ = − ωo

2ΩL2
OMmeff

(
2κe |s|2

κ2 + 4∆2

)(
Ω−∆

(κ
2
)2 + (Ω−∆)2

− Ω + ∆

(κ
2
)2 + (Ω + ∆)2

)
(1.111)
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1.3.3.5 Power Transfer and Effective Temperature

The power transfer between the optical and mechanical mode is (see, for instance, [5])

〈P 〉 = 〈Foptical · α̇〉 =
〈
α0Ωm

(
FQ cos(Ωt)2 + FI sin(Ωt) cos(Ωt)

)〉
=
α0Ωm

2
FQ .

(1.112)

With equation 1.108, we can thus write 〈P 〉 = −α2
0

2
meffΩ2

mΓ = −〈α2〉meffΩ2Γ.

The free evolution of the average mechanical energy, Em obeys d
dt
〈Em〉 = −Γi 〈Em〉+

kBTRΓi, where TR is the reservoir temperature. This gives the expected steady-state

result that 〈Em〉 = kBTR. In the presence of the optical field, the loss rate of the me-

chanical system is modified. However, the optical field does not modify the reservoir

temperature [5], which means that the evolution of the mechanical energy changes to

d
dt
〈Em〉 = −(Γi + Γ) 〈Em〉 + kBTRΓi. Thus the steady-state result gives an effective

temperature Teff = Γi
Γi+Γ

TR.

The effective temperature changes the total power of a mechanical mode, whereas

the change in linewidth from Γ just narrows (or broadens) the mechanical resonance.

1.3.4 Calculating the Power Spectral Density

The thermal amplitude of oscillation is defined by

1

2
meffΩ2α2

thermal =
1

2
kBT . (1.113)

Thus we can define a thermal modulation index given by

βthermal =
αthermal
LOM

ωo

Ω
. (1.114)

Using equations (1.100) - (1.102) and βthermal, one can find the total transmitted

power oscillating at frequency ν = Ω/(2π), |sout,ν |2. Only a fraction of this output

power reaches the detector, and we’ll call this P@det,ν = µ |sout,ν |2

The transimpedance gain of the detector, GTI,0, converts optical power to a volt-
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age; the gain has a simple pole, however, at frequency νdet. Thus the total gain of the

detector at the frequency of the oscillator, ν, is GTI(ν) = GTI,0/ (1 + (ν/νdet)
2). This

voltage is then fed to the input of a buffered channel amplifier with unity gain and a

simple pole at frequency, νscope (however, in post-processing, the oscilloscope flattens

its own response; so that power spectral densities do not contain the oscilloscope’s

pole); then the voltage across the load resistor (input impedance Z) at the output of

the channel amplifier is used to compute a “power”, such that

PRF,ν =

(
µ |sout,ν |2GTI,0(ν)

(1 + (ν/νdet)2)

)2

/Z . (1.115)

Because the spectrum of a mechanical resonator is distributed over all frequencies,

we must calculate how much power is in a given frequency interval, dν ≡ dΩ/(2π).

If the spectrum is a Lorentzian, we must have that

PRF,ν =

∫ ∞
−∞

S2(ν)dν ′ =

∫ ∞
−∞

S2(ν)

1 +
(
ν′−ν
δν/2

)2 dν ′ = πS2(ν)δν/2 =
πνS2(ν)

2Qm

. (1.116)

Thus the power spectral density at the peak is

S2(ν) =
2QmPRF,ν

πν
. (1.117)

Note that an oscilloscope typically displays S2(ν) ∗ RBW , where RBW is the

resolution bandwidth (the reciprocal of the time record length of the FFT).

1.3.5 Extracting the Product meffL
2
OM from Experimental RF

Spectra

Equation 1.117 allows simple extraction of the total RF power in each mechanical

mode. Equations (1.100) - (1.102) can then be used to calculate the product meffL
2
OM

for each mode, albeit indirectly (since it is not simple to invert the equations). Given

κe, κ, ∆, νm, and νo, which are all experimentally-measured parameters (and ∆ is

directly set to be the ∆ which gives the maximum transduction) the product meffL
2
OM
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uniquely determines the transduced power due to Brownian motion in each mode.

Then a numerical root finder can be used to find the product meffL
2
OM that gives the

correct transduced power from Eq. 1.117.

1.3.6 Thermooptic Effects in Cavity Optomechanics

We begin with the set of coupled equations describing mechanical and optical motion,

ȧ = −(i(∆o − gOMx) + Γ/2)a+ κs, (1.118)

ẍ = −γM ẋ− Ω2
Mx−

|a|2gOM

ωomx

, (1.119)

where ∆o ≡ (ωl − ωo) is the bare laser detuning from the optical cavity resonance

(ωo), Γ is the optical cavity (energy) decay rate, κ(=
√

1/τe) is the input coupling

rate of the laser into the cavity, |s|2 is the optical input power, gOM ≡ dω/dx is the

optomechanical factor, γM is the bare mechanical (energy) damping factor, ΩM(=√
k/mx) is the bare mechanical frequency, mx is the bare motional mass of the

mechanical resonator, and a is the amplitude of the optical cavity field normalized so

that |a|2 represents the stored optical cavity energy. The equation for a is written in

a slowly varying basis in which the laser frequency, ωl, has been removed from both

a and s.

In order to include the effects of thermo-optic tuning of the cavity resonance, we

include a third equation for the cavity temperature increase, ∆T :

ȧ = −(i(∆o − (gOMx+ gth∆T )) + Γ/2)a+ κs, (1.120)

ẍ = −γM ẋ− Ω2
Mx−

|a|2gOM

ωomx

, (1.121)

∆̇T = −γth∆T + Γabs|a|2cth, (1.122)

where gth = −(dn/dT )(ωo/no) is the thermo-optic tuning coefficient, dn/dT is the
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thermo-optic coefficient of the optical and mechanical cavity material, Γabs is the

component of the optical energy decay which is due to material absorption, cth is the

thermal heat capacity of the cavity, and γth is temperature decay rate.

In order to solve these coupled equations we proceed using a perturbation approach

[5]. We assume that the mechanical motion is harmonic in time with small amplitude

parameter εx, x(t) = xo + εx cos(ΩM t). The optical cavity mode amplitude and the

cavity temperature increase can be expanded in terms of the small parameter εx,

a(x, t) =
∞∑
n=0

εnxan(x, t), (1.123)

∆T (x, t) =
∞∑
n=0

εnx∆Tn(x, t). (1.124)

(1.125)

Keeping terms only to first order in εx yields the following sets of coupled equations,

0 = −(i∆′o + Γ/2)a0 + κs, (1.126)

0 = −Ω2
Mxo −

|a0|2gOM

ωomx

, (1.127)

0 = −γth∆To + Γabs|a0|2cth, (1.128)

and

ȧ1 = +i(gOMx1 + gth∆T1))a0 − (i∆′o + Γ/2)a1, (1.129)

ẍ1 = −γM ẋ1 − Ω2
Mx1 −

(a0a
∗
1 + a∗0a1)gOM

ωomx

, (1.130)

∆̇T 1 = −γth∆T1 + Γabs(a0a
∗
1 + a∗0a1)cth, (1.131)

where x1 ≡ cos(ΩM t) and ∆′o = ∆o − (gOMxo + gth∆To) is the time averaged laser-
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cavity detuning. Fourier transforming the first-order perturbation equations to con-

vert them from differential to algebraic ones yields,

(i(ω + ∆′o) + Γ/2)ã1 = +i(gOMx̃1 + gth∆̃T 1)a0, (1.132)

(i(ω −∆′o) + Γ/2)ã∗1 = −i(gOMx̃1 + gth∆̃T 1)a∗0, (1.133)

− ω2x̃1 = −iωγM x̃1 − Ω2
M x̃1 −

(a0ã∗1 + a∗0ã1)gOM

ωomx

, (1.134)

(iω + γth)∆̃T 1 = Γabs(a0ã∗1 + a∗0ã1)cth, (1.135)

Solving for the time-dependent part of the optical cavity energy,

(a0ã∗1 + a∗0ã1) = f(ω,∆′o)
[
i|a0|2(gOMx̃1 + gth∆̃T 1)

]
, (1.136)

where we have defined the transfer function f as,

f(ω,∆′o) =

(
1

(i(ω + ∆′o) + Γ/2)
− 1

(i(ω −∆′o) + Γ/2)

)
. (1.137)

Substituting for ∆̃T 1 of eq. (1.135) allows us to solve for the optical cavity energy

solely in terms of the mechanical motion,

(
f(ω,∆′o)

−1 − igthΓabscth|a0|2

iω + γth

)
(a0ã∗1 + a∗0ã1) = i|a0|2gOMx̃1. (1.138)

Defining f ′(ω, |a0|2) and g(ω,∆′o, |a0|2) as,

f ′(ω, |a0|2) = −igthΓabscth|a0|2

iω + γth
, (1.139)

g(ω,∆′o, |a0|2) = f

[
1 + (f ′)∗f ∗

|1 + f ′f |2

]
, (1.140)

allows us to write for the Fourier transform of the time varying component of the

cavity energy,
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(a0ã∗1 + a∗0ã1) = ig(ω,∆′o, |a0|2)|a0|2gOMx̃1. (1.141)

All of the transfer functions f , f ′, and g have the property that h(−ω) = −h(ω)∗.

With x̃1 = (δ(ω − ΩM) + δ(ω − ΩM)/2, we have for the cavity energy,

(a0ã∗1 + a∗0ã1) = i|a0|2gOM(g(ΩM)δ(ω − ΩM) + g(−ΩM)δ(ω + ΩM))/2 (1.142)

= −|a0|2gOM(g(ΩM)δ(ω − ΩM)− g∗(ΩM)δ(ω + ΩM))

2i
. (1.143)

Further simplifying this result yields,

(a0ã∗1 + a∗0ã1) = −|a0|2gOM

[Re(g(ΩM))(δ(ω − ΩM)− δ(ω + ΩM))

2i
(1.144)

+
Im(g(ΩM))(δ(ω − ΩM) + δ(ω + ΩM))

2

]
. (1.145)

Finally this gives in the time-domain,

(a0a
∗
1(t) + a∗0a1(t)) = |a0|2gOM

[
Re(g(ΩM))

ΩM

(−ΩM sin ΩM t)− Im(g(ΩM)) cos ΩM t

]
,

= |a0|2gOM

[
Re(g(ΩM))

ΩM

ẋ1 − Im(g(ΩM))x1

]
(1.146)

Substituting this result into the equation of motion for x1(t) in eq. (1.130) allows one

to identify renormalized mechanical frequency (Ω′M) and damping (γ′M) terms due to

optomechanical and thermo-optic interactions,

(Ω′M)2 = Ω2
M −

|a0|2g2
OMIm(g(ΩM))

ωomx

, (1.147)

γ′M = γM +
|a0|2g2

OMRe(g(ΩM))

ΩMωomx

. (1.148)
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The effects of the thermo-optic tuning of the cavity are manifest in the correction

to the pure optomechanical transfer function (f) in the equation for g given in eq.

(1.140). This correction factor is simply 1/(1 + f ′f). For |f ′f | � 1 the thermo-

optic correction is small, and can be neglected. In order to make connection with

previously derived results for the optomechanical spring and gain coefficient, we now

consider this correction in the sideband unresolved limit, relevant for the current

zipper cavities.

1.3.6.1 Sideband Unresolved Limit (ΩM � Γ)

We begin by evaluating f(ΩM) in the limit that ΩM � Γ,

f(ΩM) ≈ −2∆′o

(
ΓΩM + i∆2

∆4

)
, (1.149)

where we have defined ∆2 = (∆′o)
2 + (Γ/2)2. In the absence of thermo-optic tuning

this results in the usual equations for the sideband unresolved optical spring effect

and optomechanical gain,

(Ω′M)2|∆T1=0 = Ω2
M +

(
2|a0|2g2

OM

∆2ωomx

)
∆′o, (1.150)

γ′M |∆T1=0 = γM −
(

2|a0|2g2
OMΓ

∆4ωomx

)
∆′o. (1.151)

As can be seen, this results in an increase in the mechanical frequency and negative

damping (positive amplification) of the mechanical motion for blue detuned laser light

(relative to the steady-state cavity resonance frequency).

1.3.6.2 Sideband Eesolved Limit (ΩM � Γ)

Rewriting f(ΩM) in terms of its real and imaginary components we find,

f(ΩM) = −2∆′o

(
ΓΩM + i (∆2 − Ω2

M)

(∆2 − Ω2
M)

2
+ (ΓΩM)2

)
. (1.152)
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Substituting this form of f(ΩM) into the equations for the optical spring and optome-

chanical damping/amplification coefficients yields,

(Ω′M)2|∆T1=0 = Ω2
M +

 2|a0|2g2
OM (∆2 − Ω2

M)(
(∆2 − Ω2

M)
2

+ (ΓΩM)2
)
ωomx

∆′o, (1.153)

γ′M |∆T1=0 = γM −

 2|a0|2g2
OMΓ(

(∆2 − Ω2
M)

2
+ (ΓΩM)2

)
ωomx

∆′o. (1.154)

Further simplification for the sideband resolved limit is not generally attainable. Be-

low we consider “optimal” detuning points for maximizing the optomechanical damp-

ing/amplification rate, from which we obtain simplifications in both the resolved and

unresolved sideband limits.

1.3.6.3 Optimal Detuning Points for Damping/Amplification

Of interest is the maximum optical spring and optomechanical damping/amplification

rate that can be obtained for a given cavity energy or input power. Here we study

both the resolved and unresolved sideband limits separately.

Sideband unresolved limit (ΩM � Γ)

One can easily show that the detuning point of maximum damping/amplification,

for a given internal cavity energy, occurs at ∆′o ≈ (±1/
√

3)(Γ/2) in the unresolved

sideband limit. The corresponding spring and maximum damping/amplification co-

efficients are,

(Ω′M)2|∆T1=0, SUR,∆′
o=± Γ

2
√

3
≈ Ω2

M ±

(√
3|a0|2g2

OM

Γωomx

)
, (1.155)

γ′M |∆T1, SUR,∆′
o=± Γ

2
√

3
≈ γM ∓

(
3
√

3|a0|2g2
OM

Γ2ωomx

)
. (1.156)

In the case of fixed input power (Pi), the (time averaged) internal cavity energy is

also dependent upon the (average) detuning through the cavity Lorentzian transfer
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function,

|a0|2 =

(
(Γ/2)2

∆2

)(
4K

1 +K

)
Pi
Γ
, (1.157)

where K is the coupling parameter [20] given by the ratio of the external loading

rate of the cavity (through a waveguide or mirror) to the intrinsic cavity damp-

ing rate, K ≡ Γe/Γi. The optimal detuning point for maximum mechanical damp-

ing/amplification and fixed input power occurs at ∆′o ≈ (±1/
√

5)(Γ/2) in the resolved

sideband limit, with optomechanical coefficients,

(Ω′M)2|∆T1=0, SUR,∆′
o=± Γ

2
√

3
≈ Ω2

M ±

(
5
√

5g2
OM

9Γ2ωomx

)(
4K

1 +K

)
Pi, (1.158)

γ′M |∆T1, SUR,∆′
o=± Γ

2
√

3
≈ γM ∓

(
50
√

5g2
OM

27Γ3ωomx

)(
4K

1 +K

)
Pi. (1.159)

From these equations we see that the maximal damping/amplification in the unre-

solved sideband limit is strongly dependent upon the optical cavity Q when input

power is the fixed parameter.

A final consideration is the ratio of the optical spring effect to the mechanical

damping/amplification. We evaluate the normalized ratio of the optical spring to the

dampling/amplification factor at the optimal detuning point for fixed input power

found above (the optical spring is optimized at a slightly different detuning point,

which we ignore here), and find in the sideband unresolved limit,

(Ω′M − ΩM) /ΩM

(γ′M − γM) /γM
|∆T1, SUR ≈ −

(∆2 − Ω2
M)

2ΩMΓQM

∆′
o=± Γ

2
√

5≈ − 3Γ

20ΩMQM

, (1.160)

where QM ≡ ΩM/γM is the bare mechanical resonator Q-factor. The effect of the

optical spring in this limit can then be larger than that of the optomechanical damp-

ing/amplification in situations where the mechanical Q-factor is not too large.

Sideband resolved limit (ΩM � Γ)
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The extrema of the damping/amplification coefficient in the sideband resolved

limit (ΩM � Γ), for fixed internal cavity energy, occurs approximately at a detuning

of ∆′o ≈ ±ΩM . The corresponding coefficients at this optimal detuning point are

approximately,

(Ω′M)2|∆T1=0, SR,∆′
o=±ΩM ≈ Ω2

M ±
(
|a0|2g2

OM

2ΩMωomx

)
, (1.161)

γ′M |∆T1, SR,∆′
o=±ΩM ≈ γM ∓

(
2|a0|2g2

OM

ΓΩMωomx

)
. (1.162)

One sees from the above equations that the maximum damping/amplification for

a given internal cavity energy scales only linearly with the optical cavity Q-factor

(through Γ−1) in the resolved sideband limit. Also, the optical spring is indepen-

dent of cavity Q at this detuning point. In this limit then, the most important

optomechanical parameters are gOM and mx, which enter into both the spring and

damping/amplification coefficient as g2
OM/mx.

Similar to the fixed cavity energy case, the optimal detuning point for maximum

mechanical damping/amplification and fixed input power occurs at ∆′o ≈ ±ΩM in the

resolved sideband limit, with optomechanical coefficients,

(Ω′M)2|∆T1=0, SR,∆′
o=±ΩM ≈ Ω2

M ±
(

g2
OMΓ

8Ω3
Mωomx

)(
4K

1 +K

)
Pi, (1.163)

γ′M |∆T1, SR,∆′
o=±ΩM ≈ γM ∓

(
g2

OM

2Ω3
Mωomx

)(
4K

1 +K

)
Pi. (1.164)

From these equations we see that the maximal damping/amplification in the resolved

sideband limit is independent of the optical cavity Q when input power is the fixed

parameter. This is an important point, as it sets a limit to which the threshold

input power for regrenerative mechanical oscillation may be lowered by increasing

the optical cavity Q, and highlights again the importance of the ratio g2
OM/mx.

As noted in the sideband unresolved case, the detuning point of maximum optical
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spring is different than that for maximum damping/amplification. Assuming a small

relative optical spring effect ((Ω′M)2 − Ω2
M ≈ 2ΩM (Ω′M − ΩM)), we can write for the

ratio of the optical spring frequency shift to the mechanical damping/amplification

coefficient in the resolved sideband limit,

(Ω′M − ΩM) /ΩM

(γ′M − γM) /γM
|∆T1, SR

∆′
o=±ΩM≈ − Γ

8ΩMQM

. (1.165)

Unlike in the unresolved sideband case, in the limit of resolved sidebands the op-

tical spring effect is much smaller than the effect of damping/amplification on the

mechanical resonator properties.

1.3.6.4 Thermo-Optic Response in the Sideband Unresolved Limit

We now consider the thermo-optic response in the sideband unresolved limit, and for

a system in which the mechanical frequency is much larger than the thermal decay

rate, a situation commonly found in optomechanical microsystems. We begin with

f ′,

f ′(ΩM) = (−ΩMγth − iγ2
th)

(
∆th

Ω2
M + γ2

th

)
≈ (−ΩMγth − iγ2

th)

(
∆th

Ω2
M

)
, (1.166)

where we have assumed that the mechanical frequency is much larger than the thermal

decay rate (ΩM � γth) and we have associated gthΓabscth|a0|2/γth with the static

thermo-optic tuning of the cavity resonance, ∆th. In order to evaluate g, we need the

unresolved sideband limit of |f |2, |f ′|2, and 2Re(f ′f),

|f(ΩM)|2 ≈ 4(∆′o)
2

∆4
, (1.167)

|f ′(ΩM)|2 ≈
(
γth∆th

ΩM

)2

, (1.168)

2Re(f ′(ΩM)f(ΩM)) ≈ 4∆′o∆thγth(∆
2γth − Ω2

MΓ)

Ω2
M∆4

. (1.169)
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This yields for the transfer function g(ΩM) in the sideband unresolved limit and for

ΩM � γth,

g(ΩM) ≈
(

1

1 + s(|ao|2)

)(
f(ΩM) +

4(f ′(ΩM))∗(∆′o)
2

∆4

)
, (1.170)

where we have defined a saturation parameter, s, which is equal to,

s ≈
(

2∆′oγth∆th(|a0|2)

∆2ΩM

)2(
1 +

(
∆th(|a0|2)

)−1
(

∆2

∆′o
− Ω2

MΓ

∆′oγth

))
. (1.171)

Under most situations in which the thermo-optic correction to the bare optomechanics

is significant, the static thermo-optic tuning of the cavity resonance dominates all

other rates and only the first term contributes to s,

s ≈
(

2∆′oγth∆th(|a0|2)

∆2ΩM

)2

. (1.172)

One can usefully relate the thermo-optic correction factor in eq. (1.171) to that of

the bare optomechanical factor f as,

4(f ′(ΩM))∗(∆′o)
2

∆4
≈ Re(f(ΩM))

(
2∆th∆

′
oγth

Ω2
MΓ

)
+ iIm(f(ΩM))

(
−2∆th∆

′
oγ

2
th

∆2Ω2
M

)
.

(1.173)

Substituting eqs. (1.167,1.171) into eqs. (1.148,1.149) yields the following thermo-

optic corrections to the optical spring and optomechanical gain coefficients in the

sideband unresolved limit and for slow thermal response,

(Ω′M)2 ≈ Ω2
M +

(
2|a0|2g2

OM∆′o
∆2ωomx

)[
1 +W

1 + s

]
, (1.174)

γ′M ≈ γM −
(
|a0|2g2

OMΓ∆′o
∆4ωomx

)[
1 + V

1 + s

]
, (1.175)

where the correction factors are,



56

W = −
(

2∆th∆
′
oγ

2
th

∆2Ω2
M

)
= −

(
2∆th

Γ

)(
γth
ΩM

)2(
Γ∆′o
∆2

)
, (1.176)

V =

(
2∆th∆

′
oγth

Ω2
MΓ

)
=

(
2∆th

Γ

)(
γth
ΩM

)2(
∆′o
γth

)
. (1.177)

It should be noted that both W and V are dependent upon the (time) average stored

cavity energy through the static thermo-optic tuning, ∆th. It is also noteworthy that

since the thermo-optic tuning is negative for most cavity materials (heat generates a

red shift of the cavity resonance), W will be a positive quantity and V a negative one

for blue detuned laser input (∆′o > 0). In this way the thermo-optic correction tends

to increase the bare optical spring effect and reduce the bare optomechanical gain

when one tunes to the blue side of the cavity resonance. This negative correction to

the optomechanical gain can then result in an effective mechanical damping on the

stable blue-detuned side of the cavity resonance if |V | > 1, a case study of which will

be explored below. The situation is reversed for a red detuned laser input, with the

optical spring effect tending to be reduced and the optomechanical damping being

enhanced.

Before proceeding to study specific examples, it is useful to estimate the cor-

rection factors and the saturation parameter for detunings close to the maximal

bare optomechanical response, |∆′o| ≈ Γ/2. Substituting this detuning into eqs.

(1.173,1.177,1.178) yields,

|s(|∆′o| = Γ/2)| ≈
(

2∆th

Γ

)2(
γth
ΩM

)2

, (1.178)

|W (|∆′o| = Γ/2)| ≈
(

2|∆th|
Γ

)(
γth
ΩM

)2

, (1.179)

|V (|∆′o| = Γ/2)| ≈
(

2|∆th|
Γ

)(
γth
ΩM

)2(
Γ

2γth

)
. (1.180)

The correction factor to the optomechanical gain (damping) is seen to be Γ/2γth times

larger than that of the correction to the optical spring effect. For optomechanical
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systems of micron scale and high optical Q, Γ/2π ∼ 10 MHz and γth/2π ∼ 10

kHz are reasonable numbers, which means the gain correction is on the order of a

thousand times larger than the spring correction. For more modest optical Q systems

(Q ∼ 105), the gain correction is a million times larger than the spring correction. The

saturation parameter scales similarly to the optical spring correction factor, with an

extra factor of 2∆th/Γ. Thus, for static thermo-optic tuning greater than the cavity

linewidth (thermo-optic bistability) the optical spring correction due to thermo-optic

tuning always serves to quench the bare optomechanical effect. The optomechanical

gain (damping), however, can be enhanced over a useful parameter regime. It is now

appropriate to look at a couple of systems in more detail. We begin with the zipper

optomechanical cavity.

1.3.6.5 Example: The Zipper Optomechanical Cavity

The zipper cavity studied in the manuscript has an optical Q-factor on the order

of Q ∼ 3 × 104 (Γ/2π ∼ 6 GHz or roughly a δλ ∼ 50 pm linewidth), a mechanical

frequency ΩM/2π ∼ 10 MHz, and a thermal decay rate of roughly γth/2π ∼ 8 kHz (see

below). These devices have significant optical absorption at λ ∼ 1550 nm, resulting

in a static thermo-optic tuning of roughly ∆λth ∼ 4 nm (100 cavity linewidths)

for a time-averaged stored cavity energy of 3 fJ (Pi ∼ 5 mW). The correction and

saturation parameters for the zipper cavity under this sort of optical input power and

at the “optimal” detuning are,

|s(|∆′o| = Γ/2)| ≈ 2× 10−3, (1.181)

|W (|∆′o| = Γ/2)| ≈ 8× 10−6, (1.182)

|V (|∆′o| = Γ/2)| ≈ 10. (1.183)

We see that, because of the large thermo-optic tuning and reasonably fast thermal

response (a result of the small heat capacity of the zipper cavity geometry), for the

zipper cavity the optomechanical gain reverses sign at high enough optical input
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power for blue detuned pumping, resulting in strong optomechanical damping of the

mechanical motion. This is what we see in our measurements. The optical spring is

left unaffected and the overall saturation of the optomechanical coupling is negligible.

1.3.6.6 Example: The Double-disk Optomechanical Cavity

We have also fabricated and measured a “double-disk” gradient force optomechanical

devices more similar to the previously studied microtoroid cavity [5]. In the case of

the double-disk (results of which will be presented elsewhere [21]), the mechanical

frequency and thermal time constant are similar to that of the zipper cavity. The

double disk has roughly a factor of 30 times the optical Q of the zipper cavity (Q ∼

106, Γ/2π ∼ 200 MHz). The resulting static thermo-optic tuning is roughly only 8

pm for 3 fJ of stored optical cavity energy, 500 times less than for the zipper cavity

and corresponding to 3-4 cavity linewidths. Note that the difference comes partly

from the reduced optical absorption in the double disk and partly from the much

higher thermal resistance of the long cantilevers with small cross-section in the zipper

cavity. For the double disk structure then, the correction and saturation parameters

under similar optical pumping conditions as for the zipper cavity are,

|s(|∆′o| = Γ/2)| ≈ 2× 10−6, (1.184)

|W (|∆′o| = Γ/2)| ≈ 3× 10−7, (1.185)

|V (|∆′o| = Γ/2)| ≈ 0.014. (1.186)

All of the thermo-optic corrections to the optomechanical response in the double-disk

structure are then negligible at the power levels studied so far in the lab. Not supris-

ingly, then, we observe amplification and self-oscillation of the mechanical motion for

blue-detuned input light.
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1.3.7 Thermo-Mechanical Effects

It is also important to consider thermo-mechanical effects (i.e., direct mechanical ac-

tuation stemming from thermal effects such as the pressure rise in the gas between

the zipper nanobeams or thermal expansion of the nanobeams and surrounding sup-

ports) [22]. Thermo-mechanical effects can not only produce a temperature dependent

shift in the cavity resonance frequency as described above in the case of the thermo-

optic effect, but in addition they can directly produce a force on the nanobeams. On

first blush, one might expect that thermo-mechanical effects are responsible for the

blue-detuned damping measured in the zipper cavities (for instance, the sign of a

thermo-mechanical force due to the pressure rise in the gas between the nanobeams

would be opposite that of the optical force). However, even an overly optimistic es-

timate of the magnitude of thermo-mechanical effects indicates that this is not the

case.

The steady-state temperature rise inside the cavity at the largest optical input

powers used in this work (Pi = 5 mW) is roughly ∆T0 = 60 K (estimated from

the measured thermal tuning rate of the cavity as described below). The optical

energy inside the cavity is being modulated by roughly β = 15% of the time-averaged

internal cavity energy due to thermal motion of the nanobeams. The component of

the zipper cavity temperature oscillating in-phase with the optical cavity energy at the

mechanical frequency (ΩM ∼ 10 MHz) is roughly ∆Tq ∼ (γth/ΩM)2β∆T0, whereas the

in-quadrature component of the zipper cavity temperature is ∆Tp ∼ (γth/ΩM)β∆T0.

This assumes of course that γth � ΩM , as is the case for the zipper cavity. Using

some of the numbers estimated below, we find γth/ΩM ∼ 10−3, so that the in-phase

and in-quadrature modulations in the cavity temperature are at most ∆Tq ∼ 10−5 K

and ∆Tp ∼ 10−2 K, respectively.

We first consider a thermo-mechanical force from the thermal expansion in the

nanobeams. The resulting in-plane displacement (which couples to the optical field)

is difficult to simply estimate as it sensitivitly depends upon the beam clamping. We

have performed finite-element-method (FEM) simulations of our stuctures, with an
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accurate representation of our clamping geometry, and find that the resulting in-plane

displacement is δx = 80 pm for ∆T0 = 60 K at the center of the zipper cavity. From

the above estimated in-phase and in-quadrature temperature oscillations for this static

temperature shift, we find the corresponding in-phase and in-quadrature thermo-

mechanical displacements, δxq ∼ 1.3×10−17 m and δxp ∼ 1.3×10−14 m, respectively.

The effective in-plane force producing these in-plane displacements is related to the

spring constant of the structure, and given by, ∆F ∼ mxΩ
2
Mδx. Putting this all to-

gether, we arrive at in-phase and in-quadrature (relative to the mechanical oscillation)

components of in-plane force on the nanobeams equal to ∆Fq ∼ 1.3 × 10−15 N and

∆Fp ∼ 1.3 × 10−12 N. The corresponding corrections to the mechancical frequency

and damping of the mechanical motion are given by, ∆(Ω2
M) ∼ ∆Fq/(mx

√
2xrms) and

∆(γM) ∼ ∆Fp/(mxΩM

√
2xrms), where xrms ≈ 6 pm is the thermal rms amplitude of

motion in our case. For ΩM/2π = 8 MHz and γM/2π = 150 kHz of the unperturbed

zipper cavity h1d mode, we find ∆(Ω2
M)/Ω2

M ∼ 1.4×10−6 and ∆(γM)/γM ∼ 7.5×10−2.

The measured (frequency)2 shift is ∼ 106 times larger than this estimate, indicating

that the measured spring effect is not a result of this sort of thermo-mechanical cou-

pling. The measured mechanical damping factor is ∆γM/γM ∼ 8, which is two-orders

of magnitude larger than be expected from thermo-mechanical coupling due to ther-

mal expansion of the nanobeams.

Another possible thermo-mechanical force is that due to the temperature depen-

dent pressure changes in the gas (nitrogen) surrounding the nanobeams. Treating

a worst case scenario in which the gas between the nanobeams is unable to expand

(molecules cannot escape), the in-phase and in-quadrature pressure increases would be

approximately ∆Pq ∼ (∆Tq/T0)P0 ∼ 3×10−8P0 and ∆Pp ∼ (∆Tp/T0)P0 ∼ 3×10−5P0,

respectively, near room temperature (T0 = 300 K). The area of the gap-side of the

nanobeams in the zipper cavity is 10−11 m2, yielding a best-case scenario in-phase and

in-quadrature force of ∆Fq ∼ 3× 10−14 N and ∆Fp ∼ 3× 10−11 N, respectively. The

corresponding corrections to the mechancical frequency and damping of the mechan-

ical motion are ∆(Ω2
M)/Ω2

M ∼ 3 × 10−5 and ∆(γM)/γM ∼ 1.7. Again, the measured

(frequency)2 shift is ∼ 105 times too small to account for the measured spring effect.
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The predicted mechanical-amplitude damping factor is within an order of magnitude

of the measured value, although still a factor of 5 times too small even with the

extremely “optimistic” estimate for the pressure rise. As such, it is unlikely that

this thermo-mechanical effect is contributing significantly to the observed mechanical

damping either.

A final comment relates to the difference between the thermo-optic effect studied

here and direct thermo-mechanical damping/amplification present in other nanome-

chanical and cavity-optomechanical devices [22, 23]. In these previously studied de-

vices, if the pure optical force were removed the system would behave in a similar

fashion. In the case of the thermo-optic effect, the thermo-optic tuning only serves to

enhance or quench the bare optomechanical coupling, effectively riding on top of the

optomechanical response. Turning off the optical force, then, eliminates the coupling

of the thermo-optic effect to the mechanical degrees of freedom of the system.
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Chapter 2

Optical and Mechanical Design of
a “Zipper” Photonic Crystal
Optomechanical Cavity

This chapter is reproduced and adapted from Ref. [2].

2.1 Summary

Design of a doubly-clamped beam structure capable of localizing mechanical and op-

tical energy at the nanoscale is presented. The optical design is based upon photonic

crystal concepts in which patterning of a nanoscale-cross-section beam can result in

strong optical localization to an effective optical mode volume of 0.2 cubic wavelengths

((λc)
3). By placing two identical nanobeams within the near field of each other, strong

optomechanical coupling can be realized for differential motion between the beams.

Current designs for thin film silicon nitride beams at a wavelength of λ = 1.5 µm

indicate that such structures can simultaneously realize an optical Q-factor of 7×106,

motional mass mu ∼ 40 picograms, mechanical mode frequency ΩM/2π ∼ 170 MHz,

and an optomechanical coupling factor (gOM ≡ dωc/dx = ωc/LOM) with effective

length LOM ∼ λ = 1.5 µm.
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2.2 Introduction

At a macroscopic level, the interaction of light with the mechanical degrees of free-

dom of a dielectric object can be calculated by considering the flux of momentum

into or out of an object using the Maxwell stress-energy tensor. At a microscopic

level, as in the case of atomic physics, one can define an interaction Hamiltonian

between an atom and the light field in order to derive the various mechanical forces

on the atom’s center of mass, which in general depends upon both the external and

internal degrees of freedom of the atom [24]. In the case of a dielectric mechanical

resonator, a direct relationship between the macroscopic dielectric and microscopic

atomic theories can be made, and useful analogies may be forged [5, 6]. The interac-

tions of light with mechanically resonant objects is currently being actively explored

in the field of cavity optomechanics as a means to obtain ground-state cooling of a

macroscopic mechanical resonator [6, 25–31]. The strength of optomechanical inter-

actions in these system can be quantified on a per-photon basis by the rate of change

of the cavity resonance frequency (ωc) with mechanical displacement amplitude (u),

gOM ≡ dωc/du = ωc/LOM. LOM is an effective length over which a cavity photon’s

momentum can be exchanged with the mechanical system. In this work we describe a

simple doubly clamped nanobeam system (a so-called zipper cavity) which allows for

the combined localization of optical and mechanical energy in a nanoscale structure

so as to provide extremely large optomechanical coupling due to the gradient optical

force. Optical energy is localized within the center of the nanobeam using a one-

dimensional photonic crystal in combination with total internal reflection. Beyond

the analysis provided here, future optimization of both the optical and mechanical

properties of these chip-based structures should allow for a variety of new applications

from precision metrology [32] to tunable photonics [33, 34].

The outline for the paper is as follows. We begin with the optical design of a one-

dimensional photonic crystal in a siliocn nitride nanobeam. Finite-element-method

electromagnetic simulations are used to deduce the level of optical localization and the

relevant optical losses within the struture. The mechanical properties of the zipper
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cavity are studied next, with numerical simulations used to determine the lower-lying

mechanical eigenmodes. The tuning properties of a double nanobeam photonic crystal

are then computed to estimate the strength of the optomechanical coupling for the

differential in-plane motion of the beams. We conclude with a comparison of the

zipper cavity properties with other more macroscopic optomechanical systems, and a

discussion of the future prospects for these sorts of chip-based gradient optical force

devices.

2.3 Optical Design and Simulation
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Figure 2.1: Bandstructure properties of the photonic crystal nanowire. (a) Axial
bandstructure of the single beam photonic crystal structure, with nominal width and
thickness. k|| is the wavevector of light in the direction of the 1D photonic lattice,
a is the lattice period, and Λ/λ0 is the “normalized” optical frequency for free-space
wavelength λ0. The light cone, denoted by the grey area and deliniated by the black
light line, represents regions of frequency-wave-vector space in the bandstructure
diagram in which light can radiate into the two transverse directions orthogonal to
the axis of the photonic lattice. The two inset images show the electric field energy
density of the valence (i) and conduction (ii) band-edge modes (the white outline is
a contour plot of the refractive index of the nanowire). (b) Schematic of the double
beam zipper cavity indicating the slot gap (s), the lattice constant (a), the beam
width (w), and the axial and transverse hole lengths, hx and hy, respectively.

The optical design of the zipper cavity utilizes a quasi-1D photonic crystal struc-
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ture to localize optical modes to the center of a nanoscale cross-section beam. There

are a number of different, but related, design methodologies used to form low-loss op-

tical resonances in such photonic crystal “nanowires” [35–40]. In this paper we utilize

concepts based upon an envelope picture of the guided photonic crystal modes [41]

in the patterned nanobeam. We choose to work with “acceptor”-type modes formed

from the lower-lying band of modes (the so-called “valence” band in reference to elec-

tronic semiconductor crystals) at the Brillouin zone boundary. In this way, the mode

frequencies are as far away from the light line as possible, reducing leakage into the

surrounding air-cladding of the nanobeam. Owing to the optically thin photonic wires

considered in this work, the modes of predominantly in-plane polarization (TE-like

modes) are most strongly guided and are the modes of primary interest here. In order

to form acceptor modes, the bandedge of the valence band must be increased near

the center of the cavity, and decreased in the mirror sections defining the end of the

cavity. This is a result of the negative group velocity dispersion of the valence band

modes [41].

We have chosen to perform designs based upon thin films of silicon nitride, as

opposed to higher refractive index materials such as silicon-on-insulator (SOI), for

several reasons. One reason is that silicon nitride can be grown on silicon wafers with

very high optical quality across a wide range of wavelengths covering the visible to

the mid-infrared. We have measured [42] optical Q-factors in excess of 3 × 106 for

whispering-gallery modes of microdisks formed from stoichiometric silicon nitride de-

posited by low-pressure-chemical-vapor-deposition (LPCVD). A second reason is that

LPCVD-deposited stoichiometric silicon nitride films on silicon have a large internal

tensile stress, which has been shown to be critical in producing high-Q mechani-

cal resonances in doubly-clamped nanobeams [43, 44]. An additional concern is the

two-photon absorption present in smaller bandgap semiconductors such as silicon and

gallium arsenide, which results in additional free-carrier absorption (FCA), and which

can result in significant parasitic effects such as thermo-optic and free-carrier disper-

sion in small-volume photonic crystal nanocavities [20]. Silicon nitride, with its large

bangap (∼ 3 eV), requires three (as opposed to two) 1 eV photons to be absorbed
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simultaneously, greatly reducing nonlinear absorption in the near-IR. An obvious

drawback of using silicon nitride thin films, is the lower refractive index (n ∼ 2) of

these films in comparison to semiconductor films (n ∼ 3.4). As is shown below (and

in Ref. [40]), with carefully chosen designs, high-Q photonic crystal optical cavities

of sub-cubic-wavelength mode volume can still be formed in silicon nitride thin films.

The bandstructure of a single beam silicon nitride nanowire, calculated using the

MIT photonic bands software package [45], is displayed in Fig. 2.2. As described in

more detail below, the simulation is performed for a “nominal” structure defined by a

lattice normalized beam thickness (t̄ = t/Λ = 2/3) and beam width (w̄ = w/Λ = 7/6).

The refractive index of the silicon nitride beam is taken as n = 2, and a resolution

of 64 points per axial lattice period is used to ensure accurate band frequencies. Our

coordinate convention is (see Fig. 2.4): (i) x the in-plane coordinate along the long

axis of the cavity, (ii) y the in-plane transverse coordinate, and (iii) z the out-of-

plane transverse coordinate. Only the lower-lying bands with modes of even parity

in the ẑ-direction and odd parity in the ŷ-direction are shown, corresponding to the

fundamental TE-like modes of the beam waveguide. As indicated by the electric field

energy density plots of the two lowest lying band-edge modes (inset to Fig. 2.2(a)),

the valence band lies predominantly in the region of the high refractive index silicon

nitride beam, whereas the upper “conduction” band mode lies predominantly in the

region of the air hole patterning.

The formation of localized optical cavity resonances is accomplished by introduc-

ing a “defect” into the photonic lattice. The defect region in the structures studied

here consists of a quadratic grade in the lattice constant of the linear array of air holes

near the cavity center. In order to reduce transverse radiation loss, we choose to use

a defect which supports an odd symmetry fundamental mode along the axial direc-

tion. Since the valence band modes tend to have electric field intensity predominantly

inside the high-dielectric region (and nodes of the electric field in the low-dielectric

constant air holes), a defect in which an air hole is at the center of the cavity yields

an odd parity fundamental mode along the axial direction. Here, and in what fol-

lows, we use a cavity defect region consisting of the central 15 holes, with the lattice
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Figure 2.2: Geometry and photonic properties of the defect portion. a Lattice con-
stant (normalized to the lattice period in the mirror section of the cavity, Λm) versus
hole number (nh) within the photonic lattice of the cavity. a,b Resulting frequency
of the valence band-edge mode versus hole number. b Normalized frequency in terms
of the local lattice constant, (Λ/λ0)nh , is displayed. c The local band-edge frequency
is referenced to the valence band-edge in the mirror section of the cavity. The solid
blue (dashed red) curve is the valence (conduction) band-edge.

period varied from a nominal value in the outer mirror section (am) to 90% of the

nominal value at the center of the defect region. This was found to provide a good

balance between axial-localization of the cavity modes and radiation loss into the y-z

transverse directions of the nanobeams. In Fig. 2.2(c) we plot the local lattice period,

defined as anh = x(nh + 1)− x(nh), versus air hole number nh along the length of the

cavity. In Fig. 2.2(d) we plot the corresponding lattice-normalized frequency of the

local TE-like valence band-edge modes of the single beam cavity. The small variation

in lattice-normalized frequency is a result of the distortion in the aspect ratio of the
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(perfectly periodic) structure as the lattice period is changed. More useful is the plot

in Fig. 2.2(e) which shows the frequency of the local valence band-edge (blue solid

curve) and conduction band-edge (red dashed curve) modes normalized to the valence

band-edge mode frequency in the mirror section of the cavity. The quadratic grade in

lattice constant results in a nearly-harmonic shift in the valence band-edge frequency

versus position in the center of the cavity, with the band-edge frequency at the cavity

center lying approximately mid-gap between the valence and conduction band-edges

in the mirror section of the cavity.
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Figure 2.3: Optical design principle of the zipper cavity. (a) Axial bandstructure of
the double beam quasi-1D photonic crystal structure, with nominal width, thickness,
and slot gap. The blue curves are the bonded bands and the red curves are the anti-
bonded bands. Valence and conduction band-edge modes of the bonded (b,c) and
anti-bonded (d,e) bands, respectively. (f) Illustration of the defect cavity formation
at the Brillouin-zone boundary. The splitting between the two manifolds is indicated
by ∆λ+,−.

For the double-beam design of the zipper cavity, two photonic crystal nanowires

are placed in the near-field of each other as illustrated in Fig. 2.2(b). The strong cou-
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pling between two nearly-identical nanobeams results in a bandstructure consisting of

even and odd parity superpositions of the TE-polarized single beam photonic bands

(Fig. 2.3(a)). We term the even parity supermodes, bonded modes, and the odd

parity supermodes, anti-bonded modes [33]. The anti-bonded manifold of resonant

modes are shifted to higher frequency than the bonded manifold of modes, with split-

ting (∆λ+,−) being dependent upon the slot gap (s) between the nanobeams. The

electric field energy density plots of the bonded valence and conduction band-edge

modes are shown in Figs. 2.3(b) and 2.3(c), respectively. The corresponding anti-

bonded modes, with noticeably reduced energy density in the slot gap, are displayed

in Figs. 2.3(d)-(e). Owing to the negative curvature of the valence band forming the

localized cavity modes, the fundamental mode of the cavity for each manifold has the

highest frequency, with the higher-order modes having reduced frequencies (schemat-

ically illustrated in Fig. 2.3(f)). In what follows, we will primarily be interested in

the bonded mode manifold due to the larger electric field intensity of these modes in

the slot gap.

With the zipper cavity now defined, we perform a series of finite-element-method

(FEM), fully vectorial, 3D simulations of the localized cavity modes [46]. In these

simulations we use the graded cavity design described above. The numerical mesh

density is adjusted to obtain convergent values for the frequency and optical Q-factor

of the cavity modes, and the structure is simulated with all available symmetries

taken into account allowing for 1/8th the simulation volume. Scattering boundary

conditions are used in the outer axial and transverse boundaries to provide a nearly-

reflectionless boundary for out-going radiation. In the transverse direction (y-z) a

cylindrical outer boundary is also used to reduce the total simulation volume. Finally,

a check of the accuracy of our FEM simulations was also performed through a series

of equivalent simulations using finite-difference time-domain code (Lumerical [47]).

Figures 2.4(a) and 2.4(c) display the FEM-calculated electric field mode profiles of

the fundamental bonded (TE+,0) and anti-bonded (TE−,0) modes, respectively, of the

double beam zipper cavity. Cross-sectional electric field profiles, displayed in Figs.

2.4(b) and 2.4(d), clearly show the even and odd parity of the modes. Also shown



70

(b)(a)

(d)(c)

(e)

(f )

(g)

x

y

y

z

C

M

Y

CM

MY

CY

CMY

K

Figure3.pdf   9/29/09   7:01:14 PM

Figure 2.4: Transverse electric field (Ey) mode profile of the fundamental bonded
mode (TE+,0): (a) top-view, (b) cross-section. Transverse electric field (Ey) mode
profile of the fundamental anti-bonded mode (TE−,0): (c) top-view, (d) cross-section.
The field colormap corresponds to +1 (red), 0 (white), and -1 (blue). Electric field
energy density of the (e) fundamental (TE+,0), (f) second-order (TE+,1), and (g)
third-order (TE+,2) bonded optical modes. The intensity colormap ranges from +1
(red) to 0 (blue).

in Figs. 2.4(e)-2.4(g) are the electric field intensity of the lowest three bonded cavity

mode orders, TE+,0, TE+,1, and TE+,2.

Design variations of the zipper cavity are performed around a “nominal” structure

with the following (normalized) dimenensions: (i) beam width, w̄ ≡ w/Λm = 700/600,

(ii) beam thickness, t̄ ≡ t/Λm = 400/600, (iii) axial hole length, h̄x ≡ hx/Λm =

267/600, (iv) axial hole width, h̄y ≡ hy/Λm = 400/600, and (v) slot gap, s̄ ≡ s/Λm =

100/600, where Λm is the lattice periodicity in the cavity mirror section. The length

of the beam is set by the number of air hole periods in the cavity, which for the

nominal structure is Nh = 47 (23 holes to the left and right of the central hole, with
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the central 15 holes defining the defect region). The filling fraction of the air holes in

the nominal structure is f = 25.4%. For a fundamental bonded mode wavelength of

λ ∼ 1500 nm, the nominal lattice constant is Λm = 600 nm, hence the normalization

by 600 in the above expressions for normalized dimensions.

Figure 2.5 shows the simulated Q-factor of the fundamental bonded cavity mode

(TE+,0) versus the total number of periods Nh of the cavity for the nominal structure.

The normalized cavity resonance frequency is calculated to be Λm/λc = 0.3927. The

radiation loss from the cavity is broken into two parts, yielding two effective Q-factors:

(i) the axial radiation loss out the ends of the nanobeams (yielding Q||), and (ii) the

radiation loss transverse to the long axis of the zipper cavity and intercepted by the

transverse boundary (yielding Q⊥). In Figure 2.5, Q|| is seen to rise exponentially

as a function of Nh, with an order of magnitude increase in Q-factor for every 6

additional periods of air holes. The transverse Q is seen to rise initially with hole

periods, but then levels off and saturates at a value of Q⊥ = 7 × 106. The variation

in Q⊥ for structures with small Nh, and low Q||, is a result of weak coupling between

radiation loss into these (arbitrarily chosen) directions. Small reflections at the end

of the nanobeams results in a small amount of axial radiation making its way to

the transverse boundary. Nevertheless, a structure with Nh > 47 results in a total

radiation Q-factor limited by the transverse Q-factor of 7 × 106. This value is very

large given the modest refractive index of the silicon nitride film and small cross-

section of the nanobeams (large air filling fraction).

In order to study the dependence of Q-factor on the hole size, we have also simu-

lated the nominal structure with varying axial and transverse hole size, as shown in

Figs. 2.6 and 2.7. In each of the plots the axial Q-factor increases with increasing

hole size, but then saturates, as the hole size approaches that of the nominal struc-

ture. For hole sizes larger than the nominal structure, the Q|| slightly drops, as does

the transverse Q-factor. This drop in transverse Q-factor is a result of the increased

normalized frequency of the mode (higher air filling fraction), which pushes the mode

closer to the air-cladding light line, increasing radiation into the cladding (the drop

in Q|| is a result of low-angle transverse radiation making its way to the boundary at
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Figure 2.5: Optical Q-factor (axial, transverse, and total) versus number of hole
periods in the cavity, Nh. In these simulations the defect region is maintained the
same, with only the number of periods in the mirror section varied. The nominal
structure corresponds to the maximum hole number in this plot, Nh = 47.

the end of the nanobeams). Therefore, the nominal structure represents an optimal

structure in this regard, allowing for tight axial localization of the mode, without

decreasing the transverse Q-factor.

The strength of light-matter interaction depends upon a position-dependent effec-

tive optical mode volume of a resonant cavity,

Veff(r0) ≡
∫
ε(r)|E(r)|2d3r

ε(r0)|E(r0)|2
, (2.1)

where ε(r) is the position dependent dielectric constant and r0 is the position of

interest. In the case of the zipper cavity, the strength of the optomechanical coupling

depends upon Veff(r0) evaluated in the slot gap of the nanobeams. Similarly, in the

field of cavity-QED, the effective mode volume can be used to estimate the coherent

coupling rate between an “atom” and the cavity field. In Fig. 2.8 we plot the effective

mode volume versus slot gap size, s, between the nanobeams for the TE0,+ mode of

the nominal structure. We plot two different effective mode volumes: (i) Vg, the

effective mode volume evaluated at the center of the nanobeam gap near the center

of the cavity where the field is most intense, and (ii) Vp, the minimum effective mode

volume evaluated at the position of peak electric field energy density in the cavity.
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Figure 2.6: (a) Normalized frequency and (b) Optical Q-factor (axial, transverse, and
total) versus normalized axial hole length, h̄x. The nominal structure is indicated by
the dashed green line.

For normalized gap widths, s̄ < 1/6 the modes of the nanobeam are strongly coupled

resulting in a peak electric field intensity in between the slot gap (hence the two

effective mode volumes track each other). The effective mode volumes approach a

value of Veff = 0.1(λc)
3 as the slot gap approaches zero. This small value is a result

of the discontinuity in the dominant polarization of the TE mode (Ey) as it crosses

into the slot gap [48]. For slot gaps s̄ > 1/6, the minimum effective mode volume

saturates at a value of Vp = 0.225(λc)
3 corresponding to that of a single nanobeam

(i.e., no enhancement from energy being pushed into the slot gap). The effective

mode volume evaluated at the center of the slot gap, on the otherhand, continues to

rise with slot gap due to the exponential decay of the field in the gap.

A final variation considered is the nanobeam width. In Fig. 2.9 the nominal

structure is varied by adjusting the normalized beam width while holding the filling

fraction of the air holes fixed. This is done by scaling the the transverse hole length

with the beam width. The axial Q-factor increases with the beam width due to the

increased effective index of the guided mode, and thus increased effecive contrast of

the quasi-1D photonic crystal. Due to the reduced lateral localization of the cavity

mode, the effective mode volumes also increase with beam width. In contrast, the
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Figure 2.7: (a) Normalized frequency and (b) Optical Q-factor (axial, transverse,
and total) versus normalized transverse hole length, h̄y. The nominal structure is
indicated by the dashed green line.

transverse Q-factor remains approximately constant.

2.4 Mechanical Mode Analysis

The mechanical modes of the zipper cavity can be categorized into common and

differential modes of in-plane (labeled h) and out-of-plane motion (labeled v) of the

two nanobeams. In addition there are compression (labeled c) and twisting (labeled

t) modes of the beams. In this work we focus on the in-plane differential modes,

hqd, as these modes are the most strongly opto-mechanically coupled due to the large

change in the slot gap per unit (strain) energy. We use FEM numerical simulations to

calculate the mechanical mode patterns and mode frequencies, the first few orders of

which are shown in Fig. 2.10. The material properties of silicon nitride for the FEM

simulations were obtained from a number of references. Where possible we have used

parameters most closely associate with stoichiometric, low-pressure-chemical-vapor-

deposition (LPCVD) silicon nitride deposited on 〈100〉 Si: mass density ρ = 3100

kg/m3, Young’s modulus Y ∼ 290 GPa, internal tensile stress σ ∼ 1 GPa [43, 44],

coefficient of thermal expansion ηTE = 3.3×10−6 K−1, thermal conductivity κth ∼ 20
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Figure 2.8: Effective mode volume of the TE0,+ mode versus normalized slot gap, s̄.
The nominal structure is indicated by the dashed green line.

W/m/K, and specific heat csh = 0.7 J/g/K.

For the mechanical mode properties tabulated in Table 2.1 we have analyzed the

nominal zipper cavity structure at an operating wavelength of λ ≈ 1.5 µm, corre-

sponding to a geometry with Λm = 600 nm, t = 400 nm, s = 100 nm, w = 700 nm,

hx = 267 nm, and hy = 400 nm. The total number of air holes is set to Nh = 55,

ensuring a theoretical Q-factor dominated by transverse radiation (Q⊥), yielding a

cavity length of l = 36 µm. The zipper cavity is clamped at both ends using fixed

boundary conditions at the far ends of the “clamping pads” shown in Fig. 2.10. This

clamping scheme is suitable for estimating the mechanical mode eigenfrequencies,

although more complex clamping schemes envisioned for real devices will likely intro-

duce modified splittings betweeen nearly-degenrate common and differential modes.

The effective spring constant listed in Table 2.1 for each mode is based upon a mo-

tional mass equal to that of the true physical mass of the patterned nanobeams,

mu ≈ 43 picograms (see below for self-consistent definition of motional mass).

The resulting frequency for the fundamental h1d mode is Ω/2π ≈ 8 MHz. The

in-plane mode frequency of a doubly clamped beam, with l � w, t, is approximately

given by [43]:

Ωq/2π =
q2π

2l2

√
Y Iy
ρA

√
1 +

σAl2

q2Y Iyπ2
, (2.2)
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Figure 2.9: (a) Normalized frequency, (b) Q-factor and (c) Effective mode volume
versus normalized beam width. The nominal structure is indicated by the dashed
green line.

where q is the mode index (approximately an integer), A = tw is the cross-sectional

area of the beams, and Iy = tw3/12 is the cross-sectional moment of inertial about

the in-plane axis (ŷ) of the beam. This fits the numerical data reasonably accurately

assuming an effective beam width of w′ = (1 − f)w. From the scaling in eq. (2.2),

one finds that for mode number q ≥ 3 (where internal stress can be neglected and

Ωq/2π ≈ q2π
2l2

√
Y Iy
ρA

) that the in-plane frequency scales inversely with the square of the

beam length, linearly with the beam width, and independent of the beam thickness.

Therefore, a linear increase in the resonant frequency can be obtained by moving

to shorter optical wavelengths and scaling the structure with wavelength. For much

larger increases in mechanical resonance frequency, one must resort to higher-order

in-plane modes of motion. Optomechanical coupling to these modes is discussed

below.
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Figure 2.10: Mechanical eigenmode displacement plots: (a) 1st-order in-plane com-
mon mode, (b) 1st-order in-plane differential mode, (c) 1st-order out-of-plane common
mode, and (d) 1st-order out-of-plane differential mode. The color represents total dis-
placement amplitude, as does the deformation of the structure. The arrows indicate
the local direction of displacement.

We have also studied the expected thermal properties of the zipper cavity, again

assuming a 1.5 µm wavelength of operation. Due to the air-filling-fraction of the

etched holes in the zipper cavity nanobeams, the thermal conductivity of the pat-

terned beams is approximately Γth = 75% of the bulk value. A simple estimate for

the thermal resistance of the zipper cavity due to conduction of heat through the

nitride nanobeams themselves is Rth ∼ l/(8twΓthκth) ≈ 1.15 × 106 K/W, where the

factor of 1/8 comes from the ability for heat to escape out either end of the nanobeams

and in either direction. The physical mass of the zipper cavity, taking into account

the etched holes, is approximately m = 43 picograms. The heat capacity of the zipper

cavity is then ch ≈ 3×10−11 J/K. From the heat capacity and the conductive thermal

resistance, the thermal decay rate (appropriate for high vacuum conditions in which

convection is negligible) is estimated to be γth = 1/Rthch ∼ 2.9 × 104 s−1. Finite-

element-method simulations of the thermal properties of the zipper cavity yield an

effective thermal resistance of Rth = 1.09 × 106 K/W and a thermal decay rate of

γth = 5.26× 104 s−1 for temperature at the center of the zipper cavity, in reasonable
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Table 2.1: Summary of mechanical mode properties. Optomechanical coupling factor
is for the TE0,+ mode.

Mode label ΩM/2π (MHz) ku (N/m) gOM (in units of
ωc/λc)

v1c 5.95 60

v1d 6.15 64

v2c 12.3 257

v2d 12.7 274

v3c 19.2 626

v3d 20.0 679

h1d 7.91 106 1.24

h1c 7.94 107 ∼ 0

h2d 18.2 562 ∼ 0

h2c 18.3 568 ∼ 0

h3d 31.8 1717 1.16

h3c 32.0 1738 ∼ 0

h9d 167.7 4.77× 104 0.63

h9c 168.0 4.79× 104 ∼ 0

t1d 41.0 2854

t1c 41.1 2868

c1c 78.6 1.05× 104

c1d 79.4 1.07× 104

correspondence to the estimated values.

2.5 Optomechanical Coupling

With the optical and mechanical modes of the zipper cavity now characterized, we

proceed to consider the optomechanical coupling of the optical and mechanical degress

of freedom. As described at the outset, the parameter describing the strength of op-

tomechanical coupling is the frequency shift in the cavity mode frequency versus

mechanical displacement, gOM ≡ dωc/du, where ωc is the cavity resonance frequency

and u represents an amplitude of the mechanical displacement. In the case of the

commonly studied Fabry-Perot cavity [29], gOM = ωc/Lc, where Lc is approximately
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the physical length of the cavity. A similar relation holds for whispering gallery

structures, such as the recently studied microtoroid [5], in which the optomechanical

coupling is proportional to the inverse of the radius of cavity (R), gOM = ωc/R. Both

these devices utilize the radiation pressurce, or scattering, force of light. By compari-

son, the zipper cavity operates using the gradient force for which the optomechanical

coupling length can be on the scale of the wavelength of light, LOM ∼ λc. Similar to

the scaling found in the previous section for the effective mode volume, the optome-

chanical coupling length scales exponentially with the slot gap, LOM ∼ λce
αs, where

α is proportional to the refractive index contrast between the nanobeams forming the

zipper cavity and the surrounding cladding.

In Fig. 2.11(a) we plot the tuning curve for the nominal zipper cavity structure

studied in the previous two sections versus the normalized slot gap width, s̄ ≡ s/Λm.

Due to the strong intensity of the bonded mode in the center of the slot gap, it tunes

more quickly than the anti-bonded mode. This tuning curve can be used to estimate

the optomechanical coupling for the in-plane differential mode of motion of the zip-

per cavity nanobeams. The in-plane common mechanical modes and both types of

vertical mechanical modes are expected to provide a much smaller level of optome-

chanical coupling due to the reduced change in slot gap with these types of motion.

For complex geometries and motional patterns, one must use a consistent definition

of displacement amplitude, u, in determing gOM, meff (motional mass), and keff (ef-

fective spring constant). In this work we use a convention in which u(t) represents

the amplitude of motion for a normalized mechanical eigenmode displacement field

pattern:

un(r, t) = un(t)

∑
i fn(x; i)√∑

i
1
l

∫ l
0
|fn(x; i)|2dx

, (2.3)

where n is a mode label, l is the length of the nanobeams, and for the simple two-beam

geometry considered here, i is an index indicating either the first or second nanobeam

and we write the displacement vector only as a function of position along the long

axis of the nanobeams (x). With this definition of amplitude, the effective motional
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mass is simply the total mass of the two nanobeams (mu = 43 picograms), and the

effective spring constant is defined by the usual relation ku = muΩ
2
M , with ΩM the

mechanical eigenmode frequency. The amplitude associated with zero-point motion

and used in the equipartition theorem to determine the thermal excitation of the

mechanical mode is then un(t). Note, an alternative, but equally effective method,

defines the amplitude first, and then adjusts the effective motional mass based upon

the strain energy of the mechanical motion.

Our chosen normalization prescription yields (approximately) for the qth odd-

order in-plane differential mechanical mode,

uo
hqd

(x, t) ≈ uhqd(t) (ŷ1 cos(qπx/l) + ŷ2 cos(qπx/l)) (2.4)

, where ŷ1 and ŷ2 are (transverse) in-plane unit vectors associated with first and second

nanobeams, respectively, and which point in opposite directions away from the center

of the gap between the nanobeams. The even-order modes are anti-symmetric about

the long axis of the cavity and are given approximately by,

ue
hqd

(z, t) ≈ uhqd(t) (ŷ1 sin(qπx/l) + ŷ2 sin(qπx/l)) . (2.5)

To be consistent then, with this definition of mode displacement amplitude, gOM must

be defined in terms of the rate of change of cavity frequency with respect to half the

change in slot gap (gOM,0 ≈ dωc/
1
2
dδs), as the amplitude uhqd(t) corresponds to a

(peak) change in slot gap of δs = 2uhqd(t).

Fig. 2.11(b) plots the optomechanical coupling length for each of the bonded and

anti-bonded fundamental modes from the derivative of their tuning curves in Fig.

2.11(a). This plot shows that for a normalized slot gap of s̄ = 0.1 (or roughly s =

0.04λc), the optomechanical coupling length to the fundamental bonded optical mode

can be as small as LOM/Λm ≈ 2. For the normalized frequency of the bonded mode

(Λm/λc ≈ 0.4), this corresponds to LOM ≈ 0.8λc, as expected from the arguments

laid out in the introduction. The TE−,0 has a significantly smaller optomechanical

coupling due to its reduced electric field energy in the slot.
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An estimate of the optomechanical coupling to the mechanical modes can be

found by averaging the displacement amplitude field pattern of the mechanical mode

weighted by the (normalized) optical intensity pattern of the zipper cavity optical

modes [49] (an exact calculation of the optomechanical coupling factor suitable for

complex dielectric geometries and mixed cavity field polarization can be performed

using the pertubation theory for shifting boundaries in Ref. [50]). For the specific

case of the in-plane differential modes, the optomechanical coupling factor to the

TE+,0 optical mode is approximately given by,

gOM,hqd ≈ gOM,0

∣∣∣∫ fhqd(x; i)|ẼTE+,0(x)|2dx
∣∣∣∫

|ẼTE+,0(x)|2dx
, (2.6)

where fhqd(x; i) is the normalized displacement vector of either of the nanobeams

(=cos(qπx/l) (sin(qπx/l)) for the odd(even)-order in-plane differential mode), ẼTE+,0(x)

is the Gaussian-like envelope of the TE+,0 optical cavity mode along the long-axis of

the nanobeams, and gOM,0 is the optomechanical coupling factor as calculated from

the tuning curve of Fig. 2.11.

Given the odd symmetry of the even-order hqd mechanical modes, and the even

symmetry of the optical intensity for the zipper cavity optical modes, the optome-

chanical coupling to the even-order hqd modes is approximately zero. The odd-order

in-plane differential modes, on the otherhand, have an anti-node of mechanical dis-

placement at the optical cavity center and an even long-axis symmetry. For mode

numbers small enough that the half-wavelength of the mechanical mode is roughly as

large, or larger, than the effective length of the optical cavity mode along the axis of

the beam, the optical mode will only sense the central half-wave displacement of the

mechanical mode and the optomechanical coupling should still be quite large. As an

example, from the intensity plot of the TE+,0 fundamental bonded optical mode in

Fig. 2.4, the effective length of the optical mode along the long-axis of the nanobeams

is Leff ∼ 7Λm = 4.2 µm (for λc = 1.5 µm). The mechanical mode index q is roughly

equal to the number of half-wavelengths of the mechanical mode along the axis of

the zipper cavity. Therefore, for the zipper cavity of length l = 36 µm studied above,
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the 9th order in-plane differential mechanical mode with Ωh9d
/2π ≈ 170 MHz has a

half-wavelength equal to 4 µm ≈ Leff. The resulting optomechanical coupling of the

h9d mechanical mode to the TE+,0 optical mode is then still relatively large, equal

to approximately half that of the coupling to the fundamental h1d mechanical mode.

The optomechanical coupling factor to the TE+,0 for each of the in-plane differential

modes is tabulated along with the mechanical mode properties in Table 2.1.

There are several physical ways of understanding the strength of the optome-

chanical coupling represented by gOM. The per-photon mechanical force is given by

Fph = ~gOM. For the zipper cavity, this yields a per-photon force of Fph ≈ ~ωc/λc,

which at near-infrared wavelengths corresponds to 0.2 pN/photon. Such a force could

be measured using other, non-optical techniques, and could provide a means for de-

tecting single photons in a non-demolition manner. Also, through the optomechanical

coupling, intra-cavity light can stiffen [28,51–53] and dampen [25–29,54] the motion

of the coupled mechanical oscillator [5]. A perturbative analysis shows that in the

sideband unresolved limit (ΩM � Γ) the effective mechanical frequency (Ω′M) and

damping rate (γ′M) are given by the following relations (see Ref. [5]):

(Ω′M)2 = Ω2
M +

(
2|a0|2g2

OM

∆2ωcmu

)
∆′o, (2.7)

γ′M = γM −
(

4|a0|2g2
OMΓ

∆4ωcmu

)
∆′o, (2.8)

where ΩM and γM are the bare mechanical properties of the zipper cavity, |a0|2

is the time-averaged stored optical cavity energy, ∆′o ≡ ωl − ωc is the laser-cavity

detuning, Γ is the waveguide-loaded optical cavity energy decay rate, and ∆2 ≡

(∆′o)
2 + (Γ/2)2. The maxmimum “optical spring” effect occurs at a detuning point

of ∆′o = Γ/2. Extrapolating equation (3.1) down to the single photon level (ignor-

ing quantum fluctuations for arguments sake), for this laser-cavity detuning a single

stored cavity photon introduces a shift in the mechanical frequency corresponding to

∆(Ω2
M)/Ω2

M = (2Q~ωc)/(λ2
ckeff). For the zipper cavity, with Q = 5 × 106, λc = 1

µm, and kh1d
= 100 N/m, the resulting single-photon mechanical frequency shift is
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approximately ∆(ΩM)/ΩM = 1%.
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Figure 2.11: (a) Bonded and anti-bonded mode tuning curves versus normalized
nanobeam gap. (b) Corresponding normalized effective optomehcanical coupling
length, LOM ≡ LOM/Λm. The nominal structure is indicated by the dashed green
line.

2.6 Summary and Discussion

Using photonic crystal concepts, we have designed an optomechanical system in which

optical and mechanical energy can be co-localized in a cubic-micron volume and ef-

ficiently coupled through the gradient optical force. In the particular design studied

here, a “zipper” cavity consisting of two nanoscale beams of silicon nitride, doubly

clamped and patterned with a linear array of air holes, is used to form the optical

cavity and the mechanical resonator. Mechanical oscillations consisting of differential

motion of the doubly-clamped silicon nitride nanobeams results in an optomechanical

coupling constant as large as gOM ∼ ωc/λc, where ωc and λc are the optical resonant

cavity frequency and wavelength, respectively. This coupling is several orders of

magnitude larger than has been demonstrated in high-Finesse Fabry-Perot cavities,

and is more than order of magnitude larger than for whispering-gallery micrototoid

structures, both of which rely upon the radiation pressure force. Finite-element-

method (FEM) simulations of the zipper cavity show that a structure with an optical

Q = 5 × 106, mechanical resonance frequency of ΩM/2π ≈ 170 MHz, and motional
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mass of mu ≈ 40 picograms is possible. In the future, further increase in the me-

chanical frequency and reduction in the motional mass may be attained by using

planar phononic crystals [55] to form the mechanical resonator. The combination of

phononic and photonic crystals would also provide an integrated, chip-scale platform

for routing and coupling optical and mechanical energy.

Beyond cavity optomechanics, the zipper cavity may also find application in the

field of cavity QED. In particular, the zipper cavity as described here is suitable for

a broad range of wavelengths from the visible to the mid-infrared. The optical mode

volume is made smaller by the sub-wavelength slot gap between the nanobeams

[48], with Veff ∼ 0.2(λ3
c) for a slot gap of s ∼ λc/10. As an example, one can

imagine placing nanoparticles of diamond (a popular solid-state system for quantum

information processing [56–61]) in the gap between the nanobeams. Such “pick-

and-place” techniques have been used with other, larger, optical cavities with good

success [62–64]. In the zipper cavity case, the small Veff would produce a coherent

coupling rate with the zero-phonon-line (ZPL) of the NV− transition of approximately,

gZPL/2π ∼ 3 GHz, even after accounting for the 3− 5% branching ratio for the ZPL

line. This is more than 100 times the radiative-limited linewidth measured for the

NV− transition (12 MHz), and more than 10 times the theoretical zipper cavity decay

rate (90 MHz), putting the coupled system deep within the strong coupling regime.

The additional benefit provided by the zipper cavity is the ability to rapidly tune the

cavity frequency into and out of resonance with the ZPL of the NV− transition. If

mechanical resonance frequencies could be increased towards GHz values, using the

suggested phononic crystal concepts for instance, then new approaches to photon-

mediated quantum interactions and quantum state transfer can be envisioned for

solid-state cavity QED systems.



85

Chapter 3

Experimental Demonstration of a
Picogram and Nanometer Scale
Photonic Crystal Optomechanical
Cavity

This work is reproduced and adapted from Ref. [1].

3.1 Summary

Recently, there has been keen interest [6] in dynamic back-action caused by elec-

tromagnetic forces in optical [25–29, 54] and microwave [31] cavities. Back-action

cooling, for example, is being pursued as a means to achieve quantum ground-state

cooling of a macro-scale mechanical oscillator. Work in the optical domain has re-

volved around milli- or micro-scale structures utilizing the radiation pressure force.

By comparison, in microwave devices, low-loss superconducting structures have been

used for gradient-force mediated coupling to a nanomechanical oscillator of picogram

mass [31]. Here we describe measurements of an optical system consisting of a pair of

specially patterned nanoscale beams in which optical and mechanical energy are si-

multaneously localized to a cubic-micron-scale volume, and for which large per-photon

optical gradient forces are realized. The resulting scale of the per-photon force and

the mass of the structure enable new cavity-optomechanical regimes to be explored,

where for example, the mechanical rigidity of the structure is dominantly provided
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(a) (b)

Figure 3.1: Comparison of optomechanical systems. a, Fabry-Perot optomechanical
system with two mirrors on springs. b, Photonic crystal optomecachanical systems.

by the internal light field itself. In addition to precision measurement and sensitive

force detection [32], nano-optomechanics may find application in reconfigurable and

tunable photonic systems [65], RF-over-optical communication [66], and to generate

giant optical nonlinearities for wavelength conversion and optical buffering [34].

3.2 Introduction to the Zipper Optomechanical Sys-

tem

Optical forces arising from near-field effects in guided-wave structures have been pro-

posed [33], and recently demonstrated [67, 68], as a means of providing large op-

tomechanical coupling between the field being guided and the dielectric mechanical

structure providing the guiding. The resulting optical force can be viewed as an in-

tensity gradient force much like that used to tweeze dielectric particles or to trap

cold gases of atoms [69]. In the devices studied in this work, doubly-clamped silicon

nitride nanobeams are converted into optical resonant cavities through the patterning

of a linear array of etched holes (Fig. 3.1(b)). Bringing two such cavities into the

near-field of each other forms a super cavity supporting even and odd superpositions

of the individual beams modes. This “zipper” cavity, so-named due to its resemblence
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(a)

(b)

Figure 3.2: Finite-element-method simulated a, bonded and b, anti-bonded super-
modes of the zipper optical cavity, shown in cross-section.

to the mechanical fastner, allows for sensitive probing and actuation of the differential

motion of the beams through the internal, optical, cavity field.

A figure of merit for cavity-optomechanical systems is the coupling constant gOM ≡

dωc/dx, which represents the differential frequency shift of the cavity resonance (ωc)

with mechanical displacement of the beams (x). For the commonly studied Fabry-

Perot cavity structure (Fig. 3.1(a)), momentum transfer between the circulating

light field and the mechanically-compliant end mirror(s) occurs at a rate of 2~kph per

round trip time, resulting in an optomechanical coupling constant that scales with

the inverse of the cavity length (Lc), gOM = ωc/Lc. Similarly for whispering-gallery-

mode structures, such as the recently studied microtoroid [5], gOM scales with the

perimeter length through the radius of the cavity R, gOM = ωc/R. In the case of the

zipper cavity the optomechanical coupling is exponentially proportional to the slot

gap (s) between the beams, gOM = ωc/LOM with LOM ∼ woe
αs. The minimum value

of LOM is set by wo which is approximately equal to the beam width, while the decay

constant α is set by the wavelength of light (λ) and the refractive index contrast of the

nanobeam system. Thus, for beam widths on the order of the wavelength of light and
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Figure 3.3: a,b, Scanning-electron-microscope (SEM) images of a typical zipper cav-
ity, indicating the slot width (s), the cantilever width (w), and the photonic crystal
lattice constant (Λ).

for a sub-wavelength slot gap, LOM ∼ λ, independent of the length of the nanobeams

(see Fig. 3.5(a,b)). This yields an optomechanical coupling more than an order of

magnitude larger than can be accomplished in high-Finesse Fabry-Perot cavities [70]

or glass microtoriod structures [5]. In addition, this large optomechanical coupling

is realized in a versatile geometry in which motional mass and mechanical stiffness

can be greatly varied, and for which the mechanical displacement energy density and

optical energy density can be efficiently co-localized at optical wavelengths in the

visible-NIR and for mechanical frequencies in the MHz-GHz frequency range.

3.3 Fabrication

For the devices studied in this work, optically thin (t = 400 nm) stoichiometric silicon

nitride (Si3N4) is deposited using low-pressure-chemical-vapor-deposition on a silicon

wafer in order to form the optical guiding layer and the mechanical beams. Electron-

beam lithography is used to pattern the zipper cavity consisting of beams of length

l = 25− 40 µm, widths of w = 0.6-1.4 µm, and with an inter-beam gap of s = 60-250

nm (Fig. 3.3(b)). The optical cavity is created in the nanobeams by patterning holes

to form a quasi-1D photonic bandgap for light (see Figs. 3.6). A C4F8/SF6-based
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Figure 3.4: Experimental set-up used to probe the optical and mechanial properties
of the zipper cavity. Acronyms are: erbium-doped fiber amplifier (EDFA), variable
optical attenuator (VOA), fiber polarization controller (FPC), fiber Mach-Zender
interferometer (MZI), and photodetected Mach-Zender transmission (PDMZI) and
zipper cavity transmission (PDT ).

plasma etch is then used to transfer the nanobeam and photonic crystal pattern into

the Si3N4. This is followed by a wet chemical etch of KOH which selectively etches

the underlying Si subtrate and releases the patterned beams.

3.4 “DC” Optical Spectroscopy

As shown in Figure 3.4, optical excitation and probing of the zipper cavity is per-

formed using a high-efficiency optical fiber taper coupler [71] in conjunction with a

bank of tunable external-cavity diode lasers. A fiber polarization controller is used

to adjust the polarization to selectively excite the transverse electric (TE) polariza-

tion modes of the zipper cavity. The zipper optical cavity design is based upon a

graded lattice concept [2, 71, 72] in which the lattice period is varied harmonically

from the center to the ends of the nanobeam. This results in an optical potential

for photons which increases harmonically as one approaches the cavity center. Local-

ized modes form from photonic bands near the zone boundary with negative group

velocity dispersion [41], with the fundamental mode of the cavity having the high-
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Figure 3.5: Finite-element-method simulation of the a, wavelength tuning versus
nanobeam slot gap and b, effective optomechanical coupling length parameter (LOM)
for the bonded and anti-bonded fundamental zipper cavity optical modes (w = 650
nm).

est frequency and higher-order cavity modes decreasing in frequency (see inset of

Fig. 3.6). Owing to the strong optical coupling between the pair of nanobeams, the

photonic bands in the zipper cavity break into pairs of positive and negative parity

super-mode bands. The positive-parity superposition, designated TE+, corresponds

to a manifold of modes which have an even mode profile for the TE electric field

polarization and a peak electric field intensity in the center of slot gap between the

beams (Fig. 3.2(a)). These we term bonded modes [33]. The negative-parity TE−

manifold of modes (the anti-bonded modes) have an odd parity mode profile and a

node at the slot gap center (Fig. 3.2(b)).

By systematically varying the lattice constant of the devices, and measuring the

parity of the cavity modes using the fiber taper as a near-field probe [71], one can

identify the various zipper cavity modes. For example, for a zipper cavity with a = 640

nm, beam width w = 650 nm, and slot gap s = 120 nm, the measured transmission

scan across the λ = 1420-1625 nm range is shown in Fig. 3.6. From shortest to longest

wavelength, the resonance peaks all have an even mode profile and are associated

with the TE+,0 through TE+,4 modes of the bonded manifold of modes. Wavelength

scans of a different zipper cavity, with larger beam width w = 1.4 µm and slot

gap s = 250 nm, exhibits a spectrum in which the bonded and anti-bonded mode

manifolds overlap (Fig. 3.7(a)). The measured on-resonance transmission contrast
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Figure 3.6: DC optical spectroscopy of the zipper cavity. Measured optical trans-
mission of a zipper cavity with w = 650 nm and s = 120 nm showing four orders of
the bonded (TE+) resonant modes. Inset: schematic of the graded photonic crystal
lattice design and resulting bonded and anti-bonded resonance manifolds.

versus lateral taper position for each of the modes is shown in Fig. 3.7(b,c), indicating

their even (bonded) and odd (anti-bonded) mode character. The optical Q-factor of

the zipper cavity TE+,0 mode can theoretically reach a value well above 106 even in the

modest refractive index afforded by the silicon nitride [2,40]. Experimentally we have

measured zipper cavity modes with Q-factors in the range of Q = 104 − 105 (Finesse

F ∼ 104), depending largely upon the fill-fraction of the air holes and their scattering

of light transverse to the axis of the quasi-1D photonic bandgap. For devices at the

high end of the measured Q range (Q ∼ 3 × 105), we find a significant contribution

to optical loss from absorption (see Methods).

3.5 RF Optical Spectroscopy

Mechanical motion of the zipper cavity nanobeams is imprinted on the transmitted

optical intensity through the phase modulation of the internal cavity field [5]. Fig-

ure 3.9(a) shows the high-temporal-resolution (blue curve) and low-pass filtered (red

curve) transmitted signal as the input laser wavelength is swept across the TE1,+

mode of the zipper cavity of Fig. 3.6 at low optical input power (Pi = 12 µW).

The zoomed-in temporal response of the transmitted intensity for a detuning on the
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Figure 3.7: a, Measured optical transmission of a zipper cavity with a larger beam
width and gap (w = 1400 nm, s = 250 nm) showing the bonded and anti-bonded
lowest order optical resonances. b,c, Optical transmission versus fiber taper lateral
position for each of the bonded and anti-bonded resonant modes of a, indicating the
even and odd parity of the modes. Black outline corresponds to position of zipper
cavity.

side of the Lorentzian lineshape (Fig. 3.9(b)) shows an oscillating signal of frequency

∼ 8 MHz and peak-to-peak amplitude of roughly a third of the transmission contrast

of the resonance. Finite-element-method (FEM) simulations (Fig. 3.9(a,b)) indi-

cate that the lowest order in-plane common (h1c) and differential (h1d) mechanical

modes of the pair of coupled nanobeams have frequencies of 8.19 and 8.16 MHz (mass,

mx ≈ 43 picograms, and spring constant kh1 ≈ 110 N/m; see Methods), respectively,

when accounting for ∼ 0.75 GPa of internal tensile stress in the nitride film [43].

The corresponding mechanical amplitude of oscillation is calibrated by fitting gOM

from the optical spring effect as discussed below and in the Methods section, yielding

LOM = 1.58 µm (gOM/2π = 123 GHz/nm) and an inferred rms amplitude of mo-

tion of approximately xrms ∼ 5.8 pm. This is in good correspondence with both the

FEM-simulated optomechanical coupling constant for this device (LOM = 2.1 µm for

s = 120 nm in Fig. 3.6(b)) and the expected thermal amplitude for the h1d mode

(〈x2
th〉1/2 =

√
kBT/kh1 = 6.2 pm).

The RF spectrum of the transmitted optical intensity out to 150 MHz is shown

in Fig. 3.9(c). Comparison to FEM mechanical simulations [2] allows us to identify

many of the resonances in the RF spectrum, with in-plane mechanical resonances up
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Figure 3.8: RF optical spectroscopy. a, Optical transmission through the zipper
cavity of Fig. 3.6(c). The red curve corresponds to the low-pass-filtered (bandwidth
10 kHz) transmission signal showing the underlying Lorentzian-like cavity resonance.
b, Temporal oscillations in optical transmission for fixed detuning, showing large-scale
optical power oscillations of frequency ∼ 8 MHz.

to 9th-order being visible. The strength of the corresponding spectral peaks oscillates

for odd and even orders of in-plane motion, consistent with the odd-order mechanical

modes having an anti-node of displacement at the center of the zipper cavity and

the even-order modes having a node. The mechanical Q-factor of the resonances

are measured to vary between QM ∼ 50 − 150, limited by gas-damping [73] in the

nitrogen test environment used in this work. For the h1 mechanical resonances (Fig.

3.9(d)) at 8 MHz, the RF spectrum shows two other interesting features. The first

is the interference between the two resonances as evidenced by the asymmetry in

each peak and the narrow central dip. As will be detailed elsewhere, this is due

to coupling between the common and differential modes of mechanical oscillation for

which the common-mode motion is dark with respect to our optical read-out method.

The second feature of interest is the slight shift of the h1 resonance peaks to lower

(higher) resonance frequencies for red (blue) laser-cavity detuning. Both of these

features are absent for the h3 resonance peaks centered around 28 MHz (Fig. 3.9(e))

for which the optomechanical coupling is weaker and the frequency-splitting between

independent nanobeam motion is much larger than for the h1 modes.
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Figure 3.9: FEM-modeled lowest order a, common and b, differential mechanical res-
onances. Mechanical deformation and color indicates displacement amplitude, while
arrows indicate direction. c, Detected RF spectrum with horizontal (h) and ver-
tical (v) cantilever modes of motion indicated. Grey colored labels indicate either
“missing” resonances or modes of questionable description. Grey colored curve is the
electronic detector noise floor. Insets: zoomed-in RF spectrum of the d, hybridized
fundamental h1 mechanical modes and g, distinct left and right cantilever modes of
third-order in-plane motion (h3). In f and e the red curves correspond to RF spectra
taken for red detuning and the blue curves correspond to blue-detuned spectra.

3.6 Optical Spring and Damping

The optically driven zipper cavity not only allows for sensitive mechanical displace-

ment detection, but can also strongly modify the mechanical motion in two distinct

ways. Optical stiffening of the mechanical resonant structure [5, 28] (the so-called

“optical spring”) results from the component of optical cavity energy (and gradient

force) oscillating in-phase with the mechanical motion. On the otherhand, the finite

cavity photon lifetime introduces a non adiabatic, time-delayed, component of optical

force acting in-quadrature with the mechanical motion. This velocity dependent force

results in detuning-dependent amplification or damping of the mechanical motion. A

perturbative analysis shows that in the sideband unresolved limit (ΩM � Γ) the ef-
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Figure 3.10: Optical Spring and Damping. a, Measured (green curve) and fit model
(red curve) normalized optical transmission versus wavelength sweep in units of sweep
time. Dashed blue curve corresponds to low power model curve. b, Conversion
between sweep time delay and normalized cavity detuning, fit from model curve in
(a), with zero time delay corresponding to zero laser-cavity detuning. c, Intensity
image of the measured RF power spectrum versus cavity detuning (time delay) of the
optical transmission signal from the zipper optical cavity of Fig. 3.6(c) at an input
optical power of 5.1 mW (dropped power of 1.4 mW).

fective mechanical frequency (Ω′M) and damping rate (γ′M) are given by the following

relations (see Ref. [5] and § 1.3):

(Ω′M)2 = Ω2
M +

(
2|a0|2g2

OM

∆2ωcmx

)
∆′o, (3.1)

γ′M = γM −
(

2|a0|2g2
OMΓ

∆4ωcmx

)
∆′o, (3.2)

where ΩM and γM are the bare mechanical properties of the zipper cavity, |a0|2 is the

time-averaged stored optical cavity energy, ∆′o ≡ ωl−ωc is the laser-cavity detuning,

Γ is the waveguide-loaded optical cavity energy decay rate, and ∆2 ≡ (∆′o)
2 + (Γ/2)2.

As is shown in Fig. 3.10, for higher optical input powers (Pi = 5 mW) the internal

optical cavity field provides significant stiffness to mechanical motion of modes in the

zipper optomechanical cavity. The large optomechanical coupling (LOM = 1.58 µm)

and comparitively small motional mass (mx ∼ 43 picograms) of the h1d-zipper-cavity
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Figure 3.11: Optical Spring and Damping. a, Measured (green curve) and fit model
(red curve) normalized optical transmission versus wavelength sweep in units of sweep
time. Dashed blue curve corresponds to low power model curve. b, Conversion
between sweep time delay and normalized cavity detuning, fit from model curve in
(a), with zero time delay corresponding to zero laser-cavity detuning. c, Intensity
image of the measured RF power spectrum versus cavity detuning (time delay) of
the optical transmission signal from the zipper optical cavity of Fig. 3.6(c) at an
input optical power of 5.1 mW (dropped power of 1.4 mW). Measured and modeled
d,f total RF power and e,g resonance frequency of the h1,d mechanical mode, versus
detuning. d,e correspond to low optical input power (Pi = 127 µW) while f,g are for
high optical input power (Pi = 5.1 mW). Blue (green) curves correspond to a model
with (without) optomechanical damping. Red squares are measured data points.

mechanical mode results in a giant optical spring effect [28], shifting the mechanical

frequency from 8 to 19 MHz (Fig. 3.10(c)). This corresponds to an optical stiffness

greater than five times that of the intrinsic mechanical stiffness of the silicon nitride

cantilevers. For the h3d in-plane mode, the frequency shift is smaller due to the slightly

reduced optomechanical coupling factor of this mode and its larger bare frequency. An

additional feature in Fig. 3.10(d) is the mechanical mode mixing that occurs as the

optical spring tunes the h1d mode through other mechanical resonances. The mode

mixing is most prevelant as the h1d sweeps away from the h1c mode and through the

h2 in-plane modes near Ω/2π = 16 MHz (Fig. 3.10(e)). This mixing of mechanical
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modes is due to the highly anisotropic and motion-dependent optical stiffness and its

renormalizing of the mechanical eigenmodes of the structure, and will be discussed in

more detail elsewhere.

Figures 3.11(a-d) compare the measured integrated RF power in the h1d me-

chanical resonance line and its mechanical frequency to a nonlinear optical model of

the zipper cavity system including the optical gradient force and thermo-optic tun-

ing of the cavity (see Methods section). At low optical power (Figures 3.11(a,b)),

a single estimate for gOM based upon optical FEM simulations fits both the total

measured RF power (or 〈x2〉) and optical frequency of the h1d mode over a large

detuning range. At higher powers (Figures 3.11(c,d)), the same estimated gOM fits

the optical frequency tuning of the h1d mode, but severely over estimates the to-

tal RF power (green curve in Fig. 3.11(c)) where the optomechanical interaction is

strongest. Damping of the mechanical motion is quite unexpected for blue-detuned

laser excitation [5]. FEM numerical simulations of the zipper cavity indicate thermo-

mechanical effects [22,23] produce a response several orders of magnitude too small to

explain the observed damping; however, a theoretical analysis of the cavity dynamics

including the thermo-optic effect (see § 1.3.6) shows that the severely phase-lagged

and damped thermo-optic tuning of the cavity introduces a significant correction to

eq. (3.2). Owing to the small heat capacity of the zipper cavity, thermo-optic tuning

reverses the sign of the damping coefficient of the bare optomechanical response for

blue-detuned pumping (the correction to the optical spring is found to be small, at

the 10−4 level). The numerical model including the thermo-optic correction to the

spring and damping terms is shown as a blue curve in Figs. 3.11(a,c), with the fit to

the high power data now in much better agreement. The model indicates that at a

detuning of ∆′0 ≈ Γ/4 (Fig. 3.11(c)) the thermal motion of the h1d resonance is being

damped from xrms ≈ 7 pm down to 1 pm, at a bath temperature of 360 K.
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3.7 Prospects of the “Zipper” Optomechanical sys-

tem

Beyond the giant optical spring effect afforded by the large optomechanical cou-

pling and picogram-scale mass of the zipper cavity, thin-film photonic crystals offer

a highly flexible, chip-scale architecture for coupling optical and mechanical degrees

of freedom. In the area of quantum cavity-optomechanics, significant improvements

in optical Q to values approaching 5× 106 (F ∼ 106) can be expected with new pro-

cessing technqiues [2, 74], which along with increased mechanical frequency (> 100

MHz), will push the system into the important sideband resolved limit [30, 75]. Ap-

plications to optical cavity QED [70] also exist, where rapid cavity frequency shifting

may be utilized for single-photon generation and quantum-state transfer. Finally, by

combining phononic [55] with photonic crystal concepts, simultaneous routing and

localization of acoustic and optical waves can be envisioned. Such a platform would

expand both quantum and classical applications, and enable integration not possible

in current optomechanical microsystems.

3.8 Optomechanical Coupling, Effective Mass and

Spring Constant

For complex geometries and motional patterns, one must use a consistent definition

of displacement amplitude, x, in determing gOM, mx (motional mass), and keff (ef-

fective spring constant). In this work we use a convention in which x(t) represents

the amplitude of motion for a normalized mechanical eigenmode displacement field

pattern:

un(z, t) = xn(t)
fn(z)√

1
l

∫ l
0
|fn(z)|2dz

, (3.3)

where n is a mode label, l is the length of cantilever, and, for the simple cantilever
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geometry considered here, the displacement vector is only a function of position along

the axis of the cantilevers (z). With this definition of amplitude, the effective mo-

tional mass is simply the total mass of the two cantilevers (mx = mc = 43 picograms)

and the effective spring constant is defined by the usual relation keff = mcΩ
2
M , with

ΩM the mechanical eigenmode frequency. The amplitude associated with zero-point

motion and used in the equipartition theorem to determine the thermal excitation

of the mechanical mode is then xn(t). In the case of the fundamental differential

mechanical mode of motion for the two cantilevers of the zipper cavity, this normal-

ization prescription yields uh1d(z, t) ≈ xh1d(t) (sin(πz/l)x̂1 + sin(πz/l)x̂2), where x̂1

and x̂2 are in-plane unit vectors associated with the two nanobeams of the zipper

cavity and pointing in opposite directions away from the center of the gap between

the nanobeams. Thus, to be consistent, gOM for the h1d mode must be defined ap-

proximately as the rate of change of cavity frequency with respect to half the change

in slot gap (gOM ≈ dωc/
1
2
dδs), as the amplitude xh1d(t) corresponds to a change in

slot gap of 2xh1d(t) near the center of the cavity.

3.9 Optical Transmission, Measured RF Spectra,

and Motional Sensitivity

RF spectra are measured by direct detection of the optical power transmitted through

the zipper cavity using a 125 MHz bandwidth photodetector (noise-equivalent-power

NEP= 2.5 pW/Hz1/2 from 0-10 MHz and 22.5 pW/Hz1/2 from 10-200 MHz, responsiv-

ity R = 1 A/W, transimpedance gain G = 4×104 V/A) and a high-speed oscilloscope

(2 Gs/s sampling rate and 1 GHz bandwidth). As shown in Fig. 3.4, a pair of “du-

eling” calibrated optical attenuators are used before and after the zipper cavity in

order to vary the input power to the cavity while keeping the detected optical power

level constant. The measured electrical noise floor is set by the circuit noise of the

photodetector for the optical power levels considered in this work, corresponding to

−125 dBm/Hz near 10 MHz. The motional sensitivity of the h1d mechanical mode is
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measured at 9× 10−16 m/Hz1/2 for an optical input power of 12 µW (corresponding

to a dropped power of 3.5 µW, and an estimated 660 stored cavity photons). At the

power levels considered in this work, optical force noise contribution to the motional

sensitivity is negligible.

3.10 Calibration of Input Power and Intra-Cavity

Photon Number

A fiber-taper optical coupling technique was used to in-couple and out-couple light

from the zipper cavity. The fiber taper, although extremely low-loss on its own

(88% transmission efficiency in this work), was put in contact with the substrate

near the zipper cavity in order to mechanically anchor it during all measurements

(thus avoiding power-dependent movement of the taper due to thermal and/or optical

forces). The total fiber taper transmission after mechanical anchoring of the taper

to the substrate is 53%. In order to accurately determine the optical power reaching

the cavity (determined by the optical loss in the taper section before the cavity) we

measure the cavity response at high optical power (resulting in thermo-optic tuning of

the cavity and optical bistability in the transmission response) with the input sent in

one direction and then in the other of the taper. From the asymmetry in the thermo-

optic tuning in the cavity for both directions one can determine the asymmetry in the

optical loss, and thus determine the optical loss before and after the zipper cavity.

Finally, this method along with calibrated measurements of the optical power at the

input and output of the taper, can determine accurately the optical power reaching

the zipper cavity (the input power) and dropped by the cavity. From calibration of the

wavelength sweep using the fiber Mach-Zender interferometer one can also accurately

measure the cavity linewidth and the corresponding loaded cavity Q. The average

stored photon number can then be determined from the dropped power and the

loaded cavity Q. The TE1,+ mode is chosen to study in detail, instead of the TE0,+

fundamental mode, due to its spectral alignment with the EDFA gain bandwidth,
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allowing for the higher power measurements presented in Fig. 3.11.

3.11 Calibration of Laser-Cavity Detuning

The transduction from mechanical motion to modulated intra-cavity power, and con-

sequently measured RF photodector spectrum, depends sensitively on the detuning

point of the laser from the cavity resonance. Accurate measurement of the laser-cavity

detuning, even for large detunings (> 5 half-cavity-linewidths), is required to compare

the theoretical model with measured data for the optical spring and damping shown

in Fig. 3.11. Several methods exist to determine the laser-cavity detuning, including

calibration of the transduced modulated photodector signal for a known mechanical or

optical modulation, or simple inversion of the normalized optical transmission signal

using the measured Lorentzian response of the cavity. For the swept measurements

presented in this work, we have opted to calibrate accurately the laser wavelength

versus sweep time using a fiber-based Mach-Zender interferometer (FSR= 1.57 pm

at λ ∼ 1480 nm), and to use this to fit and convert sweep time to laser-cavity de-

tuning by comparing with a nonlinear model of the cavity system that incorporates

thermo-optic and gradient-force tuning (see § 3.13). The thermo-optic cavity tuning

versus temperature was measured to be 14.9 pm/K by direct measurement of the

resonance wavelength shift over a 20 K temperature range. The optomechanical cou-

pling constant gOM was estimated from both simulation, based upon an FEM model

of scanning-electron-microscope (SEM) images taken of the cavity geometry, and a fit

to the peak measured mechanical frequency shift. The nonlinear cavity model, incor-

porating the measured thermo-optic effect and the fit gOM, then provides an accurate

conversion between wavelength and detuning from the cavity. The above method

for calibrating laser-cavity detuning is simple to employ with the swept wavelength

method used in this work, and found to be much more accurate than relying on the

low-pass-filtered optical transmission contrast to infer detuning (especially for large

detunings where the transmission contrast is below the percent level).
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3.12 Zipper Cavity Optical Loss

As mentioned above, although the optical force dominates the cavity tuning at MHz

frequencies, the static tuning of the cavity is still largely (∼ 80%) provided by the

thermo-optic effect through optical absorption and subsequent heat generation within

the zipper cavity. As discussed in the § 3.13.4, calculation of the thermal resistance

of the silicon nitride zipper cavity indicates that optical absorption accounts for ap-

proximately 6% of the total optical cavity loss for the device in Fig. 3.11(a) (an

absorption-limited Q ∼ 4.8 × 105). We attribute the optical absorption loss in the

zipper cavity to surface-states [74] of the “holey” silicon nitride beams, rather than

absorption in the bulk of the silicon nitride film, due to the much larger Q values we

have measured in less surface-sensitive microdisks formed from the same silicon ni-

tride material. Properly chosen chemical surface treatments should enable Q-factors

approaching the bulk-absorption-limited value of Qb ∼ 5 × 106 at λ = 1.5 µm, and

perhaps even higher at shorter wavelengths where optical absorption from overtones

of the vibrational modes of the N-H bond is reduced.

These set of notes describe cavity optomechanics in the presence of additional

thermo-optic tuning of the cavity resonance. We find that thermo-optic tuning results

in correction factors to both the optical spring and optomechanical gain. In addition

there is an overall saturation of the optomechanical coupling. These effects can be

large for systems with large static thermo-optic tuning and fast thermal decay relative

to the mechanical frequency. Analysis of the zipper optomechanical cavity indicates

that optical damping can be realized with blue detuned light, in direct opposition to

the bare optomechanical effect. Thermo-mechanical effects are also considered, and

found to be negligible on the scale of the measured properties of the zipper cavity

system. Finally, methods and parameters used in fitting a steady-state nonlinear

optical model, including the gradient optical force and thermo-optic tuning, to the

measured zipper optomechanical cavity response are provided at the end of the notes.
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3.13 Steady-State Nonlinear Optical Model of the

Zipper Optomechanical Cavity

3.13.1 Optical Properties

The fiber Mach-Zender interferometer is used to calibrate the wavelength scans of

the zipper cavity modes. For the zipper cavity mode (TE+,1) of the device studied

in Fig. 2(c), Fig. 3, and Fig. 4, the taper-loaded optical Q-factor was measured

to be QT = 2.8 × 104 with a transmission contrast (fractional dropped power) of

∆T = 27.5%. The resonance wavelength is λ ∼ 1543 nm. The fit value (see below)

of the component of optical loss attributed to absorption is Qa = 4.5× 105.

3.13.2 Geometry

As discussed in the main text, the zipper cavity device under study had l = 36

µm, w = 650 nm, s = 120 nm, and t = 400 nm, as measured by calibrated SEM

inspection. The etched air holes were measured to be 330 nm by 330 nm in area. The

total number of air holes per beam is 55.

3.13.3 Silicon Nitride Material Properties

The material properties of silicon nitride were scoured from a number of sources

and journal articles. Where possible we have used parameters most closely associate

with LPCVD silicon nitride on 〈100〉 Si. The density of LPCVD silicon nitride is

taken to be ρ = 3100 kg/m3, the Young’s modulus Y ∼ 290 GPa, the tensile stress

S ∼ 0.75 GPa, the coefficient of thermal expansion ηTE = 3.3×10−6 K−1, the thermal

conducivity κth ∼ 20 W/m/K, and the specific heat csh = 0.7 J/g/K.

3.13.4 Thermal Properties of the Zipper Cavity

Due to the air-filling-fraction of the etched holes in the zipper cavity nanobeams,

the thermal conductivity of the patterned beams was taken as Γth = 75% of the
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bulk value. A simple estimate for the thermal resistance of the zipper cavity is

then given by Rth ∼ l/(8twΓthκth) ≈ 1.15 × 106 K/W, where the factor of 1/8

comes from the ability for heat to escape out either end of the nanobeams and in

either direction. The physical mass of the zipper cavity, taking into account the

etched holes, is approximately m = 43 picograms. The heat capacity of the zipper

cavity is then roughly ch = 3 × 10−11 J/K. From the heat capacity and the thermal

resistance, the thermal decay rate is estimated to be γth = 1/Rthch ∼ 2.9 × 104

s−1. Finite-element-method simulations of thermal properties of the zipper cavity

yield an effective thermal resistance of Rth = 1.09 × 106 K/W and a thermal decay

rate of γth = 1/Rthch ∼ 5.26 × 104 s−1 for temperature at the center of the zipper

cavity, in reasonable correspondence to the estimated values. The thermal tuning rate

(dominated by the thermo-optic effect) for the device under study was measured to be

δλc/δT ∼ 0.0149 nm/K using a thermo-electrically heated stage and a thermo-couple

placed a few millimeters from the sample.

3.13.5 Optomechanical Properties of the Zipper Cavity

The bare mechanical resonance frequency of the h1d zipper cavity is measured to

be ΩM ∼ 8 MHz, in good corresondence with the FEM-simulated value when S =

0.75 GPa of tensile stress is introduced into the silicon nitride film. The measured

mechanical Q-factor is approximately QM ∼ 50 for the differential mode, and roughly

QM ∼ 150 for the common mode of motion of the nanobeams. This difference is

attributed to the squeeze-film-like damping [76] of the differential motion due to gas

“squeezed” in between the beams. It should be mentioned that all measurements in

the work described here were done in a nitrogen purged box (i.e., not under vacuum).

The FEM-simulated optomechanical coupling length, based upon SEM images of

the device under test, is LOM = 2.09 µm. The inferred optomechanical coupling

length value, based upon the peak measured optical spring effect for various optical

input powers, is LOM = 1.575 µm. Although good correspondence is found between

simulated and measured LOM, the measured value of LOM = 1.575 µm is used to fit
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the remaining cavity parameters as described below.

3.13.6 Wavelength-Scan Fitting

The steady-state equations of motion of the zipper cavity, as given by eqs. (1.126-

1.128), are numerically solved with variable parameter Qa (all other parameters are

fixed to values given above). The resulting wavelength dependent transmission curve

is then fit to the measured (low-pass filtered) curve for a variety of optical input

powers in order to determine the fit value of Qa. Optical input power is calibrated

as described in the Methods section using a calibrated power meter and measuring

the system response for optical power sent in both directions down the fiber taper.

From the fit transmission curve (Fig. 4(a)), the laser-cavity detuning (Fig. 4(b)) at

each point within the intensity image of Fig. 4(c) can be determined. Calculating the

optomechanical damping versus laser-cavity detuning, with and without the thermo-

optic correction, is then used to model the expected RF power in the mechanical

resonance line using eqs. (1.175-1.178).
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Chapter 4

Design and Simulation Principles
of Photonic and Phononic Crystal
Optomechanical Resonators:
Optomechanical Crystals

This chapter is reproduced and adapted from Ref. [4].

4.1 Summary

Periodically structured materials can sustain both optical and mechanical excitations

which are tailored by the geometry. Here we analyze the properties of dispersively cou-

pled planar photonic and phononic crystals: optomechanical crystals. In particular,

the properties of co-resonant optical and mechanical cavities in quasi-1D (patterned

nanobeam) and quasi-2D (patterned membrane) geometries are studied. It is shown

that the mechanical Q and optomechanical coupling in these structures can vary by

many orders of magnitude with modest changes in geometry. An intuitive picture

is developed based upon a perturbation theory for shifting material boundaries that

allows the optomechanical properties to be designed and optimized. Several designs

are presented with mechanical frequency ∼ 1-10 GHz, optical Q-factor Qo > 107,

motional masses meff ≈ 100 femtograms, optomechanical coupling length LOM < 5

µm, and a radiation-limited mechanical Q-factor Qm > 107.
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4.2 Introduction

It has previously been shown that “defects” in a planar periodic dielectric struc-

ture can simultaneously confine optical and mechanical resonances to sub-cubic-

wavelength volumes [77]. As the co-localized resonances share the same lattice, and

thus the same wavelength, the ratio of the optical to mechanical frequency of these

modes is proportional to the ratio of their velocities. More recently, it was demon-

strated that such co-localized resonances in a Silicon structure can strongly couple, via

motion-induced phase modulation of the internal optical field, resulting in sensitive

optical read-out and actuation of mechanical motion at GHz frequencies [3]. In this

paper we aim to further develop the theory and design of these coupled photonic and

phononic systems, laying the groundwork for what we term “optomechanical crys-

tals”. Here we choose a cavity-centric viewpoint of the interaction between photons

and phonons, using the terminology and metrics from the field of cavity optomechan-

ics [5–7]. An alternative viewpoint, more appropriate for guided-wave structures,

may also be taken in which the interactions are described from a nonlinear optics

(Raman-like scattering) perspective [78,79].

We focus on two cavity devices in particular, a quasi-one-dimensional (quasi-1D)

patterned nanobeam and a quasi-two-dimensional (quasi-2D) patterned nanomem-

brane, both of which have been studied extensively in the past [35, 80] for their

photonic properties. The strength of the (linear) optomechanical coupling in such

structures is found to be extremely large, approaching a limit corresponding to the

transfer of photon momentum to the mechanical system every optical cycle [2]. Si-

multaneously, the effective motional mass [49] of the highly confined phonon modes is

small, less than few hundred femtograms for a cavity system operating at a wavelength

of 1.5 µm and a mechanical frequency of 2 GHz. This combination of parameters

makes possible the optical transduction of high-frequency (multi-GHz) mechanical

vibrations [8, 9, 78, 79] with near quantum-limited displacement sensitivity [81, 82].

Additionally, dynamical back-action [83] between the photon and phonon fields can

be used to dampen [26,27,54,84,85] and amplify [86–88] mechanical motion, provid-
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ing an optical source of coherent phonons [89,90] which can then be used within other

phononic circuit elements [10, 91–94]. Planar optomechanical crystals then, should

enable a new generation of circuits where phonons and photons can be generated,

routed, and made to interact, all on a common chip platform.

Unlike the simple motion of a mirror on a spring in more conventional cavity

optomechanical systems [51, 95], the complex mechanics of optomechanical crystal

structures makes it difficult to intuit the origin or strength of the optomechanical

coupling. Nonetheless, understanding the nature of the coupling is crucial to the

engineering of optomechanical crystal devices as the degree of coupling between dif-

ferent optical and mechanical mode pairs can vary by orders of magnitude within

the same structure, with even subtle changes in the geometry inducing large changes

in the optomechanical coupling. In the experimental demonstration of a nanobeam

optomechanical crystal [3], it was shown that the perturbation theory of Maxwell’s

equations with shifting material boundaries [19] provides an accurate method of esti-

mating the optomechanical coupling of these complex motions. Here we describe how

this perturbation theory can be used to create an intuitive, graphical picture of the

optomechanical coupling of simultaneously localized optical and mechanical modes in

periodic systems.

The outline of the paper is as follows. We first analyze the quasi-1D nanobeam

optomechanical crystal system. This nanobeam structure provides a simple example

through which the salient features of optomechanical crystals can be understood. The

mechanical Q of the structure is modeled using absorbing regions that provide a radi-

ation condition for outgoing mechanical vibrations. The various types of mechanical

losses are analyzed, and methodologies for minimizing or avoiding these losses are dis-

cussed. The dispersive coupling between the optical and mechanical modes is studied

next. We use the aforementioned perturbation theory to analyze the optomechanical

coupling strength, and which we display as an optomechanical coupling density on

the surface of the structure. We use the density of optomechanical coupling picture

to illustrate how the structure can be optimized to maximize the optomechanical

coupling. Finally, we analyze the optomechanical coupling of a quasi-2D membrane
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Figure 4.1: (a) General geometry of the periodic nanobeam structure’s projection
(infinite structure, no defect). (b) Optical band diagram of the nanobeam’s projec-
tion. The band from which all localized optical modes will be derived is shown in
dark black, with Ey of the optical mode at the X point shown to the right of the dia-
gram. The harmonic spatial potential created by the defect, along with the first three
optical modes are shown as emanating from the X-point band-edge. (c) Mechanical
band diagram of the nanobeam’s projection. The three bands that form defect modes
that will be discussed in this work are colored. The bottom-most mode is from the
X point of the red band; the Γ points of the green and blue bands correspond to the
middle and top mechanical modes, respectively. The frequencies of the defect modes
that form from the band edges are shown as short, horizontal bars.

structure, the well-known double-heterostructure photonic crystal cavity [72]. We

show how the optical and mechanical modes and their coupling can be understood in

terms of the quasi-one-dimensional nanobeam example.



110

4.3 One-Dimensional Optomechanical Crystal Sys-

tems: An Example

To illustrate the nature of the optomechanical coupling and losses in OMCs, we will

use a quasi-1D nanobeam structure which has been demonstrated experimentally [3].

Figure 4.1(a) shows the general geometry of a periodic, quasi-one-dimensional OMC

system made in a silicon beam of nanoscale cross-section. The system consists of an

infinitely periodic array of hx by hy rectangular holes with center-to-center spacing,

Λ, in a beam of width w and thickness, t (not shown). Although the actual structure

will employ a defect to localize energy to a small portion of the beam, it is useful

to consider the modes of this infinitely-periodic structure, since the structure has

discrete translational invariance, allowing the optical and mechanical modes of the

system to be classified according to their wavevector, kx, and a band index. We

shall call the infinitely-periodic structure the projection of the system. The band

picture provided by the projection allows a simple description of localized optical and

mechanical modes as existing between two “mirrors” in which propagating modes at

the frequency of the defect have a small or vanishing density of states; the mirrors

surround a perturbation region where propagation at the modal frequency is allowed,

localizing the propagating mode between the mirrors. The optical and mechanical

bands of the OMC’s projection are shown in Fig. 4.1(b) and 4.1(c), respectively,

for the structure Λ = 360 nm, w = 1400 nm, hy = 990 nm, hx = 190 nm, and

t = 220 nm. The material properties are parameterized by an isotropic Young’s

modulus, E = 169 GPa, and an index of refraction, n = 3.49. The optical bands are

computed with the MIT Photonic Bands package [96], while the mechanical bands are

computed with COMSOL Mutliphysics [97], a finite element method (FEM) solver.

The structure does not possess a complete stop band for either the mechanics or

the optics; nevertheless a defect in this structure can simultaneously produce highly-

confined, low-loss optical and mechanical modes.

The primary optical mode of interest will be the first TE-like (dominantly polar-

ized in the y-direction) ”valence” band mode at the edge of the first Brillioun zone
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(the edge of the first Brillioun zone is called X and the origin is called Γ). The electric

field profile, Ey, is shown next to the band diagram. As described in detail in previ-

ous work on “zipper” optomechanical resonators [1,2] using general momentum-space

design rules of photonic crystal cavities [98], the localized modes that come from this

band-edge mode are as far as possible from the light line while having a minimal

amount momentum near kx = 0 (and identically zero momentum at kx = 0) when

used with a structure that is symmetric about a hole in the center. This reduces the

radiation loss out of the structure. Because of the finite index contrast of the sys-

tem, the optical Q is limited by radiation from optical momentum components that

are close to kx = 0, since the system can only guide momentum components that

are above the critical angle for total internal reflection. This governs the design and

choice of optical modes of the structure. Because the optical band has negative cur-

vature at the X point, the frequency of the mode at the band edge must be increased

to confine an optical mode coming from this band. This can be accomplished by

decreasing Λ (making the holes closer together without changing the size of the hole).

As has been shown [1, 2, 13, 36–40, 99] both theoretically and experimentally, these

nanobeam systems are capable of achieving very high radiation-limited Q-factors.

Unlike light, mechanical energy cannot radiate into the vacuum. This makes the

design rules for creating low-loss mechanical defect modes qualitatively different than

those discussed above for optical defect modes, as will be discussed in the next sec-

tion. Just as true photonic band-gaps are not necessary to achieve high confinement

and low optical losses in nanowire structures, true phononic bandgaps are also unnec-

essary to achieve low mechanical losses. A quasi-stop-band, where a defect mode of

a particular polarization, frequency, and k-vector cannot couple a significant amount

of energy to the waveguide modes of the mirror portion will be enough to acheive me-

chanical energy localization. Unlike in optics, all mechanical modes are “guided” by

the structure, regardless of their k-vector, which allows localized mechanical modes

to be created from either of the high symmetry points, Γ or X. In fact, it will be

shown that it is advantageous to draw mechanical modes from the Γ point, as this

generally produces larger optomechanical coupling than drawing from X. Clearly the
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mechanical mode should be localized by the same defect as the optical mode; if this

is not the case, then the target mechanical band-edge should be essentially unaffected

by the defect that creates the optical mode, and a separate defect must be found that

can localize the mechanics without significantly affecting the optical mode. Finally,

the localized defect mode that is formed from the band edge must be sufficiently

optomechanically coupled to the localized optical mode(s) of interest.

Breathing Mode   2.24 GHz   m  = 334 fg

Accordian Mode   1.53 GHz   m  = 681 fg

Pinch Mode   898 MHz   m  = 68 fg

Fundamental   202 THz   V  = 1.38 (λ0/n)3

Second Order   195 THz   V  = 1.72 (λ0/n)3

Third Order   189 THz   V  = 1.89 (λ0/n)3

(b)

(c)

Mirror MirrorDefect

ClampClamp

(a) Λ Λ Λ ΛΛD ΛD

ND

Figure 4.2: (a) Schematic illustration of actual nanobeam optomechanical crystal
with defect and clamps at substrate. (b) Localized optical modes of the nanobeam
OMC. The colors of the names correspond to the illustration of the inverted po-
tential in Fig. 4.1(b). Localized, optomechanically-coupled mechanical modes of the
nanobeam OMC. The colors of the names correspond to the colored bands and hori-
zontal bars showing the modal frequencies in Fig. 4.1(c).
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The defect that will be employed to localize optical and mechanical energy to the

center of the structure consists of a decrease in the lattice constant for the otherwise

periodic array of Ntotal holes in the beam, as illustrated in Fig. 4.2(c). For the

modes that are localized by the defect, this effectively divides the structure into a

”defect” portion where propagation is allowed, surrounded by “mirrors”, where the

localized modes are evanescent, as discussed above. The particular defect used here

consists of some odd number of holes, ND, with the spacing between the holes varying

quadratically from the background lattice constant, Λ, to some value ΛD, with the

spacing varying symmetrically about the center hole (the hole dimensions are held

fixed throughout the structure). The complete geometry, which we will refer to as

“the nominal structure” is: Ntotal = 75, Λ = 360 nm, w = 1400 nm, hy = 990

nm, hx = 190 nm, t = 220 nm, ND = 15, and ΛD = 0.85Λ. In the nanobeam

structure described here, this defect simultaneously localizes many mechanical and

optical modes.

For localized modes, the quasi-harmonic spatial defect creates a quasi-harmonic

potential for the optical and mechanical mode envelopes [41]. This creates a ladder

of states for each band edge with approximately Hermite-Gauss spatial dependencies

along the cavity axis (x), in direct analogy to the harmonic potential of 1D quan-

tum mechanics. As discussed above, the localized optical modes of interest come

entirely from a single band-edge (the darkened band in Fig. 4.1(b)); the first three

cavity modes of the defect from that band are shown in Fig. 4.2(b). Many localized

mechanical modes with linear optomechanical coupling exist in this system. As ex-

amples, we will examine an exemplary optomechanically-coupled mechanical cavity

mode from three different band-edges, even though each of these band edges produces

a manifold of defect modes which may or may not have optomechanical coupling. The

three modes are shown in Fig. 4.2(c), with the colors of the bands of Fig. 4.1(c) cor-

responding to the colors of the modes’ label in the figure.
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Figure 4.3: (a) In-phase and (b) in-quadrature mechanical displacement field
(log10(|q|2/max(|q|2)) of the fundamental breathing mode of nanobeam OMC struc-
ture with weakly absorbing “pad”, showing the propagating nature of the radiated
mechanical waves in the pad region.

4.4 Modal Cross-Coupling and Mechanical Losses

Periodic structures can be fabricated to have phononic band gaps [93,100–102], where

mechanical energy loss by linear elastic coupling to the environment can be made ar-

bitrarily small. Eventually, more fundamental losses [103, 104] such as thermoelastic

loss [105–108], non-equilibrium energy redistribution [104,109], phonon-phonon scat-

tering [110], and the movement of dislocations and impurities [104, 111] should be

accessible in these systems. First, however, the linear interaction of the optomechan-

ical crystal and its surrounding substrate, which acts as a bath, must be understood

and minimized. With this in mind, we use a finite element method model with weakly

absorbing “bath” regions to model the losses in the system due to coupling of the me-

chanical energy into modes that are not confined. This method captures inter-modal
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Figure 4.4: (c) Dependence of Qm on the total length of the structure; the num-
ber of mirror holes on each side is (NT − 15)/2. This shows the oscillatory Qm of
the pinch and breathing modes, which are coupled to waveguide modes, and the
exponentially-increasing Qm of the accordion mode. (d) Mechanical band structure
of the nanobeam OMC, with arrow tails indicating the frequency and high-symmetry
point of the breathing (blue) and pinch (red) modes, and arrow heads indicating the
equi-frequency waveguide mode that acts as the dominant source of parasitic cou-
pling. The effective bandgap of the accordion mode is shown in transparent green,
with its frequency indicated as a horizontal green bar at the Γ point.

coupling between the localized modes and all other mechanical modes of the system,

some of which act as parasitic loss channels into the surrounding “bath”.

The lack of a mechanical bandgap means that the superposition of k-vectors neces-

sary to create a localized mode in the defect coincide with k-vectors of equi-frequency

propagating modes of the phononic crystal mirrors. The localized modes and propa-

gating modes of equal frequency will hybrizide and couple whenever the symmetries

of the modes do not forbid it. In addition to the propagating modes, there are “body

modes” that exist purely because of the boundary conditions (and thus not repre-

sented in the band structure), such as vibrations, density waves, and torsions of the

finite, clamped structure. If the simulated exterior boundary conditions allow energy

in the propagating and body modes to be lost, the propagating and body modes that

couple to the localized mode will act as parasitic loss channels for the localized mode.

In a fabricated structure, the cantilever is attached to a substrate at both ends,

rather than a hard boundary at the end of the cantilever. These more realistic bound-

aries must be included to model propagating and body mode losses. The propagating
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modes travel down the nanobeam and partially reflect at the contacts due to an effec-

tive impedance mismatch caused by the geometric change between the nanobeam and

the bulk. The rest of the power radiates into the bulk, causing a loss of mechanical

energy. Thus the localized mode is coupled to a propagating mode with identical

frequency that can radiate part or all of its energy into the surrounding “bath”. This

propagating mode also forms a coupled cavity resonance with the localized mode be-

cause of the reflections at the clamp points. The body modes have a softer boundary

condition than q = 0 at the boundaries, extending the body mode amplitude into

the substrate. The part of the body mode that extends into the substrate can excite

radiative modes of the substrate. The body mode then acts as a loss channel for

any localized mode to which it is coupled. The localized, propagating, and body

modes form a set of coupled resonators. Since the body and propagating modes are

very sensitive to the total length of the structure, the self-consistent solution, which

determines the loss of the localized mode, is very sensitive to the exact boundary con-

ditions. Thus, to accurately simulate the true spatial profiles and losses of localized

mechanical modes, one needs a simulation that reflects the true boundary conditions.

To model the loss due to coupling to radiative modes of the substrate, we include

a large, semi-circular “pad” on each side of the nanobeam, with the same material

constants as the nanobeam. To make the pad act like a “bath”, we introduce a

phenomenological imaginary part of the speed of sound in the pad region; i.e., vpad →

vSilicon(1 + iη), where v =
√
E/ρ. This creates an imaginary part of the frequency,

and the mechanical Q can be found by the relation, Qm = Re {νm} /(2Im {νm}). By

adding loss to the pad material, propagating modes will reflect part of their power

at the contacts (the interface between the cantilever and the substrate) because of

the change in the impedance from the absorption, not just the geometric change in

impedance. From this point of view, η should be made as small as possible, since

this contribution to the reflection coefficient is an artifact of the simulation and is

not present in the real system. However, η must also be large enough that the self-

consistent solution includes a propagating, radiated wave, which only happens if the

wave is appreciably attenuated by the time it reflects from the edge of the simulation
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(where q = 0) and returns to the contact. Thus, the pad is made as large as possible,

given computational constraints, and the absorption is increased until Qm changes

appreciably, which gives the threshold value for η at which the reflectivity of the

contacts has an appreciable contribution from the absorption. The simulation is then

performed with a value of η that produces a propagating wave in the pad without

causing an artificial reflectivity at the contact. Propagation in the pad is easily verified

if the position of the nodes/antinodes swap between the in-phase and in-quadrature

parts of the mechanical cycle (the nodes/antinodes of a standing wave are stationary).

Figure 4.4(a) and 4.4(b) show the in-phase and in-quadrature (respectively) parts of

the mechanical cycle of the breathing mode, clearly showing a propagating radiative

mode in the weakly absorbing pad, with log10(|q|2/max(|q|2) plotted to elucidate the

attenuation of mechanical radiation in the pad.

Limiting the artificial reflection at the interface of the non-absorbing and absorbing

portions sets the maximum absorptivity, which in turn sets the minimum size of the

pad (to guarantee that the radiation is completely attenuated before returning to

the source). This size/absorptivity trade-off can be improved by making η vary

as a function of position in the pad, starting out at zero and increasing radially

outward (quadratically, say). This is analogous to a mechanical perfectly matched

layer (PML) [112], which has the benefit of increasing the round-trip absorption while

maintaining a minimum reflectance at the clamp due to absorption. This provides the

same reflection-free absorption of mechanical radiation in a more compact simulation

space, making better use of computational resources.

Changing the length of the structure changes the resonance condition for both

the propagating and body modes. This changes the amount of coupling to the lo-

calized mode in the self-consistent solution of the system. Thus the parasitc losses

into a waveguide mode should be periodic. Figure 4.4(c) shows Qm for the pinch,

accordion, and breathing mode as the total number of holes (i.e., the length of the

optomechanical crystal) is varied. For the breathing and pinch modes, the mechanical

losses oscillate as a function of the total length of the nanobeam. For this particular

geometry, the losses are dominated by propagating modes, and the oscillation period



118

of the Q can be matched to a k-vector of a waveguide mode in the band structure in

Fig. 4.4(d) (shown as a dotted line extending from the defect frequency). Thus the

length of the structure can be tuned to minimize mechanical losses in cases where a

complete mechanical bandgap is not present. Interestingly, the Q of the accordion

mode increases exponentially with the number of holes, indicating that the mode

is evanescent in the mirror portions. Examining the four bands that cross through

at the frequency of the accordion mode, we find that all four bands have a mirror

symmetry about either the x − z or x − y planes that forbids any hybridization or

coupling between to the accordion mode. This creates an effective bandgap (shown

in translucent green). Practically speaking, this is a much weaker stop-band than a

true bandgap, because any defect in the structure that breaks the symmetry of the

accordion mode about the mirror planes will cause a coupling to the waveguide modes

in the gap. However, it is exactly this kind of symmetry-dependent effective bandgap

that is responsible for the high optical Q [1,3,13,99] of the experimentally-fabricated

structures. This gives some confidence that it is possible to fabricate structures that

are defect-free to the degree necessary to achieve high Qm.

4.5 Optomechanical Coupling: Definition and In-

tegral Representation

Cavity optomechanics1 involves the mutual coupling of two modes of a deformable

structure: one optical and one mechanical. The optical mode is characterized by a

resonant frequency ωo = 2πνo and electric field E(r). The mechanical mode is charac-

terized by a resonant frequency Ωm = 2πνm and displacement field Q(r), where Q(r)

is the vector displacement describing perpendicular displacements of the boundaries

of volume elements. The cavity optomechanical interactions of the distributed struc-

ture and its spatially-dependent vector fields, E(r) and Q(r), can be reduced to a

description of two scalar mode amplitudes and their associated mode volumes, with

1This section is a partial reproduction from Chapter 1. See relevant sections of Chapter 2 for a
more extensive discussion.
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the coupling of the amplitudes parameterized by a single coupling coefficient, gOM.

The mode amplitude, c, and complex vector field profile, e(r), are defined such

that the complex electric field is E(r) = ce(r) (the physical field is given by the

real part of E(r)eiωt). For pedagogical reasons, the amplitude c is normalized such

that the time averaged electromagnetic energy is equal to |c|2; i.e. U = |c|2 =

1
2

∫
dV ε |E|2. This forces e to be normalized such that 1 = 1

2

∫
dV ε |e|2. In cavity

quantum electrodynamics, one typically defines an effective optical mode volume,

Vo =
∫

dV

( √
ε|E|

max(|√εE|)

)2

, in order to gauge the strength of light-matter interactions.

The mechanical vibration’s amplitude, α, and mode profile (displacement), q(r),

are defined such that Q(r) = αq(r). Here, α is defined as the largest displacement

that occurs anywhere for the mechanical field, Q(r), so that max(|Q(r)|) = 1. It is

important to note that this particular choice of α determines the mechanical mode’s

effective volume and effective mass, Vm and meff ≡ ρVm, respectively. In order to

represent an energy and be consistent with the equipartition theorem, this choice of α

requires the complimentary definition meff = ρ
∫

dV
(

|Q|
max(|Q|)

)2

. To see this, note that

the free evolution of the mechanical oscillator has, by definition, a time-independent

total energy Emechanical = meff

2
(Ω2α2 + α̇2). On the other hand, integrating the total

energy of each volume element must also give this same total energy. If we pick the

point in phase space at which all the mechanical energy is potential energy (i.e. the

classical “turn-around point”), we must have that Emechanical = 1
2
Ω2
∫
ρ|Q(r)|2dV =

1
2
meffΩ2α2, or, in other words, meffα

2 =
∫
ρ|Q(r)|2dV . One can arbitrarily choose the

definition of the amplitude or the mass, but choosing one determines the other. Note

that α is also the amplitude of zero-point motion of the canonical position operator

in a quantized treatment. For a system like a localized mode of a phononic crystal

defect cavity, where only a very small, localized portion of the total mass undergoes

appreciable motion, the most sensible choice of the mass is the amplitude-squared

weighted density integral, which, as stated above, is the choice of mass associated

with α = max(|Q(r)|).

The optomechanical coupling affects the optical mode by tuning the optical reso-

nant frequency as a function of displacement, ωo(α); whereas the coupling affects the
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mechanical mode by applying a force, which is expressed as a gradient of the cavity

energy, d |c|2 /dα. The optical resonant frequency is usually expanded in orders of

the (small) displacement, α around some equilibrium displacement, α0.

ωo(α) = ωo

∣∣∣
α=α0

+ (α− α0)
dωo

dα

∣∣∣
α=α0

+ (α− α0)2 d2ωo

dα2

∣∣∣
α=α0

+ ... (4.1)

In the case that the terms higher than first order can be neglected, this equation

simplifies to

ωo(α) = ωo

∣∣∣
α=α0

+(α−α0)
dωo

dα

∣∣∣
α=α0

≡ ωo +(α−α0)gOM ≡ ωo +(α−α0)
ωo

LOM

, (4.2)

where ωo ≡ ωo

∣∣∣
α=α0

is the equilibrium resonance frequency of the optical mode,

gOM ≡ dωo

dα

∣∣∣
α=α0

is the derivative of the resonance frequency of the optical mode

evaluated at equilibrium, and LOM is the effective optomechanical length of the system.

The effective length, LOM, is a universal parameter that relates displacement to a

change in optical frequency (i.e. α/LOM = δωo/ωo). From the definition, L−1
OM ≡

1
ωo

dωo

dα

∣∣∣
α=α0

= gOM/ω0, one can see that reducing LOM maximizes the optomechanical

coupling. It is simple to show that LOM is equal to the spacing between the mirrors

of a Fabry-Perot cavity when one mirror is allowed to move along the cavity axis or

the radius of a microtoroid/microdisk for a radial breathing motion. For a “Zipper”

cavity or double-microdisk, LOM is an exponentially decreasing function of the spacing

between the coupled elements, with LOM approaching half a wavelength of light as

the spacing approaches zero.

The perturbation theory of Maxwell’s equations with shifting material bound-

aries [19] allows one to calculate the derivative of the resonant frequency of a struc-

ture’s optical modes, with respect to some parameterization of a surface deformation

perpendicular to the surface of the structure. If the result of a mechanical simulation

is the displacement field, Q(r) = αq(r) ≡ αQ(r)/max(|Q|), then
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1

LOM

=
1

4

∫
dA (q · n̂)

[
∆ε
∣∣e‖∣∣2 −∆(ε−1) |d⊥|2

]
(4.3)

where d = εe, n̂ is the unit normal vector on the surface of the unperturbed cavity,

∆ε = ε1− ε2, ∆(ε−1) = ε−1
1 − ε−1

2 , ε1 is the dielectric constant of the structure, and ε2

is the dielectric constant of the surrounding medium.

To calculate LOM by deforming the structure, one must simulate the fields with a

deformation amplitude, α, that is large enough to be detectable numerically but small

enough that higher order dispersion does not affect the frequency shift. To verify

that higher order dispersion is not included, one must simulate the optical fields

for a range of displacement amplitudes and extract the linear dispersion. Because

perturbation theory can calculate the linear term exactly from a single calculation

using the undeformed structure, this method has clear advantages over numerical

methods using finite deformations.

4.6 Optomechanical Coupling: Visual Representa-

tion and Optimization

In addition to being computationally simpler than deformation methods, the pertur-

bative method of calculating the optomechanical coupling allows one to represent the

optomechanical coupling as a density on the surface, with different parts of the struc-

ture contributing different amounts of optomechanical coupling. This yields much

more information than just the value of LOM, itself. The optomechanical coupling

density is given by

ζOM(r) ≡ 1

4
(q · n̂)

[
∆ε
∣∣e‖∣∣2 −∆(ε−1) |d⊥|2

]
. (4.4)

The optomechanical coupling density can further be broken down into a mechan-

ical part (the normal displacement profile)
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Figure 4.5: For the fundamental breathing mode and the fundamental optical mode
in the nominal structure, (a) FEM simulation of individual unit cell contributions to
the total optomechanical coupling (each point computed by integrating ζOM (Equa-
tion 5.1) over the respective unit cell), (b) surface plot of the optomechanical coupling
density, ζOM. (c) surface plot of the normal displacement profile, Θm (Equation 4.5),
(d) surface plot of the electromagnetic energy functional, Θo (Equation 4.6). In (d),
there is significant optomechanical coupling density in the corner of the holes, where
the crossbar meets the rail. Without the fillets, the field amplitude is concentrated
in the corner and difficult to see. For this reason, the corners have been filleted to
allow the optomechanical coupling density in the corners to be visualized. The fillets
do not significantly affecting the optomechanical coupling (confirmed by simulation).

Θm(r) ≡ q · n̂ (4.5)

and an optical part (the electromagnetic energy functional)

Θo(r) ≡ ∆ε
∣∣e‖∣∣2 −∆(ε−1) |d⊥|2 , (4.6)

which can be separately visualized on the surface. This provides a quantitative

method of assessing the separate optical and mechanical contributions and allows



123

an intuitive approach to individually engineering the optical and mechanical proper-

ties of the structure to enhance the optomechanical coupling of specific modes.

Figure 4.5(a) shows the contribution to the optomechanical coupling, L−1
OM, of the

breathing mode and fundamental optical mode from each “unit cell” of the structure.

Summing the contributions from each unit cell yields L−1
OM. Figs. 4.5(b)-(d) show

ζOM, Θm, and Θo, plotted on the surface of the nanobeam OMC for the fundamental

breathing mode and the fundamental optical mode. In Fig. 4.5(b), it can be seen that

there are two dominant and opposite contributions to the optomechanical coupling:

one from the outside face of the rails and one from the inside face of the rails (in

the corners of holes). Minimizing the cancellation between these two contributions is

critical to achieving a small LOM for the breathing mode (i.e. strong optomechanical

coupling). The geometry of the “nominal” structure optimizes the coupling between

the fundamental optical mode and the breathing mode, as shown below.

Since the breathing mode is drawn from a band edge at the Γ point, adjacent

unit cells are mechanically in-phase with each other and add constructively to the

optomechanical coupling. This is in contrast to defect modes drawn from band edges

at the X point, such as the pinch mode, where adjacent unit cells are mechanically

out-of-phase, resulting in neighboring unit-cell contributions that tend to cancel. This

cancellation reduces the optomechanical coupling unless it is specifically mitigated

with extremely tight modal envelopes (see description of pinch mode optomechanical

coupling below).

The degree to which the different faces of the rails cancel each other’s contribution

to L−1
OM is set by the attenuation of the optical field between the two edges, as the

mechanical displacement of the two rails is fairly uniform. Thus, one would expect

that varying the rail thickness, which changes the relative amplitude of the optical field

on the two rail faces, would have a significant impact on the coupling. Figure 4.6(a)

shows LOM as a function of rail thickness, with LOM of the nominal structure (190 nm

rail thickness) circled in green. For rail thicknesses smaller than 190 nm (such as

the 100 nm rail width, circled in red in Fig. 4.6(a) and shown in Fig. 4.6(b)), the

amplitude of the optical field on the inside and outside edge of the field is becoming
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Figure 4.6: For the fundamental breathing mode and the fundamental optical mode,
(a) the dependence of the optomechanical coupling on the rail thickness (with oscilla-
tions in the data arising from accidental degeneracies with the cantilever modes), (b)
the optical and mechanical mode profiles for rail thicknesses of 100 nm, 190 nm and
400 nm circled in red, green and blue respectively in (a), (c) comparison of the me-
chanical mode profiles when coupled (orange) and not coupled (purple) to cantilever
modes, with the corresponding effect on in LOM highlighted in (a).

more and more similar. This results in a larger cancellation between the contributions

to L−1
OM on the inside and outside of the rails, decreasing the optomechanical coupling.

This reasoning might lead one to believe that increasing the rail thickness should

monotonically decrease LOM (increase optomechanical coupling). However, for rail

thicknesses larger than 190 nm (such as the 400 nm rail width, circled in blue in

Fig. 4.6(a) and shown in Fig. 4.6(b)), there is significant decrease in confinement of

the optical mode because the light can partially “spill around” the holes through

the wide rails. The mechanical mode, in contrast, stays relatively confined. The net

effect is that the optical energy is “wasted” on parts of the structure that do not have

significant motion, and the optomechanical coupling is again decreased.
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Figure 4.7: For the fundamental pinch mode and the fundamental optical mode in
the nominal structure, (a) FEM simulation of individual unit cell contributions to
the total optomechanical coupling, (b) surface plot of the optomechanical coupling
density, (c) surface plot of the normal displacement profile (Equation 4.5), (d) surface
plot of the electromagnetic energy functional (Equation 4.6).

Just as Qm is affected by hybridization of the breathing mode with propagating

and body modes, LOM is affected by hybridization as q(r) is modified by the coupling

to waveuide or body modes. This is responsible for the oscillations in LOM seen in

Fig. 4.6(a). The impact of coupling to the nanobeam body modes can be clearly seen

in Fig. 4.6(c), where the breathing mode in a structure with a rail thickness of 230 nm

has been plotted for two different beam lengths (number of total holes). For 47 total

holes (circled in orange in Fig. 4.6a)), the breathing mode shape is altered significantly

by the hybridization, causing the LOM to deviate from the trend indicated by the red

line in Fig. 4.6a). Shortening the structure by 2 holes (one on each side) decreases

the coupling of the breathing mode to the propagating mode, returning LOM to the

trend line.
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Figure 4.8: For the accordion mode and the fundamental optical mode in the nominal
structure, (a) FEM simulation of individual unit cell contributions to the total op-
tomechanical coupling, (b) surface plot of the optomechanical coupling density, (c)
surface plot of the normal displacement profile (Equation 4.5), (d) surface plot of the
electromagnetic energy functional (Equation 4.6).

The pinch mode is a localized, in-plane differential acoustic vibration. Each neigh-

boring crossbar vibrates 180 degrees out of phase with its nearest neighbors, since

the pinch mode is drawn from a band edge at the X point. So although the op-

tomechanical coupling contribution from each half of the structure (with respect to

the y-z plane) is equal, such that the two halves add constructively to L−1
OM, on ei-

ther side of the y-z plane, contributions to L−1
OM from neighboring crossbars tend to

cancel. This puts a premium on mechanical localization, as a more localized pinch

mode has a larger difference (and thus a reduced cancellation) between neighboring

crossbars. Although the envelope of the pinch mode’s displacement profile is gaus-

sian, each crossbar is very rigid, so the displacement of the compression and tension

faces of each beam is essentially identical (but opposite). The gaussian envelope only
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Figure 4.9: For the accordion mode with the fundamental optical mode, (a), the
effective length as a function of total beam width, (b), individual unit cell contri-
butions to the total optomechanical coupling for a structure with a beam width of
700 nm (circled in (a)), mode frequency of 3.97 GHz and effective motional mass of
334 fg, with accompanying mechanical mode plot. The narrower mechanical mode
(represented here by the deformation of the structure with color indicating relative
strain) envelope results in drastically different optomechanical coupling contributions
compared to Fig. 4.8.

serves to change the relative vibration amplitudes of neighboring crossbars. The op-

tomechanical coupling contribution from each beam would be approximately zero if

it weren’t for the rapid variation of the optical mode’s envelope, and the contribution

of each crossbar to L−1
OM depends primarily on the difference in the optical energy

density across the width of the beam. This would then lead one to believe that

tighter localization, both optically and mechanically, would produce better optome-

chanical coupling for this structure. Indeed, although the LOM of the pinch mode in

the structure shown is quite modest (≈ 41 µm), LOM can be reduced to less than

3 µm by more tightly confining the optical and mechanical modes by reducing the

number of holes involved in the defect region. There is, however, a loss of optical

Q associated with the increased confinement due to the larger optical momentum
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components associated with tighter spatial localization. However, the structure as

shown has a radiation-limited optical Q greater than 10 million; so it can be quite

reasonable to trade optical Q for higher optomechanical coupling.

The last type of mechanical mode to be considered is the accordion mode (Fig. 4.8).

The relatively poor LOM for the accordion mode in the nominal structure is partly due

to the fact that the rails recoil against the motion of the cross bar, producing opposing

optomechanical contributions within each unit cell. In addition, the coupling of the

broad first order Hermite-Gauss envelope of the mechanical mode with the narrower

optical mode induces cancellations in the optomechanical coupling contributions at

the inflection points of the mechanical mode envelope.

As discussed above, the accordion mode has a large effective mechanical bandgap.

The dramatically increasedQm that results makes it worthwhile to investigate whether

the structure can be modified to produce smaller LOM. By reducing the width of the

nanobeam, it can be seen from Fig. 4.9(a) that the coupling is dramatically improved

by almost two orders of magnitude when the width of the structure is reduced. As

shown in Fig. 4.9(b), for a beam width of 700 nm, the contributions within each unit

cell no longer cancel, due to the comparatively narrower mechanical mode envelope,

and the structure yields LOM = 3.67 µm. In addition, simulations of the Qm show that

the effective bandgap for this narrower structure is approximately 2 GHz, yielding an

extremely large Qm for a given number of holes in the mirror section (Qm ≈ 108 for

35 total holes). It should be noted that the frequency of the accordion mode of the

narrower structure is approximately 4 GHz, up from 1.5 GHz in the wider structure.

4.7 Optomechanical Coupling in Two-Dimensional

Optomechanical Crystals

As a final example of how these methods can be used to understand the optomechani-

cal coupling in periodic structures with complex mechanical and electric field profiles,

we model a double heterostructure hexagonal photonic crystal slab resonator. This
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Figure 4.10: (a) Fundamental optical mode of the double-heterostructrure OMC
(geometry identical to that described in Ref. [72]), with λ0 ≈ 1.5 µm, Qrad ≈ 2.7×107,
and Veff = 1.2 (λ0/n)3. (b) Breathing mechanical mode of the double-heterostructure
OMC, with νm = 9.3 GHz, and meff = 322 femtograms. (c) Optomechanical coupling
integrand plotted on the double-heterostructure OMC system’s surface; the structure
has an LOM = 1.75 µm for the optical-mechanical mode-pair from 4.10(a) and 4.10(b).

is a well-known optical system, which has been found to have radiation-limited qual-

ity factors in excess of twenty million, with experimental demonstrations exceeding

quality factors of two million [72]. The system consists of a hexagonal lattice of air

holes in a silicon slab, with a single row of holes removed to create a waveguide mode

within the optical stop band (the defect pulls the waveguide mode from the conduc-

tion band); in addition, the spacing in the direction of the waveguide is abruptly

decreased twice to provide longitudinal confinement. This structure is essentially

equivalent to the nanobeam structure, with the optical and mechanical modes guided
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by Bragg reflection in the lateral direction, as opposed to total internal reflection

and hard boundaries in the nanobeam. With this in mind, we expect very similar

optical and mechanical modes wherever lateral propagation out of the waveguide is

prohibited by Bragg reflection.

The fundamental optical cavity mode of the structure (the geometry is identical

to that described in Ref. [72]) has been reproduced by FEM simulation and shown in

Fig. 4.10(a). The structure also exhibits a lateral mechanical breathing mode at 9.3

GHz with a motional mass of 300 femtograms, modulating the width of the waveguide

in a way that is analogous to the mechanical breathing mode of the nanobeam. The

breathing mode displacement profile is shown in Fig. 4.10(b).

Figure 4.10(c) shows the integrand of the optomechanical coupling integrand

(Eq. 5.1) between the the optical mode and the mechanical breathing mode plot-

ted on the surface of the structure. The structure is shown slightly tilted to allow

the insides of the holes to be seen, which give the dominant contributions to the

optomechanical coupling. It is interesting to note that the coupling comes almost

entirely from the movement of a small part of the interior of the holes (i.e., the region

of the inner sidewall of the hole, closest to the center defect region); this can be seen

by comparing the top half of the structure to the bottom half (since the integrand is

symmetric about the x-z plane). Since each row of holes provides an opposite con-

tribution to its neighbors, it is necessary to have a rapidly decaying optical envelope

to achieve small LOM, which is the case for the optical mode shown here. There

is also a very small, opposing contribution from the center waveguide due to buck-

ling/extrusion of the structure as the width is modulated. Just as in the case of the

nanobeam, this optical-mechanical mode-pair has a very strong dispersive coupling,

and evaluating the integral yields an effective length of only 1.75 µm.

Optically, the structure has a complete photonic bandgap for in-plane propagation,

but, with a hole size to lattice constant ratio of r/Λ = 0.26, there is no corresponding

in-plane mechanical bandgap. This makes the structure susceptible to mechanical

loss mechanisms similar to those of the nanobeam. However, the two-dimensional

hexagonal lattice, as well as other two dimensional Bravais lattices, can have simul-
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taneous optical and mechanical bandgaps [113,114], allowing the possibility of highly

localized, low-loss optical-mechanical mode-pairs with very small effective lengths and

motional masses.
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Chapter 5

Experimental Demonstration of
Optomechanical Coupling of
Localized Acoustic and Optical
Modes of a Photonic and Phononic
Crystal

This work is reproduced and adapted form Ref. [3].

5.1 Summary

Structured, periodic optical materials can be used to form photonic crystals capable

of dispersing, routing, and trapping light. A similar phenomena in periodic elas-

tic structures can be used to manipulate mechanical vibrations. Here we present

the design and experimental realization of strongly coupled optical and mechanical

modes in a planar, periodic nanostructure on a silicon chip. 200-Terahertz photons

are co-localized with mechanical modes of Gigahertz frequency and 100-femtogram

mass. The effective coupling length, LOM, which describes the strength of the photon-

phonon interaction, is as small as 2.9 µm, which, together with minute oscillator

mass, allows all-optical actuation and transduction of nanomechanical motion with

near quantum-limited sensitivity. Optomechanical crystals have many potential ap-

plications, from RF-over-optical communication to the study of quantum effects in

mesoscopic mechanical systems.
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5.2 Introduction

Periodicity in materials yields interesting and useful phenomena. Applied to the

propagation of light, periodicity gives rise to photonic crystals [115], which can be

precisely engineered to, among other things, transport and control the dispersion of

light [116,117], tightly confine and trap light resonantly [118], and enhance nonlinear

optical interactions [119]. Photonic crystals can also be formed into planar lightwave

circuits for the integration of optical and electrical microsystems [120]. Periodicity

applied to mechanical vibrations yields phononic crystals, which harness mechanical

vibrations in a similar manner to optical waves in photonic crystals [10,91–94,101,102].

As has been demonstrated in studies of Raman scattering in epitaxially grown vertical

cavity structures [78] and photonic crystal fibers [121], the simultaneous confinement

of mechanical and optical modes in periodic structures can lead to greatly enhanced

light-matter interactions. A logical next step is thus to create planar circuits that

act as both photonic and phononic crystals [77]: optomechanical crystals. In this

spirit, we describe the design, fabrication, and characterization of a planar, silicon-

chip-based optomechanical crystal capable of co-localizing and strongly coupling 200

THz photons and 2 Gigahertz phonons. These planar optomechanical crystals bring

the powerful techniques of optics and photonic crystals to bear on phononic crystals,

providing exquisitely sensitive (near quantum-limited), optical measurements of me-

chanical vibrations, while simultaneously providing strong non-linear interactions for

optics in a large and technologically-relevant range of frequencies.

5.3 Acoustic and Optical Modes

The geometry of the optomechanical crystal structure considered here is shown in

Fig. 5.1(a). The effectively one-dimensional (1D) optomechanical crystal consists of a

silicon nanobeam (thickness t not shown) with rectangular holes and thin cross-bars

connected on both sides by thin rails (we will refer to infinitely periodic constructs

such as this as the “projection” of the finite structure). Fig. 5.1(b) shows a finite-
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Figure 5.1: (a), Geometry of nanobeam structure. (b), Optial and (c), mechanical
bands and defect modes calculated via FEM for the projection of the experimentally-
fabricated silicon nanobeam (Λ = 362 nm, w = 1396 nm, hy = 992 nm, hx = 190
nm, and t = 220 nm; isotropic Young’s modulus of 168.5 GPa; n =3.493). In this
particular structure, which will be referred to as “Device 1”, Ndefect = 15 holes,
Ntotal = 75 and the spacing between the holes varies quadratically from the lattice
constant of the projection (362 nm) to 85% of that value (a “15% defect”) for the two
holes straddling the central cross-bar (the other parameters of Device 1 are as listed
above).

element-method (FEM) simulation of the optical band structure of the projection

of a nanobeam (see caption for parameters). The electric field profile for modes

at the band edge (kx = π/Λ, the boundary of first Brillouin zone) are shown to

the right of the band structure. The finite structure terminates at its supports on

both ends, forming a doubly-clamped beam. To form localized resonances in the

center of the structure, the discrete translational symmetry of the patterned beam is

intentionally disrupted by a “defect”, consisting of a quadratic decrease in the lattice

constant, Λ, symmetric about the center of the beam for some odd number of holes,

Ndefect < Ntotal. The defect forms an effective potential for optical modes at the

band edges, with the spatial dependence of the effective potential closely following
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the spatial properties of the defect [2] (as illustrated in the inset of the optical band

diagram). Thus the optical modes of the infinitely-periodic structure are confined

by a quasi-harmonic potential. This effective potential localizes a “ladder” of modes

with Hermite-Gauss envelopes, analogous to the modes of the 1D harmonic potential

of quantum mechanics. The localized optical modes of the finite structure (hereafter

referred to as Device 1) are also found by FEM simulation and shown in Fig. 5.1(b)

to the right of the corresponding mode of the projection.

Analogously, Fig. 5.1(c) shows a FEM simulation of the mechanical band structure

of the nanobeam’s projection. Mechanical modes at the band edge experience an ef-

fective potential analogous to the optical modes, localizing certain types of vibrations

to the defect region. The colored bands give rise to mechanical modes that, when lo-

calized by the defect, yield “ladders” of modes with strong dispersive coupling to the

localized optical modes (the frequency of the fundamental defect mode is indicated

by a horizontal bar of the same color). We classify these optomechanically-coupled

mechanical modes, from lowest to highest frequency, as “pinch”, “accordian”, and

“breathing” modes. The localized mechanical modes of Device 1 are shown to the

right of the corresponding mode of the projection.

5.4 Optomechanical Coupling

The two kinds of waves, mechanical and optical, are on equal footing in this structure.

Each mechanical mode has a frequency νm = Ωm/2π and displacement profile Q(r);

each optical mode has a frequency νo = ωo/2π and electric field profile E(r). Just as

the optical mode volume, Vo =
∫

dV

( √
ε|E|

max(|√εE|)

)2

, describes the electromagnetic lo-

calization of the optical mode, the mechanical mode volume, Vm ≡ ρ
∫

dV
(

|Q|
max(|Q|)

)2

(see § 1.2.6), describes the strain energy-averaged localization of the mechanical mode.

For both the localized optical and mechanical modes of the patterned beam cavity,

the effective mode volume is less than a cubic wavelength. The effective motional

mass, being proportional to the mode volume (meff ≡ ρVm), is between 50 and 1000
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femtograms for the mechanical modes shown in Fig. 5.1(c) (ρSi = 2.33 g/cm3).

Drawing on recent work in the field of cavity optomechanics [6,7], we describe the

coupling between optical and mechanical degrees of freedom (to lowest order) by an

effective coupling length LOM ≡ ( 1
νo

dνo

dα
)−1 (see § section:dispersivecoupling), where

δνo is the change in the frequency of an optical resonance caused by the mechanical

displacement parameterized by α. For this work, α is defined as the maximum dis-

placement that occurs anywhere for the mechanical mode. By definition then, the

smaller LOM, the larger the optical response for a given mechanical displacement.

LOM is also the length over which a photon’s momentum is transferred into the me-

chanical mode as it propagates within the structure, and thus is inversely proportional

to the force per-photon applied to the mechanical system.

To calculate LOM, we employ a perturbative theory of Maxwells equations with

respect to shifting material boundaries [19]. The derivative dνo

dα
around some nominal

position, where the optical fields are known, can be calculated exactly without ac-

tually deforming the structure for a surface-normal displacement of the boundaries,

h(α; r) ≡ Q(r) · n̂ = αq(r) · n̂, where q(r) = Q(r)/α = dQ(r)/dα is the unitless

displacement profile of the mechanical mode, and α parameterizes the amplitude of

the displacement. Using this perturbative formulation of Maxwell’s equations, we

find

1

LOM

=
1

2

∫
dA

(
dQ

dα
· n̂
)[

∆ε
∣∣E‖∣∣2 −∆(ε−1) |D⊥|2

]
∫

dV ε |E|2
(5.1)

where n̂ is the unit normal vector on the surface of the unperturbed cavity, D(r) =

ε(r)E(r), ∆ε = ε1− ε2, ∆(ε−1) = ε−1
1 − ε−1

2 , ε1 is the dielectric constant of the periodic

structure, and ε2 is the dielectric constants of the surrounding medium (ε2 = ε0 in

this case). This method of calculating the coupling provides a wealth of intuition

about the nature of the coupling and can be used to engineer the structure for strong

optomechanical coupling.
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Figure 5.2: (a), and (b), show SEM images of the fabriced silicon nanobeam optome-
chanical crystal. (c), Optical spectroscopy of Device 1 with the taper waveguide in
contact. (d), Mechanical spectroscopy of Device 1 with taper waveguide in contact.
(e)-(g), Zoomed RF mechanical spectra of Device 1 showing pinch (red), accordian
(green), and breathing (blue) modes.

5.5 “DC” and RF Optical Spectroscopy

Figs. 5.2(a) and 5.2(b) show scanning electron microscope (SEM) images of a fab-

ricated silicon nanobeam with the parameters of Device 1. The optical modes of

the nanobeam are probed with a tapered and dimpled optical fiber [16] in the near-

field of the defect cavity, simultaneously sourcing the cavity field and collecting the

transmitted light in a single channel. Fig. 5.2(c) shows the low-pass filtered optical

transmission spectrum of Device 1 at low optical input power (∼ 30 µW). The optical

cavity resonances are identified by comparison to FEM modeling of the optical modes

of the structure (see § 5.14.1). Looking in the radio frequency (RF) spectrum pro-

vides information about the mechanical modes of the structure, as mechanical motion

gives rise to phase and amplitude modulation of the transmitted light. Figs. 5.2(c)-

(f) show the measured photodetector RF power spectral density (PSD) of the optical

transmission through the second order cavity resonance (this mode was used due to

its deep on-resonance coupling). A series of lower frequency modes can be seen in
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Figure 5.3: (a), Geometric scaling (planar) of the fundamental breathing mode. De-
vice 1 is the device with scale factor 1.03. The best linear least-squares fit lines in
the top panel correspond to the mechanical frequency changing by −0.9%± 0.2% per
device; the normalized frequency changes by −0.01%± 0.2% per device. The optical
frequency of the mode used to make the mechanical measurement is filled (the other
optical mode is open). (b), Engineering of pinch mode frequencies, showing two de-
vices with pinch mode frequencies of 850 MHz and 1.75 GHz. The mechanical band
diagrams of each structure are shown to the right of the measured RF spectrum, with
the pinch mode band highlighted in red.

the spectra (∼ 200 MHz and harmonics), corresponding to compression of modes of

the entire beam, followed by groups of localized phononic modes of the lattice at 850

MHz (pinch), 1.41 GHz (accordian), and 2.25 GHz (breathing). The transduced sig-

nal at low optical power corresponds to thermally-excited motion of the mechanical

modes, and is inversely proportional to meffL
2
OM (see below). At higher optical input

power (∼ 100 µW; see 5.2(h) and § 5.11, optical excitation of regenerative mechani-

cal oscillation [6] of the breathing modes is possible due to the small mass and short

optomechanical coupling length of the co-localized phonon and photon modes.

5.6 Engineering of the Mechanical Frequencies

Fig. 5.3(a), top panel, shows how the frequency of the fundamental mechanical breath-

ing mode scales with a uniform geometric scaling in the plane. A series of 12 devices

have been fabricated, identical except that the entire geometry in the plane is scaled



139

incrementally by 1% per device. For each device, one of the first two optical modes is

selected and used to measure the mechanical frequency of the fundamental breathing

mode (cyan dots, top panel). The frequencies plotted in magenta are the normal-

ized frequencies, i.e. the bare frequencies (cyan) times the scale factor for the de-

vice. Because the beams are thin, causing the crossbars to behave approximately like

“Euler beams”, the frequency of the mechanical mode scales perfectly with the two-

dimensional scale factor. This is in contrast to the optical modes (Fig. 5.3(a), bottom

panel), which clearly do not scale with the planar geometry, a result of the coupling

of in-plane and vertical optical mode confinement (scaling in all three dimensions is

thus required). Since the planar scaling for the lattice-localized mechanical modes

is trivial, this method could be used with a larger span of devices to measure the

frequency dependence of the Young’s (or bulk) modulus of the material.

Significant shifts in the frequency of the lattice-localized mechanical modes can be

obtained through a non-uniform planar scaling. Fig. 5.3(b) shows the RF PSD for De-

vice 1 and a second device, Decice 2, which has an essentially identical lattice constant,

Λ = 365 nm, and total length, L, as compared to Device 1, but a considerably smaller

width (w = 864 nm, hy = 575 nm, hx = 183 nm). Simulations show that the pinch

modes are the lowest-frequency group of localized and optomechanically-coupled me-

chanical modes in both structures (see right panels of Fig. 5.3(b)). Experimentally,

the ratio of the localized pinch mode frequencies (highlighted in red) in these two

devices is 1.749 GHz/805 MHz = 2.17. The ratio of the frequency of the localized

pinch-mode manifold, after accounting for the defect, is theoretically 1.826 GHz/846

MHz = 2.16. It is interesting to note that the mechanical modes of the entire doubly-

clamped beam (as opposed to the lattice-localized modes) depend very weakly on the

structural differences between Device 1 and Device 2. For instance, the second-order

acoustic vibration mode of the nanobeam (highlighted in yellow in Fig. 5.3(b)) has a

frequnecy which should be 3π
2L

√
E
〈ρ〉 , where E is Young’s modulus and 〈ρ〉 is the aver-

age linear density. The frequency of this mode is measured to be 234 MHz/195 MHz

= 1.20 times higher in Device 2 than for Device 1, which is in good agreement with

the ratio
√
〈ρ1〉/〈ρ2〉 = 1.23. The difference between the change in the frequencies
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Figure 5.4: (a), Transduction of breathing mode motion. (c), Ideal and actual
(“primed”) modes of the silicon nanobeam optomechanical crystal due to the ideal
(dashed) and actual defect (solid, red).

of the lattice-localized versus beam modes illustratres the independence of these two

“systems”; once the wavelength of the global beam modes approach the scale of the

lattice periodicity, the vibrations become localized and behave independently of the

global beam structure (such as the end clamps).

5.7 Measuring Thermal Power in Mechanical Modes

and the Product meffL
2
OM

Fig. 5.4(a) shows the RF optical transmission spectrum due to Brownian motion of

the breathing modes of Device 1 (i.e., at low optical input power), for the three op-
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tical modes shown in Figs. 5.1(c) and 5.2(c). Because the various optical modes

have different spatial profiles, each mechanical mode has a different LOM for each

optical mode. The root-mean-square (rms) mechanical amplitude of a mode due to

Brownian motion is 〈α2〉 = kBT/(meffΩ2). It can be shown analytically that the

factor 1/(meffL
2
OM) uniquely determines the transduction of the Brownian motion

for these sideband-resolved optomechanical oscillations (see § 1.3.5). To the right

of each measured spectrum (Fig. 5.4(b)) is the experimentally-extracted mechanical

frequency and value of 1/(meffL
2
OM), together with the values of these quantities ob-

tained from the FEM model (using Eq. 5.1 to determine LOM). Good correspondence,

in both frequency and transduced signal amplitude, is found across all optical and

mechanical mode pairs. In order to achieve this level of correspondence, imperfec-

tions in the fabricated structure are taken into account by extracting the geometry

from high-resolution SEM images of the device and calculating the modified optical

and mechanical modes (Fig. 5.4(c)). The resulting measured value for optomechan-

ical coupling between the fundamental breathing and optical mode (assumming a

FEM-calculated motional mass of meff = 330 fg) is LOM = 2.9 µm, approaching the

limit of the wavelength of light. The sensitivity of the mechanical transduction of

the fundamental breathing mode can be appreciated by comparing the mode’s rms

thermal amplitude at T = 300 K, αth = 245 fm, to its quantum zero-point motion of

αzp = 3.2 fm. The sensitivity limit, as given by the background level in the middle

panel of Fig. 5.4(c), is thus a factor of ∼ 7.5 times that of the standard quantum

limit.

5.8 Mechanical Energy Loss

The loss of mechanical energy from confined mechanical modes of a phononic crystal

can, in principal, be made arbitrarily low (and thus the mechanical Q arbitrarily high)

by including a large number of unit cells outside the localizing potential region. Of

course, other forms of mechanical damping, such as thermo-elastic damping, phonon-

phonon scattering, or surface damping effects, would eventually become dominant
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[122]. This makes optomechanical crystals ideal structures for studying these loss

mechanisms. The fundamental breathing mode of the 1D phononic crystal structure

studied here, at 2.254 GHz, has a room temperature mechanical Q of 1300 in air,

and in contact with the taper waveguide (power-dependent measurements confirm

that this mechanical Q is not enhanced by dynamical back-action). This corresponds

to a frequency-Q product of 3 × 1012 Hz, a value close to largest demonstrated to

date [123]. Although further tests (as a function of temperature and lattice periods)

are required to determine the contribution of various mechanical loss mechanisms,

numerical simulations show that mode coupling between localized and leaky phonon

modes exist in these 1D cavity structures and can significantly limit the Q-factor

(§ 5.14.4 and § 4.4). This obstacle can be overcome in two-dimensional periodic slab

structures, which have been shown to possess complete gaps for both optical and

mechanical modes simultaneously [113].

5.9 Summary and Conclusion

The experimental demonstration of optomechanical coupling between 200 Terahertz

photons and 2 Gigahertz phonons in a planar optomechanical crystal paves the way

for new methods of probing, manipulating, and stimulating linear and non-linear

mechanical and optical interactions in a chip-scale platform. As the study of quantum

mesoscale mechanical oscillators has nearly become a reality [25,28,29,124,125], high

frequency mechanics will provide a distinct experimental advantage due to the lower

thermal phonon occupancy. In addition, optomechanical crystals with full phononic

bandgaps provide a platform to decouple the direct decoherence (phonon leakage) of

mechanical modes from their supports. This could allow the preparation of mechanical

vibrations with ultra-long lifetimes, the study of the intrinsic mechanical material

losses, and narrow-linewidth Gigahertz frequency sources. Optomechanical crystals

could also be used as high-spatial resolution mass sensors; with meff = 62 fg and

νm = 850 MHz, the mass of a single Hemoglobin A protein (∼ 10−19 g) would change

the frequency of the pinch mode by 700 Hz, allowing sensitivity paralleling NEMS
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zeptogram mass sensors [126].

5.10 Measured and Simulated Optomechanical Cou-

pling and Mechanical Q

Table 5.1 summarizes the properties of the breathing mechanical modes. Measured

values are denoted with a tilde. The necessary RF amplitudes and linewidths are

extracted from the spectra of Fig. 5.4(a) using a nonlinear least squares fit with

linear background and a sum of as many Lorentzian functions as are visible in the

spectrum. Simulated values are calculated using methods described below.

Table 5.1: Measured and Simulated properties of the breathing mechanical modes.
Tildes indicate measured quantities. The experimental effective lengths, LOM, be-
tween each breathing mode and the first three optical cavity modes are calculated
using the experimentally extracted meffL

2
OM (see Fig. 5.4(b)) and dividing by the meff

from the model. The superscript, n, in nLOM, indicates coupling of that mechanical
mode to the nth optical mode (see Fig. 5.1(b)). LOM has units of microns; masses
are in femtograms; and mechanical frequencies have units of gigahertz. See §5.14.4
for discussion on modeling Qm.

# νm ν̃m meff
1LOM

1̃LOM
2LOM

2̃LOM
3LOM

3̃LOM Qm Q̃m

1 2.254 2.254 329 4.9 2.9 6.4 5.1 7.8 4.4 2050 1280
2 2.275 2.270 399 7.1 4.5 6.2 12 9.5 9.8 1180 1130
3 2.294 2.290 628 11 N/A 6.2 5.3 7.7 4.1 1290 613
4 2.322 2.326 704 110 N/A 64 49 26 N/A 387 973
5 2.369 2.361 665 38 N/A 11 25 7.1 4.7 21600 950

5.11 Optical Actuation: Amplification and Regen-

erative Oscillation

Fig. 5.5a shows the fundamental breathing mode of the optomechanical crystal nanobeam,

pumped using the fiber taper probe coupled to the fundamental optical mode (this

particular device has a scale factor 1.07 in Fig. 5.8a, which is nominally identical

to Device 1 of the main text but uniformly scaled by 4%). The mechanical Q at a
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Figure 5.5: (a) 2.19 GHz breathing mode showing spectral narrowing from 800 kHz to
1.16 kHz with increasing optical input power. (b) Nonlinear least-squares fit (black)
to redacted high power (red) curve in a.

dropped optical power of 15 µW (input power is 74 µW with 20 percent of the power

coupled to the device) is approximately Qm = 2700. Upon increasing the dropped

power to 190 µW (an 11 dB increase), the mechanical mode power rises dramatically

and the linewidth narrows to below the 4.8 kHz resolution limit of the oscilloscope

(the resolution-limited effective Q is thus 460,000). This sort of regenerative oscilla-

tion [5,127] (sometimes called paramteric instability) arises due to the retarded part

of the optical force on the mechanical mode, which, for a blue detuned laser input,

results in amplification of the mechanical motion. Even though a large part of the

signal is below the resolution bandwidth, the linewidth at 931 µW can still be ex-

tracted, as there is more than 20 dB of signal to noise at the point where the lineshape

becomes wider than the resolution limit. Fig. 5.5b shows the nonlinear least-squares

fit to the redacted dataset, which is an excellent fit to the data and gives a linewidth

of 1.16 kHz (effective Qm = 1.8× 106).

5.12 Experimental Setup

The experimental setup used to measure the optical, mechanical, and optomechan-

ical properties of the silicon optomechanical crystal nanobeam is shown in Fig. 5.6.

The setup consists of a bank of fiber-coupled tunable infrared lasers spanning ap-
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Figure 5.6: Experimental setup used to measure optical, mechanical, and optome-
chanical properties of silicon optomechanical crystal nanobeam.

proximately 200 nm, centered around 1520 nm. After a variable optical attenuator

(VOA) and fiber polarization controller (FPC), light enters the tapered and dimpled

optical fiber, the position of which can be controlled with nanometer-scale preci-

sion (although vibrations and static electric forces limit the minimum stable spacing

between the fiber and device to about 50 nm). The transmission from the fiber is (op-

tionally) passed through another VOA and finally reaches an avalanche photodiode

(APD) with a transimpedance gain of 11,000 and a bandwidth (3 dB rolloff point) of

1.2 GHz. The APD has an internal bias tee, and the RF voltage is connected to the

50 Ohm input impedance of the oscilloscope. The oscilloscope can perform a Fourier

transform (FT) to yield the RF power spectral density (RF PSD). The RF PSD is

calibrated using a frequency generator that outputs a variable frequency sinusoid with

known power.

5.13 Fabrication

The optomechanical crystal nanobeam is formed in the 220 nm thick silicon device

layer of a [100] Silicon-On-Insulator (SOI) wafer. The pattern is defined in electron

beam resist by electron beam lithography. The resist pattern is transfered to the

device layer by an inductively-coupled plasma reactive ion etch with a C4F8/SF6 gas

chemistry. The nanobeam is then undercut and released from the silica BOX layer

by wet undercutting with hydrofluoric acid.
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5.14 Numerical Modeling

Modeling of both the optical and mechanical modes is done via finite element method

(FEM), using COMSOL Multiphysics [97]. Mechanical band structures are done in

COMSOL. Photonic bands are done with MIT Photonic Bands [96]. The following

subsections provide the description of the method used to define the FEM model of

the optomechanical crystal system.

5.14.1 Extracting the Geometry in the Plane

To model the optomechanical crystal system, the geometry of the as-fabricated struc-

ture must be measured. As the features are smaller than an optical wavelength, the

measurements must be done by scanning electron microscope (SEM). FIG. 5.7(a)

shows an “eagle’s-eye” high-resolution SEM micrograph of a portion of device 1, with

the defect centered in the image.

A

B

Figure 5.7: (a), Scanning electron micrograph of fabricated silicon optomechanical
crystal. (b), Approximated geometry shown as blue overlay on SEM micrograph
from (a).

Digital line-scans of the micrograph are used to detect the edges of the geome-

try. From the extracted edge positions, the geometry is approximated as a series of

rectangular holes with two filleted ends inside of a rectangle (the beam), giving an
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approximate planar geometric representation of the structure shown as an overlay in

Fig. 5.7(b). This geometric representation takes into account the size, position, and

any curvature of each hole, giving an accurate approximation of the geometry. In the

defect region, each hole is given by its measured value. Outisde the defect region, a

series of holes is used to get the average hole shape, which is used in the model.

The SEM has been calibrated, and the dimesnions as measured by the SEM are

too large by 5%. Thus, the entire planar geometry is uniformly scaled down by 5%.

Since the lattice constant, Λ, is a center-to-center distance between features, it is

not affected by erosion during processing, which makes it the most reliable measure

of distance on the sample. After applying the SEM calibration factor, the average

lattice constant outside of the defect as measured by the SEM agrees with the value

written by the electron beam lithography tool to better than 1%. Since the SEM and

lithography tool are independent, this is yet another confirmation that the geometry

has been measured correctly (the fine spectral features of the simulation are the other

way to check the geometry measurements, after comparing to measured mechanical

and optical spectra).

The SOI wafer thickness is specified as 220 nm by the manufacturer. We will

assume that the planar geometry extends uniformly into the vertical direction for the

entire 220 nm, since the “eagle’s-eye” view used to measure the planar geometry does

not capture any asymmetries in the vertical dimension. These vertical asymmetries

are much more difficult to extract without sacrificing the device (by focused ion beam,

cleaving, etc.).

5.14.2 Young’s Modulus and Index of Refraction

The nanobeam structures are fabricated such that the long axis (x̂) is parallel to the

SOI wafer flat, which is oriented along [110] (±0.5◦). We decompose the displacement

field in FEM simulations along the crystal axes and find the majority of the strain

energy is primarily stored in deformations along the family of equivalent directions

specified by 〈110〉. Because the strain for the modes of interest are primarily along
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〈110〉, an isotropic elasticity tensor (two independent elements) derived from a single

Young’s modulus and Poisson’s ratio is appropriate for the current level of detail.

The index of refraction will also be treated as an isotropic scalar.

As the Young’s modulus, E, and index of refraction, n, determine the phase ve-

locity of the waves (and thus the frequency), they can be “tuned” to make a single

simulated frequency (mechanical for E and optical for n) come out exactly as mea-

sured. The free spectral range of the modes and the relative frequencies of different

types of modes are determined by the details of the geometry, in conjunction with

E and n; so although a single frequency can always be made to match experiment

exactly by scaling E or n, the wider details of the spectrum are a more accurate

reflection of whether the model is a good match to the experimental values.

After accounting for the planar geometry and scale factor, the Young’s modulus

and index are tuned until the fundamental optical mode and the fundamental breath-

ing mechanical mode each come out exactly as measured, which occurs for E = 168.5

GPa and n = 3.493 (the Poissons’s ratio, ν, is 0.28 in this work). These parameters,

along with the measured geometry (as discussed above) yields a model that produces

the values in Table 5.1 and Fig.5.4(c) in the main text.

5.14.3 Optics: Mode Maps and Modeling

Fig. 5.8a shows all the optical modes measured for a series of 20 devices, which are

identical up to a uniform planar scaling that changes by 1% per device (Device 1 is

the device with scale factor 1.03; this figure is just an expanded version of the bottom

panel of Fig. 5.3(a) in the main text). Because of the limited laser range, only a

limited number of modes can be measured on any given device. By measuring this

series of uniformly scaled devices, a large number of modes can be seen as they are

“scanned” through the laser range.

The devices, taken together, display a lot of information about the optical spec-

trum, which contains a number of conspicuous features that match well with an FEM

model of the optical properties. First, the devices display a series of five relatively
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Figure 5.8: (a) Optical modes measured in a 200 nm laser wavelength span for a series
of 20 devices. (b) Simulation of Device 1, which is the device with scaling factor 1.03
(dashed line). Filled blue circles correspond to modes of the fundamental (valence)
optical band; the region shaded blue corresponds to frequencies that are no longer
within the defect potential barrier hight (i.e. propagating modes). Open blue circles
correspond to transverse valence band modes; the pink shaded region shows the edge
of the effective optical potential for the transverse valence band modes. Black circles
correspond to conduction band modes.

high Q modes (analogous modes of different devices are connected with red lines

across different device measurements). Second, the smallest devices show a number

of low-Q modes at frequencies below the fifth mode. Finally, at high frequencies, the

devices display another set of low-Q modes, which are higher-Q than waveguide-like

modes but not as high-Q as the other five modes.

These features are all consistent with the FEM optical model of Device 1. Fig. 5.8(b)

shows the simulated modes of Device 1, plotted as a function of their optical Q. The

simulation shows that the defect confines 5 modes, with a precipitous drop in Q as

the modal frequencies exit the defect potential (go below the negative energy barrier
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height); the region of frequency space below the negative barrier height is shaded in

light blue in Figs. 5.8(a) and (b). The simulation also explains the series of modes

higher in frequency, which are not the conduction band modes. These modes, indi-

cated with open circles in both Fig. 5.8(a) and 5.8(b) (as opposed to filled) circles,

are the Hermite-Gauss ladder of modes with a single node transverse to the direction

of propagation (y direction). These modes have a lower effective index, which reduces

their radiation-limited Q relative to modes without transverse nodes. The simulated

effective optical potential for the transverse optical modes is shown in pink. Conduc-

tion band modes (which are not measured due to their very low optical Q) are shown

as filled black circles.

While the optical information provided by any single device would be difficult to

unravel, the measurements of the series of devices coupled with simulation allow us

to unambiguously identify the optical spectra of every device in the series.

5.14.4 Modeling Mechanical Q

Simulations of an isolated optomechanical crystal nanobeam (hard boundary con-

ditions at the edges) show that the confined modes can couple to modes of longer

wavelength, the effect of which is to produce a standing wave within the structure

that is not attenuated outside the defect. In the real structures, these long-wavelength

modes will travel down the nanobeam and partially reflect at the contacts due to an

effective impedance mismatch between the nanobeam and the bulk, with the rest of

the power leaving the structure into the bulk. Thus the isolated mode is coupled

to a mode with long wavelength but identical frequency that can radiate into the

surrounding “bath”.

To model the loss due to this resonant coupling to radiative modes, we include

a large, semi-circular silicon “pad” on each side of the nanobeam. To make the pad

act like a “bath”, we introduce a phenomenological imaginary part of the speed of

sound in pad region; i.e., vpad → vSilicon(1 + iη), where v =
√
E/ρ. This creates an

imaginary part of the frequency, and the mechanical Q can be found by the relation,
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Figure 5.9: (a), In-phase and (b), in-quadrature mechanical displacement field of
fundamental breathing mode with absorbing “pad”. This simulation includes asym-
metries in the structure and correspondingly exhibits an asymmetric radiation pattern
in the substrate.

Qm = Re {νm} /(2Im {νm}).

By adding loss to the pad material, part of the power reflected at the contacts will

be due to the change in the impedance from the absorption. From this point of view,

η should be made as small as possible, since this contribution to the reflection coef-

ficient is not present in the real system. However, η must also be large enough that

the self-consistent solution includes a radiated wave that propagates for a significant

portion of the pad, which only happens if the wave is appreciably attenuated by the

time it reflects from the edge of the simulation and returns to the contact. Thus, the

pad is made as large as possible, given computational constraints, and the absorption

is increased until the Qm changes appreciably, which gives the threshold value for η at

which the reflectivity of the contacts has an appreciable contribution from the absorp-

tion. The simulation is thus performed with a value of η that produces a propagating

wave in the pad without causing an artificial reflectivity at the contact; propagation

in the pad is easily verified if the position of the nodes/antinodes swap between the
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in-phase and in-quadrature parts of the mechanical cycle (the nodes/antinodes of a

standing wave are stationary). Figs. 5.9(a) and 5.9(b) show the in-phase and in-

quadrature (respectively) parts of the optical cycle, showing a propagating radiative

mode in the pad. The simulated values of Qm can be found in Table 1. Most of the

values of mechanical Q calculated this way are in fair agreement with the measured

values except for the fifth breathing mode, which, by this method, appears to have a

Qm of over 22, 000; in reality, the Q of this mode may be limited by coupling with a

leaky mode caused by defects that are not modeled (such as vertical defects), material

losses, or the presence of the taper waveguide.



153

Bibliography

[1] M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A

picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Na-

ture 459(7246), 550–555 (2009).

[2] J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical

design of a “zipper” photonic crystal optomechanical cavity,” Opt. Express

17(5), 3802–3817 (2009).

[3] M. Eichenfield, J. Chan, R. Camacho, K. J. Vahala, and O. Painter, “Optome-

chanical Crystals,” arXiv:0906.1236v1 (2009).

[4] M. Eichenfield, J. Chan, A. Safavi-Naeini, K. Vahala, and O. Painter, “Modeling

Dispersive Coupling and Losses of Localized Optical and Mechanical Modes in

Optomechanical Crystals,” ArXiv:0908.0025v1 (2009).

[5] T. J. Kippenberg and K. J. Vahala, “Cavity Optomechanics,” Opt. Express

15(25), 17172–17205 (2007).

[6] T. J. Kippenberg and K. J. Vahala, “Cavity Optomechanics: Back-Action at

the Mesoscale,” Science 321(5893), 1172–1176 (2008).

[7] I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat

Photon 3(4), 201–205 (2009/04//print).

[8] T. Carmon and K. J. Vahala, “Modal Spectroscopy of Optoexcited Vibrations

of a Micron-Scale On-Chip Resonator at Greater than 1 GHz Frequency,” Phys.

Rev. Lett. 98(22), 123901 (2007).



154

[9] M. Tomes and T. Carmon, “Photonic Micro-Electromechanical Systems Vi-

brating at X-band (11-GHz) Rates,” Physical Review Letters 102(11), 113601

(pages 4) (2009).

[10] R. H. O. III and I. El-Kady, “Microfabricated phononic crystal devices and ap-

plications,” Measurement Science and Technology 20(1), 012002 (13pp) (2009).

[11] A. Dorsel, J. McCullen, P. Meystre, E. Vignes, and H. Walther, “Optical Bista-

bility and Mirror Confinement Induced by Radiation Pressure,” Physical Re-

view Letters 51(17), 1550–1553 (1983).

[12] H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, “Radiation-

pressure-driven micro-mechanical oscillator,” Opt. Express 13(14), 5293–5301

(2005).

[13] P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar,
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