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ABSTRACT

It is known that there can be no gravitational, electromagnetic, or
scalar field perturbations (except angular momentum) of a Schwarzschild
black hole. A gravitationally collapsing star with nonspherical per-
turbations must therefore radiate away its perturbations or halt its
collapse. The results of computations in comovipg coordinates are’
presented to show that the scalar field in a collapsing star neither
disappears nor halts the collapse, as the star passes inside its
gravitational radius,

On the star's surface, near the event horizon, the scalar field
varies as a, +a, exp (-t/2M) due to time dilation. The dynamics of the
field outside the star can be analyzed with a simple wave equation
containing a spacetime-curvature induced potential. This potential is
impenetrable to zero-frequency waves and thus ar the final value of the
field on the stellar surface, is not manifested in the exterior; the
field vanishes. The monopole perturbation falls off as c-Z; higher
4-poles fall off as in t/tzz+3.

The analysis of scaiar-field perturbations works as well for
electromagnetic and'graVICational perturbations and also for zero-rest=-
mass perturbation fields of arbitrary integer spin. All these per-
tufbation fields obey wave equations with curvature potentials that differ

little from one field to another. For all fields, radiatable multipoles
' 2443

(L 2 spin of the field) fall off as 4nt/t
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I. INTRODUCTION

. A. The Problem and Its History

A central role in relativistic astrophysics is played by the Schwarzschild

geonmetry and by the line element:
dsa = (1 - 2M/r) dta - (1 - 2M/r)'1 dra - r"’(de2 + sin2 9 dcbe) . (1)

(We use units in which ¢ = 1, G = 1.) The most interesting and characteristic
feature of this line element is its singular behavior at the gravitational
radius r = 2M, On the one hand, we know that the r = 2M surface does have
very important properties; those of an event horizon and a trapped surface.
But on the other hand, transforming this line element to a freely falling
coordinate system reveals that there are no local pathologies at r = 2M; the
geometry of spacetime is quite smooth there.

The most important astrophysical consequence of the properties of the
r = 2M surface is the inevitability of the catastrophic collapse of a star,
once it is inside its gravitational radius. The absence of geometric patho-
logies at r = 2M in the Schwarzschild geometry implies that no anomolously
large forces should develop in the star to prevent it from falling inside
its gravitational radius. This expectation has been fully confirmed by
several calculations.l’2

Whether or not catastrophic collapse can be considered as a poésible
phenomenon fo; real astrophysical objects depends on the resolution of a recent
controvery: Is our picture of gravitational collapse an idiosyncracy of per-
rec; §pherica1 syﬁmetry? The correctness of our qualitative picture is sup-
ported by the arguments’h that initial aspherical perturbations of a body

should remain small during collapse through the gravitational radius, since



there are no strong tidal forces there. If the perturbations of the body
remain small, then the perturbations of the geometry, and of the whole col-
lapse process, should also remain small.

Because of the nature of the event horizon, we should than expect:

(1) The gravitational field outside the event horizon should be asymptoti-
cally stationaryh at large t. (ii) At large t, a distant observer "sees"
the star as it is at the moment it crosses the event horizon. We expect,
therefore, that the geometry left behind is a stationary geometry with
aspherical perturbations. It has been shown, however, that such stationary
perturbations cannot be well behaved at the event horizon and at spatial
infinity. This indicates that, for our picture to be correct, tﬁe star must
rid itself of all bumps before falling through r = 2M. But if that is true
in all cases, there would have to be pathologically large forces at the event
horizon, contrary to our expectations.

These difficulties have encouraged the viewpoint that the r = 2M surface
does have important local properties. Arguments have been given5’6'7'8 to
show that initially small perturbations become large without bound, stopping
the collapse or destroying the event horizon. All these arguments have
relied heavily on speculations regarding stationary solutions.

The opposite viewpoint was first championed by Doroshkevitch, Zel'dovich
and Nbvikovh and by Novikov.9 The most conclusive evidence that has been
given for this viewpoint, that collapse with perturbations is qualitatively
like collapse without them, in the work of de la Cruz, Chase and Israel.lo
They have numerically followed the electromagnetic and gravitational pertur-
bations outside a perturbed collapsing thin shell. Their computations show
that no singularity develops to halt the collapse and that the perturbations

in the exterior fields die out at large times. It is the goal of the present



work to analyze the evolution of perturbation fields in somewhat greater

generality and to explain, in physical terms, how singularities are avoided.11

3. OQutline and Summary

In this paper we use a first order perturbation analysis to see whether
initially small asyumetries can greatly affect the collapse process., This
approach is quite sufficient to resolve the problem. If, on the one hand,
the perturbations grow without bound our results will be meaningless but we
will be able to conclude that our present picture of gravitationai collapse
is wrong. 1If, on the other hand, the perturbations remain small, the approach
is justified. Since the paradox of singular stationary perturbations occurs
for first order perturbations, as well as in the full the§ry, then if the
asymmetries do remain small, we shall be able to see how the paradox is
avoided.

In principle the problem is the straightforward one of putting pertur-
bations on a collapsing star just as, for example, Thorne and Campolattar012
put them on a static star. In practice the complications of coordinate system,
gauge freedom, and many metric components to keep track of make such a pro-
blem discouragingly difficult.

There is good reason to suspeci that the paradox is a result of proper=
ties of the event horizon, and that it should occur for many kinds of pertur-
bations - not only gravitational perturbations. In fact, it is known that

these gsame difficulties arise for electromagnetic perturbations,ls’lh for

other integer-spin massless fields,ls and for scalar fields.16 In most of
this paper we exploit the simplicity of a scalar field analogue.
Section II contains the formulation of such a massless scalar field

analogue and shows that the static perturbations are singular. A modifica-

tion of this scalar field to a Klein-Gordon field gives some interesting



insights into the nature of the singularities.

Our investigation of the scalar field is divided into two main parts:
(1) the "local problem”, i.e. the study of the behavior of the scalar field
in and near a star that collapses from an initially static configuration,
containing a source for the scalar field; (ii) the evolution of the scalar
field in the Schwarzschild exterior. 1In Section II the local problem is
analyzed by a detailed calculation, using comoving coordinates, of a physically
‘reasonable collapse situation. The resulting dynamic equations give no indi-
cation that r = 2M has any special local significance, for the evolution of
the field. DNumerical integrations of those equations confirm this; the
scalar field in the star remains finite as the star falls through its gravi-
tational radius.

Section III deals with the second part of the problem, the field in the
exterior and the resolution of the paradox. It is shown that a description
of the dynamics using the Schwarzschild time t, and the r%* coordinate of

Regge and Wheeler,
r* 51 +2M tn(r/2M - 1) + constant

leads to a simple picture of the propagation of scalar waves in the
Schwarzschild geometry. In this plcture the curvature of spacetime gives
rise to a potential barrier which is transparent to high-frequency waves
but impenetrable to those 6f zero frequency. It is precisely this impene-
trability which gives rise to the paradox and which resolves it.

The resolution of the paradox is simply this: The field on the surface
of the star can be considered a source for the field in the exterior. Due
to time dilation between the surface and distant observers, the. field on the

surface must be asymptotically stationary in terms of Schwarzschild time.



The field on the surface then approaches some stationary final value, but

this final value cannot be manifested in the exterior solution. The curva-

ture potential prevents a distant cobserver from ever seeing it. For large
time the exterior field is then sourceless and the field radiates itself
away, vanishing at t + =, |

The simple nature of the process of the field radiating itself away
is scmewhat obscured by the complicated details of the curvature potential,
80 these ideas are presented first for a very idealized model barrier. This
idealization permits exact calculations and results in an exterior fiéld
that vanlishes exponentially in time, at large time. The real curvature po-
tential inhibits a quick exponential fall off by backscattering outgoing

waves. An analysis of this backscattering, reveals that the monopole per=-
21+3

turbation fall off as t-a, while higher f-poles fall off as [nt/t

The final Justification of the scalar analogue is given in Section IV.
Curvature—~type potential equations have been derived by Regge and Wheeler]"7
for odd-parity gravitational perturbations, and by Zerilli18 for the even
parity ones. The difference between these gravitational equations and our
scalar equation in only in the details of the potential. In Section IV, the
Regge-Wheeler and Zerilli equations are discussed and it is shown that their
golutions at la;ge times are precisely the same as those of the scalar field
equation. In particular, radiateable gravitational multipoles avoid the
singularities of the static solution by vanishing aslut:/t;ZH:5 Just as their
gcalar couhterparts do. The motivation for studying the scalar problem is,
therefore, much.greater than if the scalar field were only a plausible ana-
logue. v

Certain details of Section IV are left to an accompanying paper (hereafter

referred to as Paper II). In that paper it is also shown that radiateable



multipoles of any integer spin field satisfy a curvature-potential type

equation, and fall off as lnt/t2‘+;.

II. THE SCAILAR ANALOGUE

A. The Paradox
The scalar analogue will consist of the following. We imagine a scalar

field Q, coupled to a scalar charge density j with some coupling constant «k,

and obeying a wave equation:

v

PEELE (2)
There are other possible choices for the wave equation; at the end of this
section we will consider others and see that our resulté are the same for any
reasonable choice. The curvature of the geometry appears in the Christoffel
symbols used to form the covariant derivatives in (2). We expect a contri-

bution to the curvature due to the stress-energy of the scalar field such

as
,Q
Tpv - Q’HQ,V = %8uv é’a Q .

The great advantage of studying a non-gravitational field is that we can

ignore the contribution of the field energy to the geometry; throughout this

section we use the unperturbed Schwarzschild geometry. This is easily Justi-

.fied since we can imagine a limiting process in which J is scaled by a small
number €, then Q ~ ¢ and perturbations of the geometry ~ e2. Of course, it
may be that § or its gradient (in non-pathological coordinates) become large

without bound at some point, in which case we must abandon the perturbatidn

scheme.



The situation we consider is that of a star whose matter is scalar
charged. On an initial Cauchy hypersurface, on which the star is still
outside its gravitational field,the star is a source of an exterior scalar
field. The first, most critical, question we must ask is: Can the
star collapse leaving an asymptotically static scalar field behind, or as
in the case of gravitational and electromagnetic muléipoles, must the scalar
field either radiate away or greatly modify the collapse?

If the star collapses, it leaves behind the familiar Schwarzschild
geometry described by line element (1). If a Btaticlg @ field is left

behind by the collapse, it must satisfy

-3 Y (ayr) QY+ (o/r - 2w/ ad/er

(3)
2
- t(t+1) Y =0
for an l-pole. To analyzeao this we introduce the convenient r* radial
coordinate of Regge and Whéeler,l7
r* = r + 2M In(xr/2M - 1) + constant . (4)

Note that r = r*, for r >> M, and that the event horizon r = 2m 18 at r* = = .

In terms of r¥* derivatives, Eq. (3) becomes:

(1 - 2)4,/1')'1 d?@/d?r* + 2e7t ad/dex - 1(2 + 1) Q/t2 =0 . (s)

The asymptotic solutions at large r* are the usual flat-space forms,
9~ ! o o~ r*'<l+1) at r* = + 0 (6a)

And near the event horizon they are:

§~r* or Q ~ constant at r* = - ® . (6b)



The solution é ~ r* is unacceptable at r* = - «©, Specifically, the scalar
field's stress-energy and its force on the’ charge carriers would be unbounded
in a comoving frame. The solution § ~ ¥ ! at r* = + % ig obviously patho-
" logical.
The question then is whether we can connect the well-behaved solutions
at r* = - @ and o* = + <, If we are to connect a constant at one end to a
decreasing solution at the other there must be a point of inflec-
tion (d?@/dr*2 = 0) at which the signs of § and df/dr* are opposite; this is clearly
incompatible with (5). (This analysis is patterned after that of Vishveshwara.21)
The monopole case, which is just as important here as the higher multi-
pole cases, since the scalar fleld can radiate in an { = O mode, is somewhat
special in that both solutions at r* = + % are well behaved. For this case,
in fact, we have the simple exact solutions
§ = In(l - 2M/r), ‘or constant . (7)
The solution § = constant is trivial and the n(l - 2M/r) solution has the
expected § ~ r* behavior at r#* = - ﬂnls
If the paradox is indeed a manifestation of the special naiure of the
event horizon, the precise form of the wave equation should not be too impor-

tant. In flat spacetime we consider the generalization of the free-field

equation

O%+ce") g =0 (8a)

where

Q= at"’ - . (8b)

In the absence of other fields, translational invariance demands that C be
constant and we have the usual Klein-Gordon equation. When we make the

usual replacement of otdinary partial derivatives by covariant derivatives



we find that in (5) the coefficient of § is now
- [r“°' 1L +1) + c(x“):l . (9)

The emergence of the paradox depends on the sign of C. Usually C in the
Klein-Gordon equation is taken to be BF, where M is8 the mass of the particle
mediating the field, in this case our derivation of the necessary singulari-
ties of the static solution is unaffected.

It is intriguing that imaginary mass particles have nons@pgular static
solutions, since imaginary masses are sometimes associated with faster-than-
light motion. More specifically if c(x*) 1s negative in some region of space-
time, high-frequency wave packets have group velocities greater than ¢ in -
that region.. It is Just such faster-than-light effects that might be expected
to rob the r = 2M surface of its properties as a one-way membrane for infore
mation propagation..

Oﬂe other point must be mentioned. In generalizing the wave equation
from the laboratory to curved spacetime, it is possible that other curvature
effects come in, in addition to the covariant derivatives. In particular,

those wno consider conformal invariance to be compelling would write the

free-field equation as
;v
§;v’ +1/6R§f-0 .
Since R = 0 in the vacuum exterior, this modification i3 of no concern.22

B. The Local Problem
“Our approach to the problem of the scalar field's evolution can conven=-
iently be divided into two parts. In the first, the "local problem”, the

evolution of the field in the star and on its surface is followed, up to the



point at which the surface passes through the event horizon and is causally
disconnected from external observers. The results are then used as an input
for the second part: the evolution of the exterior field. The local problem
is also important because it resolves the question of whether perturbations
remain small, and whether a first~order perturbation calculation is sufficient.

Some important work has already been done on the local problem for gra-
vitational perturbations: The computer integrations by d; la Cruz, Chase
and Iaraello and the analysis by Novikov.9 In view of the uncertainty still
surrounding the question of the behavior of fields at the event horizon, it
was deemed useful to follow the evolution of the field in the local problem
mumerically, Qith a computer.

- The problem is set up in a way that allows an unambiguous interpretation
of the results. The background problem is the collapse of a momentarily
static uniform pressureless star first described by Oppenheimer and Snyder.23
On the initial t = O Cauchy hypersurface the § field is chosen to be static
(dé/dt =0, d.2§/dt2 = 0) in the exterior; a stationary observer seés this
field remain static until information about the collapse reaches him.

The Friedman line element,

a? = ar® - &2(n) [dx2 + sin® x(a6® + sin® © d¢2)] (10a)

with
a(n) = %ao(l + cos ﬁ). " (100)
T = 3a (n + sin n) (10¢)

describes the geometry of the interior of an Oppenheimer-Snyder star of

density

p = 3a fBra’(n) . (11)



If the maximum X (i.e., that for the stellar surface) is Xo, then the mass

and radius of the star's surface are:
M=1la_ sind X (12)
2% o
rgp = o(n) sin X, . (23)

At n = O the star is momentarily static and is about to begin its free-fall
collapse.

The geometry outside the star is that of Schwarzschild, but we must
avoid Schwarzschild's coordinates because of their poor description of the
region r = 2M. Instead, we choose "comoving", i.e. "synchronous", coordinates.
For a vacuum this means a system in which points with fixed spatial coordinate
values move on timelike geodesics, and for which the time coordinate is the
proper time along these geodesics.

The general comoving spherically symmetric, vacuum line elemenpau is

2
w® - of - BLRL o e v af o of) ()

where r(R,T) is derived as the solution of

/T = - ,g“ +2E(R) . (1kb)

There are two arbiﬁrary functions here, E(R) and r(R,T = 0), corresponding
to our initial choice of velocity for our observers.and to the initial scale
for R. By choosing r(R,T = 0) = K, we give the R coordinates the ppysical
interpretation of the initial radius (i.e., Schwarz%child'radial‘coordinate)
from which an observer starts falling. We must, of course, cut the geométry
off at the surface of the star, which is initially R = Ro =

Tinitial ~
a /2 8in X_. We choose E(R) = - M/R 50 that our observers are all initially



static.

Since 3r/aT)R « R, = 0 and ér/aT)r '.rsf = O the world line of the
shells r = Tor and R = Rsf are initially tangent and they are both geodesics.

Thus, a consequence of our choice of E{R) is that the star's surface always remains
at R = Ro, and since both T and T are proper time on this geodesic, the

boundary between the interior and the exterior, we hereafter use only the

symbol T as the time coordinate in both regions.

The background coordinates are pictured in Fig. 1 where we use, as ini
calculations to follow, the specific choices X = 7/4 and a, = 4{Z M, s0
that the star starts collapsing from r_, = 4M. The function r(R,T) is
transcendental but is smooth, having no pathologies where the stellar sur-
face crosses the event horizon. For our choice of E(R), r(R,0), X, and a_,

o
it is approximately

#(7,7) = Bf(1+ 7(203/5) o)

throughout the region of interest of the variables R, T.
In the interior we must evaluate Eq. (2) in terms of the coordinates of

line element (10). For an l-pole field the result is
2 2 2 2
(a (n)Q’q)m/a. (n) = (a1 X Ty ),y 610 X (16)
+1(2 +1) @/:sin2 Xa- naa(q) J .

In the exterior (R = Raf)’ in terms of the comoving coordinates of (14),
EqQ. (2) becomes:

LR N -m([ram/"] Sa)n
. : (17a)
et (e +1Y Q=0 ,



where

r' =OrfdR . (17v)

The matching condition for § at the boundary X = X, R =R, is tat
the derivative of é; with respect to proper distance normal to the boundary
is continuous and that § itself is continuous. (This can be shown by using
Guass's theorem on & slab-like volume including the boundary.) It should be
poticed that the system of Eqs. (16) and (17) and the matching condition
in no way single out r = 2M as a special surface. Viewing the local pro-
blem in these mathemnticai terms, we should be véry surprised if a singula-
rity develops there.

To soive the dynamical problem we also need to know the motion of the
scalar charge carriers. This motion is freely specifiable since we are
ignoring the forces due to the scalar field. A natural choice is to have
each dust particle in the star carry a fixed charge ; this fixes the time

dependence of J at any one value of X, 8,¢,:

J(r) aplv) a a'a(n) .

The form of j(7,X,8,¢) depends how the charge per particle varies from point
to point in the star. We choose the radial dependence so that J vanishes

smoothly at the surface, and we choose the angular dependence to be a spheri-

cal harmonic, e.g.,
30,%,6,9) = ela fa®(n) (1 - @/x2) ¥ Me,9) . (18)

Here ¢ is an expaﬂsion parameter which is chosen small enough so that we can
ignore scalar field forces and stress energy. The coupling constant x in (2)

18 taken to be (2M)2 so that § 1s dimensionless.
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It remains only to specify Q and its time derivative initially. Out-
side the star we take @ to be static, that.is, a solution of (3) for Q(R).
‘These solutions characteristically go as 1/}'(“l at large R. 1In the interior,
where there is not so natural a choice for Q, we choose it such that §,1 and
@_rrvanish inside. The initial interior field will then beaa superposition

’

of the particular solution - depending on the scalar charge distribution - and

the homogeneous solution of (16):

§interior - §pe.rticular +A §homogeneoua * (198)

The exterior field will be

Qexterior =B @static ’ (190)

and the constants A and B must be determined so as to meke the initial data
satisfy the Junction conditions at the stellar surface.

The details of the calculation of the evolution of @ are summarized in
Table I and the results of numerical computations are shown in Fig. 2.

In both the £ = 0 and £ = 3 case, the field increases as the star grows
smaller, but in neither case is there any strong local effect to distinguish
the point at which the star's surface crosses the event horizon. At this
moment of crossing (at n = x/2) both § and its derivatives (in comoving coor-

dinateé) are neither zero nor infinity. The scalar perturbations do remain

small,

III. EVOLUTION OF THE SCALAR FIELD

A. The Curvature Potential; Characteristic Data
Having established that no catastrophic local phenomenon will interrupt

the collapse, and having calculated data on the stellar surface, we now turn



our attention to the evolution of the exterior field. In particular, we are

interested in seeing how the asymptbtic field at t +» % avoids the singularity
of a static solution. This will be accomplished by a radiative dispersal of

the field.

The comoving coordinates which are so useful in studying the local
problem are poorly suited to the radiation problem. To understand the nature
of the radiation in the exterior we must use a reference system related to
the static nature of the background - so our system must be stationary with
respect to the Schwarzschild system. The line element 18 then (1) or if we

use the r* coordinate defined in (4), the line element is
as® = (1 - 2/r) (at? - ar®) - P(ad® + s1r® 0 af?) , (20)

where r(r*) is a solution of the implicit eauation (4). Note that the null
radial lines in the geometry are dr¥ = % dt,

Assuming that @ has the angular dependence of a spherical harmonic,

the equation governing its evolution is
e e W) @ -8 ) c2r G L vt +) P R0 L (21)
Q;v r £t T T, r¥rk T* ’

If we introduce a modified field variable ¥ = r§, then (21) takes the very

gimple form

sc '
Yee ™ Y pugu *Fp (e*) Y=o, (228)

with

P "%(r%) = (1 - 24/r) (2M/r3 + 1(t ,+1)/r2) . (e2v)

The function, Flac(r*),vwhich is very important to our analysis, is peaked
strongly arcund small absolute values of r*, (See Fig. 3.) Its asymptotic

forms are:



1(5;; ;),+ LM (2 + 1)2ln(r*/g§l 16140

* *

* >> M
Flsc(r*) - 2M/r*3 if1 =0

_(._——l L+ 1% +1 exp{(l’*/zM) + 1} r*<< - M (23)

(2x)

(Here the constant in (4) has been chosen such that r* = O at r = hM.)

The shape of Flac(r*) is shown in Fig. 3.

The wave Eq. (22) can give us a simple picture of the nature of the
radjation problem. If F‘ac(r*) were simply the centrifugal barrier,
{1+ l)/r*2 in the region r* > 0, then waves of the scalar field would
propagate freely; there would be no gravitational effects on them. The
existence of the region r* < 0 and the fact that Flsc(r*) is not 2(¢ + l)/r*"2
for r* > 0 are due to the curvature of spacetime. To isolate curvature
effects from the effects due to spherical coordinates (i.e., the centrifugal
barrier), we can subtract £{f + 1)/r*2 from Flsc(r*) for r* greater than,
say, 20 M. The part of Flsc(r*) which remains and which is due to curvature

we shall call the curvature potential.

The useful and interesting property of the curvature potential is that
it is a very localized barrier to scalar waves. It can be thought of as a
barrier between a flat space close zone adjacent to the stellar surface
source, and a flat space distant zone (containiﬁg Joseph Weber and his scalar
antenna) where we are most interested in the manifestations of this radiation.25
In this plcture of the problem we will find the coordinates u and v,
advanced and retafded time, to be useful. They are related to t and r* by
a 45° rotation:

Wetert  vaet+rt , (28)



They are important in that they are null coordinates; if it were not for the
scattering by the potential, information would propagate along u,v coordi-
nate lines without distortion.

The specification of the problem is complete when we give the initial
conditions that Y is static at T = O (and hence on the "first ray"), and when
we put in the values of ¥ and its normal derivative on the s£ellar surface,
from the previous section. The problem is pictured in this form in Fig. L.

Consider the initial Cauchy data on the surface of the star. In the
previous section we saw that ¥ and OY¥/JR are well-behaved functions of
comoving coordinates from the onset of collapse to the passage throﬁgh the
event horizon. The factvthat the.variation of ¥ is bounded on a curve of
finite length in comoving coordinates means that its variations on the curve
of infinite length in Fig. L must be very small, asymptotically zero in fact at

u * «, Mathematically we can show that ¥ approaches its final value according to
¥+ a+b expi- u/iM} (25)
as t + @ (and u + «) (a,b constants) .

This effect is in fact just the ordinary time dilation phenomenon between a
falling frame and a static one and does not depend in any way on the surface

‘falling in on a geodesic.

These asymptotic properties can be established most easily by using

Kruskal coordinatesas

U . gm0/ M v o heV/ M (26)

Since U and V are well-behaved coordinates at r = 2M, the partial deriva-

tives OY/dU and dY/V should be finite. This iaplies that O¥/du must fall



off sharply at the event horizon because
3%/ = (/) expi- u/im} (27)

and u + ® at r = 24, The advanced time v is finite at r = 2M (for an ingoing
world line) so that O0¥/dv is finite. I we picture the path of the surface

through spacetime as v(u) or V(U), tnen near r = 2M we have

dv 4V dv/av
il Té—d T " exp{- w/iM} . (28)

The world line of the surface, therefore, appe#rs in our coordinates to be

almost an ingoing null line, and we conclude that:
dy/du = 37/dv dv/du + 3¥/du ~ exp{- u/iM} , (29)

for large u. We shall see that the evolution of ¥ at large t depends only
on the asymptotic, large u, behavior of ¥ on the surface.

For convenience, we will specify data on an ingoing null line rather than
on the stellar surface. If the v distance between these two curves is

8v at some u, then the error in Y,u is approximately
8(7,u) m (Y,u)v8v==-1/b Flsc(r*) Yov @ exp {- u/uM} sv . (30)

So using the null line is Justifiable in that it does not change the nature
of the asymptotic data. (See Fig. L)

Summarizing then, we have reduced the physical probiem to a mathemati-
cal prot;lem in wave propagation, with data given on two characteristics :27
the "first ray" u = 0, and the "stellar surface" v = v.. The partial dif-

Q
ferential equation is (21) or equivalently

Y,uv + 3 F:c(r*) ¥Y=0 . (31)



The form of the characteristic data is

?(u,v = vo) +a+b exp{- u/kM} (3Ra)
at u>> M
and .
¥(u = 0,v) + static solution » ! (32pb)
vt atv>»>wM .

B. An Idealized Potential
Before going on to look closely at the manner in which the fields evolve,

it is instructive to look at a very idealized analogue to our wave equation.

Yooe =Yg tF () T =0 (33a)
where 2
(2 + 1)/ for r* 1
Fl(r*) - (33b)
0 for r* <1

The input data as before will be on characteristics: an exponentially damped
fall-off at v = Vo and first-ray data corresponding to an initially static
solution. The extent to which we have eliminated some important physics
with this idealization will become apparent presently.

Rather than dealing with a general I we shall specialize to £ = 1; the
following calculation can be done in the same manner for any 2. It is
interesting that even in this simple model equation, we have the "paradox".
The static solutions are

v : cl + c2r* r* <1
ol 2 (34)
Cl/r* + Cyr¥ =]



We cannot match the two good solutions (with the usual conditions that ¥
andﬂfx* are continuous), so there can be
no static solution that is well behaved at both r* = + ®and r* = - «,

We get perhaps the clearest picture of the nature of the paradox if we
regard this problem as a purely mathematicel problem in the propagation of
waves, in one dimension, under the influence of a rather strange potential.
Prior to the first ray, a distant observer sees a static field, the source
of which is the charge in the star, or equivalently the field on the stellar
surface. At u =+ « the stellar surface field again becomes static, and non-
zero, 8o we might expect the distant observer to see a static non-vanishing
field. This is impossible without singularities. In a sense then, this
idealization is a reduction of the essence of the paradox to its simplest
terms.

The advantage of the idealization is clear; the solutions in the two

regions r* 2 1 can be written in very convenient forms depending on four

arbitrary functions

di(v) _ £(v) , dg(u) , glu) =1
* *
¥ = { dv r du r (35)
a(u) + g(v) <l .
For further convenience we redefine for now u and v as
vat +r¥al
(36)

ust-r¢+1 ,

80 that u = v when r* = 1, and we use characteristic boundaries at u = 0 and

v e,

At u = 0 we choose the condition ¥ = l/r*, while at v = O we choose



v=14+ ()0 () te™ | (37)

(The constants are chosen so that ¥ and ¥  are continuous at t = 0.) The
’

solution to (33) with this input is
¥ = - (2k)-l R {A/bK) L N kAé e-%v cos(dv - ¢) (38a)
for £ =1
Y = - %kAe'ku - a? e-%u sin(lu - ¢) + r*-l{%Ae-ku + V2 a? o 3u cos(du - ¢ - n/h)} (38b)
for " =1
where

A= 1/(k2 - k+3) (39a)

tan ¢ = 1/2k - 1 0=¢=3n/s . (39b)

The terms in Y that-go as exp(- ku) represent the outgoing waves from
the "stellar surface”; the exp(- kv) term represents reflected waves. The

coefficients
Tada/(2070 = /08 -k D), R=aAR/(@OTT-H0E -k D,

indicate the strength of the radiation respectively transmitted through, and
reflected from the poteatial peak mear r* = 1. In the limit that the input

waves have very high frequency
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(k » =) the waves are transmitted completely with no reflection, But in

the low-frequency limit (k + O) they are completely reflected and there is

no transmission. The exponentials with frequencies w = - 1/2 % i/2 are

transients which are characteristic of the potential, and which enable the
conditions at r* = 1 to be satisfied.

The crucial thing to notice is that the solution falls off exponentially
in time everywhere - i.e., at any r* - thus avoiding the catastrophe of a
static asymptotic solution. The paradox was fourded on a belief that the
value of ¥ at v = 0 and large u would penetrate the potential and show up
at large r*, We now see that the potential acts as a very effective barrier
against zero frequency waves from the "surface of the star". It is this
potential barrier that causes the paradox (there would be well-behaved static
solutions if not for the potential) and that resolves it.

Although it seems likely that this vanishing of the field is really the
essence of the resolution of our paradox, we shall go on to look into the
details of the real problem. We shall in particular be concerned with the
question: Does the solution to (22) vanish asymptotically at large t and,
if 8o, how fast? We shall see that for more realistic potentials than those
of the idealized example, the solution does not fall off exponentially but
rather develops a power law 28 fall off asymptotically, which dominates the
exponential fall‘off of the brevious example, Nevertheless, the so;ution
does fall off at large t.

The.power law tail is caused by scattering of the fadiation off the
anomalous éumturg part of fhe potential - i.e., from the fact that the real
potentials do not have thé convenient forms (! + l)/r*g, but have higher
order terms at large r* also. .The convenient forms of (35) correspond to

unimpeded in- and outgoing waves. ‘When we add the other curvature-induced



parts of F‘(r*) we scatter these waves, effectively slowing the dilution of
the field. Another viewpoint on this comes from the study of the spreading
effect of potentials by Kundt and Newman.29 In effect, they show that thgre
is a zero measure of potential functions which give a nice separation of
ine and outgoing waves as in (35). It seems that an exponential fall-off of ¥
(in the case of exponential fall off of surface data) is associated with
these non-spreading potentials; our potentials - the'anomalous parts of which
come from the curvature of spacetime -~ will not be in this exalted class
and we must expect scattering and other, slower fall-offs.

[Héuristically, we may argue for a non-exponential fall-off as follows:
In the Kundt-Newman formalism we may formally write a solution for any po=-
tential in a form like (35)., For the spreading potentials, however, An
infinite number of derivatives of f(v) and g(u) are required. This.gives
rise to an infinite number of transient frequencies. (In our idealized case
we had only w = - 1/2 £ 1/2,) The sum of an infinite number of transient
terms may be viewed as the Fourier integral of a function other than an
exponential.)

We 8hall now investigate the solution for the case of the actual poten-
tial and we will concern ourselves chiefly with the asymptotic solution {large

u, large t). A separate analysis is needed for the monopole case and for

higher multipoles,

_ C. Monopole Fields
Since the scalar monopole can be radiated just as well as higher multi-
poles, there 18‘50 reason to expect its asymptotic solution to differ quali-
tatively from that of multipoles with £ > 0. The great advantage in cania-

ering the monopole case is that the (! + J.)/z"2 centrifugal barrier term



vanishes and we can think of the total potential as localized near r* = 0,
Ir F(;c(r*) vanished everywhere --this would be the idealized potential
for f = O --then the solution to our wave equation, with the characteristic

data of Eq. (25), would simply be

¥(u,v) = a + b exp{- u/bM} , (40)

representing free propagation outward of the data on the stellar surface.
Although this cannot be the total solution, this should be the behavior of
the high-frequency components of the radiation (e:“wt with w >>,|max(Fgc) ~ I/EM) .
This phenomenon has appeared in our simple example and is a well-known occur-
rence in quantum mechanics where an energetic wave train is little affected
by a potential barrier of much lower energy. Equation (LO) is then a first
approximation to the behavior of the solution. In as much as it predicts a
concentration of the waves near the first ray u = O, this solution represents
& wave front which will be the dominant solution near u = O. The exact
form of this wave front depends greatly on tﬁe details of the collapse; the
crucial point here is that the wave front is exponentially damped.30

It is obvious that it is the low frequencies which are really involved
in the paradox and in its resolution. These low frequencies make the greatest
contribution (e.g., to a Fourier integral) at large times and so may very
well iead to a modified asymptotic solution.

For now, we assume that Fosc is absolutely localized in some region
jr*] < p M. (It should be clear that the exponential tail of the potential
at r* » ; « i8 ignorable. 'Later we must also justify ignoring the effects

of the M/r*svtail on the evolution of the asymptotic solution.) 80 now we have

in regions VI, IX
Yur = 0 { -

(b1)
of Figo h
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Fron (4l) and the data on the v = Vo characteristic boundary (32a) it

follows that the solution for Y at large w in region IX is
¥ = b exp{- u/uM} + £(v) , (82)

where f(v) is an, as yet, unspecified function. On the other characteristic

boundary u = 0, we have

¥(u = O,v) = gh tn{l - 2M/r) = = 1 - oM, s(ﬁﬂi![ﬁﬂ) . (h}a)

v 2
v
According to (T}, Y in region VI must be
Yao1- v, (43b)

where g(u) 1s a function we must determine along with f(v). Notice that
£(v) and g(u) represent waves which propagate away from the potential in
regions IX and VI respectively.

Now let us assume that the solution in the region t > r* is not an
exponential in time - but rather something slower like a power law. (This

will be Justified in the results.) The solution in this region then can be

. written as

Y = ¥(t) $(r*) for t >> r* (bha)

S

with .

/¥ << 0,0 ' " (bkb)

For convenience, let us use the symbols %% for d¥/du and d¥/dv respectively.
If A is a point in region VI and B is a point in region IX with the same

v coordinate (see Fig. 4), then by (31) and (Lb):

Tp =Ty ~+ 1/2 ¥(t) Si Fo“(r*) Q(r*) ar* . (b5)
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Now ¥ = 0 (modulo an exponentinl fall off) in region IX so that there

TEYv=¥t , (u6)

and also in region IX, for t >> r¥,

7(B) = ¥,v|y = ¥(t) §(r¥) . (u7)

Now if 7(B) falls off in time as V¥(t) and hence faster than ¥(t), it must
be that ¥(A) cancels the integral in (L5) - i.e., ¥(t) must fall off like

¥ for t >> r*, Furthermore, Uv = 7,u implies that
UD) - UC) ~ ¥(B) - ¥(A) ~ - a) + ofr'(A)) (48)

at large t. Since U(C) = O we conclude that UD) =~ - ¥(A), or the incoming
and outgoing parts of the tail ere equal in magnitude for ¢t >> r*. This almost
total reflection of the ingoing waves is another manifestation of the impene-
trability of the barrier to low-frejuency waves.

Now from (L3b) we see that in region VI, ¥ must be 2M/v2 s0:

(1) g(t) must fall off as 1/1:2 for t S>> r* .

(41) From (48) and (43b), 4in region VI ,
Y= 2M(\l;' - %) + v-% (r some constant) . (49)

(1i4) In region IX, ¥ must fall off as 1/t.3
for t >> r* so that
3
9 ~ Order (1/v”)
(50)
» ;
¥ ~ Order (1/v°) .

In (49) we see that at any ™ if t >> r*, then ¥ = (LMr* + 7 )/ta, that
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2
is, Y fall off as 1/t , and from (50) we see that this rwust be true for

reglon IX also. Thus: a sufficiently long time after the wave front passes

in region VI, or after the surface passes in region IX, the solution will

fall off in time as 1/t2.

Before going on to discuss the meaning and implication of these results,
we must Justify having ignored the 2M/r*3 tail of the potential. It is clear
that ignoring this tail in our analysis of the evolution amounts to assuming
that in region VI, ¥ is transported unchanged (on a line of constant v) from
the first ray to the edge of the potential barrier. We can calculate how

much ¥ will change on this path for our solution, due to the 2M/r*3 tail of
the potential: '

o= {change in ¥ in region I, on a line of constant v, due}

to the tail of F: 8 F ~ 1/,
™~ BM
-- 1/'*5 du oF, ¥
u=o
u=v-£M
Mf 4 1 YQalnear u=20
[ - E u —S- .
* Y aM(l/fu-1/v) forud>>M (51)

u=0
We can divide the integral into two parts: (1) the contribution at small

u due to the wave front and (ii) the contribution, mostly near the barrier,

due to the tail 2M(1/u - 1/v) + 7 /v which we have calculated for Y. The

first contribution is of order M/v:5 and we need give it no further considera-
tion. The contribution of the tail is of order M/av2 and thus falls off at
the aa.me‘ rate as ¥, but we can make this error as small as we wish merel& by
making P sufficiently large.

The problem of monopole radiation Jjust discussed was attacked numerically

with an IBM 360/75 computer. The exact problem was investigated. That is,



the exact potential F'osc(r*) as given in (22b) was used as well as the exact first
ray solution ¥ = r/2M In(1 - 2M/r). Thé results were in perfect agree-
ment with the arguments presented above. Specifically ¥ was found to have

a large wave front at small u, which gave way to an asymptotic solution for
t >> r*, that did in fact go precisely as 2M(1/u = 1/v) + 7 /\r2 in region VI,
In region IX the solution was found to be very accurately independent of u,
and to go as ¥ = const ./vz. Furthermore, the program kept track of U and ¥
in region VI; from the first ray to quite small values of r* it was found
that 8v as defined in (51) does fall off as :L/v2 but 1s always much smaller
than 7 for r* > 20 M or so. Results of these computations are pfesented in
Figs. 5,6, and 7,

We can give a physical picture, in terms of scattering of ws.w)és, of the
Justification of ignoring the large r* tail of the potential. Ignoring the
potential tail really amounts to using the form F(u) +d(v) for ¥ in region
VI. We shall now show that an incoming wave scattered off the potential tail
is much smaller than the incoming (primary) wave itself. In this calculation

we take the tail 5F(r*) to extend outward from r* = M, i.e.
BF(r*) = 2M/r*° BM < T < = (s2)

If we have 'av.n incoming primary wave g =#(v) in region VI, we can cal~
culate the scattering from 8F (or the error in using ¥ = #(v) as a solu-

tion) by

8%, =~ FoFx Y (s3)

and ﬁe will use the fact that at r* = « the form Yo =d(v) is a valid solu~

tion 8o that 3Y = 0 there. Then



u

sY,v = - }‘.5 gﬂsé(v) dv = (- &) —ngv (Ska)
r’l’ . r¥*
and -
v
8Y (u,v) - 8% (u,v=w) =S 8¢,  av (5bb)

v

o0
8¥(u,v) = - &S o
b i

Iré(v) falls off at largev, as it must, then an upper limit for the integral

is
v < (- &) 2M£(v)S % = —"—rfél’l . (55)
r*

So the effect of scattering by B8F is a part of the solution that is down by
2M/T* from the primary solution and at the matching region is, therefore,
down by 1/B. This verifies our earlier assertion that scattering effects
fall off at large r* and shows why the effects of the tail of the potential

on evolution of the solution can be ignored.

D. Higher Multipoles .
In the case of the monopole we saw that backscatter off the tail of the
potential is unimportant; this is not true for ¢ > O mmltipoles. If we ignore

the anomalous tail of the potential and use

Y (1 + 1)/1‘*2 r* > BM
e k¥ uv =)0 “r* < - BM (56)
F,¥ -BMsT*=pgM ,

we shall see that we can solve for the large time asymptotic behavior of Y
and, 843 in the monopole case, the tail of the waves will depend on the incoming

radiation from the neighborhood of the first ray. In the monopole case we



viewed the ingoing radiation as coming from the first ray (see (43)]. 1f

this were the case for all I wmodes, then the first ray data

1
Y = l/r*l + const., X.In r*/r*l e ’ (57a)
would give us as the ingoing waves
1 +1
¥a const. X [n(v)/‘l 4+ eee . (57b)

In the neighborhood of the first ray the dominant solution is that of the
"primary waves", the exponentially damped wave packet that filters outward
through the potential barrier from the collapsing star. These outgoing waves

backscatter off the tail of the potential
or °¢ « L0 0) i nGeu/2e) 4 .ee (s8)
r‘l’

giving ingoing radiation that augments that of (S57b). These two contributions

to the ingoing radiation are of the same order so we cannot now ignore back-

scatter off the potential tail. A careful calculation shows that the waves

of (57b), which are due to the tail of the static solution, are precisely

cancelled by those of (58), leaving a solution, on a line of constant u >> M,

of the form

¥ = const. X ln(v)/vl + e + oo ’ (59)

independently of whether or not there was a static soiution in the exterior
before the arrival of the first ray. This very important fact is proved in
the Appendix where we make a large-v expansion of the solution in the neigh-
borh&od of the first ray.

We 8hall now derive the simple relationship between the large-t asymptotic

solution and the large-v ingoing waves from the wave fgont. To simplify the
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calculation we shall explicitly deal with the case I = 1; i& will be obvious
how to generalize to higher I. :

The basis of our approach is to use (56). That is: we disregard the
scattering caused by the tail of the potential, except the scattering of the
primary waves near the wavefront. This is Justified by the more careful
calculation in the Appendix in which we keep higher order terms due to the

potential. With this simplification, we can write the solution as ‘n (35), as

£'(v) = £(v)/r* + g'(u) + g(u)/r* in region VI (60a)
®{a&(u) + y(v) 1in region IX . ' (600)

In the region t >> r* - which we shall refer to, hereafter, as the asymptotic

future region - the arguments of the previous section tell us we can again

write the solution as

¥ = ¥(t) ¢(r*) ~ (61a)
!f" <«< %; . (61v)

Now by matching the solutions (58) and (61) in the overlap of their
regions of applicability, we will find that the asymptotic solution depend
only on the form of £(v). Since the time derivatives of Y can be ignored

in the t >> r* asyaptotic future region according to (51b), we have
¥ o= ¥(t) ¢ static(r*) ’ (€2)
and for |r*| >> M, in this asymptotic region we have
Vo= V(t)(aalr* +bg . ees ] 1in region VI " (63a)

¥ V(t)[a9 *og T* + L., ] - in region IX. (63b)
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The expansion of (60b) for t >> BM gives us the solution for r* < - gM in

the asymptotic reglon: .

¥ mp(v) = ot + %) = 7(t) + oo (2) + 280" (E) + e L (68)

Expressions (63b) and (64) must agree. This gives us b9 = 0 [or more precisely,

b9 = O(ag/t)]. This means the solution for ¢ (r*) 1s fixed, up to a scale

static
factor given by 39. In particular, both g and b6 will be nonzero in general,

The expansion of (60a) in the asymptotic region is

Y- ot (g(e) - f(£)) +3 ro(2(t) - s(t))"
« (65)
o TeB(ee) +g0)™ + L ed(ece) - g(0)" 4 e

8
A comparison of (63) and (65) suggests that (f(t) - g(t)) must be zero.
Actually, we can only conclude that(%(t) - g(t))" falls off faster than
(f(t) + g(t)). Since ag # 0 in general,(g(t) - f(t)) must fall off as
(f(t) + g(t))'” ; this also guarantees that the higher powers of r* fall off

faster. We satisfy these requirements with

g(t) - £(t) =ut'' (t) . (66)

Observe that the near equivalence of g and f is the near equivalence of the
ingoing and outgding waves in the asymptotic solution in region IX. 1In

other words, g(t) = £(t) at large t tells us that almost all the ingoing waves
from the first ray are reflected by the potential barrier. This is a pheno-
menon we noted for the monopole case and is closely re%ated to the impenetra-
bility of the barrier by zero frequency waves we saw for our idealized poten-

tial.

It now remains to be noticed that V(t) and 7(t) must fall off as £"' (t).
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From (59) amd (60) we conclude that

f£(v) = const. X (In v)./vl +1, . . (67=)

in general, and

£(v) = const. x (fn v)/v° (67v)

for the dipole case. (The constants here depend on details of the wavefront.
Therefore, for a coordinate stationary observer at any r¥*, for t >> r*, the
dipole field falls off as ln(t/2M)/t5.

We also, of course, now have the solutions elsewhere in regions VI
and IX at large u, v - i.e., well away from the boundary characteristics

u =0 and v-vo. The solution in region IX, for large v, is
Y » 7(v) = const. X ln(\r/ltM)/vs , (68)

and in region VI for u >> M it is
Yert'(v) +g'(u) + r*'l(s(u) - f(v))

1 1 1 [} 1 1 h
= const.X {-2[59% + lnsu + 0(;-5,?;)] + = [lnau - n2v + 0(:5, :5-)]} . (89)

v u r u v

[ To give higher-order terms we would have to know f(v) in greater detail
than that in (67b).)
It 4is simpie to generalize the foregoing analysis to larger f's. In

the t >> r* asymptotic region, the analogue of (63a) is:
Y uw(e)ag/rr v Tl  (10)

And the equivalent of (60a) is

Y. f(‘)(v) - A:‘L f(l'l) (v)/r* + vee + (= 1)"&: f(v)/r*l

o+ g(l)(u) + A]l' g("l) (u)/c* + ... +A: glu)/r+! (71a)
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with

K= (0 pt/fie-p) (71b)

By expanding (71) for t >> r* and comparing with (70) we can easily show
that g(z) =~ (- l)l -1 £(z) and that the ingoing and outgoing radiation
parts are equal near the potential barrier. (This also follows from the

argument leading to (48), which applies to any f.) More precisely, we can

show

g(z) = (- 1)L g(z) 4+, (241 () (12)
and that

¥(z) = const. X f(2‘+1)(z) . (73)

The form (S9) for the ingoing waves after the wavefront and the form (71),
of the solution for general £ tell us that in region VI, after the passage

of the wavefront

£(v) = const. X I—D?VM + @(1/v2) . (7%)
From (73) we have then: For any [, at any r*, for t >> r*, the field ¥

falls off as In t/tal * 3,

Let us now‘summarize'the physics of the evolution of scalar field multi-
polea;

(1) Near the first ray (i.e., at small u) the solution is dominated by
a waveffqnt: waves from the stellar surface that have passed through the
potential'barrier. These primary waves fall off exponentially in u since the
variation of ¥ on the sfellar surface is exporientially damped.

(11) The wavefront of primary waves is backscattered by the tail of the

potential and the "input" to the post-wavefront region is the ingoing radiation

.



caused by this backscatter. For ! = O the ingoing waves take the form
Y = - 2¥/v at large v. In the Appendix we see that for higher ! the ingoing

waves go as a constant times ln(v)/vl +2, plus terms that fall off more

quickly at large v.

(i11) This ingoing wave is reflected almost completely by the potential
barrier near r* = 0, resulting in equal amounts of destructively interfering
ingoing and outgoing radiation in region VI, for large t.

{iv) 1In region IX the outgoing radiation, due to the stellar source,
is exponentially damped and at large t, the solution is dominated by the
ingoing radiation from region VI that does manage to penetrate the potential
barrier. This will be of the form ¥ = const. X In v/v?l +3,

(v) In region VI, for t >> r* the cancellation of in- and outgoing
radiation leads to a Y that falls off as fn t/tal * 3. From (iv) this is
the way in which Y falls off in region IX also.

(vi) Though we have started the collapse from a very relativistic
static configuration, it is easy to see that our conclusions are independent
of this. If the collapse starts from a radius >> M, then the primary waves
of (i) dominate for a longer time, but the qualitative evolution after the
primary waves have passed is unchanged.

(vii) The locally measured stress-energy of the scalar field -- the energy
that would influence a scalar field antenna -- contained in a spherical shell
of radius &r is proportional to (dY/dt)a 8r at large r. The exponentially
damped primary waves carry a total énergy that is independent of the radius
of the shell, but the contribution of the tail of ¥, due to the scattering
off fhe curvature potential, falls off with r. The tail then does not carry

radiation energy per se; it only transports energy in the near zone.



This implies that the relativistic details of the late stages of collapse are
not important in practical radiation calculations - unless the field happens
to vary very quickly (in comoving coordinates) during the late stages. It
should be emphasized that the resolution of the paradox is simply that the
field vanishes as t + o, avoiding a pathological static solution. The essence
of this resolution was revealed in our study of the idealized potential: as

t + o, adistant observer does not "see" the star - at least, not its scalar
field . as it was when it crossed the event horizon. Inasmuch as the pheno-
uenon of the paradox and the decay of the field seem to depend on the back-
ground geometry, rather than on details of the field,we should be confident,
even without>the formal proofs of section IV and Paper II, that the physical ideas

presented here do in fact resolve the paradoxes of gravitational and electro-

magnetic multipoles.

E. A Picture of the Decay of ¥

In general, invariance of a problem under some group of transformations
leads to a conserved quantity. For our radiation problem, the background
space is indépendent of time and we can derive an energy-like conserved for

the scalar field. This quantity can help us picture the decay of the field.

The wave equation

- * -
Y,:r. Y,r*r*+Fl(r)Y 0

leads us to define

vep (e P err Py r Fa e Feyr (e

and

- ' 2 2
B2y v a2, (76)
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8o that the equation of motion takes the form
H /ot = 38forx )

We can interpret‘ﬂ' as being like an energy density, 8 a sort of energy flux
and (77) as a divergence equation. We take comfort in the fact that ¥ is
positive definite.

Let us apply this to the radiation problem with boundary values given
on the null lines u = 0 and v = 0. On a spacelike hypersurface of constant

t the total "energy" in the wave zone is

r* = + t
. Hs j* ar*y (78)
r =a-t%

This total "energy" can only be changed by "energy" flowing across the

boundaries
r=4t
dH/dt = f do* W/at + W onast + ¥lonaot

r¥=-t
=4t

- S dr* 38/3c* + M| v + ¥ aoe
rH=at

- (x4 8 e+ W -81,

2 2 2 2
=2, + 3F %) o+ ey’ +3F ¥, . (79)

The two terms in the laat line represent, respectively, the "energy" flowing
across the first ray and across the stellar surface. If we consider what

the asymptotic contributions at large t are, we find that the second term
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is exponentially small and hence negligible. The first term at most gives
a contribution that falls off as t_ 2 80 that dH/dt o« ¢~ 2 or less, which

means that Heca - b/t at large t.

Now we notice that ¥ 1s a positive definite quantity and
H21/2 yrl ¥ are o« 4(¥)° (80)

where Y is some sort of average value of Y on the hypersurface. This tells
us that this average value of Y must fall off essentially as c'% or
faster since H is essentially constant at large t.

If the information at t = O were dispersed by a very strong potential
uniformly through the future light cone, ¥ would fall off precisely as t‘é;
this is the familiar case of the so-called diffraction of waves studied by
Lewis32 and others. On the other hand, if there were no backscattering the
waves would not spread at all so the integral for H would»have a non-vanishing
contribution in a spatial region independent of t, and Y would have a constant
value on an ingoing or an outgoing characteristic.

For our problem neither limit applies. In a sense the high frequencies
propagates on the characteristics and the low frequencies tend to spread,
but the correct asymptotic solution demands a deeper analysis. While argu-
ments based on the conserved flow cannot tell us Jjust what sort of asymptotic
solutién will develop in the presence of our curvature potential, they do
help in picturing the physics of the situation. One way of interpreting this
picture 6; "energy" flow is to say the "final" value of 'Y on the surface of
the star, as the surface crosses its gravitational radius, is ineffective
in ntbpping the decay of the field.

In Paper II we shall deal with a complex field satiafying an equation
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like (22); the only things that must be changed to accommodate the complex
field is that we define ¥ and 8 as the real’ quantities:
|2

= 2 2
=3l P 3ly 0 v 3l (81)

and

Sl LIPS S e ' (82)
where the bar over the Y denotes the complex conjugate.

IV. GRAVITATIONAL PERTURBATIONS

The study of the scalar field is more than a plausible analogue; from
the mathematics of the previous sections we c#n directly infer the dynamics -
of gravitational perturbatfions. In Paper II & unified view of all integer-
spin massless field perturbations will be given with the aid of the null-
tetrad formalism of Newman and Penrose.33 Here we shall describe the physical
nature of the fall-off of gravitational perturbations. -

Although the mathematical description of gravitational perturbations is
not greatly more difficult than that for other perturbations, the physical
interpretation is complicated by gauge arbitrariness. Gravitational pertur-
bations (e.g., perturbations in the Reimann tensor) are unavoidably mixed
with perturbations in the background geometry. In physical terms, to give
a value for a gravitational perturbation we must specify how it would be
weasured, Nevertheless, the physical n--1re of the fall-off of the pertur-

bations igvfairly clear.

The description of gravitational perturbations used here is essentially

17,3k

that of Regge and Wheeler, (RW). This involves the use of vector and -

tensor spherical harmonics to separate the angular variables, and a conven-

ient choice of gauge. In this RW gauge two functions of radius and time
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describe the odd-parity perturbations and three functions suffice to describe

the even ones.

A. 0dd Parity
We are not concerned with multipoles of ({ ; 2. Such multipoles for
the spin-2 gravitational field are nonradiateable. Specifically there can
be no t = O odd-parity perturbation, and the { = 1 mult{pole has been fully
investigated. As Vishveshwara21 and independently Campolattaro and Thome35
have shown, the odd-parity dipole perturbation must be stationary (a conse-

quence of the field equations) and corresponds to a small angular momentum

in the star.

For quadrupole and higher multipole perturbations, Regge and Wheeler17

found that the field equations lead to a wave equation similar to (22):

Q -Q

,te T L pEre * Fip('*) Q=0 . (83a)

Here the curvature potential for odd-parity gravitational waves is

FPP(er) = (1 - aw/e){ee + 1)/2° - S (a3b)

The RW metric perturbations hO and h1 can be derived from Q according to:
h, = Q1 - /)t (84a)
bop = (R L, - (k)

The formal similarity of (22) and (83) is striking but to continue the
analogy between-the odd-parity gravitational perturbations and scalar per-
turbations we must ask whether Q, as a measure of the gravitattonal pertur;

bations, is free from pathological coordinate effects. We shall see that it
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is not; Q vanishes at the event horizon even though locally measured perturba-
tions are finite there. d

Let us define
t

a(r,¢) = f Q(r,T) aT . (85)

In Paper II it is proven that q is measurable in the following sense: It is
a linear combination of the components of the Reimann tensor referred to the
orthonormal tetrad of a falling observer, and the coefficients in this linear
combination are finite at r = 2M. This implies that on the stellar surface

q and its proper time derivative are finite at the event horizon. Since

Q Q q’: then due to time dilation effects Q on the stellar surface will
vanish as (1 - 2M/r), when the surface crosses the event horizon at t = o

If we now integrate (83a) over the time variable from « to t, we find36

that q must satisfy the same equation as Q,

(]
Lee = pwgr () a0 (86)

The behavior of q on the stellar surface follows from the measurable nature
of q. Since q and its proper time derivative are finite, the argument of

(25) to (30) implies that for u >> M on the stellar surface,
9=q4+q exp{- u/hM} . (a7)

The initial value problem for q also requires data on a line u = constant.
If we choose the star and field outside it to be momentarily at rest, then
q on the first ray-signalling the onset of collapse must be the static solu-~
tion of (86) which is well behaved at spatial infinity.

The structure of the initial value problems for ¥ and for q are then
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almost identical. The single exception is the diffe;ence of the potentials
Fip(r*) and Fic(r*). In our analysis of the evolution of scalar pertufbations
at large times the details of F:c(r*) were not used. That analysis involved
only (i) the exponential fall-off of the potential as exp{r*/bM}, as r* » - o,
and (i1) the first two terﬁs of F:c in a large r* asympotic expansion. (See
Eq. (23) for £ # 0.) The £(f + 1) %2 term is just the centrifugal barrier,
and M £(2 + 1) 3 tn{r*/2M) is the first perturbation term. It is this
first perturbation term which is all-important in our calculations. The
analysis in the Appendix shows that the dominant backscatter of the primary
waves in the wavefront depends only on this term. The cancellation of in-
going and outgoing waves in the region near r* = 0 ({.e. the reflection and
transmissfon of the backscattered waves) is also independent both of higher

ac

order asymptotic terms in F‘ and of the detailed structure of F:C near

* = O,

The potential F?p(r*) has the exp{r*/hu} feature at r* + - «» and at
large r* it has precisely the same first two expansion terms as those of
F:c(r*). The analysis and results of Section III therefore apply immediately

to q. The asymptotic evolution of g (for ! = 2) is precisely the same as

that of ¥. In particular, at a fixed r, q falls off as [n :/c21+3. This

phenomenon of the field radiating itself away is, of course, the resolution

of the paradox.

The evolution in time of the RW functions Q and h1 can be found easily

-

from (84). They fall off for large time at constant r, as:

hy ~ Q- e/l (88)

The behavior of ho requires further comment. Equation (84b) implies

b, ¢ ™ (rq,t),,*‘ ’ (89)
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8o that

hy = (rq),r* +b(e) . (920)

According to (63) and (70), (rq) o+ has the same time dependence as g, at
)

large t. Furthermore, b(r) must be zero or ho

and this means there would be physical singularitie821 at r = 2M or at

would be non-zero at large t,

r = o For ho then, at large t,

ho ~ ln t/t21+3
B. Even Parity

As in the odd-parity case, the properties of the nonradiateable £ < 2
even-parity multipoles are well known. (i) By Birkhoff's theorem an f = O
perturbation can only be a small static change in the mass. (ii) Even-parity
dipole perturbations correspond to a coordinate displacement of the origin.
Such displacements have no physical meaning and can aiways be annihilated
by a guage transformacion.ss To analyze the { = 2 radiateable multipoles
we need a wave equation like (22) or (86). Fortunately, Zer1111® has
recently supplied such an equation. Zerilli's equation is in the context
of the RW formalism and the RW gauge. Thus, we describe the even-parity
perturbations by‘three functions: H, Hy, and K in thé RW notation. Zerilli
assumes perturbations to hgve exp(- ikt) time dependence. This does not

suit our -purposes here so while Zerilli replaces H, by R = H,/k, we define37
’ 1 1

it as

R(l‘,t) = 1f°ﬂl(r,'r) dT . (91)
t .
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Following Zerilli we define certain linear combinations of R and K:

R=ak+agR (92a)
R = a,k+ aR -(92b)
where

a = r2/(Ar + 3M) (93a)
a, = - i(r - 2M)/(Ar + 3M) (93b)
oy = {- ac® 4 3mur 32}/ (e + 3w)2 (93¢)
o =il - au){A(A +1) 2+ M + GMZ}/r2(Ar + 3m)? (93d)
A=3(1-1) (1 +2) . (93e)

(The third function, H, can be found from R and K by means of the field
equationa.le) With the definitions of (92) and (93), we can put the field

equations 'in a very simple form:

K,r* =R (gla)
~ EP s .=
.R’r*-F‘ (z*) K“K,:: , (94b)

with

Fl(er) = (1 - 2 {21\2(1\ + 1)2° + 6A%Mr° + 18AMr 4 18M3}
1 r 3 2
(Ar + 3M)

. (ske)

We can now combine (9%a) and (94b) to get Zerilli's effective-potential
cquaéion, v

.z EP -~ '
K,tt-K,r*r*+Fl (r*) K=0 , (95)
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an equation of the same form as (22) and (86).

In Paper II it {s demonstrated that K describes the even-parity pertur-
bations with no pathological coordinate effects. That is, if locally measured
gravitational perturbations are finite on the stellar surface during the
passage through the event horizone, then K and its proper time derivative
on the stellar surface are also finite. From the argument of (25) to (30)

it follows that for u >> M on the stellar surface,
K= Ky + Kl{exp - u/hM} . (96)

As we did for scalar and odd-parity waves, we may start the star and
K field from a momentarily static situation. The remaining input is
then a static solution to (95) on the "first ray", u = constant. The initial
value problems for ¥, q, and E are now quite similar. Furthermore, from (9ke)
Fsp(r*) has precisely the same first two asymptotic terms at r* = + = and at
r* = - o, as those given by (23) for Fic(r*) if £ > 1. The discussion for
odd-parity waves shows that only these asymptotes of the potential are
important to the analysis of Section III and we may therefore apply the
results of Section III directly toli. That is, we conclude that the dynamics
of E far from the characteristic boundariés (the "stellar surface" and the
“first ray") is the same ag the dynamics of ¥ and of q. Imn particular, at
a fixed r, K falls off, at large t, as In t/t21+3. From (94) we see that K
8

has this same asymptotic time dependence3

also fall off as In t/t21+3. Using the field equationsl7 we can show that

and therefore by (92), K and R’

H therefore dies out ht this same rate. Since H, is a time derivative of

1
21+h4

R, 1t must fall off faster, as In t/t . We can conclude therefore that
2143

at large times, even-parity gravitational perturbations vanish as fn t/t Y
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and 1t is this vanishing of the perturbations that resolves the paradox of

the singularities.

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Professor K.S5. Thorne
for suggesting the problem and for guldance throughout its execution. Thanks
are also given to Dr. W.L. Burke, Professor G.B. Whitham, Dr. E.D. Fackerell,

and Dr. J.R. Ipser, for useful discussions.



- 47 -

APPENDIX

The scalar potential of (22) (as well.as the potentials of (83) and (Qh»
is characterized by an asymptotic form at large r* dominated by a centri-
fugal barrier (! + 1)/:*2 augmented by a "tail": LMer™> £(2 + 1) tn(xx/2M)

+ G(M/r*s). In this sppendix we shall consider the influence of this tail
on the evolution of ¥ for { > 0, and in so doing we shall verify certain
coﬁtentiona of Section III. To simplify this discussion, throughout this

appendf{x we shall replace the real potential, and its troublesome logarithmic

term, by

F=1(0+1) 2 e S, (A-1)

This 18 for convenience only. It should be clear that the following calcula-
tions can be done as well for the real potential.

First we finvestigate the nature of the solution near the wavefront, to
see why scattering is important there and to justify (59). Consider £ = 1.
The primary waves - outgoing waves which penetrate the potential barrier - are
dominant near the first ray. By ignoring the potential tail we can calculate

a first apprbximation to ¥:

‘(1; = g'(u) + gu)/r* . | (A-2)

Using this we may calculate 5Y y in the manner of {45)., We find pY v e/vs,
’ ’
but this is just the order of ¥ v in the wavefront if ¥ is static on the first
. i
ray. Clearly scattering of the wavefront cannot be ignored in the wavefront.

To investigate the wavefront more carefully, we expand ¥ (for genmeral 1)

in a series that includes backscatted waves:
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l o0
v =2 o aP (P) ) o T pP(pe) G-V iy (A-3)
p0 ! p=0 *

In this serie the functions Bs(r*) are not yet specified. The negative-

order derivatives of g{u) are to be interpreted as integrals:
u u
s - [ au) aw 802w - | sV () aw (A-4)

and so forth. The constants of integratfon in (A-4) depend on our choice for
Y on the first ray. For example, if we want ¥ = O prior to the first ray,

we must choose the lower limits of the integrals to be at u' = 0 and we must
choose g(0) = O.

By putting (A-3) into the wave equation ¥ = - L F Y with F given by
}

uv
(A-1) we get

B'g =-1e¢ A(l)/r*3 (a-5) .
and the recursion relation
¢ Ap+1
2B () = pP L L B‘l’{‘(’ +1) v (A-6)
r*P o* *

This leads to the Bf terms having the behavior, at large r*

Bf ~€ f*-(p+2) (A-7)

From this we see that we can choose the constants of integration in (A-4)

to make the coefficients of r* " in (A-3) whatever we wish for p> £ + 1.

On the other hand, the coefficient of the r*'(l+1)

hence by the coefficient of the r*'l term. The ratio of these two terms is

term 18 fixed by g(0) and
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always (for any !) that of the static solution. We see therefore that we can
represent a static solution on the first ray by (A-3) but a ¥(r*) with a
different ratio of coefficients of the (dominant) r*-‘ term requires the
inclusion of ingoing waves at the first ray. Notice that { = O is an excep-
tion. In the monopole case the first perturbation term goes as e/r*z, 80
ingoing radiation is necessary to make ¥ static on the first ray.

It should be noted at this point that if there were no tail of the

potential we could make Y vanish by specifying g(u) = 0 for u 2z u But

£
(A-3) and (A-4) show that we cannot make Y vanish by "turning-off the source";
the backscattered waves persist. This is important because Newman and Penrose,39
using thefir exactly conserved quantities, show that a static multipole field
cannot éhange to a static spherical field in a finite time (as measured at
-spatial infinity). We therefore should expect to see such unavoidable back~
scattered waves.
In general we do not expect to see g(u) go strictly to zero at finite

u, but we do know that the primary waves are exponentially damped, and that
g(u) and 1s (positive-order) derivatives must fall off as exp}-u/LM}, becoming

negligible for u >> M, We are left then with only the negative-order deriva-

tives in the expansion (A-3), so that the dominant term, at large r, is

3(e9) €D () ~ e/ faw) au (a-8)
We conclude: after the passage of the wave front the input to region VI
goes as v'(l+2) aside from the exponentially damped tails of the outgoing

radiation, This input and the other negative derivative terms in (A-3),
depending as they do on the form of g(u) and on ¢, can be thought of as thé

ingoing backscatter of the primary waves.hl If we do this calculation for the

real potential in place of (A-1) we find that at u >> M and at large r the
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form of Y is ln(y/ZM)/vl+?, as we claimed in (59).

In the calculations of (59) to (74) we found that in the asymptotic
(t > r*) region Y falls off as iIn t/t21+3. This result depends on a delicate
cancelling of in- and outgoing waves and we might worry that the potential
tail destroys this balance. The following calculation is a justification for
ignoring the potentfal tail in the evolution of Y in the asymptotic region.
In the interest of brevity, most of the details are omitted but the basic
idea does emerge that the in- and outgoing waves still cancel. [Another
approach to this calculation, using Laplace transforms, will be published
elsewhere by K.S. Thorne. Yet another method has recently been devised by
Fackerell.ha]

Let us expand the solution for ¥, away from the wave front, in a power

series. The in- and outgoing waves can be writtem, for a definite l-pole,

a8 a pover -geries in r¥,

Y, = gofk(v)/r*k | (A-9a)
oo " '
L I Eogk(u)/r* . (A-9b)

Here the functions fk and g, are & prior arbitrary for each k. By putting
(A-9) into the wave equation with potential (A-1) we can derive recursion

relations, e.g.
2 l‘ + gl - 3 k k 4 ] g + € 8 A- (o]
( 1) kel (et Al) ( )] k k-1 ° (a-10)

We can solve this by iteratfon for gk(u) in terms of go(u). We find

Bﬁk)(U) =cq go(u) +c € g'o(u) +cy 52 g"o(u) + eee , (A-11)
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where the ¢ are constants which depend on £ and k in a manner we shall not
have to specify here. We can expand the ingoing waves the same way to get
an equation like (A-11), with the same coefficients except for the signs.

In the asymptotic region (t >> r*) we can also expand the various func-

tions of u and v, for example:
2
g (u) = g, (£) - reg’ (£) + 3 %" (£) - ...
V) = £,(6) + oxe' (€) + 3 o2 () + L. (A-12)

From (A-11) and (A-12) we have that the terms in (A-9b) which fall off as

*® must have the time dependence

faster in t (A-13)

and similarly for f£k+n)(t).

We have seen in Section III (see (62), (63)) that for r* >> M, in the

asywptotic zone,

¥ = ¥(t) [as/r*t + bét‘"‘l+1 P D (A-14)

The absence of a term in (A-14) which goes as o*! can be compatible with

(A-9) and (A-13) only if

terms which fall off
go(t) =t fO(t) + faster in t * (A-15)

In the same manner, the presence of the r*(l+1) term in (A-14) tell us that
the dominant time behavior of ¥ must be gél+1)(c) ~ fél+1)(:).

According to the argument following (A-8) we should have ¥ m v-(l+2) at

small constant u, implying
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fo(v) = const. X'v-(l+2)

(a-16)
and °

(e) ~ f(“l)(:) - ~(2143)

o (A-17)

If we had used the "real"potential, rather than (A-1) , this result would be

slightly different.

¥(t) ~ ta(e/ag) BB (A-18)
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TABLE I

DETAILS OF THE LOCAL CALCULATION

Feature of the
Problem

Region
(see Fig. 1)

Equations

1. Geometry Interior Friedmann line element. See Eq. (10)
D
Exterior Schwarzschild geometry described in comoving
E, F
T coordinates. See Eq. (14)
2. Scalar Interior (1) ¢ =
charge D 3 2
density kj = - (ao/a (q» (N2 105/8) cos x cos“ 2x
(Thia choice of j gives a simple particular
solution for § in Eq. (16), at n = 0)
(11) 1 =
3 2,2 o]
k1=~ (afa () (1= x"/xg) ¥y (0,%)
Exterior j=0
E, F
3. Equations for | Exterior ( 2 )
theievolution E, F a”(n) Q,n » N (45 105/8) /a(q))cos X cos2 2x
of
- (sinaxQ,x) [o1n%y = for 1 =0
L 0 2,2, 0
. (27am) @ - 1B ¥ee,0)
+ 2(L + 1) §/siny for £ = 3
Dynamic
Exterior Equation (16), with j =
E
Static § remains static; it 1s a function of r only
Exterior
. F

and i{s given by the initial conditions in 5

of this table.
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TABLE I (continued)

Feature of the Region . Equations
Problem (see Fig. 1)

L, Junction Stellar d is continuous gnd n * V0 is continuous {i.e.
conditions surface a - 5 p R ~~H .
of the star's c Q,X/ () §,R/ (3r/3R) [Here n is a unit nor
surface mal to the world line of the stellar surface.]

S. Initial Initial The initial field is static outside the star
conditions hypersurface -

(exterior) (9 = 0); hence Q 1s given by
A 't
(1) t=0
=3, tn(1 - 2MR) ;B =1
(1) t = 3
é = B3 stat

where éatat is a solution to Eq. (3) and

L
éstat + 1/R” at large R.
B, = - .OlLk
Initial § is a solution to the equations in 3 of this
hypersurface _

(interior) table at 1 = O. We choose § such that § - 0
, B ' y

and = 0 f{nitially.

§:7m y
Then
(1) £ =0 _

where §p =N3/8 cos % ¢~ 11 + sin® 2x>
‘ Ao=1-ln2
(11) ¢

Q = A3§h + @p

where QP is the particuiar solution of

3
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TABLE I (continued)

Feature of the
Problem

Region
(see Fig. 1)

Equations

(sin” x§ ,) _/sin® x - 12 §/stn® ¥
XL X -
= Yg(@,W) (1~ /xg) which goes as

(12/6) Yg near ¥ = O; Qhris the homo-

0

geneous solution that goes as 13 Y3

near x = O.

A:’) ~ 390

6. Results for
§ field

See Fig. 2 for numerical results.

7. Numerical
constants

X. is chosen as n/4 for convenience. The

0
star collapses from initial radius r = LM,
8o that a, = W2 M.

The surface passes through its event horizon

at = n/2, t/2M=N2 (1 + n/2) =~ 3.6k,
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TABLE II

REGIONS OF THE RADIATION PROBLEM

Region Description
(see Fig. U4)

I The initial Cauchy hypersurface t = O, outside the star. On
this hypersurface é is chosen to be static. For { = 0,
® = const. X In(l - oM/R). For £ # O, O is a solution to Eq. (3).

II The first ray, u = O. Thisvfirst outgoing scalar ray carries

information to the exterior that the star has begun to collapse.

III The static region. This region has not yet received information
that the star has begun to collapse. See region F of Fig. 1.

v The wavefront. Most of the high-frequency radiation from the
stellar source moves on outgoing null lines, is affected only
slightly by the potential, and i1s contained in a wavefront of

extent Au ~ M.

v The potential barrier. This region near r* = O is the domain in
which Fl(r*) is large. (See Fig. 3.)

Vi The distant wave zone. This is the spacetime region far from the
star and subsequent to the first ray. It is where scalar (and

other) radiation would be detected by antennae.

VIl The world line of the surface of the star. The data for Q, and its
derivative normal to the surface, on VII are a result of the compu-
tations of Section IIB. (See also region C of Fig. 1)

VIII The "stellar surface" v = Vo This is a null line approximating
the world line of the stellar surface. (see Eq. (30»

IX ‘The near wave region. The vacuum exterior near the stellar sur-

face., The field here obeys cht - ?,r*r* ~ O,

X The stellar interior. The dynamics of this region affects thestar's

exterfor only via the data it creates on the stellar surface VII.
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Throughout Section III we have assumed Fl = 0 in region IX. Thus we



39.

Lo.

hl.

ha'

- 60 -

have ignored the ¥(t) exp(r*/2M) term in (63b). This term makes a negli-
gible difference for ¥, q, or K in regiotn IX, but it gives the dominant
asymptotic time behavior for Y,r*’ q,r*, and E,r*'

E.T. Newman and R. Penrose, Proc. Roy. Soc. A, 305, 175 (1968).

The necessity of backscatter is discussed by Kundt and gewman (see footnote
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because they depend on data spread out over a section of the pastvlight

cone. OQutgoing waves depend only on data at a fixed u.

E.D. Fackerell, Astrophys. J., to be published.
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FIGURE CAPTIONS

Fig. 1. The "local problem" pictured in the comoving coordinates 7, R, and X.
At T =7, =2 N2 (1 + n/2)M the stellar surface passes through the
event horizon. The details of the local calculation are explained

in Table I.

Fig. 2. The results of computer integrations for the evolution of § for
f =0Q0and L = 3. In the { = 3 case the great variation of § from
n = 0 to n = %/2 necessitates plotting the logarithm of §. In both
the £ = O and £ = 3 plots, the scale of coordinates has been chosen
to make the curves for n = O appear smooth. For later times the
radial derivatives appear discontinuous at the stellar surface.
This 18 wholly due to the change in time of the radial coordinates.,
The derivative of § with respect to proper radial distance is always
continuous. For curves a and ¢: =0, v = 0, and the values of §
are the initial, static values. For curve b: y = 3%/8, 1 = 2,973,
and § is static for R > k.34k, For curve d: n = /b, v = 2,111, and
¢ is static for R > 3.635. For curves c and e: n = /2, T = 3.636,
and Q is static for R > 4,900. For a description of initial data

and further details, see Table I and the text.

Fig. 3. The appearance of the peak of F:c(r*) for f=0and £ = 1. Here
the constant in Eq. (4) has been chosen s0 that r* = r = UM + 2M X
to{r/2M « 1), and r* = O at r = 4M, which {s the radius(from which
the star ufarts to collapse in the calculations of Section III.
Note that F:c is sharply peaked in the neighborhood of r* = 0. 1In
fact, the peak occurs at r = 8M/3 for £ =0and for £ £ O at r

peak
- aa{s(x. - 1) +\]9(1. -1)° 4 321.}/% where L = £(f + 1), For I = 1,




Fig. b.

Fig. 5.

Figo 6.
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rpeak = 2.88M; for L =2, cak = 2,95M; for f = 3, rpeak = 2.97M;

for L + o, T + 3M.

peak

The '"radiation problem" pictured in r,t Or u,v coordinates. For
explanations and descriptions of features of this diagram, see

Table II.

The results of computer integrations of the asymptotic fall off of

¥ for a coordinate stationary observer in the case ! = 0. The slopes
of.the log ¥ vs. log t curves all approach a slope of - 2 at large

t, verifying the :-2 fall off derived in the text. The computations
for these curves use Rsurf.(t = 0) = UM, and ¥ = (r/2M) tn(l - 2M/r)
on the first ray. The "surface" data at v = O were taken to be
a+bexp - u/iM, with a and b chosen so that ¥ on the "surface"

and on the first ray matches smoothly at t = O. [As in Fig. 3, r*

is defined as zero at r = UM.] The dashed lines in the circled

insert depict the points for which ¥ is plotted in the three curves.

The results of computer integrations for the behavior of ¥ in region

VI of Fig. 4, along a line of constant v. The "corrected" value of

Y is defined: YCOR(u) = ¥(u) + (1 - ¥(u = 0)] = ¥(u) + 2M/v. Accord-
ing to the analysis in the text ¥oop Should be approximately 2M/u

except very near the wavefront or the potential barrier. The computer

results verify this. The dashed line in the circled f{nsert depicts

the points for which values of YCOR are plotted here. Note that
YCOR Z 2M/u even for r* = 0. For further discussion, see the text

(especially Eq. (h9)).
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The justification for localizing the curvature potential in the
monopole case. The computer integrations show that ¥ = Y,v on the
first ray falls off as v-a. Also plotted here is §¥: the change in
¥, on a line of constant v, between the first ray and r* = 20M
{i.e. the change in 7 along one of the dotted lines in the circled
insert]; The plot of §% as a function of v [i.e. as a function of
which dotted line in the insert is used] shows that &% 1/v2.

Though 87 falls off at the same rate as ¥, it is only 10% as large.

For further discussion, see the text (especially Eq. (51)).
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I. INTRODUCTION AND SUMMARY

In the preceding paper (Paper I) an'analysis is provided of the evolu-
tion of scalar and gravitational perturbation fields, during relativistic
gravitational collapse. It is concluded that radiatable multipoles of these
fields must vanish at large times. Recent workl’2 has indicated that this
is also true for electromagnetic and neutrino multipoles. 1In thé present
paper it is shown that this propert} of radiatable multipoles is a rather
general feature of the Schwarzschild geometry. In particular, the mathe-
matical analysis in Paper I can be used for all integer-spin zero-rest-mass
perturbation fields, and the physical picture offered in Paper I is quite
generally applicable,

The principles of the construction of general-spin field theories in
flat spacetime have long been known.s’h They follow from the very general
requirement that physicai fields should generate irreducible representations
of the Lorentz group. Such representations are handled very conveniently
in the spinor formalism, in which it is straightforward to write down the
field theory for any integer or half-integer spin. The mysteries of spinors
may be circumvented by the use of the Newman-Pentoses (NP) null-tetrad
formalism, which is equivalent in most ways to the spinor (or dyad) formal-
ism for integer-spin fields. Except in Sec. IiIA, where the spinor formalism
is necessary, the NP formalism and notation will be used throughout this
paper. (The reader can avoid spinors in this paper by accepting Eqs. (46)
and (hi), and 1énoring their derivations.)

It 18 true that the NP formalism cannot handle odd half-integer spin
fields, but in any case such fields require quantum mechanical conﬁiderafions
and a more delicate analysis. Hartle2 has used such delicacy in analyzing

the neutrino field outside Schwarzschild and Kerr black holes. He has shown
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that no static neutrino field can exist outside black holes, so that neu-
trino fields must also be radiated away during collapse.

The usual way of extending flat-spacetime field theories to curved
spacetime i{s by "minimal coupling"”. (Replace partial derivatives every-
where by covariant derivatives). This extension gives the correct equations
for electromagnetic fields and for neutrino fields -- i.e., the cases
spin = 1 and % -- but for higher spin fields the resultant equations are’
inconsistent, (A tantalizing point: Does nature, like physicists, have
difficulty with higher spin massless fields?)

Consistent field equations for higher spin fields are not known, Lack-
ing them we will use the equations that result from minimal coupling to
analyze higher spin fields. Physical considerations presented later indi-
cate, however, that modifying the minimal coupling scheme.to achieve self-
consistency should not change those features of the field equations which
are crucial to our analysis,

We shall also assume that the fields are very weak, and our analysis
shall be confined to first-order perturbations. The stress-energy of these
perturbation fields is second order in the size of the field, so we shall
ignore the influence of the fields on the curvature of spacetime.

It will be seen that all massless, integer-spin field theories have a
remafkably similar appearance in the NP formalism, and that, for a particular
multipole the NP "spin-weighted spherical harmonic;" give rise to a separa-
tion of angular variables in a mﬁnner that is considerably more convenient
than th#t of scalar, vector, and tensor spherical harmonics.

From these simple, similar-appearing sets of field equat{onsi it will
be shown that: (i) All radiatable multipoles (! > spin of field) give rise

to a "static paradox"; there is no static solution well behaved at the event
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horizon and at spatial infinity. (ii) For all radiatable multipoles the
pafadox is resolved by these multipoles mecessarily disappearing at large
time. By invoking the results of Paper I we are led to the conclusion that

(111) during nearly spherical gravitational collapse, anything that can be

radiated, will be radiated, and in fact all measurable manifestations of

21+3

these multipoles will die out as Int/t . (Bernard F. Schutz’® has

emphasized the truth of the converse: anything that is radiated, can be

radiated.)

As explained in Paper I, the problem of gravitational perturbations is
more subtle than that of nongravitational ones. In the NP formalism, the
Bianchi identities have an appearance very similar to the field equations
for a nongravitational, spin-2, zero-mass field. This may be exploited to
develop an approach to gravitational perturbations quite different from the
usual method of Regge and Wheeler.7 Such an approach, especially in the
odd-parity case, may well be more useful for certain problems than other
perturbation techniques.

This paper is organized as follows. Section II is a brief outline of
some mathematical concepts involving spinors and their connection to the NP
formalism. This section is intended to define our notation and provide
references, rather than to develop the mathematics,

.Section III deals with nongravitational integer-spin perturbations.
Field equations are derived (assuming minimal coupling) and are specialized
to the ‘Schwarzschild geometry. The NP formalism is shown to be very conven-
ient fof discussing parity, separating angular variables, and analyzing
event-horizon behavior. The evolution of these fields is then analyzed

using the results of Paper i.. (In this section and in Sec, IV familiarity

with Paper I is essential.)
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In Sec. IV the NP formalism for gravitational perturbations is used to
supply some missing details of Paper I. 'Most of the tedious mathematical

particulars of Sec, IV have been relegated to Appendices B through F,.

II. MATHEMATICAL PRELIMINARIES
A. Dyad and Null Tetrad Formalisms

1. The Newman-Penrose Formalisms

The null tetrad. Newman and Penrose define a null tetrad everywhere

in spacetime, with legs [, n, m, m*. Here [ and n are real vectors, m
is cowplex,and m* is its complex conjugate. They are required to satisfy

fno= 1

(1)
oot = -1
and to have all other inner products vanish. Tensors are projected on the
tetrad legs, and the resulting scalars are used in place of tensor components.

Spin coefficients. The properties of the affine connection are mani-

fested not in Christoffel symbols but rather in the (projected) gradients-

of the tetrad, e.g., lp_vl“nv. In the NP formalism these quantities, which
s

are not all independent, are combined into twelve complex, independent

linear combinations called the aspin coefficients:

oV Bo#V

a e %(lp;vn m mp;¢m* m* ) (2a)
hv o v

B %(lu;vn m mu;vg* m ) (?b)
BV WV

7 = %(lu;vn A ) (2¢)
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1, H V- v
€ = Z“p;v“ 1 mu;vm*“l ) (2d)
K = lu;vmulv (2e)
X = - nu;vm*“lv (2f)
p = 2, o'm’ (28)
Juv
AN w -n ;vm*“m*"‘ (2n)
0 w l“;vmumv (21)
v .v-‘nu;vm*unv (23)
boe - m¥a’ (2x)
T lu;vmunv (21)

D w wt“ (3a)
A = wn". (3b)
3 = | wn?“ (3¢)
t* = ;um»“ (3d)

The Weyl tensor. The ten independent components of the Weyl tensor

caﬁﬁ are _represented, in the NF formalism by the five complex quantities,

Y, » - caﬁ78 by 7n® _(l“)

Y, ® - caﬁr& %Py 7® (kb)
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(] ) a 5
Yo = - 3 caﬁ76 (1t 2P 1 70d . ] nam7m* )

a B 7 x8
Y-l - - 00576 { a"nm

Yo= - caﬁys 2P m*®

(be)

(4d)

(le)

It is very important to note that the subscript conventions of Eqs. (&)

differ (for reasons which will become clear) from those of other authors.

This Paper Elsewhere
Yo Y,
Y1 Y3
Yo Y2
Ya ¥y
Y2 Y0

2. Sginotse

A l-spinor ;A is a vector in a two dimensional (A = 0, 1) complex

vector space, The spinor transformations are taken to be unimodular 2 x 2

matrices, in order to take advantage of the homomorphism between SL(2,C)

and the Lorentz group., Thus a correspondence can be set up between a

Lorentz transformation £, and an element L of SL(2,C). Four different types

of l-spinors are distinguished by position of the index, and whether it is

dotted. If L corresponds to ¢ then: (i) gA is transformed by L.

1 (111) gA is transformed by L¥ the complex

is transformed by L~
of L. (iv) ¢, 1s transformed by (L'l)*. Higher rank spinors are

ties -~ e.g., ;ABé -- that transform the same way as outer products

(11) 8,
conjugate
inde#ed quant{i-

of l-spinors.
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The antisymmetric spinors eAB and €,p 2T€ used to raise and lower indices

A ke = thenp )

¢

and to form a scalar product eABgAgn.

A set of four independent Hermitean matrices such as

a‘..L“’) ax.,L<°1) .ay.=_1_(o-1> Y 1.0),(6)
X ra\o1) X s\ro) ¥ s\ o) X l\o a1

can be used to set up an equivalence between tensors and spinors:

™Y . a:X U;& oo gAXBE . (7

An affine connection can be specified for spinér fields such that

ABju ~ aka =0 (8a)
and ’
(6, )7 = €07, - (80)

In this way the operations of raising and lowering indices, complex conjuga-

tion, and taking spinor equivalent of tensors [Eq. (7)] commute with co-

variant differentiation.

3. The Dyad Formalism9

The dyad., In analogy to defining a tetrad as a reference basis for
tensofq one defines a dyad as a reference basis for spinors: two fields

of l-spinors @ and ( with the "normalization"

A A '
o, Lt =-0"t, = 1 (9)
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The symbol ;‘ is used to denote either dyad leg:

;o = @0 ;1 = ‘
- - (10)
* * .
ti =0  ti=t"-
Spinors are projected onto the dyad to form dyad components, which are
scalars with respect to transformations in spinor space:
c ,D
Tab = Tcngigg. . (11)

(Note: underlined indices a, b, ... always denote dyad indices.)
The affinity. The affine connection in the dyad formalism, is stated
in terms of the dyad-projected covariant derivatives of the dyad legs. These

are given the symbols

x .
Tabed = fax;edfn (12a)
where
A B
;ed ® u 0:1‘3 Cecla - (12b)

These I''s can be shown to be symmetric on the first two indices a, b.

The dyad-NP tetrad correaspondenc.e.5 As NP have shown, a close relation-

ship exists between the dyad and null tetrad formalisms, In particular, if

we choose the dyad at every point in space in some way, then the corre-

spondence

_u.Aﬂ'} uau.A*l.l
Tap® 0 n=a bt
. (13)

A *
ﬂu-duAiO lB)

M

leads to a well-defined null tetrad satisfying Eq. (1). Conversely
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specifying the null tetrad is equivalent to specifying a dyad (aside from
the possibility of changing the sign of @ and ().

With the correspondence (13) the spin coefficients (2) are related to
the gradients of the dyad field (12) in a very simple way. (See Table I.)

The derivative operators of Eq. (3) can also be simply expressed now in the

dyad language:

8" =

. (14)

o
]
-e
{o
jo-
[ ~4
'
-e
|
e
o
]
-e
|10
=
-e
fom
IO

4, Tetrad and Dyad Rotations

At a point there are six degrees of freedom in the way the null tetrad
may be rotated while still satisfying the relations (1). Of greatest inter-

est for the present work are the two degrees of freedom in the transforma-

tions
i Vi (15a)
= A loM (15b)
#* - el (15¢)

Here A\ and ¢ must be real functions if Eq, (1) is to remain true. If a NP

scalar transforms under Eqs. (15) as

T oa ACelSor
- then T is said to have conformal weight C and spin weight S. For instance

(o

the NP scalar TQBr n mau?' has conformal weight -1 and spin weight +2;

(Notice that the subscript p on the Weyl tensor component Y, of Eq. (4)
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indicates both its spin weight and its conformal weight.)
Conformal and spin rotations of the’null tetrad induce the following

transformation on the equivalent dyad

;. = A% eiq)/2 g

(16)
i - st g,
From Eq. (11) it follows that for a dyad scalar ToBE «oo
2 x Conformal Weight = (No. of O s) + (No. of é 8) - (No. of 1 s)
{(17a)
- (No. of i s)
2 x Spin Weight = (No. of O 8) + (No. of _i_ 8) - No. of 1 s) (17)
17b

- (No. of_(:)_s) .

S. Newman-Penrose Special Syt’.t:em10

For many purposes it fs useful to choose the null tetrad and thg co-
ordinates of the spacetime with certain special geometrically defined
restrictions. For spherical geometry this means (i) using the coordinates
u and r, retarded time and Schwarzschild radial coordinate, (i1) ‘choosing
'v - u,; so that 5 is pointing in the outgoing null direction and is parallel
transéotted along itself, and (iii) choosing n and m to be parallel transported

in the £ direction. (For details and a general definition of the special

system, see NP.) The NP special system has the following simplification's

K=g=eg=0 o = p* t=dt+p, (18)
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and, with xo = u and x1 =T,

g =1 g =g =g =0 (19)
1f the components of m and n are expressed as

o = uﬁa“ + et si“ (1 =2,3) (20a)

o* = 81" + Ubay + xibiu ’ (20b)

then from Eq. (1) the metric must be

00 12

3 =0 g =1
322 = 2 (U - w*) (21a)
gt axt - et M) (21b)
gl - o (elerd 4 eiydy, (21¢)

With Eqs. (20) and (21) one can derive differential relations between the

metric functions U, w, gi, x! and the spin coefficients [Eqs. (6.10) of NPJ.

6. Gravitational Equations

- The physiéal manifestations of spacetime curvature involve the Riemann
tensor. (In a vacuum the We&l tensor is equal to the Riemann teﬂﬁor.) In
the NP formalism the Bianchi identities are first-order equations far the
null-tetrad projections of the Weyl tensor. These equations are similar in
appearance to tﬁe field equations for a spin-e.nongravitational field. 1In

the NP specfal system the equations are

DY, - kpy, = (8" -La)y, (22a)
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DYy -3pY, = (8% - 20)Y; - MY, (22b)
DY ;-2pY; = B;Yo - Y, ' (22¢)
DYp - pY.p = (8% + 20y ; - 3Ny, (22d)
oY, + u - h7]y2 = (8 = bt - ZB)Yl + SoYo (22e)
AY) +2[u - 7Yy "= BY, - 3Tyy + W + 207, (22f)
OYy + 3, = (5 + 28~ 20)Y ) +2w, N of_, (22g)
AY +[2y + by, = (8 - 1+ bB)Y 43w, . (22h)

Other differential relations relating the y's to derivatives of the spin
coefficients can be derived [Eqs. (6.11) of NP]., These are the NP version
of the formula for the Weyl tensor in terms of derivatives of the Christoffel

symbols.

B. Spherical Geometry

1. Null Tetrad

For the Schéarzschild_geometry we shall use Schwarzschild coordinates

t, r, 0, p, and also u and v, retarded and advanced time,

u=t-rx¥* (23a)
vat+ ¥, (23b)
vhere-

™ =+ 2Mn(c/2M - 1), (2k)
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The t, r, 0, ¢ components of the NP special tetrad are

o= [(1"2“/1')-1: 1, 0, 0] (25a)
& - 31, - (1-29r), 0,0] (2sb)

o = 1//2 (0, 0, 1/r, 1/(rsine)]. (25¢)
For this tetrad field the nonvanishing spin coefficients are .

p = -1/t B = -a=coto/2/2r

” (26)
7 = Mor p = -(l-2¢r)/2r,
and the differential operators of Eq. (3) are
D = 2(1-2:4/:)'1 3, (27a)
A = au ‘ (27b)
8 = (V2 1.-)‘1 [ + (1/sin0) acp] . (27¢)
The Weyl tensor has only one nonvanishing NP component
Y. = -M/rs. (28)
o .
. With Eq. (25) the functions defined in Eq. (20) can be evaluated as
w=xtao
U=-3(1-24/r) (29)

e = i/er e? = 1//2rsin0.
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2. Spin-Weighted Functions11

In calculations on a spherical backétound it i{s customary to expand
scalars in spherical harmonics to achieve a separation into nonmixing multi-
poles. This does not work for NP scalars. The underlying reason is that
the m and m* vectors destroy the spherical symmeﬁry under coordinate rota-
tion. The "background” in the NP formalism is, however, spherically
symmetric under a coordinate rotation coupled to a spin weight transforma-
tion [Eq. (15)]. The way a NP scalar transforms under a coordinate rota-
tion clearly depends on its spin weight.

A very elegant technique for separating angular variables in NP equa-
tions has been given by Newman and Penrose and others.11 One expands a
spin-weight-S scalar in spin-weight-S spherical harmonics. The spin-weight-
zero spherical harmonics are just the ordinary Y[m(0,¢), and spherical
harmonics with spin weight +1 and -1, are proportional to rmuauY‘m(O,w)
and rm*ubuYﬂn(O,¢) respectively. Spherical harmonics of any spin weight
may be constructed with the spin-weighted-raising operator & ("edth") and

the lowering operator 8. Acting on a scalar of spin weight § they are

T w ../2‘1:(m”a’1 - Scot9//2r) = - [ao - Scot© + (1/8in @) a‘p] (30a)

S w -far(mf%u + Scot9//2r) = - [3, + Scor@ - (1/81n9) 30)] (30b)
The normalization for a spin-weight-S spherical harmonic 1is

[(t-s).'/(us).']% a’sv’m(o,q,) . 0gSst
s a®0) = ¢ | (31)
‘ () (=):72 (0 B5¢! (0,9)  -tssc0. -
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Notice that, in terms of & and B for our tetrad (20),

T = -J/2r(8-258) (32a)

F = -/2r(s*+258). (32b)

3. Despun Quantities

If ¢ is a quantity of spin-weight S < Q0 then the operator

(- 2'%'6‘)'5 = r‘s(a+2a)(s +4p) e (B-288) , 5<0 (33)

raises its spin weight to zero, If S > O the reduction to spin-weight zero

can be accomplished by
(- 235)5 o 5 (o*e2p)(0* +hp) +or (B*4288), S>0 (%)

In the remainder of this paper, the spin-weight-zero quantities that result
from the application of Eq. (33) or Eq. (34) will be called "despun" and
denoted by a caret. Thus the despun form of the spin-weighted-S quantity ¢
is

(- 2'%'3')'30 if S <0

¢ =~ < ' (35)

-2¥5)8¢ 1 ss>o
(Note that § = ¢, if ¢ is spin-weight-zero.) When equations for a linear
problem on a spherical background are written in despun form, all perturba-
tion fields can be expanded in the OYlm'a, the ordinary spherical harmonics.
There 18 no loss of information involved in "despinning" a quantity. If'o

is of spin-weight S, it can be reconstructed from its despun form according



- 86 -

to

[(2-8):/(L+8)1] (2"éL $)%6  uf $>0
¢ = _ (36)
r(es) Y/ (1-5)!] (22 5)56 1 s<o.
Equation (36) follows from Eq. (31) and from the useful relationships,

FF g1, = -(1-5)(1s841) ¥t (37a)

'a‘g‘svm = -(1+8)(2-841) ¥’ (37b)

ITI. NONGRAVITATIONAL, INTEGER-SPIN ZERO-REST-MASS FIELDS

A. General Field Equations in the Schwarzschild Geometry

1. Field Equations in Flat Spacetime

A physical field should generate an irreducible representation of its
symmetry group for reasons that are familiar from quantum mechanics. Our

starting point in studying general-spin1

2 figlds is the set of representa-
tions of SL(2,C), which is the universal covering group of the proper (time-
direction preserving, orientation preserving) Lorentz group {;+. It 18 well
known that a spin.s representation of £4+ is generated by a totally symmetric
-spinor ®pBe -k with 28 indices. A spin s fiéld is thus described by the

28 + 1 independent complex components of ®pBe . K

Several different possible sets of equations for these ¢'s are given in
the literature® for the case in which ¢ describes a zero-rest-mass field, but
Penroseh has shown that one of these sets is to be érefefred:

A.
OpB...k, 2 = © (38)
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or equivalently

OAB..-k,¥z = ®vB...K,AZ ° (39)

(Recall that Y= azz Ou.) Penrose has shown that the alternate field
equations are "potential” representations in that they admit solutions of
lower spin corresponding to gauge arbitrariness, ﬁquation (39) on the other
hand, is devoid of such a gauge group; hence the quantities ®4B...K in Eq.
(39) should represent the actual physical manifestations of the field. This

distinction will be important,

2. Field Equations in Curved Spacetime

Minimal coupling., Equations (39) describe a field in flat spacetime

- with inertial coordinates. We will now argue that Eq. (39) must also be
true locally -- that is, in local inertial coordinates -- in curved space-
time. Suppose there were extra terms in Eq. (39) due to the effects of
spacetime curvature. Since (39) consists of first-order differential -
equations, the curvature would be first-order in the size of our frame so
that curvature.effects would not decrease with the size of our frame., We
have argued that QAB.--K represents a measurable physical quantity (versus a
potential) so a first-order curvature effect ma} be interpreted as a viola-
tion.of the strong equivalence principle. This matter will be discussed
further; for now we will take (39) to be locally'correct.

1f (39) 1s true locally in local Minkowski coordinates, then co-

variance demands that the field equations are

OAB-onK;Yi = OYB"'K;Ai (hO)
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in general coordinates.

The extension of the flat spacetime equations (39)
to the curved spacetime form (40) is known as minimal coupling.

The field equations in dyad language.

Equation (40) can be '"dyadified"

by the method of Eq. (11). The left side of (40) then becomes
Y » A B K
OAB---K;YZ 1S ZC ;EQ b °°* ¢ k

|N-N'

= (OAB-"K ;A‘ b QKE);XE - QAB‘..K (;Ag eee ;KE);X?_ (hl)

A
"Oabeergyi * Ohooik fany

If the right side of Eq. (40) is similarly "dyadified" and relations like

A A e .
o beeok gaA;yz = ¢ EO_R..._]E ;_EA:.Y__E,

(2)
T 0k Taey:
are used, then Eq. (40) becomes
abeceisyz * ‘35"52---}& Taeyz ***°* ég&k'“ﬁ Tkey:
(k3)
" Oybeeckjaz *E

e ef
"0 bk Tyeaz U0

This equation generates the field

equations for the 2s +1 field variables
Og peee - I Eqe (43) z can be é or _i_ but a,y must be 0,1, or equivalently
1,0, for a nonvacuous equation. Since there are 2s inequivalent ways of .
picking b.+.k, Eq. (43) generates Ls equations.

Because of the total symmefry on indices, a ¢ field component for a
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spin s field is completely characterized by N, the number of O's, or M,
the number of 1's, or p = 3(N-M). According to Eq. (17), p then indicates
the spin weight and the conformal weight of the field component; this will

be exploited by using p as the index, e.g., for a spin-3 field

®% 10000 = %2° (b4)

The field equations with spin coefficients. 1In each side of Eq. (U43)

the I''s can have only four different forms. The left side of (43) can be

reduced to

¥p;yz* V 3“’?-1 Tooy: ~ % Plgxig
(4s)

polyz - % Pllxés

and similarly for the right side. For a given p there are only two differ-
ent nonvacuous equations in Eq. (43) according to whether z is é or i. These
equations can be written in terms of the spin coefficients (12) and the

differential operators (14). For example, setting z = é leads to the 2s

equations: .

.Dop,l +‘ (s+p-1) glt@p_a - eop_ls + (s-p+1) 3609-1 - ﬂopf
- | (46)
- 5*°p + (s+p) ;p L mpi + (8-p) ;mp - %

for -s+1<px<s. Here N and M have been eliminated in favor of p = % (N-M)

and s = %(N +M. Setting é = _i_ leads to the other 2s equations
80,y + (8+p+1) ;rop - 7op+1§ + (s-p-1) %7°p+1 - va+2£

: ' (47)
=00, (s+p) gaop__l - ﬂopz + (e-p) gﬁop - "°p+1§ )
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for -s < p<s-1.

All specifically dyadic notation has’ been eliminated; from this point
on we can forget that the derivation of Eqs. (46) and (47) ever involved
spinors. We can view the op now not as dyadic projections of spinor fields,
but as NP tetrad projections of the tensor which‘describes our spin s
ﬁeld.l3 In the remainder of this paper this viewpoint and the language

of null tetrads will be used almost exclusively.

3. Field Equations in the Schwarzschild Geometry

In our study of the dynamic evolution of spin-s fields outside a col-
lapsing star, we shall treat the fields as first-order perturbations --
that is, we can ignore their effect (second-order) on the spacetime geo-
metry, The geometry then remains the Schwarzschild geometry [See Eqs. (26),
(27)] and (k&) and (47) become

D [**P QP_I] = (5+2ppB) o 2P ’ (kBa)

s l(L-2e)! 2P o 11 = (5-288) o, £*P (1-29/m)Ph.  (heb)

A great simplification now results 1f the equations (48) are "despun"
according to the prescription of Sec. IIB. [See Eqs. (35) and (37).]

In despun form the field equations for the spin-s field are the bs

equations:

rp+s-1 $ for
-l 8 A P p- 1 2 °
2( 1- M/x) vav(rp* °p-1) - -8+ fc:ps s
- 3(14p) (£-ps1)e?**1 § Y '

. P p-1<O

(49a)
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(1- 2M/r)'(p+1)au[r°-p( 1- 2M/r)p+.1 $p+1]

(kob)
ts-(p+1)6 for
P p<O
= for
- 1 ~ £ - s~1
_%rs (P+ )(I‘P)(l"‘P"’l)Qp p*:;o 8<ps ,

where Eq. (27) has been used.

B. Properties of the ¢ Fields in the Schwarzschild Geometry

1. Parity and Reality

A multipole of a physical quantity is said to be of even or odd parity
according to the way the quantity changes under the transformation
(6,9) »+ (n~0,-¢). The quantity is even parity if it changes by a factor
(-1)‘, it is odd parity if the factor is (-1)l+1.. Consider the field com-

ponent oo. For a multipole, < Ylm(g,¢) and our first impulse is to say %

%
has even parity, But the tetrad legs have transformation properties under

a parity inversion, so the physical quantities represented by oo need not be

of purely even parity.

~Under a parity inversion 2 and n are unchanged according to Eq. (25)
but m + m*. Since the complex nature of o comes entirely from m and m*, a
parity inversion of 0o amounts to (1) a parity inversion of the physical
field Ehat g represents, and (ii) complex conjugation of\po. This leads,

to a very interesting observation: the real part of ¢. represents an even-

parity physical quantity, and its imaginary part represents an odd-parit}

physical quantity,
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We could make similar arguments for the higher spin-weight quantities
but it is simpler to use despun quantitiés. The same argument we used for
oo applies to any despun field $p: The complex nature of § comes only from
m and m*, and 8p'~ Ylm(O,Q). It follows that the even-real and odd-imaginary
correlacion‘holds for all GP.

The usefulness of the parity categorization follows from the well-known
nonmixing property of definite parity modes. In the language of the NP
formalism this has a very simple expression: In the field equations (49},
the coefficients -- which come from the spin coefficients -- are real, so
the real and imaginary parts of the ¢'s do not mix.

Customarily, and in particular in the Regge-yheeler7 formalism, one uses
a necessarily complex mode, e.g., f(r,t) Y‘m(o,w), to represent a multipole
of a real physical quantity. 1In the arguments of Appendix C we shall con-

sider auéh & mode to be a real quantity; this leads to no problems in

practice,

2. Conformal Weight and Behavior et the Event Horizon

The usual approach to avoiding the odious features of the Sc;varzschild
coordinates near r = 2M is to transform to Kruskal coordinates or one of the
freely-falling coordinate systems now on the market, and to suffer the con-
sequences. The NP formalism provides a simplér means through the concept of

conformal weight,

The canonical local observer. Consider a radially moving observer who

has a local (orthonormal -~ not NP) tetrad with time and radial legs e, and

[ He could construct the two real null legs of.a local NP tetrad as

L= 2'* (ST + gk) N = 2'% (gT - SB)° (s0)
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Of course he is justified in constructing them as any finite conformal rota-

tion of the above two: *

L+AL N+A" N

~ ~ ~ ~

With this understanding let us accept Eq. (50) and its {nverse
e = 272 (Lew) e = 2% (L-), (51)

as defining a canonical radially moving observer ® associated with any NP
null tetrad, and conversely. If there is a-second observer &' moving radially
outward with proper velocity B as measured by ®, then the orthonormal legs
(S'T, g'R) are related to (ST’ ga) by a Lorentz transformation., The canonic-
ally associated NP tetrads are related by a conformal rotation

L - (ii?)é L N - (il§>% N. (s2)

The relation of freely-falling and "special" tetrads, If €. and e, are
the basis vectors in the Schwarzschild coordinates then a coordinate station-

ary observer (cso) has an orthonormal tetrad with time and radial legs
-4 3
S[:] = (1-2M/r) e £(r] = (1-2M/r) e (s3)

By Eq. (50) theh,thev[t,r,o,wj contravariant components of Ecso’ ycso are

bego = 2% (1 '2“/1')'%, (1-2m1)%,0,0] (5ha)
Nego = 2 ((1-2w0)F, - (1-2ynd,0,00. (kD)

A freely-falling observer (FFO) who starts from rest at spatial infinity,
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falls in with a proper velocity B = - (EM/r)% as measured by a coordinate

stationary observer. From Eq. (52) it fdllows that
Lo = 22 {tisraynr?, (-siayei,0,0) (s5a)

Nero = 23 {[1 -f(ZM/.r)]'l, -1 +/(2M/r)],°,0} . (55b)

The special NP tetrad with f, n defined by Eq. (25) is related to the above

tetrad by

-1
4= A Lggo B =4 Nepo (s6a)

where

A=t (1+/(24/x)]/(1-2M/x) . | (56b)

If a physical quantity is nonspecial at the event horizon -- t.e.,
neither O nor oo as measured by a freely-falling observer -- then NP scalars

constructed from this physical quantity and from EFFO and §FFO will be finite

there, By the definition of conformal weight then, any of our NP scalars ¥

of conformal weight C, representing a physical quantity that is nomspecial

at_the gravitational radius will have the dominant behavior there:

v ~ (1-24/r)"C, (57)

In particular, if the integer-spin, zero-rest-mass fields of Sec. IIIA are
well behaved at the event horizon, then our description of them in terms of

the op.fields will have the apparent pathologies at r = 2NM,

0, ~ (1-2¢x)°P, ' (59)



- 95 -

C. An Illustration: Electromagnetism

l. Representation of the Field

The familiar spin-l case, electromagnetism, is a concrete illustration
for the points made {n Sects. IIIA and IIIB. The electromagnetic field

tensor Fuv has as its spinor equivalent [see Eq. (6)] the Hermitean spinor

. . B, Y,
Fpokst ® ak %8t Fuv' (s9)

A symmetric 2-spinor may be defined, containing the same information as

F ket

o ® € Py (60a)

*
FAXBY - 3 (eAB Okt * €xy °AB)' (s0b)

If a dyad basis {s defined, then the symmetric dyad components o,p 3re
the sort of objects discussed in Sec. IIIA. From Eqs, (59), (60), (11), and (13),

these dyad scalars may be expressed in terms of NP scalars,

: u v
%0 * % ™ F o (61a)
%, * & =3F (Fn-atm?) (61b)
o1 ® 0 =F, ¥, (61¢)

It is e¢asy to see from Eqs. (61) and (15a) that the subscript of the o,
does denote both conformal weight and spin weight, as claimed.
" With the use of Eqs. (25) and (62) the 0, can be expressed in terms of

the components of the E and B fields as measured in the orthonormal tetrad
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of an observer stationary in the Schwarzschild coordinates,
o, = 27¥1-2yr) {(s["] slod 1(z[¢3+n[°])} (62a)
0 = -3 {E['] + 15[']} ’ (62b)
oy = -2R-ayo {EPlale]) L olel g0} L (e
The brackets [ ] on indices denote components with respect to the orthonormal

Parle S(ey f(x) f(0)’ %ol

2. Behavior at the Event Horizon

The points established in Sec. IIIB are nicely exhibited in Eq. (62).
First consider conformal weights and transformation properties. In the trans-
formation of E and B between relatively moving frames, the components parallel
to the relative velocity are invariant. Thus EEr] and B[r] are the same for
the coordinate-stationary and radially falling observers. The field oo should
therefore be finite (and in general nonzero) at the event horizon, which is
what 1; predicted by Eq. (58) for the conformal-weight-zero field component.

The transformation law for perpendicular components is

1

(1-8 )% B

(E +BxB)

E
T =L

- a)“'

where p is the velocity of the frame Y as measured in 8. If 8 is freely

falling invard from rest at spatial infinity then B[r] = - (2M/r)% and

301, 3fe) . (1-2yn? {61 4 o1} (63a)
| 1+ (ayr)? '
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_ L+ (2M/t:‘)% {8[0] - E[@]} (63b)
(1-2M/r)

ol , 7] . Lelawn? (007 4 o0 (63¢)
(1-24/r)2

3lel | §lel | G-awn? {BM - gf°1} (63d)
1+ (awe)}

Since 'E:: and 3 are measured by a freely-fal'irg cbhrerver, the expressions
on the left in Eqs. (63) are finite if the field itself is well behaved at
the event horizon. This observation and Eqs. (62) imply that,

0, ~ (1-2r)°P near r = 2M, in agreement with Eq. (58).

3. Parity

In the parlance of electromagnetic radiation theory, "electric" or
even-parity modes are the multipole modes with radial components of E; the
"magnetic" or odd-parity modes have radial B components. According fo (62b)
then, the real and imaginary parts of oo correspond respectively to the even-
and odd-parity modes,

A diséussion of the parity of tangential components is simplest with
the formalism of Regge and Hheeler7 for vector spherical harmonics, 1In their

notation the tangential (j = ©,p) components are

Even

' 1
E[..” " Cep Yl“‘[i](ow) s fep © “‘[J](O’w) {Parity (6ka)

s3] = €op 6',,[”(0,‘9) | bl . Bop Ylm[j](o’q’) {g::u;y . (ebe)
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If these expressions are used in Eq. (53) one finds, for exumple

S = -3 (-ayn™ e x{le, - 85
(65)
+ 1 (egp + Bop)} ¥',(0,0).

This shows the relation of parity and reality. (Note that we must interpret

/

Y o’ for example, as réal in the same spirit in which we made the expan-

ep
sions (6t) for the real quantities E[j] and B[j].)

4, Field Equations

The source-free field equations of electromagnetism are Maxwell's equa-

tions with J = o,

¥ =0 (664a)

Here TY 1s the dual to the tensor F*Y. With Eqs. (59), (60), and the

formalism outlined in Sec. II, the field equations (66) may be written in

spinor form,

A :
.°AB; x™ o. (67)

The field equations (66) can be described (without resorting to the

spinor formalism) in terms of the o introduced in Eqs. (61). 1If this is

done and the spin coefficient notation is used, the result is precisely
Eqs. (46) and (47) for the case s = 1. If the special tetrad (25) 1is used,
along with the associated spin coefficients (26), the despun field equations

are simply

ro ) = -3 u(e41) 3, (68a)



2 A ~
D(r" oy) = x 9, (684)

a(e 8) =ro_; (68c)

A1 -2/x) £§,] = - 4 1(£+1)(1 - 24/x) 9. (68d)

D. Evolution of the Fields

In Paper I the problem of the evolution of a scalar field outside a
collapsing scalar-charged star i{s analyzed. Here the equivalent quastion
for fields of other integer spins is asked. Specifically: If a star con-
tains a source of a spin-s field, how will the field outside the star evolve
as the star collapses? It will be seen that the solution to this problem

can be inferred directly from the analysis in Paper I.

1. A Wave Equation for 30

The quantity central to our analysis of any integer-spin fie{d is the
lpin-weight-iero, conformal-weight-zero; field component 30. Two of the

equationi in (49) which involve o are:

3" 8. = -1 21 1(e41) 8, (1-24/7) ‘(693)

8+l ~ 8 A
3,(r778) =0 . (69b)

These can be combined into a second order equation for 80:

avau(r"lso) = -&r"l £(1+1)(1 - 24/r) 80 s (70)
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or
8+l A s+l A ) * s+l A =
(r 00),“: - (r 00),r*r* + F[(t ) r o0 o (713)
where
F (%) = (L-2/r) 1(11)/2°, (71b)
2. Singularities of the Radiatable Multipoles
It is appropriate to re-emphasize here two {mportant properties of

(1) According to the arguments of Penrose (see Sec. I1IA),

" the ¢'s are physically measurable quantities, by contrast with
potentials, Example: for 8 = 1, the ¢'s are algebraically
related to the field tensor Fuv rather than the vector potential
Ah. In particular 60 is the linear combination of the radial E
and B components given by Eq. (62b).

(11) Since 60 has zero conformal weight, then according to

- the arguments in Sec. IIB, 60 is finite at r = 2M {f the

physical field it represents is finite there.
1f 30 is static it must satisfy
) 1A
(2527 80), g = F(e%) %2 G = 0 (72)
The asymptotes of the solution are:
30 » pebs o + r*-g-s-1 at ™ = + o (73a)

30 + o* or + constant at ™ = - @ (73b)
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Because 80 must be finite at the event horizon, it cannot go as r* at

t™* = - oo, Furthermore, 1f the multipole is radiatable -~ that is, if { > 3

-- only the solution prol-e-l g acceptable at r* = + ®. No solution of

Eq. (72) can connect the two acceptable asymptotes (see the argument of

Eq. (6) in Paper I). Thus, for a radiatable multipole of any integer-spin,

zero-rest-mass perturbation field there is no static solution that is well

behaved at the event horizon and at spatial infinity. This is the familiar

paradox of Paper I. The resolution of this paradox is also that of Paper I.
(For nonradiatable multipoles -- that is £ < s -- the well behaved asymptotic

solutions can be joined, so there is no paradox.)

3. Resolution of the Paradox; Dynamics of 80

The potential F,. Equation (71) 1s very similar to the equation govern-

ing the dynamics of a scalar field Ysc [(Eq. (22) of Paper 1]

¥oe - Yoo + F, 250 ¥ -0 (7ha)
where
rl“(r*) = (L-2yr)[aye + 1(1+1)/c2]. (74b)

The difference between Eqs. (71) and (74) is only in the details of the
potentials F‘ and Fl’c. Fprthermore, the potentials have the same asymptotic

forms at r* = + ®. Namely, the asymptotic of F,, for ¢ F O, are

F(e%) o~ 2(0e1)/e2 4+ bt 2(201) %3 pa(e*/2)
| + q(r*‘s) ™ >> M (15)
~ 1(2+1)(20) 2 exp{r*/2M) * << -M.
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The boundary value problem for 60. Since 60 is measurable and has no
pathological coordinate effects ar r = 2&, it should be finite on the surface
of the collapsing star during the passage through the event horizon. Accord-
ing to the argument of Sec. IIIA of Paper I, this means that the data for 80

on the stellar surface must have the asymptotic form
60 + a+b exp[-u/hMj (76)

as u + o0, If the star begins momentarily stationary with 60 static outside
it then the other boundary data can best be given on the first ray, u = uye
The form of 80 on u = uy is that solution of Eq. (72) which is well behaved

at ™ = oo,

Comparison with the scalar problem. In Paper I it {s shown that the

details [other than those given in Eq. (75)] of the potential do not make a
difference to the asymptotic (t >> |r*|) evolution of the scalar field. The
boundary value problem for the function rs+1 60 is therefore equivalent to
the scalar field problem, insofar as the asymptotic evolution is concerned.
(See especially the discussion in Sec. IVA of Paper I, comparing the bound-
.nry value problems of the scalar field and of the odd-parity gravitational
perturbations.) The analysis and the results of Sec. III of Paper I re-
garding asymptotic evolution must apply then to ra+1 80. In particular, it

follows that if o0 is the spin-weight-zero NP'ccmponent of a zero-rest-mass

perturbation field of any integer spin s, and L describes a radiatable

multipole (one for which f > s), then at a constant radius, 0o dies out as

in :/t2‘+3 as t + 0. (For further details of the asymptotic solution, see

Paper I.)
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4. Evolution of Q?

The structure of the field equations (49) guarantees that all the sp

can be calculated, once b, is known, For example, if p = 1 in Eq. (49a) and

p=-1 1n.(h9b), 61 and 3_1 can be calculated from

2(1-29x)" 2 (1 5) - 5, (77a)

8+l A 8 A
3(r T8 = 5, . (77v)

It should be noticed that the calculation of 31 and 6_1 introduces no new
integration constants; 61 and 6_1 are determined unamb;guously. With the
use of the other equations of Eq. (49), 62 can be calculated unambiguously
from 61, and so forth until all the $p are known. .Thus everything about the
field is known, once 60 is known. ‘

The details of the calculation of the 6p are outlined in Appendix A,

Some results of these calculations are:

(1) In _the asymptotic future (t >> r*) all the o vanish as

In t/t21+3 at a constant r,

(11) In the region for which t >> r* and r* >> M, all the o
have the same dependence on r* and t,

8p ~ o*78 gy 02143, (78)

(111) In the region for which t >> |r*| and r* << -M, the
sp have the form

2143

'$p ~ const. X fn t/t 1f p20 (79a)

sp-v exp{-pr*/EM} In t/t21+3. 1f p <O. (79b)



- 104 -

It is interesting that all the 6p have the same form, according to Eq. (78).
According to flst spacetime calculations;lh for outgoing radiation the op
with negative p are largest at large r. For #ngoing radiation the ¢P with
positive p are dominant. Equation (78) then heuristically agrees with the
analysis in Paper I which shows that ingoing and outgoing radiation have
intensity in the region where t >> r* and r* >> M.

The results in Eqs. (79) have a similar heuristic interpretation. The
6p with negative p are extremely small because near the horizon (r* << -M)

at late times (t >> M) there should be negligiblé outgoing radiation.

S. Conserved Quantities; Nonradiatable Multipoles

Do the nonradiatable (! < s) multipoles also vanish? In flat space-
time [M = 0 and ¢ = r* in Eq. (49)] it is simple to construct a set of con-
served quantities. These are spherical surface integrals (t and r constant)
which involve only the nonradiatable multipoles of the field. The field
equations guarantee that these integrals are independent of both r and ¢,
Femiliar examples are the monopole in electromagnetism and the moqopole and
dipole in linearized General Relativity.

For a perturbation field in curved spacetime these integrals are not
independent of r; but if they are evaluated at fﬁ;ure null infinity (v = 0)
they are independent of u. So in curved spacétime there 18 also a conserved
quantity corresponding to each nonradiatable multipole. It follows that

nonradiatable multipole perturbations which are initially nonzero cannot

vanish in the exterior of a collapsing star,
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E, Difficulties of Higher Spin Theories

As the caveat in the introduction w;rns, there are difficulties with
zero-rest-mass perturbation fields, Except for the case s = 1 (electromag-
netism) or 8 = 3 (neutrinos), the field equations in (39) or (43) are in-
consistent. It follows that (49) is also in general aﬁ inconsistent set of
equations, (This inconsistency does not occur in the field equations for
" the 8 = 2 gravitational perturbations, but gravitational perturbation cannot
be described by the formalism of Sec. IIIA.)

It voﬁld seem that there are three possibilities. (i) The geometry of
spacetime must be restricted to those cases for which the higher spin field
equations are consistent, (1ii1) Integer-spin, zero-rest-mass fields are
impossible, except for electromagnefism. (i11) Equation (39).13 not correct;
"minimal coupling" -- i.e., replacing a comma by & semicolon -- does not
give the correct generalization of a flat spacetime field theory to curved
spacetime.

Only the third possibility appears to be sensible., This requires that
in Sec. IIIA the argument for minimal coupling based on the strong equivalence
principle 18 {ncorrect; the integer-spin fields must couple in soﬁ? fashion
to the Riemann tensor, except for the spin-O and spin-l cases. Although the
corrgcted, consistent field equations are not known, one can make reasonable
speculations about the nature of these corrected equations in the -
Schwarzschild geometry. Of greatest concern is the way in which (71) is
alteted‘by coupling of the field to the Riemann tensor. Thersimplest case
would be for the corrected‘equAtions (49) to lead to a wave equation like

(71) for some linear combination ¥ of the 6p:

Vope =V pren + F ()Y = 0. (80)

?
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This seems likely on physical grounds since the very different cases of
scalar, electromagnetic, even-parity and’odd-parity gravitational, perturba-
tions all lead to such an equation.

In Eq. (80), the poteantial 5l(r*) would have the form

srl(r*) = (1 - ?:“—) [ﬂlg—ll + R(r)] . (81)
b o

T

Here R(r) is some correction term due to the Riemann-tensor coupling.
Physically one should expect this correction to behave like ers as r* +
and as a constant as r* + -o00, for the following reasons.

(1) At large r the effects of curvature -- e.g., the Riemann tensor
components -- fall off as PV:S. In terms of the NP formalism for the Weyl
tensor, this fact is evident in Eq. (28).

(i1) At r* + -0 the effects of the curvature and of the centrifugal
potential are finite. The (1-2M/r) factor in ¥, would come -- as always --
from spreading these finite effects over the infinite r* coordinate distance
corresponding to r = 2M,

If these conclﬁsions prove to be true then the principle results of
Sec, IIID will be true for these fields. (The details of Secs. IiIDh and"
I1IIDS might apply only to the electromagnetic case, for which minimal

coupling is correct.)

IV. GRAVITATIONAL PERTURBATIONS

The resolution of the paradox of radiatable gravitational multipoles has
been the principal motivation for this work and for Paper I. 1In Paper I,
gravitational perturbations were analyzed in the context of the Regge-wheeler7

¢:0)! fo;malism. Certain technicai details of that analysis were omitted,
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These details will now be presented in the NP framework.

An analysis of gravitational perturbations in the NP framework is
suggested by the fact that the Bianchi identities (22) bear a striking re-
semblance to the field equations (46) and (47) for a nongravitational spin-2
field. For our problem of nonspherical perturbations there is, however, an
important difference. Gravitational perturbations are perturbations of the
spacetime geometry itself. Consequently the Schwarzschild geometry spin
coefficients (26) cannot be used; first-order perturbations of the spin co-
efficients must be considered,

In Appendix B the quantities used to describe spacetime curvature are
expanded about their Schwarzschild values., Perturbations (denoted by ;
subscript B) in the Weyl tensor components, spin coefficients, NP metric

functions, are defined by [see Eqs. (2), (4), (20)]'

Yp = YpA + YpB

"’HA"‘MB

W= w + W

and so forth. Here the values with subscript A are the Schwarzschild values

as given by Eqs. .(26), (28), and (29). The first thing to notice is the

connection between parity and reality for the'despun fitst-order‘quantitiea.ls

Just as the nongravitational fields, the real parts of despun quantities
repre;ent even parity modes of physical quantities; imaginary parts represent
odg-patity modes. ‘This correspondence of parity and reality for the ¥
follows from a slight modification of the argument given in Sec. III for the

op. The cortesponden&e then follows for the spin4coef£1c1ents, 0, 0, etc,,

and the metric functions ﬁ, ;L etc., from the reality of the coefficients
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in the equations of Appendix B. The interrelation of parity and reality is
particularly clear in Appendix B, where 4 comparison is made between perturba-
tions in the NP formalism, and in the RW formalism.

A. Odd-Parity Perturbations

1. A New Derivation of the Regge-Wheeler Wave Equation

The NP formalism for gravitational perturbations leads to the RW wave
equation in a fairly straightforward fashion. Also the physical interpreta-
tion of the RW odd-parity wave equation is facilitated in the NP formalism.
Equation (B6g) involves perturbations (denoted by a subscript B) of the

Weyl tensor, a spin coefficient, and a metric function:
Lod 3 2 " ~
A{YOBI: }=Y  + M (uB-ﬁJr).

Operating on this equation with D, and using (B6c) for pr ‘?_1, yields

D{Aqonrs} = «4r 1(1+1) ?OB
(82)

+ 3 {32 4 p(fy -0/} .

The imaginary part of this equation is a relation for odd-parity quantities.

Furthermore: (1) By definition [see Eqs. (20)] U is real. (ii) From Eqs.
(BSf) and (B4g) therefore

In(Diy) = Im (3, - &:°) . (83)

Equation (82) then becomes

num(ﬁonr”) = (- 320111 /2% + 32 (f, ), (8k)
. : B
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or
c .3 ¢ .3 OPG %y 125 3y .
Im(yoBr ),tt - Im(yoBr ),r*r* +F (%) Im(yont )=0 (85a)
where

FF o (1-29/r) (£(2+1)/52 - 64/c°). (85b)

This 18 a curvature-potential wave equation of the same type as the scalar
field equation which was analyzed in Paper I. >Interestingly, the potential

FOP is precisely the same as the potential in the RW equation for odd-parity

waves, (See Sec. IVB of Paper I.)

2. The "Measurability" of ?OB

It 18 now necessary to establish that ¢ is "measurable" -- that is,
that YOB is a quantity that can be measured by a falling observer. The
Weyl tensor is certainly measurable in terms of the real physical effects
associated with geodesic deviation. Therefore, if the NP tetrad at a point

is known, ?o and hence ?0 can be calculated., Three problems must be con-
B

sidered, however, before one can say ?OB is measurable; (i) coordinate
effects at the event horizon, (ii) gauge &rbitraringss, and (111) first
order uncertainty in the null tetrad.

. It might bev'eared that the choice of null tetrad means that GO at the
event horizon is the ﬁnlue associated with a nonphysical observer -- e.g., an
observer stationary at r = 2M, But YO is conformal-weight zero so co;rdinate
effecth cannot be of any importance. Similarly the following argument shows
that gauge arbitrarinesslis of no importance.

1f

L

oo e (s6a)
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then
1 = ~ u ~
703 YOB T Yo
(s6b)
~ M ¢
= Yo ° TT‘ d
B T

Since 1° is real, Im(;o ) is gauge invariant. 1
B

The geometry is now slightly deformed from the Schwarzschild geometry,
so (25) no longer specifies the null tetrad precisely. In Appendix E it 1s
shown that this also is of no importance to the '"measurability" of ?OB. There
is no first order change in ?O for small rotations of the tetrad.

Since Im(?oB) is measurable, it must be finite on the surface of the
star during the passage through the event horizon, and it must be bounded
at r = +00, With these constraints the analysis of (85) is identical to that
for the odd-parity gravitational perturbation q of Paper I. The result, as
usual, is that Im(QOB) falls off as In t/t21+3 at large time. The odd-parity
perturbations have already been studied in Paper I in the RW fotmalism,'but

the analysis of the YP can be completed within the NP framework, This

appfoach is outlined in Appendix F.

3. The Relation of Im(?oB) and Q

.Regge and Wheeler use a metric perturbation Q to describe odd-parity
perturbations of the geometry. Though Q and Im(?on) arise in quite differ-
ent contexts, they are quite closely related, so it is not a coincidence that
the RW Qdd-parity wave equation has precisely the same potentiallas (85).

In Appendix b, QOB is calculated in the RW gauge for odd-parity pertur-
bations. Since IQ(QOB) is gauge invariant, the result in Appendix D is also

Im(?on) in the NP gauge. In terms of the RW metric perturbations ho(r,t)
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and hl(r,t), that result is
(@, ) = 1 211 ((ny®) _ = (0y/) ) (87)
0, T 1 ,t
The field equations for odd-parity perturbations17 can be combined to give

(/s = (/) ) = (L-2e)(1-1)(142) /e, (88)
Since

Qe (1-2r) h)/r, (89)

the relation of Q and Im(?0 ) is
B

1+2
I

A 3 da.
(1mdg ), ¢ = RrEfE @ 5 (90)

so it i8 no surprise that Q also satisfies (85).

The function q(r,t) introduced in Paper I {is, in fact

 h(g-2)! A 3
1= -&z}r(mo; Ve (1)
This follows from

{There can be no integration constant in (91) since both Im(¥. ) and q vanish

%8

for all r (greater than 24) as t + ®.]

B. Even-Parity Perturbations

As in the Rw'formalism, the analysis of the even-parity perturbations
1s considerably more difficult than that for the odd-parity ones. For the

even waves, it has not yet been possible to derive an equation like (85)
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from the perturbed NP equations. Fortunately Zerilli18 has supplied such

a wave equation in the framework of the RW formalism. Zerilli's equation
and the asymptotic evolution of its solution are discussed in Paper 1. One
detail, however, is missing from that analysis. A proof that i; Zerilli's
field variable, is finite on the stellar surface, during its passage through
the event horizon, is necessary to vindicate the analysis in Paper I.

The proof to be given here will not involve showing that K is "measurable"
in the sense that Im(?on) is, but the proof does make use of some of the
properties of the yp and illustrates the way in which the NP formalism may
be useful for gravitational perturbations.

For conveniencce the proof will be given for

Zg (A+3Mr) K (92)
with

Aw $ (2-1)(2+2),

rather than for K. The RW even-parity field equations17 give
Z,t = r:l(’t - (1-24/1) H; (93a)
Z’r,,stK’r*-(l-EM/r)H, {93b)

where H, Hl, and K are the metric perturbatiogs in the RW notation. Equa-
tions (93a) and (93b) can be added and subtracted to give DZ and AZ.

In Appendix C the relation of NP and RW quantities is worked out and
DZ and AZ are expressed entirely in terms of NP quantities-{Eqs, (CIO)].
The event-horizon-behavior of the NP quantities can be deduced from the
equations of Appendix B and the fact that Y, ~ (1-24/x)°P near r = oM,

[See Eq. (C11).] With these results, the event-horizon behavior of DZ and
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AZ are seen to be

(1-24/r) Dz ~3 2~ 1 (9% a)
0z = 3,2 ~ (L-29/x) . {(94b)

This result (94) means that as the stellar surface passes through the
event horizon, Z i3 finite and its proper-time derivative is finite. These

are precisely the conditions needed to Justify the analysis in Paper 1.
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APPENDIX A: EVALUATION OF THE op FIELDS

It follows from (70) of Paper I that in "Region VI" (t >> r* and

™ >> M) 30 can be approximated by

1l aA /3 L+1
2t o = o(t) [ae/r* + by ot seees], (A1)

where

p(t) = In :/:2“3.

Equation (77) of the present paper gives a prescription for calculating 31

and 6-1. Putting (Al) in (77) yields

8 = (1-2wr) o(t) (- lae/r*“l + (151) b, el  (A2a)
e’ 3-1 = % g(t) [lﬂs/r*l+1 - (1+1) bg t*l] . (A2b)

In (A2) terms that fall off as g(t) have beeﬁ ignored,

The field equations (49) can next be used to solve for 32, 3_2 and so
forth. This calculation involves taking the derivatives au and dye Accord-
‘ ing to the arguments of Sec, III of Paper I, the derivative at can be ignored
Sy comparison with 3 _», in the asymptotic region t >> r*, Equation (49) then

leads to sp fields all of which have the same dependence on time at large t,

§,(8) ~ a(t). (a3)

Since r* >> M, Eq. (A2) can be approximated by

8, = olt) (11) b *t (Aka)

(Akb)

e’ 6_1 = - % g(t) (£+1) be o+t
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In this region the field equations (43) are

8+p ~ s+p-1 ~

2av(r °p-1) 2 x o, p=21 (A5a)
8-p ~ - 8-p-1 A ‘ -

3,(r °p+1) r %, ps<-l. (Asb)

If only the dominant term in r* is kept, and terms which fall off as g(t) or

faster are ignored, the solutions to (A5) are

~ 1+ : *1-3

% = g(t) by ¥ p20 (Asa)
A - .' -

8, mo(e) (P LRy els 50, (Asb)

In "Region IX" (t > r* and r* << -M) the analysis in Paper I implies
80 = o(t) [‘9 + g exp{r*/2M} + o0 ], (A7)

(The term exp{r"/2M} does not appear in (63b) of Paper I. This term is
unimportant for the asymptotic time behavior of Y’c or 30, but it 18 crucial
fqr the time dependence of av 80 and au ?o. It i3 discussed in Paper 1 in
connection with odd-parity gravitational perturbations.)

Equation (A7) can now be used in (77). It should be noted that for

r* << <M,
‘D 2(1 - 2ufx)~t 3, ~ GXP{; */M} 3,
A=d,~-43..
The ‘results are

&y ~ o(t) (A8a)
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8_1 ~ o(t) exp{r*/om]}. | (A8b)

Repeated application of Ey. (49) in Region IX gives the results presented

in Eq. (79).
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APPENDIX B: EXPANSION ABOUT THE SCHWARZSCHILD GEOMETRY

The equations relating metric components, spin coefficients, and Weyl
tensor components in the NP formalism are given in the 1962 NP paper.s We
shall use the notation (NP 6.10), for example to cite a numbered equation
in that paper. For the geometrically defined "special" coordinate system
and “special" tetrad the pertinent equationr -ve (NP 6.1) through (NP 6.12).
See also Eqs. (18) to (22) of the present paper.

We shall now expand all quantities in these equations about their
Schwarzschild values, and find equations for the first-order perturbations,
Where necessary to avoid confusion, Schwarzschild values will be denoted
by a subscript A and first order perturbations by a subscript h. For

example, the spin-coefficient p is expanded as

u’uA+uB-

Here p, = - (1 -24/r)/2r, the Schwarzschild-geometry value. Note that the

use of a "specifal' system guarantees

= = p* = .
"p ="y =0 Pp = F3 "%+ Py
The metric equations (NP 6.10) relate the components of the metric

tensor [aee Eq. (18)7 to the spin coefficients, The first-order perturba-

tions in these equations are

s Dr;i - 9351 + cgf: (Bla)
Dur = =717 (B1b)
pxt - wtls oem} (Blc)
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DU, = - (75 + 7;) (B1d)
1 .3, ,4  -1.1 -1 .1 x O |
S R O U A PP S (Ble)
(0 +28) " - g3ta ey - (0" +2p) t) + t] 3, £3F
(B1£)
+ et txi sl ;: = (8" -a) ii + (e - p)y !Zi
(® +28)u"* - (8% + 2B)w = p - p* (B1g)
8Uy - ¢ H(1-24/r) a{ur/(1-20/)} = - V. (B1h)

In these equations the symbols D, A, B, 6* for the differential operators
are taken to be the unperturbed forms as given in Eq. (27).
To use these equations most conveniently we seek combinations which are

of definite spin weight., Let us define

1Y
1y = 0 (B2a)
b oo uphsxle® (1=2,3) (B2b)
) 2 **9 ’
ot = W) s gisiu y (B2¢)

To be the perturbations of the NP special tetrad from the Schwarzschild

- . L) * . . -
value, Fow we notice that Da'0pr TRy B0y BBy, ‘and m, W, are first
order quantities which under coordinate rotation, transform with spin weight

0, 1, 1, 0, 2, respectively. This enables us to form the definite-spin-
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weight combinations of the metric perturbations,

Jn

=2

A%

L3 BN

o Cay® -1

X" + 4 8in0X' = /2 1 @, eny

o () -1 _»
gB -iamogn =/2r D APy

gB° + 1 sin0§B¢ = /2 r-l m, oy

{spin-weight O)
(spin-weight 1)
(spin-weight 1)
(spin-weight 0?

(spin-weight 2)

(B3a)

(B3b)

(B3c)

(B3d)

(B3e)

With these definitions to guide us, we can make definite-spin-weight

combinations of equations (Bl).

spin weights of the spin-coefficient perturbations.

(In doing this we shall need to know the

These and the conformal

weights for the nonvanishing spin-coefficient perturbations are given in

Table II.) For an f-pole, the definite-spin-weight combinations of (Bl1),

in despun form, are

DrE, = /2o

pX; = J2rl3

(-
[~}
]

p = - 2Re(yy)

(Bka)
(B4b)
(Bke)
(B4a)

(Bte)
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el () R - laed, a2 e R (B £)
mn(0) = - Im(rip) (B4g)
37t 1(aa1) G e e (1 2yr) 8 G/ (1-20)) = T (Byh)

In the same spirit we can expand the quantities in Eqs. (NP 6.11) and

get certain useful definite-spin-weight equations for the perturbations:

D5y 1) = O (B5a)

(s 7} = £y, (B5Sb)

Tr} = xy, (BSc)

D{Re 7} = Rey, (354d)

(A ] = -3(1-2wr)c* (BSe)

D{igr} = ry, (BSf)

DV = -3-2yr) T 4§, (85g)

2 (1-2wr) AR P(1-2w0) ] 4 (o] (1-1)(2+2) ¥ . -7, (BSh)
-31(1+1) Sn+r'18-3+?_=-:?1 (B51)
Ia(%) = Ia(iy) + = In(y, ) (B53)

R+ 3 2(e)Ey- (200 (Lol )% = -3(1-2Yn)P e ¥ (85K)

. (ér)'l 08(1 —l&M/r) +V- el (.1 - 2M/r) A{ﬁra/(l -2M/r)} = -~ (1L-24/1) Re;B

(Bs¢)
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-3(-)(12)7 - (1-ayn) A e(1-2)} = - R (B5m)

-1 ~ -1~ ~ A A% ~
(1-2v/rx) 8 {py <L-2M/r)r} +x UB-1=-2Re78+p.B-ryOB (BSn)

el [?*ra} + 1(2+1) Re(?B) + 23"}(/:2 ==-V-r ;_1. (BSo)

The perturbations of the Bianchi identities [Eq. (22) or (NP 5.12)]

have definite spin weight. 1In despun form for an l-pole they are:

D (Fr') = Fy° (Bsa)
D [QOBrS} - Y, - s (B6b)
D (f,r%) = ~dr 1(s+1) ?OB + 30*ur2 (B6c)
D [?_21-} = -3 (1-1)(142) §_ Rue 2 (B6d)

Q-2ry 2 a (i, r (1-290)%) = -3 (a-1)(242) §; - 35 M2~ (86e)

(1-2wr)a(f,P(1-2wr)) = ~dr (1) 43t (Faeml B) (mof)
) B

~ 3 2~ ~ -1 .
a (vonr Y=o ¥ 43 (hp-Up ) (B6g)

(1-2r) o Y, (2t (1-ayn)ly - ¥, - 3vur (B6h)
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APPENDIX C: THE REGGE-WHEELER GAUGE AND GAUGE TRANSFORMATIONS

In the Regge-Wheeler (RW) fox‘malism,7 the metric perturbations are
analyzed into scalar vector and tensor harmonics. Ten functions of r and

t, three for odd parity and seven for even parity, suffice to describe the

metric. They can be defined by

SN A Y (Cla)
- (1-2wr) 8% = H(r,e) ¥ (c1b)
- (1-2¢/r)7t grB' N vna(r,c) Y'm | (c1c)
gy = H(re) ¥ (c1d)
-2 (L) g . b (e v E o4 n 20,0 ok (cle)
? (-aysy gt . b o, 8) ¥ lfn} h*4(r,e) o (@)

L 43

dd i 2 i i
-r gy = h2° (r,t)x‘i+r K(r,t)o‘i+r2G(r,t)vli (cig)

(Here 1,j range over 9, @, and \yi, q)i, oij, yij, x“ are components of the

vector and tensor spherical harmonics; they are related to those given by

Thorne and Campolattaro” but their indices are raised by the 2-sphere

metric 7°° =1, 7% = 0, 7<vq> - sin2 0.) 1In the RW gauge, the four functions

associated with gauge freedom are chosen such that h2°dd, hoeven’ h:wn;

and G are made to vanish.
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Although gtnr', grBr, and gtBr have definite spin seight (zero) the other
perturbation components do not. We can, however, easily form definite-

spin-weight combinations (subscripts denote spin weight):

t ti
G, = 2rm g, (c2a)
Gl 2rm g"'1 (c2v)
1 - 1°8
2 1j -
G, = 2" g7y mm* (c2c)
2 1)
G, = 2or g mm, (cad)

The three complex functions G;, GI, Gy along with the four real functions

G., gtt 'gtr, g" are our new description of metric perturbations.
0’ 852 835 By P

In despun form, in terms of the RW functions, the perturbations are:

8y = -8 -2yt (c3a)
AR (cab)
8§ = -H,a-a2r (c3c)
6] = - (1-2r) £(1s1) (R + 1 §t°dd} (c3d)
6 = (-ayn™ e (B0 1 80 (c3e)
8 = 2° R+ 2 1(11) & (c3£)
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(c38)

82 = -3 [r26 + 1 ﬁ;dd] 1(1+1)(2-1)(2+2).
even Y’m(0,¢), and so forth.)

€VeN denotes h
0
We can immediately see that real and imaginary parts of the despun perturba-

{Note: RO
tions correspond respectively to even and odd parity, as they must,

The metric perturbations in the NP formalism are given in terms of the
. 1If we transform perturbations of Eq. (21) from

i .1

functions UB’ XB, Epr Wy
u,r to f,r coordinates for the background and take the definite-spin-weight
(Cha)

combinations according to (C2), we get
-1 A
21 -24/r> Ug

Q-2ry g% = 8% = -2yt gy -
& = 2cd-/2r% % - (1-24r) ¢; (Chb)
& = -t 2/2re(2 ) (che)
(ckd)

Notice that we have a description in terms of only six functidns; this is

because the choice of {geometrically defined) NP special coordinates is

tantamount to a gauge choice,

An 1n£1n1t;smal‘coordinate transformation
. 7,

induces a gauge.transformationvof the metric perturbations

= "?nv - “u,a gy - “v,a Bp + T sAuv,a . (cs)

MY
8y
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As usual we look for quantities of definite spin weight. The quantities 'nr

and nt have zero spin weight and the combination
-1 i )
1\1.-/21: m,N =7 +4isino e (cs)

has spin weight 1, The despun form of the gauge transformation equations

(CS) sxe
ALY . ArYL . ~r -2 Ar
8y = By +2(1-2H/r)'q’r-2ur ) (C7a)
~rtt ~tt

8y = 83 -2Q-ayy! ?f’t-(x-zn/rya aur 2§ (cm)

By = 8% - T ey R (c7e)
87 = &4 t(a) 7 -2 r2‘(1-2H/r) e (c7d)
&F - _a; + 200+1) 35 + V2 22 (1-2r)"t e (C7e)
8 = & +urfi+a/2e® re(i) (c7£)
8 = & -v2r® (1)(12) F . (c7g)

Finally, from (C3) and (C7) we can get relations between RW and NP metric

perturbations and the components 'nu', of the gauge transformation between them:

2y = -BE-2>+ 212y T - 2ur (csa)

2y = -EQ-24/5) - 2d1-29r> A e - aur 2 ¥ (ceb)



- 126 -

2y -2yt - W - -ayDT R TR (cac)
2ra -/2 raﬁl = - (1-2Wr) 1(1+1) 1ﬂr°dd+ 1(+1)5F /212 (1-2}1/1-)?11’lr (csd)
2rd-/2 2R = 1(151) 1% () (12 e)RE + v2e? ﬁl’t (c8e)
- r22/2 Re [:3:0} = 2R+ hr §F 4 2/23 Re (%)) (csf)
(cag)

2, = (@) (1) (1e2) 3

In Sec. IVB we analyze even-parity perturbations with the use of a

metric pert‘:urbation function 2 §efined by Eq. (92). According to (93) the
D and A derivatives of Z are
DZ = rDK - {H +H] " (C9a)
82 = AR + % (1-24/r) {n-n]. (c9v)
For purely even-parity perturbations, Eqs. (C8) allow usl to express ﬁ,
(c10a)

Nl

ﬁ1+ﬁ, and ﬁl -fl, in terms of NP quantities:
2)) o A 2
2L (i, +8) = 2/2(1-291) e D[t

1+
L=
(c10b)

= b(1-2wr)t iR -'u[z(zu)]'lAg(um/r)‘l x

~

i -
[f - 2/2:24 (e2 2)/(1-1)(“2)](
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- -eed -2 1(1s1)]7 he/er_?(:z“e),r_/(za)(ya)

>

(c10c)

-2/ r§2/(1-1)(z+2)

where
[ = 250 - ,/2:221. (c10d)

We can infer the event-horizon behavior of the spin-coefficient pertur-

bations, and of the NP metric perturbations, from the known event-horizon

behavior of the perturbations in the Y's. [See Eqs. (B4), (B5), (B6).] The

quantities important to our analysis here, behave as

GB ~(1- EM/r)a

near the event horizon. We can conclude from (ClO) and from the properties

of D and A that
. -1
H+H1~(1-2H/!') Hl-ﬂ~(1-2M/t)
Kal.

These results, and (C9) predict that near the event horizon:

DZ ~ (1-24/r)"1 8z ~ (1-2Mr).
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APPENDIX D: CALCULATION OF ‘?0 FOR ODD PARITY
B

We know that Yo must be purely imaginary for odd-parity perturbations.
B

From Eq. (4c) the perturbation of Yo can be written (in vacuum),

- - B 7,8 o By #0
2, Aaara (%P1 ) +RAa675 (1"'n "_',)B
v " "
I . I1
(p1)
(o 7.8 a B 7 x8
+ K\Baa‘r&(lnl ) +RBaB76(l“mm )
e Y
I11 Iv
The unperturbed'kiemann, or Weyl, tensor has components
-2
Roror = 8in°° 0 qupt = Mr (1-2/r) (D2a)
-2
Ropop = 8in7° OR oot = -M/r(1l-2M/r) (Dp2b)
R = 2H/r3 ' ’ (Dp2¢c)
rtrt
R = Mr sinao, (p2d)
- 99gR

and all others vanish, except those related to the above by symmetry.

Of course the expressions like (1 nB 17 6) must be expanded into first

order perturbations, e.g.,

(lanB l’nb)B = lAanAB lAyﬂBG 4+ oee °

In term I three of the indices «afy3® will always be t or. r so by
(D2) the perturbation terms will involve nBr’ nBt, tnr, or IBt, all of
which vanish for odd parity, so term I vanishes, In term II there is no

combination of the three unperturbed tetrad vectors that couples to any of
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the nonvanishing components in (D2). Term III is clearly real so it must

vanish for odd parity perturbations.

We are left with only term IV. Taking the imaginary part and using the

known values of the unperturbed NP tetrad, we find

Im(IV) = - “nrcoq/"a““‘" (p3)

We can calculate RBrtO f::om19
L4

*Baprs = 3 {hm;oa * hoeser ~ Poysee T Pessar
(o4)

(]

o
+ hﬂ+RAaB76ha}'

RAau 7%

Since Im(vo) is gauge invariant we can evaluate this in the RW gauge, and we

find (in RW notation)

h h
R,,n%/r"‘.mo = k1(241) (:%) - <—§-) ¥ (0,9), (05)
r t

b4 ’

80 that

Im(QOB) = 3 £(1+1) 3(110/:2)’: - (hl/ra)’t£ . (ps)
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APPENDIX E: INFINITESIMAL TETRAD ROTATIONS;

TRANSFORMATION OF THE Yp

Totations of the tetrad that preserve the basic relation (1) are of

three types (a,b complex; A,q real)eo:

1) £+
13+|_1_1+al (El)
n+n+a g* + & m+aa* .

2) n+n
m-+a+bn (E2)
t+t+ba"+*m+bb*m

3) £+
n - At . (E3)
msel®n

For small tetrad rotations, the yp change values to first order in a,
b, (A-1), - If, as in our problenm, Yo has the only nonvanishing zero
order value, these induced "gauge rotations" are, for the three types of

tetrad rotatioﬁs:

1) Y-l * Y-l +3 a* YOA (Eb)

2) y; *y, +3b Yo, (E5)

3) Y, * AP 1P Y, (. no first order changes).. (Es)
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APPENDIX F: THE ODD PARITY Yp

Here we will outline one method for calculating all the Qp entirely in
the NP framéwork, once QO is known. We will assume that we are dealing with
a purely odd-parity perturbation, so that we are calculating purely imaginary

parts of the despun NP quantities.

(1) Since Im(sg) = 0, we can immediately find ?1 from (Bsb) and Qe
from (B6a).

(11) From (B6f) we can calculate T + It

(111) The imaginary part of (BSn) gives us T + GB = r'?on.

(1v) From the above and (B4g) we can calculate w, T, and EB'

(v) Equation (B6g) then gives us ?_1.

(vi) Equation (B50) can be used to calculate v and then (B6h) gives

ws

The asymptotic time dependence of all the perturbations follows the

familiar fnt/t21* fa11 off.
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TABLE I.® Spin Coefficients

®

-
{=]
[

, 00 or 11
ed 10
o 9_ x € %
19 o a A
9..;; a B 1)
}_i T 7 v

_‘ This table appears in the 1962 NP paper.
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TABLE II.* Spin Weights and Conformal Weight ~

of Spin-Coefficient Perturbations

Spin Spin Conformal Spin Spin Conformal
Coefficient Weight © Weight Coefficient Weight Weight

Pp 0 1 )‘B . ‘ -2 -1

9 2 1 By 0 -1

o n.d.’ n.d. v -1 -2

ﬁn . n.d, n.d. 78 n.d. | n.d,

T 1 o} Re(7B) o} n.d.

% The transformation properties of the spin coefficients—are given by W.
_ Kinnersley, unpublished Ph.D. thesis, California Institute of Technology
(1967).

n.d. indicates that the quantity does not have a definite spin or con-

formal weight.
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Vol. I (Prentice-Hall, Englewood Cliffs, 196k4).
There 1s a brief introduction to the dyad formalism in the Newman-

Penrose paper (footnote 5). Their notation will be followed, for

. the most part,

Newman and Penrose refer to a special coordinate system, but for our
purposes we can coasider it as a special null tetrad field.

ﬁ. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966). See also

J. N. Goldberg et al., J. Math. Phys. g,'elss (1967).

"Spin" refers to the order of a representation and should not be confused
vith spin weight. In this paper spin will be denoted by lower-case s

and spin weight by capital S.
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If, at the outset, tensors had been used to describe spin-s fields (as
in Sec. IIIC, for electtomagnetism); the spinor and dyad formalisms
could have been avoided altogether. The description in purely tensor
terms 13 much less convenient then the spinor description.

See, for example, A, I. Janis and E. T. Newman, J, Math. Phys. 6, 902
(1965). |

Except for aB’ g, and 7s which do not have definite spin weigﬁt.

B’
(See Table II.)
It can also be argued that the NP special tetrad is geometrically
defined (except for rotations in O and g).

The field equations as given by Regge and Wheeler contain errors. The
corrected equations can be found in K. S. Thorne and A. Campolattaro,
Astrophys. J. 149, 591 (1967); ibid., 152, 673 (1968).

F. Zerilli, to be published.

R. A. Isaacson, Phys. Rev. 166, 1263 (1968).

W. Kinnersley, unpublished Ph.D. thesis, California Institute of
Technology (1968).



