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Abstract

Robot perception is a fundamental aspect of any autonomous system. It gives the robot the capacity

to make sense of vast amounts of data and gain an understanding of the world around it. An active

problem in the area of robot perception is real-time detection and pose estimation of 3D objects.

This thesis presents an approach to 3D object detection and tracking utilizing a stereo-camera

sensor. Geometric object models are learned in short order time via a training phase and real-

time detection and tracking is made possible by performing sparse stereo calculations on the chosen

features within an adaptive region of interest of the camera image. The experimental results obtained

by using this method will show the e�ectiveness of the approach as compared against ground truth

measures in real-time. Using that framework as a basis, extensions to two other problems in robot

sensing are then considered: (1) sensor-planning for model identi�cation, and (2) sensor-planning

for object-search. In the former, a novel algorithm for determining the next-best-view for a mobile

sensor to identify an unknown 3D object from among a database of known models is presented and

tested across two experiments involving real robotic systems. An information theoretic approach

is taken to quantify the utility of each potential sensing action and the validity of the algorithm is

discussed. In the latter area, a novel approach is presented that allows an autonomous mobile robot

to search for a 3D object using an onboard stereo camera sensor mounted on a pan-tilt head. Search

e�ciency is realized by the combination of a coarse-scale global search coupled with a �ne-scale local

search, guided by a grid-based probability map. Obstacle avoidance during the search is naturally

integrated into the method with additional experimental results on a mobile robot presented to

illustrate and validate the proposed search strategy. All presented experiments were carried out in

real-time processing with modest computation done by a single laptop computer.



vi

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions and Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 8

2.1 Bayes' Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 SIFT Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Interest Point Detection in Scale-Space . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Interest Point Selection and Localization . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Orientation Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4 Keypoint Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Harris Corner Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Stereo Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Two Pinhole Camera Models and Epipolar Constraints . . . . . . . . . . . . . 20

2.4.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Object Detection with 3D Pose Estimation 24

3.1 Object Detection Context and Contribution . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Bayes' Filter: Dynamic Prediction . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Bayes' Filter: Measurement Update . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



vii

3.2.4 Feature Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.5 Real-Time SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Uncluttered Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.3 Cluttered Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Sensor Planning for Model Identi�cation 40

4.1 Sensor Planning Context and Contribution . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Bayesian Sequential Analysis and Formulation . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Bayes Filter and Model Probabilities . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 SPPEMI Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Function: calcCurrentEntropy( ·) . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Function: calcPossibleControlActions(·) . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Function: calcExpectedEntropy(·) . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 Applying the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.4 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.4.1 m=4, n=6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.4.2 m=6, n=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.4.3 m=8, n=10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Implementation of SPPEMI 58

5.1 Experiment 1: Constrained Mobile Agent and Object . . . . . . . . . . . . . . . . . 58

5.1.1 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.3 Applying the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Experiment 2: Mobile Agent with Mobile Object . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



viii

5.2.2 Measurement Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3 Applying the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.3.1 Pan-Tilt-Unit Control Loop . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.3.2 Robot Motion Control . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Sensor Planning for 3D Object Search 80

6.1 3D Object Search Context and Contribution . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Probability Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 Global Search Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Local Search Method with 6D Pose Estimation . . . . . . . . . . . . . . . . . 84

6.2.4 Robot Navigation and the Costmap . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Approach Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.1 Robustness to Height Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.2 Robustness to Obstacles and Re-planning . . . . . . . . . . . . . . . . . . . . 90

6.4.3 Additional Tests and Search Limits . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.4 Extensions to Multiroom Search . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusion and Future Work 97

7.1 Discussion and Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Linearized Measurement Matrix 99

B Motion Model for Unconstrained Motion 101

Bibliography 105



ix

List of Figures

2.1 SIFT feature extraction overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 SIFT feature matching example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Harris corner detection overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Harris corner detector example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Background: pinhole camera model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Background: epipolar geometry for stereo camera model . . . . . . . . . . . . . . . . . 21

2.7 Background: 3D depth image generated from stereo reprojection. . . . . . . . . . . . . 22

3.1 Object-detection: database feature generation overview . . . . . . . . . . . . . . . . . 28

3.2 Object-detection SIFT region of interest (ROI) overview . . . . . . . . . . . . . . . . . 32

3.3 Object-detection algorithm block diagram . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Object-detection experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Object-detection ground truth setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Object-detection experiment 1: results . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.7 Object-detection experiment 2: results . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.8 Object-detection visual interface screenshot . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Sensor-planning motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 SPPEMI case study polygon example . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 SPPEMI case study measurement model . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 SPPEMI case study simulated results, (m=4, n=6) . . . . . . . . . . . . . . . . . . . . 53

4.5 SPPEMI case study simulated results, (m=6, n=8) . . . . . . . . . . . . . . . . . . . . 55

4.6 SPPEMI case study simulated results, (m=8, n=10) . . . . . . . . . . . . . . . . . . . 56

4.7 SPPEMI algorithm block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Sensor-planning experiment 1: setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Sensor-planning experiment 1: frame transformations . . . . . . . . . . . . . . . . . . 60

5.3 Sensor-planning experiment 1: model descriptions . . . . . . . . . . . . . . . . . . . . 67

5.4 Sensor-planning experiment 1: pose estimation results . . . . . . . . . . . . . . . . . . 68

5.5 Sensor-planning experiment 1: model probability values . . . . . . . . . . . . . . . . . 69

5.6 Sensor-planning experiment 2: setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



x

5.7 Sensor-planning experiment 2: camera-to-robot transform . . . . . . . . . . . . . . . . 72

5.8 Sensor-planning experiment 2: block diagram . . . . . . . . . . . . . . . . . . . . . . . 75

5.9 Sensor-planning experiment 2: pose estimation results . . . . . . . . . . . . . . . . . . 77

5.10 Sensor-planning experiment 2: model probability values . . . . . . . . . . . . . . . . . 78

5.11 Sensor-planning experiment 2: screenshot . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Object-search platform setup and color histogram analysis . . . . . . . . . . . . . . . 83

6.2 Object-search sensing hemisphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Object-search costmap generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Object-search data process �ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Object-search experimental object models . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 Object-search experimental results (varied height) . . . . . . . . . . . . . . . . . . . . 89

6.7 Object-search experimental results (obstacle avoidance) . . . . . . . . . . . . . . . . . 90

6.8 Object-search experimental object models (additional) . . . . . . . . . . . . . . . . . . 91

6.9 Object-search experimental results (additional objects) . . . . . . . . . . . . . . . . . 91

6.10 Object-search failed search experiment (tin can) . . . . . . . . . . . . . . . . . . . . . 92

6.11 Object-search failed search experiment (penguin cup) . . . . . . . . . . . . . . . . . . 93

6.12 Object-search simulated multiroom search . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.13 Object-search simulated multiroom search (cont.) . . . . . . . . . . . . . . . . . . . . 96



xi

List of Tables

4.1 SPPEMI case study table of models, (m=4, n=6) . . . . . . . . . . . . . . . . . . . . 54

4.2 SPPEMI case study table of models, (m=6, n=8) . . . . . . . . . . . . . . . . . . . . 55

4.3 SPPEMI case study table of models, (m=8, n=10) . . . . . . . . . . . . . . . . . . . . 56

5.1 Probability lookup table for true model M2 . . . . . . . . . . . . . . . . . . . . . . . . 65



1

Chapter 1

Introduction

This thesis develops new methodologies for 3D object detection and tracking in vision with applica-

tions to sensor planning and object search. Motivation for this research will be discussed, highlighting

the need for the main contributions of this work. Previous works will brie�y be reviewed and an

outline of the thesis contributions made will be given.

1.1 Motivation

A large part of robot autonomy is characterized by perception, the ability of a robot to sense its

environment and interpret it in an intelligent way. While humans have been able to solve this

problem with only a few types of proprioceptive and exteroceptive sensors, the robotic systems of

today typically require a large number of exteroceptive sensors coupled with a signi�cant source

of computing power. Nonetheless, signi�cant advances in perception have still been made with

applications in military defense, assisted driving, and even home living.

One of the rapidly maturing areas of robot perception has been in the �eld of computer vision

where the primary sensor is a camera and sensory data comes in the form of images � grayscale

and color. Historically, limitations in computing bandwidth have restricted many algorithms to

o�-line batch implementation, with real-time processing issues less well explored. Not until recently,

the expense of high-quality, precision cameras limited many algorithms to using a single monocular

camera � sacri�cing the richness of data available from a second camera (such as in stereovision

applications).

With the recent advent of faster computers and cheaper cameras, real-time processing of vision

data from multiple cameras has become much more common in robotics research over the past

decade. A particular problem enabled by the availability of modern hardware is 3D object-detection

with tracking. While past methods have achieved robust object-detection in static images ([18]

provides a good review), the following section will discuss the recent advances that have extended

existing methods to real-time 6D pose estimation.

The focus of the research presented here is to consider the areas of robot perception that can
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bene�t from the capabilities of real-time 3D object detection and tracking. Of particular interest

is the area of sensor-planning for model identi�cation and object-search. Sensor-planning for model

identi�cation considers the problem of planning sensor movements to acquire improved sensory data

in order to identify an unknown model. As the next section will discuss, many existing methods have

yet to incorporate full object pose estimation into the analyses and as such, model identi�cation is

often limited to only static 2D images. Similarly, in the area of object-search � i.e., the problem

of �nding a speci�c object in a given environment � current methods have yet to fully integrate

complete 6D pose estimation of the searched object, thus limiting the possibility of accurate object

placement in a global coordinate frame, a useful capability for service robots.

1.2 Background and Related Works

The problem of 3D object detection and tracking is not a new one and has seen its fair share of

proposed solutions. However, much of the prior work on object detection has focused on o�-line

computation thereby limiting the real-time �tracking� aspect. In this context of 3D object recognition,

most approaches �rst detect and recognize an object, then estimate its 6D pose. Of the developed

methods, a majority of them can be classi�ed as either appearance based ([23], [26], [43], [45])

where descriptors (i.e., features) derived from images of the object are utilized, or geometrical based

([7], [28], [36], [50]) where geometric models are constructed for each object and shape-matching

techniques (e.g., aspect-graphs) are then used. In either case, a training-phase is �rst implemented

whereby the object is �rst learned from varying viewpoints � a process that accounts for detection

from any number of possible viewing angles. While a majority of research has shifted towards

appearance-based methods due to the success of various approaches in recent years, the related

problem of feature-correspondence (i.e., matching features detected in the image with the correct

features on the known object) has become equally important ([9]).

Quite notable among appearance-based methods is the work by Ponce et al. ([43], [45]) who

present an o�-line method based on a collection of small planar patches (a type of visual invariant

that incorporates the 3D spatial relationships to other object features as collected from varying

viewpoints around the object). Ferrari et al. in [15] and Kushal and Ponce in [23] improve on the

work of [45] by utilizing multiple model views and groups of aggregate matches (GAMs) � groups

of matched sets that serve as the unit of matching between model views and the test image. For

each initial match set, the authors implement a series of expansion and contraction phases that

explore nearby regions in the model view and the test image to collect more matches and prune

away mismatches. While the work of these authors is notable, the training phase associated with

these methods is an involved process that takes on the order of hours to generate models for each

object.
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While much ground has been gained in the area of object recognition in recent years, it is not

to say that previous e�orts ignored real-time approaches to object tracking with pose estimation

altogether. Most notable is the early work by DeMenthon and Davis in [10] who �rst developed the

POSIT algorithm, a method of determining the 6D pose of an object given four or more noncoplanar

feature points in the image matched to geometric points on the object. While their approach is fast

and simple and can be implemented with a basic monocular camera, it is highly susceptible to

instability caused by mismatches.

More recently, new advances are still being made such as the work by Naja� et al. in [36].

These authors propose an approach similar to DeMenthon and Davis, but which is more robust to

mismatches. Their method utilizes a set of calibrated images of the object with the 3D geometric

model, and image feature correspondence is achieved via a combination of PCA and a Bayesian

classi�cation framework where a 1.5�3 Hz tracking rate is possible with a monocular camera. Vac-

chetti et al. in [54] take an approach similar to [36], yet achieve tracking rates at about 25�30 Hz

for 320×240 sized images from a monocular camera. In their approach, batch methods are used to

generate a 3D object model from a series of keyframes, and object pose estimation is realized by

matching features between the test image and the closest keyframe. Drawbacks of their approach,

however, are the requirement that the object be �close� to a known keyframe to ensure robust object

registration and the algorithm's sensitivity to scale and rotation changes � which is a direct result

of the corner patch features chosen by the authors.

With the introduction of SIFT features in 1999 by David Lowe [29], many previous problems

associated with feature mismatches caused by scale or rotational variance have been alleviated,

allowing greater accuracy and stability. Panin and Knoll [40] introduce a real-time solution that is

invariant to scale and rotation via SIFT. Their approach uses a monocular camera and SIFT features

to detect and initialize an object with sustained tracking achieved by switching to a contour-based

tracking algorithm. Choi et al. in [5] extend the work of Panin and Knoll by demonstrating real-

time 6D pose estimation and tracking for both monocular and stereo cameras. Rather than applying

SIFT-base feature matching on each frame, the object pose is only initialized using SIFT (similar to

the approach of [40]), and then a Lucas-Kanade (LK) tracker [31] is used. Pose estimation for the

monocular case is done using the POSIT algorithm [10], while a closed-form solution involving unit

quaternions handles the stereo case. However, their proposed system is susceptible to large delays

caused by SIFT reinitialization when tracks are lost due to large object motions.

These recent works have made clear the fact that the quality of pose estimation and the speed

of tracking is directly related to the type of feature used. SIFT features o�er a high probability of

accurate feature correspondence, but come at the cost of computational speed. Similarly while other

features like Harris corner patches o�er a signi�cant speedup in computational speed, they come at

a cost of reduced quality in feature correspondences. This posits the need for a real-time object pose
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estimation method that is both accurate in feature correspondence and fast in tracking rate. The

contributions of chapter 3 will highlight a particular approach that does exactly this.

One important research area that can bene�t from real-time 3D object detection and tracking is

sensor planning. While the subject of sensor planning itself is vast, two topics are relevant to this

thesis: model identi�cation and object search. Sensor planning for model identi�cation considers the

situation when not all of an object model may be visible, and the visible parts may not be discernible

from another known object. It investigates solutions to the question: where does one move next to

improve the quality of sensing and best discern what object is being seen? Sensor planning for object

search considers the problem of �nding a known object in a given environment with or without prior

information on its whereabouts. It investigates solutions to the similar question: how should one

move next to improve the probability of object detection and localization?

In previous years, the problem of sensor planning has been considered in the context of various

applications: autonomous driving ([52], [41]), object search ([56]), visual mapping ([8],[51]), multiple

target detection and tracking ([20], [48], [22]). The application of sensor planning to the problem

of model identi�cation has also been investigated to some extent. In computer vision, the problem

is often categorized as an active recognition problem ([4], [44]), i.e., determining the appropriate

set of actions to execute for a visual agent to gather enough evidence to disambiguate initial object

hypotheses. Recently, the application of information theoretic concepts has been investigated as a

possible solution in o�-line and on-line methods to this problem.

Arbel et al. [1] consider an approach that discretizes the viewing sphere around an unidenti�ed

object and populates grid cells with entropy values. Notable in their work is that sensor planning

for object recognition is achieved by selection of the most informative view based on the precom-

puted entropy maps. Paletta et al. in [39] take a more practical approach and present a Bayesian

fusion method that incorporates the temporal context of observations by integrating multiple recog-

nition results. Through a Markov Decision process, a planning scheme is selected that minimizes

the expected entropy loss. Their proposed real-time algorithm shows interesting results for object

classi�cation using Bayesian sequential recognition. However, their work lacks in its ability to track

and estimate the 6D continuous pose of model objects.

In [11], Denzler and Brown choose mutual-information as their cost metric and present a similar

sequential decision-making process for choosing both optimal gaze-control inputs and viewpoint

action selections. Monte Carlo sampling is employed to approximate an analytical solution, which

partly adds to the computational complexity of their approach but yields rather accurate results for

their chosen features � which are the same features as [39]. More recently Eidenberger et al. in [12]

present a sequential Bayesian method for active object recognition with a cost metric de�ned as the

upper bound of the di�erential entropy. Their Bayesian analysis is done in such a way that the prior

and posterior distributions of the state variable are framed as mixtures of Gaussians, allowing for
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fast parametric updates. Additionally, their framework allows for (planar) pose estimation of each

object that is shown in simulation. However, their presented experiments on real data are limited

and real-time capabilities with 6D pose estimation have yet to be explored.

Aside from information theoretic approaches to the active recognition problem, advances have

been made with other approaches as well. In recent years, Laporte et al. in [25] considered the active

recognition problem in the context of Fisher's linear discriminant analysis. The authors incorporated

a separability measure between the expected observations of one model and the observations of all

the other models in the set for all possible viewpoints. As later detailed in [24], their introduced

measure can be computed o�-line which facilitates fast viewpoint selection. However, their presented

approach su�ers when applied to real data images, as opposed to simulated views.

It is clear that the problem of sensor planning for model identi�cation has yet to incorporate

simultaneous, on-line 6D pose estimation in any of the above methods. Chapter 4 will present an

information theoretic approach to sensor planning that shows via Bayesian analysis that object pose

estimation is not only an added feature but a necessary step to the next-best-view calculation. Fur-

thermore, the object itself is no longer con�ned to a stationarity assumption and active recognition

in a dynamic setting is explored.

The problem of object-search has been considered as an element of sensor planning research in

recent years as well. Ye and Tsotsos in [56] developed one of the �rst systematic frameworks for

object search that incorporated both sensor planning and object recognition. Their method was

developed for a two-wheeled robot equipped with a pan-tilt-zoom camera and a laser eye. Their

spherically arranged training data set encodes the probability that a given sensor movement on a

sphere surrounding the object will improve detection. Their computationally expensive method can

be tedious to implement given its need for the experimental construction of a detection function for

all sensing parameters (pan, tilt, zoom, robot orientation) under various lighting conditions, object

orientations, and background e�ects. Furthermore, the object recognition function is limited to a

2D technique using a blob �nder based on pixel intensity.

More recently, Saidi et al. ([46], [47]) extend the work of Ye and Tsotsos to a humanoid robot

where object recognition is carried out via 3D SIFT features. They present a visual attention

framework that relies upon pan-tilt-zoom capabilities to generate 3D data of the sensed environment.

They formulate search as the problem of optimizing sensor actions and trajectories with respect to

a utility function that incorporates target detection probability, new information gain, and motion

cost. A visibility map similar to the sensed sphere of [56] �lters uninformative sensing actions.

While their approach is a signi�cant improvement on the work of Ye and Tsotsos, the visibility

map calculations are computationally expensive and their utility function lacks a formal Bayesian

framework.

The probabilistic approach used by Chung et al. in [6] to solve an abstract object search problem
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provides the Bayesian framework lacking in [47]. There the authors develop a recursive Bayes' Filter

for updating the probability of object existence in each cell of a grid map, and various di�erent search

strategies are considered with the saccadic search method yielding the minimum average search time

� an approach that mimics the search patterns in human visual attention ([19]). Nonetheless, their

method must be further developed for any speci�c implementation.

Petersson et al. in [42] consider the problem of object search in the context of grasping and ma-

nipulation. They use a support vector machine for object recognition on a robotic platform equipped

with an arm, a laser scanner, sonar, a torque sensor, and a color camera. Once recognized, the ob-

ject is tracked in a window of attention. Though the problem of object search with manipulation is

addressed, a crude object recognition system is used, and object pose estimation is limited to the

process of aligning the current object image with a prede�ned reference image � an approach that

works only on piecewise planar objects in positions that match the reference image and pose.

Building and improving upon the work of Petersson et al., Ekvall et al. [14] and Lopez et

al. [27] decompose the object search problem into global and local search stages. Their coarse

global search employed Receptive Field Coocurrence Histograms [13] to identify potential object

locations. A mobile robot equipped with laser, sonar, and a pan-tilt-zoom camera then zooms into

each hypothesized location to apply a localized object search algorithm (based on SIFT features).

An a priori map built via SLAM is used to establish likely locations of known objects. Navigation

is restricted to planning over a graph of predetermined �free-space� nodes. This approach simpli�es

the methods of [56] and [47] and allows for simultaneous search of multiple objects. However, their

approach is limited to planar objects whose pose is crudely approximated by a single laser scan point

in [14] and later moderately re�ned in [27] to a distance measure based on comparing the number

of occupied pixels in the image against a reference image. Furthermore, much prior information is

assumed given or computed o�-line (e.g., the SLAM-based map and the set of navigation nodes).

The contributions of chapter 6 will improve on the work of [56] by using a 3D object detector and

will also simplify the method of [47] by replacing the computationally expensive 3D visibility map

and rating function with a global and local search technique that updates the grid-based probability

map incorporated from [6].

1.3 Contributions and Thesis Organization

The contributions and organization of this thesis are as follows. Chapter 2 establishes technical

background that supports the contributions in later chapters. It presents existing techniques and

strategies used in control theory and computer vision.

Chapter 3 presents a novel approach to real-time 6D pose estimation and tracking of 3D objects

using stereo. In the majority of the works noted above, the focus has been on achieving pose estima-
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tion with monocular cameras � mainly due to the computational (and monetary) costs associated

with high-�delity stereo cameras at the time. The contributions in this chapter will extend the work

of previous authors by showing how high-�delity stereo-cameras can be an e�cient means to ob-

taining robust, real-time object pose tracking. This chapter also describes how 3D geometric object

models can be created in relatively short order time (minutes) using a stereo-camera. Furthermore,

the experimental results show that robust tracking can be achieved using SIFT features at each time

step (not just pose initialization, as was done in [40] and [5]), increasing the �delity of the overall

system to handling occlusions, changes in intensity, rotation, and scale. Lastly, a novel method for

determining ground truth 6D pose estimates will also be introduced which does not require the pur-

chase of third-party software as in [54], simulated experimental results as in [40], or distinguishing

markers for computer vision toolkits as in [5].

Chapter 4 presents a novel approach to sensor planning that incorporates the 6D pose esti-

mation algorithm developed in chapter 3. Using Bayesian analysis, the Sensor-Planning-for-Pose-

Estimation-and-Model-Identi�cation (SPPEMI) algorithm is derived. It solves for the optimal action

for the next-best-view which optimizes an information gain metric. While the previous works of [1],

[11], [12], [25], [38] and others considered static objects in con�ned workspaces, the derived approach

makes no assumptions on the workspace, allowing for mobile objects sensed from mobile platforms.

Chapter 5 presents two speci�c experiments to highlight the applicability of the algorithm in

chapter 4 in real-time. The �rst experiment considers a mobile object and mobile agent both of which

are constrained in their movements to the projected viewing sphere, illustrating the capabilities of

the overall SPPEMI algorithm to consider mobile objects. In the second experiment, unconstrained

motion of the object and the viewing agent are considered demonstrating the success of the overall

method to initialize a potential object, plan a sensor motion for improved sensing, and simultaneously

track and estimate an object's pose all while executing the planned sensing action.

Chapter 6 considers another application of the 3D tracking algorithm of chapter 3 to the object-

search problem, where a global and local search decomposition is used to not only locate the object

but accurately estimate its 6D pose as well. A method is presented whereby an autonomous mobile

robot searches for a 3D object using an onboard stereo camera sensor mounted on a pan-tilt head and

estimates the 6D pose of the object once found. Search e�ciency is realized by the combination of

a coarse-scale global search coupled with a �ne-scale local search over a grid-based probability map

which is updated using Bayesian recursion methods. A grid-based costmap is also populated from

stereo and used to facilitate obstacle avoidance and path-planning. Experimental results obtained

from the use of this method on a mobile robot are also presented in this chapter to validate the

approach, con�rming that the search strategy can be carried out with modest computation.

Finally, chapter 7 summarizes the thesis and discusses directions of future work and research.
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Chapter 2

Background

This chapter reviews fundamental concepts, algorithms, and necessary equations that support the

overall work of this thesis. Since this work entails a great deal of 3D position estimation, section 2.1

presents a brief outline of the Bayes' Filter, a recursive tracking �lter derived from the principles of

Bayes' Law and is a form of Bayesian Sequential Updating. Section 2.2 presents an overview of SIFT

(Scale-Invariant-Feature-Transform) features, a vision-based feature set �rst developed by David

Lowe ([30]) and used in this work (and by other researchers as well) for their strong discriminating

capabilities that greatly simplify the data association problem between measurements in images

and the state elements to which they measure. Section 2.3 presents an overview of another type of

vision-based feature developed by C. Harris and M. Stephens in [17], known as the Harris corner

detector.1 Harris corners are computationally a�ordable (and thus faster), though less robust to

scale and rotation variance than SIFT features. Lastly, a major element of this thesis relies on

accurate stereo-reprojection of 2D pixels to their corresponding 3D location in Cartesian space.

Section 2.4 presents a brief review of epipolar geometry as applied to two optically aligned cameras

which enables stereo vision in the most common sense.

2.1 Bayes' Filter

Bayes' Filter is a recursive algorithm derived from Bayes' Law that allows the state of a system

to be represented by a probability distribution or a belief. In the �eld of robotics, the state of the

system is often de�ned as the position and orientation of the robot, and the Bayes' Filter is a means

of incorporating sensory data to update and continuously estimate the pose of the robot.

Let Xk ∈ Rn×1 be a continuous random variable representing the system state at the k-th

timestep, D1:k ∈ Rm×1 a continuous random variable representing the direct or indirect measure-

ments of the system from timestep 1 up to and including timestep k, and u1:k ∈ Rb×1 the corre-

sponding control inputs to the system.2 Then Bayes Filter is a recursive algorithm which cycles

1Harris corners are also sometimes referred to as Kanade-Tomasi corners, where the latter authors developed an
improved version of the original algorithm by Harris and Stephens, by replacing the original corner measure with the
minimum eigenvalue.

2Throughout the remainder of the thesis, the notation of 1 : k will always be used to indicate the set of measure-
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between the following two steps:

DYNAMIC PREDICTION:

p(Xk|D1:k−1,u1:k−1) =
∫
p(Xk|Xk−1,D1:k−1,u1:k−1)p(Xk−1|D1:k−1,u1:k−1)dXk−1 , (2.1)

MEASUREMENT UPDATE:

p(Xk|D1:k,u1:k−1) =
p(Dk|Xk,D1:k−1,u1:k−1)p(Xk|D1:k−1,u1:k−1)∫
p(Dk|X̂k,D1:k−1,u1:k−1)p(X̂k|D1:k−1,u1:k−1)dX̂k

. (2.2)

2.1.1 The Kalman Filter

As an exercise, one can consider the particular case when the state is governed by linear dynamics

and the measurements linearly dependent on the state of the system with only Gaussian noise. In

this particular case, two propositions will prove useful in analytically solving the expressions of Bayes

Filter. The propositions will be stated here and the proofs can be found in [53].

The �rst proposition deals with the integral of the product of two multivariate normal distribu-

tions and is useful in solving the dynamic prediction step of the �lter:

Proposition 2.1: Let N(x; f(y,u),Σx) be a normal distribution over the continuous random vari-

able x with mean f(y,u) and covariance Σx. Let f(y,u) be a linear function in y and u of the

following form:

f(y,u) = Ay + Bu + C .

Similarly, let N(y;µy,Σy) be a normal distribution over the continuous random variable y with

mean µy and covariance Σy. Then the integral over y of the product of both normal distributions is

itself a normal distribution, with mean and covariance given by

N(x;µ∗,Σ∗) =
∫
N(x; f(y,u),Σx) ·N(y;µy,Σy)dy ,

µ∗ = f(µy,u) ,

Σ∗ = AΣyAT + Σx .

The second proposition provides an analytical solution to the product of two multivariate normal

distributions, and is useful in solving the measurement update step:

Proposition 2.2: Let N(y; f(x,u),Σy) be a normal distribution over the continuous random vari-

able y with mean f(x,u) and covariance Σy. Let f(x,u) be a linear function in x and u of the

ments, controls, etc. from timestep 1 up to and including timestep k.
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following form:

f(x,u) = Cx + Du .

Similarly, let N(x;µx,Σx) be a normal distribution over the continuous random variable x with mean

µx and covariance Σx. Then the product of both normal distributions is itself a normal distribution:

N(x;µ∗,Σ∗) = N(y; f(x,u),Σy) ·N(x;µx,Σx) ,

where:

µ∗ = µx + K(y − f(µx,u)) ,

Σ∗ = (I−K ·C)Σx ,

K = ΣxCT (C · Σx ·CT + Σy)−1 .

With the above propositions de�ned, now consider the following system dynamic model and mea-

surement model:

Xk = A ·Xk−1 + B · uk−1 + wk−1 , (2.3)

Dk = C ·Xk + vk , (2.4)

where A ∈ Rn×n, B ∈ Rn×b, and C ∈ Rm×n are state independent matrices and wk−1 ∈ Rn×1

and vk−1 ∈ Rm×1 represent Gaussian white process and measurement noise governed by covariance

matrices Q ∈ Rn×n and R ∈ Rm×m, respectively. The Bayes' Filter as de�ned by equations (2.1)

and (2.2) can be analytically solved using propositions 2.1 and 2.2. Beginning with the dynamic

prediction step, the belief of the state of the system is predicted forward as follows:

p(Xk|D1:k−1,u1:k−1) =
∫
N(Xk|A ·Xk−1 + B · uk−1; Q) ·N(Xk−1|µk−1; Σk−1)dXk−1

= N(Xk|µk; Σk) ,

where the terms µk and Σk are given by:

µk = A · µk−1 + B · uk−1 , (2.5)

Σk = A · Σk−1 ·AT + Q . (2.6)

The measurement update step of Bayes Filter works to integrate received sensor measurements
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into the belief of the state of the system:

p(Xk|D1:k,u1:k−1) = η ·N(Dk|C ·Xk; R) · p(Xk|D1:k−1,u1:k−1)

= η ·N(Dk|C ·Xk; R) ·N(Xk|µk; Σk)

= N(Xk|µk; Σk) ,

where the terms µk and Σk are given by

µk = µk + Kk(Dk −C · µk) , (2.7)

Σk = (I−Kk ·C)Σk , (2.8)

Kk = ΣkCT (C · Σk ·CT + R)−1 . (2.9)

As should be obvious, the Bayes Filter reduces to the well-known Kalman Filter under linear system,

Gaussian noise assumptions. Equations(2.5) and (2.6) implement the Kalman prediction step and

equations (2.7) and (2.8) implement the Kalman update step with the dynamic Kalman gain given

by equation (2.9). Note that the Kalman gain is a matrix that optimally weights the term Dk−C·µ−k
(often referred to as the innovation or the measurement residual) such as to minimize the covariance

of the error between the true state of the system and the best estimate of that state. While the

derivation of the Kalman Filter as shown here is brief, references [32] and [55] provide more rigorous

derivations.

2.1.2 The Extended Kalman Filter

Now consider the case when the system to be estimated does not have linear dynamics nor are the

measurements linearly dependent on the state. Bayes' Filter can still be applied by approximating

the system as locally linear.3 Since the system is assumed non-linear, the system dynamic model

and measurement model are di�erent and generalized to be

Xk = F(Xk−1,uk−1,wk−1) , (2.10)

Dk = H(Xk,vk) , (2.11)

where the variables Xk, uk−1, wk−1(∼ N(0; Q)), and vk(∼ N(0; R)) are as previously de�ned for

the linear case and F(·) ∈ Rn×1 and H(·) ∈ Rm×1 are non-linear functions that depend on the

state and control variables and process/measurement noise. By applying the linear approximations,

3The particle �lter is another method of applying Bayes' Filter to non-linear systems. However, they can be
computationally expensive, often requiring a large number of particles for accurate results which may not always be
well suited for real-time applications. As such, only the Extended Kalman Filter will be discussed here since that was
the method used to implement Bayes' Filter in the experimental results of later chapters. Reference [53] provides a
good review of particle �lters for state estimation.
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equations (2.10) and (2.11) can be reduced to

Xk ≈ Ak ·Xk−1 + Bk · uk−1 ,

Dk ≈ Ck ·Xk ,

where the matrices Ak, Bk, and Ck are given by

Ak =
∂F

∂xk−1

∣∣∣∣∣
x̂k−1,uk−1

, Bk =
∂F

∂xk−1

∣∣∣∣∣
x̂k−1,uk−1

, Ck =
∂H
∂xk−1

∣∣∣∣∣
x̂k−1

.

With the linear approximations as de�ned above, the Bayes' Filter is then carried out in a manner

analogous to the linear case. Beginning with the dynamic prediction step, the belief of the state of

the system is predicted forward as follows:

p(Xk|D1:k−1,u1:k−1) =
∫
N(Xk|F(Xk−1,uk−1,0); Q) ·N(Xk−1|µk−1; Σk−1)dXk−1

= N(Xk|µk; Σk) ,

where the terms µk and Σk are given by

µk = F(µk−1,uk−1,0) , (2.12)

Σk = Ak−1 · Σk−1 ·AT
k−1 + Q . (2.13)

The measurement update step of Bayes Filter is then implemented with linear approximations as

follows:

p(Xk|D1:k,u1:k−1) = η ·N(Dk|H(Xk,0); R) · p(Xk|D1:k−1,u1:k−1)

= η ·N(Dk|H(Xk,0); R) ·N(Xk|µk; Σk)

= N(Xk|µk; Σk) ,

where the terms µk and Σk (and the Kalman Gain Kk) are given by

µk = µk + Kk(Dk −H(µk,0)) , (2.14)

Σk = (I−Kk ·C)Σk , (2.15)

Kk = ΣkCT (C · Σk ·CT + R)−1 .

As was obvious in the linear case, the non-linear system (locally approximated as linear) reduces to

the Extended Kalman Filter (EKF) algorithm. equations (2.12) and (2.13) correspond to the EKF
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Figure 2.1: (a) Interest point detection is achieved by applying the Di�erence of Gaussians (DoG)
operator in between adjacent levels of Gaussian blurred images within the same scale. The set of
Gaussian blurred images within a scale de�ne an octave. Each additional octave is then created
by downsampling the image and repeating the calculations of determining the DoG images. (b)
The feature descriptor is composed of an orientation histogram generated over a 4x4 sample region
computed from a 16x16 sample array, though shown in the �gure is a 2x2 region from an 8x8 sample
array.

prediction step and equations (2.14) and (2.15) correspond to the EKF update step. It is important

to note that the EKF is an adhoc approach of approximating non-linear systems as linear. In many

cases, the system does not behave locally linear and the EKF should not be applied. Furthermore,

the system and measurement noise will not necessarily follow a normal distribution after going

through the non-linear transforms of F(·) and H(·) and is fundamentally inaccurate. Nonetheless,

rather good results can be achieved for state estimation of non-linear systems with these linear

approximations.

2.2 SIFT Features

SIFT features are distinctive, invariant features extracted from images that allow for e�cient match-

ing with various other viewpoints of the extracted features that may exist in the same or di�erent

scene. The features are invariant to scale, rotation, illumination, and noise and have been shown

to yield a high probability of matching to sets of extracted (or known) features. As the invention

of SIFT features came about from David Lowe's seminal paper in 1999 [29], much of the review

presented here is a summary of the work presented in that paper. For further details, the reader is
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encouraged to read through Lowe's discussion and experimental results in the paper [30].

The calculation of SIFT features is done in four basic steps:

1. Interest point detection in scale-space: Candidate interest points are selected from the

image by selecting those image pixels which yield either a local maxima or minima when

compared across several image scales.

2. Interest point selection and localization: Of the set of candidate interest points found

in Step 1, a stable set is selected and further localized in image space.

3. Orientation assignment: For all stable interest points selected, an orientation based on

local image gradient directions and magnitudes is assigned. If multiple viable orientations

exist, then new interest points are generated with identical localized positions and scale, yet

di�ering orientation.

4. Keypoint descriptor: To handle invariance to rotation, each interest point is rotated up to

360◦ in 8 steps, relative to the interest point dominant orientation. For each stepped rotation

of the interest point, an orientation histogram is generated over a 4x4 sample region computed

from a 16x16 sample array. This yields a 128-element descriptor.

Each of the above steps will now be discussed in further detail to provide a better understanding of

how the exact features achieve invariance properties.

2.2.1 Interest Point Detection in Scale-Space

Interest point detection in scale-space is achieved by applying a Di�erence of Gaussians (DoG)

operator between various scales of the image. This is done by �rst considering the original image

and creating an octave of Gaussian blurred copies of the original image, with each copy convolved

with a Gaussian at a di�ering variance o�set by a multiplicative constant k; that is

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) ,

where G(x, y, kiσ) is given by

G(x, y, kiσ) =
1

2πσ2
i

e−(x2+y2)/(2(kiσ)2) .

In between adjacent copies of the image (yet within the same scale) the DoG operator is then applied,

as seen in Figure 2.1(a). Once an octave of images is completed with the associated DoG images

generated, the image is downsampled and a new octave is generated by repeating the above process.

In creating these octaves of images, interest points are easily highlighted in each DoG image as local

maxima and minima when compared with adjacent scales.
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2.2.2 Interest Point Selection and Localization

Once a set of candidate interest points is generated, the location of each point is then interpolated

via a second-order Taylor expansion to pinpoint the exact maxima or minima location, x̂, in image

space:

D(x) = D +
∂D

∂x

T

x +
1
2
xT

∂2D

∂x2
x ,

x̂ = −∂
2D

∂x2

−1
∂D

∂x
.

Before determining a candidate point as a valid interest point, the ratio of eigenvalues of principal

curvature is checked for each point, to ensure the interest point does not lie simply on an edge. To

avoid direct computation of the eigenvalues, Lowe borrows from the approach of Harris and Stephens

in [17] and needs only to calculate the trace and determinant of the Hessian matrix and subsequently

check the ratio of the two against some threshold, r, i.e.,

H =

 Dxx Dxy

Dyx Dyy

 ,
T r(H)2

Det(H)
<

(r + 1)2

r
,

which in Lowe's implementation, the ratio r is set to r = 10. Once the interest points are selected,

the orientation of the interest point is next set.

2.2.3 Orientation Assignment

For each interest point selected with some associated scale, the local orientation of image gradients

is then considered. That is, for the interest point (xi, yi), the corresponding Gaussian blurred

image closest in scale is selected. A histogram of gradient orientations (organized into 36 bins to

span the 360◦ of orientation) is then generated for a small neighborhood of pixels surrounding the

interest point. Each entry to the histogram is weighted by the magnitude of the gradient and a

Gaussian-shaped circular window. Once the histogram is generated, the peak orientation is selected

and tagged to the interest point. In the event that the histogram has multiple peaks, a check is

done to see if additional peaks are within 80% of the peak value. If that condition is satis�ed,

a second interest point is generated with the same maxima/minima pixel location and scale, yet

di�ering orientation. The purpose of this step is to identify those features which may have large

image gradients in several directions; enough to merit the creation of another descriptor to reduce

the e�ects of a feature mismatch later on.
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Figure 2.2: The above display shows the quality of feature matching achieved with SIFT features
and the Best-Bin-First search algorithm. The object to recognize is displayed in the bottom right
image. In the top left image, a cluttered and rotated scene containing the object is presented. Note
the large number of matches (shown in blue) that exist despite the distractors, rotation, and partial
occlusion.

2.2.4 Keypoint Descriptor

In this �nal step, invariance to rotation is achieved via careful construction of the interest point

descriptor. This is done by rotating the interest point 360◦ in 8 rotation steps, relative to the interest

point orientation assigned in the previous step. For each stepped rotation, an orientation histogram

is generated over a 4x4 sample region computed from a 16x16 sample array. This yields a 128-element

descriptor which improves the probability of accurately establishing feature correspondences across

various rotations of the image scene. Figure 2.1(b) illustrates schematically how the orientation

histograms might be computed for a given orientation and what the resulting sample region might

look like.

2.2.5 Matching

Establishing feature correspondences is typically done by comparing the Euclidean distance between

the 128-element interest point descriptors of currently detected SIFT features and those SIFT fea-

tures known to exist in some database. The correspondence which yields the lowest Euclidean error is

typically selected as the correct correspondence and the matched database feature is then eliminated

from further correspondence consideration. However, the lowest Euclidean distance is not always the

best match criterion to use, as some features may prove more discriminating than others with poor
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discriminating features matching quite often to spurious features or just noise. Furthermore, exhaus-

tive search can be rather computationally expensive, especially when the database of features reaches

an order of several hundred. Thus, to improve the rate of determining feature correspondences, two

simpli�cations are often proposed when implementing matching of SIFT features:

1. a match criteria based not on lowest Euclidean distance, but the ratio of Euclidean distance

of the nearest neighbor and the second nearest neighbor,

2. using a Best-Bin-First search algorithm that replaces exhaustive search.

The motivation behind the �rst simpli�cation is that often low discriminating SIFT features can

yield many mismatches that are undesirable. By comparing how well a feature matches to its

nearest neighbor and its second nearest neighbor allows one to consider how far isolated the nearest

neighbor match truly is (i.e., if the ratio of the two matched distances is small enough, then a valid

correspondence is likely to have been found and should be kept).

The motivation behind the second simpli�cation is more practical for implementation purposes.

The Best-Bin-First search algorithm returns with high probability a feature's nearest neighbor by

utilizing an ordered k-d tree. The search order itself requires the use of a heap-based priority queue

that yields a speedup of search time by about two orders of magnitude. Figure 2.2 presents an

example of the matching results for SIFT features used on a given object. The object to be matched

is shown in the bottom right image and the presented scene image is shown in the top left. Note

that despite the rotation of the scene image and large number of distractors, robust matching is still

achieved.

2.3 Harris Corner Detectors

Corner detection is perhaps one of the �rst forms of feature extraction from images used in the �eld

of computer vision. It began with the seminal work of Hans Moravec [34] whose approach to corner

detection was to consider for each pixel a patch centered on that pixel and computing a weighted

Sum-of-Squared-Di�erences (SSD) against a small set of neighboring patches generated by slight

variations of the center pixel in x and y:

SSD =
∑
u

∑
v

w(u, v)(I(u, v)− I(u+ x, v + y))2 ,

where w(u, v) is some nominal weight applied to the calculated Sum-of-Squared Di�erence, calculated

as a function of pixel location. Figure 2.3 illustrates the concept behind Moravec's approach. Pixels

at corners typically yield large values in all translations of x and y whereas pixels at non-corner

locations typically yield low overall values. With regards to edges, the SSD will be prominent in
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Figure 2.3: Corners are detected by generating a patch at a certain pixel location and calculating
a Sum-of-Squared-Di�erence (SSD) between that patch and a set of neighboring patches. Pixels
at corners (e.g., the red patch) typically yield large values in all translations of x and y whereas
pixels at non-corner locations (i.e., noise) typically yield low overall values. With regards to edges
(e.g., the green patch), the SSD can be prominent in translations of x and y perpendicular to the
direction of the edge and low for translations of x and y along the edge.

translations of x and y perpendicular to the direction of the edge and low for translations of x and

y along the edge until it reaches the ends of the edge when it reaches a maximal SSD value. One

of the major drawbacks of Moravec's approach was that his operator was not isotropic in the sense

that if an edge ran a direction not consistent with a translation to a neighboring pixel, then it would

fail to be picked up as a corner.

In 1988, Harris and Stephens improved on the approach of Moravec in their seminal paper [17]

by making the operator isotropic by performing an analytical expansion about the shift origin:

SSD =
∑
u

∑
v

w(u, v)(I(u, v)− I(u+ x, v + y))2

≈
∑
u

∑
v

w(u, v)(Ix(u, v) · x+ Iy(u, v) · y)2 , (2.16)

where Ix = ∂I
∂xand Iy = ∂I

∂y represent the image gradients in x and y at the (u, v) pixel. Note that

equation (2.16) is often re-written in the following matrix form:

SSD ≈ [ x y ]A

 x

y

 ,
A =

∑
u

∑
v

w(u, v)

 Ix IxIy

IxIy Iy

 .

With the SSD so formed, Harris and Stephens noted that the existence of corners can be easily

deduced by the eigenvalues of the matrix A, namely that if the eigenvalues (α, β) are both large,

then the curvature of the image gradient is peaked in both directions and thus a corner exists. Note
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Figure 2.4: The above �gure illustrates the application of the Harris corner detector to a given image
shown on the left and the resultant detected corners shown in red on the right.

that this calculation holds only for one proposed shift in the center pixel by (x, y). In their proposed

operator, Harris and Stephens took a conservative approach and declared a corner exists only if the

response to their operator for all 8 possible neighboring shifts yielded a local maximum.

Lastly, to avoid computationally expensive operations for eigenvalue decomposition, an alter-

native metric is used when calculating Harris corners termed the �corner response� and is de�ned

by

CR = Det(A)− k · trace(A)2 .

This metric serves as a feasible alternative to the eigenvalue comparison, with the constant k often

chosen in the range of 0.04− 0.15.

One of the bene�ts of the Harris corner feature, when compared to more sophisticated features

like SIFT, is its speed. Figure 2.4 illustrates a simple application of the Harris operator to a given

image scene, which is a 640×480 image that took 0.04 s to compute roughly 300 corners on a modest

laptop computer with a 1.86 GHz processor.

2.4 Stereo Vision

Stereo vision calculates the 3D point location in Euclidean space of the object(s) causing the pixels

in an image. While there exist many di�erent approaches to stereo-vision, the method reviewed here

will consider the common case of two cameras with coplanar image planes and parallel optical axes

with aligned x-axes, a con�guration that simpli�es much of the epipolar geometry.
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Figure 2.5: The pinhole camera model commonly used to describe the interworkings of most
CMOS/CCD cameras.

2.4.1 Pinhole Camera Model

A common model used for most cameras is the pinhole-camera model, as shown in Fig. 2.5. The

model consists of an image plane, some distance f � known as the focal length and typically measured

in pixels � from the center of projection, denoted by O. Image coordinates are represented in pixels

(x, y) measured relative to the image center (cx,cy). Using similar triangles, a point in 3D Euclidean

space (X,Y, Z) can be transformed into image coordinates using the following relation:

x =
f ·X
Z

, (2.17)

y =
f · Y
Z

. (2.18)

Note that going from 3D point locations to 2D image locations is a straightforward process, yet

the converse is not possible unless the depth Z of the (x, y) pixel is known, or another equation is

introduced. Alternatively, with a second camera, this slight complication can be remedied.

2.4.2 Two Pinhole Camera Models and Epipolar Constraints

Consider the diagram of Fig. 2.6(a) which shows two pinhole camera models. Let the reference

camera in this case be the right camera (an arbitrary choice). Note that in the �gure both cameras

do not have coplanar image planes. Nonetheless, this serves as a good opportunity to brie�y discuss

epipolar geometry. An epipole is de�ned as the point of intersection with the image planes of the

line joining the optical centers of both cameras (el and er in Fig. 2.6a). When a point P0 ∈ R3

is seen in the reference image, its location in the other image can potentially be anywhere along

the line (called the epipolar line) generated by the intersection of the epipolar plane (i.e., the plane

formed by the epipoles er and el and the point P0) and the image plane of the other camera.

Now consider the case of two pinhole cameras which have coplanar image planes, parallel optical
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Figure 2.6: (a) A schematic explaining the epipolar geometry associated with two pinhole camera
models. (b) For two cameras that have coplanar image planes and co-linear x− axes, the epipolar
line associated with a point P0 is reduced to the same horizontal row at which the point was detected
in the reference image.

axes, and colinear x-axes separated by a distance B as shown in Fig. 2.6b. In this particular

case, the epipolar geometry reduces the epipoles of both cameras to lying on the same rows in each

image plane. As such, the epipolar lines coincide with horizontal rows of the image and image point

correspondences can be reduced to search along rows.

The pixel distance between the image point of P0 in the reference camera (p0,r = (x0,r, y0,r)) and

the found correspondent point in the secondary image (p0,l = (x0,l, y0,l)) is de�ned as the disparity,

d0:

d0 = x0,l − x0,r .

Note that xi,l > xi,r always. Knowing the disparity and the separation distance between cameras

(baseline) B, the following relation can be used to determine the depth associated with p0,r (using

similar triangles):

Z0 =
f ·B
d0

,

and with Z0 known, the distance in x and y can be deduced from equations (2.17) and (2.18):

X0 =
x0,r · Z0

f
,

Y0 =
y0,r · Z0

f
.

By repeating the above calculations for all pixels pi,r in the reference image, a 3D depth image can

be easily produced.
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Figure 2.7: Shown is a plot of 3D stereo reprojected data using a stereo camera with a baseline of
0.12 m. The reference image is shown in the bottom right.

2.4.3 Practical Considerations

For the two pinhole-camera models described above, the simple case of both cameras having coplanar

image planes and parallel optical axes was considered. However, in all real-life situations, cameras in

that con�guration are never perfectly aligned no matter how well calibrated a stereo-camera pair may

be. Furthermore, there are barrel a�ects associated with all types of lenses that produce distortion

around the periphery of the image resulting in non-linear e�ects which invalidate the horizontal

epipolar line assumption. Lastly, the CMOS or CCD chip of the camera is never perfectly aligned

with the optical axis. As such, the focal length f is rather di�cult to come by, typically resulting

in two components that need to be accounted for: the focal length in x (fx) and the focal length in

y (fy).

Oftentimes much of these practical issues can be accounted for by calibrating the cameras and

applying transformations to the image in the form of distortion coe�cients that serve to rectify

the image and align the focal length. This process of recti�cation is generally carried out using a

calibration image (i.e., a checkerboard). Once calibrated and recti�ed, the equations derived earlier

for the nominal case of two pinhole cameras can be applied. Reference [18] provides a good review

of this standard process.

Lastly, it should be noted that one of the most di�cult steps of stereo calculations is establishing

image point correspondences between points in the reference image and points in the secondary



23

image. Despite having the epipolar constraint to aid in the overall correspondence search, there

are typically many pixels in a single row that can still match to the pixel in question. As such, a

common solution is to consider the Sum-of-Squared Di�erence (SSD) or Sum-of-Absolute Di�erence

(SAD) between the neighborhood of the pixel in the reference image and neighborhoods of all the

candidate pixels of the same row of the secondary image. By introducing a contextual aspect to

the correspondence search, the probability of accurate correspondences is increased. The underlying

assumption with this approach, however, is that the context around corresponding pixels in one

image and another are not that di�erent. This highlights some of the di�erences between wide-

baseline stereo and short-baseline stereo. With wide-baseline stereo, objects which are very close to

the camera will have a very di�erent context when considered in the reference and secondary images

separately. However, objects rather far away will have much more similar neighborhoods and thus

yield reliable 3D measurements. Conversely with short-baseline stereo, close objects will tend to

have more contextual similarities as opposed to further objects which will have too much similarity

between many candidate pixels.
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Chapter 3

Object Detection with 3D Pose

Estimation

This chapter considers the problem of real-time 3D-object detection with tracking. Much of the prior

work done in this area has focused on o�-line methods. Only in recent years have advances been

made toward real-time applications. In the sections to follow, a tracking �lter derived from Bayes'

Filter will be presented that enables 6D pose estimation given accurate data association between

measurements in the world and measurements from the known model(s).

3.1 Object Detection Context and Contribution

As mentioned in chapter 1, much prior work on object pose estimation has been developed in

the context of 3D object recognition, where the goal is to �rst detect and recognize an object,

then estimate its 6D pose ([23], [26], [43], [45]). While advances have been made toward real-

time applications, the existing approaches have either sacri�ced feature correspondence accuracy

(and thus scale and rotation invariance) for speed ([54], [5]) or computational speed for feature

correspondence accuracy ([36], [40]). The contributions in this chapter will show that both a high

accuracy of feature correspondence and fast computational speeds can be achieved using a stereo

camera with SIFT feature extraction. The details of this chapter will also illustrate how 3D object

models can be created in relatively short order time (minutes) using a stereo. Lastly, a novel method

for determining ground truth 6D pose estimates will be presented.

3.2 Framework

Consider a mobile agent equipped with a stereo-camera sensor head and some model representation

of an object (e.g., some database of features known to correspond to the model) and tasked with

detecting and tracking the object using the measurements provided only by the stereo camera in

real-time. Understanding that the object itself is free to move about the environment workspace

uncoupled from the mobile agent, this problem can be solved with a straightforward application of
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Bayes' Filter. The following subsections will detail the application of Bayes' Filter to this problem in

the most general sense, with implementation details provided as they become relevant. Experimental

results supporting the real-time capabilities of the approach will also be presented.

3.2.1 Bayes' Filter: Dynamic Prediction

Let the state Xk ∈ R6×1 be de�ned as the 3D pose of the object in the camera-reference-frame:1

Xk =
[

xTR xTθ

]T
∈ R6 , (3.1)

where xR =
[
x y z

]
describes the translational displacement of the object relative to the

camera and xθ =
[
α β γ

]
describes the orientation of the object relative to the camera (yaw

about the z-axis of the camera, pitch about the y-axis, and roll about the x-axis, respectively) .

Let the object be free to move in any direction at any given moment. As such, the motion-model

of the object can best be described by a 0th-order random-walk model:2

Xk = A·Xk−1 + η , (3.2)

where A = I6×6 the identity matrix, η ∈ R6×1 is Gaussian white process noise, with covariance

Q ∈ R6×6. However, understanding that the object itself is limited by a maximum velocity, vmax =

[ vx,max vy,max vz,max ]T , and maximum angular velocity, ωmax = [ αmax βmax γmax ]T , the

variance associated with matrix Q is upper bounded by vmax∆t and ωmax∆t, where ∆t = tk− tk−1.

In keeping with the conservative framework, let Q vary each timestep to be

Qk = diag(σ2
vmax

, σ2
ωmax

) ,

σ2
vmax

= [ (vx,max∆t)2 (vy,max∆t)2 (vz,max∆t)2 ] ,

σ2
ωmax

= [ (αmax∆t)2 (βmax∆t)2 (γmax∆t)2 ] .

The dynamic prediction step of Bayes Filter follows the form of section 2.1.1, with the predicted

state and covariance, (Xk, Pk), given by equations (2.5) and (2.6):

Xk = A ·Xk−1 , (3.3)

Pk = A ·Pk−1 ·AT + Qk , (3.4)

1The camera-reference-frame is a reference frame coincident with the frame of the pinhole camera model. Typically
either the right or left camera is chosen as the reference. Throughout this thesis, the reference camera is always chosen
to be the right camera.

2While other random walk models exist, the state of the system � which does not include velocity � limits the
chosen model to be 0th-order.
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where Xk−1 and Pk−1 de�ne the pose estimate and covariance of the previous timestep. With the

dynamic prediction model de�ned, Bayes' Filter is made complete with appropriate speci�cation of

a measurement model for the measurement update step. Recall the measurement update step will

incorporate the predicted state and covariance terms solved in equations (3.3) and (3.4) to yield a

state and covariance estimate for the kth timestep.

3.2.2 Bayes' Filter: Measurement Update

Let a current-feature, yj , be de�ned as the j-th feature3 found in the current stereo image frame

and let a database-feature, bn, be de�ned as the n-th feature belonging to the object model stored

in the database. Consider yj and bn to have the following forms:

yj =


yx

yy

yz

dy

 , bn =


bx

by

bz

db


where for yj , terms {yx, yy, yz} are the 3D coordinates of the j-th feature as de�ned in the camera-

reference-frame, and dy ∈ RU is a feature descriptor, U elements in length, used primarily to

facilitate feature correspondence. Similarly for bn, terms {bx, by, bz} are the 3D coordinates of the

n-th feature as de�ned in the object-reference-frame, and db ∈ RU is a feature descriptor used to

facilitate feature correspondences4.

Let the set of all database-features be de�ned by:

B = {bn | ∀n ∈ [1, . . . , N ]} ,

where N is the total number of features stored in the database de�ning the object. Let nk be the

number of currently detected features in the k-th camera image known to belong to the object,

and J ∈ Znk , a correspondence variable indicating which nk current-features match to the database-

features of B. The notation here will be such that the j-th current feature, yj , corresponds to the J(j)

database-feature of B, denoted by bJ(j). Note that the variable J is a measure of the best �t of the

model's database features to the current ones. It is typically determined by comparing the Euclidean

distance between the feature descriptors, dy and db, and establishing correspondences between

features that yield low distances (in descriptor space) and are below some threshold. Features in the

database are generated o�-line during a training phase and then catalogued by camera viewpoint.

3�feature� in this sense is de�ned as a 3D interest point with a descriptor of a number of possible types: SIFT
descriptor, shape context descriptor, optical �ow descriptor, etc.

4In previous approaches to object recognition and detection, the features themselves omit the 3D coordinates since
stereo camera data was not considered. Instead, the 2-D image coordinates of the feature were often used.
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Details on how the training phase is implemented and how the correspondence variable J is acquired

will be discussed later in sections 3.2.3 and 3.2.4.

Now let a data measurement be a set of 3D features, de�ned in the camera reference frame:

Dk = [ yT1 yT2 · · · yTnk
]T ,

where each 3D point measurement, yj , corresponds to a model database feature as de�ned by the

correspondence variable J. The measurement model can then be de�ned by the following set of

non-linear geometrical transforms:

Dk =


y1

y2

...

ynk

 =


xR,k + RCOk

bJ(1)

xR,k + RCOk
bJ(2)

...

xR,k + RCOk
bJ(nK)

+ ξ , (3.5)

= H(Xk,B) + ξ

where ξ ∈ R(3×nk)×1 is Gaussian white measurement noise with covariance given by Σm ∈ R3nk×3nk ,

xR,k is the translational pose of the object relative to the camera at the kth timestep (as de�ned

in equation (3.1)), and RCOk
∈ SE(3) is the rotation matrix de�ning the orientation of the object-

frame relative to the camera-frame:

RCOk
=


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ


k

.

Note that in the expression for equation (3.5), only the Cartesian coordinates are used in yj and

for bJ(i) when multiplying by RCOk
. For brevity, the following abbreviations have been used:

c(·) , cos(·) and s(·) , sin(·).

With the non-linear measurement model de�ned, the measurement update step of Bayes' Filter

follows the form of section 2.1.2, assuming that a linear approximation to equation (3.5) is valid.

The updated state and covariance terms, (Xk, Pk), are then given by equations (2.14) and (2.15):

Xk = Xk + Kk(Dk −H(Xk,B)) ,

Pk = (I−Kk ·Ck)Pk ,

where the terms Xk and Pk come from the dynamic prediction step of Bayes' Filter as de�ned in

equations (3.3) and (3.4), and the matrix Ck ∈ R(3×nk)×6 is the linearized measurement matrix
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Figure 3.1: The database of features for the object is generated during a training phase. Beginning
with the top row, far left, the training phase begins by establishing a set of coordinate axes for the
object using a calibration platform. Once established, the object axes is aligned with the axes of the
platform (top row, middle image). A bounding box is then de�ned by the user around the object
in the image (top row, far right), where feature extraction is to be applied (bottom row, far left).
Features within the bounding box though not part of the image are then removed as shown in the
bottom row, middle image (note the features on the white platform have been removed). In the �nal
step, full stereo is applied and nearest-neighbor data association is applied to assign each extracted
feature a corresponding 3D point, as de�ned in the object-reference-frame.

evaluated at the predicted pose location:

Ck =
∂H
∂Xk

∣∣∣∣∣
Xk

.

The full analytical expression for Ck can be found in Appendix A. The matrix Kk is the dynamic

Kalman gain as de�ned in equation (2.9) and reproduced here for reference:

Kk = PkCT
k (Ck ·Pk ·CT

k + Σm)−1 .

With the dynamic prediction step and measurement update step of Bayes' Filter de�ned, the recur-

sive algorithm can be implemented in a sequential fashion as discussed in section 2.1.2. However, it

is important to note that the measurement update is contingent upon accurate speci�cation of the

feature correspondence variable, J, which is discussed in section 3.2.4.

3.2.3 Training Phase

A key component of the presented framework thus far presumes that a database of 3D descriptive

features, de�ned in the object reference frame, are available available to compare against current



29

features. Kushal and Ponce [23] and Rothganger et al. [45] capture a series of viewpoints around

the object and use the viewpoints to reconstruct a 3D object model. The approach considered here

� referred to as the training-phase � follows a similar vein:

1. Using a rigidly �xed stereo camera head, the coordinate axes associated with an object reference

frame are �rst established. This is done by using a series of calibration points detected in stereo

and placed against a uniform background (Fig. 3.1, top row, left).

2. Once the object reference frame is established, the object to be identi�ed is placed in front of

the stereo camera, aligned with the coordinate axes just generated (Fig. 3.1, top row, middle).

3. When the object is stabilized and properly aligned with the anchored coordinate axes, the live

image from the reference camera is displayed and a user de�ned bounding box is drawn around

the object (Fig. 3.1, top row, right).

4. Feature extraction is then applied to the region of interest de�ned by the bounding box (Fig.

3.1, bottom row, left).

5. Once the set of features in the region of interest are generated, features not necessarily belong-

ing to the object (though still within the bounding box) are removed manually in a touch-up

step (Fig. 3.1, bottom row, middle).

6. Once extraneous extracted features are removed, the remaining features are assigned nearest

neighbor 3D stereo data points, where �nearest-neighbor� is determined via Euclidean distance

in pixel coordinates between the feature location and the projected stereo location in the image

plane. However, before tagging features with their corresponding 3D stereo location, the 3D

stereo data points are transformed into the object reference frame using the coordinate axes

de�ned in step 1 (Fig. 3.1, bottom row, right).

7. Steps 1�6 are then repeated for each additional viewpoint.

Following the training phase, the set of database features is stored to a series of data �les indexed by

viewpoint and object ID. Thus the above steps need only be executed once for each object since any

subsequent queries for detection and tracking for that object can be done by loading the appropriate

set of data �les.

3.2.4 Feature Matching

The purpose of extracting features in the training-phase is to establish a baseline set of features to

be used in feature-matching in the measurement update step. The sole aim of feature matching is

to determine the correspondence variable J ∈ Znk , of which many di�erent techniques exist. At
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the core of all feature-matching techniques however is the uniqueness associated with the descriptor

itself. The more descriptive a feature is, the greater the tendency to reliably match that feature in

an image from another viewpoint.

While many di�erent descriptors have been proposed over the years (e.g., SIFT features by [30],

PCA-SIFT features by Ke and Sukthankar in [21], steerable �lters by Freeman and Adelson in [16],

di�erential invariants by Schmid and Mohr in [49], and shape context descriptors by Belongie et

al. in [3]), a recent review by Moreels and Perona in [35] considered the performance of a set of

the most popular detectors and descriptors for use with images of 3D objects and published their

recommendations.5 Based on their �ndings � which considered viewpoint and lighting changes,

frequency of false alarms and mismatches, and computational cost � the best overall choice reduced

to features with SIFT descriptors but detected using an a�ne-recti�ed detector (as de�ned by

Mikolajczyk and Schmid in [33]) instead of the Di�erence of Gaussians detector proposed by Lowe

in [30]. However, the authors acknowledge that for increased computational speed, the Di�erence of

Gaussians detector can be used since its performance is comparable to the a�ne-recti�ed detector.

As such, the approach presented here considers SIFT features detected using the Di�erence of

Gaussians detector.

With regards to �nding a method of searching through potentially thousands of features to �nd

the correspondences, exhaustive search is guaranteed to be optimal. However, its computational

expense has promoted other approaches. A popular method � and the one adopted in this framework

� is the Best-Bin-First search method �rst presented by Beis and Lowe in [2]. In their search method,

the authors de�ne an approach that uses a k-d tree to bin up the feature space so that features are

searched in order of distance from the query location. Note that their approach is not an exhaustive

search since the tree search is cut o� after a certain number of bins have been explored. Additionally,

valid matches are only considered if the ratio of the current best match to the second best match is

less than a threshold (in their case, 0.80). While their approach does not necessarily always return

the true correspondence, it will at least return the true feature correspondence with high probability.

Given that inaccurate feature correspondences can lead to erroneous pose estimates, a remedy

commonly implemented by others is to add an additional coherency check to validate correspon-

dences ([54], [40], [5]). In the approach presented, a geometric model check is similarly employed.

Supposing an object is already being tracked, then for each correspondence found from SIFT feature

matching, the matched 3D database feature is transformed into the camera-reference frame and the

Mahalanobis distance between the transformed feature and its matched current feature (in Euclidean

space) is checked against a threshold. If the distance exceeds the threshold, the correspondence is

rejected. If an object is not yet initialized, the geometric constraint is not applied, since the object

5It is important to note the authors' distinction between a �detector� and a �descriptor�. A detector is any interest
point operator that extracts an identi�able feature, such as a corner or an edge. A descriptor is a signature associated
with the extracted detector that aids in establishing feature correspondence.
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can really be positioned and oriented in any which way relative to the camera assuming no prior

knowledge given. In this manner, the object pose is allowed to jump large distances (in Euclidean

6-DOF space) until initialized, at which point large jumps in pose are then attributed to feature

mismatches.

3.2.5 Real-Time SIFT

As noted by Choi et al. in [5] and Panin and Knoll in [40], SIFT feature extraction is a rather

expensive operation and a bottleneck to real-time pose tracking capabilities. As such, authors that

utilize SIFT feature extraction often limit its utility to pose initialization at the beginning of the

algorithm or pose re-initialization after a lost track. Once a track is established, SIFT is essentially

turned o� and sustained tracking is realized by faster, computationally less-expensive algorithms

(i.e., POSIT, Lucas-Kanade Tracker, Contracting Curve Density (CCD) algorithm, etc.). To get a

perspective on the delays associated with SIFT feature extraction (without sparse stereo), a typical

320×240 image will take on average 200 ms to compute 70+ features in an image on a 2.40 GHz

processor (and >200 ms for high context images that can contain several hundred SIFT features);

that means at most, a 5 Hz performance rate can be achieved assuming the remaining computations

associated with sparse stereo, feature matching, and the steps of Bayes' Filter are negligible in

computational costs.

In the approach presented here, SIFT feature extraction is used for track initialization and also

for sustained tracking. Real-time calculations with SIFT are achieved by noting that much of the

expensive operations involved with feature extraction are spent on areas of the image not containing

the object. Assuming the object pose is known, a region of interest (ROI) can be speci�ed that

bounds a subset of the image known to contain the object. By specifying a ROI in the image,

SIFT feature extraction can be reduced to operating in a window size typically 10%-40% of the

original image, thus making real-time pose tracking with SIFT possible. Of course the ROI cannot

be speci�ed if the object pose is it not known and SIFT must be applied to the entire image �

reducing the proposed approach to an initialization step no di�erent than the approaches of Choi et

al. [5] and Panin and Knoll [40].

Assuming an object track has been initialized, the ROI is determined as follows: let o ∈ R2×1 be

the projected object origin onto the image plane of the reference camera, B = [x y w h] represent

a bounding box de�ning the ROI of the image (x and y the center of the ROI, and w and h the

width and height), dref ∈ R be the reference distance de�ned as the nominal Euclidean distance

between the camera and the object reference frames during training � as described in section 3.2.3,

and dcurr ∈ R be the current distance between the camera origin and the object origin (Figure 3.2

illustrates the de�ned variables). The ROI as de�ned by B requires the parameters x, y, w, and h
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Figure 3.2: The ROI of the current image is centered on the object origin (projected into the image
plane), with width and height computed based on the scaled ratio of the reference object distance
to the current object distance.

to be determined. x and y will come from the projection of the object origin onto the image plane:

x =
f ·X
Z

+ cx ,

y =
f · Y
Z

+ cy ,

where (X, Y , Z) represent the current 3D location of the object origin in the camera-reference

frame, f the focal length of the camera, and (cx, cy) the image center of the reference image. As for

the width w and height h, these parameters of the ROI are de�ned as follows:

w = kx · σs ,

h = ky · σs ,

where kxand ky are constants (dependent on the size of the object) and σs a scaling factor de�ned

as

σs =
dref
dcurr

.

Having the ROI de�ned as above allows the ROI to change in size as the object-to-camera transform

changes with time. The resulting e�ect is a tracking window that keeps the SIFT calculations

localized on the object and real-time tracking with modest computation thus feasible.
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Figure 3.3: The overall approach for the presented algorithm is summarized in the above �gure
which describes the series of steps taken from input to output for one iteration.

3.3 Approach Summary

To summarize the overall approach, Fig. 3.3 outlines the basic steps for one iteration of the algo-

rithm. It begins with the input, which is the pair of stereo camera images. SIFT feature extraction

is then applied to the reference image of the stereo pair using the Region of Interest (ROI) if the

object track has already been initialized. This step also incorporates 3D coordinates being assigned

to each extracted feature using sparse stereo calculations. Following SIFT feature extraction, fea-

ture matching is then applied using the Best-Bin-First algorithm of Beis and Lowe [2]. Geometric

constraint checks are then applied depending on whether the object track has been initialized. The

purpose of this step is to remove geometrically infeasible correspondences that may have resulted

from the matching step. The �nal step of the algorithm is to apply the recursive Bayes' Filter

equations (EKF), which yields a pose estimate of all 6 Euler parameters for the kth timestep.

3.4 Experimental Results

Based on the analysis presented thus far, two types of experiments were considered to validate

the real-time capabilities of the 3D pose tracking algorithm. An object � in this case a Bob's

Big Boy model bank � was trained using the training phase discussed in section 3.2.3 and used as

the test object in both experiments. Eight viewpoints were considered during training, with each

viewpoint positioned at 45◦ intervals about the object spanning a full 360◦ along the equidistant

ring � yielding a total of 1482 features stored in the database. For a stereo camera, a PointGrey

Research BumbleBee2 stereo color camera � with a native resolution of 640×480 downsampled to

320×240 � was used for both experiments. The computing platform used was a laptop running

Linux with an Intel Core2 Duo CPU 2.40 GHz processor and the algorithm written in C/C++ for
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Figure 3.4: The image on the left shows the setup for the �rst experiment considered (uncluttered en-
vironment). The image on the right shows the setup for the second experiment considered (cluttered
environment with noise).

optimized speed. The open source Intel library, OpenCV,6 and the 3D rendering library, OpenGL,7

were also used to develop the system. Fig. 3.8 shows a screenshot of the visual interface used in the

experiments.

In the �rst experiment, the trained object was positioned in an uncluttered environment (uniform

background with no other objects) and placed under continuous rotations and translations in all

degrees of freedom with the camera stationary and measurements made in the camera reference

frame. The purpose of this experiment was to test the baseline capabilities of the presented approach

in tracking all six Euler parameters. In the second experiment, the trained object was placed in a

cluttered environment (noisy background with other similarly sized objects) and again placed under

continuous rotations and translations with the camera stationary. The purpose of this experiment

was to test the capabilities of the approach to robustly track 3D pose estimates against non-uniform

noisy backgrounds and partial occlusions. Fig. 3.4 shows the setup for both experiments.

In both experiments, a measure of ground truth was essential in comparing the accuracy of the

estimated results. The next section describes an approach to acquire ground truth estimates of all

six Euler parameters. In comparison to prior work, this method does not require the purchase of

third party software as in [54], simulated experimental results as in [40], or distinguishing markers

for computer vision toolkits as in [5] � which in itself is just another form of a position estimate with

noisy data.

3.4.1 Ground Truth

Ground truth for both experiments was determined by using a controllable stepper motor � in this

case, a Directed PerceptionTM,8 PTU-D46-17 pan-tilt-unit with an accuracy of 0.0514◦ in both pan

and tilt positions (though tilt positioning was not used). The base of the motor (reference frame B)

6http://opencv.willowgarage.com/wiki/
7http://www.opengl.org
8www.directedperception.com
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Figure 3.5: The various frame transformations between camera (C), platform (P), and object (O)
can be measured to establish a means of object ground truth, as measured in the camera reference
frame.

was rigidly mounted to a table and a platform was �xed to the pan axis of the motor (reference frame

P ), rigid enough to support the weight of the object being detected. The object (reference frame

O) was then placed on the platform, a �xed distance from the pan-axis, though with the object's

vertical axis aligned in the same direction. The stereo camera (reference frame C) was then placed

some �xed distance away from the motor base-frame, pitched looking slightly downwards, and kept

stationary (see Fig. 3.5 for a clear depiction of all various reference frames). Commanded rotations

resulted in rotations and translations of the object as seen in the camera reference frame.

With this particular setup, all 6 Euler parameters would be known to high accuracy since the

transformations between all frames could be easily measured. Because the camera was kept station-

ary in both experiments, the transformation between the base of the motor frame and the camera

frame was a constant, measurable value:

GCB =

 RCB dCB

0T 1

 ∈ SE(3) .

For each pan rotation commanded to the stepper motor, the transformation between the platform

frame and the base frame could be determined by the motor angle read out (φk):

GBP =

 RBP (φk) 0

0T 1

 ∈ SE(3) .

Since the object frame was displaced some slight amount from the pan-axis (though with the vertical

axes aligned) and �xed relative to the platform frame, the transformation between the object frame

and the platform frame was a constant value that could be determined be measuring the translation
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Figure 3.6: Shown above are the 6 Euler parameter estimates using the algorithm described for the
�rst trial experiment where the trained object was placed in an uncluttered, uniform environment.
The top row shows the tracking results in (x,y,z) and the bottom row shows the results in (α,β,γ).
Shown in the red dotted line is the ground truth measurements of the Euler parameters, and in blue
the EKF-estimated Euler parameters.

(needed only in x and y) and the rotation (needed only about the z-axis) between frames:

GPO =

 RPO dPO

0T 1

 ∈ SE(3) .

Finally, by measuring the transformations GCB , GBP , and GPO, the ground truth transformation

between the object and camera can easily be determined as

GCO,truth = GCB ·GBP ·GPO .

3.4.2 Uncluttered Environment

As mentioned earlier, in this experiment the trained object was positioned in an uncluttered environ-

ment having a uniform background with no other distractors present. The trained object was placed

under continuous rotations and translations in a manner as described in section 3.4.1. The platform

itself oscillated between +90◦ and −90◦ at a slew rate of 6◦/s. The purpose of this experiment was

to test the baseline capabilities of the presented approach in tracking all six Euler parameters.

Shown in Fig. 3.6 are the results for this experiment. As can be seen in the �gure, in this most

basic scenario the algorithm does an extremely good job of tracking the object in (x,y,z). With

regards to orientation, the estimated values of (α,β,γ) are slightly noisier and subject to minor

delays at some points. This e�ect is most likely due to certain features coming into view as the
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Figure 3.7: Shown above are the 6 Euler parameter estimates using the algorithm described for
the second trial experiment where the trained object was placed in a cluttered, noisy environment.
The top row shows the tracking results in (x,y,z) and the bottom row shows the results in (α,β,γ).
Shown in the red dotted line is the ground truth measurements of the Euler parameters, and in blue
the EKF-estimated Euler parameters.

platform rotates, which when matched, causes the EKF to improve the overall estimate and reduce

the state covariance.

With regards to real-time tracking capabilities, the algorithm ran at an average rate of 12.12 Hz,

with a maximum rate reaching 21.40 Hz. Because of the manner in which the ROI is computed,

the algorithm actually performs faster as the object moves away from the camera (smaller ROI)

reaching a nominal 20 Hz frequency rate, and slows down to about 8 Hz when the object comes

closer (larger ROI).

3.4.3 Cluttered Environment

In this second experiment, the trained object was placed in a cluttered environment (noisy back-

ground with other similarly sized objects) and again placed under continuous rotations and trans-

lations with the camera stationary. As stated earlier, the purpose of this experiment was to test

the capabilities of the presented approach to robustly track 3D pose estimates against non-uniform

noisy backgrounds and partial occlusions. Using the same trained object, the platform was rotated

this time between +60◦ and −60◦ at a slew rate of 6◦/s to generate the necessary translations and

rotations of the object. To add noise, the platform itself was covered with magazine pages of various

text and pictures. To generate occlusions, various objects of similar size to the training object were

placed around the object (see right image of Fig. 3.4). As the platform moved, certain objects would

occlude parts of the training object and thus test the ability of the algorithm to track during partial
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Figure 3.8: A screenshot of the algorithm running in real-time. For clarity, aspects of the developed
visual interface have been annotated to illustrate the details of the algorithm working.

occlusions.

Shown in Fig. 3.7 are the results for this experiment. As can be seen in the �gure, the tracking

results in (x,y,z) and in (α,β,γ) are de�nitely noisier than in the �rst trial experiment, which is

expected given the noisier image scene and partial occlusions. There is also a similar delay in the

orientation estimates which is prominent at the peaks of the oscillating platform. Similar to the

�rst experiment, this e�ect is most likely due to certain features coming into view as the platform

rotates, which when matched, causes the EKF to improve the overall estimate and reduce the state

covariance. It is more prominent in this experiment mainly due to the occlusions caused by the

other objects surrounding the object being detected.

With regards to real-time tracking capabilities, the algorithm ran at an average rate of 9.50

Hz, with a maximum rate reaching 13.52 Hz. The slower rates are expected given the spurious

features on the platform �oor which add computation cycles to the SIFT extraction step of the

overall algorithm. Nonetheless, the results of this experiment show robustness to noise and partial

occlusions, while illustrating real-time detection capabilities of the presented algorithm.
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3.5 Conclusions

Based on the experiments of sections 3.4.2 and 3.4.3, the presented algorithm is capable of real-time

3D pose tracking of all 6 Euler parameters. The novel speci�cation of the ROI in the image enables

SIFT calculations at each timestep, an improvement on works of previous authors who have reserved

SIFT calculations only for emergencies (i.e., pose re-initialization after lost track) because of the

computational expenses involved. The detailed approach presented for obtaining ground truth of all

6 Euler parameters presents an additional novel contribution that allows for more accurate standards

by which to obtain ground truth estimates without the need to purchase third party software or

intricate simulations. In the chapter to follow, extensions of the presented approach will be applied

to a more complicated problem, that of sensor planning for pose estimation and model identi�cation.
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Chapter 4

Sensor Planning for Model

Identi�cation

Building on the framework for pose estimation presented in chapter 3, the additional problem of

sensor planning for object/model identi�cation is considered. This chapter addresses the combined

problem of sensor planning for object identi�cation with 3D pose estimation by contributing a novel

algorithm derived from basic Bayesian principles. Optimal control actions for sensor placement are

achieved via an information gain metric based on current and future measurements conditioned

on estimated 3D object poses for all possible models. The following sections present the proposed

algorithm in full detail. Experimental validation of the algorithm is presented in chapter 5, which

will illustrate the success of the approach and the novelty of the contribution. This chapter will

focus on the derivation and details of the algorithm.

4.1 Sensor Planning Context and Contribution

As mentioned in chapter 1, the problem of sensor planning for object identi�cation has been con-

sidered in previous works with information theoretic approaches: i.e., where should the robot move

next to get the most relevant information to identify some unknown object? To help illustrate the

problem being investigated, Figure 4.1 shows a hypothetical situation in which a robot is attempt-

ing to identify a person from a back view. As shown, the object is indistinguishable from a �nite

set of similar models, requiring the robot to contemplate the next viewpoint to move to that best

acquires the most distinguishing information. The contributions of this chapter will be a Bayesian

analysis of the sensor planning problem that incorporates as a necessary step the estimation of the

pose of each potential model object. The resultant Sensor-Planning-for-Pose-Estimation-and-Model-

Identi�cation (SPPEMI) algorithm makes no assumptions on the workspace of the viewing agent

or the object itself, allowing for identi�cation of mobile objects from potentially mobile platforms

� a major extension of previous works that have until now only considered stationary objects in

controlled environments.
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Figure 4.1: An illustration motivating the problem addressed in this chapter. A robot is tasked with
identifying an unknown object (in this case a person) from a set of known objects. If the object
identity is indistinguishable from a �nite set of similar models, the robot must then decide where
to move next to best acquire the most relevant information that helps resolve the identity of the
unknown object.

4.2 Bayesian Sequential Analysis and Formulation

Consider the case of an autonomous robot which is given a database of known models for objects

that may exist in its environment. Now suppose an unidenti�ed object, though belonging to the

database of known objects, is presented to the robot which is now tasked with identifying the correct

object model and estimating its 3D pose. The question then arises: if the robot is unable to identify

the correct model in the initial presented view, how should it optimally move to identify the object?

4.2.1 Approach

Let Dk denote visual (and possibly other) data obtained at tk (e.g., this data might consist of SIFT

features [30], Harris corners, 3D range points, etc.) and let uk be the control input at tk.1 Let Xk,i

be the system state vector at tk for the ith model, Mi (this state could be the state of the object

relative to the camera, or the state of the camera relative to the object, etc.). For a given modelMi,

state Xk,i, and measurement data Dk, suppose its evolution in time is governed by the following

1The notation 1 : k will be used to indicate the set of measurements, inputs, etc. from t1 up to and including tk.
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discrete-time system equation and measurement model:

Xk,i = A(Xk−1,i) + B(uk−1) + η , (4.1)

Dk = C(Xk,i) + ξ , (4.2)

where η, ξ are white Gaussian noise, and allow for A, B, and C to be linear or non-linear functions.

In determining the optimal control action to execute for the next-best-view, u∗, a useful utility

metric often considered is the information gain function (shown by [39], [11], and others to yield

promising results):

Iuk
= H(M |D1:k,u1:k−1)− EDk+1 [H(M |D1:k+1,u1:k)] . (4.3)

The term, H(M |D1:k,u1:k−1), is the conditional entropy of the model identity, conditioned on the

data up until tk and the control actions up until tk−1. The term, EDk+1 [H(M |D1:k+1,u1:k)], is the

expected conditional entropy, with the expectation taken over the future data at the next timestep,

i.e., Dk+1, after hypothetical control uk is applied. Note that with this de�nition of the expected

conditional entropy, a myopic approach to sensor planning is assumed (i.e., a one step lookahead).

Entropy is understood to represent the uncertainty associated with a random variable, which

in this case is the model identity, M . Thus the larger the entropy, the greater the uncertainty

associated with the model being identi�ed. It make sense, then, that the optimal control action is

the one which maximizes the expected information gain:

u∗ = argmax
uk

Iuk
, (4.4)

since information gain occurs when H(M |D1:k,u1:k−1) > EDk+1 [H(M |D1:k+1,u1:k)], or when the

next applied control results in an expected reduction in the uncertainty of the model identity.

Considering the information gain as de�ned above, the remainder of this section expands the

expression for Iuk
. It will be seen that the state of the system (the object 6D pose) becomes a

necessary estimation step in determining the optimal sensing action.

The core entropy terms can be expanded as follows:

H(M |D1:k,u1:k−1) = −
∑
i=0

P (Mi|D1:k,u1:k−1) logP (Mi|D1:k,u1:k−1) , (4.5)

H(M |D1:k+1,u1:k) = −
∑
i=0

P (Mi|D1:k+1,u1:k) logP (Mi|D1:k+1,u1:k) , (4.6)

EDk+1 [H(M |D1:k+1,u1:k)] =
∫
H+ · p(Dk+1|D1:k,u1:k)dDk+1 , (4.7)

where H+ , H(M |D1:k+1,u1:k). Calculation of equations (4.5), (4.6), and (4.7) require the terms:
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P (Mi|D1:k,u1:k−1), P (Mi|D1:k+1,u1:k), and p(Dk+1|D1:k,u1:k). These terms can be developed into

computable expressions with appropriate applications of Bayes Rule:

P (Mi|D1:k,u1:k−1) =

I︷ ︸︸ ︷
p(Dk|D1:k−1,u1:k−1,Mi) ·

II︷ ︸︸ ︷
P (Mi|D1:k−1,u1:k−1)∑

j=0

p(Dk|D1:k−1,u1:k−1,Mj)P (Mj |D1:k−1,u1:k−1)

P (Mi|D1:k+1,u1:k) =

III︷ ︸︸ ︷
p(Dk+1|D1:k,u1:k,Mi) ·

IV︷ ︸︸ ︷
P (Mi|D1:k,u1:k)∑

j=0

p(Dk+1|D1:k,u1:k,Mj)P (Mj |D1:k,u1:k)

p(Dk+1|D1:k,u1:k) =
∑
i=0

p(Dk+1|D1:k,u1:k,Mi)P (Mi|D1:k,u1:k)

where I, II, III, and IV are the remaining terms needing further speci�cation. Close inspection of

these terms shows that III and IV have an identical form to I and II, with a simple index shift; thus

expressions for I and II will su�ce to de�ne III and IV.

4.2.2 Bayes Filter and Model Probabilities

Note that by marginalizing over the state of the ith model, Xk,i, term I can be rewritten as

p(Dk|D1:k−1,u1:k−1,Mi) =
∫
p(Dk|D1:k−1,u1:k−1,Xk,i,Mi)p(Xk,i|D1:k−1,u1:k−1,Mi)dXk,i ,

where p(Dk|D1:k−1,Xk,i,u1:k−1,Mi) is derived from the measurement model (equation (4.2)). The

second term of the integral results from the prediction step of a Bayes' Filter (as discussed in section

2.1). Recall that Bayes' Filter cycles recursively between the following two steps:

p(Xk,i|D1:k−1,u1:k−1,Mi) =
∫
p(Xk,i|Xk−1,i,D1:k−1,u1:k−1,Mi)·

p(Xk−1,i|D1:k−1,u1:k−1,Mi)dXk−1,i

p(Xk,i|D1:k,u1:k−1,Mi) =
p(Dk|D1:k−1,Xk,i,u1:k−1,Mi)p(Xk|D1:k−1,u1:k−1,Mi)∫

p(Dk|X̂k,i,D1:k−1,u1:k−1,Mi)p(X̂k,i|D1:k−1,u1:k−1,Mi)dX̂k,i

.

The terms involved in the Bayes Filter can be solved for from the system state and measurement

equations, equations (4.1) and (4.2), provided the following assumption is true:

p(Xk,i|D1:k,u1:k,Mi) = p(Xk|D1:k,u1:k−1,Mi) . (4.8)

equation (4.8) presumes that the current state, Xk,i, is only dependent on data up until the current

timestep and the control actions up until the previous timestep. This assumption is valid since the

current control action, uk, will not have a direct e�ect on the current state and can thus safely be
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omitted.

With regards to term II, a similar argument can also be made as was done in equation (4.8) by

stating the following:

P (Mi|D1:k,u1:k) = P (Mi|D1:k,u1:k−1) , (4.9)

where the conditional dependence on uk has been omitted. Inspection of equation (4.9) thus shows

that P (Mi|D1:k,u1:k−1) can be solved for recursively, provided that at the �rst timestep, the model

probabilities are set to a priori values, Po,i, i.e.,

P (Mi|D0,u0) = Po,i .

4.2.3 Monte Carlo Sampling

Though terms III and IV can be solved for in a like manner as I and II, they require further analysis.

Note that the expected entropy of equation (4.7) is taken with respect to the probability of future

data, Dk+1, conditioned only on past data measurements and control inputs. By marginalizing over

the models with some simpli�cation, the expected model entropy can be rewritten as follows:

EDk+1 [H+] =
∫
H+ · p(Dk+1|D1:k,u1:k)dDk+1

=
∫
H+ ·

∑
i=1

p(Dk+1|D1:k,u1:k,Mi)P (Mi|D1:k,u1:k)dDk+1

=
∑
i=0

P (Mi|D1:k,u1:k)
∫
H+ · p(Dk+1|D1:k,u1:k,Mi)dDk+1 . (4.10)

The remaining integral is analytically intractable since the space of future measurements can extend

into higher and higher dimensions. It can be approximated, however, using Monte Carlo sampling.

Consider the following de�nitions:

g(Dk+1) = H+ ,

f(Dk+1) = p(Dk+1|D1:k,u1:k,Mi) ,

where recall that H+ , H(M |D1:k+1,u1:k). Then equation (4.10) reduces to

EDk+1 [H+] =
∑
i=0

P (Mi|D1:k,u1:k)
∫
g(Dk+1) · f(Dk+1)dDk+1

≈
∑
i=0

(
P (Mi|D1:k,u1:k)

1
N

N∑
n=0

g(D̃)

)
,

where D̃ ∼ f(Dk+1). Thus, the expected model entropy, EDk+1 [H+], is calculated as a weighted

sum of all model entropies with the weight chosen as the model probability. The model entropies
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are found by simulating N future measurements at timestep k + 1 for which N model entropies are

then calculated and averaged to yield a measure of the expected information associated with the

control action, uk. Depending on the type of data measurements expected, simulation of future

measurements may be as straightforward as application of equation (4.2). However, if expected

measurement data is more complicated (e.g., SIFT measurements have 128-dimensional feature de-

scriptors that are innately coupled with a correspondence vector that cannot be so easily simulated),

other methods � such as lookup tables � can be employed. Chapter 5 provides a detailed discussion

of how SIFT features can be sampled through the use of lookup tables, which is a novel contribution

to the implementation framework of the SPPEMI algorithm.

4.3 SPPEMI Algorithm

Algorithm 4.1 SPPEMI

1: collect data Dk from sensor

2: Imax = 0

3: u∗ = NULL

4: Hk = calcCurrentEntropy(Xk−1,D1:k,u1:k−1,M)

5: u+ = calcPossibleControlActions(Xk−1,i,u1:k−1)

6: for all u+
m do

7: H+
m = calcExpectedEntropy(Xk−1,i,D1:k,u1:k−1,u+

m,M)

8: Igain = Hk −H+
m

9: if Igain > Imax then

10: Imax = Igain

11: u∗ = u+
m

12: end if

13: end for

14: execute u∗

The Sensor Planning for Pose Estimation and Model Identi�cation (SPPEMI) Algorithm 4.1

details how to implement the above analysis in a concise recursive form. Note that the algorithm

makes use of the following additional de�nitions to simplify some of the expressions:

belk,i = p(Xk,i|D1:k,u1:k−1,Mi) ,

belk,i = p(Xk,i|D1:k−1,u1:k−1,Mi) ,

pk,i = P (Mi|D1:k,u1:k−1) ,

Hk = H(M |D1:k,u1:k−1) .
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During each algorithm cycle, the current model entropy is calculated and the expected model

entropy is estimated for the set of all possible future actions, u+. The future action which yields

the greatest information gain is then selected and executed.

4.3.1 Function: calcCurrentEntropy( ·)

The function calcCurrentEntropy(·) computes the current model entropy based on the available

data and robot state. It is responsible for updating Bayes' Filter and the model probabilities for all

models, i.e., the internal terms: belk,i, belk,i → Xk,i, and pk,i. The following pseudocode provides

an outline of how this function should be implemented.

Function 4.2 calcCurrentEntropy(Xk−1,i,D1:k,u1:k−1,M)

1: Hk = 0

2: for all Mi do

3: belk,i =
∫
p(Xk,i|Xk−1,i,D1:k−1,u1:k−1,Mi)belk−1,idXk−1,i

4: belk,i = p(Dk|D1:k−1,Xk,i,u1:k−1,Mi)belk,i · η0
5: p(Dk|D1:k−1,u1:k−1,Mi) =

∫
p(Dk|D1:k−1,Xk,i,u1:k−1,Mi) belk,idXk,i

6: pk,i = p(Dk|D1:k−1,u1:k−1,Mi) · pk−1,i · η1
7: Hk = −pk,i log pk,i +Hk

8: end for

9: return Hk

Note that lines 3-4 of Function 4.2 implement the Bayes' Filter over the robot state. Lines 5-6 use

the predicted belief state to update the model probability and line 7 calculates the current model

entropy based on the calculated model probability. The terms η0 in line 4 and η1 in line 6 are

normalizing constants that ensures the pdfs integrate/sum to 1.

4.3.2 Function: calcPossibleControlActions(·)

The function calcPossibleControlActions(·) depends on the limits of the actuating hardware. Ad-

ditional criteria, such as the costs of control actions in proportion to power consumption, can

be added but those details are omitted here. In general, the set of potential control actions,

u+ =
{
u+
m ∈ Rd|0 < m < Mu

}
, for Mu total actions, is a discretized set of controls, each of which is

potentially executable at timestep k due to the underlying myopic assumption associated with the

cost function. Potentially at the very next timestep, the process will repeat and new control actions

will be generated. The control values themselves are dependent on the dynamics of the system and

are thus di�cult to generalize into a pseudocode.
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4.3.3 Function: calcExpectedEntropy(·)

The function calcExpectedEntropy(·) computes the expected model entropy for a potential future con-

trol input, u+
m. It makes use of the belk,i, pk,i, and Xk,i terms computed in the calcCurrentEntropy(·)

function to predict forward the future state of the object pose for all possible models under the po-

tential action u+
m. Once calculated, Monte Carlo sampling is then performed for each model to

extract expected data measurements and to determine model entropies. The resultant entropies

are then averaged over all models to yield an expected model entropy. The following pseudo-code

provides an outline of how this function should be implemented:

Function 4.3 calcExpectedEntropy(Xk−1,i,D1:k,u1:k−1,u+
m,M)

1: H+
m = 0

2: for all Mi do

3: G = 0

4: belk+1,i =
∫
p(Xk+1,i|Xk,i,D1:k,u1:k−1,u+

m,Mi) belk,idXk,i

5: p(Dk+1|D1:k,u1:k−1,u+
m,Mi) =

∫
p(Dk+1|D1:k,Xk+1,i,u1:k−1,u+

m,Mi)belk+1,idXk+1,i

6: for n = 1 to N do

7: h = 0

8: sample D̃ ∼ p(Dk+1|D1:k,u1:k−1,u+
m,Mi)

9: for all Mj do

10: P (Mj |D1:k, D̃,u1:k−1,u+
m) = p(D̃|D1:k,u1:k−1,u+

m,Mj) · pk,j · η2
11: h = −P (Mj |D1:k, D̃,u1:k−1,u+

m) · logP (Mj |D1:k, D̃,u1:k−1,u+
m) + h

12: end for

13: G = h+G

14: end for

15: G =
1
N
·G

16: H+
m = G · pk,i +H+

m

17: end for

18: return H+
m

Note that Line 4 makes use of the dynamic prediction step of Bayes' Filter to predict the state of

the system, belk+1,i, if the potential control action u+
m is executed. Line 5 uses the predicted state

to generate the probability distribution over the future data, p(Dk+1|D1:k,u1:k−1,u+
m,Mi). Lines

6-15 then implement the Monte Carlo Sampling step discussed in section 4.2.3. Line 8 samples a

future data measurement (D̃) N times from the pdf generated in Line 5. Lines 10-11 calculate the

resultant model entropy based on D̃, and lines 13 and 15 apply the averaging over all N entropies

calculated. Line 16 applies the expectation over model ID and weights the resultant entropy (G) by

the model probability, pk,i. Note that in line 10, the term η2 is a normalizing constant to ensure
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Figure 4.2: (a) An example of an n-sided polygon (n = 6) with viewpoints shown by dots. (b) An
example set of known polygon models, with edges marked with one of six colors: red, orange, yellow,
green, blue, violet.

P (Mj |D1:k, D̃,u1:k−1,u+
m) sums to 1.

4.4 Case Study

To illustrate how Algorithm 4.1 can be implemented, and to highlight the limits of the proposed

algorithm, consider the following case study: a mobile agent is tasked with identifying a given n-

sided convex polygon as belonging to a known set of unique n-sided polygons. Each polygon has

edges that are uniquely marked by an edge number (not necessarily sequential) and the agent is

equipped with a sensor that can identify an edge number with some amount of noise.

To keep the problem tractable, the following assumptions are also made for this particular case

study:

• The n-sided polygon is static and aligned with the global origin.2

• Since the polygon is static, the state Xk,i is best de�ned as the pose of the robot relative to

the i-th polygon model at the k-th timestep.

• The robot is con�ned to a ring of radius, R, about the center of the polygon�allowing the

state Xk,i to be de�ned by a bearing in the range of [0, 2π).

• The control actions, uk, are chosen to move the agent between any one of n viewpoints (where

a viewpoint is de�ned as a viewing position orthognal to an edge and some �xed distance along

2While the static assumption is not a requirement, it makes analysis of the overall system more tangible in this
particular case study. Later real experiments in chapter 5 remove the static assumption and illustrate the success of
the algorithm for a dynamic object. Furthermore, the assumption of alignment with an existing reference frame can
be resolved by applying an object detection schema such as the method discussed in chapter 3.
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the perpendicular bisector of that edge). Note that due to added noise, the robot pose may

not be exactly centered on a desired viewpoint.

• The initial state X0,i will be at one of the n viewpoint locations.

• All control actions are equal in cost (i.e. moving to viewpoint v1 is no di�erent than moving

to viewpoint v2).

• No sensing is performed while the robot is moving from one location to the next.

• A Markov assumption is assumed where past and future data are independent if the current

state is known.

Figure 4.2(a) illustrates an example polygon with viewpoints represented by the surrounding dots,

as well as four other distinct polygon models. Note that viewpoints are located at increments of π3

around the ring of radius R and each polygon is unique and marked with an edge number between

1 and n.

4.4.1 Motion Model

Since the robot is con�ned to a planar ring about the unknown static polygon , the state can be

de�ned by a scalar bearing measure on that ring, Xk,i = Xk,i ∈ [0, 2π). Similarly, since the control

actions move the robot to one of n discrete locations, the control can be de�ned as a scalar bearing

o�set from the current pose to a desired viewpoint, uk = uk ∈ [−π, π]. This construct yields the

following system state equation:

Xk,i = Xk−1,i + uk−1 + η , (4.11)

where η is Gaussian white noise (i.e. η ∼ N(η; 0, σ2
s)) to account for imperfect robot control execu-

tion.

4.4.2 Measurement Model

Consider the case now that the robot is equipped with a sensor which returns a value Dk ∈ R

corresponding to the edge being detected � so that a measure of Dk = 2.0 indicates a measurement

of edge number 2 and so forth. Note that Dk returns a �oating point value, indicating the possibility

of measuring a value in-between known edge values. Since each polygon model has a di�erent

sequence of numbered edges, a unique measurement model can be de�ned for each which will be a

function of robot bearing position. To allow for a continuous range of return measurements, Dk is

linearly interpolated between neighboring edge values for those bearing positions found in between
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Figure 4.3: An example measurement model, plotted as a function of robot bearing for Model I as
shown in Figure 4.2 with n = 6.

viewpoint poses. Lastly, to incorporate the notion of an imperfect sensor, Gaussian white noise is

added to the received measurement value, leading to the following overall measurement model:

Dk = Ci ·Xk,i + Fi + ξ , (4.12)

where ξ ∼ N(ξ; 0, σ2
m) and (Ci, Fi) are bearing dependent parameters speci�c to the i-th model

polygon. Figure 4.3 shows an example measurement model for the Model I polygon as shown in

Figure 4.2(b).

4.4.3 Applying the Algorithm

With the motion and measurement models both de�ned, Algorithm 4.1 can be realized with the ap-

propriate implementation of the functions calls calcPossibleControlActions(·), calcCurrentEntropy(·),

and calcExpectedEntropy(·).

The function calcPossibleControlActions(·) is understood to generate a set of the possible control

commands u+ that can potentially be executed at timestep k. For this case study, since the robot is

limited to discrete poses on a ring of radius R, the set of possible control actions are simply bearing

displacements corresponding to each viewpoint pose allowed for the given n-sided polygon.

The function calcCurrentEntropy(·) is responsible for determining the current model entropy, Hk,

based on the set of perceived measurements, Dk. In particular, Lines 3 and 4 of Function 4.2 de�ne

the Bayes Filter implementation which reduces to a Kalman Filter because of the linear motion and

measurement models with white Guassian noise as was shown in section 2.1.1:
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DYNAMIC PREDICTION

belk,i = N(Xk,i;µk,i, σ
2
k,i) , (4.13)

µk,i = µk−1,i + uk−1 ,

σ2
k,i = σ2

k−1,i + σ2
s ,

MEASUREMENT UPDATE

belk,i = N(Xk,i;µk,i, σ2
k,i) ,

µk,i = µk,i +Kk,i(Dk − (Ciµk,i + Fi)) ,

σ2
k,i = (1−Kk,iCi) · σ2

k,i ,

=⇒ Kk,i =
Ciσ

2
k,i

C2
i σ

2
k,i + σ2

m

.

However, before the model entropy Hk can be fully expressed, the data likelihood must be resolved

in line 5 of Function 4.2:

p(Dk|D1:k−1, u1:k−1,Mi) =
∫
p(Dk|D1:k−1, u1:k−1, Xk,Mi) · belk,idXk (4.14)

=
∫
N(Dk;CiXk + Fi, σ

2
m) ·N(Xk;µk,i, σ

2
k,i)dXk

= N(Dk;µDk,i, σ
2
Dk,i

) ,

where by the linear nature of the measurement model, the data probability pdf of equation (4.14)

is analytically solved for by an application of Proposition 2.1, with µDk,i and σ
2
Dk,i

given by

µDk,i = Ck,iµk,i ,

σ2
Dk,i

= Ck,iσ
2
k,iC

T
k,i + σ2

m .

Note that the function calcExpectedEntropy(·) is responsible for determining the expected model

entropy H+
m associated with the potential future control action u+

m. Close inspection of Function

4.3 will show that a majority of the terms are no di�erent than terms already solved for from

determining the current model entropy Hk in the calcCurrentEntropy(·) function (with the exception

of a simple index shift) and with only two additional pdfs needing to be solved for to complete the

implementation of the algorithm: p(Dk+1|D1:k, u1:k−1, u
+
m,Mi) and belk+1,i.

The �rst pdf, p(Dk+1|D1:k, u1:k−1, u
+
m,Mi), corresponds to the probability distribution over fu-

ture sensed data at timestep k+ 1 that would be sensed based on executing potential control action

u+
m. While this is a generally di�cult distribution to come by, the manner in which this particular
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case study was constructed makes the prediciton of future data fairly straight forward from the

measurement model of equation (4.12).3 The term can be resolved by an application of proposition

2.1:

p(Dk+1|D1:k, u1:k−1, u
+
m,Mi) =

∫
p(Dk+1|D1:k, Xk+1,i, u1:k−1, u

+
m,Mi) · belk+1,idXk+1,i

=
∫
N(Dk+1;CiXk+1,i + Fi) ·N(Xk+1,i;µk+1,i, σ

2
k+1,i)dXk+1,i

=
1

σDk+1

√
2π

exp

(
−1

2
(Dk+1 − µDk+1,i)

2

σ2
Dk+1,i

)
,

where µDk+1,i and σDk+1,i are given by

µDk+1,i = Ciµk+1,i + Fi ,

σ2
Dk+1,i

= σ2
k+1,iC

2
i + σ2

m .

The second pdf, belk+1,i, corresponds to the future state estimate of the system, Xk+1,i, as a

result of executing the potential control action u+
m. It can be resolved in a manner analogous to

equation (4.13):

belk+1,i =
∫
p(Xk+1,i|Xk,i, D1:k, u1:k−1, u

+
m,Mi) · belk,idXk,i

=
∫
N(Xk+1,i;Xk,i + u+

m, σ
2
s) ·N(Xk,i;µk,i, σ2

k,i)dXk,i

=
1

σk+1,i

√
2π

exp

(
−1

2
(Xk+1,i − µk+1,i)2

σ2
k+1,i

)
,

where µk+1,i and σ
2
k+1,i are given by

µk+1,i = µk,i + u+
m ,

σ2
k+1,i = σ2

k,i + σ2
s .

4.4.4 Simulated Results

In this particular case study, simulations were run to observe what the limits of the algorithm would

be in terms of the number of steps taken to positively identify the correct model. The tunable

parameters were chosen to be:

• system noise standard deviation, σs ∈ [0.05, 2.00]

3Chapter 5 will present an approach to determining the future data likelihood (p(Dk+1|D1:k, u1:k−1, u+
m, Mi) for

a real experiment in which an exact predictive measurement model is not easily determined as was the case in this
particular case study.
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Figure 4.4: (a) For the case of m=4 and n=6, the shown polygon illustrates the overall shape of
the object to be identi�ed as well as the angles associated with the n viewpoints. (b) The shown
plot displays a color coding of the number of steps taken by the algorithm to positively identify the
given model for each setting of σs ∈ [0.05, 2.00] and σm ∈ [0.05, 2.00]. The color bar on the right of
the plot displays the mapping of colors to number of steps.

• measurement noise standard deviation, σm ∈ [0.05, 2.00]

• number of known models, m ∈ 4, 6, 8

• number of polygon edges, n ∈ 6, 8, 10

where the allowable ranges have been speci�ed. In each simulated case, a speci�c m and n were

chosen and a database of models was then generated. The choice of database models was such that

enough overlap between models existed so that the minimal number of steps required to positively

identify the unknown model was greater than 1. Once a valid database of models was generated,

Algorithm 4.1 was run recursively for varying values of the noise parameters σs and σm and the

number of steps taken to positively identify the model were recorded for each set of (σs, σm).

4.4.4.1 m=4, n=6

In the case of m=4 and n=6, Figure 4.4(a) shows the general shape of the type of polygon being

identi�ed, with the viewpoint angles denoted by the red lines. Table 4.1 lists the unique edge labels

for each model in the database, categorized by viewpoint angle. Note that each model is in fact

unique, yet similar enough that from certain viewpoints (e.g. 0◦, 60◦, 300◦), a number of models in

the database would be indistinguishable unless an additional measurement were taken from another

viewpoint. This particular choice of database models was designed so that sensor planning actions

would be required to test the performance of the algorithm. The model with an asterisk denotes the

true model used in the simulated test runs to generate the measurement data. Close inspection of

the table will show that the true model can in fact be determined by as few as 1 step (e.g. moving
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from 0◦ to 120◦). However, without knowledge of the true model, the expected number of steps is

in fact 3.

Model ID 0◦ 60◦ 120◦ 180◦ 240◦ 300◦

0 1 5 6 4 2 3
1 1 5 2 4 6 3
2* 1 5 4 2 6 3
3 1 5 6 2 4 3

Table 4.1: The above table indicates the speci�c edge numbers (categorized by viewpoint angle)
for each model used in this particular case study. The (*) indicates the true model used in the
simulations to generate measurement data.

Simulated runs were performed by applying Algorithm 4.1 to the presented case study, with

varying values of measurement and system variance, σm and σs respectively. In particular, each case

run considered a speci�c value of σm ∈ [0.05, 2.00] and σs ∈ [0.05, 2.00] and recorded the number

of steps taken by the algorithm to positively identify the given model, with an initial viewpoint

position always at 0◦. Figure 4.4(b) shows a color coded histogram of the number of steps required

by the algorithm for the varying values of σm and σs. Note that for σm = 0.05 and σs = 0.05, the

algorithm identi�es the correct model in the expected number of steps, 3. For values of σm < 1.0

and σs < 1.0, the algorithm performs fairly well and correctly identi�es the true model in less than

10 steps. However, once σm and σs increase past 1.0, the algorithm starts to take a signi�cantly

large number of steps to accurately identify the model. Part of that result is dependent on the

manner in which the measurement model for this case study was designed. As σs increases, the

estimated pose of the robot starts to deviate signi�cantly from expected viewpoint locations and

towards areas in between edges. Consequently, because of the linear interpolation between edge

values in the measurement model and the increased value of σm, perceived measurements start to

resemble measurements of other sides of the polygon and it becomes slightly unclear which edge

is actually being sensed. Multiple steps then need to be taken by the robot to revisit previously

observed edges to reduce the overall uncertainty of the robot pose and improve the estimated model

probabilities before the true model can be identi�ed.

4.4.4.2 m=6, n=8

In the case of m=6 and n=8, Figure 4.5(a) shows the general shape of the type of polygon being

identi�ed, with the viewpoint angles denoted by the red lines. Table 4.2 lists the unique edge labels

for each of the 6 models in the database, categorized by viewpoint angle. As in the previous test

case, note that each model is in fact unique, yet similar enough that from certain viewpoints (e.g.

0◦, 45◦, 315◦), a number of models in the database would be indistinguishable unless an additional

measurement were taken from another viewpoint. The model with an asterisk again denotes the

true model used in the simulated test runs to generate the measurement data. Close inspection
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Figure 4.5: (a) For the case of m=6 and n=8, the shown polygon illustrates the overall shape of
the object to be identi�ed as well as the angles associated with the n viewpoints. (b) The shown
plot displays a color coding of the number of steps taken by the algorithm to positively identify the
given model for each setting of σs ∈ [0.05, 2.00] and σm ∈ [0.05, 2.00]. The color bar on the right of
the plot displays the mapping of colors to number of steps.

of the table will show that if starting at initial viewpoint angle 0◦, the true model can in fact be

determined by as few as 1 step (e.g. moving from 0◦ to 180◦ and observing edge 8). However,

without knowledge of the true model, the expected number of steps is again in fact 3.

Model ID 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

0 6 5 3 8 7 4 1 2
1 6 5 1 7 4 8 3 2
2* 6 5 7 3 8 4 1 2
3 6 5 1 3 4 7 8 2
4 6 5 8 7 3 4 1 2
5 6 5 7 8 3 4 1 2

Table 4.2: The above table indicates the speci�c edge numbers (categorized by viewpoint angle)
for each model used in this particular case study. The (*) indicates the true model used in the
simulations to generate measurement data.

As in the previous test case, simulated runs were performed by applying Algorithm 4.1 with

varying values of measurement and system variance, σm and σs respectively. Using the same range

of values of σm ∈ [0.05, 2.00] and σs ∈ [0.05, 2.00], the number of steps taken by the algorithm

to positively identify the given model (with an initial viewpoint position always at 0◦) was again

recorded. Figure 4.5(b) shows a color coded histogram of the number of steps required by the

algorithm for the varying values of σm and σs. Note that the results illustrate the same pattern of

behavior as in the previous case study, i.e., for small values of σm and σs, the algorithm identi�es the

correct model in the expected number of steps and as σm and σs gradually increase, the algorithm

takes signi�cantly larger number of steps to accurately identify the model.
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Figure 4.6: (a) For the case of m=8 and n=10, the shown polygon illustrates the overall shape of
the object to be identi�ed as well as the angles associated with the n viewpoints. (b) The shown
plot displays a color coding of the number of steps taken by the algorithm to positively identify the
given model for each setting of σs ∈ [0.05, 2.00] and σm ∈ [0.05, 2.00]. The color bar on the right of
the plot displays the mapping of colors to number of steps.

4.4.4.3 m=8, n=10

In the case of m=8 and n=10, Figure 4.6(a) shows the shape of the polygon being identi�ed, with

the viewpoint angles denoted by the red lines. Table 4.3 lists the unique edge labels for each of the

8 models in the database, categorized by viewpoint angle.

Model ID 0◦ 36◦ 72◦ 108◦ 144◦ 180◦ 216◦ 252◦ 288◦ 324◦

0 5 6 9 4 1 2 7 10 3 8
1 5 6 9 1 7 10 2 4 3 8
2* 5 6 9 2 1 4 7 10 3 8
3 5 6 9 1 4 10 7 2 3 8
4 5 6 9 10 1 2 7 4 3 8
5 5 6 9 10 7 2 4 1 3 8
6 5 6 9 10 2 4 1 7 3 8
7 5 6 9 2 7 10 4 1 3 8

Table 4.3: The above table indicates the speci�c edge numbers (categorized by viewpoint angle)
for each model used in this particular case study. The (*) indicates the true model used in the
simulations to generate measurement data.

As in the previous test cases, simulated runs were performed by applying Algorithm 4.1 with

varying values of measurement and system variance, σm and σs respectively. Using the same range

of values of σm ∈ [0.05, 2.00] and σs ∈ [0.05, 2.00], the number of steps taken by the algorithm

to positively identify the given model (with an initial viewpoint position always at 0◦) was again

recorded. Figure 4.6(b) shows the color coded histogram of the number of steps required by the

algorithm for the varying values of σm and σs. Note that the results illustrate the same pattern

of behavior as in the previous two simulations, i.e., for small values of σm and σs, the algorithm
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Figure 4.7: The shown block diagram illustrates a typical implementation of the SPPEMI Algorithm
which limits the information gain calculations to being computed when the system state has reached
the state determined by the optimal control action u∗.

identi�es the correct model in the expected number of steps and as σm and σs gradually increase,

the algorithm takes signi�cantly larger number of steps to accurately identify the model.

Based on the results of these simulated cases, it becomes clear that the algorithm is sensitive

to large noise parameters in both the motion model and the measurement model. While the case

study itself is not necessarily a real-life example, it does highlight the fact that with an accurate

sensor and fairly good pose estimate, the algorithm can be expected to perform in a manner which

successfully identi�es the true object in a minimal number of steps.

4.5 Practical Considerations

Given the layout of Algorithm 4.1, it would seem plausible that a typical implementation could be

achieved by recursively applying the steps listed. However, as will be discussed further in chapter 5,

the computational expenses associated with running Algorithm 4.1 at each timestep are impractical.

A more practical approach would be to limit function calls to calcPossibleControlActions(·) and

calcExpectedEntropy(·) until the �nal state prescribed by the control action u∗ is achieved. This

leads to a behavior whereby the agent is committed to completing a chosen action (once selected)

before being allowed to consider the next set of actions to take.

Shown in Figure 4.7 is a block diagram illustrating a practical implementation of the algorithm.

Note that while the information gain calculations are limited from being executed each timestep,

the current model entropy and model probabilities can still be computed while u∗ is being executed.

In the following chapter, the algorithm and theory relating to the SPPEMI Algorithm will be

tested on two experiments. For each experiment, the entire implementation details will be presented.

Additional discussion will be added where approximations have been made to simplify expressions.
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Chapter 5

Implementation of SPPEMI

The content of this chapter will focus on the implementation details and experimental results relating

to two experiments that were carried out to test the Sensor Planning for Pose Estimation and Model

Identi�cation (SPPEMI) algorithm proposed in the previous chapter to not only plan for future

sensor actions but also to simultaneously calculate 6D pose estimates and identify an unknown

object model. In the �rst experiment, the robot and the unidenti�ed object were allowed to move

about in the working environment. However, as was the case in the case study of the previous

chapter, the robot motions were con�ned to a ring about the object and the object motions (which

were operator controlled) were con�ned to within the �eld of view of the robot stereo camera. In the

second experiment, a similar setup to the �rst experiment was considered, although the robot was

no longer con�ned to a ring about the object and the object was allowed to freely move about the

workspace. In this chapter, the implementation details and experimental results of both experiments

are presented and discussed.

5.1 Experiment 1: Constrained Mobile Agent and Object

In this experiment a two-wheeled, non-holonomic robot is tasked with visually identifying an un-

known mobile object (whose movements are operator controlled) from a �nite database ofM known

models. For simplicity, the mobile agent is con�ned to move on a ring initially centered about the

unknown moving object. Similar to the case study examined in the previous chapter, control actions

of the agent are restricted to a discrete set of wheel speeds and turn rates corresponding to locations

along the circumference of the ring. This reduces the agent's pose to a single degree of freedom,

which is parameterized by the angle of its position on the ring circumference (where the angle is

measured with respect to a global coordinate frame placed at the center of the circle) � see Figure

5.1. The agent is equipped with onboard wheel odometry for localization and a �xed stereo camera

head for sensing. SIFT features augmented with 3D sparse stereo data are used, and object identi-

�cation is done by comparing known model features in a database to current features in the image,

as was detailed in chapter 3. The following subsections will discuss the application of Algorithm 4.1
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Figure 5.1: (a) A schematic of the experiment carried out where the agent is mobile yet con�ned
to a ring about the object being identi�ed. The object itself is also mobile and allowed to freely
move within the con�nes of the ring. (b) A picture of the actual setup in the laboratory for this
experiment.

and the implementation details for this particular experiment.

5.1.1 Motion Model

The state of the system is de�ned as the pose of the object relative to the camera reference frame:

Xk,i =

 xR

xθ

 ∈ R6 ,

where the object translational pose is given by xR =
[
x y z

]T
and the Euler angle parameters

given by xθ = [ α β γ ]T . Note that because the object itself is dynamic, an individual pose

estimate is required for each model in the known database being tracked, making the subscript i

necessary (whereas in the case study of the previous chapter, because of the static object assumption

with a globally coincident reference frame, the i subscript could be dropped). Figure 5.2(b) provides

a schematic detailing the motion of the robot-camera system between timesteps k − 1 and k. Note

the various reference frames and transforms involved in this experiment: {GCk−1Ok−1 , GRk−1Ck−1 ,

GRk−1Rk
, GRkCk

, GCkOk
∈ SE(3)} where (R) refers to the robot reference frame, (C) the camera

reference frame, and (O) the object reference frame. Because the camera is rigidly mounted on

top of the robot, the transform GRkCk
is constant, i.e., GRkCk

= GRk−1Ck−1 = GRC . Using the

appropriate frame transformations, the following kinematic relation can be derived:

GCk,Ok
= G−1

RC ·G
−1
Rk−1Rk

·GRC ·GCk−1,Ok−1 ·GOk−1Ok
. (5.1)

equation (5.1) de�nes the motion model of the robot, provided the relevant terms can be expressed.
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Figure 5.2: (a) The camera reference frame is o�set from the robot transform by a constant trans-
lation (l) and a rotation of π2 about the x − axis. (b) A schematic showing the various transforms
involved in the experiment, when the robot moves from one timestep k to the next timestep k + 1.
Note the reference frame notation: the camera reference frame (C), the object reference frame (O),
and the robot reference frame (R).

In this experiment, the origin of the camera is elevated above the robot origin by a distance l

along the robot z-axis with the camera z-axis aligned with the optical axis (see Figure 5.2(a)). This

con�guration yields an inward-facing camera as the robot traverses the path of the ring, and GRC

can be found to be

GRC =


1 0 0 0

0 0 1 0

0 −1 0 l

0 0 0 1

 . (5.2)

The transform GRk−1Rk
can be determined using a traditional two-wheeled non-holonomic kine-

matic model of the robot body � an approach used in determining robot odometry. Let the robot

control input at time k be de�ned as follows:

uk =

 us

uω


k

∈ R2 ,

where us represents a speed command to the robot (measured in [m/s]) and uω represents an angular

rate command to the robot (measured in [rad/s]). Because the robot motion is con�ned to a plane,
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the robot body pose can be de�ned in a global reference frame1 by three variables (see Fig. 5.2):

xgr,k =
[
xgr ygr θgr

]T
k
,

where xgr and ygr represent the translation component of the robot in the global x-y plane, and θgr

represents the heading of the robot relative to the global coordinate frame. The robot kinematic

model can thus be de�ned as 
xgr

ygr

θgr


k

=


xgr

ygr

θgr


k−1

+


δx,k−1

δy,k−1

δθ,k−1


︸ ︷︷ ︸

δk−1

, (5.3)

where δk−1 ∈ R3 represents the change in motion of the robot body between timesteps k − 1 and k

and is given by

δk−1 =


us,k−1∆t · cos(θgr,k−1)

us,k−1∆t · sin(θgr,k−1)

uω,k−1∆t

 ,

where ∆t = tk − tk−1. The transformation GRk−1Rk
can thus be expressed by the following:

GRk−1Rk
=

 RRk−1Rk
dRk−1Rk

0T 1

 , (5.4)

with RRk−1Rk
and dRk−1Rk

given by:

RRk−1Rk
=


cos(δθ,k−1) −sin(δθ,k−1) 0

sin(δθ,k−1) cos(δθ,k−1) 0

0 0 1

 ,

d =


cos(θg,k−1)δx,k−1 + sin(θg,k−1)δy,k−1

−sin(θg,k−1)δx,k−1 + cos(θg,k−1)δy,k−1

0

 .

The transform GOk−1Ok
is derived from the object's motion model which is assumed to be a

1The global reference frame is de�ned in this case to be coincident with a coordinate frame centered at the ring
origin.
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random walk perturbed by noise at the velocity level, i.e.,

GOk−1Ok
=

 I3×3 0

0T 1

 . (5.5)

Substituting equations (5.2), (5.4), and (5.5) into equation (5.1), the translational and rotational

pose parameters can be extracted to yield the following non-linear motion model equation:

Xk,i =


[
fx fy fz

]T[
fα fβ fγ

]T

k−1

+ η

= F(Xk−1,i,uk−1) + η , (5.6)

where the terms fx, fy, and fz de�ne the kinematic relations used to predict the object translational

pose and are given by

fx =cδθ,kx+ sδθ,kz − cδθ,k(cθgr,kδx,k + sθgr,kδy,k)− sδθ,k(−sθgr,kδx,k + cθgr,kδy,k) ,

fy =y ,

fz =− sδθ,kx+ cδθ,kz + sδθ,k(cθgr,kδx,k + sθgr,kδy,k)− cδθ,k(−sθgr,kδx,k + cθgr,kδy,k) ,

where c(·) , cos(·) and s(·) , sin(·). The terms fα, fβ , and fγ de�ne the kinematic relations used

to predict the orientation of the object and are given by

fα =tan−1

(
sαcβ

cδθ,kcαcβ − sδθ,ksβ

)
,

fβ =− sin−1 (−sδθ,kcαcβ − cδθ,ksβ) ,

fγ =tan−1

(
−sδθ,k(cαsβsγ − sαcγ) + cδθ,kcβsγ

−sδθ,k(cαsβcγ + sαsγ) + cδθ,kcβcγ

)
,

where η ∈ R6 is Gaussian white system noise with covariance given by Σs ∈ R6×6.

5.1.2 Measurement Model

In this experiment 3D SIFT features were chosen as the type of measurement data since the working

environment required highly descriptive features to ensure robust feature matching. SIFT features

are widely used for their invariance to rotations and scale and high probability of matching; as

such, it was an obvious choice to use for this experiment. This allows for the measurement model

of this experiment to be identical to equation (3.5) developed in chapter 3 (reproduced here for
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convenience):

Dk =


y0

y1

...

ynk

 =


xR,k + RCOk

biJ(0)

xR,k + RCOk
biJ(1)

...

xR,k + RCOk
biJ(nK)

+ ξ ,

= H(Xk,i,Bi) + ξ (5.7)

where the terms Dk, yj , biJ(j), and Ji(j) are the same as was de�ned in section 3.2.2. Recall

the correspondence variable Ji(j) is found by employing a Best-Bin-First Search algorithm as �rst

described by Lowe in [30] and optimized using a k-d tree to yield a high probability of accurate

correspondences. Features in the database are generated o�-line during a training phase and then

catalogued according to each object, identical to the approach discussed in section 3.2.3. It should

be noted that the 3D SIFT features are only extracted from a �xed subwindow of the image to

increase computational e�ciency. While an ROI approach could have been used in this experiment

as discussed in section 3.2.4, it was discovered that because of the multiple model state estimates

involved, an independent ROI would have to be used for each model which was not conducive to a

multi-threaded framework and thus only added unnecessary computation.

5.1.3 Applying the Algorithm

With the motion and measurement models both de�ned, Algorithm 4.1 can be implemented in

a similar manner as was done in the previous chapter, i.e., with appropriate implementation of

the functions calls calcPossibleControlActions(·), calcCurrentEntropy(·), and calcExpectedEntropy(·)

as outlined in Figure 4.7 (where because of the computational expenses involved with running an

iteration of the SPPEMI algorithm each timestep, information gain calculations are executed only

after a commanded control action has been completed).

For this experiment, much of the robot dynamics are simpli�ed because the robot is constrained to

motion on a ring and the robot inputs us and uω are related by the ring radius: us = Rring

uω
. By spec-

ifying uω, us is also speci�ed and for some ∆t, a future robot position on the ring can be predicted.

As such, the set of possible control actions determined by the function calcPossibleControlActions(·)

can be reduced to a set of discrete future locations on the ring. In this experiment, the set of controls

corresponding to robot positions on the ring ranging from 0◦ to 360◦ in steps of 10◦ are considered.

The radius of the ring Rring is chosen speci�cally to be the same nominal distance between the

object and the robot during the training phase � thus increasing the probability of detection and

feature matching overall.

Recall that the function calcCurrentEntropy(·) is responsible for determining the current model
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entropy, Hk, based on the set of perceived measurements, Dk. As was shown in the previous chapter,

this can be achieved by an application of a Bayes Filter. In particular, Lines 3 and 4 of Function

4.2 de�ne the Bayes Filter implementation and can be resolved if a Markov assumption is made and

an assumption of Gaussian white noise on both the motion and measurement models of equations

(5.6) and (5.7) considered. Because of the non-linearity of the measurement model in equation (5.7),

Bayes Filter reduces to an Extended Kalman Filter as was shown in section 2.1.2:

DYNAMIC PREDICTION

belk,i = N(Xk,i;µk,i,Σk,i) , (5.8)

µk,i = F(µk−1,i,uk−1) ,

Σk,i = Ak−1,iΣk−1,iAT
k−1,i + Σs

=⇒ Ak−1,i =
∂F

∂Xk−1,i

∣∣∣∣∣
µk−1,i,uk−1

,

MEASUREMENT UPDATE

belk,i = N(Xk,i;µk,i,Σk,i) , (5.9)

µk,i = µk,i + Kk,i(Dk −H(µk,i,Bi)) ,

Σk,i = (I−Kk,iCk,i)Σk,i

=⇒ Kk,i = Σk,iCT
k.i(Ck,iΣk,iCT

k,i + Σm)−1

=⇒ Ck,i =
∂H
∂Xk,i

∣∣∣∣∣
µk,i

. (5.10)

However, before the model entropy Hk can be fully expressed, the data likelihood must be resolved

in line 5 of Function 4.2:

p(Dk|D1:k−1,u1:k−1,Mi) =
∫
p(Dk|D1:k−1,u1:k−1,Xk,i,Mi) · belk,idXk,i (5.11)

=
∫
N(Dk; H(Xk,i,Bi),Σm) ·N(Xk,i;µk,i,Σk,i)dXk,i ,

where equation (5.8) has been substituted in place of belk,i and p(Dk|D1:k−1,u1:k−1,Xk,i,Mi) has

been replaced with N(Dk; H(Xk,i,Bi),Σm) from the measurement model of equation (5.7). Note

that by making a linear approximation to H(Xk,i,Bi) as was done in equation (5.10), the data

probability pdf of equation (5.11) can be analytically solved with application of Proposition 2.1:

p(Dk|D1:k−1,u1:k−1,Mi) = N(Dk;µDk,i,ΣDk,i) , (5.12)
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True Model: M2 M0 M1 M3

Pose [x y z α β γ] P 0
b0

· · · P 0
bN0−1

P 1
b0

· · · P 1
bN1−1

P 3
b0

· · · P 3
bN3−1

0.19 0.32 · · · 0.72 1.00 . . . 0.00 0.92 . . . 0.00 0.93 . . . 0.01
0.18 0.33 · · · 0.81 0.92 . . . 0.00 0.95 . . . 0.02 1.00 . . . 0.03
0.19 0.32 · · · 0.81 0.90 . . . 0.00 0.99 . . . 0.01 0.95 . . . 0.05
0.20 0.34 · · · 0.82 0.89 . . . 0.00 0.98 . . . 0.03 0.91 . . . 0.03

...
...

...
...

...
...

...
...

...
...

0.21 0.32 · · · 1.09 0.00 . . . 0.00 0.00 . . . 0.00 0.00 . . . 0.00

Table 5.1: Probability lookup table generated by considering a true model Mi at various relative
poses, and recording how every other model's database of features compares to the true model set.

where µDk,i and ΣDk,i are given by

µDk,i = Ck,iµk,i ,

ΣDk,i = Ck,iΣk,iCT
k,i + Σm .

Recall that the function calcExpectedEntropy(·) is responsible for determining the expected model

entropy H+
m associated with the potential future control action u+

m. Close inspection of Function 4.3

will show that a majority of the terms are no di�erent than terms already solved for from determining

the current model entropy Hk in the calcCurrentEntropy(·) function. The only term that requires

further speci�cation is the sampled future data measurement, D̃, which is not as straightforward as

may seem � how does one sample a set of 3D SIFT features, each with a 128-dimensional descriptor

that determines the appropriate correspondence? In the case study of the previous chapter, the

measurement model constructed had simpli�ed away many of these details making the prediction of

future data measurements possible from a detailed measurement model � which is not available in

this particular experiment. To �nd a solution to this problem, Function 4.3 is examined in further

detail.

Note that the purpose of generating future measurement data D̃ ∈ R(3×n)×1 (for n future

measurements) from model Mi according to p(D̃|D1:k,u1:k−1,u+
m,Mi) is to consider the sampled

data against all other models Mj according to p(D̃|D1:k,u1:k−1,u+
m,Mj). In other words, if control

action u+
m is executed and D̃ potentially observed (assuming modelMi is the true model), the utility

of that action and the discriminability of the data when compared to the set of all other models

{Mj} is determined by evaluating the expression: p(D̃|D1:k,u1:k−1,u+
m,Mj). This is a necessary

step to Monte Carlo Sampling so that the model entropy associated with executing control action

u+
m can be accurately determined. Consider then the term p(D̃|D1:k,u1:k−1,u+

m,Mj) (which was

shown to have a normal distribution via application of Proposition 2.1):

p(D̃|D1:k,u1:k−1,u+
m,Mj) = N(D̃;µDk,j ,ΣDk,j) .
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If each SIFT measurement, ỹl ∈ R3×1 from the sampled set D̃ = [ỹT1 ỹT2 · · · ỹTn ]T is assumed

mutually exclusive from all other features in the same set, then p(D̃|D1:k,u1:k−1,u+
m,Mj) becomes

p(D̃|D1:k,u1:k−1,u+
m,Mj) =

n∏
l=1

N(ỹl;µyl,j ,Σyl,j)

=
n∏
l=1

1
(2π)(3/2)|Σyl,j |1/2

exp(−1
2

(ỹl − µyl,j)
TΣ−1

yl,j
(ỹl − µyl,j)) .

The mean and covariance of the l-th measurement are given by

µyl,j = Cl,jµk,j

Σyl,j = Cl,jΣk,jCT
l,j + Σm

where Cl,j corresponds to the linearized measurement model for the single measurement ỹl of model

Mj , µk,j and Σk,j correspond to the prediction step of the Bayes Filter, and Σm is the covariance

matrix associated with the noise of measurement ỹl. Note that the vector [ỹ − µyl,j ] ∈ R3×1 is the

residual of the sampled future measurement from model Mi and the linearized expected location of

that matched feature in model Mj in 3D Euclidean space. Also, Σyl,j is de�ned as a sum of the

uncertainty in object pose and measurement uncertainty. Suppose the following assumptions are

now made

1. [ỹl − µyl,j ] ≈ ε̄0 ∈ R3×1 ,

2. |Σm| � |Cyl,jΣk,jC
T
yl,j
| =⇒ Σyl,j ≈ Σm = Σ0 ∈ R3×3 .

The �rst assumption claims that the �residuals� between all sampled measurements of model Mi

and their expected linearized matched locations in model Mj are always the same value. Obviously

that is not the case but for the most part the sampled measurements and expected locations are

on the same order and in situations when feature distances in the object reference frame are small

relative to feature distances in the camera reference frame, this assumption can be valid. The second

assumption claims that the sensor measurement uncertainty is dominant, and approximated by a

constant matrix value, which can be argued as a valid claim provided the object is far enough from the

camera origin. With these assumptions then made, the data probability p(D̃|D1:k,u1:k−1,u+
m,Mj)

can be reduced to

p(D̃|D1:k,u1:k−1,u+
m,Mj) ≈

1
(2π)3n/2|Σ0|1/2

exp(−n
2
ε̄0Σ−1

0 ε̄T0 ) , (5.13)

where again n is the number of features matched between the data D̃ sampled from Mi and the

set of database features in Mj . With this approximation, expected entropy calculations can thus

be carried out without requiring speci�c generated future data. The only information needed is the



67

Figure 5.3: (a) Four similar models of a box were used in Experiment 2. Each box model shared
the same three faces while the fourth face was di�erent for each model. The faces themselves were
described by magazine cutouts. (b) A screenshot of the algorithm's visual interface. Shown is
the information gain for various future robot locations (limited to a circle passing through robot's
current pose). The optimal action moves to the peak of the information gain metric, which brings
the discriminating face (shown in pink) into view.

number of measurements, n, matched between the database of features in model Mj and a potential

data set D̃ of features in model Mi expected to be observed based on some potential action u+
m.

Furthermore, this approximation does not involve any matrix inversions and reduces computational

complexity greatly.

As a result of the above approximations, probability lookup tables can be used. Since the feature

correspondences need to be considered for each true model against every other model, the probability

lookup tables take on the form shown in Table 5.1.

The lookup table is generated by considering a true model Mi at various relative poses, and

recording how every other Mj model's database features matches to the true model set. The prob-

ability values, P jbl
represent the probability of the l-th database feature of the j-th model �nding a

match to some feature in the i-th model at the listed relative pose between robot and object. Shown

in the table are values used for a true model Mi = M2, though note that probability lookup tables

were generated for all models considered as the true model and kept in a database of �les loaded at

run time. Thus the variable n in equation (5.13) is determined by using the lookup table for true

model Mi and counting the number of positively sampled features from the probability columns

associated with model Mj .

5.1.4 Results

The experimental system (see Figure 5.1(b)) used a PointGrey BumbleBee2 stereo color camera

(downsampled to 320×240 resolution) mounted on an Evolution Robotics ER-1 mobile robot. Wheel

odometry was used as a crude measure of robot pose estimation. Computations were performed on
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Figure 5.4: The position estimates of the object (as de�ned in a global reference frame) are shown
in the top row and the orientation estimates are shown in the middle row. The robot estimated pose
using the proposed algorithm is shown in the solid-blue line and the reference pose is shown in the
dotted-red line. The last row shows the model probability estimates for all models, plotted against
time. The vertical dotted lines indicate instances of when the information gain calculations were
executed for sensor planning.

a laptop (Intel Pentium(R) M 1.86 GHz processor) running Linux. The algorithm was written in

C/C++.

For the mobile object, the database consisted of 4 models of a box attached to a moveable base.

Each lateral side of the box was marked with a distinct pattern (a magazine cutout), and it was

decided that all 4 models would share 3 identical faces, with only the last face being di�erent for each

model (see Figure 5.3(a)). The database of features for each model was generated during an o�-line

training phase in which the robot was allowed to learn each object from eight varying viewpoints, all

kept at the same nominal distance from the object. Motion of the object was remotely controlled

by a human operator in such a manner so as to prevent the discriminating model face from being

observed by the robot. This strategy required repeated sensing and planning operations on the part

of the robot until the model probability of one model peaked to near 100% certainty.

The top two rows of Figure 5.4 show the position parameters (x, y, z, α, β, γ) estimated by the

SPPEMI algorithm, plotted as a function of time. Though poses were estimated for all database

models, only the parameters for the true model are shown. Plotted against the estimated parameters

is the model object reference pose as determined by wheel odometery. Considering that the algorithm

assumes a simple random walk model for the object, the results show that it does a fairly good job
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Figure 5.5: Other trials were also considered for di�erent models. Shown are those model probability
estimates for each trial plotted against time. The true models are indicated with the asterisk. As
can be seen, the algorithm accurately identi�es the true model in each case. The vertical dotted
lines indicate instances of when information gain calculations were executed for sensor planning.

of tracking. Note however the noise associated with the roll angle estimate in the far right plot of

the second row � a variance of roughly 0.3rad. This is largely attributed to poor stereo projection

of certain features and also a small set of feature mismatches.

The bottom row of Figure 5.4 shows the calculated model probabilities for each model during

the same trial. Note that up until t = 180 s, the model probabilities are roughly equal at 0.25.

This is expected since all models share the same three faces, and until the discriminating model

face is observed (which happens at t = 180 s), each model is equally likely to be the unknown

object. Note that once that face is observed, the model probability of the correct model increases

rapidly to 1.0 while the other probabilities decrease to 0.0. The dotted vertical lines correspond to

the time instances when the information gain is calculated and the optimal action chosen. Figure

5.3(b) illustrates a screenshot of the system's visual interface taken at such an updating event. It is

important to note that the information gain calculations are not performed during each timestep,

but are executed once the robot has completed the prior sensing action.

Subsequent experiment trials were carried out for the other objects in the database. Figure 5.5

shows the results of those trials (with the pose estimate plot comparisons omitted for brevity), with

the true models indicated by the asterisk. As can be seen in the �gure, the algorithm accurately

identi�es the true models in each trial run and shows consistent behavior across all trials. This

experiment validates the SPPEMI algorithm in a more complex, noisier environment. It also shows
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Figure 5.6: Experimental setup for Experiment 3. Both the agent and the object are free to move
about the x−y plane. The stereo camera head on the mobile agent is also controlled to swivel about
the pan axis.

an extension of the work done in chapter 3 to larger scale objects. However, the constraints involved

in this experiment (i.e., the robot motion being con�ned to a ring as well as the �xed camera

orientation relative to the robot frame) are limiting and not truly illustrative of the robustness of

the proposed algorithm. An implementation of the SPPEMI algorithm that removes the constraints

of this experiment is discussed next.

5.2 Experiment 2: Mobile Agent with Mobile Object

In this experiment, the setup is very similar to Experiment 1 though with some slight di�erences.

The mobile agent is again tasked with identifying a given object model, where the models in this

experiment are identical to those used in Experiment 1. The robot considered is again a two-

wheeled non-holonomic robot, though this time free to move about in the x-y plane, with its motions

determined by a combination of the output of the SPPEMI algorithm and a point-to-point controller

designed to keep the robot within a reasonable vicinity of the object. The agent is also equipped with

a stereo camera head mounted on a pan-tilt-unit allowing the camera head to rotate independently

of the robot base orientation. The purpose of the pan-tilt unit controlled stereo head is to simplify

the motion planning associated with the nonholonomic constraints of the robot base and to allow

the robot to freely move in the x-y plane, unconstrained by the �eld of view of the camera. As was

the case in the previous experiment, the motions of the object are determined by operator control.

The schematic in Fig. 5.6 illustrates the proposed setup for this experiment. The chosen features are

again SIFT features augmented with 3D stereo data and object identi�cation is done by comparing

known model features in a database to current features in the image.
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5.2.1 Motion Model

The state of the system is the same as was in Experiment 1, and the motion model is also similar. In

this experiment, however, the transform GRkCk
in equation (5.1) changes from timestep to timestep

because of the motion of the pan-tilt unit (PTU) and thus cannot be assumed constant. The

kinematic relations of equation (5.1) are then re-written as

GCk,Ok
= G−1

RkCk
·G−1

Rk−1Rk
·GRk−1Ck−1 ·GCk−1,Ok−1 ·GOk−1Ok

, (5.14)

where GRk−1Ck−1 and GRkCk
de�ne the camera to robot frame transform at timestep k − 1 and k.

These transforms can be de�ned by knowing the pan position of the PTU at both timesteps. The

pan position at timestep k−1 will come from the pan angle position read directly from the unit (φk)

while the pan position at timestep k will come from the pan slew rate at timestep k − 1, (φ̇k−1∆t).

In this experiment, GRk−1Ck−1 and GRkCk
are found to have the following forms:

GRk−1Ck−1 =


sin(φk−1) 0 cos(φk−1) −b

−cos(φk−1) 0 sin(φk−1) 0

0 −1 0 l

0 0 0 1

 , (5.15)

GRkCk
=


sin(φ̇k−1∆t) 0 cos(φ̇k−1∆t) −b

−cos(φ̇k−1∆t) 0 sin(φ̇k−1∆t) 0

0 −1 0 l

0 0 0 1

 , (5.16)

where b and l refer to the displacement o�set in x and z between the robot reference frame and

origin of the camera as shown in Figure 5.7.

Because the PTU has its own set of control commands that can be governed by the robot,

there is added complexity to the overall system if the pan controls are considered in the SPPEMI

algorithm in addition to the robot odometry controls. The approach taken in this experiment is to

reduce complexity by treating the control loop governing the PTU independently from the SPPEMI

algorithm. That is, the PTU control loop will operate in a separate thread from the SPPEMI

algorithm and in such a manner that ensures the object is in the camera �eld of view. (Section

5.2.3.1 will discuss the PTU control loop in further detail.) Thus the only controls to the overall

system are controls to the robot motion:

uk =
[
us uω

]T
k
∈ R2 ,
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Figure 5.7: The camera to robot transform in this experiment was determined by considering the
o�set between the PTU base and the robot base in x (distance b) and z (distance l), as well as the
pan angle of the camera, φ.

where again us and uω correspond to the wheel speed and turnrate of the robot.

Aside from the expressions for GRkCk
and GRk−1Ck−1 , the motion model for the system in this

experiment thus follows the same approach as in Experiment 2, with the transforms GRk−1Rk
and

GOk−1Ok
being the same:

Xk,i =


[
fx fy fz

]T[
fα fβ fγ

]T

k−1

+ η

= F(Xk−1,i,uk−1) + η , (5.17)

however F(Xk−1,uk−1) takes on a di�erent form from equation (5.6) due to the changes in GRkCk

and GRk−1Ck−1 . The exact expression can be solved for by substitution of equations (5.4), (5.15),

and (5.16) into equation (5.14) and extracting out the relevant Euler parameters (see Appendix B
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for the mathematical details). The terms fx, fy, fz are thus given by

fx = c(φ̇∆t+ δθ − φ) · x+ s(φ̇∆t+ δθ − φ) · z+

− b · s(φ̇∆t+ δθ) +−s(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))+

c(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) + b · s(φ̇∆t) ,

fy = y ,

fz = −s(φ̇∆t+ δθ − φ) · x+ c(φ̇∆t+ δθ − φ) · z+

− b · c(φ̇∆t+ δθ) +−c(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))+

− s(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) ,

and the terms fα, fβ , and fγ are given by

fα = tan−1

(
sαsβ

c(φ̇∆t+ δθ − φ)cαcβ − s(φ̇∆t+ δθ − φ)sβ

)
,

fβ = −sin−1(−s(φ̇∆t+ δθ − φ)cαcβ − c(φ̇∆t+ δθ − φ)sβ) ,

fγ = tan−1

(
−s(φ̇∆t+ δθ − φ)cαsβsγ + s(φ̇∆t+ δθ − φ)sαcγ + c(φ̇∆t+ δθ − φ)cβsγ
−s(φ̇∆t+ δθ − φ)cαsβcγ − s(φ̇∆t+ δθ − φ)sαsγ + c(φ̇∆t+ δθ − φ)cβcγ

)
.

5.2.2 Measurement Model

The measurement model for this experiment is identical to the model developed for Experiment 2

(see section 5.1.2). 3D SIFT features are used with a �xed subwindow of the image to increase

computational speed and feature correspondence is achieved using Lowe's Best-Bin-First Search

algorithm that utilizes a k-d tree. The measurement model is repeated again here for convenience:

Dk =


y0

y1

...

ynk

 =


xR,k + RCOk

biJ(0)

xR,k + RCOk
biJ(1)

...

xR,k + RCOk
biJ(nK)

+ ξ ,

= H(Xk,i,Bi) + ξ

where the terms Dk, yj , biJ(j), and Ji(j) are the same as was de�ned in section 3.2.2.

5.2.3 Applying the Algorithm

Application of the SPPEMI algorithm to this experiment is similar to Experiment 2 in that informa-

tion gain calculations are computed only after the mobile robot has reached the location determined

by the optimal control action, u∗. Lookup tables are also similarly used for generating future data
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using the same approximation of equation (5.13). However, the application of the SPPEMI algo-

rithm to this experiment is slightly more involved because of the control loop governing the pan-tilt

unit, the unconstrained motion of the object, and the unconstrained motion of the robot. Each of

these factors will be considered in full detail, in relation to how implementation of the SPPEMI

algorithm is ultimately achieved.

5.2.3.1 Pan-Tilt-Unit Control Loop

As was mentioned in section 5.2.1, the complexity of the SPPEMI algorithm in the overall system is

reduced if the PTU control is implemented separately from the robot motion control. The control

loop of the PTU revolves around two states: a �tracking state� and a �scanning state.� The tracking

state is concerned with keeping the object origin in the �eld of view of the camera at all times

once detected. However, because the object model ID may not be known with 100% certainty at

initial detection, the object's exact origin location is a vague concept: an Extended Kalman Filter

is running for each of the M models in the database and there are essentially M potential origin

locations. As such, the average origin of all models (weighted by model probability) is chosen as

the origin and the �tracking state� aims to keep the origin in the �eld of view of the camera using

a simple state-feedback control law. That is, if the weighted origin, Pobj ∈ R3, is found to be

Pobj = [xobj yobj zobj ], then the projection of the origin on the image plane, pobj ∈ R2, is de�ned as

pobj =

 ximg

yimg

 =


f · xobj
zobj

+ cx

f · yobj
zobj

+ cy

 ,
where f is the focal length of the camera and (cx, cy) the image center. A simple proportional

feedback law is then used to control the pan-angle slew rate:

upan = −K · δpan = −K(cx − ximg) = −Kf · xobj
zobj

,

for constant gain K > 0 and upan in units of radsec . A similar method can be used for the PTU tilt,

though tilt control was found to be unnecessary in this experiment.

The �scanning state� of the PTU is concerned with moving the camera head in a scanning pattern

so as to cover regions of the environment outside the original �eld of view. This state is typically

entered during the initial startup of the algorithm when the robot is searching for any known object

model or whenever the robot has lost existing tracks of object models. In situations relating to the

latter, a signal is sent to the robot odometry to pause until the track is re-established. Depending

on the re-initialized state of the object, a new iteration of the SPPEMI algorithm may be computed

for a new optimal control action, or the control action originally sought before the track was lost is
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Figure 5.8: The shown block diagram illustrates the speci�c implementation of the SPPEMI Al-
gorithm in this experiment. Note the information gain calculations are limited to being computed
when the system state has reached the state determined by the optimal control action u∗, which is a
modi�ed control action output from the point-to-point controller. Note also the PTU control block
which acts as a separate thread.

then resumed.

5.2.3.2 Robot Motion Control

Because the object itself is mobile and the robot free to move about in the x-y plane, the set of

possible control actions to consider in the calcPossibleControlActions(·) function is vast. Further-

more, the object itself may be in a position far from the robot where simple motion in a circular

path (such as in Experiment 2) may not be optimal. To circumvent these issues, an approach can

be taken which constructs the current experiment in a framework similar to Experiment 1, allowing

all the methodologies previously described to be implemented in the same manner.

Consider the situation where the mobile object's weighted origin is found to be at Pobj ∈ R3

and the mobile robot is deciding where to move next based on the information gain metric of the

SPPEMI algorithm. Given that the object may be at some far distance (or even a close distance),

the current robot pose can be projected onto a ring of radius Rradius centered on Pobj , where Rradius

is of the nominal distance between the object and the robot set during the training phase when the

object was �rst learned. In so doing, a set of discrete control actions along the perimeter of the

ring can then be considered and the function calcPossibleControlActions(·) computed in a manner

analogous to Experiment 1.

Once the optimal control action is determined from the SPPEMI algorithm, note that u∗ pre-
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sumes a motion along a circular path of the hypothetical ring which is inaccurate since: (1) the

projection of the mobile robot pose was used to generate u∗ and not the true robot pose which may

be some further distance away; (2) the motions of the mobile robot are no longer con�ned to circular

paths on the ring and more optimal paths may exist that achieve the same outcome. As such, the

predicted �nal robot pose on the ring is extracted from the optimal control action u∗ and fed into

a motion controller. The motion controller determines a new control action (or set of), ū∗, that is

equivalent to the desired location of u∗ yet does not con�ne motion to a ring and will take more

direct paths.

Figure 5.8 shows a block diagram of the entire system, which is similar to the block diagram of

Fig. 4.7, yet includes the PTU control loop and robot motion controller. Note in the PTU control

loop the HALT state is directly responsible for pausing the motion controller should the object

track be lost. Also note that the SPPEMI algorithm loop remains virtually unchanged, with the

exception that the state Xk,i is replaced with the projected state on the ring of radius Rring. As

such, the probability lookup tables generated in Experiment 2 can still be used and the information

gain calculations carried out in the same fashion. The results of this experiment are presented in

the next section.

5.2.4 Results

In this experiment, the database of 4 box models that were used in Experiment 1 were also used

(see Figure 5.3) � with all four models being nearly identical except for one discriminating face. The

mobile agent used was again an Evolution Robotics ER-1 two-wheeled robot with onboard wheel

odometry and the mobile object (which was operator controlled) was another ER-1 robot (a�xed

with the box model) and equipped with wheel odometry that was used as a measure of ground truth

in analyzing the pose estimates from the experiment. As in the �rst and second experiments, the

stereo camera consisted of a PointGrey BumbleBee2 stereo color camera with a native resolution

of 640×480, downsampled to 320×240. The pan-tilt unit was a Directed Perception2 PTU-D46-17

pan-tilt unit with an accuracy of 0.0514◦ in both pan and tilt positions. The computing platform

was a laptop running Linux with an Intel Core2 Duo 2.40 GHz processor. The algorithm was written

in C/C++ using the Intel OpenCV library.

Model 2 was used as the true model for the mobile object, with remote operation of the object

controlled by an external operator and in such a manner that prevented the discriminating face

from being observed too quickly. Recall the purpose of this strategy was to require the mobile robot

to recursively sense and plan until the model probability of one model had peaked to near 100%

certainty. Unlike Experiment 1, however, the initial object location was placed arbitrarily in the

laboratory and no information of its initial location was provided to the mobile agent. The purpose

2www.directedperception.com
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Figure 5.9: The position estimates of the object (as de�ned in the global reference frame) are shown
in the top row and the orientation estimates are shown in the bottom row. The robot estimated pose
using the SPEMMI algorithm is shown in the solid-blue line and the ground-truth pose is shown in
the dotted-red line. The ground-truth pose was determined by the wheel odometry on the mobile
object.

of this was to force the PTU control loop into the �scanning mode� and to test the robustness of the

overall system to detect and initialize a pose for the object.

Figure 5.9 shows the pose estimation results of this experiment, where the translational pose

estimates are shown in the top row of plots and the orientation estimates on the bottom row of

plots. While multiple pose estimates exist for all potential models in the database, only the pose

estimate for the true model is shown. Plotted against the pose estimate for reference is the mobile

object's pose estimation from the wheel odometer. Overall the system does a fairly good job of

estimating the pose of the model object, though with some spikes in uncertainty in the roll and

pitch orientation estimates which can be attributed mainly to visual feature mismatches. Note also

that there are some displacement o�sets in x at around t = 150s and t = 220s and similarly in y

at t = 100s and t = 220s. Those o�sets, while eventually recti�ed, correspond to the periods of

�tracking� states of the PTU control loop. While e�orts were made to keep the timestamps between

images and pan angles/slew-rates synchronized, there was a slight delay that was unaccounted for

which led to some images being tagged with unsynchronized pan angles/slew-rates. Nonetheless the

EKF was still able to adjust to the more accurate state estimates.
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Figure 5.10: The model probabilities plotted against time for this experiment. Model 2 was correctly
identi�ed as the true model, despite an initial growing con�dence in Model 4.

In Figure 5.10, the model probabilities are plotted against time to indicate the history of model

con�dence throughout the experiment. Despite some growing con�dence in Model 4 initially, the

system accurately determines the true model of the object once the discerning face of the object is

seen which occurs around t = 205s when the �nal sensor planning action has been executed. Figure

5.11 shows a screenshot of the visual interface developed for the implemented system. Note the

equatorial ring is centered on the object with the information gain plotted at various locations along

the ring. The peak information gain is denoted by the vertical yellow line, and is marked as the

future goal location.

This experiment validates the SPPEMI algorithm in a more complex, noisier environment and

shows the extensions of the SPPEMI algorithm to mobile robots in dynamic environments with

real-time processing capabilities.
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Figure 5.11: An annotated screenshot of the visual interface developed for the SPPEMI algorithm
running in real-time. Note the generated information gain is plotted at various locations along the
perimeter of the ring using the projected location of the robot onto the ring, while the robot itself
is not located on the ring.
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Chapter 6

Sensor Planning for 3D Object Search

The previous two chapters considered the problem of sensor planning for object identi�cation and

pose estimation with the underlying assumption that the object being tracked and identi�ed could

be easily found (either directly in the �eld of view of the mobile robot or within a reachable �eld

of view by appropriate control of a pannable unit on which the camera is mounted). However, such

an assumption is not always necessarily true and touches on a growing area of research known as

object search. This chapter considers the problem of 3D object search with full 6D pose estimation

using stereo vision in a probabilistic framework.

6.1 3D Object Search Context and Contribution

As mentioned in chapter 1, much of the prior work in this �eld has focused on developing a systematic

approach to the sensor planning problem by enumerating all possible sensing actions and quantifying

the utility of each action via optimization of constructed cost functions ([56], [46], [47]). While these

methods have traditionally not considered the coupled problem of object pose estimation (once

the object is found), recent works have touched on it ([13], [14], [27]). With advances made for

applications to servicing robots, the problem is generally divided into a global (coarse) search and

a local (re�ned) search approach, where the local search attempts to solve the problem of pose

estimation for grasping. However, a large number of sensors is typically required to implement most

current methods and the pose estimation in the local search is limited to simple planar objects

in well-de�ned orientations. In addition, existing methods lack a formal Bayesian framework in

their implementation. The contributions of this chapter will show that accurate 6D pose estimation

can be realized using a single stereo camera mounted on a pan-tilt unit (PTU) of a mobile robot.

The details of this chapter will present several useful features in a common framework: a two-scale

search strategy, a grid-based probability map that governs the search process, a recursive Bayesian

map updating process, 6D pose estimation of the found object, and a simple integration of obstacle

avoidance into the search planning method.
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6.2 Framework

Consider a (possibly nonholonomic) mobile robot equipped with a stereo camera mounted on top

of a pan-tilt unit (see Figure 6.1(a)). Let the robot localization problem be resolved via one of

many available methods (e.g., vision-based SLAM, onboard odometry, indoor GPS, etc.). While the

position of the object to be found is not known to the robot, assume that the object's position is

stationary throughout the search process. The object is assumed to be learned during a training

phase in which various viewpoints of the object are captured in stereo. Registered features are

recorded in the object reference frame along with a reference image of the object taken at each

viewpoint. The resultant set of recorded features and images constitute a feature database speci�c

to the object being searched (identical to the methodology presented in chapter 3), thus contributing

to a dictionary of known objects in the robot's memory. This facilitates the setup for object search

by allowing the user to simply specify which object in the dictionary to search for. Finally, suppose

that a known object is placed somewhere in the workspace. The question can now be asked: how

does the mobile robot search for the object and place its position in the global environment once

found?

6.2.1 Probability Map

While the methods of previous approaches to the 3D object search problem have lacked in a formal

Bayesian analysis, the work of [6] presented a recursive Bayesian updating schema for a grid-based

probability map applied to the speci�c problem of object search. While their presented results were

limited to simulation, the approach presented here borrows from that framework and applies it to a

real robotic platform.

Assume that the workspace can be divided into cells whose coordinates are known in some global

coordinate frame. Let ci,j represent the (i, j)th cell of the discretized search space, M, and let

yki,j ∈ {0, 1} be a stochastic binary variable indicating a positive or negative detection of the object

in cell ci,j at timestep k. Let Y1:k denote the set of binary measurements from timestep 1 up to and

including timestep k: Y1:k = [y1 y2 · · · yk]. Let hki,j ∈ {0, 1} de�ne a hypothesis of object existence

in cell ci,j at timestep k, such that hki,j = 1 is the hypothesis that the object exists in ci,j at time k

and hki,j = 0 the hypothesis that it does not.

Suppose that a known object is placed somewhere in the workspace, but its location is unknown

to the searching robot. The probability (or belief) that the object resides in ci,j at time k given the

binary measurements, Y1:k, is P (hki,j = 1|Y1:k). Applying Bayes' Rule, the cell probability can be

expanded as

P (hki,j = 1|Y1:k) =
P (yku,v|hki,j = 1,Y1:k−1)P (hki,j = 1|Y1:k−1)

P (yku,v|Y1:k)
, (6.1)
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where yku,v indicates the measurement at time k was of the (u, v)th cell which is not necessarily the

same as ci,j .

The �rst term of the numerator de�nes the sensor detection model. Many di�erent forms of

detection models exist and vary depending on the type of sensor and object recognition algorithm

used. The detection model of [6] is appropriate for object detection on a grid-based map and is thus

used when updating the probability map after a global or local search:

P (yku,v|hki,j = 1,Y1:k−1) =



P (yku,v = 0|hki,j = 1,Y1:k−1) = β (u, v = i, j)

P (yku,v = 1|hki,j = 1,Y1:k−1) = 1− β (u, v = i, j)

P (yku,v = 0|hki,j = 1,Y1:k−1) = 1− α (u, v 6= i, j)

P (yku,v = 1|hki,j = 1,Y1:k−1) = α (u, v 6= i, j)

, (6.2)

where α and β represent the detection error probabilities for false alarms and missed detections,

respectively, and are dependent on the sensor quality and the recognition modality (e.g., SIFT,

support vector machine, color histogram, etc.).

Since the object is assumed stationary, the second term of the numerator can be simpli�ed:

P (hki,j = 1|Y1:k−1) = P (hk−1
i,j = 1|Y1:k−1), which equals the cell probability value at the previous

time step, thus enabling the recursive nature of the probability map update. Note that at initial run

time when k = 0, P (hki,j = 1|Y1:k−1) = P i,j0 , an initial prior distribution on the probability map.

This allows for the possibility of specifying a prior belief of object location in the given geometric

workspace before the search has begun. In turn, this leads to a natural extension toward search

in multiple rooms; e.g., a cup object is more likely to be found in the kitchen as opposed to the

bedroom so P0 could be constructed to have more probability mass in the workspace of the kitchen

than the bedroom (see section 6.4.4 for further discussion on multi-room search).

Lastly, the denominator of equation (6.1) is obtained by marginalizing over the object cell loca-

tion:

P (yku,v|Y1:k) =
∑
m,n

P (yku,v|hkm,n = 1,Y1:k−1)P (hkm,n = 1|Y1:k−1) . (6.3)

With the various terms of equation (6.1) expressed, a Bayesian recursion scheme is thus resolved

for each cell ci,j of the probability map,Mp. In e�ect, the recursive update of the probability map

redistributes probability mass from the explored cells where no object is found to the unexplored

cells.

6.2.2 Global Search Method

As noted by [14], the search process can be divided into a global search based on a coarse detection

methodology which operates over longer ranges, and local detailed search that operates well at close
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Figure 6.1: (a) The presented experiments for 3D object search used an Evolution Robotics ER-1
(a two-wheeled di�erential drive robot) equipped with a pan-tilt unit and a stereo camera. (b) The
coarse global search uses a color histogram of the object to identify likely regions in the current
image that resemble the object. Shown in the top left is a sample object. The top right shows
the corresponding color histogram in RG (red-green) space. The bottom left shows one image from
a stereo pair (with the true object location circled in red) while the bottom right shows the back
projection of histogram comparison to subwindows of the current image. Probable object locations
in the image are shown in red circles. The 3D location of the putatative object is next estimated
from sparse stereo.

ranges. For the approach considered here, a common global search method is implemented that

utilizes color histograms.

During a training phase (as mentioned earlier), color images of the object (e.g., see top left of

Figure 6.1(b)) taken from various viewpoints are used to construct a cumulative model histogram

using the red and green image channels, (e.g., the top-right image of Figure 6.1(b)). The model

histogram is stored in a dictionary which can be queried during search. At the start of a search,

the robot scans its environment at a set of pan-tilt angles that cover its viewing sphere. For each

view, the image is back projected against the model using a �xed scanning window size (see bottom

two images of Figure 6.1(b)). The resultant image is normalized to yield a distribution over the

image pixels of the conditional probability that a given pixel is a member of the model histogram.

Next, the Nhist highest probability pixel clusters are selected (e.g., the red circles in the bottom-

right image of Figure 6.1(b)). Using sparse stereo the 3D locations to the peak probability values,

P ′n ∀n ∈ {1, · · · , Nhist}, are estimated. This process is repeated for all discrete pan angles.

The set of peak probability locations is then projected onto the probability map,Mp. Each peak

probability location, P ′n, is then treated as an individual measurement of the cell, cu,v, to which it is

projected. As such, the probability of object detection at that cell (if the object exists there) is set

to P (yku,v = 1|hku,v = 1,Y1:k−1) = P ′n and the probability mapMp is updated according to equation

(6.1), which incorporates prior cell probabilities from the term P (hki,j = 1|Y1:k−1).
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Figure 6.2: The 3D SIFT-based local search and pose estimation process is applied to each of
quadrants of the viewing sphere. The diagram on the right depicts the arrangement of search
regions while the left image is taken from an experiment where positive detection and pose estimation
occurred in quadrant V I.

Because the global search is a coarse detection model, there is also a likelihood of the object

existing in cells adjacent to the projected cell cu,v. To account for this possibility, a variable β missed

detection rate parameter is used, initialized to 1 − P ′n and increased exponentially for neighboring

cells of cu,v. This has the e�ect of incorporating high likelihood of object existence in a neighborhood

of cells, as opposed to a single cell if β were kept constant (the second column of Figure 6.6 shows

a series of probability maps generated from experiments).

Once a global search is executed and peak probability locations from the back-projected color

histogram are integrated into Mp, a path is then planned to the location of the peak probability,

where a more re�ned local sensing method is executed. Thereafter the local search procedure provides

the main method to update map probabilities, except in the case where the peak probability is below

a threshold, meaning there is no strong evidence for the presence of the object (see section 6.4).

6.2.3 Local Search Method with 6D Pose Estimation

A more re�ned local search is used when the robot lies within a �xed distance of a peak in the search

probability map. The local sensing method uses the same EKF framework of 3D object detection

and tracking as developed in chapter 3, that is, sparse stereo SIFT feature matching, optimized

by using a k-d tree with Lowe's Best-Bin-First Search schema ([2]). However, as opposed to the

methods in [27] and [14], which also use SIFT features for object identi�cation, the local search

procedure as presented in chapter 3 estimates the full 6D pose of the identi�ed object (see chapter

3 for a review of the detailed analyses and notation used).

It is important to note that while the EKF framework developed in chapter 3 considered poten-

tially moving objects, in this particular problem the object is assumed to be stationary. Nonetheless,

because the object position and orientation relative to the robot are not given a priori, an estimator

that accurately recti�es the position and orientation of the object for any possible initial pose is

essential. On this front, the Extended Kalman Filter of chapter 3 works fairly well in establishing
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accurate pose estimates (see left image of Figure 6.2).

Because in this particular implementation the robot is paused during the local search, the motion

model of equation (3.2) is used (shown here for convenience), with Xk being the 6D state of the

object, as seen in the camera reference frame:

Xk = Xk−1 + η . (6.4)

Note that the robot dynamics are not integrated into the motion model. Should object pose tracking

be needed while the robot moves and/or pans/tilts the camera while running the EKF, the motion

model can be easily augmented to include the robot dynamics, similar to the motion models of

equations (5.6) and (5.1.1). The measurement model also follows the same expression as equation

(3.5) (shown here for convenience), with Dk being the set of 3D SIFT measurements from stereo,

B = [b0 b1 · · · bN ] the set of database features generated during training, and xR,k and RCOk
the

appropriate translational pose and rotation matrix formed from the elements of Xk to bring bi into

the same frame as yi.

Dk =


y0

y1

...

ynk

 =


xR,k + RCOk

bJ(0)

xR,k + RCOk
bJ(1)

...

xR,k + RCOk
bJ(nK)

+ ξ . (6.5)

= H(Xk,B) + ξ

As discussed in chapter 3, for increased computational e�ciency, the burdensome SIFT calcula-

tions are limited to a region of interest (ROI) surrounding the object once the object track has been

initialized (object initialization is based on the minimum number of observed SIFT matches and

the covariance of object pose). Furthermore, to handle the problem of potential mismatches, if the

object is initialized a geometric feasibility check is applied to each found feature correspondence. If

a feature correspondence places a matched feature too far to be feasible given the known geometry

of the object and its initialized pose, it is rejected.

It is important to note that the 3D physical space associated with a cell may not be entirely

visible in a single camera view. To address the issue of where to look in the cell, an approach similar

to [56] is considered with a search hemisphere de�ned and divided into 9 quadrants (see Figure

6.2). The quadrants are searched in sequence (using the 3D SIFT procedure) with the pan-tilt

unit. If an object is detected, the PTU is adjusted to localize the detected object in the image

center of the image frame. If the object is not detected in any quadrant, the cell probability is

updated using equation (6.1), and the next peak location is determined. Because the local search

is generally e�ective at close ranges, a constant α and β parameter are used which has the e�ect of
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Figure 6.3: Robot navigation uses a costmap based on stereo imagery. Left : an image taken from an
experiment, with space categorized as free (red) or obstacle (green). Right : the navigation costmap
generated from the stereo images. White cells correspond to obstacle, black cells correspond to free
and gray cells are unknown.

suppressing only the single searched cell when the object is not detected. Implicit in this approach

is the underlying assumption that if the object lies in a given grid cell, it can be detected within

the viewing hemisphere. This assumption requires the navigation system to deliver the robot to a

position facing the center of the grid cell and in close enough range for the local search function to

be e�ective.

6.2.4 Robot Navigation and the Costmap

Navigation is an important part of object search. Previous work [27] [14] relied on a graph of

predetermined free-space nodes to determine navigable paths. This approach limits the number of

allowable robot positions and is not guaranteed to cover the search space.

To navigate, the robot maintains a grid-based costmap, Mc, which is searched via the A∗ al-

gorithm to �nd the best feasible path to a selected search location. Each navigation map cell is

classi�ed as free, unknown, or obstacle by comparing points in the cell with the estimated ground

plane. Points that lie within a threshold distance of the ground plane are labeled as free, while

others are labeled as obstacle. All other cells are considered unknown until labeled as either free or

obstacle (see Figure 6.3). A conservative approach is taken such that priority is given to obstacle

if two types of points are projected into the same cell. Furthermore, when applying the A∗ search

algorithm, obstacles are grown on the map to account for the size of the robot.

To limit computational complexity of the obstacle detection process, the image is downsampled

to 320×240 pixels while the robot navigates between search locations. To improve ground plane and

obstacle detection, the stereo camera is tilted downwards.

It is often the case that the goal search location, as determined from peaks in the probability

map, coincides with a cell marked as obstacle in the costmap (since the object may be placed on

a box or a table which gets registered as an obstacle). This has the tendency to prevent the A*
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Figure 6.4: Block diagram of the process data �ow. The dashed boundaries surround the main
components of our approach.

search from �nding a feasible path to the goal location. In order to allow the robot to navigate close

enough to apply the local search, neighboring obstacle cells of the goal cell are suppressed during

the graph search.

6.3 Approach Summary

The particular experiments presented in the following section consider a uniform prior belief P0 in

a single room. Figure 6.4 summarizes the process data �ow of the speci�c implementation. The

dashed boundaries isolate the the main algorithm components discussed in section 6.2. To balance

the use of a global versus a local search, the global search is invoked if the maximum probability

in Mp is less than a threshold, Po. Such an event can occur (1) at startup, when Mp is set to

uniform P0, and (2) when all cells have been visited and the peak probability of any one cell is not

signi�cantly large. This latter case occurs during a missed detection of the object over the entire

global search space � thus, invoking an entirely new search process. For the majority of the search

process, the local search procedure is the active mode. If a putative object location (a local peak in
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Figure 6.5: The models used in the series of trial experiments considered were (from left to right):
a mustard bottle, a Bob's Big Boy model, and a clock.

the prior map probability) is found to be empty, the probability value in that cell is reduced (via

equation (6.1)) and a new goal is selected and planned to via the navigation function.

6.4 Experimental Results

The presented approach has been implemented on an Evolution Robotics ER-1 mobile robot equipped

with a Point Grey Research BumbleBee2 stereo color camera downsampled to a resolution of

320×240. The stereo camera is mounted on a Directed-Perception PTU-D46-17 pan-tilt unit. In

the experiments summarized below, robot pose is estimated via wheel odometry. All computations

were performed on a laptop computer (Intel Pentium M 1.86 GHz processor) running Linux. The

algorithm was written in C/C++ using the Intel OpenCV library.

A Bob's Big Boy model, a mustard bottle, and a clock were initially used as search models (see

Figure 6.5). For each object, a series of 4 trials were conducted. In the �rst three trials, the object

was placed at three di�erent heights and at random locations in the workspace. These trials aimed

to test: (1) how well division of the search hemisphere into quadrants addressed the where to look

problem; and (2) the ability of the local search method to identify and estimate object pose at

various object heights. In order to test the navigation system, an obstacle is placed directly in the

robot's search path during a fourth trial. In all trials, the ability of the global search procedure to

generate a valid prior probability map,Mp is also considered.

6.4.1 Robustness to Height Variance

The three rows of Figure 6.6 show results from the �rst three trials with the object placed at various

heights. For brevity, only one trial result from each object is shown. The far left column presents a

monocular image with the object manually highlighted in red for convenience. As can be seen, the

object is placed far enough such that a local search attempt would fail.

The second column of images shows a relevant portion of the probability map calculated during

the initial global search (cell resolution is 20×20cm). Superimposed on the probability map is

the global coordinate frame origin (green), the initial planned path (yellow), and the goal location
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Figure 6.6: Experimental results from the set of trials that tested the robustness of the method
to varied object height placements are depicted in the �gure. Each row corresponds to a di�erent
trial. The �rst column shows an image of the environment with the true object location manually
highlighted in red. The second column shows the probability map resulting from global search.
The initially planned robot path is superimposed (yellow). The third column shows the costmap at
the end of the trial, with the robot pose history (magenta). The �nal column shows the 6D pose
estimation.

(red). Since path planning is executed repeatedly during navigation mode (see Figure 6.4), the

initial planned path is subject to change should an obstacle appear later in that path. Note also

that multiple probable object locations are typically hypothesized from the coarse search, requiring

subsequent local search attempts. The �rst and third-row trials showed large numbers of probable

locations mainly because the color histograms of the clock and Bob's Big Boy matched several

objects in the space of the room. The second row trial had less peaks in the probability map mainly

because of the unique yellow nature of the mustard bottle. Of the trials shown in Figure 6.6, the

initial planned path always leads to the true object location � however, this is not always the case.

The results discussed in section 6.4.2 will show a trial run where the initial planned path was not

to the true goal location.

The third column displays the costmap at the end of the trial (cell resolution of 10×10cm).

Superimposed on that map (magenta) is the history of the robot location as estimated by wheel

odometry. In each of the trials, the robot ends at the true object location. Note that in the �rst

and third-row trials, the costmap accurately identi�es the boxes on which the clock and Big Boy sit

as obstacles (the white cells in the costmap). In the second-row trial, the long narrow box on which

the mustard bottle stands does not appear as on obstacle in the �nal costmap (see end of magenta



90

Figure 6.7: Experimental results from the set of trials that tested the robustness of the navigation
function to avoid obstacles. Shown are two di�erent results to the same trial setup of the same
object.

trail in Figure 6.6). Close investigation of the logged data showed that the narrow width of the box

did not always yield enough stereo returns to register an obstacle. This caused a �ickering behavior

of the obstacle location from one cell to the next such that by the time the robot stopped, a ground

point was projected into that cell and was declared free. While this was not the desired behavior of

the algorithm, it is a feature of the costmap generation from stereo that will be addressed in future

work.

The fourth column shows the results of the local search recognition and 6D pose estimation

algorithm. Even at various orientations, heights, and scales, the local search method does extremely

well at locating and pose estimating the object in all trials.

6.4.2 Robustness to Obstacles and Re-planning

The two rows of Figure 6.7 show two di�erent results of the fourth trial run considered for the Big Boy

object. Note that in the �rst row of results, the global search identi�es a peak probability location,

the navigation function plans an initial path around the box obstacle as seen in the costmap, and the

local search accurately identi�es and estimates the object pose once the goal cell location is reached.

However, note that in a second test run in a nearly identical room con�guration, the global search

identi�es a cell to the left of the robot as the most probable object location � which in fact does not

contain the object. Nonetheless, the trace of the robot pose (third column) illustrates that upon

applying the local search at the �rst goal location and failing to �nd the object in any one search

quadrant, the robot re-plans to the next peak cell in the probability map. The local search applied

to the second goal location in fact yields the true object and pose estimation is accurately applied.
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Figure 6.8: The additional models used in the series of trial experiments considered were (left to
right): a lunch-box, a Raisin Bran cereal box, a window cleaner spray bottle, a Cheerios cereal box,
a tin can of chocolate mix, and a penguin cup.

Figure 6.9: Shown above are the successful experimental results associated with 4 of the 6 additional
objects considered. Following the format described in Figure 6.6, each column shows a particular
stage of the presented search algorithm, with each row corresponding to a unique object.
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Figure 6.10: Experimental results from the object search failed attempt for the tin can of chocolate
mix. Shown on the left is the grid-based probability map generated from the global-search. The
peak probability cell is actually the true cell containing the object being searched for. The bottom
right is the grid-based costmap generated using stereo-obstacle avoidance. Note the magenta line in
both images correspond to the robot path as determined from the wheel odometry. The top right
image shows the estimated pose of the object, which is incorrectly estimated.

6.4.3 Additional Tests and Search Limits

Based on the success of the three models used in the series of experiments discussed in the previous

sections, an additional set of object models was used. Figure 6.8 shows the additional objects

considered. The lunch box, two cereal boxes, and the spray bottle were all easily detectable using

the proposed method, as the results of Figure 6.9 show. Note that consistent across these 4 models

is the fairly large size and good amount of texture on each object which makes the overall conditions

of the search problem somewhat favorable. The large size allows for the color histogram approach

of the global search method to quickly identify the most probable location as the correct one in the

probability map. The texture on the object further allows for the re�ned local search method to

accurately estimate the pose of the object. However, the tin can of chocolate mix and penguin cup

were considerably more di�cult for the algorithm to �nd. Both objects are fairly small making the

search rather challenging, particularly for the local search method.

In the case of the tin can, Figure 6.10 shows the results of one of several failed attempts to �nd

the object. As can be seen in the left image of the �gure, the grid-based probability map shows

several probable locations containing the object � with the most probable cell location actually

being somewhere in the vicinity of the true cell containing the object. Once the local search is

applied to �nd the 6D pose of the object, the estimated pose fails to localize on the true position

(see top right image). This is in part due to the small size of the object which makes the features



93

Figure 6.11: Experimental results from the object search failed attempt for the penguin cup. Shown
in the top view is the panoramic view formed from the initial survey of the environment from
the robot's perspective. From that, a probability map is constructed indicating the most probable
locations for the penguin cup. The bottom row shows the progress of the grid-based probability
map as the experiment progresses and the robot investigates more probable cells. The width of the
each grid-based map shown in the bottom row matches the combined �eld of view of the panoramic
image above.

on the object di�cult to �nd in the local search, and resulting feature matching to be fairly poor.

In the case of the penguin cup, this particular object was the most challenging to �nd because

of its small size and lack of distinguinshing features further removed by the polished surfaces. This

caused the local search to fail to �nd any matched features on the object, even in situations when the

object was placed directly in front of the robot. In a majority of the cases, the number of detected

features on the cup would be 1 or 2 which would clearly not be enough to determine any form of

accurate 6D pose. What was interesting to note in the experiments for this object was that since

the local search always failed to �nd the object in any cells, it allowed the recursive Bayesian update

of the probability map (as de�ned in Eq. 6.1) to run its course.

Figure 6.11 shows the results of one particular trial with the penguin cup. The top image of

the �gure shows a panoramic view of the evironment stitched together from the initial scan of

images taken by the robot (the horizontal green line indicates the horizon and the vertical green

line indicates the viewing angle associated with a forward facing robot). The bottom row of images

show sequential snapshots of the probability map (left to right) taken each time after a local search

had been applied and failed to �nd the object. The width of each grid-based map shown in the

bottom row matches the combined �eld of view of the panoramic image above. At the beginning of

the experiment, three probable locations stand out in the initial probability map (bottom row, left

image). The objects in the scene corresponding to the cell locations have been highlighted in the

panoramic image, with the true object circled in red and distractor objects circled in orange.
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Initially, the robot plans a path to investigate a cell location to the right, corresponding to the

actual location of the penguin cup. However, once the object is not found in that cell (due to a

lack of features), the probability is reduced and the next probable location is planned to and visited

(bottom row, second image from left), which in this case corresponds to the �re extinguisher on the

wall. Upon failing to �nd the object there, the probability is again reduced and the next probable

location visited (bottom row, third image from left), which now corresponds to the spray bottle

on the �oor. Note that because of the reduced probability of the cells associated with the �re

extinguisher, probability mass has now been increased in the cells associated with the spray bottle

and also the surrounding cells of the �rst visited cell. Once the spray bottle is found not to be the

penguin cup, the robot reduces the probability of the cell and now revisits a neighboring cell of the

�rst visited cell (bottom row, second from right). When the object is not found there, the robot

again reduces the probability of that cell and continues to the next probable location (bottom row,

right image). At this point, the experiment was terminated by the operator, but the resulting data

illustrates the ability of the search algorithm to use the Bayesian update to identify probable search

locations.

Based on the results of these additional experiments, it was observed that the search algorithm

performs fairly well for large, textured objects with unique color distributions. The large size and

unique color distribution serves to improve the generated probability map from the color-histogram

based global search such that the initial most probable location is the true one. If the color distibution

is not unique, the search algorithm will still �nd the object, yet not necessarily on the �rst local

search attempt (see second row of Figure 6.11). The texture on the object is also fairly important as

well as the results of Figures 6.10 and 6.11 have shown. Highly textured objects will have a larger

number of descriptive features allowing for the local search to accurately estimate the 6D pose of

the object.

6.4.4 Extensions to Multiroom Search

While the results of the experiments discussed in sections 6.4.1, 6.4.2, and 6.4.3 considered a uniform

prior P0 over a single room, the presented approach is not limited to this case. The Bayesian recursion

update, as mentioned in section 6.2.1, allows for various initial distributions of P0. If there is prior

information that an object is likely to exist in one region (or room) as opposed to another, P0 can be

weighted to have more mass in a concentrated area (similar to the various initial cases considered by

[6]). The distribution of P0 will govern whether the robot searches peak locations in the immediate

vicinity, or forgoes those locations for a concentrated likelihood area in P0.

To illustrate this point, a simple simulation was run that considered a robot placed in an envi-

ronment with 4 rooms (see top image of Figure 6.12). The true object location (shown in green) is in

an adjacent room from where the robot currently exists. Two objects exist in the �eld of view of the
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Figure 6.12: Simulated search in a multi-room environment. Shown in the top image is the simulated
environment with the true object in green and and the robot in an adjacent room sensing two
potential objects. In the bottom row of images, the geometric prior P0 is shown on the left, the
results of a global search are shown in the middle image, and the updated probability map is shown
on the right.

robot which are detected via a global search method and probabilities assigned to each projected cell

location (center image of bottom row). A geometric prior, P0, is given to the robot ahead of time

indicating there is a strong probability the object exists in an adjacent room (left image of bottom

row). When the Bayesian update is applied to the probability map using the global search detected

probabilities in conjunction with the given prior, P0, the e�ect of the global search detections is

nearly unseen in the resultant probability map (right image of bottom row) due to the strong peak

in the prior P0.

However, if the distribution of P0 is spread out such that the peak location is reduced in prob-

ability, the e�ect of the global search detections become more prominent. Figure 6.13 shows two

additional simulations done where the spread of P0 was gradually increased, in e�ect reducing the

concentration of probability mass. As can be seen in the right image of the top row, one of the global

search detections becomes visible and as the spread of P0 is further increased, the peak probability

then switches from a location speci�ed by the geometric prior to one within the immediate vicinity

of the robot's sensing range. Thus it becomes clear the prior P0 can be used in such a way so as to

in�uence the selected goal locations of the robot, if so desired.

In summary, it is evident the Bayesian update of equation (6.1) appropriately adjusts the proba-
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Figure 6.13: Simulated search in a multi-room environment. Similar to the previous �gure, shown
in the top row is a slightly weaker prior and the resultant updated probability map. The bottom
row shows the results of an even weaker prior, resulting in a switch of the peak probability.

bility map to balance incoming measurements against prior information, such that at each planning

action, the peak probability location can always be selected to yield the most probable object loca-

tion.

6.5 Conclusions

An improved stereo vision search procedure was presented that uses Bayesian updating of a grid-

based probability map to drive the search process. By using a global and local search method, object

search with path planning, obstacle avoidance, and 6D pose estimation has been demonstrated on

three di�erent model objects using only a single stereo sensor and modest computation. Extensions

to the multi-room search problem were also considered, illustrating the capability of the proposed

method to longer searches in larger environments.
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Chapter 7

Conclusion and Future Work

7.1 Discussion and Summary of Work

This thesis developed a new real-time 3D object detection and tracking method using stereo vision

data. Extensions of the core tracking algorithm to sensor planning and object search were also

considered.

In particular, the 3D object detection and tracking algorithm presented in chapter 3 introduced

a novel training technique that enables fast object training, which would allow large databases of

objects to be generated quickly. The contributions discussed in that chapter extended the work of

previous authors ([54], [40], [45], [5]) to show that real-time robust tracking could be achieved using

3D SIFT features in stereo and tracked via an application of Bayes' Filter. A novel method for

determining ground truth 6D pose estimates was also introduced that did not require the purchase

of third-party software ([54]), the use of simulated experiments ([40]), nor the need for distinguishing

markers for computer vision toolkits that are highly susceptible to noise ([5]).

Chapter 4 extended the framework of chapter 3 to the problem of sensor planning for model

identi�cation. Bayesian analysis was used to interpret an information gain metric that became the

Sensor-Planning-for-Pose-Estimation-and-Model-Identi�cation (SPPEMI) algorithm. Experimental

results were shown in chapter 5 that illustrated the capabilities of the algorithm to plan for the

next-best-view when the object's initial view was not discriminating enough to allow accurate identi-

�cation. The results also showed the algorithm's ability to handle unconstrained motion of both the

mobile agent and the object, while estimating the object's 6D pose in real-time � an improvement

on the works of previous authors ([39], [11], [12], [25]) who did not consider full 6D pose estimation

in their analysis.

Chapter 6 also built on the framework of chapter 3 to address the problem of object search. The

presented approach made use of a global and local search decomposition to locate the object and

accurately estimate its 6D pose � an improvement on previous methods ([13], [14], [27]) that had

limited object pose estimation to crude approximations based on object size in the image without

any Euler angle estimates. The overall search strategy was governed by a grid-based probability
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map, updated via Bayesian recursion. Obstacle avoidance was also integrated into the system by

maintaining a secondary grid-based costmap that was updated from stereo data and searched using

an A* algorithm. Experimental implementation of the approach on a real robotic system showed

the validity of the proposed method for three types of objects at various heights and locations in a

large room. Simulated results were also shown that extended the framework to multi-room search

as well.

7.2 Conclusions and Future Work

Future work on these methodologies should generally focus on increasing the robustness of the ap-

proaches through extended experimental studies. In particular, the 3D object-detection and tracking

algorithm discussed in chapter 3 relies heavily on the accuracy of the Best-Bin-First-Search matching

schema of [2] for robust tracking. This method tends to weight false matches with equal probability

as regular matches. While a geometric constraint check was implemented for the initialized tracks,

a more formal methodology that considers the probability of correspondence should be developed.

Dellaert's [9] method � based on Expectation Maximization with an MCMC approach to learn the

most probable associations in the structure from motion problem � may be useful in this regard.

The sensor planning for model identi�cation experimental results were performed with only 4

object models, requiring 4 individual Extended Kalman Filters to estimate the position of each model

object. While that approach seems limiting to the natural extension toward multiple objects, future

work should consider only applying Extended Kalman Filters to a limited set of the most probable

objects � e.g., the n most probable models. Work by Nister et al. in [37] suggests a large database

of objects can be e�ciently organized into a vocabulary tree that could also be implemented in this

framework to extend the number of considered objects to several hundred.

While multiple objects should be considered in the future, a more pressing issue is to test the

search strategy under harsher lighting conditions. In the experiments of chapter 6, no signi�cant

variations in lighting were considered. It would also be interesting to see in conjunction with the

lighting variation, a validation of the multi-room search analysis discussed in section 6.4.4.

Finally, a joint experiment combining the frameworks of chapter 5 and 6 should be implemented

to address the interesting problem of dynamic object search and identi�cation � i.e., search for a

potentially moving object for identi�cation. The search strategy of chapter 6 combined with the

EKF implementation in the local search is well equipped for tracking a moving object and the

methodology of chapter 4 already describes a sensor planning strategy for improved sensing toward

model identi�cation.
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Appendix A

Linearized Measurement Matrix

For the given measurement model of the stereo camera system:

Dk =


y1

y2

...

ynk

 =


xR,k + RCOk

bJ(1)

xR,k + RCOk
bJ(2)

...

xR,k + RCOk
bJ(nK)

+ ξ ,

= H(Xk,B) + ξ

the matrix Ck ∈ R(3×nk)×6 is the linearized measurement matrix evaluated at the predicted pose

location:

Ck =
∂H
∂Xk

∣∣∣∣∣
Xk

=



∂h1
∂Xk

∂h2
∂Xk

...

∂h3
∂Xk

 =



∂
∂Xk

(xR,k + RCOk
bJ(1))

∂
∂Xk

(xR,k + RCOk
bJ(2))

...

∂
∂Xk

(xR,k + RCOk
bJ(nk))

 ,

where ∂hi

∂Xk
∈ R3×6 and the measurement model for the i-th detected feature, hi, can be expanded

as 
hi1

hi2

hi3

 =


xk + cαcβ · bJ(i)

x + (cαsβsγ − sαcγ) · bJ(i)
y + (cαsβcγ + sαsγ) · bJ(i)

z

yk + sαcβ · bJ(i)
x + (sαsβsγ + cαcγ) · bJ(i)

y + (sαsβcγ − cαsγ) · bJ(i)
z

zk − sβ · bJ(i)
x + cβsγ · bJ(i)

y + cβcγ · bJ(i)
z

 ,

where c(·) , cos(·) and s(·) , sin(·), and the i-th feature measurement, yi, is found to cor-

respond to the J(i)-th database feature, bJ(i) = [ bx by bz ]T . Solving for ∂hi

∂Xk
(recall that

Xk = [ x y z α β γ ]Tk ), the resultant submatrix for the i-th linearized feature measurement
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in Ck becomes

∂hi
∂Xk

=


1 0 0 ∂hi

1
∂α

∂hi
1

∂β
∂hi

1
∂γ

0 1 0 ∂hi
2

∂α
∂hi

2
∂β

∂hi
2

∂γ

0 0 1 ∂hi
3

∂α
∂hi

3
∂β

∂hi
3

∂γ


where

∂hi1
∂α

= −sαcβ · bJ(i)
x + (−sαsβsγ − cαcγ) · bJ(i)

y + (−sαsβcγ + cαsγ) · bJ(i)
z ,

∂hi1
∂β

= −cαsβ · bJ(i)
x + cαcβsγ · bJ(i)

y + cαcβcγ · bJ(i)
z ,

∂hi1
∂γ

= (cαsβcγ + sαsγ) · bJ(i)
y + (−cαsβsγ + sαcγ) · bJ(i)

z ,

∂hi2
∂α

= cαcβ · bJ(i)
x + (cαsβsγ − sαcγ) · bJ(i)

y + (cαsβcγ + sαsγ) · bJ(i)
z ,

∂hi2
∂β

= −sαsβ · bJ(i)
x + sαcβsγ · bJ(i)

y + sαcβcγ · bJ(i)
z ,

∂hi2
∂γ

= (sαsβcγ − cαsγ) · bJ(i)
y + (−sαsβsγ − cαcγ) · bJ(i)

z ,

∂hi3
∂α

= 0 ,

∂hi3
∂β

= −cβ · bJ(i)
x − sβsγ · bJ(i)

y − sβcγ · bJ(i)
z ,

∂hi3
∂γ

= cβcγ · bJ(i)
y − cβ · sγ · bJ(i)

z .
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Appendix B

Motion Model for Unconstrained

Motion

For the given kinematic relation between the various reference frames associated with the camera

(C), the mobile object (O), and the robot (R) between timestep k and k − 1:

GCk,Ok
= G−1

RkCk
·G−1

Rk−1Rk
·GRk−1Ck−1 ·GCk−1,Ok−1 ·GOk−1Ok

,

the various transforms were de�ned in chapter 5 as follows:

GRkCk
=


s(φ̇∆t) 0 c(φ̇∆t) −b

−c(φ̇∆t) 0 s(φ̇∆t) 0

0 −1 0 l

0 0 0 1


k−1

, G−1
RkCk

=


s(φ̇∆t) −c(φ̇∆t) 0 b · s(φ̇∆t)

0 0 −1 l

c(φ̇∆t) s(φ̇∆t) 0 b · c(φ̇∆t)

0 0 0 1


k−1

,

GRk−1Ck−1 =


s(φ) 0 c(φ) −b

−c(φ) 0 s(φ) 0

0 −1 0 l

0 0 0 1


k−1

,

GOk−1,Ok
=

 I 0

0T 1

 ,

GRk−1Rk
=


c(δθ) −s(δθ) 0 c(θg)δx + s(θg)δy

s(δθ) c(δθ) 0 −s(θg)δx + c(θg)δy

0 0 1 0

0 0 0 1


k−1

,
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G−1
Rk−1Rk

=


c(δθ) s(δθ) 0 νx

−s(δθ) c(δθ) 0 νy

0 0 1 0

0 0 0 1


k−1

GCk−1,Ok−1 =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ x

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ y

−sβ cβsγ cβcγ z

0 0 0 1


k−1

where c(·) , cos(·) and s(·) , sin(·) and the terms νx and νy are given by

νx = −[c(δθ)c(θg)δx + c(δθ)s(θg)δy − s(δθ)s(θg)δx + s(δθ)c(θg)δy] ,

νy = −[−s(δθ)c(θg)δx − s(δθ)s(θg)δy − c(δθ)s(θg)δx + c(δθ)c(θg)δy] .

De�ning Φ = G−1
RkCk

·G−1
Rk−1Rk

, the transforms combine to yield

Φ =



−s(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))

s(φ̇∆t+ δθ) −c(φ̇∆t+ δθ) 0 +c(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) + b · s(φ̇∆t)

0 0 −1 l

−c(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))

c(φ̇∆t+ δθ) s(φ̇∆t+ δθ) 0 −s(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg))

0 0 0 1


k−1

.

Now de�ning Γ = Φ ·GRk−1Ck−1 , the expression for Γ becomes

Γ =


c(φ̇∆t+ δθ − φ) 0 s(φ̇∆t+ δθ − φ) γx

0 1 0 0

−s(φ̇∆t+ δθ − φ) 0 c(φ̇∆t+ δθ − φ) γz

0 0 0 1


k−1

.

where the terms γx and γz are given by

γx = −b · s(φ̇∆t+ δθ) +−s(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))+

c(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) + b · s(φ̇∆t) ,
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γz = −b · c(φ̇∆t+ δθ) +−c(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))+

− s(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) .

To simplify the expressions, the following terms are introduced

ξ = φ̇∆t+ δθ − φ ,

ρ1 = −b · s(φ̇∆t+ δθ) +−s(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))+

c(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) + b · s(φ̇∆t) ,

ρ2 = −b · c(φ̇∆t+ δθ) +−c(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))+

− s(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) .

Then the �nal expression for GCk,Ok
becomes

GCk,Ok
=


c(ξ) 0 s(ξ) η1

0 1 0 0

−s(ξ) 0 c(ξ) η2

0 0 0 1


k−1

·


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ x

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ y

−sβ cβsγ cβcγ z

0 0 0 1


k−1

=



cξ(cαsβsγ − sαcγ) cξ(cαsβcγ + sαsγ)

cξcαcβ − sξsβ +sξcβsγ +sξcβcγ cξx+ sξz + ρ1

sαsβsγ + cαcγ sαsβcγ − cαsγ

sαcβ −sξ(cαsβsγ − sαcγ) −sξ(cαsβcγ + sαsγ) y

−sξcαcβ − cξsβ +cξcβsγ +cξcβcγ −sξx+ cξz + ρ2

0 0 0 1


k−1

.

Finally, extracting out the relevant Euler parameters, the motion model from the kinematic relations

reduces to the following:

Xk,i =


[
fx fy fz

]T[
fα fβ fγ

]T

k−1

+ η ,

= F(Xk−1,i,uk−1) + η
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where η is Gaussian white system noise and fx, fy, and fz are given by

fx = c(φ̇∆t+ δθ − φ) · x+ s(φ̇∆t+ δθ − φ) · z

− b · s(φ̇∆t+ δθ) +−s(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))

+ c(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) + b · s(φ̇∆t) ,

fy = y ,

fz = −s(φ̇∆t+ δθ − φ) · x+ c(φ̇∆t+ δθ − φ) · z

− b · c(φ̇∆t+ δθ) +−c(φ̇∆t)(δxc(δθ + θg) + δys(δθ + θg))

− s(φ̇∆t)(−δxs(δθ + θg) + δyc(δθ + θg)) ,

and fα, fβ , and fγ are given by:

fα = tan−1

(
sαsβ

c(φ̇∆t+ δθ − φ)cαcβ − s(φ̇∆t+ δθ − φ)sβ

)
,

fβ = −sin−1(−s(φ̇∆t+ δθ − φ)cαcβ − c(φ̇∆t+ δθ − φ)sβ) ,

fγ = tan−1

(
−s(φ̇∆t+ δθ − φ)cαsβsγ + s(φ̇∆t+ δθ − φ)sαcγ + c(φ̇∆t+ δθ − φ)cβsγ
−s(φ̇∆t+ δθ − φ)cαsβcγ − s(φ̇∆t+ δθ − φ)sαsγ + c(φ̇∆t+ δθ − φ)cβcγ

)
.
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