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Abstract 

This thesis is a study of the dynamics, noise properties, and linewidth of 

semiconductor lasers with external coupling. In Chapter 2, a general formalism 

is developed for obtaining the optical-field equations of semiconductor lasers 

with external coupling. This formalism is applied to three different types of 

semiconductor lasers: (1) a diode laser coupled to an external mirror, (2) an 

injection-locked diode laser, and (3) an axially coupled two-section diode laser. 

The resulting equations are the basis for the studies and discussions given in 

Chapters 3, 4, and 5. 

The third chapter considers, usmg a small-signal analysis, a single-mode 

semiconducor laser coupled to an external mirror. Light trapped for many round 

trips inside the external cavity is taken into account. Analytical expressions for 

the frequency and relative-intensity fluctuation spectra, the laser linewidth and 

the small-signal current modulation response are obtained. The fundamental 

mechanism that prevents the mode locking in semiconductor lasers with an ex­

ternal feedback is identified. The observed data on the intensity noise and the 

current modulation response are elucidated. 

An injection-locked semiconductor laser is studied in Chapter 4. The origin 

and importance of the facet's amplitude refl.ectivities are described. The instabil­

ity occurring in the high-frequency side of the locked range is fully explored. A 

detailed study of the locking bandwidth is presented. It is shown that, depend­

ing on the detuning of the lasing frequency, the relative-intensity noise can be 

reduced or increased. It is also demonstrated on a general basis that the locked 

laser linewidth is the same as that of the injected field. 

The dynamics and laser linewidth of an axially coupled two-section semicon-
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ductor laser are scrutinized in the last chapter. The relative-intensity and fre­

quency fluctuation spectra can be obtained from the results given in this chapter. 

A formula is obtained for the laser linewidth. This formula explains the exper­

imental observations that the linewidth is nearly inversely proportional to the 

power with a nonzero intercept. Finally, the contribution to the reduction in 

dynamic frequency chirping of two-section lasers is clarified. 
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Chapter 1 

Introduction 

1.1 Why Semiconductor Lasers with External Coupling? 

The semiconductor diode laser was invented twenty six years ago. Since then, 

through continuous, extensive, and interdisciplinary efforts around the world, the 

properties of the laser have been greatly improved. 

By adjusting the composition of the semiconductor crystal, scientists and 

engineers are able to make semiconductor lasers emit in the region from visible to 

near infrared (Figure 1.1). Two major material systems have dominated research 

activities. The GaAs/GaAlAs system with a lasing wavelength from 0.7 µm to 

0.9 µm was the first to be developed and the first to mature in the semiconductor 

laser industry. The lasers grown in the InP /InGaAsP system emit light in the 

wavelength range from 1.1 µm to 1. 7 µm. Because modern optical fibers exhibit 

low loss and minimal material dispersion in this range (Figures 1.2 and 1.3), the 

second system has been studied more intensively than the GaAs / GaAlAs system 

in past years. 

The characteristics of common semiconductor lasers are given below. With 

a junction turn on voltage of 1.4 volts, the threshold current is 15 mA. The size 

of the active region is 3.0µm x 0.2µm X 300µ,m. The cavity formed by the two 

facet mirrors on each side is 300 µ,m long. The output power is 5-10 mW. Single 

devices with CW powers up to 100 mW are commercially available. Extrapolated 

room-temperature lifetime is in excess of 107 hours. By modulating the pumping 

current, the light output of the laser can be modulated at frequencies beyond 10 

GHz [4]. 
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Because of its small size, high efficiency, low cost, long life, high reliability, 

low power consumption, and versatility in performance, the laser plays an im­

portant role in modern technology. In the past years, millions of semiconductor 

lasers have been used in optical communication systems, laser scanning printers, 

compact audio disks, and many other applications. 

Many books give comprehensive coverage to the fundamentals of semicon­

ductor lasers [1] [2] [5] [6] [7]. In this thesis, a basic familiarity with this topic is 

assumed. 

Because of the carrier density dependence of the refractive index in the active 

region, there is a strong coupling between intensity and phase of the optical field. 

A variation in intensity will change the carrier density, which, in turn, will change 

the phase. This coupling results in an enhancement of the linewidth broadening 

caused by spontaneous emission events. Thus, the conventional diode laser has 

an excessively large linewidth on the order of 10 MHz. Through the same effect, 

a single longitudinal mode laser under direct current modulation displays phase 

modulation and may have multilongitudinal modes. These make the conventional 

laser unsuitable for many important applications. 

Nevertheless, the demand for semiconductor lasers with special qualities 

at lower cost is increasing. For example, many fiber-optical sensors require a 

laser source with narrow linewidth and stable phase. Optical communication 

systems require lasers which, under pulsed current pumping, have fast response, 

small dynamic frequency chirping, single mode with large side mode suppression, 

narrow linewidth, and low power fluctuation noise. 

Consequently, the search for high-quality lasers is going on. It can be roughly 

divided into two directions. The first is to invent and fabricate solitary lasers 
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with specific properties. The efforts involved include growing high-quality crys­

tals, inventing new structures, and improving the production yield with inno­

vative chemical processing techniques. All these require the collaboration of 

scientists and engineers from all scientific disciplines. In the following, some of 

the important advances made in this direction will be highlighted. 

A conventional semiconductor laser has two cleaved facets and its light is 

emitted parallel to the surface of the wafer. For integrated optoelectronic circuits, 

conventional lasers are not appropriate, and lasers with output normal to the 

wafer surface are highly desired. Figure 1.4 shows the schematic cross section of 

a surface emitting laser fabricated by Soda et al. [8]. 

The typical thickness of the active region in a conventional laser is 0.2 µm. 

By using the chemical vapor deposition technique or molecular-beam-epitaxy 

technique, lasers with one or more thin active layer regions with thickness com­

parable to the carrier de Broglie wavelength have been grown. Electrons confined 

in the thin layer exhibit the quantum effect. Laser with such thin active regions 

are called quantum well lasers. When compared to conventional lasers, the re­

duction of the CW linewidth was predicted [9] and demonstrated [10]. 

The second direction employs different methods to couple light externally 

to the solitary lasers. Through external coupling, the laser can be pushed to 

perform beyond its intrinsic limits. This will be clear after reviewing the following 

examples. 

The typical linewidth of semiconductor lasers is on the order of 10 MHz. 

After coupling to an external mirror, a linewidth of 10 KHz was demonstrated 

[11]. Lasers with such high spectral purity will not only enable new applications 

but also improve existing ones. Many new kinds of optical fiber sensors can 



LIGHT OUTPUT 

(SUBSTRATE SIDE) B 

l 
90µ.m 

Au COATED'---F 1ooµ.m 7 
MIRROR --i 

' \ 
\ 
~ 

CURENT , 

,, 
I 

/ ,, 

l ,e,,m* FLOW \ 

50µm-l ~ 

,------AU/Sn RING ELECTRODE(-) 

n-(100)InP SUBSTRATE 

ACTIVE 
REGION 

( Sn DOPED: 2x10 18 ) 

n- JnP ( Te DOPED : 1019) 

lnGaASP (UNDOPED,ACTIVE) 

P- lnP ( zn DOPED: 1x1018) 

Si02 
Au/Zn CIRCULAR MIRROR 
AND ELECTRODE(+) 

Figure 1.4 Schematic cross section of a surface-emitting laser. Surfaces of 
the wafer from the Fabry-Perot cavity. [8] 

--t 
I 



-8-

be developed, and the maximum transmission distance or the bandwidth of the 

signal in a light wave transmission system will increase substantially. For exam­

ple, for a single-mode fiber lightwave channel of 100 km long, Figure 1.5 shows the 

maximum bit rates as a function of wavelength for sources of various linewidths 

.6..\. Figure 1.6 shows a block diagram of an optical transmitter. 

The modulation bandwidth of solitary lasers is dictated by the photon life­

time, photon density and the differential optical gain constant [4]. This basic 

understanding has led to the development of advanced laser structures that can 

be directly modulated beyond 10 GHz [4]. On the other hand, Lau and Yariv [14] 

reported that the laser can be directly modulated in a narrow band with center 

frequency equal to twice its intrinsic modulation bandwidth. Laser transmitters 

operating at such high speeds will be ideal for transmitting microwave signals. 

When the frequency difference between a solitary laser and an incident field 

falls in a certain locking bandwidth, the frequency of the solitary laser can be 

locked to the frequency of the incident field. In addition, locked by the narrow­

linewidth injected field, the excessively large linewidth of solitary laser was re­

duced to that of the incident field [15]. In a coherent transmission system, injec­

tion locking may be used to synchronize the local oscillator [16]. 

From the examples given above, it is evident that the progress made in the 

second direction is as impressive as in the first one. Although both directions are 

equally important, this thesis will focus only on some important problems in the 

dynamics, noise properties, and spectral characteristics of semiconductor lasers 

with external coupling. 
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1.2 Outline of the Thesis 

Many studies were devoted to the understanding of how the laser's properties 

were affected by the external coupling. In general, equations for the optical field 

and carrier density will be the basis for analysis and discussion. For each coupling 

scheme, the optical field equation was often derived heuristically [17] [18] or by 

using the mode expansions [19]. There has been a lack of a coherent and general 

approach to find the optical field equation. In addition, the optical field equations 

of References 17 and 19 have drawbacks and limitations. In Reference 17, the 

equation for lasers with external feedback is valid only under special conditions. 

In Reference 19, a set of coupled, first-order differential equations for two-section 

lasers are too complicated and difficult to apply. 

Under these situations, it is essential to have a rigorous formalism for ob­

taining optical field equations. To this end, semiconductor lasers with external 

optical coupling through one of their two facet mirrors will be considered in 

Chapter 2. New concepts will be introduced and explained, and a general for­

malism will be developed directly from Maxwell's wave equation. This formalism 

will be applied to obtain optical field equations for semiconductor lasers coupled 

to an external mirror, injection-locked semiconductor lasers, and axially coupled 

two-section semiconductor lasers. After inspecting these equations, their major 

achievements will be described. 

Since Chapter 2 will be devoted mainly to deriving the optical field equations 

for composite lasers, the importance and significance of the general formalism and 

these equations can be fully recognized only after detailed studies are carried out 

in all of the above mentioned three different types of lasers in Chapters 3, 4, and 5. 

Because the frequency and relative intensity fluctuation spectra, laser linewidth, 
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small-signal current modulation response, and dynamic frequency shift are major 

considerations in industrial applications and laboratory researches, these subjects 

will be the main concerns for each type of laser. The treatments on noise follow 

closely to that of Reference [20]. 

In Chapter 3, a single-mode semiconducor laser coupled to an external mirror 

will be considered. Light trapped for many round trips inside the external cavity 

will be taken into account. A method for obtaining the Lorentzian linewidth will 

be established in Chapter 3. This method will be employed to derive linewidth 

formulas in this chapter and Chapters 4 and 5. For lasers with external feedback, 

the modulation response reported by Lau and Yariv [14] and the intensity noise 

data of Temkin et al. [21] will be examined. The fundamental limiting mechanism 

in the mode-locking phenomena will be clarified. 

In Chapter 4, the importance of diode-facet amplitude reflectivity of an 

injection-locked diode laser will be emphasized. Analytical expressions will be 

derived to describe the instability condition and stability locking bandwidth. The 

key role played by the linewidth enhancement factor in the instability nature of 

injection-locked lasers will be explained. The possible increase of the laser noise 

by a noise-free, injected field will be described. It will be shown, on a general 

basis, that the linewidth is dictated by that of the injected field. In the appendix 

to this chapter, an important and as yet unexplored aspect of the linewidth 

enhancement factor will be clarified. 

Finally, in Chapter 5, an axially coupled two-section diode laser will be 

considered. The steady-state current-light characteristic will first be studied. 

The linewidth behavior will be investigated. The reduction of dynamic frequency 

chirping of this laser will be explained. 
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Results obtained in other areas, not covered in this thesis, are presented in 

[22], [23], [24], [25], [26], and [27]. 
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Chapter 2 

Optical-Field Equation for Semiconductor 

Lasers with External Coupling 

2.1 Introduction 

As discussed in Chapter 1, the performance of diode lasers can be improved 

substantially by external feedback, external light injection, or coupling with other 

external resonant cavities. Because of their great potential in pratical applica­

tions, these three types of lasers have attracted considerable attention. 

The fundamental problem in analyzing the externally coupled laser is de­

veloping the time-dependent optical-field equation, and several approaches have 

been used in the past. In one of these, the optical-field equation is obtained 

heuristically [1] [2], while another approach is based on modal expansions [3]. 

The modal-expansion approach is based on either the longitudinal modes of the 

composite resonator or the modes of the individual cavities. However, lasers with 

different coupling schemes were treated differently, and there has been a lack of 

a general and coherent treatment for solving this fundamental and important 

problem. 

Furthermore, the equations derived in References 1 and 3 have drawbacks 

and limitations. For lasers coupled to an external mirror, the light with multi­

reflection in the external cavity is not included in the optical-field equation which 

was introduced by Lang and Kobayashi [1] and which has been widely adopted. 

This equation is valid only in the weak external-feedback regime. Since many 
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interesting and important characteristics were observed in the strong external­

feedback regime, the multiple reflections from the external mirror can no longer 

be overlooked. An optical-field equation that takes into account the strong exter­

nal feedback is a prerequisite for further exploration. For the case of two coupled 

resonant cavities, because of the lack of the appropriate optical-field equations, 

their dynamic characteristics such as laser linewidth remain unclear. The coupled 

mode theory of Marcuse [3], for example, requires the evaluation of the coupling 

coefficients, which is difficult or impossible to carry out. 

Under these circumstances, it is highly desirable to have a unified theory 

for semiconductor lasers with external coupling, and through the applications of 

this theory, the appropriate optical-field equations can be obtained. To fulfill 

this need, this chapter will be presented in the following way. 

Two new concepts, the time-dependent effective amplitude reflectivity and 

the time-dependent effective photon lifetime, will be introduced first. The con­

cept of time-dependent effective amplitude reflectivity will be based on physical 

arguments. After reviewing the semiclassical laser theory [4], another new and 

important concept, the complex, time-dependent photon lifetime will be intro­

duced in Section 2.3-B. To account for this effective photon lifetime, a time­

dependent effective conductivity will be included in Maxwell's wave equation. 

Based on modal expansion in terms of the composite cavity modes, the general 

optical-field equation will be derived directly from Maxwell's wave equation in 

Section 2.3-C. 

The time-dependent effective photon lifetime, which describes the effects of 

external coupling, will be expressed as a function of the time-dependent effective 

reflectivity. In developing the general theory, the crucial role played by both 
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effective reflectivity and effective photon lifetime will become clear at the end of 

Section 2.3-D. In Section 2.3-E, it will be shown that the newly derived general 

optical-field equation gives the oscillation condition of Reference 5, and in the 

limit of no external coupling, is reduced to the well-known optical-field equation 

of solitary semiconductor lasers [4]. At the end of Section 2.3-E, this theory will 

be established with all of its key ingredients. 

In Section 2.4, this theory will be applied to lasers with specific external 

coupling. Lasers considered will be injection-locked diode lasers, axially coupled 

two-section lasers, and lasers coupled to an external mirror. After inspecting 

these equations, the major achievements of these equations as compared to those 

derived by different approaches will be given. Because this chapter will be de­

voted mainly to deriving the optical-field equations for composite lasers, the 

analysis for special cases will start with Chapter 3. 

2.2 Effective Mirror 

In the following sections, lasers with external coupling will be referred to as 

composite lasers and their cavities as composite cavities. The schematic repre­

sentation of the composite laser is shown in Figure 2.la, where l is the cavity 

length of the solitary diode laser. The constants r 1 and r2 denote the amplitude 

reflectivities of the two facet mirrors. As shown in Figure 2.lb, a semiconduc­

tor diode laser with external coupling is equivalent to a solitary semiconductor 

laser with its original facet mirror, facing the external coupling, replaced by an 

effective mirror. The amplitude reflectivity of this effective mirror is designated 

as ren(t). 

Koch and Coldren [6] used an effective mirror formalism to study the mode 
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Figure 2.1 (a) Schematic of a semiconductor laser with an external coupling. 
The laser is called the composite laser and its cavity is called composite 
cayity. (b) The composite laser is equivalent to a diode laser with an effective 
mirror. 
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behavior in coupled-cavity semiconductor lasers. But their formalism is valid 

only in the steady-state regime. The effective mirror introduced in this section 

can be applied to any kind of external coupling, and its effective reflectivity 

refJ(t) is time-dependent. Later, it will be shown that this time-dependent 

r eff (t) plays an important role in both dynamic and steady-state characteristics 

of semiconductor lasers with external coupling. 

Next, the Tef f (t) will be defined and derived for a laser coupled to an external 

mirror. Because of the popularity and simplicity of this laser, its reJJ(t) will 

provide a good and concrete example of the abstract concept of time-dependent 

effective reflectivity. 

In the semiclassical theory [4] of solitary semiconductor lasers, the average 

optical field inside the diode cavity is E(t)eiOmt , where Om, is the average lasing 

frequency, and the time evolution of E(t)eiOmt is governed by an optical-field 

equation. In this chapter, it is assumed that these features can also be applied 

to semiconductor lasers with external coupling. On the other hand, at any point 

inside this resonator, the optical field has two counterpropagating components. 

For lasers with an effective mirror (Figure 2.1 b), when the field travelling from 

the left at plane R is Ei ( t) i 0 mt and the total field travelling to the left at plane 

R is Er(t)ei0 mt, the effective reflectivity of this effective mirror is defined as 

(2.1) 

Assuming that Ei(t)eiOmt is linearly proportional to E(t)eiO"'t, i.e., 

(2.2) 

according to Equation (2.1), one obtains 
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In other words, Er(t)eiO,,,t is also linearly proportional to E(t)eiOmt. 

Equation (2.1) is a general statement for the reJJ(t). Lasers with different 

external coupling will possess different refJ(t). Consider, for example, a diode 

laser coupled to an external mirror (Figures 2.2a and 2.2b). The incident wave 

from the left on the effective mirror is 

(2.3a) 

and the wave travelling to the left at the same plane is 

x[r2E(t) + r3 (1- r~)e-m,,,,,. E(t - r) 

- r3(l - r~)(r2r3)e- 2io,,,,,. E(t - 2r) 

+ r3(l - r~)(r2r3)2e-3io,,,,,. E(t - 3r) + · · ·1, (2.3b) 

where r = 2L/c is the external-cavity round-trip time of the optical field. In 

arriving at (2.3b), it is assumed that a is time-independent. The amplitude re­

flectivity r3 of the external mirror includes all coupling, absorption, and diffrac­

tion losses during each round trip in the external cavity. Substituting Equations 

(2.3a) and (2.3b) into (2.1) leads to 

( ) ( 2) -io ,,. E(t - r) 
reff t = r2 + r3 1 - r2 e "' E(t) 

- r (1- r2)(r r )e-2io,,,,,._E-'-(t_-_2r-=--) 
3 2 2 3 E(t) 

+ r (1 - r2) (r r )2e-3i0mr _E-'-(t_-_3r-=--) + ... 
3 2 2 3 E(t) · (2.3c) 

For this laser, the optical-field round-trip time in the external cavity may 

be on the order of 10-9 sec. Lasers with modulation bandwidth 1 GHz or higher 
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Figure 2.2 (a) Schematic of a single-mode semiconductor laser coupled to 
an external mirror. (b) A single-mode semiconductor laser coupled to an 
external mirror is equivalent to a diode lase:r with an effective mirror. 
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will show a strong time-dependence in terms such as 

E(t - Nr) 
E(t) 

N= 1,2,···. 

Since ren(t) depends on these terms, it is obvious that a laser coupled to an 

external mirror has a time-dependent effective reflectivity. Therefore, in general, 

diode lasers with an effective mirror or external coupling have an instantaneous 

effective reflectivity ren(t). More examples of diode lasers with time-dependent 

effective reflectivities will be given in Section 2.4. 

2.3 General Theory 

Before deriving the optical-field equation for the semiconductor laser with an 

effective mirror, the derivation of the solitary diode laser's optical-field equation 

will be reviewed briefly. This review will provide guidelines for the derivation 

presented later in Section 2.3-C. In addition, following the results of this review, 

the concept of the complex, time-dependent effective photon lifetime will be 

developed in Section 2.3-B. 

2.3-A. The Optical Field Equation of Solitary Diode Lasers 

Inside the resonator of solitary diode lasers, the optical field c (t) is given by 

where "' is the magnetic permeability, u is the medium conductivity accounting 

for the distributed waveguide losses and the losses through facet mirrors, E is the 

nonresonant dielectric constant, P(r, t) is the induced polarization, and jJ(r, t) 

is the random component of polarization causing spontaneous emissions. The 
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resonator field quantities can be expanded in terms of any complete orthonormal 

set {e'm.(r)}: 

(2.5a) 
171, 

(2.5b) 
171, 

ff(r, t) = L P,n(t)em.(r), (2.5c) 
171, 

where e'm,(r) will be chosen as the dimensionless eigenfunction of the mth spatial 

mode of the unpumped and lossless cavity. Accordingly, C,n(t) has the same 

dimensions as { ( r, t), and P ,n ( t) and p,n ( t) have the same dimensions as P ( r, t). 
The em, ( r) satisfy 

(2.5d) 

with appropriate boundary conditions of the resonator, and W,n is the eigenfre­

quency of the mth mode e'm,(r). 

After substituting expansions (2.5a)-(2.5c) into Equation (2.4), using (2.5d), 

and employing the orthonormality of {e,n(r)}, one obtains 

with 

where the dots indicate differentiation with respect to time, Tp £.ju is the 

photon lifetime, µ is the nonresonant index, 11,n is the lasing frequency, and 

.6.(t) is the slowly varying complex amplitude of the Langevin force term. The 

polarization P,n(t) induced by stimulated emissions is given by: 

(2.6a) 
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where r is the filling factor that accounts for the partial confinement of the mode 

energy in the active region, x(n) is the susceptibility, and n is the carrier density 

in the active region. The complex susceptibility is assumed to be an instantaneous 

function of carrier density. (This is true when the intraband electron-electron 

and electron-phonon scatterings occur at a time scale of~ 10-12 sec.) 

The temporal part of the mth mode can be expressed as 

(2.7) 

where Ern(t) is the complex amplitude, f3(t) is the real amplitude, and </>(t) is the 

slowly varying phase. There are two different time regimes for the optical field 

and carrier density. One is for the rapidly varying phase eiOmt, and the other is 

for the slowly varying /3 ( t) , e i,t, ( t) , and n ( t) . In other words, 

(2.8a) 

1
-
rx-----'-( n) I n 

2 ~ urn, 
µ 

(2.8b) 

Substituting Equations (2.6a)-(2.8b) into Equation (2.6) yields the first-order 

differential equation of the optical field: 

where Xr(n) and Xi(n) are the real and imaginary parts of x(n), respectively. 

Equation (2.9) is the well-known optical-field equation for solitary semiconductor 

lasers. 
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2.3-B. Effective Photon Lifetime TeJJ(t) 

In this section, the photon lifetime of solitary diode lasers will be expressed 

in terms of the amplitude reflectivities of diode facet mirrors and the distributed 

passive losses of the medium between the two facet mirrors. This close exam­

ination will set the stage for introducing the complex, time-dependent effective 

photon lifetime which, as will be seen in Section 2.3-C, is indispensable in the 

semiclassical theory of semiconductor lasers with external coupling. 

Imposing steady state (d/dt = 0) on the optical-field Equation (2.9) yields 

·( _ n _ fxr(n)O=) !_(fXi(n)O= _ _!___) = 
z W,n ,n 2 2 + 2 2 8l 0, µ µ 'Tp 

(2.10) 

where the superscript sl stands for solitary diode lasers. Since, for the lossless 

cavity with carrier density n 0 , the mth resonant frequency is 

m1rc 
w=(no) = n(no)l 

with 

-( ) -( )( rxr(no)) n n 0 ~ n no = 0 1 + 
2 

, 
2µ 

where l is the cavity length of the diode laser and n(n0 ) is the spatially averaged 

index of refraction of the lossless resonator with carrier density n 0 • Equation 

(2.10) can be rewritten as 

(2.lla) 

or, in the exponential form, 

(2.llb) 

where 
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is the optical gain provided by the gain medium. 

On the other hand, as explained in Reference 5, a laser oscillator is basically 

a Fabry-Perot etalon containing a gain medium. It is also shown in [5] that, 

when a plane wave of complex amplitude E1 incident on one side of this etalon, 

the total outgoing wave ET received on the other side is 

1 
ET <X Ei 1 _ r1r2e(g(no)-ao)n(no)l/ce-2i0,,.n(no)l/c' 

where a 0 is the distributed waveguide loss constant inside the diode cavity. No­

tice that the unit of a 0 is sec- 1 • If 

(2.12) 

then the ratio ET/ E1 becomes infinite. Physically, this means that the oscillation 

occurs inside the resonator and Equation (2.12) is referred to as the oscillation 

condition. Since Equations (2.llb) and (2.12) apply to the same system, accord­

ing to these two equations, the photon lifetime r;1 is given by 

(2.13) 

Equation (2.13) indicates that the photon lifetime is indeed an indicator of the 

distributed waveguide losses and the losses through the facet mirrors. 

For solitary diode lasers without facet mirror coatings, r 1 and r 2 are real 

numbers, and according to Equation (2.13), the photon lifetime r;1 is a real­

number quantity. However, after one applies mirror coatings such that r1 and r 2 

are complex numbers, r;1 of ( 2.13) is complex and can be viewed formally as a 

physical parameter having both amplitude and phase. Consequently, separating 

(2.lla) into the amplitude and phase components gives 

(2.14a) 
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for the threshold gain g(no) and 

1 1 
w (n) - 0 - -Im[-]= O rn o rn 2 sl rP 

(2.14b) 

for the phase condition. Clearly, Re[-k] is a measure of the waveguide and mirror 
,,.p 

losses, and Im[ -k] is related to the phase and lasing frequency of the optical field. 
,,.p 

From the discussion given above, the photon lifetime r;1 depends on the 

amplitude reflectivities r 1 and r2 , and, in general, r;1 is a complex-number quan­

tity. Similarly, lasers with time-dependent effective reflectivity reJJ(t) will have 

complex effective photon lifetime Teff, which depends on reJJ(t). In conclusion, 

normally, lasers with effective mirrors have complex, time-dependent effective 

photon lifetimes TeJJ(t). Finding out the relation between reJJ(t) and reu(t) 

will be the subject of Section 2.3-D. 

2.3-C. Spatial Mode Expansions of the Optical Field Inside Cavities Formed by 

One Facet Mirror and One Effective Mirror 

Invoking the concept of the complex, time-dependent effective photon life­

time of Section 2.3-B and the modal expansion method of Section 2.3-A, the 

zeroth-order optical-field equation for semiconductor lasers with external cou­

pling will be derived in this section. At first, the equation will be derived for the 

case of a one-dimension resonator. Then, the derivation will be extended to the 

general case. After that, the justification for the general optical-field equation 

derived in this section will be given. 

Because it is straightforward to find the field outside the composite cavity 

when the field inside the active region is known, in the following, the space 

domain will be limited to the cavity of the diode laser. In addition, to simplify 
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the situation, only the longitudinal field profile of the fundamental transverse 

mode will be considered. 

Thus, for solitary diode lasers with a one-dimensional resonator oriented 

along the z-axis with boundaries at z = 0 and z = l, the wave equation for the 

optical field c (z, t) is 

(2.15) 

where O"eff ( t), the complex, time-dependent effective conductivity, accounts for 

the effective photon lifetime introduced in Section 2.3-B. The dimensionless mth 

mode eigenfunction of the unpumped and lossless solitary cavity is 

e:,!, ( z) = sin km,z, (2.15a) 

where the wavenumber km, satisfies 

(2.15b) 

In arriving at Equations (2.15a) and (2.15b), an infinite conductivity at both 

z = 0 and z = l is assumed. 

For the laser with an effective mirror, the detuning of the resonant frequency 

is 

where Wm, is the mth resonant frequency of the unpumped and lossless solitary 

cavity and Wm,i is the resonant frequency of the unpumped and lossless composite 

laser cavity. As shown in Figure 2.3, the subscript mi denotes the ith resonant 

frequency of the mth cluster of resonant frequencies, and the mth cluster resonant 
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wave 
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Figure 3.1 (a) Schematic of a single-mode semiconductor laser coupled to 
an external mirror. (b) A single-mode semiconductor laser coupled to an 
external mirror is equivalent to a diode laser with an effective mirror. 
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frequencies are located in the vicinity of Wm. Similarly, the detuning of the wave 

number is 

The corresponding dimensionless eigenfunction of the unpumped and lossless 

composite cavity satisfies 

(2.16) 

and the eigenfunction of the mjth mode is given by 

(2.16a) 

Equation (2.16a) indicates that under the influence of external coupling, the 

conductivity at z = l is not necessary infinite. 

Using the orthonormality of the complete set {erni(z)}, in the region O :S 

z :S l, one has the following expansions: 

C (z, t) = LL Crni(t)erni(z) (2.17a) 
rn i 

P (z, t) =LL Prni(t)erni(z) (2.17b) 
rn i 

p(z, t) = LL Prni(t)erni(z) (2.17c) 
rn i 

and 

(2.17d) 

After substituting Equations (2.17a)-(2.17d) into Equation (2.15), multiplying 

by e:n,, ( z), and integrating from z = 0 to z = l, one gets 
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l 

a a2 f -[IWeJJ(t) at+ K,€ at2] I:[~ C,ni(t) emi(z)e~,(z)dz] 
m 3 0 

l 

= K :t: L [~ ( Eofx(n)Cmi(t) + Ptni(t)) f emi(z)e~,(z)dz]. (2.18) 
tn 3 0 

Substituting Equations (2.15a) and (2.16a) into Equation (2.18), one obtains 

l 

7 ~ Cmi(t) f [d~2 etni(z)]e~,(z)dz 
3 0 

and 
l 

7 ~ C,ni(t) f emi(z)e~,(z)dz 
3 0 

m=m' 
(2.19a) 

m =/=- m' 

m=m' 

{ 

Li C,n•,i(t) - Li C,n•i(t) ~~::; + ... 

- (-l)tn+m'+l ~ e ·(t) [ llk.,,.i _ llk.,,.i ] + ... 
L.,,i m3 k:,.+k.,,. k:,.-k.,,. 

(2.19b) 
m =/=- m'. 

Since 

only the order of magnitude of 

L C,ni(t) !::.k,ni = L E,ni(t)io.,,.,t !::.k,ni 
. k,n, - k,n . k,n, - k,n 

3 3 

needs to be estimated. 

For a quick estimation, consider the field spectrum of Figure 2.3, where 

E,no(t) is the largest mode and f3m,i(t) = f3tn,-i(t). Therefore, one has 

e-i0.,,. 0 t L f3tni(t)em.,,.1t l::.kmi = f3tno(t) l::.kmo 
. k,n, - k,n k,n, - k,n 

3 

'"""' ( ) [ 21::.kmo ( . ) 2j !::.k . . )] + ~ f3tni t km, _ km cos J !::.Ot + k,n, _ ktn sm (J !::.Ot , (2.20) 
3>0 
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where D..k = lkm,i - km,i+ll and D..0 = IOm,i - Om,.Hll• For most of the diode 

lasers of great interest and practical importance, 

Accordingly, in terms of km~~km and in the zeroth-order approximation, Equation 

(2.18) is reduced to 

where r;ff(t) = E/aen(t) is the effective photon lifetime. Therefore, the optical­

field equation of the mJ"th mode Cmi(t) is 

d
2 

fx(n) )] 1 d () 2 ( ) ( ) iO -t 

d 2 [(1 + 2 )Emi(t + efj d Cmi t + Wm,Cmi t = D.. t e mJ • 
t µ Tp (t) t 

(2.22) 

Using (2.8a) and (2.8b), Equation (2.22) can be simplified to a first-order differ­

ential equation: 

!:_E ·(t) _ [ '( _ n . _ fxr(n)Omi) 
d 

m3 Z Wm, ~£m3 2 t 2µ 

_!_(fXi(n)Omi _ 1 )]E ·(t) = D..(t) 
+ 2 2 ef f ( ) m3 2 ·n . µ Tp t ZHm,3 

(2.23) 

where Emi(t) is the complex amplitude of the optical field Emi(t). 

Up to this point, the derivation is for a one-dimensional resonator with a 

special boundary condition. Although everything in this derivation is transpar­

ent and straightforward, it is desirable to broaden the theoretical basis of the 

theory. In the following, the derivation will be performed for a three-dimensional 

resonator without invoking special boundary conditions. The spatial dependence 

of the dielectric constant f., which was neglected in the semiclassical laser the­

ory [4] and the derivation given above, will also be included. Along the line, 
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some subtle points will be spelled out, and one will find that the one-dimensional 

model is a useful and illustrative example of the theory developed below. 

In principle, the optical field f (r, t) consists of a large number of lateral, 

transverse, and longitudinal modes lasing at different frequencies. But in prac­

tice, lasers designed to support only a fundamental lateral and transverse mode 

are very important for many practical applications. Very often, this fundamental 

mode operation is also desired for semiconductor lasers with external coupling. 

Therefore, only semiconductor lasers of this kind, with or without external cou­

pling, will be considered below and throughout Chapters 3, 4, and 5. In addition, 

the x-axis and y-axis are designated as the lateral-axis and tranverse-axis, respec­

tively. Each longitudinal mode of solitary semiconductor lasers is a superposition 

of the forward and backward propagating waves that form a standing wave pat­

tern in the z-axis direction, and the optical field f (r, t) can be written as 

[(r,t) = ~(x,y)c(z,t), (2.24a) 

where ~(x, y)is the lateral and tranverse profile of the fundamental mode. 

Because the external coupling considered in this thesis is coupled longi­

tudinally through one facet mirror of the conventional solitary diode laser, it is 

expected that the lateral and transverse profile will basically remain undisturbed. 

Consequently, it is assumed that (2.24a) also holds for diode lasers with external 

coupling. Inside the diode cavity, the wave equation for the optical field f (r, t) 

IS 

(2.24b) 

where the spatially varying dielectric constant E(x, y) is dependent on the laser 

waveguide structure which supports only the fundamental modes. Notice that 



- 36-

the optical field of main concern is confined inside the diode cavity; therefore, it 

is assumed that the dielectric constant E( x, y) is not a function of the longitudinal 

coordinate z. 

For the unpumped and lossless composite cavity, there is a complete or­

thonormal set {~(x, y)em,3 (z)} of dimensionless eigenfunctions ~(x, y)em,3(z), 

which obey 

(2.25) 

with the appropriate boundary conditions. The choice of having dimensionless 

eigenfunctions et(x,y)em,3(z) is purely a matter of convenience. For the optical 

field [(r, t) inside the diode cavity, one has the following expansions: 

l(r, t) = ~ (x, y) L i:::c.~·m,i(t)em,3(z) (2.26a) 
m, j 

P(r, t) = ~(x, y) LL Pm,3 (t)em,3 (z) (2.26b) 
m, j 

p(r,t) = ~(x,y) LLPm,3(t)em,3(z) (2.26c) 
m, j 

and 

(2.26d) 

To understand why the expansions (2.26a)-(2.26c) are limited to the region 

inside the solitary diode cavity, one has first to grasp the physical meaning behind 

these expansions. For a composite laser lasing in its mjth mode, according to 

(2.26a), its optical field inside the diode cavity is 
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Therefore, the field intensity ratio between points r1 and T2 is given by 

I 

~(r1, t) 1
2 = I ~(x1, Y1)em.i(zi) j2, 

c ( T2, t) et ( x2, Y2)em.i ( z2) 

and is time-independent. For a solitary diode resonator, this is expected and 

agrees with the spirit of the semiclassical laser theory [4]. Similarly, let us suppose 

that the expansions (2.26a)-(2.26c) are for the whole composite cavity. Then, for 

instance, in the case of a single-mode two-section laser, the field intensity ratio 

between points of different cavity is time-independent. But according to the 

results that will be presented in Chapter 5, each cavity of a two-section laser has 

its own average optical field, and the ratio between these two fields generally is 

not time-independent. Therefore, the expansions (2.26a)-(2.26c) are valid only 

for the region inside the diode cavity. 

Substituting Equations (2.26a)-(2.26d) into Equation (2.24b), multiplying 

by ct* ( x, y) e~, ( z), and integrating over the whole volume of diode cavity, one 

obtains 
l 

-K < f. > w!,i L {~ Cm.i(t) f em.i(z)e:U,(z)dz} 
m, 3 0 

(2.27) 

with 
f~= J~= E(x,y)~(x,y)ct*(x,y) dxdy 

< f. >= JO<) JO<) ' -= -= ~(x,y)ct*(x,y) dxdy 
(2.27a) 

where em.,(z) is the m'th longitudinal mode of the unpumped and lossless diode 

cavity. The < f. > defined in (2.27a) can be interpreted as the spatially averaged 
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dielectric constant. In arriving at Equation (2.27), Equation (2.25) has been 

used. 

Using the expansion in the region O :s; z :s; l, 

one obtains 

em.;(z) = L ck;ek(z), 
k 

(2.28a) 

For most diode lasers of great interest and practical importance, the detuning 

Akm.; is very small and can be characterized by 

I Ak,n; I 
k k ~ 1. ,n - m.+1 

(2.28b) 

Therefore, for lasers falling in this category, it is assumed that cm., i of Equation 

(2.28a) is in the form of a power series expansion in t: 

{ 

O(t) + · · • m =/= m' 
Cm.'i = 

1 + 0 ( t) + • • • m = m' 
(2.28c) 

where tis a real dimensionless parameter much less than 1, and O(t) denotes 

that O(t) is on the order of magnitude t. Accordingly, Equation (2.28a) becomes 

m =I= m' 
(2.28d) 

m=m'. 

Similarly, in terms oft, Cm.;(t) can be expanded as 

(2.28e) 

After substituting (2.28d) and (2.28e) into (2.27) and equating the coefficients of 

successive powers of t on both sides of that equation, the solution arising from 
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the zeroth-order term in t yields 

where 

Teff(t) = < E > 
P O"eJJ(t) 

(2.29a) 

is the effective photon lifetime. Because the superscript O on E!i(t) and p~i(t) is 

omitted in Equation (2.22), this equation is exactly the same as Equation (2.22), 

except that the spatially averaged refractive index P, given by 

(2.29b) 

is used in Equation (2.29). Thus, the optical-field equation of semiconductor 

lasers with external coupling is 

.!!:__E ·(t) _ [·( _ 0 . _ rx,.(n)Om,i) 
dt m,3 z Wm, m,3 2µ,2 

!.(rxi(n)Om,i 1 )]E ·(t) = ~(t) . (2.30) + 2 -2 ef f ( ) m,3 2 ·n . µ Tp t Zum,3 

From the simple model presented in the first part of this section, it has 

been shown that (2.28d) follows directly from the condition (2.28b). Therefore, 

although (2.28d) is an assumption in the discussion given in the second part 

of this section in general, it is expected that the condition ( 2.28b) will lead to 

the other condition (2.28d). Despite the fact that most lasers of great interest 

and practical importance obey the conditions imposed by (2.28b), (2.28d), or 

by (2.28b) and (2.28d), one can not rule out possible cases that violate these 

conditions. In any case, the inequality (2.28b) can be checked experimentally 

from the frequency detuning data. On the other hand, the condition (2.28d) can 

be examined only from calculations on a specific case basis. 
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The major points of this section are reviewed in the following. The optical­

field equation (2.30) is derived directly from Maxwell's wave equation. At first, 

the derivation is based on a model of a one-dimensional resonator. Then, the 

same equation is rederived in the general case. The simple model offers the ad­

vantage that calculations can be carried out with relative ease in great detail , 

whereas the second approach is more accurate and realistic than the first one be­

cause of the inclusion of the spatial dependence of the dielectric constant E(x, y). 

In addition, both approaches complement one another. 

2.3-D. Relation Between 1/r;ff(t) and ren(t) 

As shown in Section 2.3-B, in the semiclassical laser theory [4], the photon 

lifetime of a solitary semiconductor laser is directly related to the amplitude 

reflectivities of its facet mirrors. For semiconductor lasers with external coupling, 

it is expected that a similar relation between the effective photon lifetime 'TeJJ(t) 

and effective reflectivity Tef f (t) exists. Therefore, establishing this relation will 

be the first concern of this section. Then, the physical meaning of this relation 

will be described. 

Recall that the Langevin force ~ ( t) accounts for the spontaneous-emission 

driven quantum noise. Therefore, ~(t) of Equation (2.30) is neglected in the 

following derivation. Integrating Equation (2.30) yields 

t+ri 

Ern:1(t + re) = Ern:1(t)exp[i(wrnrc - Orn:f'Tl - 1/2 / r~in) Orn:1dt)] 
t 

t+ri 

J rxi(n) 1 
xexp[l/2 ( _2 Om,:f - eff )dt], 

µ 'Tp (t) 
t 

(2.31) 
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where 7/ = 2nl / c is the round-trip time of the optical field inside the crystal 

cavity. Since, in the period of 7/ ~ 6 x 10-12s, all the terms in the integrands of 

Equation (2.31) remain almost unchanged, thus Equation (2.31) can be simplified 

to 

·o Xr(n) 
Erni(t + 7/)e~ '"'j"t = Erni(t)exp[i(wrn7l - 1/2~0rni7i)] 

µ 

rxi(n) 71 
xexp[l/2( _2 Orni7l - ff )]. 

µ 7; (t) 
(2.32) 

On the other hand, after following the optical field through a round trip inside 

the diode cavity, one has 

Since 

[ "( rxr(n) )] exp i WrnT[ - 2p,2 Ornin - Orni7l = 1 + 6 

with 161 ~ 1, relating Equations (2.32) and (2.33) gives 

l C l C ren(t) 
ff = ao - -1lnr1reff(t) = -l - -=-zln 7; (t) n 7J n r2 

(2.34) 

where r2 is the amplitude reflectivity of the right facet of the solitary diode laser 

(Figure 2.la). Notice that the condition /6/ ~ 1 follows directly from condition 

(2.28b) of the last section. The similarity between Equations (2.13) and (2.34) 

confirms the argument that a diode laser with external coupling indeed behaves 

like a solitary diode laser with an effective mirror. Equation (2.34) shows that 

the time-dependent amplitude reflectivity of the effective mirror gives rise to the 

time-dependent effective photon lifetime. 

Substituting Equation (2.34) into Equation (2.30) yields the optical-field 

equation of semiconductor lasers with external coupling: 
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+ .!_(fXi(n)Om.i _ _!_ + ~lnretf(t) )]E ·(t) = ~(t) ( ) 
2 µ-2 rill nl r2 m.3 2i11 . 2.35 

p m,3 

Clearly, the effect on the laser dynamics contributed by the external coupling is 

contained in the term 

-~ln Tef 1(t) 
nl r2 

of Equation (2.35). The real part of this term is the change in loss caused by the 

external coupling, and its imaginary part is related to the change in the phase 

of the optical field. With no external coupling, 

so that 

and Equation (2.35) gives the well-known optical-field equation of the solitary 

semiconductor lasers. 

Equation (2.35) is the key result of this chapter and will be the basis for 

analyzing the dynamics and steady-state characteristics of the diode laser with 

external coupling. 

2.3-E. Steady State Characteristics 

After uncovering the role played in laser dynamics by the effective reflectiv­

ity ref f (t) and showing that Equation (2.35) is consistent with the well-known 

optical-field equation of solitary diode lasers, the next concern would be the con­

sistency between Equation (2.35) and the oscillation condition of Reference 5. It 

will be the purpose of this section to answer this question. 
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Suppose the steady-state effective reflectivity is r~1 f and 

o I o I i0. reff = reff e ' 

then the oscillation condition [5] is 

(2.36) 

In the meantime, the optical-field equation (2.35) gives 

(2.37a) 

and 

rxi(n)!lmi C ( I o I) 
fl,2 - ao + nl ln r1 r eff = 0, (2.37b) 

which govern the steady state of the composite lasers. Following the procedure 

of Section 2.3-B, it can be shown that the combining of Equations (2.37a) and 

(2.37b) is equivalent to Equation (2.36). 

Clearly, the secular equation for the lasing frequency Orni is given by Equa­

tion (2.30a). The phase of r~ff determines the detuning of the lasing frequency, 

and the amplitude of r~1 f dictates the amount of threshold gain reduction. In 

conclusion, the optical-field equation (2.35) gives the same steady-state oscilla­

tion condition as that predicted by Reference 5, and in the steady-state domain, 

a diode laser with an external coupling is, in fact, equivalent to a solitary diode 

laser with an effective mirror. 

2 .4 Application of the Theory 

To demonstrate the usefulness of the theory presented above, the general 

optical-field Equation (2.28) will be applied to obtain optical-field equations for 
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three different types of composite cavities in this section. Lasers under consider­

ation are (1) a diode laser coupled to an external mirror, (2) an injection-locked 

diode laser, and (3) an axially coupled two-section laser. With these examples, 

one will have a firm grasp of the abstract concept of the time-dependent effective 

reflectivity. The optical-field equations will be given, and accompanying discus­

sions will be based solely on inspecting the newly obtained optical-field equations. 

The dynamics of each type of composite cavities deserve detailed study and will 

be treated separately in Chapters 3, 4, and 5. 

2.4-A. A Diode Laser Coupled to An External Mirror 

For a single-mode diode laser coupled to an external mirror, the optical-field 

equation is 

(2.38) 

where Wm, is the mth resonant frequency of the unpumped solitary laser-cavity, 

0 is the lasing frequency, and reJJ(t) is given in Equation (2.3c). 

In the limit /r3/ ~ /r2/, Equation (2.3c) gives 

and Equation (2.38) becomes 

(2.39) 
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Dropping the Langevin noise term, Equation (2.39) becomes the equation in­

troduced by Lang and Kobayashi [1]. Clearly, the equation introduced by Lang 

and Kobayashi is a special case of Equation (2.38), and unlike their equation, 

Equation (2.38) takes into account the optical field trapped for many round trips 

inside the external cavity. Therefore, Equation (2.38) will make feasible the anal­

ysis for lasers with strong external feedback. A thorough investigation of this 

type of lasers based on this equation will be presented in Chapter 3 [7]. 

2.4-B. An Injection-Locked Diode Laser 

For a single-mode injection-locked laser shown in Figure 2.4a, at any instance 

there are two counterpropagating waves at the point inside the diode cavity just 

to the left of the right air-crystal boundary. Suppose the incident wave from the 

left at plane R is 

(2.40a) 

and the wave travelling to the left at plane R is 

(2.40b) 

where Ein(t) is the complex amplitude of the field before being injected into 

the cavity, E(t) is the complex amplitude of the field inside the injected diode 

cavity, t2 is the transmission coefficient from the air to the cavity, n is the lasing 

frequency, and a is already defined in Equation (2.3a). Thus, this injected laser 

has an effective mirror with effective reflectivity r eff (t) at plane R defined by 

Equation (2.1). 

Substituting (2.40a) and (2.40b) into (2.1) gives 

(2.40c) 
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Figure 2.4 (a) Schematic of an injection-locked semiconductor laser. (b) An 
injection-locked semiconductor laser is equivalent to a diode laser with an 
effective mirror. 
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Equation (2.40c) indicates that as the injected field Ein(t) varies, the effective 

reflectivity r elf ( t) changes as well. This confirms that as illustrated in Figure 

2.4b, there is an instantaneous effective reflectivity r eff (t) for injection-locked 

lasers. Following the same argument given in Section 2.2, one has a ~ 1/(1 + 
/r2 /2 ). For uncoated or AR-coated diode lasers, a~ 1. Therefore, substituting 

(2.40c) into (2.35) yields 

In general, 

and Equation (2.41) becomes 

Except for the factor 1 / r2 in the term - 2~ 1 (;;) Ein ( t) and the Langevin force 

term, Equation (2.42) is the same as the equation introduced by Lang [2]. One 

immediate implication of this factor is that decreasing r2 /t2 will reduce the 

injected field intensity necessary for locking. This is consistent with the analysis 

given by Hadley [8], which was carried out in the spatial domain. Apparently, 

as shown in Equation (2.42), r2 is an important parameter that is missing in 

the equation introduced by Lang, and it should be included in the optical-field 

equation. Chapter 4 will present an in-depth study of this laser [9]. 
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Figure 2.5 (a) Schematic of an axially coupled two-section semiconductor 
laser. (b) Each cavity of the two-section semiconductor laser is equivalent 
to a diode laser with an effective mirror. 
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2.4-C. An Axially Coupled Two-Section Diode Laser 

An axially coupled two-section diode laser is illustrated in Figure 2.5a. It 

consists of two cavities of lengths 11 and 12 with facet reflectivity r 1 on one end 

and r 4 on the other end of the composite cavity. The coupling between the two 

cavities is characterized by the transmission and reflection coefficients t 12 , t 21 , 

r 11 , and r 22 , as shown in Figure 2.5a. Each cavity is equivalent to a solitary laser 

with an effective mirror. A single-mode laser with lasing frequency O is assumed 

in this section and in Chapter 5. 

Following the discussion of Section 2.2, for the left effective mirror of Figure 

2.5b, the incident wave from the left at plane L is 

(2.43a) 

and the wave travelling to the right at plane L is 

(2.43b) 

where Ei(t) is the complex amplitude of the optical field inside the jth cavity. 

The a1 ( a2 ) is defined for points inside Cavity 1 (2), right next to the crystal­

air boundary. The a1 is the fraction of field E 1(t)i 0 t travelling from the left 

toward the right crystal-air boundary of Cavity 1, and a2 is the fraction of field 

E 2 (t)i 0 t travelling from the right toward the left crystal-air boundary of Cavity 

2. Similarly, for the right effective mirror of that same figure, the incident wave 

from the right at plane R is 

(2.43c) 

and the wave travelling to the left at plane R is 

(2.43d) 
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For lasers with a 1 = a2 , these two factors will disappear in the effective re­

flectivities r~~j(t) and r~;j(t). For lasers with a 1 i=- a2, these two factors can 

be incorporated into the transmission coefficients; i.e., t~2 = (aif a2)t12 and 

t~1 = ( a 2 / a 1)t21- To simplify the situation, a1 = a2 will be assumed in this 

section and throughout Chapter 5. 

Following the discussion given in Section 2.2, the two effective reflectivities 

r~~j(t) and r~;j(t) shown in Figure 2.5b are defined as 

(2.44a) 

for Cavity 1 and 

(2) (t) _ E2i(t) 
reff - E2r(t) (2.44b) 

for Cavity 2, respectively. Substituting (2.43a)-(2.43d) into (2.44a) and (2.44b) 

yields 

(2.45a) 

and 

(2.45b) 

Consider a two-section laser with two separate and isolated current sources. By 

adjusting its two pumping currents independently, one should be able to observe 

the time dependence in E2(t)/E1 (t). This means that the two effective reflec­

tivities shown in (2.45a) and (2.45b) are truly functions of time. Therefore, the 

time-dependent effective photon lifetime is much more than a concept; it is a 

well-defined physical quantity. 

For a single-mode axially coupled two-section diode laser, after invoking 

Equations (2.35), (2.45a) and (2.45b), one obtains the following set of nonlinear 
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optical-field equations: 

where for the ith cavity, ri is the filling factor, Wj is the mith resonant frequency 

of the unpumped cavity, Xi(n) = Xir(n) + iXii(n) is the susceptibility when the 

carrier density is ni, P,j is the spatially averaged nonresonant contribution to 

refractive index, O'.jois the waveguide loss, ~i(t) is the Langevin force term, ni 

is the real refractive index in the active region, and l i is the cavity length. 

In the steady state, Equations (2.46a) and (2.46b) give 

where nio is the steady-state carrier density and Eio is the steady-state amplitude 

of the optical field inside the jth cavity. Since 

Equations (2.47a) and (2.47b) can be rewritten as 

(2.48a) 
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_l_exp[i02n2l2 _ ~(f2X2i!;2o)O _ a
20

)n2l2] - l = t12 E10. 
r4r22 c 2 µ 2 c r22 E20 

(2.48b) 

Putting Equations (2.48a) and (2.48b) together gives the eigenvalue equation 

derived by Henry and Kazarinov [10]. 

Consider the cases with the following conditions: 

(2.49) 

Equations (2.46a) and (2.46b) are reduced to a set of first-order differential equa­

tions: 

Apparently, the two optical fields Ei(t) and E2 (t) are coupled linearly only under 

the condition of (2.49). In most cases, as indicated in Equation (2.46a) and 

(2.46b), E 1 (t) and E2 (t) are coupled together nonlinearly. 

Comparing with Marcuse's coupled mode theory [3], the coupled Equations 

(2.46a) and (2.46b) do not have terms of cross-coupling and self-coupling among 

eigenfunctions of the composite cavity as well as individual cavities. In Mar­

cuse 's theory, the dynamics are oversimplified by considering one average photon 

density. Normally, as will be shown in Chapter 5, the two cavities have different 

average photon densities as indicated by Equations (2.46a) and (2.46b). 

When there is no coupling, i.e., t 12 = t21 = 0, Equations (2.46a) and (2.46b) 

become, as expected, the equations of two uncoupled solitary lasers. Although 
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the optical-field equations (2.46a) and (2.46b) are much more complicated than 

Equations (2.38) or (2.42), a substantial amount of information regarding the 

characteristics of this laser can still be obtained [11]. Important results arising 

from these two equations will be given in Chapter 5. 

2.5 Conclusion 

By viewing a laser with an external coupling as a solitary laser with an ef­

fective mirror, the concepts of time-dependent effective reflectivity and complex, 

time-dependent effective photon lifetime have been introduced. A general formal­

ism has been developed directly from Maxwell's wave equation. This formalism 

provides intuitive understanding of the physics involved in the external coupling. 

Its importance and significance will be fully realized in the following chapters. 

The optical-field equation derived from this formalism gives steady-state char­

acteristics that agree with the resonant oscillation condition. With no external 

coupling, this equation becomes the optical-field equation for the solitary laser. 

This formalism has been applied to obtain the optical-field equations for 

three different types of lasers. For the diode laser coupled to an external mirror, 

the derived equation takes into account multiple reflections that were neglected 

in Lang and Kobayashi's equation [1]. For the injection-locked diode laser, the 

equation obtained includes the amplitude reflectivity of the diode facet, which 

was overlooked by Lang [2]. For an axially coupled two-section diode laser, its 

optical-field equations give the steady-state condition, which agrees with those 

obtained by applying a resonant oscillation condition [6]. Compared with Mar­

cuse's coupled mode theory [3], these equations were more general. The useful­

ness of these two equations will be demonstrated in Chapter 5. 
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Chapter 3 

Dynamics, Noise Properties, and Linewidth of Single-Mode 

Semiconductor Lasers Coupled to an External Mirror 

3.1 Introduction 

The characteristics of semiconductor lasers can be significantly improved by 

external feedback under appropriate conditions. For example, by coupling to 

an external grating, the laser linewidth can be reduced from on the order of 10 

MHz to on the order of 10 KHz [1]. This linewidth reduction makes the semi­

conductor laser suitable for a number of applications requiring greater spectral 

purity such as coherent communications [2]. Furthermore, using a semiconductor 

laser coupled to an external cavity, a narrow-band signal transmitter in the Ku 

band frequency range (12-20 GHz) was demonstrated [3]. All these indicate that 

semiconductor lasers coupled to an external cavity are practical and important 

devices. 

On the other hand, because of the non-ideal isolation provided by the optical 

isolator, a weak external feedback is unavoidable in practical applications of 

semiconductor lasers. In optical communication systems, for instance, this kind 

of unwanted reflection may come from the near end or the far end of the fiber link. 

Very often, such weak external feedback can drastically affect the performance 

of the semiconductor laser as well as the entire system. 

In the past several years, because of these different and important aspects, 

the steady-state characteristics and noise properties of semiconductor lasers with 
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external feedback have been the subject of intensive study. The most widely em­

ployed approach to study this kind of laser is based on the optical-field equation 

introduced by Lang and Kobayashi [4]. However, as pointed out in Chapter 

1, since it accounts only for the weak external feedback case, this equation is 

not appropriate for cases where light trapped for many round trips cannot be 

neglected. Recently, two papers [5] [6] considered the high Q passive external 

cavity. Although these papers gave the linewidth formula, many important ex­

perimental observations remain unexplained: the intensity noise data reported 

by Temkin et al. [8], the observations made by Cronin-Golomb et al. [21], that 

mode locking can be achieved only when biasing the laser near threshold, and 

the modulation response in the Ku-band frequency range obtained by Lau and 

Yariv [3]. Furthermore, as demonstrated in References [1], [3], and [7], these 

kinds of lasers have great potential in practical applications. Therefore, under 

these circumstances, a detailed study on the effect of strong optical feedback is 

necessary. 

In this chapter, the coupling of an active Fabry-Perot semiconductor laser to 

a distant reflector will be considered. The coupling provides an arbitrary amount 

of feedback to the laser. This analysis will be based on the optical-field equation 

derived earlier in Chapter 2, which takes light trapped for many round trips into 

consideration. The major purpose of this chapter is twofold. One is to study 

lasers with strong external feedback, and the other is to show the usefulness of 

the general theory established in Chapter 2 through the accomplishments of this 

study. 

In Section 3.2, the small-signal equations for the optical field and the carrier 

density will be derived. Based on these equations, the rest of this chapter will 
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be devoted to the subjects of noise, laser linewidth narrowing, and small-signal 

current modulation response. By including the carrier dependence of the refrac­

tive index and multiple reflections from the external mirror, the relative-intensity 

and frequency fluctuation spectra will be derived in Section 3.3. The experimen­

tal intensity noise data of Temkin et al. [8] will be explained. From this close 

examination, the major factor that prevents mode locking at higher DC current 

bias levels [21] will be identified. In the limit r3 <t:: r2, it will be shown that 

these relative-intensity and frequency fluctuation spectra are equivalent to those 

of Spano et al. [9]. 

By ignoring the high-frequency structure in the field spectrum, a general me­

thod for obtaining the Lorentzian laser linewidth will be developed in Section 3.4. 

This method will be used to derive an analytical expression for laser linewidth 

which agrees with that reported by Kazarinov and Henry [5] and Hjelme and 

Mickelson [6]. It will also be shown that when r3 <t:: r2 , this linewidth for­

mula gives the result derived by Agrawal [10] who applied Lang and Kobayashi's 

optical-field equation. 

In Section 3.5, the small-signal equations of Section 3.2 will be used to obtain 

an analytical expression for the small-signal current modulation response. The 

results of this analysis will then be compared with experimental results reported 

by Lau and Yariv [3]. 

3.2 Small-Signal Equations for the Optical Field and Carrier Density 

The optical field and carrier density are the two dynamic variables in de­

scribing the physics of semiconductor lasers. The equations of these variables are 

the starting point for studying the dynamics, spectral properties and noise char-



- 58 -

acteristics. Consequently, the optical-field equation derived in Chapter 2 and the 

equation of the carrier density will be briefly reviewed. Since these two equations 

are nonlinearly coupled and the small-signal analysis is a very fruitful technique 

in analyzing nonlinear and coupled equations, the small-signal equations for the 

optical field and the carrier density are indispensable and will be derived. These 

linearized equations will pave the way for the studies of the following sections. 

A single-mode diode laser coupled to an external mirror is schematically de­

picted in Figure 3.la. According to the theory presented in Chapter 2, this laser 

can be viewed as a solitary diode laser with one of its two facet mirrors replaced 

by an effective mirror (Figure 3 .1 b) . The time-dependent effective reflectivity 

reJJ(t) is given by Equation (2.3c) and, for convenience, is given below: 

( ) ( 
2 ) -iOT E(t - r) 

ref! t = r2 + rs 1 - r2 e E(t) 

- r (1- r2)(r r )e-2iOTE(t - 2r) 
s 2 2 s E(t) 

+ r (1 - r2) (r r )2e-3i0T E(t - 3r) +... (3.1) 
s 2 2 s E(t) , 

where r = 2L/c is the external-cavity round-trip time of the optical field, E(t) is 

the complex amplitude of the optical field, and n is the laser (average) frequency. 

r 1 , r2 , and r3 denote the amplitude reflectivities of the diode lac8~ fac:8::::: ~::::: :h8 

external mirror, respectively. The amplitude reflectivity r 3 of the external mirror 

includes all coupling, absorption, and diffraction losses during each round trip 

in the external cavity. In the steady state, Equation (3.1) gives the steady-state 

effective reflectivity 

(3.2) 
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Figure 3.1 (a) Schematic of a single-mode semiconductor laser coupled to 
an external mirror. (b) A sfogle-mode semiconductor laser coupled to an 
external mirror is equivalent to a diode laser with an effective mirror. 



-60-

where r and (} are real numbers. Clearly, this reflectivity depends strongly on 

the laser frequency 0. 

With the effective reflectivity TeJJ(t) given in Equation (3.1), the optical­

field equation derived in Chapter 2 is 

where Wm is the mth resonant frequency of the unpumped and lossless diode 

cavity, r is the confinement factor resulting from the spreading of the optical 

field beyond the active region, fl is the spatially averaged nonresonant index given 

by Equation (2.27a), n is the real refractive index of the active region, and l is 

the cavity length of the solitary diode laser. ~(t) is the slowly varying complex 

amplitude of the Langevin force, which originates from spontaneous emission. 

Xr(n) and Xi(n) are the real and imaginary parts of the susceptibility x(n), 

respectively, and n is the carrier density in the active region. r;' is the photon 

lifetime of the solitary semiconductor laser. In the limit r3 « r2 , Equation (3.1) 

is reduced to 

(3.4) 

and Equation (3.3) becomes 

As expected, dropping the Langevin noise term, Equation (3.5) becomes the 

equation introduced by Lang and Kobayashi [4]. 
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The equation for the carrier density n is 

dn n - = -g(n)p - - + J(t) + 77(t), 
dt T8 

(3.6) 

with g(n) = ro~;(n) and p = ~~~ IEl2 , where g(n) is the gain, p is the photon 

density, T8 is the spontaneous lifetime, J(t) is the pumping rate of carriers per 

unit volume, and 77(t) is the Langevin noise force associated with the discrete 

nature of the carrier generation and recombination process. 

In Equations (3.3) and (3.6), the deviations caused by the Langevin forces 

are small when compared to their steady-state values. However, depending on 

the pumping source J(t), the current-driven deviations can be in the large-signal 

regime or in the small-signal regime. Since the interest is in the small-signal 

regime, the laser considered is biased with a DC source J 0 and a small time 

varying component J 1 (t) such that 

Under this condition, the small-signal equations for the optical field and the 

carrier density are sufficient for studying all the subjects outlined in Section 

3.1 and will be derived below. These equations will then be used throughout 

this chapter to derive analytical expressions for the frequency and the relative­

intensity fluctuation spectra, the laser linewidth, and the small-signal current 

modulation response. 

For the small-signal analysis, let 

E(t) = (Eo + E 1 (t))i<l>(t) (3.7a) 

(3.7b) 
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(3.7c) 

where E 1 (t), <f>(t), n 1(t), Ji(t), and Ii(t) are real and time-dependent quantities, 

and their magnitude are small as compared to Eo, 1, no, J 0 , and Io, respectively. 

The e = er+ iei is the first-order Taylor coefficient in the expansion of 

about the steady-state carrier density n0 • The small terms Ei(t), <f>(t), n 1 (t), 

Ji(t), I 1 (t), and the Langevin forces (~(t) and 17(t)) are assumed to have zero 

mean value. It is also assumed that the time variations of E 1 (t), <f>(t), n 1 (t), 

J1 (t), 11(t), ~(t), and 17(t) are slow compared to the optical term exp(iflt). 

Neglecting products of small quantities and assuming l<f>(t) - <f>(t - Nr)I ~ 

7r /2 yields 

1 1 C ref J ( t) 1 C ~ i0 • 
elf = elf - nl ln r

2 
= rill - nl ln(re- ) + HR(t) + zH1(t) (3.8a) 

~ ~ p 

with 

and 

HR(t) = ~ (1 ~ r~) r3 {KR Ei(t) - K1¢(t) 
nl r r2 Eo 

Ei(t - r) . 
- [ Eo cos(Or - 0) + <f>(t - r) sm(Or - O)] 

Ei(t - 2r) 
+ r2r3[ Eo cos(20r - 0) + <f>(t - 2r) sin(20r - 0)] 

-(r2r3)2[Ei(t -
3

r) cos(30r - 0) + <f>(t - 3r) sin(30r - O)] + · · ·} (3.8b) 
Eo 

H1(t) = ~ (l ~ r~) r3 {K1 Ei(t) + KR<f>(t) 
nl r r2 Eo 

- [<f>(t - r) cos(Or - 0) + Ei(t - r) sin(Or - 0)] 
Eo 

+ r2r3[<f>(t - 2r)cos(2flr - 0) + Ei(t - 2
r) sin(20r - O)] 

Eo 
2 Ei(t - 3r) . 

-(r2r3) [<f>(t - 3r)cos(30r - 0) + Eo sm(30r - O)] + · • ·}, (3.8c) 
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where 

(3.8d) 

Similarly, after using Equations (3.7a)-(3.8a) and neglecting products of 

small quantities, Equations (3.3) and (3.6) are linearized. The small-signal equa­

tions are 
• 1 1 l -~r(t) 

</>(t) + 2ag n1(t) + 2H1(t) = 
112 2010 

" I ~i(t) 1/2 
I1(t) - g Ion1(t) + IoHR(t) = fll0 

. r~ 1 
n1 (t) = ---;--Xi( no)li (t) - -n1 (t) + J1 (t) + 17(t), 

2n TR 

where 

and 

(3.9a) 

(3.9b) 

(3.9c) 

(3.lOa) 

(3.lOb) 

The a is the ratio of the real to the imaginary parts of refractive index and is 

referred commonly as the linewidth enhancement factor [11] [12] [13]. The g' is 

the differential optical gain constant, and the TR is the damping time constant 

in the relaxation oscillation of solitary semiconductor lasers. 

The gain, the laser frequency, 10 , and n0 for the steady state are determined 

by the following equations: 

(3.Ila) 

(3.llb) 

(3.llc) 
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where the real quantities rand Oare defined in Equation (3.5), wm(no) is the mth 

resonant frequency of the pumped and lossless cavity. The ~r(t) and ~i(t) are 

the real and imaginary parts of ~(t), respectively. As pointed out in Chapter 2, 

Equations (3.lla) and (3.llb) are equivalent to the resonant oscillation condition 

[14], 

(3.12) 

This means that the optical-field equations predict the resonant oscillation condi­

tion (3.12), which was obtained by viewing the laser as a Fabry-Perot resonator. 

With the small current source J1(t) and the Langevin forces (~(t) and 77(t)), 

Equations (3.9a)-(3.9c) are the small-signal equations of the single-mode semi­

conductor laser coupled to an external mirror. From Equations (3.9a) and (3.9b), 

in the small-signal regime with the multiple reflections included, HR(t) and H1(t) 

are the measures of the external feedback effect on the amplitude and the phase 

of the optical field, respectively. In addition, Equations (3.lla) and (3.llb) show 

how the external feedback, with the multiple reflections included, influences the 

average optical-field amplitude and the average laser frequency of the steady 

state. 

3.3 Relative-Intensity and Frequency Fluctuation Spectra 

Over the past twenty years, there have been intense theoretical and exper­

imental investigations of semiconductor laser noise properties. In the following, 

the semiclassical theory of laser noise [15] will be applied to derive the relative­

intensity and frequency fluctuation spectra. The unexplained intensity noise data 

of Temkin et al. [8] will be examined. Following this investigation, the unknown 

fundamental mechanism restricting the mode-locking phenomena will be studied. 
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Let h4>(t), hr(t) and hn(t) be the noise-driven deviations of phase and inten­

sity of the optical field and carrier density from the steady-state values, respec­

tively. Setting J 1 (t) = 0 in Equation (3.9c), Equations (3.9a)-(3.9c) become the 

noise-driven equations for h4>(t), hr(t) and hn(t): 

• 1 1 1 -~r(t) 
h4>(t) + -ag hn(t) + -Hr(t) = 

112 2 2 2010 

· eo 1 
hn(t) = --;-Xi(no)hr(t) - -hn(t) + 17(t). 

21£ TR 

(3.13a) 

(3.13b) 

(3.13c) 

The correlations of the Langevin forces of Equations (3.13a)-(3.13c) are given as 

follows [15] [16]: 

with 

and 

(3.14a) 

(3.14b) 

(3.14c) 

(3.15a) 

(3.15b) 

where n 811 is the ratio of the spontaneous emission rate into the lasing mode to 

the gain of that same mode [17] [18] [19], Po is the steady-state photon number 

density, Ve is the volume occupied by the carriers, <> denotes ensemble average, 

and V is the average mode volume such that Po V is the total photon number 

inside the diode cavity. 
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Since only the spectral density function will be considered, it is helpful to 

start with its definition. The spectral density for stationary random functions 

f(t) and g(t) is defined by the Wiener-Khintchine relation as 

+oo 

WJg(w) = f ds < f*(t)g(t + s) > e-iws. (3.16) 

-oo 

According to the Wiener-Khintchine relation, the relative-intensity noise spec­

trum W .c:.r ( w) is defined by 

+oo 

W .c:.r(w) = 1
2 

/ ds < oj(t)br(t + s) > e-iws, 
Io 

-oo 

and the frequency fluctuation spectrum W .c:.w ( w) is defined by 

+oo 

W.c:.w(w) = f ds < s;(t)84>(t + s) > e-iws_ 
-oo 

(3.17a) 

(3J_7b) 

Because of the complexity of Equations (3.13a) and (3.13b), the Laplace 

transform method is not practical in deriving the noise spectra (3.17a) and 

(3.17b). Instead, as will be seen in the following, the Fourier transform method 

is a very powerful technique. For a square integrable function f( t), the Fourier 

transforms are defined by 

+oo 

J(w) = f dtf(t)e-iwt, 
1 /+oo ~ . 

f(t) = - dwf(w)e1-wt. 
271" 

-oo -oo 

Next, the major step will be to write the Wiener-Khintchine relation entirely 

in the frequency domain. Invoking the Fourier transform technique and taking 

the ensemble average of Equation (3.16), the Wiener-Khintchine relation can be 

written as 

(3.18) 
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where 8w /21r is the bandwidth resolution of the instrument used in the ensemble 

average. Therefore, the relative-intensity fluctuation spectrum is given by 

(3.19) 

and the frequency fluctuation spectrum is given by 

(3.20) 

It will be seen in the following that Equations (3.19) and (3.20) are indispensable 

in deriving the relative-intensity fluctuation spectrum W .6.1(w) and the frequency 

fluctuation spectrum W .6.w ( w). 

Similarly, using Equation (3.18), the correlations given in (3.14a)-(3.14c) 

can also be expressed as 

< 11*(w)17(w) >= ;: W2, < 11*(w)~i(w) >= ;: W1, 

< 17*(w)~r(w) >= O, < ~;(w)~r(w) >= 0. 

(3.21a) 

(3.21b) 

(3.21c) 

With all these key ingredients obtained above, the relative-intensity noise 

and frequency fluctuation spectra will be derived in the following. 

Taking the Fourier transforms of Equations (3.13a)-(3.13c) yields 

(3.22b) 

(3.22c) 
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where 

(3.23a) 

(3.23b) 

(3.23c) 

with 

. ei(Or-0) e-i(Or-0) 
C(w) = e-iwr[----- + ------] 

- 1 + r2r3e-iwreiOr 1 + r2r3e-iwre-iOr 
(3.23d) 

. i(Or-0) e-i(Or-0) 
D(w) = e-iwr[------ - -------] 

- 1 + r2r3e-iwreiOr 1 + r2r3e-iwre-iOr 
(3.23e) 

(3.23/) 

(3.23g) 

and Yi, = c/2nl. The wR/21r is commonly referred to as the relaxation oscilla­

tion frequency of the solitary semiconductor lasers. From Equations (3.22a) and 

(3.22b), solutions for b,p(w) and b1(w) are 

QI~
12 ~ (w) + g1 l (!!.9.. - iw - P) . ,;(w) - (iw + P)11/ 2 .6.;(w) 

20 r O 2 iw+l/TR O 0 
2 2 

[ a.WR Q]Q (" P)[" p WR l 2(iw+l/rR) - 4 - iw + iw + + iw+l/rR 

(3.24a) 

(3.24b) 
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After substituting (3.24a) into (3.19) and using the correlations (3.2la)­

(3.21c), the relative-intensity noise spectrum is 

(3.25) 

Following the same procedure, the frequency fluctuation spectrum is 

In the limit r3 ~ r2 , these relative-intensity and frequency fluctuation spectra 

are equivalent to those of Spano et al. [9]. Clearly, when no feedback is present, 

the spectral density functions W..:u(w) and We..w(w) given by Equations (3.25) 

and (3.26) are identical to those derived in [15]. 

In the following, Equation (3.25) will be used to study the unexplained 

experimental intensity fluctuation data reported by Temkin et al. [8]. Since the 

purpose of this study is to understand the basic physics involved in the intensity 

noise, only cases of single-mode operation with e-iO-r = 1 will be considered. 

Under this condition, the relative-intensity noise spectrum (3.25) is simplified to 

(3.27) 
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with 
C T3 1 eiWT - 1 

Po(w) = -(1 - r 2
)-----.---

2nl 2 r2 (1 + r3/r2) eiwr + r2r3 
(3.28) 

Equation (3.27) shows that the effect of external feedback on W e.1(w) is governed 

by P0 (w). 

Physical quantities, with their values chosen close to the experimental set­

tings of Temkin et al., used in the calculations, are r = 0.4 x 10-s sec; r2 = 0.6; 

n 8 p = 1.8; nl = 1 mm; g = 0.5 x 1012s- 1 ; T8 = 3 X 10-9 sec; g1 = 1 x 10-6 cm3 s- 1 ; 

Ve= 3.0 x 10-10cm3 ; V = 2Vc; f = 0.5; and no= 1 X 1018cm-3 • 

Figure 3.2a plots the calculated W e.1(w) versus w for r3 = 0.219 and Po = 1 x 

1014cm-3 . It shows that the calculated relative-intensity noise spectrum has the 

same features as that (Figure 3.2b) reported by Temkin et al. [8]. A large number 

of sharp and intense peaks can be explained with the periodic nature of P0 (w). 

The periodic frequency of P0 ( w) is the external cavity round trip frequency. 

Similar to the relaxation oscillation peak of solitary diode lasers' intensity noise 

spectra [20], the envelope of these sharp and intense peaks has a relaxation 

oscillation peak, too. All these features are dictated by the denominator of 

Equation (3.27). Thus, the overall features can be considered as the superposition 
2 

of features that come from Po ( w) and ( iw + iw:r/,,.R). The former contributes to 

the large number of sharp and intense peaks and the latter gives the relaxation 

oscillation peak in the envelope of the whole spectrum. 

Temkin et al. reported that only when the laser is biased near threshold, the 

first harmonic of the entire series of sharp peaks occurs at the external round-trip 

frequency ~ 252 MHz. With an increased bias current, the first harmonic shifts 

up to 310 MHz at ~ 3.5Ith, a frequency offset of nearly 60MHz, and no further 

frequency offset could be observed at higher currents. Temkin et al. [8] made 
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Figure 3.2 (a) The calculated relative-intensity noise spectrum at Po = 1 x 
1014cm-3 ; (b) The experimental intensity noise spectrum of Temkin et al. 
[8]. 
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a detailed measurement on the first-harmonic frequency offset versus the bias 

current (Figure 3.3a). From Figures 3.3a and 3.3b, there is a very good agree­

ment between the experimental results of Temkin et al. [8] and calculated results 

(Figure 3.3b). Further discussion regarding this frequency offset will be given in 

the following. 

Other than observing the occurrence of the first-harmonic frequency offset 

at higher bias current level, Cronin-Golomb et al. [21] also observed that when 

the noise spikes do not occur at the integral multiple of external cavity frequen­

cies, mode locking can not be accomplished. In other words, mode locking will 

occur only when the diode laser is biased around the threshold. This interesting, 

important, and unexplained finding can be interpreted in the following way. 

Apparently, it is the frequency offset discussed above that prevents the mode 

locking. Therefore, the fundamental mechanism that prevent the occurrence 

of the mode locking lies behind the frequency offset phenomenon. As already 

pointed out above, the frequency offset is the result of combining both factors 

Po ( w) and ( iw+ iw:f;.,.n). Around the threshold, the smaller w~ makes the second 

factor less important and, consequently, the frequency offset is at its minimum. 

On the other hand, at the higher bias level, the larger relaxation oscillation 

frequency WR makes the second factor more important, and the net result is a 

higher frequency offset. Therefore, the main mechanism of the frequency offset 

and the fundamental mechanism preventing the mode locking at high current 

level operation is the competition between the external-feedback periodic action 

to the field inside the diode cavity and the inherent relaxation oscillation response 

to this periodic external influence. Therefore, the precondition to mode lock 

diode lasers at the higher bias level is to use lasers with small relaxation 
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oscillation frequency WR. 

Although Equation (3.27) does not give the low-frequency intensity noise 

component, subtracting the calculated first-harmonic frequency with the external 

cavity round trip frequency of 250 MHz gives the frequency of the low frequency 

noise component. Therefore, the low frequency noise was caused by the beating 

among different harmonics. This is supported by the simulations with a noise­

driven multimode travelling wave mode reported recently [22]. 

3.4 Laser Linewidth 

The linewidth is one of the most important properties of semiconductor 

lasers. Because of the carrier density dependence of the refractive index and the 

strong amplitude-phase coupling, the semiconductor laser linewidth is typically 

on the order of 10 MHz. This excessive large linewidth is inadequate for a 

number of applications requiring greater spectral purity. However, by using an 

external grating, the linewidth has been reduced to the order of 10 KHz [1]. 

This linewidth reduction will make external-cavity semiconductor lasers useful 

for many applications. 

For the laser field c (t) = E(t)eiOt, its spectral density function is 
+oo 

WEE(w) = J dt' < c*(t)c(t+t') > e-iwt'. 
-oo 

(3.29) 

If the correlation between phase and amplitude fluctuations is neglected, one has 
+oo 

WEE(w) = E'?, J dt'exp[-i(w - O)t' - ½ < (o.,,(t + t') - t5,t,(t)) 2 >], (3.30) 

-oo 

with 

(3.31) 

-oo 
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For the solitary diode laser, Vahala and Yariv [15], using the Laplace transform 

technique, evaluated the field spectrum directly from (3.30). They found that 

the lineshape is Lorentzian in the center with high-frequency weak side mode 

structure on both sides of the spectrum. 

As shown in Equation (3.30), the linewidth is intimately connected with the 

instantaneous phase t5,t,(t) of the optical field. From the t5,t,(w) shown in (3.24b), 

t5,t,(t) is a complicated function of time. This implies that the derivation of the 

linewidth formula directly from (3.30) is a formidable task. In other words, the 

Laplace transform technique is not practical. In addition, through the use of 

(3.31), the contour integration technique [23] will not make the integration of 

(3.31) surmountable. Therefore, at first it is essential to find a new way for 

deriving the linewidth formula. Then, using the small-signal equations derived 

in Section 3.2, an analytical expression for the Lorentizan laser linewidth will be 

derived. This derivation will include the effects of the multiple reflections. This 

result will be compared with the results of Kazarinov and Henry [5], Hjelme and 

Mickelson [6], and Agrawal [10]. 

As mentioned above, the field spectrum of the solitary laser is predominantly 

Lorentzian. It is reasonable to assume that this is also true for semiconductor 

lasers with external coupling. Notice that the Lorentzian lineshape arises from 

the term in< (6,t,(t+t')-6,t,(t)) 2 >, which is linearly proportional to Jt'j. When 

integrating (3.31) by the contour integration technique, the contribution to this 

term comes solely from the simple pole w = 0 of the integrand 

(3.32) 

Accordingly, after inspecting Equations (3.30) and (3.31), one can see tnat the 
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Lorentzian linewidth is given by 

(3.33) 

where Res(O) is the residue of (3.32) at the simple pole w = 0. 

Since (3.30) and (3.31) are for semiconductor lasers with or without external 

coupling, Equation (3.33) is true for lasers considered in this chapter as well as in 

the following two chapters. For solitary semiconductor lasers, it is easy to show 

that (3.33) indeed gives the same linewidth as that reported in [11] and [15]. 

Apparently, Equation (3.33) makes it possible to obtain the linewidth by 

knowing only the residue at the simple pole w = 0 of the integrand shown in 

Equation (3.31). For the external cavity laser diode, as w--+ 0, Equation (3.24b) 

gives 

2 2 

iwja,crF1 iw::r;,,.R - (1 + ,crFR)[iw + iw,crFR + iw:;r;,,,.RJl 2 

lt'l(fg'w) 2 l½,crF1 + ~(1 + KTFR)l 2 
w 2 .:i_2

1,,.i 
+ 2 2 ,(3.34a) 

iwja,crF1 iw.:r;,,.R - (1 + ,crFR)[iw + iw,crFR + iw.:r;,,.R]l 2 

where 

(3.34b) 

(3.34c) 

Clearly, the integrand (3.32) has a pole of order 1 at w = 0. Following the 

argument given above, assuming that other poles of the integrand make negligible 
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contributions to the field spectrum, and using (3.33), the linewidth !::,,,.v is given 

by 

(3.35) 

where l:!,,,.v8 1 and (Io)r3 =o are the linewidth and field intensity of the solitary 

semiconductor lasers, respectively. 

From the linewidth formula given above, the effects of strong external feed­

back on the linewidth are determined by factors L/nl, (Io)r 3 =ol 10 , and (FR -

aF1 ). Since the linewidth is inversely proportional to the energy stored in the 

cavity, for lasers with strong external feedback, the factor L/nl accounts for the 

increase in the Q factor or the energy stored in the composite cavity. The fac­

tor (lo)r 3 =of 10 accounts for the change of field intensity created by the external 

feedback. The factor (FR - aF1) comes from the strong amplitude-phase cou­

pling and the interference between the field inside the diode cavity and the field 

reflected back by the external reflector. 

Equation (3.35) agrees with that derived by Kazarinov and Henry [5] and 

Hjelme and Mickelson [6]. In the absence of optical feedback, F1 = 0 and FR = 0, 

the linewidth given in Equation (3.35) becomes that of the solitary laser. When 

rs ~ r2, Equation (3.35) is reduced to 

Al/-- t:,,,_~/ • 
L.i (3.36) 

[1 + ~1(1- r~)(g-)(cosOr + asin0r)] 2 

As expected, the linewidth given by Equation (3.36) is equivalent to the result 

derived by Agrawal [10], who applied the optical-field equation of Lang and 

Kobayashi [4]. 

To summarize, in this section, a method has been developed for obtaining 

the Lorentzian linewidth. The method has been applied to derive the linewidth 

formula for lasers with strong optical feedback. 
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3.5 Small-Signal Current Modulation Response 

The modulation bandwidth of the solitary laser is widely accepted to be 

equal to the relaxation oscillation frequency wR/2rr. From Equation (3.23c), the 

relaxation oscillation frequency is 

(3.48) 

where p0 = ~°,,,~ 10 is the photon density and g' = r~2e; is the differential optical 

gain constant. From Equation (3.48), the modulation bandwidth is dictated by 

the photon lifetime, the photon density and the differential optical gain constant. 

This basic understanding has led to the development of advanced laser structures, 

which can be modulated directly by modulating the pumping current at frequen­

cies beyond 10 GHz [25]. On the other hand, Lau and Yariv [3] reported that 

the semiconductor laser can be directly modulated up to 18 GHz by using an 

external cavity. However, their results were not studied. In order to utilize all 

the advantages that the external cavity may offer, a basic understanding of how 

the external feedback affects the modulation characteristics is necessary. In this 

section, the small-signal current modulation response of a semiconductor laser 

coupled to an external mirror will be derived analytically. The experimental 

demonstration of Lau and Yariv will be examined. 

From Equations (3.9a)-(3.9c), the small-signal equations for the determin­

istic components I1(t), n1(t) and ¢i(t), That are due to the modulation source 

J 1 (t), are 

· 1 , 1 
ef>1(t) + 2ag n1(t) + 2H1(t) = O (3.49a) 

j1(t) - g' lon1(t) + loHR(t) = 0 (3.49b) 
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Let 

(3.49c) 

(3.50a) 

(3.50b) 

where Om, is the frequency of the modulation current. Taking the Fourier trans­

forms of Equations (3.49a)-(3.49c) yields 

(3.51a) 

2 -

[iw + P + . WR/ ]I1(w) - Qlo¢1(w) = . g'Ji(/) 
iw + 1 TR iw + 1 TR 

(3.51b) 

_ -1 co ~ ~ 
n1(w) = . / [--dxi(no)I1(w) + J1(w). 

iw + 1 TR 2n 
(3.51c) 

From Equations (3.51a)-(3.51c), I1 (Om,) is given by 

(3.52) 

Defining the normalized laser response as 

(3.53) 

and using Equations (3.52) and (3.53), one obtains 

(3.54) 

As expected, when r3 = O, Equation (3.54) yields the normalized laser response 

w2 
A - R 

m,od - O 
I - o2 + w2 + i=I m, R TR 

(3.55) 
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for the solitary laser. 

Assuming a semiconductor laser with WR = 6.28 x 1010 radians/sec, nl = 

800µm, o: = -5, r 2 = 0.5477, and ri 1 = 1.1 x 1010sec- 1 , the calculated Am.ad is 

plotted in Figure 3.4b as a function of the modulation frequency Om. for different 

r 3 • From Figure 3.4b , as the feedback coupling increases, the 3 dB modulation 

bandwidth is reduced, while the frequency of the resonance peak increases. These 

characteristics agree qualitatively with the experimental results shown in Figure 

3.4a reported by Lau and Yariv [3]. 

3.6 Conclusion 

Using the optical-field equation derived in the last chapter, which takes into 

account the effect of multiple reflections from the external mirror, the dynamics 

in the small-signal regime, the noise properties, and the laser linewidth of the 

semiconductor laser with external feedback have been studied. The small-signal 

equations for the optical field and the carrier density have been derived. Based 

on these small-signal equations, the analytical expressions for the frequency and 

the relative-intensity fluctuation spectra, the laser linewidth, and the small-signal 

current modulation response have also been derived. When there is no feedback, 

these derivations give the results for the solitary laser. Under the weak feedback 

condition, these derivations agree with the results derived by using Lang and 

Kobayashi's optical-field equation. 

The analysis on the intensity fluctuation spectra have explained Temkin et 

al.'s [8] experimental results very well. The main mechanism of the first-harmonic 

frequency offset in the intensity noise spectrum is the interaction between the 

periodic beating from the external cavity and the inherent relaxation oscillation 
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Frequency (GHz) 
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(i 

(ii) r3 =0.316 

(iii) 
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Figure 3.4 (a) Small-signal modulation response of a window BH on SI laser: 
(1) intrinsic laser response (dark solid curve), (2) weakly coupled to an 
external fiber cavity (dottet curve), and (3) with increased coupling (light 
solid curve) [3]; (b) The simulated small-signal modulation response Am.ad 

for different r3 with L = 0.577 cm and Wm.'T = 10° + N x 360°, where N is 
an integer. 
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of the diode lasers. It has been found that the inherent relaxation oscillation 

prevents the mode locking of the diode lasers at higher bias current level. 

A method has been developed for obtaining the Lorentzian linewidth. This 

method has been applied to obtain the linewidth formula for lasers with an 

arbitrary amount of optical feedback. Our linewidth formula agrees with that 

obtained by Kazarinov and Henry (5] and Hjelme and Mickelson (6]. It has been 

shown that the small-signal current modulation response of semiconductor lasers 

is drastically affected by external feedback. This analysis agrees qualitatively 

with the reported modulation response results of Lau and Yariv. 

In summary, based on the optical-field equation derived in Chapter 2, a 

small-signal analysis of a single-mode semiconductor laser coupled to an external 

mirror has been presented. The analysis is useful, not only for understanding how 

the external feedback affects the laser properties, but also for giving guides on 

how to tailor the external parameters in practical applications. The optical-field 

equation derived in Chapter 2 has been successfully applied in the small-signal 

regime. 
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Chapter 4 

Instability, Locking Bandwidth, Noise Properties, and Linewidth of 

Injection-Locked Semiconductor Lasers 

4.1 Introduction 

Injection locking has been demonstrated in electric oscillators, microwave os­

cillators, gas lasers, and semiconductor lasers. For semiconductor lasers, injection 

locking can be used to reduce the laser linewidth [1], suppress the relaxation­

oscillation [2], and reduce the partition noise [3]. In coherent communication 

systems [4] [5] [6], the injection-locked diode laser may find practical applica­

tions. There have been many experimental and theoretical investigations on the 

injection locking of semiconductor lasers. 

In Chapter 2, using the general formalism established in that chapter, the 

optical field equation for an injection-locked semiconductor laser was derived. 

The diode's facet reflectivity is an important parameter in this equation. This 

optical field equation will be the basis for the work presented in this chapter. The 

first purpose of this chapter is to shed light on the dynamics, noise properties 

and spectral characteristics of an injection-locked semiconductor laser. Another 

is to demonstrate the usefulness of the theory presented in Chapter 2. 

In Section 4.2, the small-signal equations for the optical field as well as 

the carrier density and the steady-state condition will be derived. In Section 

4.3-A, based on a simple physical picture, the origin of the facet reflectivity in 

the optical field equation will be explained. In Section 4.3-B, the steady-state 
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conditions will not only show the importance of the facet reflectivity but also 

provide an inside view of the locking mechanism. 

Because of its importance, the subject of the locking bandwidth and the in­

stability had drawn considerable attention despite the mathematical complexity 

involved [7] [8] [9] [10]. However, this subject was never fully examined. Only 

approximate analyses were given in the past, and the analytical expressions for 

the instability condition and the locking bandwidth remained unclear. In Section 

4.3-C, the exact instability condition and locking bandwidth will be derived, and 

it will be shown that the exact locking bandwidth can be obtained numerically 

without difficulty. Based on this instability condition, the locking bandwidth 

data reported by Goldberg et al. [12] will be examined. Furthermore, the in­

stability occurring only on the high-frequency side of the locking range [8] [11] 

will be explored, and the major physical parameter behind this asymmetry will 

be identified. Finally, a physical picture will be given to explain the connection 

between the instability and pulsating behavior. 

The rest of this chapter will be devoted to the important subjects of noise and 

laser linewidth. Using the small-signal equations of Section 4.2, the frequency and 

relative-intensity noise spectra will be derived in Section 4.4. These results will 

be compared to those derived by Spano et al. [13]. The relative-intensity noise 

spectrum of diode lasers locked by a noiseless injected field will be examined. 

After that, the method established in Chapter 3 will be applied to evaluate the 

linewidth of the locked laser. It will be shown in general that the linewidth of 

the locked field is equal to that of the injected field. 
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4.2 Small-Signal Equations for the Optical Field and Carrier Density 

In this section, the governing equations for the optical field and carrier den­

sity will first be briefly reviewed. Then, the small-signal equations for the optical 

field and carrier density will be derived. These small-signal equations will be the 

starting point for the results presented in Sections 4.3-C, 4.4, and 4.5. In addition, 

the steady-state condition obtained will be used in Section 4.3-B to determine 

the maximum locking range. 

As shown in Chapter 2, using the concepts of time-dependent effective re­

flectivity and time-dependent effective photon lifetime, an injection-locked semi­

conductor laser can be veiwed as a solitary laser with one of its two facet mirrors 

replaced by an effective mirror. This is depicted schematically in Figures 4.la 

and 4.lb. According to the theory presented in that chapter, the optical field 

equation of a single-mode injection-locked semiconductor laser is 

.!!:._E(t)-[i(w - 0 - fxr(n)O) 
dt m, 2µ 2 

+ _!_(fXi_(n)O - _.!._)]E(t) - ~(t2)Ein(t) = ~~t)' (4.1) 
2 µ 2 r;1 2nl r2 2i0 

where Ein(t) is the complex amplitude of the injected field just outside the cavity; 

E ( t) is the complex amplitude of the field inside the injected diode cavity; Wm, is 

the mth resonant frequency of the unpumped and lossless solitary laser cavity; 

0 is the laser (average) frequency; r is the confinement factor resulting from the 

spreading of the optical field beyond the active region; fl, is defined by Equation 

(2.27a) and is the spatially averaged nonresonant index; n is the real refractive 

index of the active region; l is the cavity length of the solitary diode laser; and 

~(t) is the slowly varying complex amplitude of the Langevin force that originates 

from the spontaneous emission. Xr(n) and Xi(n) are the real and imaginary parts 
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Figure 4.1 (a) Schematic of an injection-locked semiconductor laser. (b) 
The injection-locked semiconductor laser is equivalent to a solitary laser 
with one of its two facet mirrors replaced by an effective mirror which has 
a time-dependent effective reflectivity r e/J ( t). 
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of the susceptibility x ( n), respectively, and n is the carrier density in the active 

region. r 1 and r2 denote the amplitude reflectivities of the diode laser's left 

and right facets, respectively. As shown in Figure 4.la, the t2 is the amplitude 

transmission coefficient from the air to the crystal cavity. r;1 is the photon 

lifetime of the free-running semiconductor laser. Except the factor 1/r2 in the 

term 

(4.2) 

Equation (4.1) is the same as the equation introduced by Lang [8]. The origin of 

1/r2 will be explained in Section 4.3-A. 

The equation for the carrier density n is 

dn n - = -g(n)p - - + J(t) + r,(t), 
dt rll 

(4.3) 

with g(n) = ro~;(n) and p = ~~lK IEl2 , where g(n) is the gain, p is the photon 

density, T8 is the spontaneous lifetime, J(t) is the pumping rate of carriers per 

unit volume, and r,(t) is the Langevin noise force associated with the discrete 

nature of the carrier generation and recombination process. 

Since the lasers considered are biased with a DC pumping source J 0 and a 

small time varying pumping source J 1(t), the other driving forces to the opti­

cal field and carrier density are Langevin forces .6.(t) of Equation (4.1), r,(t) of 

Equation (4.3), and the random fluctuation of the injected field Ein(t); i.e., 

E· (t) = (E· + E· 1 (t))ei<l>;n(t) in in,o in, , (4.4a) 

where the subscript in denotes that that quantity is for the injected field. Ein,i(t) 

is the real amplitude fluctuation, which is much smaller than Ein,o, and </>in(t) is 

the random phase of the injected field. In writing (4.4a), it is assumed that the 



-90-

injected field is emitted by a DC biased master laser. From (4.4a), the average 

intensity Iin,o and intensity fluctuation Iin,1 (t) are given by 

( 4.4b) 

Similarly, for the optical field and the carrier density inside the diode cavity, one 

has 

</>(t) =<Po+ </>i(t) 

J(t) =Jo+ Ji(t), x(n) = x(no) + cni(t) 

( 4.4c) 

(4.4d) 

( 4.4e) 

where E1(t), <f>(t), n1(t), J 1(t) and Ii(t) are real and time-dependent quanti­

ties and their magnitudes are small when compared to E 0 , 1, n 0 , J 0 , and / 0 , 

respectively. c = Cr + ici is the first-order Taylor coefficient in the expansion 

of x(n) = Xr(n) + ixi(n) about the operating-point carrier density no. Cr and 

Ei are the real and imaginary parts of c, respectively. The small terms Ei(t), 

Ein, 1(t), </>1(t), <Pin(t), ni(t), Ji(t), Ii(t), and the Langevin forces (~(t) and 

17(t)) are assumed to have zero mean value. It is also assumed that the time 

slow compared to the optical term exp(iOt). The 4> 0 denotes the phase difference 

between the locked field E(t) and the injected field Ein(t). It will be seen in the 

following sections that 4> 0 is a very important parameter. 

By assuming l</>1(t)I « 1r/2 and l<Pin(t)I « 1r/2, and neglecting products 

of small quantities, Equations ( 4.1) and ( 4.3) are linearized. The small-signal 

equations are 

· ( ) () 1 . I1(t) 1 , ( ) </>1 t + w0 cos <Po<Pl t - -w0 sm </> 0 -
1
- + -ag n1 t 

2 0 2 

( ) 
1 , lin(t) ~r(t) 

= W 0 cos <Po<Pin t - 2wo sm <Po -
1
-. - - 1; 2 
m,o 20/0 

(4.5a) 
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( 4.5b) 

(4.5c) 

where 

(4.6a) 

and 

(4.6b) 

~r(t) and ~i(t) are the real and imaginary parts of ~(t), respectively. a is the 

ratio of the real to the imaginary parts of refractive index and is referred to 

commonly as the linewidth enhancement factor [14] [15]. g' is the differential 

optical gain constant, and TR is the damping time constant in the relaxation 

oscillation of solitary semiconductor lasers. w0 defined in (4.6a) is an important 

quantity, a measure for the power ratio of the injected field to the field inside the 

diode cavity. 

At the same time, the gain, the locked phase difference </>o, J0 , and n 0 for 

the steady state are determined by the following equations: 

1 
-

1 
- 2wo cos <p 0 - g(n 0 ) = 0 

78 
p 

W,n(no) - fl+ Wo sin</>o = 0 

(4.7a) 

(4.7b) 

(4.7c) 

where w1n(n0 ) is the mth resonant frequency of the pumped and lossless cavity. 

As pointed out in Chapter 2, Equations (4.7a) and (4.7b) are equivalent to the 
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resonant oscillation condition [16] 

where a 0 is the distributed wave-guide loss and 

is the steady-state effective reflectivity. Equations (4.5a)-(4.5c) will be used to 

analyze the stability in Section 4.3-c and to derive analytical expressions for the 

frequency and the relative-intensity fluctuation spectra in Section 4.4. 

4.3 1/r2 , Locking Bandwidth, and Instability 

4.3-A. Origin of the Factor 1/r2 

As shown in Equation (4.1), the coupling between the injected field Ein(t) 

and the locked field E(t) is given by the term shown in (4.2). Recall that the 

factor 1/r2 in the coupling term makes this optical field equation different from 

Lang's optical field equation. It is important to understand why the diode's facet 

reflectivity is a factor in the optical field equation. In the following, a simple 

physical picture will be given to explain that. Since the optical field equation 

(4.1) has been derived directly from the general formalism developed in Chapter 

2, this will not be a substitution for the derivation shown before. 

Recall that, as explained in Chapter 2, inside the diode cavity, there are 

always two components of the optical field propagating in opposite directions. 

At the points inside the cavity just to the left of the right crystal-air boundary, 

one component, aE(t)i0 t, is propagating from the left, and another component, 

r2 aE(t)eiOt + t2 Ein(t)eiOt, is propagating in the opposite direction. In the pe­

riod of the round-trip time 2nl/c, the reflected field r2aE(t)eiOt at the points 
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just to the left of right crystal-air boundary will be joined by the injected field 

t2Ein(t)eiOt. In other words, the injection-induced change of the field amplitude 

r2aE(t) in the time interval 8t = 2nl/c is t2Ein(t); i.e., 

(4.8a) 

In this chapter, uncoated or AR-coated lasers will be considered. Thus, from 

Chapter 2, one has a ~ 1. Consequently, after moving r2 to the right-hand side 

of Equation ( 4.8a), one has 

8E(t) = _c_ t2 E· (t). 
8t 2nl r2 in 

(4.8b) 

This is just the coupling term given by (4.2). 

Clearly, in this simple-minded physical picture, the factor 1/r2 is just a re­

minder that the injected field t2Ein(t) is coupled with the field r2E(t), which 

is propagating in the direction of the injected field. Therefore, decreasing r2 /t2 

will have the same effect as decreasing Ein(t). This is consistent with Hadley's 

conclusion [18] that the power necessary to injection-lock an oscillator is propor­

tional to lr1r2/t~I-

4.3-B. The Maximum Locking Range and 1/r2 

In this section, based on Equations (4.7a)-(4.7c), a physical picture will be 

given to describe the locking mechanism. Then, the maximum locking range will 

be determined and its relation to 1/r2 will be pointed out. Before pursuing the 

subject, it is necessary to clarify the sign of the linewidth enhancement factor 

a, which plays a key role in many aspects of injection-locked semiconductor 

lasers. In the appendix of this chapter, a unique view of the fundamental and 
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yet overlooked aspect of this subject will be presented. The major finding of that 

appendix will be incorporated into the discussion given in the following. 

The a defined in Equation ( 4.6a) can be rewritten as 

Llµr 
a=~, 

l..l.µi 

where µr and µi are the real and imaginary parts of the complex refractive index 

in the active region, respectively. However, the sign of a is dictated by the sign 

convention used in the exponential notation representation of the optical field. 

Throughout this thesis, the optical field is represented as E(t)i0 t, where E(t) 

is the complex amplitude and n is the laser (average) frequency. The Fourier 

transforms defined in this thesis are also consistent with this representation. The 

Kramers-Kronig dispersion relation for the small changes Llµr and Llµi is 

00 

J\ ( ) _ -~Pf w'Llµi(w')dw' 
l..l.µr W - 12 2 ' 

71" w -w 
0 

where P denotes the principal value of the integral. This dispersion relation 

indicates that depending on the lasing frequency, a can be negative, zero, or 

positive. In most cases, the decrease in carrier density will cause a significant 

increase in refractive index and a decrease in gain. Furthermore, the change in 

gain is proportional to the change in µi. Accordingly, a is a negative number. 

Therefore, only lasers with negative a will be considered. In Section 4.3-C, it will 

be shown that this is the case, and there has been no report contradicting this 

assumption. Here, it is important to keep in mind that this assumption is valid 

only when the optical field is represented by E(t)eiOT and the Fourier transforms 

are defined by (A.17). 

From the schematic representation of the locking mechanism shown in Fig­

ure 4.2, a physical picture will be given below to explain the locking phenomenon. 
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Injection Locking Mechanism 

.i1eu = eu0 sin <Po - <Po - .i1g = -2w0 cos <Po - -

a 

1' 1' 
? n-ns1 - Cum (no) - c#J (n0s1) 
~ 1 /2 I a I .i1g + .i1W 

~ 

= 1 12 I a I .i1g 

Figure 4.2 Schematic representation of the injection locking mechanism. The 
detuning is achieved by the threshold gain reduction and the locked phase 
¢0 • When the detuning synchronizes the lasing frequency with the injected 
field frequency, the diode laser is injectfon-locked. 



-96-

This picture will then be used to find the maximum locking range. After encoun­

tering the injected field t2 Ein(t), with the same current pumping, the injection­

locked laser will try to increase its own output power. This reduction of the 

threshold gain results in the reduction of the carrier density, which in turn in­

creases the real refractive index of the active region. As a result, the mth pumped 

and lossless resonant frequency is shifted downward. In the meantime, the phase 

difference <p0 allows the locked laser to adjust its phase relationship with respect 

to Ein(t) in order to synchronize its lasing frequency with that of the injected 

field. 

Without the external injection, the steady state of the solitary diode laser 

is determined by 

(4.9a) 

(4.9b) 

where the sl denotes that the quantities that carry them are for the solitary 

diode laser. With the external injection, the detuning of the injection locking is 

defined as 

(4.9c) 

where O is the lasing frequency of the injected field and 0 81 is the original lasing 

frequency of the solitary laser. 

According to Equation ( 4. 7a), for injection-locked lasers, the threshold gain 

reduction is 

(4.9d) 

As discussed above, this gain reduction leads to the carrier density's decreasing, 

which, in turn, changes the refractive index in the active region. The accompa-
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nying change in the mth resonant frequency of the pumped and lossless solitary 

cavity is 

(4.9e) 

Therefore, from Equations (4.7b), (4.9c), (4.9d), and (4.9e), the detuning is given 

by 

~n = -wo(la:1 cos</>o - sin</>o)- (4.10) 

Equation (4.10) indicates that there are two contributions to the detuning. The 

first one is due to the threshold gain reduction and the carrier density depen­

dence of the refractive index. The second term of Equation ( 4.10) is just the 

frequency shift introduced by Adler [20] to explain the locking of the radio fre­

quency oscillator. 

The optical field equation (4.1) is valid only when the laser is injection-locked 

and single-mode. However, when the threshold gain reduction is very small, the 

laser may lase with several longitudinal modes. To simplify the situation, lasers 

with two longitudinal modes will be considered. These two modes are E 1(t)i0 t 

and E 2 (t)ei08
\ Each mode obeys its own optical field equation. The power 

distribution between these two modes depends on their gain difference. 

When the mode E1(t)ei0t dominates, the laser is injection-locked. On the 

other hand, when the mode E 2 (t)ei0 "
1
t dominates, the laser is unlocked and 

becomes a solitary laser. Therefore, the laser is injection-locked only under the 

condition that the ~g is negative; i.e., cos <f,0 is larger than zero. The range of 

the locked phase is from -1r /2 to 7f /2. Accordingly, from Equation ( 4.10), the 

maximum locking range is from -w0 ( a:2 + 1) 112 to w0 , although, as will be shown 

in Section 4.3-C, the laser is unstable in part of this locking range. Generally 

speaking, since w0 is proportional to the factor t2 /r2 , Equation (4.10) suggests 
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that one can increase the locking range substantially by decreasing lr2/t2I-

4.3-C. Locking Bandwidth and Instability 

The stability of the injection locking is an important subject and has received 

considerable attention [7] [8] [9] [10]. The pulsation instability, occurring near 

the high-frequency side of the maximum locking range, was recognized by Fye 

[21] and Lang [8]. The locking bandwidth or the range of stability has been 

studied by Mogensen et al. [9] and Petitbon et al. [10]. However, because of 

the mathematical complexity involved, they gave only approximate analytical 

results. The instability condition and the locking bandwidth remain unclear. For 

the same reason, physical insight about the asymmetric instability mentioned 

in Section 4.1 and the connection between the instability and pulsation were 

obscure. In this section, an exact analysis will be performed, and the instability 

condition will be given. It will be shown that the locking bandwidth obtained 

from this condition is in excellent agreement with the experimental results of 

Goldberg et al. [12]. Finally, a physical picture will be described to relate the 

instability and pulsation behaviour. 

For the stability analysis, after a small perturbation, let .6.1(t), Ll4>(t), and 

.6.n(t) denote the small deviations from the stationary values of / 0 , ¢ 0 , and n 0 , 

given by Equations (4.7a)-(4.7c). The driving forces of the small-signal Equations 

(4.5a)-(4.5c) are not important in this analysis and can be neglected. According 

to Equations (4.5a)-(4.5c), the equations governing .6.1(t), .6.4>(t) and .6.n(t) are 

given as follows: 

(4.lla) 

(4.llb) 
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(4.llc) 

where 

We= Wo COS </>o, W 8 = Wo sin q>o. (4.lld) 

Assuming an exponential time-dependence, these deviations can be written 

as 

where w is a complex frequency and is given by 

(4.12a) 

(4.12b) 

(4.12c) 

(4.13) 

Wr and Wi are the real and imaginary parts of w, respectively. This complex 

w indicates that only when Wi > 0 will the perturbation decay. Otherwise, 

the laser is not stable. Substituting Equations (4.12a)-(4.12c) into Equations 

(4.lla)-(4.llc) yields an equation for w: 

When 

from Reference [22], the three roots w1, w2 , and W3 of the cubic Equation (4.14) 

are 

(4.15a) 

( 4.15b) 
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with 
for a2 > 0 

for a2 < O, 

(4.15c) 

where 

and 

Since the stability condition is wi > 0, from (4.15a)-(4.15c), it is given by 

{ 

½(2wc + .,.~) - 2~sinh[½sinh-1Q] > 0 

.!(2w + _!_) - r=:;;-sinh[.!sinh- 1.Q] > 0 3 C ~ v~i 3 

for a2 < 0 
(4.16a) 

for a2 > 0. 

Similarly, with a1 > O, the stability condition is 

1(2w +_!_)- .lfil:"cosh[lcosh-1.Q] >0 
3 C 'l"lf. V 3' 3 

1 (2w + _!_) + 2 ~ x .MI JI > 0 3 C 'l"R V 3 

for Q > 1, a2 < 0 

for Q > 1, a2 > 0 

for Q ~ 1, 
(4.16b) 

where .MI JI denotes the smallest number of 

[ 1 1 (3a2 ff-i)J cos -cos - - ' 
3 2a1 a1 

[ 1 1 ( 3a2 ff-i) 21r] cos - cos- - - + -
3 2a1 a1 3 

and 

[ 1 1 (3a2 ff-i) 4,r] cos - cos- - - + - . 
3 2a1 a 1 3 
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Although the stability condition given above can be applied to yield the 

maximum locking bandwidth without difficulty, from (4.16a) and (4.16b), there 

is no clear indication that the pulsation instability occurs on the high-frequency 

side of the maximum locking range. To fill this gap, a second analysis will be 

performed below. 

Mathematically, the boundary between the stability and instability of the 

lasers is presumably drawn by the condition that Equation (4.14) have real w. 

Therefore, to consider w in the vicinity of this boundary, one may be able to 

determine the stability condition. Let 

(4.17) 

where Ow is real and low I ~ 1. Substituting ( 4.17) into Equation ( 4.14) yields: 

where 0(8;, oi) denotes terms with order of o; or oi. Equating the real and 

imaginary parts of (4.18) and neglecting 0(8;, o!), one obtains 

(4.19a) 

and 

(4.19b) 

From Equations (4.19a) and (4.19b), Wr and Ow are given as w: 
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or 

According to the discussion given before and the solutions for 8w given above, 

the instability condition is 

(4.20a) 

or 

(4.20b) 

Clearly, the instability conditions ( 4.20a) and ( 4.20b) are less complicated than 

the stability conditions given by (4.16a) and (4.16b). Since (4.20a) and (4.20b) 

are obtained from considering special cases that Im(w) ~ 1, it is unclear whether 

(4.20a) and (4.20b) are equivalent to (4.16a) and (4.16b). To find out, numerical 

calculations are essential. 

The numerical values of various parameters used for this analysis are p~1 = 

3 x 1014cm-3 , 2~ 1 = 1.5 x 1011s- 1 , a= -5, g8 1 = 0.5 x 1012s- 1 , T8 = 3 x 10-9 sec, 

g' = 1 x 10-6 cm3 s- 1 , and n~1 = l x 1018cm-3 . Notice that the photon density 

p~1
, gain gll1, and the carrier density n~1 are parameters before the injection 

locking. After injection locking, p0 , g and n 0 can be obtained from Equations 

(4.7a)-(4.7c). The frequency dependence of gill is neglected. 

Figure 4.3 shows the locked phase <Po versus (h )21
'1-"'·

0
, and the stable and 

r2 o 

unstable regions are obtained according to (4.20a) and (4.20b). It is very inter­

esting that (4.16a) and (4.16b) give the same results as those shown in Figure 4.3. 

Using these results, Figure 4.4 shows the locking bandwidth versus (~ )21
~:·

0
• 
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The locking bandwidth determined by ( 4.20a) is not the same as the locking 

bandwidth determined by ( 4.20b). At this point, what the real locking band­

width is, is not clear. To clarify this ambiguity, a discussion based on physical 

consideration is given as follows. 

The detuning given in ( 4.10) can be rewritten as 

(4.21) 

where 

Oa = cos-1 lo:I 
Jo:2+1 

Similarly, the instability condition (4.20a) can be re-expressed as 

,J. 0 . -1 Wo 
'/JO > a+ SIIl 2 

TRWRya2 + 1 
(4.22a) 

and the instability condition ( 4.20b) is equivalent to 

,J. O . -1{ 1 [ 2wc 4w; 2wcw; 1]} 
'fJ < - - sm --;::::::;;== -- + -- + __ .;;.. + -0 

a w 0 Ja2 + 1 TllW~ W~TR W~ TR · 
(4.22b) 

Equation (4.21) shows that, with a given detuning .6.0 and ( i.2. ) 21;1,.·
0

, there may 
r2 o 

be two values of the locked phase difference, </>1 and </>2, both of which satisfy 

Equations (4.7a)-(4.7c). To be specific, for the first locked phase </>1 falling in the 

range 
71" -- < ,J.1 < -0 2 - 'fJ a, 

the second locked phase </>2 is in the range 

71" 
-0 < ,J.2 < - - 20 . a 'fJ_

2 
a 

From the discussion given in Section 4.3-B, it is assumed that only the <p 0 giving 

a larger magnitude of threshold gain reduction .6.g shown in ( 4.9d) will be the 

real solution and that another is not physically possible. Since 

cos </>1 < cos </>2, 
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following this assumption, the locked phase ¢ 0 in the range 

'Jr -- < .,./,. < -0 
2 

_ <po a 

is not possible. Consequently, condition ( 4.22b) is physically impossible and the 

instability condition is given solely by (4.20a) or (4.22a). At the same time, the 

locking bandwidth .6.01b is given by 

(4.23) 

with 

<l>c = cos-1 ia:I + sin-1 Wo 

Ja2 + 1 Ja:2 + lrRWJl 

It is amazing that the solution of the complicated problem posed at the beginning 

of this section is described by the simple expressions (4.20a) and (4.23). 

According to (4.23), the locking bandwidth versus (!.a.) 21
•1·,.,

0 is shown in 
r2 o 

Figure 4.5a. Figure 4.5b shows the experimental results of Goldberg et al. [12]. 

In their paper, the data are shown as locking bandwidth versus Pi/ P8 , where Pi 

is the power of the injected field and P8 is the single-facet output power of the 

locked field, both taken outside the laser cavity. Since, for uncoated lasers, it 

can be shown that pi I Ps ~ ( f:!-) 2 I ;Io 
O 

' their data are shown in Figure 4 .5b as 

locking bandwidth versus ( f:; )2 
\:·

0

• Figures 4.5a and 4.5b indicate that there is 

a good agreement between the theoretical prediction and experimental result. In 

addition, the detuning given in ( 4.21) and the instability condition ( 4.22a) clearly 

indicate that the instability occurs in the high-frequency side of the maximum 

locking range, and the appearence of this unique feature is simply because a is 

negative. 

Up to this point, all the results presented above are based on the assumption 

that a is negative. In order to clarify this assumption, investigation for lasers 
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et al. [12]. 
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with positive a is necessary. Following the same procedure used above, one has 

the following results for lasers with positive a. The detuning ~n is given by 

( 4.24) 

The maximum locking range is from w0 to w0 Ja2 + 1. The instability condition 

IS 

,J.. (} • -1 Wo 
'f,'o > - a - Sill 2 ' 

rnwnv'o:2 + 1 
(4.25) 

and the locking bandwidth is given by (4.23). From the detuning given in (4.24) 

and the instability condition ( 4.25), the instability occurs in the low-frequency 

side of the maximum locking range. Except that the locking bandwidth is unaf­

fected by the sign of a, all the other results contradict the experimental findings 

reported so far [8] [11] [12] [23] [24]. On the other hand, results obtained for 

negative a agree with the experimental observations of References [8], [11], [12], 

[23], and [24]. Therefore, the available experimental results and the discussion 

given above confirm that a is, in fact, negative. Again, it is important to keep 

in mind that this conclusion is held only when the optical field is represented by 

E(t)eiOt and the Fourier transforms are defined by (A.17). 

To summarize, an exact analysis for the stability has been given, and the 

reason that the laser is unstable in the high-frequency region of the maximum 

locking range has been explained. However, the inherent relation between insta­

bility and pulsating is still not clear. Therefore, next, a physical picture will be 

described to shed light on this interesting phenomenon. 

At this point, the reader is reminded that the small-signal analysis per­

formed in Section 4.2 can be interpreted in two different ways. For DC biased 

lasers, the first one is the usual interpretation that, because of the Langevin force 
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perturbation, the laser is lasing with small variations in carrier density and in 

the phase and amplitude of the optical field. The other way is to divide a long 

period of time into many short periods. Although in the long term the optical 

field and carrier density may vary considerably, in each short period of time the 

laser can be characterized in the small-signal regime. 

The laser is injection-locked and stable only when the steady-state conditions 

(4.7a)-(4.7c) are satisfied. For example, immediately after the injected field enters 

the cavity, the laser will assign a phase ¢10 to its optical field. When the phase 

¢ 10 does not satisfy the steady-state condition, the laser adjusts </>10 to </>20 for 

the second short period of time. This process, shown in Figure 4.2, will continue. 

The laser may eventually reach a stably locked state, an unlocked state, or an 

unstable state. 

In the unstable region of the maximum locking range, any random pertur­

bation will result in the exponential growth of the optical field intensity. This 

increase in optical field intensity will deplete the carrier density. This carrier 

density depletion then changes the refractive index, which in turn shifts the las­

ing frequency away to a different frequency. The laser is no longer in its original 

state. But, after several self-adjustments in the phase </>, the laser will return 

to its original state. This whole cycle will trigger the next one, and the whole 

process repeats itself. Each time, the increase and decrease of the carrier density 

gives rise to the pulsation in the output power. This explains how the instabil­

ity leads to the pulsation in the high-frequency region of the maximum locking 

range. On the contrary, in the low-frequency region of the maximum locking 

range, since the laser is in its stable state, any perturbation will soon decay to 

zero. Therefore, there is no pulsation instability in the low-frequency region of 



-110-

the maximum locking range. 

4.4 Frequency and Relative-Intensity Fluctuation Spectra 

In many practical applications, such as optical communications, the noise 

properties of semiconductor lasers will affect the performance of the communica­

tion system. There have been intense theoretical and experimental investigations 

on this subject. In this section, by including the carrier dependence of the refrac­

tive index, the semiclassical theory of laser noise [14] will be applied to obtain 

the frequency and relative-intensity fluctuation spectra. Then, with a noiseless 

injected field, the relation between the relative-intensity noise spectrum and the 

detuning ~n at fixed injected intensity Iin,o will be investigated. 

Let 8n(t), 84>(t), and 81(t) be the noise-driven deviations of the carrier density 

and the phase and intensity of the optical field, respectively. Similarly, Dq,;,. (t) 

and 81;,.(t) will be the noise-driven deviations of the phase and intensity of the 

injected field. Letting J1(t) = 0 in Equation (4.5c), Equations (4.5a)-(4.5c) 

become the noise-driven equations for 84>(t), 81(t) and 8n(t): 

(4.26b) 

(4.26c) 
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Equations (4.lla) and (4.llb) strongly indicate that the noise-driven deviations 

D4>;,.(t) and 81;,.(t) of the injected field become part of the driving force of the 

locked laser. The Langevin force correlations are given as follows [14] [25]: 

with 

(4.27a) 

(4.27b) 

(4.27c) 

where n 8 p is the ratio of the spontaneous emission rate into the lasing mode to 

the gain of that same mode [26] [27] [28], Po is the steady-state photon number 

density, Ve is the volume occupied by the carriers,<> denotes ensemble average, 

and V is the average mode volume such that Po V is the total photon number 

inside the diode cavity. 

It was shown in Chapter 3 that the Fourier transform is a very powerful 

technique in deriving the noise spectra and the linewidth formulas. Therefore, 

the procedure used in the following is similar to that of Section 3.3. For a square 

integrable function g(t), the Fourier transforms are defined as 

+= 
g(w) = J dtg(t)e-iwt, 

1 /+= . g(t) = - dwg(w)e1,wt_ 
271' 

-= -= 

By taking the Fourier transforms of Equations (4.lla)-(4.llc), one has 
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(4.28a) 

(4.28b) 

where 

We = Wo COS </>o, W8 = Wosin<f>o, (4.29a) 

and 

(4.29b) 

The WR/21r is commonly referred to as the relaxation oscillation frequency of 

the free-running semiconductor lasers. From Equation ( 4.15a), the solutions for 

64,(w) and 61(w) are 

iw +we 
(4.30a) 

tions f(t) and g(t) is given by 

WJg(w) = ~; < f*(w)g(w) >, (4.31) 
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where ow /21r is the resolution bandwidth of the instrument used in the ensemble 

average. Accordingly, the relative-intensity fluctuation spectrum is written as 

(4.32) 

and the frequency fluctuation spectrum is defined as 

(4.33) 

These two spectra, (4.32) and (4.33), are the widely studied spectral density 

functions. Similarly, in the frequency domain, the correlations (4.27a)-(4.27c) 

are re-expressed as 

- - - - 27r < L\;(w).6.i(w) >=< L\;(w).6.r(w) >= ow W, 

< 17*(w)17(w) >= ;: W2, < 17*(w)Lt(w) >= ;: W1, 

< 17*(w)Lir(w) >= O, < Lit(w)Lir(w) >= 0. 

(4.34a) 

(4.34b) 

(4.34c) 

With all the results given above, it is straightforward to have the spectra 

W ar(w) and W Aw (w). Neglecting the factor l/r2 in We and Ws, these spectra 

should be the same spectra as those of Spano et al. [13]. Instead of going through 

every detail, it will be interesting to take a close look at the relative-intensity noise 

spectra for the case where the injected field is noiseless. Under this condition, the 

· d · d · t· 61 · (w) d r ( ) b 1 d d h 1 . noise- riven evia ions J.n an Uef>;n w can e neg ecte , an t e re ative-
,n.,o 

intensity noise spectrum is 
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As shown in Equation ( 4.35), the relative-intensity noise spectrum is explic­

itly dependent on the locked phase. Since the locked phase can be determined by 

the detuning and the detuning is a directly measurable quantity, the relationship 

between the detuning Ll1l and WAI ( w) will be considered in the following. 

The numerical values of various parameters used for this analysis are given 

as follows· p81 - 3 x 1014cm-3 • ....L = 1 5 x 1011s-1. (!2.) 21'n,o = 10-4 • a - -5· 
• o - ' 2nl • ' r2 Io ' - ' 

g8 1 = 0.5x1012s- 1 ; r8 = 3x10-9 sec; g' = 1x10-6 cm3s- 1 ; Ve= 3.0x10- 10cm3 ; 

V = 2Vc; n 8 v = 1.8; r = 0.5; and n~1 = 1 x 1018cm-3 • Notice that the power 

density p~1, gain g8 1, and carrier density n~1 are parameters before injection 

locking. After injection locking, Po, g and n 0 can be obtained from Equations 

(4.7a)-(4.7c). The frequency dependence of g81 is neglected. 

With a noiseless injected field, Figures 4.6 and 4. 7 show the relative-intensity 

noise spectra for different values of detuning Ll1l. For the purpose of comp;:i.:r:-ison, 

the relative-intensity noise spectrum of free-running lasers is also shown in both 

figures. With the parameters given above, the detuning range of stable operation 

is from -7.65 GHz to -7.06 GHz. From Figures 4.6 and 4.7, there is a clear trend 

in the relation between WAo(w) and the detuning Ll1l. In general, injection­

locking shifts the relaxation oscillation frequency to slightly higher frequencies. 

For frequencies less than 6 MHz, W AO (w) increases as the detuning increases, and 

for -7.06 GHz < Ll1l < -7.5 GHz, W Ao(w) of the injection-locked lasers is larger 

than that of the free-running lasers. In other words, the intensity noise increases 

because of the noiseless injected field. For a frequency larger than 6 MHz, the 

relative-intensity noise is reduced, and the amount of reduction increases as the 

detuning is varied from -7.65 GHz to -7.13 GHz. This analysis points out that 

in designing an injection-locked laser to best suit a particular application, it is 
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important to examine every aspect of the laser performance. 

4.5 Linewidth of the Injection-Locked Laser 

Because of the carrier dependence of the refractive index and the strong 

amplitude-phase coupling, the excessively large linewidth of solitary diode lasers 

precludes its usage in many applications requiring greater spectral purity. With 

a narrow linewidth injected field, Gallion et al. [1] concluded that the linewidth 

of the locked laser is equal to that of the injected field. In the following, using 

the method developed in Chapter 3 and 84>(w) obtained in Section 4.4, it will 

be shown that on a general basis, the injection-locked diode laser's linewidth is 

indeed the same as that of the injected field. 

For the laser field e(t) = E(t)eiOt, its spectral density function is 

+oo 

WEE(w) = J dt' < e*(t)e(t + t') > e-iwt'. (4.36) 

-oo 

If the correlation between phase and amplitude fluctuations is neglected, one has 

+oo 

WEE(w) = E; J dt'exp[-i(w - O)t' - ½ < (84>(t + t') - 84>(t)) 2 >], (4.37a) 

-oo 

with 

8w 11 /+oo - - . , I < (84>(t + t') - 84>(t)) 2 >= 
2

1r 1r dw < s;(w)8<1>(w) > (1 - e,,,wt) . (4.37b) 

-oo 

As shown in Chapter 3, neglecting the high-frequency, weak side-mode structure 

in the field spectrum, the Lorentzian linewidth llv is given by 

llv = _!_I 1,Res(o)j, 
271" t 

( 4.38) 
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where Res(O) is the residue of the integrand 

at the simple pole w = 0. 

As w -+ 0, Equation ( 4.30b) gives 

(4.39) 

Since the second and the third terms of Equation (4.39) do not contain terms 

proportional to ,t, Res(0) becomes the residue of the integrand 

at the simple pole, w = 0. Accordingly, the linewidth of the injection-locked 

semiconductor laser is the same as that of the injected field. This has been ex­

perimentally confirmed by Gallion et al. [lJ. Figure 4.8 shows their experimental 

result. 

By assuming that 64,(w)is independent of the frequency components ij(w) 

and b1;,,,(w) of the Langevin force r,(t) and the intensity fluctuation c51;,,,(t) of the 

injected-field, respectively, Gallion et al. have also arrived theoretically at the 

same conclusion. Contrary to Gallion et al. 's assumption, as shown in Equation 

(4.26), 64,(w) is dependent on ij(w) and 61;,,,(w). In this section, the same conclu­

sion has been reached without their assumption. To summarize, in this section, 
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it has been shown that on a general ground, the linewidth of an injection-locked 

laser is the same as that of the injected field. 

4.6 Conclusion 

Based on the optical field equation derived in Chapter 2, new insights into 

the injection locking phenomena have been realized. It has been shown that 

reducing the reflectivity will reduce the injected intensity necessary for locking 

and increase the locking range. The detuning is achieved by the adjustment of 

the locked phase ¢0 and the reduction of the threshold gain. 

The stability and locking bandwidth have been studied in considerable de­

tail. Analytical expressions for the exact stability condition and locking band­

width have been given. The calculated locking bandwidth is in excellent agree­

ment with the experimental results of Goldberg et al. [12]. This analysis also 

explains why the instability occurs on the high-frequency side of the maximum 

locking range. The fundamental source for this asymmetric instability is the large 

and negative linewidth enhancement factor a. In addition, a physical picture has 

been used to illuminate the connection between this instability and the pulsation 

behavior. 

It has been shown in Section 4.5 that on a general basis, the locked laser 

linewidth is the same as the linewidth of the injected field. Although a narrower 

linewidth injected field certainly will reduce the linewidth of the locked laser, 

the possible increase of relative-intensity noise indicated in Section 4.4 implies 

that in designing an injection-locked semiconductor laser, consideration of every 

aspect of its performance is necessary. 
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Appendix: The Sign of the Linewidth Enhancement Factor a 

The linewidth enhancement factor a plays an important role in the dynam­

ics, noise properties, and spectral characteristics of semiconductor lasers. Espe­

cially, as shown in this thesis, the sign of the linewidth enhancement factor has a 

fundamental and significant role in the physics of semiconductor lasers. However, 

there has been little attention given to the sign of this factor a. The purpose of 

this appendix is to show that the sign of the linewidth enhancement factor a is 

dependent on the sign convention used in the exponential notation representa­

tion of the optical field. It will also be shown that the Kramers-Kronig dispersion 

relation is dependent on the sign convention used in the Fourier transforms. 

Following the sign convention used throughout this thesis, the monochro­

matic component with frequency 11 of the optical field c (t) is given by 

(A.l) 

where E+(11) is the complex amplitude. Similarly, the monochromatic compo­

nent with frequency 11 of the displacement D (t) is given by 

(A.2) 

Since all the physical quantities are real, it is understood that Equations (A.1) 

and (A.2) actually mean 

and 
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D+(O) and E+(O) are connected by 

with 

(A.5) 

In terms of its amplitude and phase, Equation (A.5) can be separated into two 

equations: 

(A.6a) 

and 

(A.6b) 

where N 1 is an integer. 

On the other hand, if the monochromatic component co ( t) is written as 

co(t) =Re[IE-(O)li<l>E-(0 )e-i0t] 

=IE- (0) I cos(Ot - ef>E-(0)) 

and the monochromatic displacement Do (t) is given by 

Do(t) =Rel [ID- (0) li<l>D-( 0 )e-i0 t] 

=ID- (0) I cos(Ot - </Jn-(0)), 

then D_ (O) and E_ (0) are connected by 

with 

(A.8) 

(A.9) 
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In terms of its amplitude and phase, Equation (A.9) can be sep;:i,r;:i,te,J intn two 

equations: 

(A.lOa) 

and 

(A.lOb) 

where N 2 is an integer. 

Clearly, comparing Equations (A.3) and (A.4) with Equation (A.7) and 

(A.8), one has 

(A.lla) 

(A.llb) 

(A.llc) 

(A.lld) 

where N3 and N 4 are integers. From Equations (A.6b), (A.lOb), (A.llc) and 

(A.lld), one obtains 

(A.12a) 

(A.12b) 

where N 5 is an integer. 

Next, define a€ as the ratio of the real part to the imaginary part of 1:(0): 

Re{1:(0)} 
a€= Im{1:(0)}" 

From Equation ( A.12b), it is clear that 

(A.13) 
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In other words, ae+ and ae- have the same magnitude with opposite sign. Equa­

tion (A.13) shows that the sign of ae depends on the exponential notation used 

in representing the optical field and the displacement. 

The linewidth enhancement factor a defined in Equation ( 4.6a) can be 

rewritten as 

where µr and µi are the real and imaginary parts of the complex refractive 

index in the active region, respectively. Let a+ and a_ denote the linewidth 

enhancement factor when the optical term is eiOt and e-iOt, respectively. Invok­

ing the relation between the complex refractive index and the complex dielectric 

constant and following the procedure used above, it can be easily shown that 

a+ and a_ have the same magnitude and opposite sign. Apparently, the sign 

of the linewidth enhancement factor is dependent on the exponential notation 

representation of the optical field and the displacement. 

The discussion given above strongly suggests that the prerequisite in dis­

cussing the sign of the factor a is to specify and to know the exponential notation 

representation of the optical field. Since Re{e(w)} and Im{e(w)} are connected 

by the Kramers-Kronig dispersion relation, the conclusion obtained above implies 

that the Kramers-Kronig relation is dependent on the definition of the Fourier 

transforms. In the following, the focus will be on this implication. 

The key point here is to use the exponential notation representaticn and. tl1.e 

Fourier transforms consistently. For example, when the monochromatic compo­

nents c'o(t) and Do(t) are given by (A.7) and (A.8), respectively, the correspond­

ing Fourier transforms are defined as follows. For a square integrable function 
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h(t), the Fourier transforms are defined as 

+oo 

h(w) = J dth(t)eiwt, 
1 /+oo ~ . 

h(t) = - dwh(w)e-iwt. 
271" 

(A.14) 

-oo -oo 

In terms of Im{E(w)}, Re{E(w)} is given by the Kramers-Kronig relation 

00 

R { ( )} _ ~p / w'Im{E(w')}dw' 
e €W -1+ 2 2 

, 
1r w' - w 

(A.15) 

0 

where P denotes the principal value of the integral. Many advanced textbooks 

on classical electrodynamics [30] give detailed derivations for Equation (A.15). 

Similar to Equation (A.15), the small refractive index change ~µr(w) is expressed 

in terms of ~µi(w) by the Kramers-Kronig relation [19]: 

(A.16) 

On the other hand, when the monochromatic components c0 (t) and D0 (t) 

are given by (A.1) and (A.2), respectively, the corresponding Fourier transforms 

are defined as 

+oo 

f(w) = J dtf(t)e-iwt, 
1 /+oo ~ . 

f(t) = - dwf(w)eiwt, 
271" 

(A.17) 
-oo -oo 

where f(t) and J(w) are square integrable functions. Following the same proce­

dure used in deriving Equation (A.15), one has the Kramers-Kronig relations 

00 

Re{E(w)} = 1 _ ~pf w'Im{E(w')}dw' 
7r w'2 - w2 

(A.18) 

0 

and 

(A.19) 
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As expected, from Equations (A.15) and (A.18), the Kramers-Kronig rela­

tion is dependent on the sign convention used in the Fourier transforms. Further­

more, Equations (A.16) and (A.19) reconfirm the conclusion obtained in the first 

half of this appendix, that the linewidth enhancement factor a indeed depends on 

the exponential notation representation of the optical field and the displacement. 
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Chapter 5 

Dynamics and Linewidth of Axially Coupled Two-Section 

Semiconductor Lasers 

5.1 Introduction 

Axially coupled two-section semiconductor lasers have drawn considerable 

attention recently [1]. The laser has two sections, with each section having its 

own current source and being pumped independently. By adjusting the pumping 

currents separately, the optical coupling between the two cavities can improve the 

laser's spectral characteristics over the conventional Fabry-Perot semiconductor 

laser. For example, with one section operating above threshold and another 

below threshold, an average frequency tuning rate of 26 A./mA and a total tuning 

range of 300 A were achieved [2]. This laser has been used as an optical source 

in long-distance transmission experiments [ 1]. 

The mode selectivity and stability of this laser have been studied [3] [4]. 

The dependence of mode discrimination on the coupling junction and cavity 

length has been examined [5] [6] [7]. Much of this work is built upon an effective 

mirror formalism [5], which models the coupling from the external cavity as that 

of the facet facing the external cavity with an effective wavelength-dependent 

reflectivity. This formalism has been successful in some respects. However, 

there are characteristics, such as the dynamics and laser linewidth, for which the 

formalism is inappropriate. As a result, many important and interesting aspects 

of this laser remain unexplored. 



- 131-

The purpose of this chapter is twofold. The first is to fill the gap in un­

derstanding the lasers' behavior such as the current-light characteristics, noise 

spectra, laser linewidth, and dynamic wavelength chirping. Another is based 

on the results of this chapter, to demonstrate the usefulness of the theory pre­

sented in Chapter 2. Recall that in Chapter 2, the concepts of time-dependent 

effective reflectivity and time-dependent, complex effective photon lifetime were 

introduced. Incorporating the time-dependent, complex effective conductivity 

in Maxwell's equations, a set of two coupled optical field equations for axially 

coupled two-section semiconductor lasers were derived in the same chapter. The 

optical field equations will be the basis of this chapter. 

In Section 5.2, the steady-state condition and the small-signal equations for 

the optical fields and the carrier densities will be derived. The previously re­

ported but unexplained light-current data will be examined [1] [2]. In Section 

5.3, using the semiclassical theory of laser noise [8], a procedure for obtaining 

the frequency and relative intensity noise spectra will be outlined. The key inter­

mediate results will be given. Although the complicated final results will not be 

given, these intermediate results will allow quick access to the final results. Using 

the method developed in Chapter 3, an analytical expression for the Lorentzian 

laser linewidth will be derived in Section 5.4. The calculated linewidth will be 

compared with the experimental results of Boyd et al. [9]. 

The small-signal current modulation response and the frequency chirping of 

the laser will be the subject of Section 5.5. Finally, the data of the dynamic 

wavelength chirping reported by Agrawal et al. [10] will be studied. 
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5.2 Small-Signal Equations for the Optical Fields and the Carrier Den­

sities 

As indicated in Chapter 2, the coupled optical field equations of this laser 

are complicated. However, as shown in Chapters 3 and 4, in the small-signal 

regime, the equations can be linearized, and the resulting small-signal equations 

are indispensable in studying the noise spectra, linewidth, small-signal current 

modulation response, and dynamic wavelength chirping. Therefore, in this sec­

tion, the equations describing the optical field and carrier density will be reviewed 

briefly. Then, the small-signal equations will be derived. The equations govern­

ing the steady state of this laser will be given. These equations will then be used 

to calculate the current-light characteristics, which will be compared with the 

experimental results. 

An axially coupled two-section diode laser is illustrated in Figure 5.la. It 

consists of two cavities of lengths l 1 and 12 with facet reflectivities r 1 on one 

side and r 4 on the other side of the composite cavity. The coupling between the 

two cavities is characterized by the transmission and reflection coefficients t 12 , 

t21, ru, and r22 as indicated in that figure. According to the general formalism 

developed in Chapter 2, each cavity is equivalent to a solitary laser with one of 

its two facet mirrors replaced by an effective mirror. As shown in Figure 5.lb, 

there are two effective mirrors and their time-dependent effective reflectivities 

r~}~(t) and r~~~(t) are given by 

(5.la) 

(5.lb) 



(a) 

(b) 

~r1 
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Figure 5.1 (a) Schematic of an axially coupled two-section semiconductor 
laser. (b) Each cavity of the two-section semiconductor laser is equivalent 
to a diode laser with an effective mirror. 
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where E:i(t) is the complex amplitude of the optical field inside the jth cavity. For 

a single-mode axially coupled two-section diode laser, the optical field equations 

for cavities 1 and 2 are 

and 

respectively. For the jth cavity, r :i is the filling factor that represents the fraction 

of mode energy in the active region; wi is the mith resonant frequency of the 

unpumped and lossless cavity; X,i(n,i) = X;ir(n;i) + iXii(n;i) is the susceptibility 

when the carrier density is ni; fi,i is the spatially averaged nonresonant refractive 

index defined in Equation (2.27a); ai0 is the distributed waveguide loss constant; 

~i(t) is the Langevin force originating from spontaneous emission; fii is the real 

refractive index in the active region; and l i is the cavity length. 

In the jth cavity, the equation for the carrier density ni is 

(5.3) 

( ) 
I'x ·,(n ·)G sojl,

2
1 j2 ( ) with Yi n:i = 1 µ 2 

2 and Pi = ~ E:i , where Y:i n:i is the gain, P:i is 
J 

the photon density, T;js is the spontaneous lifetime, Ji(t) is the pumping rate 

of carriers per unit volume, and ?Ji(t) is the Langevin force associated with the 

discrete nature of the carrier generation and recombination process. 
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In general, analytical solutions for the coupled Equations (5.2a)-(5.3) are 

unobtainable. In the following, the small-signal equations for the optical fields 

and carrier densities will be derived. These equations will then be used to derive 

analytical expressions for the frequency and relative intensity fluctuation spectra, 

laser linewidth, small-signal current modulation response, and frequency chirping 

in Sections 5.3, 5.4, and 5.5 separately. 

In the i th cavity, for the small-signal analysis, let 

where Eii(t), <Pi(t), ni1(t), Ji1(t) and Ii1(t) are real and time-dependent quanti­

ties, and their magnitudes are small when compared to E30 , 1, nio, J30 , and 130 , 

respectively. Ei = (3·r + i(ji is the first order Taylor coefficient in expansion of 

Xi(ni) = Xir(ni) + iXii(ni) about the operating-point carrier density nio• The 

small terms Ei1(t), </J3(t), n31(t), J31(t), lf1(t), and the Langevin forces ~i(t) 

and '11i(t) are assumed to have zero mean value. It is also assumed that the time 

variation of these small terms are slow compared to the optical term exp( iOt). 

By neglecting products of small quantities, assuming l<Pi(t) I < 1r /2, and 

using Equations (5.2a) and (5.2b), the distributed losses for cavities 1 and 2 are 

(5.4a) 

and 

(5.4b) 
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respectively, with 

(5.5a) 

-(2) E10 
r = r22 +t12-eff E 

2o 
(5.5b) 

where the real quantities 2T1r, 2T2r, T1i, and T2i are given by 

(5.6a) 

(5.6b) 

f~~~ and f~~~ are the steady-state effective refl.ectivities for cavities 1 and 2, 

respectively. 

Similarly, using the results given above and neglecting products of small 

quantities, Equations (5.2a)-(5.3) are linearized. For the jth cavity, the small­

signal equations are 

(5.7a) 

(5.7b) 

(5.7c) 
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where 

(5.8a) 

(5.8b) 

(5.8c) 

a:1 is the ratio of the real to the imaginary part of the refractive index and is 

commonly referred to as the linewidth enhancement factor [11] [12] [13]. g;. is 

the differential optical gain constant, and 'T:JR is the damping time constant in 

the relaxation oscillation of solitary semiconductor lasers . .6.:1r(t) and .6.:1i(t) are 

the real and imaginary parts of .6. :i ( t), respectively. 

Clearly, the effects of coupling are included in these equations through the 

terms S:1i(t) and S:1r(t). Furthermore, the gain, the lasing frequency, I:10 , and 

n:10 for the steady state are determined by the following equations: 

(5.9a) 

(5.9b) 

(5.9c) 

(5.9d) 

(5.9e) 

(5.9f) 

where the real quantities F1, i2, 01 and 02 are defined by 

(5.9g) 
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Equations (5.7a)-(5.7c) are the small-signal equations of the single mode two­

section semiconductor laser. The small-signal equations will be used in the fol­

lowing sections. As indicated in Chapter 2, the combined steady-state condition 

given by Equations (5.9a)-(5.9f) agrees with the eigenvalue equation derived by 

Henry and Kazarinov [ 4]. 

Equations (5.2a) and (5.2b) suggest that each cavity has its own average 

optical field intensity and, in general, the average photon density in each cavity 

may not be the same. Since no theory had predicted this interesting feature, 

the comparison between the experimental results and calculations will be given 

below. 

Since cleaved-coupled-cavity lasers were used in the experiments of Refer­

ences (1) and (2), the analysis will be carried out for this particular class of 

lasers. Koch and Coldren [5] showed that for the C 3 lasers, 

(5.10) 

and under a single-mode operation, the optimum coupling condition is that 

t12/r11 and t2i/r22 are real numbers. Consequently, one has 

(5.lla) 

(5.llb) 

Parameters used in the calculations are given as follows: t 12/r11 = 2.0; n1li = 

0.82 mm; n2l2 = 0.18 mm; g1 = g2 = 0.5 x 1012s-1; n 1o = n 20 = 1 x 1018cm-3 ; 

r18 = r28 = 3 X 10-0 sec; gt= g~ = 1 X 1O-6 cm3 s-1; Vic= 2.47 x 10-10cm3 ; 

V2c = 0.53 X 1O- 10cm3 ; V1 = 2V1c; and V2 = 2V2c-

Figure 5.2b shows the DC ( or pulsed) light-current characteristic measured 

from each side of a 1.3 µm InGaAsP /InP laser. With one section pumped, the 
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Figure 5.2 (a) Calculated light-current characteristics of two-section lasers 
when the right section is pumped and the other section is passive. (b) Light­
current characteristics measured from each side of a cleaved-couple-cavity 
laser fabricated from 1.3 µm wavelength InP /InGaAsP crescent laser wafer 
when the right section is pumped. 
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optical field generated in the pumped cavity is coupled into the other section. 

This unequal pumping leads to the asymmetry of the two current-light curves 

shown in Figure 5.2b. Using Equations (5.8a)-(5.8f), Figure 5.2a shows the 

calculated light-current curves of a two-section laser with one section pumped and 

the other section passive. There is a qualitative agreement between the reported 

data and the calculations. Figure 5.3b shows another experimental light-current 

characteristic when one section is biased below threshold and another section is 

biased at a different current level. Again, the experimental data are confirmed 

qualitatively by the calculations shown in Figure 5.3a. 

5.3 Relative-Intensity and Frequency Fluctuation Spectra 

As emphasized in previous chapters, the relative intensity and frequency 

fluctuation spectra of the diode laser are very important characteristics in many 

practical applications. Therefore, the frequency and the relative intensity fluc­

tuation spectra will be the subject of this section. Despite the cumbersome 

mathematical procedure, it is necessary to carry out the analysis to some degree. 

The key intermediate results will be given. Although the complicated final re­

sults will not be given, the fluctuation spectra can be obtained from these results 

with little difficulty. In addition, the noise-driven phase deviations obtained in 

this section will be used in the next section for deriving the laser linewidth. 

Let 04>j(t), 8r1 (t), and Dnit) be the noise-driven deviations of phase and 

intensity of the electric field and carrier density, respectively, from their steady­

state values. When J,i1(t) = 0 in Equation (5.7c), Equations (5.7a)-(5.7c) become 

the noise-driven equations of 84>At), S1j(t) and Onj(t). These equations are: 

· 0:1 1 1 -~1r(t) 
04> 1 (t) + 2 91 On 1 (t) + 2S1i(t) = 

201112 
(5.12a) 

lo 
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Figure 5.3 (a) Calculated light-current characteristics of tw~section lasers 
when the right section is pumped and the other section is biased at dif­
ferent current levels. (b) Light-current characteristics measured from the 
right side of a cleaved-couple-cavity laser fabricated from 1.5 µm wavelength 
InP /InGaAsP crescent laser wafer when the left section is pumped and the 
right section is biased at different current levels. 
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(5.12b) 

(5.12c) 

" ( I ( ) () _ ~2i(t) 1/2 8r2 t) - g2I208n 2 t + I20S2r t - O 120 (5.12d) 

• f 1co 1 
8n 1 (t) = ---t:.X1i(n10)8ri (t) - -8n1 (t) + 771(t) 

2n T1R 
(5.12e) 

(5.12/) 

For the ;"th cavity, the Langevin force correlations are given as follows [8] 

[14]: 

(5.13a) 

( 5.13b) 

(5.13c) 

with 

Wio = 2n . _!!_L 
n2J. J,JJP . V·' 
H JO P30 3 

(5.14) 

where ni,JJP is the ratio of the spontaneous emission rate into the lasing mode to 

the gain of that same mode [15] [16] [17], Pio is the steady-state photon number 

density; Vic is the volume occupied by the carriers; <> denotes ensemble average; 

and Vi is the average mode volume such that Pio Vi is the total photon number 

inside the ;"th diode cavity. It is assumed that the correlations between the 

Langevin forces of different cavities are zero. 
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It was shown in Chapters 3 and 4 that the Fourier transform method is a 

powerful technique in deriving the spectral density function and the linewidth 

formula. Therefore, a similar procedure will be applied in the following. For a 

square integrable function f ( t), the Fourier transforms are defined by 

+oo 

f(w) = J dtf(t)e-iwt, 
-oo 

+oo 

f(t) = _!_ f dwf(w)eiwt_ 
271" 

-oo 

Taking the Fourier transforms of Equations (5.12a)-(5.12f), one has 

iw + T1r 

-T1i 

-T2r 

T2i 

where 

-T1r 

T1i 

iw + T2r 

-T2i 

Tu_ a1w; 8 
4 2(iw+l/.,-1R) 

2 

iw + T1r + • .::tf iw 1"1R 

84> 1 (w) 
84> 2 (w) 

_Tu 
4 

-T2r 

X 811 (w) 
I10 

612 (w) 
I20 

_Tu 
4 

-T1r 

fu _ a2w~R 
4 2(iw+l/.,-2R) 

2 

iw + T2r + • .:;li iw T2R 

2 r1€1iOI10EoX1i(n10) ' 
W1R 2hµ,1 = g1g1P10 

2 _ r~C2iOI20EoX2i(n20) 1 

W2R = 2njl~ = g2g2P2o• 

(5.15a) 

(5.15b) 

(5.15c) 

For the ;"th cavity, WJR/271" is referred to as the relaxation oscillation frequency. 

In deriving Equation (5.15a), the relations among 8ft (w), Sr
2 
(w), 84>

1 
(w), and 

S1> 2 (w) given in Equations (5.15b)-(5.15c) were used. 
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From Equation (5.15a), one obtains solutions for 84>1 (w), 84> 2 (w), 81i (w), and 

81i (w) given by 

..6.1r(w) - arn1ffi(w) 
201112 2(iw+l/.,-IR) lo 
..6.1,(w) + g1iji(w) 
011/ 2 iw+l/'TIR 

X lo 
..6.2r(w) - a2g;ij2 ( w) 
201112 2(iw+1/.,-2R) 2o 
..6.2,(w) + g;fi2(w) 
011/2 iw+l/T2R 2o 

~ 1 
8<1>2(w) = -:--D 

1,W 

iw + T1r 

X 

81i (w) 1 
-

1 -T1r 

0 T1i 

-T1r 

T1i 

iw + T2r 

-T2i 

arni.ffi(w) 
2(iw+l/.,-IR) 

..6.1r(w) 
201112 

lo 

~-Ta(w) 

iw + T1r + a(w) 

_Tu 
4 

-T2r 

~ -Ta(w) 

iw + T1r + a(w) 

aigi,ff1(w) 
2(iw+I/.,-IR) 

..6. 1i ( W) + g; ij 1 ( W) 
011/2 iw+l/TIR 

lo 

_Tu 
4 

-T1r 

~ - Tb(w) ( 

iw + T2r + b(w) 

_Tu_ 
4 

-T1r 

.16a) 

( .16b) 
~ - Tb(w) 

iw + T2r + b(w) 

_Ti; 
4 

-T1r 

(5.16c) 
/io D 1 iw + T2r 

..6.2r(w) a2giff2 (w) ~- Tb(w) -
201 112 -

2(iw+l/.,-2R) 2o 

0 -T2i 
..6.2;(w) + g;ifi2(w) iw + T2r + b(w) 011/2 iw+l/.,-2R 2o 

~-Ta(w) ..6.1r(w) r ~ 
1 -T1r 

a1g 171 w 
201112 2(iw+l/TIR lo 

812 (w) 0 T1i iw + T1r + a(w) ..6.i;(w) + g1iji(w) 
1 011/2 iw+l/TIR 
- lo (5.16d) 

120 D _fu ..6.2r(w) r ~ ' 1 iw + T2r 
azg 112 w 

4 201112 2(iw+l/.,-2R 2o 

0 -T2i -T2r 
..6.2;(w) + g;ff2(w) 
011/2 iw+l/.,-2R 2o 

with 2 
T1i iw + T1r + . .;i I -T1r iw 'TIR 

D= iw + T2r _Tu Tu_ a2wiR 
4 4 2(iw+l/.,-2R) 

2 

-T2i -T2r iw + T2r + • .;if iw 'T2R 
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Tu_ cqwiR 
4 2(iw+l/rrn) 

2 

iw + T1r + . .::tj ~W 7 1R 

-T2r 

where 
w2 

a(w) = lR ' 
iw + 1/T1R 

The spectral density for stationary random functions f(t) and g(t) is defined 

by the Wiener-Khintchine relation as: 

+oo 

WJg(w) = f ds < f*(t)g(t + s) > e-iws, 

-oo 

As shown in Chapter 3, the spectral density function can be expressed in terms 

of ](w) and g(w) as 

(5.17) 

where 8w /21r is the resolution bandwidth of the instrument used in the ensemble 

averagmg. Accordingly, the relative intensity fluctuation spectrum is given by 

8w 1 ~ ~ 
W.6.J

1
-(w) = --12 < o;.(w)8r.(w) >, 27r . J J 

30 

and the frequency fluctuation spectrum by 

Similarly, the correlations (5.13a)-(5.13c) can be rewritten as 

< ii;(w)ij3(w) >= ;: W32, < ii;(w)Li3i(w) >= ;: W31 

< ii;(w)Li3r(w) >= O, < Li;i(w)Li3r(w) >= 0. 

(5.18) 

(5.19) 

(5.20a) 

(5.20b) 

(5.20c) 
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With results given in Equations (5.16a)-(5.16d), (5.17), (5.20a)-(5.20c), (5.18), 

and ( 5.19), it is straightforward to obtain W L:.I ( w) and W L:.w ( w). Since the final 

results are complicated, these two spectra will not be given here. 

5.4 Laser Linewidth 

In a coherent optical communication system, the frequency or phase noise 

of the optical source such as a semiconductor laser is very critical to the system's 

performance. The linewidth is just a macroscopic effect of the phase fluctuation 

inside the laser. Because of the carrier density dependence of the refractive index 

and the strong amplitude-phase coupling, the solitary diode laser linewidth is 

typically on the order of 10 MHz. This excessively large laser linewidth has 

been explained by the theories of References [8] and [11]. These theories also 

predict that the linewidth is inversely proportional to output power or the total 

photon number inside the cavity. However, an unexpected power-independent 

component first reported by Welford and Mooradian [18] has attracted attention, 

and different theories have been proposed [18] [19J [20]. Recently, Derry et al. 

{21] reported the same finding in quantum well AlGaAs/GaAs lasers. 

For the two-section lasers, Boyd et al. [9] reported that the linewidth is 

roughly inversely proportional to power. The linewidth they obtained is typ­

ically on the order of 10 MHz. They also observed the power-independent 

linewidth. However, when compared to solitary lasers, the magnitude of this 

power-independent component is about two or more times larger. Since no 

linewidth formula has been reported for two-section lasers, the semiclassical the­

ory of laser noise [8] and the method of Chapter 3 will be applied to derive th~ 

linewidth formula. Then, the numerical results of this formula will be compared 
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to the experimental data of Boyd et al. (9], and the physical mechanism involved 

will be explained. It will be shown that, to a certain degree, the linewidth 

formula derived in this section predicts the power-independent component of a 

two-section laser. 

The spectral density function of the laser field c ( t) is 

+= 
WEE(w) = I dt' < c*(t)c(t+t') > e-iwt', 

-= 

If the correlation between phase and amplitude fluctuations is neglected, the field 

spectrum is given by 

+= 
WEJEJ(w) = EJ0 J dt'exp[-i(w - O)t' - ~ < (b<J,it + t') - O<J,i(t)) 2 >], 

-= 

with 

-= 

As pointed out in Chapter 3, when the weak sidemode structure in the field 

spectrum can be neglected, the Lorentzian laser linewidth Di.vi for the optical 

field inside the jth cavity is given by 

1 1 
D.v· = -J-Res(O)J 3 271" t' ' 

(5.21) 

where Res(O) is the residue of the integrand 

ow ~ ~ . t' - < 61 (w)b,t,.(w) > (1- eiw ) 271" 'l'J J 

at the simple pole w = 0. 
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To derive the linewidth formula, one needs to know the asymptotic behavior 

of function 64>(w) as w-+ 0. From Equation (5.16a), one obtains 

with 
T1i 

Do= T2r 

-T2i 

-T1r 

Tli 

+T2r 

-T2i 

Tu_ £.1. 2 
4 - 2 W1R1°1R 

+T1r + wrRrlR 

_Tu 
4 

-T2r 

_Tu 
4 

-T1r 

_Tu 
4 

-T1r 

Tu Qi 2 ( 
4 - 2 W2R 72R 

T2r + w~R T2R 

T2r + W~R T2R 

.22) 

Clearly, Res(O) exists, and the linewidth formula can be obtained after some 

algebraic manipulations. 

To show the usefulness of the results given above, a detailed analysis will be 

carried out for cleaved-couple-cavity ( C 3
) lasers, which have drawn considerable 

attention in the past five years. Using the results of (5.10)-(5.llb), Equation 

(5.22) is simplified, and one obtains 
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In deriving Equation (5.23), it is assumed that 

where a 1 and a 2 are defined in Equation (5.8a). 

Using the result of Equation (5.,23), and according to Equation (5.21), the 

linewidth fl.µ 1 is given by 

Following the same procedure, one can obtain the linewidth flv2 for the opti­

cal field in the other cavity. For the first subscripts 1 and 2, the symmetric 

characteristic of Equation (5.24) indicates that 

As expected, the optical field of two-section lasers is characterized by one linewidth. 

From Equation (5.24), the linewidth has contributions from both cavities 

with weighting factors Tfr/(T1r+T2r) 2 and Tfr/(T1r+T2r )2 • The factor Tfr/(T1r+ 

T2r )2 is just a measure of the contribution from Cavity 2. Similarly, the factor 

TJr/(T1r + T2r) 2 is measuring the contribution from Cavity 1. The T1r and T2r 

given by Equation (5.llb) are directly linked to the optical coupling coefficients 

between the two cavities. 

In order to understand fully the physical meaning of the terms given in the 

linewidth formula, a brief revisit to the semiclassical theory of laser noise [8] is 
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essential. For the jth cavity, W.io is directly proportional to the average rate 

of events that change the photon number, W.i2 is directly proportional to the 

average rate of events that change the carrier number, and W.i 1 is directly pro­

portional to the average rate of events that change photon number and carrier 

number simultaneously. For the jth solitary diode laser, the linewidth is solely 

proportional to Wio. On the other hand, the two-section laser linewidth is com­

posed of contributions from all three different average rates. Apparently, this 

unique feature arises from the optical coupling between the two cavities. 

As shown in (5.24), there is no simple relation between the output power (or 

the photon number) and the linewidth. In order to have a better understanding, 

numerical evaluation is necessary. Figure 5.4b shows linewidth as a function of 

the photon number for three different paths of current injections. As shown in 

Figure 5.4b, Curve (I) is under the condition that one section is biased at 0.111,th, 

and that another section is injected with a variable current level. Similarly, Curve 

(II) is obtained when the current path is as shown in Curve (II) of Figure 5.4a. 

Other parameters used in Figures 5.4a and 5.4b are given as follows: t 12/r11 

= 2.0; n1li = 0.82 mm; n2l2 = .18 mm; a = -5; g1 = g2 = 0.5 x 1012s- 1 ; 

f1 = f2 = 0.5; n10 = n20 = 1 X 1018cm- 3
; T1 8 = T2 8 = 3 X 10-9 sec; g~ = g; = 

1 x 10-6 cm3 s-1. V = 2 47 x 10- 10cm3 • V, - 0 53 x 10- 10cm3 • V = 2V · , le · , 2e - · , 1 le, 

Figure 5.4b shows the general trend that the laser linewidth is roughly in­

versely proportional to the output power with nonzero intercept. It also shows 

that the linewidth depends on the current path. With the same output power 

or photon number, the linewidth obtained from current path (I) is larger than 

that from current path (II). The calculated linewidth is also typically on the 
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Figure 5.4 (a) Two different current paths used in calculating the linewidth of 
a tw~section laser. (b) Calculated laser linewidth as a function of reciprocal 
photon number (p1 Vi)- 1 for two different current paths shown in (a). 
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aries ( dotted line) for a C 3 laser. Broken lines indicate the path of minimum 
linewidth as the power is reduced along an approximate radius. The cavity 
lengths and threshold are 11 = 191 µm, l2 = 41 µm, Ii(th) = 16 mA and 
12 (th) = 66 mA, respectively [9J. (b) Linewidth against inverse power for 
two distinct modes as indicated m (a) [9]. 
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order of 10 MHz. Although, in the limit of infinite photon number, the linewidth 

eventually narrows to zero, the power required would be too high to allow the 

experimental observations of such behavior. Therefore, in reality, one would 

like to conclude that there is a power independent component. All the above­

mentioned features agree with Boyd et al. 's experimental observations shown in 

Figure 5.5b. 

With regard to the power independent component of the total linewidth of 

solitary semiconductor lasers, several theories have been proposed [18] [19] [20]. 

However, in this section, the semiclassical theory of laser noise [8] alone predicts 

that limited by the finite attainable output power, extrapolating the experimental 

data of two-section lasers will give the power independent component of the total 

linewidth. Therefore, in general, the discussion given above and the theories 

proposed in [18], [19], and [20] suggest that there may be more than one mechnism 

contributing to the power independent linewidth of two-section lasers. 

5.5 Small-Signal Current Modulation Response and Frequency Chirp­

ing 

Since the refractive index depends on the carrier density, under high speed 

modulation, the periodic carrier density variation shifts the wavelength of the 

emitted optical field. This dynamic wavelength shifting is called frequency chirp­

ing, which limits the maximum data transmission rate in optical communication 

systems. Comparing the two-section laser with the conventional diode laser, 

Agrawal et al. [10] reported that the frequency chirping in a two-section laser 

is reduced typically by a factor of 2. In this section, the small-signal equations 

derived in Section 5.2 will be used to derive the small-signal modulation response 
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and to evaluate the frequency chirping. Cases with both cavities DC-biased and 

only one cavity modulated with a small sinusoidal current will be considered. 

From Equations (5.7a)-(5.7c), the small-signal equations for the determinis­

tic component I11(t), h1(t), n11(t), n21(t), 4>1(t) and ef>2(t) caused by the mod­

ulation source J 11 (t) are 

· a2g; 1 
4>2(t) + -

2
-n21(t) + 2S2i(t) = O 

i11(t) - g~fion11(t) + I1oS1r(t) = 0 

Let 

~ iO t I11(t) = Iu(Oni)e m 

(5.26a) 

(5.26b) 

(5.26c) 

(5.26d) 

(5.26e) 

(5.26/) 

where Oni is the frequency of the modulation current. Taking the Fourier trans­

forms of Equations (5.26a)-(5.26f) yields 

-T1r 

T1i 
iOni + T2r 

-T2i 

~- -Ta(w) 
iOni + T1r + a(w) 

_Tu 
4 

-T2r 
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a1g' 111 Om 
2(i0m+l/-rlR 
g~Ju(Om) 
iOm+l/-rlR 

0 
0 

(5.27a) 

(5.27b) 

(5.27c) 

From Equation (5.27a), the solutions for the frequency components J 1(0rn), 

J2(0rn), I11(0rn), and I2i(Orn) are 

a1g1Ju(Om) -T1r ~- Ta(w) _Tu 
2 ( iO m + 1 /-rlR) 4 

g~ Ju (Om) 
T1i iOrn + T1r + a(w) -T1r 5.28a) X iOm+l/-r1R 

0 iO= + T2r _Tu ~- Tb(w) 4 
0 -T2i -T2r iO= + T2r + b(w) 

- 1 
¢2(0rn) = .

0 
D 

i tn m 

iO= + T1r - am; lu(Om) 
~- Ta(w) _Tu 

2(iOm+l/-rlR) 4 

-T1i g~Ju(Om) 
iOrn + T1r + a(w) -T1r 5.28b) X iOm+l/-rlR 

-T2r 0 _Tu ~ -Tb(w) 4 
T2i 0 -T2r iOrn + T2r + b(w) 

1 -T1r a1g' Ju Om _Tu 
2(i0m+l/-rrn 4 

- 110 0 T1i 
g~Ju(Om) 

-T1r (5.28c) l11(0rn) = - iOm+l/-rrn 
Dm 1 iO= + T2r 0 ~-Tb(w) 

0 -T2i 0 iOrn + T2r + b(w) 

~ - a21a(w) 
I ~ 

1 -T1r a1g Ju Om 
2(i0m+l/-rrn 

- 120 0 T1i iOrn + T1r + a(w) 
g1 Ju(Om) 

(5.28d) h1(0rn) = D iOm+l/-rrn 
m 1 iOrn + T2r _Tu 0 4 

0 -T2i -T2r 0 
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2 

iO-m + T1r + iOmw__:.1/.,.1R 
_Tu 

4 

-T2r 

-T1r 

Tu_ a2w;8 
4 2(i0m+l/-ru) 

• 2 

iO-m + T2r + iOm;f/-r:iR 

_Tu. 
4 

(5.28e) 

Next, to simplify the situation, lasers used in the paper by Agrawal et al. 

[10] will be considered. Thus, after substituting Equations (5.10)-(5.llb) and 

(5.28e) into Equations (5.28a)-(5.28d), one obtains 

[ (iO-m + T1r + i0m1f/ru) (iO-m + T2r + i0m1f;.,.2R) -T1rT2r] 
(5.29c) 

As shown in Equations (5.29a)-(5.29d), the modulation response for each 

cavity is slightly different. Because each cavity has its own current source and 

the two cavities are coupled only optically, this is expected. Similarly, for a 

solitary diode laser under the same current modulation, one has 
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In order to study the experimental results, a new quantity will be defined here. 

This is the frequency chirping ratio, which is given by 

(5.30) 

where AO and (AO)sc are the frequency chirpings for a two-section semicon­

ductor laser and a solitary semiconductor laser, respectively. Considering cases 

with 

the chirping ratio defined by (5.30) becomes 

Chirping Ratio 

Figure 5 .6a shows the calculated results for the wavelength chirping as a 

function of the ac current level. Since the calculated results are valid only in 

the small-signal regime, the large ac current range shown in Figure 5.6a is solely 

for the purpose of comparing this figure with the reported results shown in Fig­

ure 5.6b. The calculated wavelength chirpings are in good agreement with the 

experimental results. 

In addition, numerical results of the chirping ratio are shown in Figures 5. 7 

and 5.8 as a function of the coupling strength t21/r11. When there is no coupling, 

the modulated cavity becomes a solitary laser and the chirping ratio is 1. As the 

coupling strength increases, the chirping ratio decreases and eventually becomes 

a constant. The chirping ratio at 1 MHz is larger than the chirping ratio at 1 

GHz. For coupling strength t2 if r 11 > 0.4, the chirping ratio shown in Figure 
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Figure 5.6 (a) Calculated wavelength chirpings as a function of the mod­
ulation current at 100 MHz for 1.3 µm lasers. Inside each cavity of the 
two-section laser, the photon densities are Pio= P20 = 1 x 1014cm- 3 • The 
cavity lengths are given by n111 = n2 l2 = 0.5 mm. (b) Measured wavelength 
chirpings vs modulation current at 100 MHz for 1.3 and 1.55 µm lasers [10]. 
For both ( a) and (b), dashed and full lines correspond to a conventional and 
a cleaved-coupled-cavity laser, respectively. 
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5. 7 is on the order of 0.5. This agrees with Agrawal et al. 's experimental results 

shown in Figure 5.6b. 

Figure 5.8 shows the chirping ratio for different cavity lengths. With the 

same photon density in each cavity, modulating the longer cavity gives a larger 

chirping ratio, and vice versa. Since the current is modulated in only one cavity, 

the other cavity acts as a buffer to resist the carrier density variation induced by 

the incoming modulated optical field. The unmodulated cavity will also emit an 

unmodulated optical field to the other cavity to smooth out the carrier density 

variation induced by the direct current modulation. Therefore, the larger the 

photon number in the unmodulated cavity with respect to the photon number 

in the modulated cavity, the lower the frequency chirping, and vice versa. 

5 .6 Conclusion 

Using the optical field equations derived in Chapter 2, the dynamics, noise 

spectra, and laser linewidth of an axially coupled two-section semiconductor laser 

have been studied. The small-signal equations for the optical fields and carrier 

densities were first derived. The semiclassical noise theory was employed in de­

riving the frequency and relative intensity fluctuation spectra. Although the 

complicated final results were not given, the spectra can be obtained with diffi­

culty from the intermediate results given in this chapter. 

An analytical expression for the laser linewidth has been derived. The con­

tribution from each cavity to the linewidth is characterized by the weighting 

factors T'f.r/(T1r + T2r)2 and TJr/(T1r + T2r)2. The solitary laser linewidth is 

due solely to the random events that change photon number. However, the two­

section laser linewidth is caused by three different kinds of random events. The 
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three different kinds of random events are events that change photon number, 

events that change carrier number, and events that change the photon number 

and carrier number simultaneously. 

The linewidth is dependent on the path of the current injection, and the 

general trend is that the linewidth is inversely proportional to the output power. 

Although the theory does not predict the power independent component, the 

calculations show that because of the finite output power, extrapolating the 

experimental data leads to a power independent component. The theoretical 

results agree quantitatively with the experimental results of Boyd et al. [9]. 

In Section 5.5, the small-signal current modulation response and the fre­

quency chirping have been studied. The experimental results of Agrawal et al. 

[10] have been explained. Generally speaking, when the laser is directly modu­

lated in only one cavity, the larger the photon number in the unmodulated cavity, 

the smaller the frequency chirping, and vice versa. Similarly, the larger the pho­

ton number in the modulated cavity, the larger the frequency chirping, and vice 

versa. Finally, the usefulness of the general theory established in Chapter 2 is 

demonstrated. 
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