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Abstract

This thesis is an investigation into both the fundamental and experimental aspects
of using semiconductor lasers to generate extremely short (100’s of fs) and very high
repetition frequency (> 50 GHz) optical pulses. The pulses are produced through
modelocking, a technique of forcing a laser to operate in a number of optical modes
simultaneously and to hold a constant phase relationship between these modes. Both
the shortest and highest repetition rate pulses have been obtained from passive mode-
locking, an inherently nonlinear technique which does not use any active external
timing source. Two structures, ridge-waveguide stripe lasers and liquid phase epi-
taxy (LPE) regrown lasers, were used to directly generate picosecond width pulses.
Using cross-correlation techniques, pulse shape and phase measurements are made.
Linear dispersion compensation is shown to achieve nearly a factor of 20 in pulse
compression. Stable pulses down to 260 fs are generated.

Showing that exitonic effects are not essential in these devices, wavelength tun-
ability was combined with dispersion compensation to create the first broadly tunable
subpicosecond semiconductor source. The device is found to give tunability ranges
and mode-locked spectral widths that are comparable to the best results achieved in .
dye lasers in terms of fractions of the operating gain spectral width. Results for differ-
ent regimes in the tuning range are examined, and pulses directly from the laser are
found to have about a 2 to 1 fall-time to rise-time ratio. A significant nonlinear chirp

is found only when the laser is tuned to the short wavelength side of its tuning range



and was determined to cause long tails in the autocorrelations of compressed pulses.
Additionally, spread-resistant pulses are described and experimentally analyzed.
The case of high-repetition-rate modelocking, which more likely involves about 5
modes instead of 5000 modes, is examined. Approximations in the leading theory
of passive modelocking are shown to be inadequate in this case. A steady-state
model for high-repetition-rate modelocking is developed including phase effects and
is tailored to parameters of semiconductor lasers. Self-consistent solutions show that
a lower threshold gain can exist for a supermode than for single mode operation.
Predictions of the laser’s behavior upon modifying key material, geometric, and bias
parameters are made. Experimental results show that through adjustment of the
gain current, “chirp-controlled” modelocking is obtained with operation in any of
the three chirp regimes (up-chirped, chirp-free, or down-chirped). This pulse chirp
and resulting broadening are due to the algebraic addition of opposite-signed chirps
from saturation of the absorber and gain sections. Theoretical modelling from the
supermode analysis also traverses the same chirp regimes when the photon intensity

1s increased.
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Chapter 1

Introduction

1.1 Short optical pulse generation

Not only is light typically the predominant means through which man has gathered
information throughout his existence, but it is also becoming the preferred means of
transmitting information in society today. The heart of this thesis is concerned with
practical sources of ultrashort optical pulses and in extending our understanding of
these. Over the past 35 years, huge strides of progress have been made in the vital
components of optical communications: lasers and optical fiber. Lasers have made
it possible to obtain intense beams of coherent light which are easily focused, while -
optical fibers have provided an effective means of guiding light over long distances with
minimal loss. As coherent light sources, lasers have been able to produce extremely
narrow fractional spectral widths. To impress information onto a signal, however,

one must allow some finite bandwidth to exist. In terms of efficient return-to-zero



(RZ) transmission, the best one can do is to generate time-bandwidth-limited signals
such that the time-bandwidth limit, 7,Av, is satisfied. Most optical sources such
as common light bulbs or light emitting diodes cannot attain this limit since they
produce a broad, incoherent spectrum.

Perhaps the most amazing demonstration of coherence in lasers occurs in the
mode-locked laser. A mode-locked laser is one in which a number of modes (>
3) oscillate simultaneously and keep a fixed phase relationship between themselves.
Thus, if all modes are equally spaced (A f) in frequency and all have the same phase at
some moment, one can easily see from Fourier series concepts that the net electric field
of the separate oscillating modes will nearly cancel over the full period (7 = 1/Af)
except near the moment when they all add up in phase to produce a large peak in
electric field strength. Through this coherent interference between simultaneously
operating modes of a single laser cavity is exactly how the shortest stable optical
pulses have been obtained [1]. Furthermore, the beauty of a mode-locked source is
that it is fully coherent over its whole spectrum and can therefore be used to generate
ultrashort time-bandwidth-limited pulses.

Not only are sources of ultrashort pulses useful in optical communications but in a
number of other applications as well. Mode-locked dye lasers have been used to gener-
ate pulses so short that they contain only three optical cycles (6 fs). Although capable
of generating high powers (> 1 kW), these lasers are large, expensive, complicated,
and inefficient. They require many components (e.g. a dye circulation system, a high

power pump laser, cooling systems, a number of mirrors, etc.) More compact sys-



ters involving Ti:sapphire, Nd:YAG, Nd:glass, etc. [2] lasers have been developed to
produce ultrashort pulses, however they still maintain some of these disadvantages.
To date, the most compact, efficient, and affordable lasers are the semiconductor
lasers. Not surprisingly, of all types of lasers in use, semiconductor lasers are also the
most numerous. The first ultrashort pulses produced by semiconductor lasers and
compressed to subpicosecond widths were generated through passive modelocking by
Yaron Silberberg at Bellcore in 1985 [3].

Today, clean pulses of < 300 fs are commonly generated by mode-locked semicon-
ductor lasers [4]-[8]. These optical pulses are shorter than any pulses that have been
produced with electronics to date. An external cavity allows relatively large energy
pulses to be obtained along with lower pulse repetition rates and produces up to a
2 THz spectral bandwidth. These may likely be useful someday as broad coherent
spectrum sources for wavelength division multiplexing (WDM).

Just last year, 1994, the first commercial mode-locked semiconductor laser product
was announced. The laser generates subpicosecond pulses of up to 200 W peak power
at an optical wavelength of 840 nm. Similar products at 1.3 ym and 1.55 pm are
planned for the near future [9]. Although the laser may be useful as a source or as a
development tool in communications, marketing of the laser so far has been mainly

directed toward replacement of more complex sources currently used in spectroscopy.



1.2 Ultrahigh-repetition-rate modelocking

Because the mode separation and thus the pulse repetition rate is determined by
the laser cavity length, shorter cavities can be used to generate mode-locked pulse
trains at higher repetition rates. Due to its large material gain, short absorber and
gain recovery times, and ability to be made into short cavities, the semiconductor
laser is likely to be superior to all other lasers in producing stable trains of ultrahigh
repetition rate mode-locked pulses. In fact, in 1989 it was demonstrated that mode-
locking could be achieved without the use of any external cavity, and repetition rates
near 100 GHz were obtained [10]. This was independently discovered at Caltech by
Steve Sanders et al. and published in 1990 [11].

From records gathered from the literature, a graph of reports of the highest rep-
etition rate laser pulses is plotted in Fig. 1.1. Modelocking was first achieved by
Hargrove at AT&T Bell Labs in 1964 [12]. This was demonstrated through active
modelocking of a Helium Neon laser at 56 MHz and is displayed as the leftmost point
in the figure. Most recently, a record modelocking repetition rate at 1.54 THz was
reported by Arahira in 1994 with an InGaAsP (at 1.55 ym) laser and Bragg reflector
structure used to reduce the likelihood of low harmonics of the repetition rate to
modelock [13]. The fact that no external cavity is necessary at high repetition rates
makes the source more compact. The graph shows that, nowadays, practically any
desired repetition rate can be achieved with mode-locked semiconductor lasers.

Currently, there is much interest in using these monolithic semiconductor lasers
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Figure 1.1: Reports of the highest repetition rates from modelocking throughout its
history. Progress has proceeded at essentially an exponential rate with a doubling

time of about two years.



as sources in optical communications. Relatively long monolithic lasers (~ 5 mm)
are being developed as sources of return-to-zero (RZ) optical pulses which can subse-
quently be modulated with an external modulator or with an integrated electro-optic
modulator [14,15] to obtain modulated pulse trains suitable for soliton transmission.
Higher repetition rate mode-locked lasers are also under investigation as sources in
very high bit rate time division multiplexing (TDM) systems at 40-100 GHz [16,17]
and as stable sources of equally spaced phase locked channels of carriers for WDM
systems [18,19] as an alternative to arrays of lasers or frequency modulation (FM)
locked laser diodes, respectively. The mode-locked spectrum can serve as an ex-
tremely stable source of an equally spaced set of modes and may possess a stronger
bistability and thus operate as a more stable source, with better wavelength stability
than Fabry-Perot lasers used in some applications today [19]. It is likely that the

world will see more from the mode-locked semiconductor laser in the near future.

1.3 Thesis outline

Since two vastly different regimes of operation are discussed, the subject matter
divides rather naturally into two separate areas. The first covers external cavity
mode-locked lasers, which produce relatively low-repetition-rate pulse trains having
relatively large pulse energies, while the second applies mainly to short cavity, high-
repetition-rate mode-locked semiconductor lasers. Each of these separate areas can

be divided slightly less distinctly into experimental work and theoretical work. The



unfolding accomplishments have progressed somewhat unequally in these four areas.
Extensive development of a model of passive modelocking has previously led to a
closed-form theoretical description of passive modelocking in the case of relatively
low repetition rate lasers. Also experimental work in high-repetition rate lasers has
had the predominantly unexpected success of modelocking at rates even beyond 1.5
THz. In contrast, experimental results from external cavity modelocking have not yet
reached expectations. Arguments have been made that passively mode-locked semi-
conductor lasers should be able to generate pulse widths of 50 fs. This has not yet been
attained. Likewise, no comparably complete theoretical model of high-repetition-rate
passive modelocking has existed. If one wants to discover the most possible in a field,
one should “strike” into the areas of greatest “darkness.” For this reason, most of the
efforts in this thesis have been directed toward the experimental aspects of external
cavity lasers and the theoretical explanation of high-repetition-rate lasers.

Chapter 1 gives an introduction to short optical pulse generation in its first half
and high-repetition-rate pulse trains in the second half. Chapter 2 delves more deeply
into the field of short optical pulse generation and eventually concentrates toward
passive modelocking and the dominant theoretical view today. The experimental
setups used for passively mode-locked lasers are first presented in chapter 3, and -
important information about ultrafast pulse measurement and dispersion concepts
follow. This leads to the topic of pulse compression. Tunability of mode-locked
devices is also discussed in chapter 3 along with the prospects and results of combining

tunability and pulse compression to obtain broadly wavelength tunable subpicosecond



pulses. Chapter 3 ends by analyzing the limits of the mode-locked spectral width
and tunability range and comparing these results to those from the most extensively
developed mode-locked laser, the dye laser.

Determining the width, shape, and chirp of the mode-locked semiconductor laser is
of utmost importance for understanding its operation, and these methods and results
are presented in chapter 4. The next chapter, chapter 5, uses a similar setup but with
a mask placed in the Fourier plane of the pulse compression system and utilizes the
measured pulses for an application of generating dispersion-resistant pulses. These
pulses are shown to spread out less rapidly than common pulses as they propagate
through dispersive media.

Chapter 6 begins with a distinctly different regime of passively mode-locked laser
operation. It concentrates on developing a complete self-consistent model for high-
repetition-rate passively mode-locked lasers. Solutions for an approximate 3-mode
model and a many-mode model of high-repetition-rate passively modelocking, which
may even be extended to external cavity passive modelocking, are presented. The
majority of the theory is given in this chapter. Chapter 7 begins with the experimental
aspect of high-repetition-rate passive modelocking and describes agreement with the

theoretical results of the previous chapter.
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Chapter 2

Review of methods of
modelocking and other forms of

short pulse generation

There are a number of methods which have been used to generate short optical pulses.
The main techniques include gain switching, Q-switching, and mode-locking. FEach

of these is realizable in semiconductor lasers.

2.1 Gain switching

Gain switching is a technique by which one suddenly increases the pumping of a laser
to increase its gain. Through this method, the number of photons generated by a laser

can be rapidly increased. The photon intensity of a laser is coupled to the population
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difference through the photon rate equation [1,2],

P —ST(E) +TG(n(t) — ner)S(E) + FZ”, 2.1)

where S(t) is the photon intensity, 7p is the photon lifetime, G is the differential
gain, n(t) is the instantaneous upper level or band population density, n; is the
population difference required to achieve transparency, I is the confinement factor, 3
is the spontaneous emission coefficient representing how much of the total spontaneous
emission enters into a single longitudinal mode, and 7, is the spontaneous excited
state lifetime. The change in photon intensity is calculated from this equation, and
the three terms of the right-hand side represent photons lost due to cavity losses,
photons entering into a lasing mode due to stimulated emission, and photons entering
a lasing mode due to spontaneous emission.

The upper state population density is in turn connected to the photon intensity
by the equation,

dn(t) n(t)

G = e = =~ Gln(t) — ) S (2:2)

which gives the rate of change of the population difference. Ry, is the pumping rate.
The second term on the right hand side represents a decay of the upper state popula-
tion due to spontaneous emission, and the last term is the change in the population
difference due to stimulated emission. The approximations involved in deriving these
equations remain valid for sufficiently large reflectivities (> 20%), above threshold
operation, 8 > 107?, and for pump modulation below the cavity round-trip period,

about 60 GHz [2] for semiconductor lasers.
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Thus from Eqs. (2.1) and (2.2) one can see that if R,, can be suddenly increased,
a sudden overshoot in the population difference will force an abrupt increase in light
and a subsequent sudden drop in carrier density (assuming the laser is, as is usually
the case, not strongly damped). Typically, such a sudden pumping impulse will
produce not a single impulse in photon intensity but a series of sharp optical spikes
(or ringing) as the laser settles back to equilibrium. This is referred to as a relaxation
oscillation and can be studied through a small signal analysis of the coupled rate
equations and found to give a frequency of

fT:'Ql; _1_'(;]——1)7 (23)

TeTp Jth
where J is the laser’s current density, and Ji is the required current density to reach
threshold. Methods have been investigated to reduce the ripples beyond the first peak
by using bi-directional pulses with some improvement [2], but still parasitics play a
strong role in determining the limits of how short the pulse can be. The shortest gain

switched pulses have been 24 ps and were achieved in semiconductor lasers [3,4].

2.2 Q-switching

Not only is it possible to generate a short optical pulse by abruptly changing the .
laser’s gain, but short pulses can be generated by changing the laser’s cavity loss or
equivalently its “Q” (quality factor). This was originally proposed by Hellwarth in
1961 [5] and was the first technique for generation of large optical bursts from a laser.

Q-switching is accomplished by keeping the laser cavity loss very high while pumping
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it. Through this, a large carrier density can be generated in the gain medium. If,
next, the cavity loss is reduced (Q is increased) the laser can then suddenly deplete
the gain medium, generating an amount of stimulated emission equivalent to this
stored excess gain pumping. When the Q-switching is caused by some external active
source, we refer to this as active Q-switching. The laser may also be constructed in
such a way that it will operate in this manner on its own. A laser with a saturable
absorber or even a laser with a nonuniformly degraded gain region will demonstrate
Q-switched behavior.

When the population difference reaches a level high enough, light in the laser
cavity may begin saturating the absorption. This leads to an increase in the Q of
the cavity which further saturates the absorber and suddenly generates an enormous
amount of light until the upper state population of the gain medium is well-depleted
(Eqn. 2.2) and lasing stops. After some time, the gain section will become strongly
inverted and the cycle then begins again. The intensity oscillations are thus a result
of the coupling between the population rate equation and the photon rate equation,
meaning that the self Q-switching is essentially an undamped relaxation oscillation.
However, the oscillation is typically of lower frequency than the relaxation oscillation
and does not have the same square root dependence as the relaxation frequency given
in the equation (2.3) for the small-signal relaxation frequency [2].

Note, the two methods, gain switching and Q-switching, both result from a phys-
ical process where the energy present in the lasing modes of the cavity decays toward

zero and rebuilds once in every cycle. The widths of coherent pulses generated through
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these two methods are therefore limited by the photon lifetime, 7,. This is contrary to
the physical process occurring in the remaining short pulse generation method, mod-
elocking. The decay and rebuilding of the energy in the laser cavity results in not
only inherently slower, but also “noisier” trains of pulses. This has been confirmed
experimentally with Q-switched lasers giving peak pulse powers of up to 10 W and
timing jitter noise of 4-6 ps RMS [6]-[8] (similar to that of gain switching [4]) but has
been reduced to 0.8 ps through opto-electronic feedback [8). Mode-locked lasers have
been shown to give peak pulse powers of up to 200 W and 0.22 ps (through hybrid
modelocking) timing jitter noise [9]-[11] and to produce pulse trains with coherence

lengths of over thousands of pulses [12].

2.3 Modelocking

Modelocking, as opposed to the previous two methods discussed, maintains essentially
a constant energy in each mode during the full repetition period. Consider a laser
with a number of modes oscillating at once. An ideal homogeneously broadened laser
[13], would not be expected to oscillate this way [14], but in realistic cases, it may
oscillate in multiple modes. Typically, however, multimode operation will produce
oscillations such that no two modes keep a constant phase relationship. Special effort
must be made to keep a consistent phase relationship between the modes to achieve
coherence throughout the spectrum. As discussed previously, active modelocking was

the first method used to force this fixed phase relationship upon the modes.
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Figure 2.1: Net field distribution plotted for various times within one modelocking
cycle. A pulse is seen moving back and forth through the cavity for this simplified

plot depicting a result from only 5 modes.

When light exists in a resonator, the energy exists essentially in equally spaced
modes [15]. These modes each produce a characteristic standing wave pattern within
the resonant cavity and are defined by the requirement of boundary conditions at the
ends of the cavity. The net electric field is made up of the sum of these standing
waves and would produce different interference patterns and therefore a different net
field distribution at various times during a cycle. For a resonator with five modes
present, the field distribution is plotted at three different moments in time (Fig. 2.1).
Essentially, the resulting field distribution looks like that of energy “sloshing” back

and forth in a cavity — or a pulse in the cavity. A loss modulator can be placed at
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one end of the cavity and be used to change the cavity’s loss at the mode-spacing
frequency. Using an external source at this frequency one can maintain a high loss
in this section of the laser until one expects that the pulse will be passing through.
The laser, now, will not operate in continuous wave (CW) operation, since the loss
may be held high for a majority of the time, and CW lasing will experience too much
loss. In fact, it is most favorable for the laser to operate in such a way that all
modes will be in phase at the position of the loss modulation (z=0) when the loss
modulator is in its low-loss state (t=0) as shown in Fig. 2.1. In this case one forces
the modes to maintain a fixed phase relationship by using some external active source
and, therefore, this is referred to as active modelocking. A very elegant analytical
theory has been developed to describe this type of modelocking in the time domain,
and it is found that the modes are coupled together in a Hermite-Gaussian distributed
supermode as the laser is modulated at its cavity round-trip frequency [16]. In fact,
this external active source is not always necessary to achieve mode-locked pulses. The

laser may be designed in such a way that it will modelock on its own.

2.3.1 Passive modelocking

Unlike in active modelocking, an external timing source is not required for the pas-
sively mode-locked laser’s operation. Also, contrary to active modelocking, passive
modelocking is an inherently nonlinear phenomena which requires material saturation
to produce a coupling between the cavity modes. In some ways, passive modelock-

ing has more in common with passive Q-switching than with the linear problem of
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active modelocking. Physical modelling of passively mode-locked lasers has led to
relatively good agreement with some experimental results for mode-locked lasers us-
ing an external cavity [17,18]. Assumptions in these time domain models break down
as higher repetition rate modelocking is considered especially in monolithic passively
mode-locked lasers, to be discussed in chapters 6 and 7. Passive modelocking has led
to shorter pulses than each of the other short-pulse techniques discussed so far.
Modelling of passive modelocking has involved time domain analyses and fre-
quency domain analyses. A frequency domain analysis becomes cumbersome when
one analyzes a laser oscillating in a large number of (> 20) modes [19,20]. The time
domain analysis, which has been more thoroughly pursued [17,18,21,22], is more suit-
able for low duty cycle mode-locked lasers. As it is the dominant model today, the

time domain view will be briefly summarized here.

Time domain model

The typical model of a passively mode-locked laser includes a gain section and a sat-
urable absorption section, as shown in Fig. 2.2. The presence of an inverted medium
in the laser cavity leads to spontaneous emission and also to a modal gain which
amplifies this, leading to amplified optical fluctuations in the laser cavity. Some have
chosen to study how these fluctuations eventually lead to modelocking, assuming the
right conditions within the laser cavity [23]-[26]. The study of this evolution as the
laser settles to a steady state is referred to as the transient problem for passive mod-

elocking and generally shows a stable pulse train can build up in approximately a
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Mirror Mirror

Gain Absorber

Figure 2.2: Model of two-section passively mode-locked laser. In the semiconductor
laser, the right section is contacted and grounded to extract carriers from the saturable
absorber. The contact on the left would be forward biased to inject carriers into the

gain section.

hundred cavity round-trips. The transient problem is interesting and also worthy of
study, but is not a major subject of this thesis. Further discussion of this approach
will appear at the end of this chapter.

From experimental work with lasers [27,28], one gathers that through whatever
evolutionary path, the passively mode-locked laser may develop stable intensity pulses
after some finite start-up time. When an intensity pulse exists in the cavity and travels
through the absorber, it will saturate the absorber; it drives the carrier density toward
the point of transparency. After the pulse passes, the absorber section carrier density
will exponentially recover. The gain will also begin to saturate if it is hit with enough

energy; it will be driven toward transparency, and after some time it will recover. A
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gain strength

Figure 2.3: A plot of the temporal change of photon intensity (upper plot) along with
strength of gain section (thicker line) and strength of absorber section (thinner line)

during one mode-locking cycle.

temporal plot of the physics of the pulse intensity envelope, the absorber saturation,
and the gain saturation are displayed during one repetition cycle in Fig. 2.3 [17,21].
For a stable pulse train to exist one requires a net gain to exist during the pulse and

a net loss on the wings and elsewhere between pulses. This implies that:

(1.) The absorber must saturate more quickly during the pulse than the gain section

(have a lower saturation energy), and

(2.) the absorber must recover more quickly, and along with the cavity losses, reach
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a stronger net absorption than the gain section during this recovery interval.

In semiconductor physics we are incredibly lucky that this generally happens auto-
matically [29,30]. This occurs since the differential absorption of the gain section
is smaller than the differential absorption of the absorber section. Physically, this
results since a certain length of semiconductor material can only offer a finite gain,
and the increase in gain eventually broadens and saturates with increased pumping.

The common time domain model assumes a steady state pulse electric field en-
velope, E(t), where the net electric field is given by E(t) = Re[E(t)e™!], and wy is
the center optical frequency. The corresponding Fourier transform of the envelope is
E(Q) such that Q = w—wo. As initially described by Haus, one may take into account
the bandwidth filtering inside the cavity, the saturation of the gain section and the
saturation of the absorber section. By the definition of steady-state operation, the
pulse envelope must return to its original shape after an integral number of round
trips. Near the peak gain for the laser cavity, one may consider the net cavity loss
transfer function to be nearly parabolic, having some width Aw. This effect alone

would modify the spectrum after one round trip to create,
—(w—w )2 .
Ei(Q) = e” a7 Ep(Q). (2.4)

When the modes are relatively close together inside this mode-locked spectral
envelope (more exact discussion of this approximation will be undertaken in chapter
6) and the deviation from and width of the spectrum are small compared to the gain

bandwidth, the Fourier transform of Ei(£2) may be taken to find the output pulse
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envelope in terms of the original,

1 d? 1 d?

Likewise, a group velocity dispersion (GVD) will achieve the same effect except that
a quadratic phase rather than a quadratic amplitude is placed upon the original

spectrum,

Ey(Q) = e Pl B (Q) = (1 = iD(w — wo)*) Ex(Q) (2.6)

which correspondingly becomes

Ey(t) = (1+ iDg%)El(t) (2.7)

after a round trip through the cavity.
Other physical effects on the pulse are due to the gain and saturation of the gain

section which are most easily described in the time domain,
Es(t) = 2 Ey(t), (2.8)

where g(t) = gie”* oo \B2(0F 4t 4 ) des the nonlinear gain effects. Here, g(t) is the
instantaneous gain of the gain section, g; is the unsaturated gain, and o, is the cross
section of the gain material involved. Similarly, the saturation of the absorber results
in

Eq(t) = e * O Ey(1), (2.8)
where a(t) = a;e”"* Joo B0t tavs assumes all single pass effects are small from
each element and thus the order of operations is unimportant since all these expo-

nentials are expanded to first order. Thus, since one requires E4(t) = Eo(t), for
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steady-state operation one finds,

(g(t) =1 —a(t)+ 131—2;? + iD%)Eo(t) = Eo(t). (2.9)

From the population rate equation, one finds essentially exponential decays to-
wards transparency for absorber and gain. Absorption saturation is approximated by
a second order Taylor series dependence on time and gain saturation, which is slower,
is approximated by a first order (in time) saturation. Haus proved that for these
approximations, the function sech is a consistent solution. Martinez (18] extended

the analysis to that including phase effects from a fast saturable absorber and arrived

at
E(t) = Vpsech(t/r)e® tnlsechlt/)), (2.10)
where
r= (e (P (213)
with
W = /_Z |\E(t)|2dt (2.12)

being the normalized pulse energy. Here lo/1; is the ratio of DC loss to saturable
absorber loss, and 3 is the chirp parameter. The results in some cases compare well
to full numerical calculations [31]-[33).

Martinez et al. include phase effects from fast saturable absorption, but the phase
effects which result from changes in carrier population in semiconductor lasers are due
to slow saturable effects (i.e., they are due to population state changes and not non-

resonant Kerr nonlinearities), thus, in the case of the semiconductor laser, the chirp
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effects are proportional to energy and not to intensity as Martinez et al. derive them
for a distinct case [18].

The resulting analysis gives pulse shapes and pulse widths for the specially chirped
pulses. It also gives some direction on how to modify laser parameters including
unsaturated absorption strength, relative saturation energy, and gives reasonably
good agreement with lasers showing negligible self phase modulation (SPM). Another
extension of Haus’ work by J. Chen has been published recently but considers only
the fast SPM case also [22]. To date, no steady state analysis including SPM from

slow saturable material has been published.

Models for studying transient effects in passive modelocking

Simulations which model the mode-locked lasers from transient all the way to steady-
state oscillations have been undertaken [24,25]. Assumptions involved in making this
problem tractable are different than those of the other approaches, therefore, results
will complement and/or confirm those from other theoretical work. All results pub-
lished to date have followed one of two distinct approaches: travelling wave calcula-
tions for modelocking build-up to the steady state [25] or the supermode competition
model [34]. In general, these models have not done well in taking into account the
expected physical phemomena in semiconductor lasers [27]. In all transient modelling
of passive modelocking so far, no SPM has been successfully incorporated, as this is
a stumbling block when one does not consider the phase coherence effects from £ (1)

and only considers the intensity. Surprisingly some agreement, at least in the form
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of comparable width pulses, has been obtained without incorporating SPM. Even
without considering SPM, the calculations are highly computational since they re-
quire one to proceed through a huge sequential evolution of the light and material in
many discrete modelled sections within the cavity. Due to the computational aspect
of this problem, there is more difficulty in arriving at an intuitive understanding or
relationships between parameters, than from the steady-state analyses. Although the
transient calculation has not contributed much yet, perhaps as modelling techniques

and computing equipment continue to improve, this method will offer valuable insight.
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Chapter 3

Experiments with passively
mode-locked external cavity

semiconductor lasers

3.1 Setup and operation of ultrashort pulse semi-

conductor lasers

There are two categories which all passively mode-locked semiconductor lasers can be
classified into: those that involve an external cavity and those that do not. In this
chapter we will be solely concerned with the first type which are also chronologically
the first type that had been demonstrated [1].

The lasers used in each of these experiments are one of two types: ridge-waveguide
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lasers processed directly from molecular beam epitaxy (MBE) material or buried
heterostructures from MBE material and liquid phase epitaxy (LPE) regrowth [2].
In either case, along the direction of growth, there is an MBE-grown graded index
region with between one and four quantum wells (reasons for number of wells will
be discussed in the section on modal bandwidths). The two semiconductor laser
structures are shown in Fig. 3.1 and Fig. 3.2.

The lasers are processed photolithographically so that contacts on the top (p-
side) are divided into at least two sections. A thin layer of Silicon dioxide (SiO,)
first is placed over the full p-side and removed over the 2-3 um stripe region. Metal
contacts of Cr and Au or ZnAu and Au are evaporated over each region on the top
side, and a single metal contact of AuGe and Au is evaporated onto the bottom side
(n-side) of the diode. These contacts are then annealed to produce low resistance
ohmic contacts. For more detailed processing information see [3]. To achieve the
necessary gain reduction for stable modelocking, it is required that one section be
kept at a carrier density below its transparency (ns ). Also, to achieve oscillation,
one section must be forward biased to a point that provides at least enough gain to
meet the threshold requirement for the full laser cavity. All successful configurations
for passive modelocking presented here used the longer section of the laser as the gain
section and the shorter section as the saturable absorber section. The external cavity
is provided by a beam splitter with between 30% and 80% power reflectivity or in
some cases a 600 line/mm grating. Typically a 40 power microscope objective is used

to couple the semiconductor laser to an external cavity of between 10 and 50 cm in
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Figure 3.1: Structure of stripe laser (a) along with expanded image of the laser’s

active region (b).
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Figure 3.2: Structure of LPE regrown laser (a) along with expanded image of the

laser’s active region (b).
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length.

One sees a peak in light output due to increased feedback in a couple of main
cases. These correspond to two positions for the intracavity lens: the lens may be
placed at a distance of one focal length from the semiconductor laser to produce a
collimated beam at the planar feedback mirror, or the lens may be placed slightly
beyond one focal length from the laser such that the laser’s field distribution from
the end of the waveguide is imaged on the mirror. Although the first case is seen
to give significant feedback into the laser, it is known to invert the transverse mode
profile a(z,y) — a(—z,—y) and has also been shown to be inferior in achieving
modelocking. All results in this thesis are for the second configuration where the
laser output is focused to a spot on the external cavity mirror or grating. To enhance
coupling and reduce satellite pulses, an antireflection (AR) coating (usually < 5%
power reflectivity) is placed on the laser’s gain section facet since it is within the
compound cavity. A diagram of the external cavity setup is shown in Fig. 3.3.

Special steps are taken to isolate the separate laser contacts. A wet etch of Hy-
drofluoric acid (HF) is used to etch through the SiO, layer in the region between the
contacts and a subsequent etch of the highly doped cap layer on the p-side of the
graded index region 1s used to obtain at least 5 k) of isolation between the adjacent
sections.

Once this laser with integrated saturable absorber is set up in the external cavity
configuration and is biased as mentioned, it will produce pulses of about 3-5 ps,

typically. Accurate measurement of the pulse widths requires resolution shorter than
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Figure 3.3: The two section passively mode-locked laser coupled to an external cavity
is set up with AR coating on gain facet and device output focused to a point on the

70% mirror.

the response of any commercially available electronics, thus, special techniques must

be used to measure the widths.

3.2 Standard autocorrelation pulse measurement

techniques

The general theory of intensity autocorrelations is presented in [4]. In the simplest
case, one beam splitter, two mirrors, one non-centrosymmetric crystal, and a detector
are necessary for intensity autocorrelation measurements. The beam splitter is used

to send the beam along two orthogonal arms of a Michelson interferometer, and to
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collinearly recombine the beams after they return from mirrors at the end of each
arm. Next, they are sent into a nonlinear second harmonic generation (SHG) crystal
(either Lithium lodate, LilOs, or Beta Barium Borate, BBO, in our cases). Since
one mirror is moveable, the temporal overlap of the pulses can be varied within the
crystal. If the pulses do not overlap temporally, an average signal strength of one unit
will be generated at the second harmonic of the optical frequency by the crystal. If
overlap is perfect, an average intensity of three will now be produced by the crystal.
Valid pulse measurements will possess this 3 to 1 ratio, whereas noise correlation
spikes are expected to generate a 3 to 2 ratio. The resulting intensity generated by

the crystal at the second harmonic is proportional to

109)(7) = /_ [4dt+/ E(t—r) [4dt+4/ \B(4)2|E(t — )|*di+

4 [T (B@F + Bt = 1)) Re( BB (¢ ~ )e™)dt+

2 /_ Z Re((E()E™(t — 1) ?)dt. (3.1)

In the above case, it is assumed that a measurement is taken while the mirror position
is being scanned and the averaging time used is long enough to eliminate the inter-
ferometric fringes (the last two of the five terms) caused by resolution comparable to
the individual optical cycles.

Measurements including the interferometric autocorrelation fringes have been used

to gather more information about pulse shape and pulse chirp. These, however, have
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only been demonstrated for pulses of 1 ps or less since otherwise they involve a large
number of oscillations and pose an extremely strict requirement for the translation
and linearity of the translational equipment. They have also not been demonstrated
to give decent experimental results for average powers below 100 mW. Additionally,
pulses with nonlinear chirp and pulses outside of the common expected pulse shapes
(especially asymmetrically shaped pulses) pose a major problem for this technique
[5]. New types of measurements have been made to determine the actual pulse shape
and chirp of semiconductor laser pulses and these techniques will be presented in the
sections on pulse shape and nonlinear chirp measurements, respectively.

From the laser setup in the previous figure, a standard autocorrelation is shown in
Fig. 3.4. One can see the 3 to 1 ratio in the intensity autocorrelation. Two satellite
pulses are seen in the autocorrelation and result from the imperfect antireflection
coating. The full width at half maximum (FWHM) of this autocorrelation is about
6.2 ps and corresponds to a pulse width of about 4.0 ps assuming a sech? pulse shape.
The corresponding spectrum plotted under the same conditions is shown in Fig. 3.5.
It has a FWHM of 6.0 nm. Small ripples can be seen in the spectrum and correspond
to the 14 ps spaced satellite pulses from the imperfect reflection coating and show up
as small 70 GHz period ripples in the compound cavity spectrum.

Every pulse shape has a time-bandwidth limit. For example, if one wants to
generate a 1 ps pulse, then one is required to generate an intensity spectrum, |E(f)]?,
that is about 0.4 THz (or at 850 nm, nearly 1.0 nm) FWHM. From the two figures, one

can easily see that the time-bandwidth product which is 10 here is about 25 times in
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Figure 3.6: Representation of an up-chirped Gaussian pulse has a lower frequency at

the beginning of the pulse and proceeds to higher frequency.

excess of the expected time-bandwidth product. A table of expected time-bandwidth

products for common pulses and spectral shapes is shown in Table 3.1.

3.3 Dispersion compensation

The excess time-bandwidth product will be shown to be due to & chirp on the pulses.
A chirped pulse is a pulse whose instantaneous frequency changes with time during
the pulse. For example a Gaussian pulse with a linear upchirp is plotted in Fig. 3.6.

This can be written as a Gaussian envelope having a quadratic phase upon the carrier,

E(t) — e—(a—ib)tzeiwot (32)
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Shape, I(t) AC |E(f))? Af AT, Af
Gaussian
-ore Zn) i VIR g 4
Rect/Sinc
rect(t/7) r sinc? (77 f) 0.8867  0.886

Hyperbolic secant

sech®(t/7) 1.7637 sech®(7%7 f) (1'76:; 0.315

Double-sided exp.

u(——t)eQFt -+ u(t)(‘i—zn %ﬁé f§T127rf_)2 F/?T 0.221
Cosine
cos?(2rt/T) T/4 6(f—2)+6(f+ 1) 2/ 0.500

3-mode triangle spect.
(b4 Jpcos@mt/r) 2T B+ 46 + ST -HF 2jr 0667
3-mode rect spect.

(et + 1+ e™it)2 0.621r  [6(f + 1)+ 6(f) +6(f — 1) 1/x 0621

Table 3.1: Time-bandwidth products for common functions.
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or equivalently in frequency domain, a Gaussian with a quadratic spectral phase,

E(Q) = 8_[4(:5';22)]92- (3.3)

There are a number of ways of removing quadratic phase: using gratings [6,7], prisms
[8], chirped fiber gratings [9], phase conjugation half-way through the dispersive path
[10], phase modulation from an external modulator [11], or using nonlinear phase
effects [12].

When a pulse passes through a linear dispersive material or system, typically it

spreads out. An optical spectrum of F(w) will become

F(w)el(¢0+%(w—wo)L+% %z—g(w—wo)2L+% %g(w—wo)SL-i-...)’ (3.4)

where the phase terms have the following effects:

(1.) The constant phase, ¢q, only causes a shift in the phase of the carrier and

therefore has no noticeable effect on the pulse shape.

(2.) The term linear in (w — wy) produces an advance or delay of the pulse envelope

and is usually referred to as the group delay due to dispersion, 7 = %L.

(3.) The term quadratic in (w — wp) is the first one to affect the pulse shape. It is
generally the term responsible for broadening pulses and is referred to as the .

group velocity dispersion (GVD).

(4.) The term cubic in (w — wp) is the first one to cause an asymmetric distortion
in the pulse shape and is considered the first term to contribute to nonlinear

chirp.
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Since the dominant effect of dispersion from a grating pair or from a non-resonant
material is the third effect listed, that is our first concern. A grating pair or non-
resonant frequency region for a material will add a nonlinear chirp, however, this
effect is on the order of Aw/wp or the fractional bandwidth of the signal which is
down by a factor of more than 1/100 for the experiments done here, and therefore,

can be considered negligible in these experiments. So, a pulse envelope
E(t) = e (3.5)

would be found to broaden into a chirped pulse of

E(t) = e~ 0/emi2gB DA/ +REELR) (3.6)

upon travelling a distance, L, through the dispersive system. However, the addition
of dispersion from a grating pair is a linear operation therefore any broadening from
linear chirp that has been placed on or already exists on a pulse, can be removed.

For example the broadened Gaussian in (3.2) having a width of

In(2)
Ty =2 . (3.7)
can be compressed to a minimum width of
aln(2)
=2 a? + b? (3.8)

by choice of an equal and opposite quadratic phase such that (d?3/dw?)L = b/(a® +
b?)/2. Through proper adjustment of the spacing in the dual grating system, either
sign of dispersed pulses (up-chirped or down-chirped) can be compensated and this

may compress a pulse well as long as the chirp is very linear.



42

| compressor |

Figure 3.7: Telescoped dual-grating compressor adds negative GVD if gratings are
outside of lens’ focal lengths, or adds positive GVD if gratings are within the lens’

focal lengths.

Compressed pulses have been obtained from the passively mode-locked semicon-
ductor laser [13,14] and, thus, the chirp has been found to be quite linear. The setup
for this experiment is shown in Fig. 3.7. Using the buried heterostructure variety
of laser with a quadruple quantum well structure as described in section 3.1, pulses
with time-bandwidth products between 3 and 10 were obtained with no dispersion
added. The gain section was pumped with between 38 mA and 50 mA in forward
bias, and the absorber section was grounded through a 100 § resistor. The output
of the laser was taken from a 70% mirror and sent through a single-pass telescoped
grating compressor. The light exiting the compressor was directed to the collinear

second harmonic intensity autocorrelator or a monochromator for analysis.
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These measurements were performed with the laser modelocked in the first har-
monic of the external cavity (558 MHz) and compression ratios typically of 10 to
18 times were obtained [14]. Increased autocorrelation widths were obtained for in-
creased gain section drive currents giving typically 2.5 to 4.5 ps pulses (for different
cavity alignments) for 40 mA and typically 4.0 to 6.3 ps pulses for pumping at 48 mA.
A slightly broader spectrum was also obtained at higher currents and led to narrower
pulses after compression. Optimally compressed pulses resulted in deconvolved pulse
widths of 600 fs and 320 fs at 40 mA and 48 mA, respectively. The uncompressed, and
the compressed pulse autocorrelations for 46 mA are shown in Fig. 3.8 and Fig. 3.9.
All compressed pulses were obtained with the dual grating compressor having the
second grating positioned beyond one focal length from the lens, providing a negative
GVD to cancel the laser’s up-chirp. Typical pulse energies exiting the laser were 1.3
pJ for a gain current of 46 mA. Losses from the compressor system reduced this to

0.6 pJ per pulse which corresponds to a peak power of 2.0 W for a 0.32 ps pulse.

3.4 Tunability and excitonic peak requirements

Near the time when pulses from passively mode-locked lasers were first compressed to
subpicosecond widths (1985-1990), much discussion centered around the necessity of
exciton states for the fast saturation and recovery in multiple quantum well material
[15]-[18]. The exciton is a bound electron-hole pair and may exist within the quantum

well. Because it has a characteristic binding energy, the exciton transition leads to a
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narrow peak in absorption at energies slightly below the band edge for the absorber
section. The gain section, on the other hand, is biased strongly enough to achieve
inversion and this, as is well known experimentally, causes a bandgap shrinkage from
the gain material and shifts its gain spectrum to overlap effectively with the excitonic
peak from the absorber section. Since the excitonic state saturation takes place at
intensities about one order of magnitude less than interband MQW saturation, it is
able to saturate much earlier in the pulse than the gain section as passive mode-locking
requires. Recovery is also, as required, a faster process for excitonic states since it
results from free electron screening of the excitonic states and occurs typically on the
order of 100 ps, as opposed to the slower interband recombination time of about 1
ns in GaAs or InGaAs material. Smith et al. [15], found evidence of the excitonic
absorption in proton bombarded and unbombarded MQW material in their passively
mode-locked lasers.

Having a different MQW structure and a multi-contact lasers structure rather than
an uncontacted free-standing absorber, we have carried out measurements of the ab-
sorption spectrum for our devices. Electro-absorption measurements were made with
a single-mode tunable Titanium sapphire (Ti:sapphire) laser over the wavelength
range of 810 nm to 870 nm. The optical beam was attenuated to very low levels
and focused onto the absorber facet of the laser. The gain section was left unbiased.
Various biases, 0 to 2 V reverse bias, were maintained on the absorber section and the
average current was measured as the Ti:sapphire laser was manually scanned across

the relevant wavelength range for the GaAs material. In summary, the results show
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a clear band edge with essentially a monotonic increase in the current measured from
the absorber section as the Ti:sapphire laser was scanned to shorter wavelengths. It
was concluded that either due to the existence of nonuniform quantum wells of the
guadruple well structure or the presence of the external circuit sweeping carriers gen-
erated from interband transitions out of the MQW absorbing structure and masking
the small number of excitonic transitions, no prominent excitonic transition line was
apparent in our devices.

The exciton peak from the absorber is narrow (typically < 3 nm) and places a
strict frequency requirement on the operation of the laser. It was found that one could
change the operating wavelength of actively mode-locked lasers. Thus, it seemed likely
that there were other ways to see the excitonic effect. By changing the frequency of
the feedback with a frequency selective element in the cavity, one may change the
operation of the mode-locked laser. If the fast saturation of the excitonic peak in the
absorber plays a role in the devices, one would be able to observe a change in the
passively mode-locked laser’s operation. Measurements were carried out, and these
demonstrated that broad tunability was possible with a grating placed within the
cavity. A tuning range of 26 nm was demonstrated [19]. The behavior of the laser
changes somewhat over the tuning range but not significantly. Further experiments -
were done, combining the tunability with pulse compression. These conclusively
showed that the excitonic peak was not playing a strong role in our passively mode-

locked lasers [20].
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3.5 The tunable subpicosecond semiconductor laser

The usefulness of a mode-locked laser is limited in many applications by its inabil-
ity to produce an output centered at a desired wavelength. It has previously been
demonstrated that a semiconductor laser coupled to an external cavity and followed
by an external grating compressor can be used to generate stable pulse trains of
subpicosecond pulse widths [21]-[24]. Before this experiment, wavelength tunable
mode-locked semiconductor lasers had been limited to pulse widths longer than a
picosecond [19]-[27]. By taking advantage of the strong nonlinear saturation effects
in passively mode-locked semiconductor lasers, one can produce pulses in the fem-
tosecond regime from a broadly tunable semiconductor source. In this section, we
present results combining broad-band wavelength tunability and subpicosecond pulse
generation to create a tunable subpicosecond passively mode-locked semiconductor
source.

The laser device and setup are described in [19] and [20]. Here a grating (600
lines/mm) is used to form one end of the external cavity while the laser’s high re-
flection coated (90%) absorber facet serves as the other end of the external cavity
(Fig. 3.10). The gain section is biased with a DC current source, and the absorber sec-
tion is grounded for passively mode-locked operation. The light exiting the absorber
is then compressed to subpicosecond pulse widths using a dual grating compressor as
shown in Fig. 3.10. A high speed detector and microwave spectrum analyzer are used

to monitor that the laser remains in the first harmonic of the external cavity which
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Figure 3.10: Wavelength tunable two-section laser passively mode-locked in external

cavity with external grating pair compressor.

gives a repetition rate of 603 MHz [20]. Throughout the experiment, the laser mount
is maintained at 21°C % 0.5°C.

By rotating the grating to select the wavelength of maximum feedback into the
laser, the center wavelength of the optical spectrum can be tuned from 838 nm to 854
nm, a range of 16 nm. The mode-locking threshold for first harmonic operation over
this range is shown in Fig. 3.11. The operating points above this threshold, where
measurements were performed, are shown as squares. For each of these wavelengths,
the grating compressor is adjusted to minimize the compressed pulse width.

Using the second harmonic collinear intensity autocorrelator, pulse widths were
measured at the indicated operating points (Fig. 3.11). The measured intensity auto-

correlations are shown in Fig. 3.12, and the corresponding deconvolved pulse widths
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(assuming a sech? profile) are shown in Fig. 3.13. The shortest pulses are obtained for
wavelengths near the center and toward the longer wavelengths of the tuning range.
Tuning toward the shorter wavelengths resulted in broader, yet still subpicosecond
pulse widths with long tails. These long tails could not be eliminated by changing
the compressor grating spacing, and the origin of these tails will be a topic of the
following chapter. Generally, the chirp on the pulses exiting the cavity is extremely
linear, allowing compression by a factor of ten or more, whereas the long tails are only
visible after most of the linear chirp is removed. The pulses exiting the laser possess
an up-chirp, meaning the frequency increases within each pulse, and the magnitude
of chirp is typically on the order of 0.6 ps/nm. Measured pulse widths before com-

pression are between 2 and 5 ps with the shorter uncompressed pulses occurring when
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Figure 3.13: Deconvolved pulse FWHM versus wavelength.

tuning to shorter wavelengths. However, these shorter wavelength pulses possess the
highest peak powers within the cavity, have the least linear chirp, and result in the
longest pulses after compression. Increasing the current at shorter wavelengths does
not reduce the pulse width considerably.

The shape of the optical spectrum under mode-locked operation is found to vary
upon tuning. When tuning to shorter wavelengths, the spectrum is nearly symmetric,
while for longer wavelengths it develops a much sharper drop on the long wavelength
side (Fig. 3.14). A comparison of the measurements at three different operating
points within the tuning range is shown in Table 3.2. Typical pulses are around 400
fs FWHM and have time bandwidth products between 1 and 2 times the transform

limit. Measured peak powers were small (typically 50 mW) due to the 90% reflection
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Average Peak
Al Power Power

A (om) Ly (mA)  Ipeas (MA) 7y (fs) (nm) T7,Av  (pW) (mW)

839 48.8 50.0 550 3.0 0.69 36 38
847 38.5 45.0 320 3.3 0.44 37 67
853 43.4 45.0 370 3.6 030 24 38

Table 3.2: Comparison of measurements at three different wavelengths from the sub-

picosecond semiconductor laser.

at the output facet, and the 65% loss in the compressor.

A minimum pulse width, 7,, of 260 {s is measured at a wavelength of 848 nm and
a gain current of 53 mA with the laser modelocked in the first harmonic. The higher
current and cavity tuning result in an optical spectrum FWHM of 6.0 nm, significantly
broader than the spectra at lower currents (Table 3.2). The autocorrelation is shown
in Fig. 3.15. The pulse peak power is found to be just over 100 mW. The calculated
time-bandwidth product gives 0.65 (about 1.5 times transform limit). Due to the
relatively high AR coating (~ 5%) on the gain facet, satellite pulses are measured
with a combined energy of 9.6 £ 1%. Stronger gain pumping results in faster gain
recovery times and can be sufficient to permit gain recovery to occur in less than 1/2

or 1/3 or even a smaller fraction of the round trip time. In this case, multiple equi-
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Figure 3.15: Minimum pulse width autocorrelation for gain current of 53 mA tuned

to 848 nm.

spaced pulses can exist in the cavity, and the laser can modelock at higher harmonics
of its fundamental round-trip frequency. Wavelength tuning of mode-locked second
and third harmonic subpicosecond pulses in these lasers is observed, however, higher
harmonic operation results in longer compressed pulses when achieved at similar
current levels.

In conclusion, broad-band wavelength tunability (16 nm) with subpicosecond
pulses was demonstrated for an external cavity mode-locked semiconductor laser.
Pulse widths below 600 fs after external compression with a grating pair were gen-
erated giving a minimum pulse width of 260 fs (7, Av = 0.65) when the laser was

operating at higher currents. Pulses were 1 to 2 times transform limited with long
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tails in the autocorrelations at the short wavelength side of the tuning range.

3.6 Spectral width calculation and experimental
limits

There are limits on the expected minimum pulse width and the maximum tuning
range of all existing lasers. These limits are due to the fact that the gain and loss
of all the elements within the laser are not equally effective at all frequencies. Some
spectral dependence exists and is usually characterized by a material or, in the case
of confined laser modes, a modal bandwidth. First we will consider how this limited
bandwidth restricts the minimum pulse width, and later we will briefly consider its

effects on the tuning range.

3.6.1 Gain bandwidth limitations and minimum width pulses

As is intuitively expected from explanations in chapter 2 and as will be described in
more detail in chapter 6, stable mode-locked operation requires a certain minimum
mode coupling to exist so that modes off of the gain peak will oscillate and remain
phase locked to the central mode(s). Simple active mode-locking experiments confirm
our expectations here since larger AC modulations have been seen to permit broader
mode-locked spectra to be generated [27]. In passive modelocking, this direct control
of mode coupling is not available, instead, the mode coupling is indirectly related to

the average intensity within the cavity. This relationship arises because the mode
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coupling is a result of nonlinear material gain and loss effects that are induced by the
optical pulse in the laser. Therefore, a minimum average photon intensity must be
generated to satisfy the requirement that, say, a mode fifty modes away from the gain
bandwidth maximum will experience a mode coupling strong enough to make up the
difference between its modal loss and its reduced modal gain. This means that for a
given nonlinear saturation, only a finite number of modes within the gain bandwidth
can be modelocked. Furthermore, for a finite number of locked modes, only a certain
strength of mode coupling due to nonlinear saturation can be realized. One key figure
for comparison of passively mode-locked lasers is a consideration of what fraction of
the gain bandwidth FWHM can be modelocked. In dye lasers, arguably the most
successful of the ultrashort pulse lasers, the widest reported mode-locked spectrum
was 16 nm [28] from a corresponding gain bandwidth in Rhodamine 6G of 55 nm
FWHM [29], giving a fraction of 0.291. In semiconductor lasers, mode-locked optical
bandwidths of 6.0 nm FWHM from an optimistically estimated gain bandwidth of
20-40 nm FWHM or a fractional bandwidth of 0.15 - 0.3 has been modelocked (at
Caltech). In ultrashort pulse generation, high power dye lasers possess an advantage
since subsequent nonlinear fiber techniques followed by gratings are easily used to
compress pulses almost one order of magnitude further, however, it can be seen from
this comparison that roughly the same fraction of the gain bandwidth is modelocked
in both cases.

There have been a number of techniques used to determine the gain bandwidth of

semiconductor lasers, most notably is the Hakki-Paoli technique [30]. This determines
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the gain spectral bandwidth and its shift through a measurement of the ripples in the
spectrum from the below threshold Fabry-Perot modes. Most techniques, including
the one above are meant for single section lasers, however, the laser structures we used
for modelocking are two or three section lasers and have a good AR coating on one
facet. To determine the gain spectrum of the lasers that we have successfully used in
mode-locking experiments, a method similar to that presented in Petermann was used
[31]. This method allows one to estimate the gain bandwidth after measurements of
the amplified spontaneous emission spectrum are made from the laser device without
external cavity.

Using the same quadruple quantum well lasers, we measured the amplified spon-
taneous emission (ASE) spectrum. The experimental setup used to determine the
laser gain spectrum is shown in Fig. 3.16. The laser device is set up without external
cavity feedback, the absorber section is grounded so that it is absorbing, and various
currents (all below threshold for this setup) are injected into the gain section. The
center of the ASE spectrum shifts to shorter wavelength as currents are increased.
Measurements are summarized in Table 3.3, below. A shift of 13 nm occurs along
with the 30 mA (150%) increase in current.

As expected the measured widths of the ASE spectra vary only slightly. The shifts,
however, are noticeable (as shown in Fig. 3.17) and give some clues to the carrier
density inside the quantum wells. The expected ASE spectrum for this structure
can be calculated and through comparison to the measured ASE spectra, one can

estimate the modal gain spectra for these different pumping levels.
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Figure 3.16: Experimental setup for ASE spectra measurements of devices. Setup uses

chopper and lock-in amplifier for phase sensitive measurements with monochrometor.

Current A of peak Half power points FWHM

20 mA 8320 nm 8184, 8444 nm 26.0 nm
30 mA 826.6 nm  813.3,840.9 nm 27.6 nm
40 mA 823.5nm  809.8, 838.8 nm  29.0 nm

50 mA 819.0 nm  807.5,836.1 nm 28.6 nm

Table 3.3: ASE spectra measurements.
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Figure 3.18: Model of device producing ASE while using no external cavity.

Theoretical model for ASE

Consider a device having a gain section of length, L, and an absorber at the left end
which remains unsaturated (providing no reflected light). We assume reflection from
the AR coated gain facet may be ignored. The propagation of the detected ASE light

is as shown in Fig. 3.18. The gain spectrum can be determined,

N 7TW|Xch2 o n _ n prAQw(E)F h/ﬂ'T2
o) = Rk [P 1p ), BN R e slaB. (09

Here, the quantities correspond to those defined in Yariv [32]. The spontaneous
emission from each slice is proportional to,
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Figure 3.19: Calculated ASE spectra for the device structure and the noted carrier

densities.

As physically displayed in the figure representing ASE generation (Fig. 3.18), the

light exiting the gain facet is proportional to

Ryp(w)(e/Wr ~ 1)

ASE,;(w) = o)

(3.11)

For material band gap, E, = 1.424 eV, L, = 10 nm, 4 quantum wells, L = 500 um,
T, =0.1ps, ' =0.16, |Yc|* = 6.6 x 107" m-C, and the carrier densities shown on the
graph, the ASE spectra and expected gain spectra are calculated. In Fig. 3.19, four
ASE spectra that correspond closely to the measured ASE spectra are plotted. The

calculated spectra are narrower than those measured which may mean the intraband
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relaxation time was underestimated, or more likely, the quantum wells are not ideally
uniform as we had assumed in the calculation. The laser begins lasing at about 33 mA
when it is aligned within the cavity and therefore, when lasing, is obviously clamped
to a carrier density smaller than the cases of 40 mA and 50 mA pumping. The partial
saturation of the isolation region and absorber and the non-zero Q near threshold in
the experiment mean that the laser is likely limited to a carrier density below 30 mA
during mode-locked operation. For this reason, the calculated gain spectra for 20 mA
and 30 mA are plotted in Fig. 3.20. As shown, the long wavelength side of the gain
spectrum does not move significantly with changes in carrier density, however, the
short wavelength side rises considerably meaning that the gain spectrum broadens
significantly with increased carrier density. Because of this, one could hope to be
able to achieve a much broadened gain spectra through the use of single well lasers
pumped to essentially four times the volumetric carrier density to achieve the same
modal gain as one requires from a quadruple quantum well laser. The results for
the quadruple quantum well laser are in agreement with the existence of a 20-40 nm
gain bandwidth for the operating conditions of the passively mode-locked laser. A

2 is calculated for the

total two-dimensional threshold carrier density of 8 x 10'? cm™
quadruple well laser operating with absorber grounded when coupled to an external
cavity with the 70% mirror in place. One should also consider over what range the
absorber is comparably effective to truly consider the possible mode-locked spectral

width that can be achieved, but significant problems beyond “fine-tuning effects”

are not expected to be a major problem here, and for the external cavity setup,
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Figure 3.20: Calculated gain spectra for quadruple well devices for carrier densities

that roughly correspond to 20 mA and 30 mA ASE operation.
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approximately 30 nm FWHM gain spectral width is expected to be a reasonable

estimate for these devices.

3.6.2 Tunability limits

The gain spectrum’s finite width is considered to be the dominant limitation also
on the mode-locked laser’s tunability. As previously discussed, the tuning of the
mode-locked laser was accomplished by rotating a 600 line/mm grating to change
the compound cavity’s peak gain. The filter response of the microscope objective
and grating setup is calculated to produce essentially a Gaussian bandwidth of 67
nm FWHM. The center frequency of this spectrum is moved relative to the ~ 30
nm gain bandwidth of the device. As one moves the two filter center wavelengths
apart, the net feedback is reduced. Separate measurements have been made with
a variable attenuating beam splitter and have shown that, typically, a beam splitter
power reflectivity of around 30% or more (total power coupling back from the external
cavity setup was closer to 20% due to additional coupling losses) was required to
maintain stable modelocking. Reflectivities below this had monolithic modelocking
and/or self pulsations corrupting the pulse train.

The feedback grating was found to have a power reflectivity of approximately
70% into the +1 order. Pulling the spectrum about 15 nm off of the center of its
tunability range decreases the effectiveness of the gain (which mostly may be made
up for by raising the current) and reduces the strength of external cavity feedback by

an additional 50% (assuming parabolic near-the-peak approximations for the filters).
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This reduces the net feedback to 35%, a level comparable to the minimum required
feedback for stable passive modelocking in this setup. Thus, the demonstration of
26 nm tuning from the 4 quantum well laser [19] is only slightly smaller than the
~ 30 nm tuning range we would expect from the rough calculation. As with single
well passively mode-locked lasers suggested for broader mode-locked spectra in the
previous section, we would expect to achieve broader tunability from single well lasers
also. This is one area in which we feel improved results could be obtained.

For comparison with other homogeneously broadened lasers, the broadest tunabil-
ity which has been achieved with the Rhodamine 6G dye laser is 30 nm by Wittmann
[33] for a gain spectrum with of 55 nm FWHM, giving a fractional tuning bandwidth
of 0.54. The best results for the tunable passively mode-locked semiconductor laser
are a 26 nm tuning range, and assuming a relatively strongly pumped gain section,
a bandwidth ~ 40 nm FWHM (as additional loss from a pellicle beam splitter was
inserted into the cavity during this tunability measurement), gives a fractional tuning
bandwidth of 0.65. So tunability for quadruple quantum well lasers, even in our gen-
erous estimate of the gain bandwidth FWHM., slightly exceeds the record tunability

of other well-developed passively mode-locked systems in existence.
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Chapter 4

Characterizing ultrashort pulses

from semiconductor lasers

Although the results of the previous chapter qualitatively agree quite well with ex-
pectations, there are many details that should experimentally be examined further
if one wants to better understand the ultrashort pulses from these lasers. Perhaps
most troublesome is the question: “Why do the pulses from the broadly tunable sub-
picosecond laser show long tails in their autocorrelations when the laser is tuned to
shorter wavelength?” This is completely beyond explanation if one makes the common
assumption that the pulses are a simple shape like a Gaussian or hyperbolic secant.
New techniques have been found to, for the first time, gather the necessary detailed
information for accurate analysis of the ultrashort semiconductor laser pulses. A
second question one notes is: “Why is there an excess time-bandwidth product for

these lasers and is it explained by the fact that the spectrum is only locked in clusters
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of modes?” Evidence that the spectrum is fully locked will be presented in the last
section of this chapter. The next section will deal with preliminary information and

the question of the long tails in the autocorrelation.

4.1 Amplitudes, phases, and long autocorrelation

tails

In the generation of ultrashort pulses, a knowledge of the complex pulse envelope, i.e.,
both amplitude and phase behavior, of the pulses exiting the laser is a key to achieving
optimally short pulses. As early as 1980, passively mode-locked semiconductor lasers
were known to generate picosecond, although not time bandwidth limited, optical
pulses. In 1985, it was first concluded that the excess time-bandwidth product of
these typical picosecond pulses was due to an up-chirp (an increasing optical frequency
during each pulse) [1]. Often the chirp is extremely linear and thus easily compensated
by a dual-grating pulse compressor, allowing generation of < 300 fs pulses [2]-[4].
Under other conditions, when tuned to different wavelengths or biased differently, the
laser does not produce such a linear chirp. We describe general trends of the passively
mode-locked laser’s pulse shape and chirp as the laser’s spectrum is tuned to different
wavelengths in the tuning range.

Standard autocorrelation measurements preclude extraction of information con-
cerning the pulse shape and chirp. Most techniques for measuring pulse shape or chirp

require algorithmic methods involving interferometric field autocorrelations [5] or are
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spatial
filter COmMpressor

Figure 4.1: Setup of cross-correlation system for measurement of intensity envelope
of pulses. A spatial filter with adjustable position is used in the Fourier plane for

spectral filtering in chirp measurements only.

useful only for higher energy pulses (1 nJ or more), such as the FROG technique [6].
In this paper, we use a direct measurement of pulse shape and a direct measurement
of the chirp similar to that used by Chilla for dye lasers [7]. It is demonstrated for the
first time, that for passively mode-locked semiconductor lasers, the asymmetric pulse
shape, linear chirp and second order chirp can be measured using cross-correlation
and filtering techniques.

In order to measure the pulse shape, a setup as shown in Fig. 4.1 was used. The
laser is a quadruple quantum well, two-section, GaAs buried heterostructure as de-
scribed previously [8]. Because the pulses coming directly from the laser are naturally

stretched out, and can easily be compressed by at least an order of magnitude, we
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split off part of the beam, sending it into a dual-grating compressor (without spatial
filter), thus making it effectively a delta function. Next the two beams are collinearly
recombined and sent into a second harmonic generation (SHG) crystal, and their
temporal cross-correlation is measured. The resulting cross-correlation will thus be
the shape of the intensity envelope of the original pulse exiting the laser.

The results of the measurement are shown in F ig. 4.2. The asymmetry of the
pulses is readily visible. To quantify this, the 10% to 90% rise time and fall time of
the pulse intensity are measured. When the laser is tuned near the center or longer
wavelengths of the tuning range (838 nm to 854 nm) (3], the ratio of the fall time
to rise time is about 2.3 to 1 (Fig. 4.2). The pulse shape for the laser tuned to the
shorter wavelength side of the tuning range is shown (for 841 nm center wavelength)
in Fig. 4.2 (bottom). In this case, a more sharply peaked pulse is measured, yet
with tails extending slightly further. Here, again, the fall time to rise time ratio was
similarly found to be 2.0 to 1.

The asymmetry in the resulting pulse shapes is explained by the fact that in the
passively mode-locked laser, both the rising and falling edges are shaped by different
physical phenomena. The rising or front edge of the pulse is shaped by the loss of
the absorber section until it is saturated, while the falling edge of the pulse is shaped
as the gain section undergoes enough saturation to again present a net loss [9]. The
absorber has a relatively large (in magnitude) differential absorption, 4 = —da/dn,,
which means each photon absorbed reduces the absorption rather effectively. This

helps provide a relatively fast saturation process. The saturation rate is, from the
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carrier rate equation [similar to (2.2)], given by

dn,(t)
dt

= ~TAn,(t)S(1), (4.1)

where n,(t) is the density of carriers contributing to absorption, I' is the confinement
factor, and S(t) is the photon intensity.

On the other hand, since typically differential gain saturates with higher popula-
tion, the differential gain, G = dg/dn,, is smaller by about a factor of 2, fesulting in
a larger saturation energy and a slower saturation rate,

dny(t)
dt

= —TGn,(1)S(t), (4.2)

where n,(t) is the density of carriers contributing to gain. The gain section’s slower
saturation rate can account for the slower shaping at the fall-off of the optical pulses.
To double check the pulse shape results, we have numerically generated an autocor-
relation of a pulse from Fig. 4.2 and compared the result to the actual measured
autocorrelation taken under the same conditions. The two resulting plots match very
well indicating that the compressed pulse is close enough to a delta function and does
not introduce significant broadening.

The setup for measuring the spectral phase is identical to the setup for measuring
the pulse shape (Fig. 4.1), except now a single slit spatial filter is added in the Fourier
plane between the two lenses of the dual grating compressor to pass a narrow “slice” of
the spectrum [10]. The full field spectrum may be described as F(w)e~™“=+0) where
F(w) represents the magnitude of the spectrum, wy is the spectrum’s center frequency,

and 7, is the delay for slice “n” and can vary across the spectrum, accounting for
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any spectral phase. Upon filtering, a slice of the spectrum having center frequency
wy and filter width Awy (assuming a Gaussian filter for simplicity) is then

—(w—wt:)2
e (4vr) (4.3)

F(w)e™3m(ww0)

Taking the transform of this expression (to within a constant), one can see that Tn

exactly represents the group delay of the pulse from any narrow slice of the spectrum,

—(Aws)P(t—1p)?
[f(t — 7o) ¥ e™ 7 —]elrt, (4.4)

If 7, is a nonzero constant throughout the spectrum, this adds a uniform time delay
to the pulse as seen from the above convolution. If 7, varies linearly or quadratically
with n, a broadening or asymmetry of the pulse results, respectively.

Using this setup, and choosing any slice of the spectrum, the corresponding time
delay for the slice’s center wavelength can be measured. By measuring the peak’s
position in the cross-correlation, the group delay, 7,,, can be determined for different
wavelengths, thus the sign and magnitude of the chirp can be measured. For even
more accuracy in measuring the nonlinear chirp, both beams are sent through the
compressor (using cylindrical lenses to keep the beams distinct) delaying one and
filtering the other, and using the proper grating spacing to remove the linear part of
T vs. A

The directly measured curves for the cross-correlation delay vs. slice center wave-
length are plotted in Fig. 4.3 using 1.2 nm slices. The chirp in Fig. 4.3 (top) is
extremely linear, meaning that it would be ideal for compensation from a dual grat-

ing pulse compressor. Results from pulse compression confirm this, as this is the
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case where a minimum compressed near-transform-limited pulse width of 260 fs is
achieved [3]. Even when both beams are phase compensated by sending each though
the compressor, eliminating the linear chirp, no nonlinear chirp can be detected. Only
a linear chirp of -900 fs/nm is measured. Resolution for the measurement of nonlinear
chirp is estimated to be no more than £10 fs/nm?. The dual grating compressor is
expected to add a negligible nonlinear chirp of 5 fs/nm?.

The chirp resulting from the laser when tuned to the shorter wavelength side
of the tuning range (841 nm) has a significant nonlinear component. The 7 vs. A
curve shows a steeper slope at the long wavelength side of the spectrum. The linear
chirp was measured to be slightly smaller in magnitude, -800 fs/nm. More accurately
measuring the nonlinear chirp by removing most of this linear chirp, as described
previously, gives a nonlinear chirp of -60 fs/nm? £ 10 fs/nm?. Higher order terms
in the nonlinear chirp are not found to be present. The external cavity grating
which is rotated for tuning is known to add no dispersion by itself and may only
add dispersion due to lens aberrations which are considered negligible here, therefore
the nonlinear chirp results from the semiconductor laser itself. The same long-tailed
autocorrelations will result from the laser when the feedback from an external cavity
mirror (used in place of the grating) is reduced. Thus, the long tails and nonlinear
chirp do not seem to be an inherent result of the tuning but a result of larger self
phase modulation (SPM) nonlinearities induced through the deeper cycling of the
gain section. In these measurements at about 1 mW average optical power and 600

MHz pulse repetition, smaller time-bandwidth products and slightly less linear chirp
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(in terms of dr/ d)\) are obtained from lower Q cavities even though higher peak
powers and more nonlinear chirp are present.

As is known from studies of semiconductor laser amplifiers, the linewidth enhance-
ment factor a(w,n,) which couples amplitude to phase, will cause a frequency chirp
across the pulse [11]. The effect of the changing index over some length of gain ma-
terial is not unlike the effect one would expect from a Doppler redshift as the optical
path length is increased. Assuming a relationship between the gain and the change
in index, n(t) = a(ny(t),w)g(t), the phase shift upon travelling through a length L,

of laser material is:
dn(t)
dt

B(t) = wt — koLy(no + t), (4.5)

and using (2), the SPM frequency shift is found to be approximately:
Aw(t) = —koa(w,n, (1))T2G?n,(t) L, P(t). (4.6)

In our measurements, the SPM, in terms of the magnitude of dr/d\, from the gain
section significantly dominates the equivalent term that results from the absorber
section. A plot of the changes in gain carrier density and expected frequency shift
during the pulse is shown in Fig. 4.4. The half-way saturation of ny(t), and even more
so, the peak frequency shift is expected to occur before the pulse reaches its peak
intensity. The upward concavity in a plot of w(t) near the pulse’s peak is consistent
with the measured sign of nonlinear chirp. Although a self-consistent solution with
these large nonlinearities must be found to conclusively explain the extremely linear

chirp, it is likely that during the peak of the pulse, a rather linear up-chirp occurs



79

long A short A

S(t)

t
0~
~— B
t
(t) t

slope = (ﬁ%)l

Figure 4.4: The change in pulse intensity plotted along with the change in carrier

density it induces and the change in instantaneous frequence it induces.
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To verify and extract further information, the pulse and compression system have
been simulated numerically. Using the pulse shape measurements and estimated linear
and quadratic chirp and requiring the resulting spectrum to match the measured
spectrum well, the resulting uncompressed and compressed pulse autocorrelations
are calculated and found to be in good agreement with the measurements. In Fig. 4.5
(top), the solid line is the measured autocorrelation for the compressed pulse for the
laser tuned to 848 nm, and a simulation with -800 fs/nm and -15 fs/nm? gives an
autocorrelation that matches very well (indiscernible on the plot). The dotted line
represents, according to the simulation, the actual pulse intensity envelope we would
expect to measure for the compressed pulse.

Fig. 4.5 (bottom) shows the corresponding simulation for the laser operating at 841
nm. Again the solid line represents the measured autocorrelation for the compressed
pulse. The dashed line is the simulation and matches the long tails very well with
-700 fs/nm and -70 fs/nm? chosen for the pulse in this case. Also, the expected
envelope of the compressed pulse is displayed by the dotted line. The nonlinear chirp
can adequately explain the long tails remaining after pulse compression. From the
measured sign of the nonlinear chirp, it is expected that small lobes precede the actual
compressed subpicosecond pulses in time.

In conclusion, the shape of pulses exiting the mode-locked semiconductor laser
is directly measured and its asymmetry is attributed to the slower saturation rate

of the gain section compared to the absorber section. Linear and nonlinear chirp
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is measured for various center wavelengths. The nonlinear chirp is associated with
reduced external cavity feedback which has been known to force deeper cycling of
the gain section, and by shifting the linear segment of the SPM away,from_the pulse
center, results in a significant nonlinear chirp which is seen to leave large tails limiting

the minimum pulse width of the dual-grating-compressed pulse.

4.2 Modelocking across entire spectrum

Past experiments with mode-locked semiconductor lasers have shown evidence that
modelocking has involved separate clusters of locked modes oscillating independently
[13). There have even been suggestions that the sometimes seen self pulsations are a
result of beating between different clusters of modes [14]. Therefore, it is important
to be careful in experimentally testing the spectrum’s coherence before we assume
the ideal case, that it is modelocked across the full spectrum. The measurements in
the previous section require a fully mode-locked spectrum.

There are a few ways to test this fully locked condition. Firstly, one can think of
selecting a slice of certain width from the optical spectrum. This may be done with
the single slit filter mentioned previously. Assuming the spectrum to be relatively free
of phase terms cubic or higher, which we expect to be the case from measurements
presented previously, one expects to measure the same autocorrelation width inde-
pendent of where the filter is centered. On the contrary, if one has a spectrum that

is not fully locked, there will be ranges within the spectrum where the filter can be
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placed and a broadened autocorrelation would be obtained since the spectrum within
the slice would have a smaller than optimal time-bandwidth product. These measure-
ments were carried out using a rectangular filter width of 1 nm and systematically
taking autocorrelation widths for different filter center wavelengths. The results of
this measurement showed autocorrelation widths all equal within our experimental
accuracy.

One would also suspect that if the spectrum were not fully locked across its full
range, then cutting off one tail would lead to no significant change in pulse width. One
can carry this idea further and measure autocorrelations from a certain rectangular
filter center wavelength and only change the spectral slice width. The results can be
compared with what is expected. A plot for the mode-locked laser spectrum is shown
in Fig. 4.6, and a rectangular filtered slice is shown for a specific case. Since the spec-
trum is essentially the shape of a single sawtooth, one may assume a fully mode-locked
spectrum of this shape and carry out the operation F[|F(|F 1 E(w)F(w)]|?)|?] to
obtain the temporal autocorrelation, where F(w) is the optical spectrum, F(w) is
the transfer function for the rectangular filter, and F and F~! represent the Fourier
transform and inverse Fourier transform operations, respectively.

We note that more narrowly slit filtering a strongly chirped spectrum causes an
initial narrowing of the pulse width (dubbed the “poor man’s compressor” by Dr.
Yariv) and later a sudden broadening as the time-bandwidth limit is approached. An
unchirped triangle optical power spectrum gives a time-bandwidth product of 0.50 and

an autocorrelation that is 1.37 times the pulse FWHM. Results of the measurement
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Figure 4.6: Monochrometer measurement of full spectrum emitted from mode-locked

laser (top) and spectrum after rectangular filter (bottom).
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of this rectangular filter experiment and a rough theoretical calculation based on one
free parameter for that expected from filtering the chirped triangular optical power
spectrum are shown in Fig. 4.7.

In conclusion, the results show quite good agreement with our theoretical expec-
tations from the fully mode-locked single-sawtooth spectrum. Therefore, convincing
data is presented showing that a stable, fully mode-locked spectrum is produced by

the passively mode-locked semiconductor laser.
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Chapter 5

Pulse shaping through spectral

filtering

Because ultrashort optical pulses are useful in a variety of applications from spec-
troscopy to laser radar to optical communications, it is useful to develop techniques
for shaping them. There is an analogy between nuclear magnetic resonance (NMR),
which is one of the dominant techniques for chemical analysis, and ultrashort optical
pulse spectroscopy [1]. In the optical case, phase coherence in pump-probe experi-
ments is more difficult to maintain, but some progress has been made in the past five
years [2].

Spectroscopy using ultrashort pulses has been used to study carrier dynamics of
band structure material, exciton dynamics, super heating/cooling effects, phonon life-
times in crystalline material, vibrations in amino acid strands, etc. Unlike standard

spectroscopy, ultrashort pulse spectroscopy allows the temporal resolution necessary
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for detailed study of the intermediate products of chemical reactions or determina-
tion of the direction chemicals reaction proceed in. There have even been methods
demonstrated by which ultrashort pulses can be used not just to identify but also to
select or direct chemical reactions [3]. A pair of pulses having a definite optical phase
and a controlled time delay between them can be used to perform “the chemist’s
equivalent of Young’s double slit experiment” since one pulse can be used to coher-
ently excite molecules which evolve in time and will show constructive or destructive
interference in the transition state depending on the phase and delay of a second
pulse. Demonstration of this coherent technique for directed chemical reactions has
been carried out in experimen’c‘s with molecular Iodine (3], and chemists are actively
pursuing reactions involving more complicated molecules.

One major area necessary for development of these techniques is the ultrashort
pulse shaping systems for the pulse sources in these experiment [4]. Using two liquid
crystal spatial light modulators in a system similar to the telescoped dual-grating
compression system used in the previous chapter, a programmable amplitude and
phase femtosecond pulse-shaping system has been demonstrated [5]. Features of 100
fs within an available 2.9 ps window are generated. The system used a 70 fs mode-
locked Ti:sapphire laser at 800 nm to show that arbitrarily positioned and phased
pulses could be adequately produced for a source in chemistry applications.

Another important application of pulse shaping systems is to use them to compen-
sate for dispersion that is introduced in the propagation of pulses in optical communi-

cation systems. Phase shaping of the optical spectrum can be used to cancel out the
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dispersion added during propagation. In addition to this, a new and complementary
technique has been developed to produce pulses that are more immune to dispersion.
This new technique of making spread-resistant pulses will be described in the next

section.

5.1 Dispersion compensation through spectral fil-

tering

In the previous chapter, passively mode-locked laser pulses were very well character-
ized. Now, we can use this convenient well-characterized source of ultrashort pulses
as a tool in studies of dispersion compensation. Compensating for dispersive effects,
specifically the pulse spreading they induce, is one of the most important problems
in optical communications. It is a prerequisite to high data rate (> 10 Gbits/second)
transmission over long (> 100 km) distances.

It has already been mentioned in chapter 3 that a number of techniques exist for
dispersion compensation. We have, for the first time, demonstrated a technique for
making pulses more resistant to the effects of dispersion by shaping their optical spec-
trum [6]. There is an analogy between temporal pulse dispersion and one-dimensional
spatial beam diffraction. Both can be described through the Fresnel integral [7,8].
Using this analogy one can apply previous algorithms from the field of beam shaping
to the problem of pulses propagating through a dispersive medium [9]. In the beam

shaping problem, one’s goal is to enhance the depth of focus. In the case of dispersion,
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this corresponds to extending the amount of dispersion a pulse can tolerate before
it spreads out, or more specifically, since the concept of “spreading out” or pulse
width is not unambiguously defined, our algorithm for pulse shaping is optimized to
extend the amount of dispersion pulses can tolerate before the peak drops to some
predefined minimum level. This technique for spread-resistant pulses may be used
in conjunction with most of the other dispersion compensation techniques to further

improve performance. A description of the theory and experiment follows.

5.2 Brieftheoretical description of spread-resistant

pulses

Denoting z as the position along the dispersive channel, v, as the group velocity, and
T =1t~ z/v, as the delayed time, the influence of GVD on the complex temporal
pulse electric field envelope, u(T, z) is given by [9]

Aw/? iﬂQZQZ

u(T,z) = /_Aw/? U(Q,z = 0)exp(

— iQT)dq, (5.1)

where U(Q,0) is the Fourier transform of u(7T,0), § is the angular frequency (relative
to the laser’s center frequency, wp), Aw is the spectral width corresponding to the
pulse, and 3, = d?83/dw?|,o is the GVD per unit length.

Recently [9], the possibility of pulses that do not disperse by virtue of their unique
shaping was introduced. Based on the time-space analogy, Rosen et al. proposed

! ! /
u(T,0) = u(T,0) = L~ (& It
2

=P = SV x expli—)dt (5.2)

1 o0
757 .ol NG
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as the initial pulse envelope to reduce the effect of GVD. Here, a,b, f, and p > 2
are real positive parameters of the pulse. This pulse (v = u., Aw = o0) propagates
along a dispersive channel to a distance of Az ~ 2v/27 B, f2p[4(1 + p)]?~P)/? /6% while

maintaining a near-constant peak value of |u.(0,z)|. The spectrum of u, is taken as
U(Q,0) = Ug(22,0) = cos[(TpN)* — (T.Q)%, (5.3)

where T, = Bof /b, T, = 2f/a, and the power p = 4 has been chosen as an example.

5.3 Simulation of spread-resistant pulses

In what follows we describe a simulation to investigate the possibility of creating
dispersion-resistant pulses through pulse shaping and show that it can be accom-
plished by using a simple binary phase mask in the spectral plane. We find that using
a binary approximation of the initial pulse spectrum, Ug($2,0) = Uc(9,0)/|Uc(9,0)],
still leads to a considerable reduction in pulse distortion. This approximation enables
the use of a binary (0 or 7) phase mask instead of a complicated amplitude and phase
filter.

The pulse field Up and its capability of maintaining its shape without distortion
when traveling through a dispersive channel depend on the ratio 7;/7,. We find
numerically that T,/T, = \/% is sufficient in that the intensity Ig(T = 0,z) =
lup(0,2)|? of the center of the symmetric pulse and its shape remains at a nearly
constant height over the interval Az ~ 87?/8; near z = 0. This interval may be

increased by increasing the ratio T, /7,, yet increasing the interval spoils the constancy
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of Ig(0, z) in the region of interest. At z = 0, the pulse has a main lobe width around
T = 0 of order T; and a tail length that depends on TyAw. Although reducing T,Aw
reduces the pulse tail length, it increases the tail intensity compared with Ig(0,0)
and introduces small oscillations in Ig(0, z) as a function of z.

In Fig. 5.1 the pulse intensity shape I(T,z) normalized by I(0,0) is shown as
a function of the delayed time T for different values of GVD, i.e., the normalized
distance B,z/2T¢. Fig. 5.1(a)-Fig. 5.1(d) describe I5(T,z)/Ig(0,0) with a binary
phase mask, U(),0) = Ug(€2,0) and T, Aw = 4.044, using the first nine lobes of the
cosine spectrum function. The pulse essentially maintains its shape and height even
for 8,2/2T} = 1.6, as can be seen from comparison among Fig. 5.1(a)-Fig. 5.1(c).
In these cases the main lobe of the pulse envelope as well as I5(0, z) are essentially
invariant. The changes that occur due to chromatic dispersion are mostly in the tails.
The reduction of I5(0, z) for f2/2T7 = 0.8 [Fig. 5.1(b)] is a result of finite TyAw,
as mentioned above. Note that this result is independent of the sign of 3, because
Ip(0,—z) = Ig(0, z). Therefore, in practice one can exploit this fact and shape the
pulse ug(T,~ —4T2/B,) at the beginning of the dispersive channel and use the full
interval of 872/ ..

These results are compared with those from a rectangular spectrum without the
phase mask. For this comparison [the solid curves in Fig. 5.1(e)-Fig. 5.1(h)] we choose
U(Q,0) = Us(R,0) = 1 and spectral width Aws = 2.156/T} to generate the same
pulse main lobe width as with the mask. The pulse shape is Is(T,0)/Is(0,0) =

sinc?(AwgT), where sinc(z) = sin(z)/z. The primary difference between the pulse



94

1.0
(e)

05 r

0.0
1.0

®
05

0.0
1.0

I(T,2)/1(0,0)

(®
05

0.0
1.0 ; T T
(d - (B

05 - -

0'0 [ AN L )| T t I
-40 -20 0 20 40 -40 -20 0 20 40

T/Ty
Figure 5.1: Calculated pulse intensity envelopes I(T,z)/I(0,0) after adding differ-

ent amounts of dispersion. The binary phase mask case [U(Q,0) = Up(f,0) and
TyAw = 4.044] is displayed in (a)-(d). The rectangular filter case [Us(£2,0) = 1 and |
TyAw = 2.156] is shown (solid line) in (e)-(h) along with the Gaussian pulse (dotted
line). The GVD, B,2/2T7, is equal to: 0 in (a) and (e), 0.8 in (b) and (f), 1.6 in (c)

and (g), and 2.2 in (d) and (h).
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Ug and Ug is in the tails. The second pulse has shorter tails and therefore suffers
more distortion and reduction of 7(0, z) compared with I(0,0) along its propagation
in the dispersive channel.

Results from the familiar Gaussian pulse [dotted lines in Fig. 5.1(e)-Fig. 5.1(h)]
are also compared. This pulse has just one lobe and suffers a reduction of I5(0, 2) at
distances even shorter than those of Us. Its complete dependence on T and z can be
written in closed form and is given by

)

Io(T,2) P~ Tnsgemp

15(0,0) To1+4 (522/T5)2]1/2

(5.4)

We chose Tz = 1.44T,, so that the main lobe width is identical to that of the two cases
described above at z = 0. From Fig. 5.1(c)-Fig. 5.1(g), one can see that although the
Gaussian pulse decays to 54% of its initial intensity [Fig. 5.1(g)], the pulse with the

Ug spectrum maintains its value.

5.4 Experimental demonstration of spread-resistant

pulses

The above theoretical results were tested experimentally for the cases of Ug and the
rectangular spectrum Us. The experimental setup is shown in Fig. 5.2. The laser is
an LPE regrown passively mode-locked quadruple quantum well two-section, GaAs
structure as described previously. Its spectrum had half-power points at 839.9 and

845.2 nm in this experiment. The pulse spectrum was flatter on top than the one
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Figure 5.2: The apparatus used for spectral shaping, compression, and fiber GVD

simulation. The phase mask is inserted in the spectral plane to shape the pulses.

displayed in the previous chapter and was approximated by a rectangular function
with a quadratic phase. The laser pulses were sent to a telescoped dual-grating com-
pressor (1/d = 2000 lines/mm) to achieve pulse shaping [4], laser chirp cancellation,
and GVD addition. Different optical frequency components of the input laser pulse
are spatially dispersed by the left grating and then resolved spatially in the Fourier
plane of the lens. At this plane the spectrum is filtered through either the spatial
binary phase mask or a window to reshape the pulse. The spectrum is recombined
spatially by a second lens and grating. The laser chirp cancellation and GVD addition
are easily achieved by moving the right grating in Fig. 5.2. The laser chirp is canceled
by simply moving the grating to minimize the pulse width (without the phase mask

or the window) and specifying the position of the grating as z = 0. Then the phase
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mask 1s introduced in the Fourier plane and autocorrelations measurements are taken

for different positions, 2, of the right grating. The GVD is given by [10]

Pz A3z

217 4rT2c*d? cos?(6)’ (55)

where z is the distance of the right grating location along the central axis of the
dual-grating compression system. Also § = 51.1° is the angle between this axis and
the normal to the grating surface, A\g = 27¢/wp is the optical carrier wavelength, and
c 1s the velocity of light.

The reshaped pulses are sent into a Michelson interferometer and a SHG crystal
to measure their temporal autocorrelation. Autocorrelations were taken for the case
where U(w,0) = Up(w,0) and T,Aw = 4.044. We find numerically that the pulse
shape is insensitive to small variations in the amplitude distribution of the spectrum.
Therefore the assumption of a rectangular function between —Aw/2 and Aw/2 for the
laser amplitude spectrum is justified, and the need for a complicated mask is reduced
to that for a simple binary phase mask. The mask, made photolithographically [11],
has a width of 3.4 mm (the spatial width of the optical spectrum in the Fourier
plane), which is equivalent to Aw = 12.2 x 10'? rad/sec. The mask was encircled by
a window of the same width to eliminate undesirable influences from the tails of the
spectrum. The index of refraction of the glass mask is n = 1.5, therefore the depth of
the etching is Ag. The autocorrelations measured while using the phase mask are given
in Fig. 5.3(a)-Fig. 5.3(c). Two parameters (T and ;) describe the fit between the

theoretical (solid curves) and experimental (dotted curves) autocorrelation results.
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to: 0 in (a) and (d), 1.1 in (b) and (e), and 2.2 in (c) and (f).
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First, for z = 0 [Fig. 5.3(a)], the parameter T}, was found to be equal to T, = 370
fs, whereas the theoretical calculation gives 7, = 4.044/Aw =~ 340 fs. A second
measurement [Fig. 5.3(b)] was taken at B,2/2T2 = 1.1 (z = 2.5 cm) to specify the
second parameter 3; (theoretical calculation gives 852/2T;? = 1.16 at this location). A
third measurement [Fig. 5.3(c)] was taken for B,2/2T? = 2.2. A good fit is indicated
between theoretical and experimental results.

A similar series of autocorrelations was measured without the phase mask, in
which Us(w,0) = 1 and T3Aw = 2.156, to check the rectangular spectrum case. In
this case, a window was located in the Fourier plane allowing the center of the laser
spectrum to pass and blocking the rest. Its width was adjusted to give the same
autocorrelation half width, which is nearly equivalent to getting the same main lobe
pulse width as with the phase mask. The allowed spectrum had Aw ~ 6.62 x 1012
rad/s. The results of this experiment are shown in Fig. 5.3(d)-Fig. 5.3(f). The fit
was done without any free parameters. The same values of T} and B,2/2T? as before
were used. A good agreement between theoretical and experimental results is found
again.

Two differences are prominent from the different pulses used to generate Fig. 5.3(a)-
Fig. 5.3(f). Firstly, the autocorrelation tails in Fig. 5.3(a)-Fig. 5.3(c) for the pseudo-
nondispersive pulse (Up) decay slowly, reaching the background value of 1 only for
very large 7. This is a direct result of the pulse tails as can be seen from Fig. 5.1(a)-
Fig. 5.1(d). The Us pulse, which has much shorter tails, has collinear autocorrelations

that reach the value of 1 [Fig. 5.3(d)-Fig. 5.3(f)] for smaller 7. Secondly, for higher
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values of 3,2/2T}, the autocorrelation has steps in it. This occurs when the main lobe
of the pulse [Fig. 5.1(d)] becomes comparable in magnitude to the secondary lobes
on each side. The width of the autocorrelation for small /7, indicates the width of
the main peak of the pulse.

The pulses used in this experiment are approximately 1 ps and therefore experience
effects from what are considered rather small magnitudes of dispersion. In a fiber optic
communication system at today’s state of the art, one typically would use pulses, say
for 10 Gbit/s, of 30 ps. In this case, the length of fiber that this compensation
technique would be appropriate for is 900 times longer. A table has been calculated
to give an idea of the appropriateness of this technique for practical cases. The table
shows that approximately a factor-of-three increase in repeater spacings could be
obtained (Table 5.1). This would certainly be a significant advantage. The table
is for a fiber optic communication system with A = 1500 nm, D = 17 ps/km/nm or
B2 = 2.03x 1072 sec?/m, and T, /T, = \/8—/5 Additional complexities are involved in
the implementation of such a system, however, since the spectral shaping adds tails
that extend far from the pulse. In high speed optical communications, where one
sends pulses closely packed in time, these tails will overlap with neighboring pulses
and are likely to give a significant decrease in the attainable signal-to-noise ratio due
to their interference. Analysis of whether the spectral filtering is still worthwhile in
this case is still under investigation.

In conclusion, the possibility of pulse shaping to reduce the distortion caused by

GVD was theoretically considered and experimentally checked. It was found that
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Pulse FWHM Reduction of Distance (km) Distance (km)

(ps) peak (%)  [Gaussian pulse] [Shaped Pulse]
1.5 70 0.16 0.58

1.5 50 0.28 0.63

3 70 1.8 6.5

3 50 3.1 7.1

10 70 7.25 26

10 50 12.3 28.1

30 70 65.25 234

30 20 110.8 252

Table 5.1: Spreading in practical fiber optic communications systems. The table
shows that distances over which pulses remain relatively unaffected by dispersion can
be increased. For example, from last line, a 30 ps Gaussian pulse will fall to half of
its original peak intensity in 110.8 km while the spread-resistant pulse presented here

will not drop to half its peak intensity until 252 km.
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a simple phase mask in the spectral plane can add tails with many lobes, which
considerably alleviate distortion to the main lobe of the pulse and permit longer

propagation distances in dispersive channels than for other pulses.
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Chapter 6

High-repetition-rate passive

mode-locking theory

6.1 Introduction to time domain models of pas-

sive modelocking

Among the most elegant analytical models in optics is the time domain model of
passive modelocking. The analytical solution for this steady-state problem was largely
developed by Herman Haus in 1975 [1] shortly after a thorough analysis of active mode
locking [2]. The analysis expanded on earlier descriptions of passive mode-locking by
Letokhov [3], Garmire and Yariv [4], Gunn [5], and New [6] allowing steady-state
solutions and parameter ranges to be determined. It is considered the dominant

theoretical view of passive modelocking today and was introduced in chapter 2 for
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this reason.

Every model of a complex physical phenomenon, however, makes some assump-

tions and a model’s inherent assumptions always place some limit on the range of its

validity. Some assumptions present in Haus’ theory are that:

(1)

(2.)

(3.)

(4.)

(5.)

(6.)

The material’s gain and loss spectra are symmetric (parabolic) in frequency and

are homogeneous.

Saturation of gain and loss and the change in the optical pulse are small for
each pass (i.e. < 20%) such that a linear or quadratic function is sufficient for

exponential functions involved in material response.

Spatial arrangements of elements inside the cavity and colliding pulse effects are

not to be considered.

The discrete mode-locked spectrum is to be modelled as a continuous spectrum
so that its Fourler transform and the second derivative of this transform can be

easily manipulated.

Each saturable element (gain and loss), although it may saturate quickly, is

considered to recover negligibly during the optical pulse.

The linear phase effects occurring along with material gain/loss frequency de-
pendence and the nonlinear phase effects occurring along with saturation of

gain and loss are both considered negligible.
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In most cases these assumptions are adequate and are helpful in presenting a tractable
theoretical model of passive modelocking. These assumptions do not all break down
in the same cases. For example, assumption 1, which assumes a homogeneously
broadened laser, is indeed a useful description for dye, semiconductor, or other lasers
whose gain or loss spectra saturate uniformly for an arbitrary optical signal incident
on them. The symmetric parabolic spectrum is typically a reasonable assumption
since the important region of the spectrum is usually only that very near the peak
which has been measured to be nearly parabolic in most cases. The assumption
of the loss and gain spectrum possessing the same peak frequency is somewhat less
supported but is acceptable if second-order effects or timing jitter effects are not to
be studied in detail.

Assumption 2 restricts the applicability to devices with reasonably high reflectiv-
ities from the ends of the cavity and to devices in which the laser’s absorption and
gain do not modify the energy of a pulse by more than 20% in any single pass. This
limits the applicability to lasers whose sections are not deeply modulated and is still
appropriate for high-repetition-rate modelocking.

Assumption 3 only eliminates the study of second-order effects, and through the
choice of appropriate parameters one will be able to take into account the resulting
effects from additional parameters.

Assumption 4 is accurate in all cases except when the modes of the mode-locked
laser are separated quite far in frequency. The inaccuracy of this assumption will

become apparent when the mode spacing becomes about 1/5 of the spectral FWHM.
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This may cause the model to break down at high repetition rates. To consider the
accuracy of this assumption (assumption 4) one should accept Haus’ other assump-
tions for the sake of a fair comparison and first just consider the accuracy of the
approximation of a discrete spectrum by a continuous spectrum. Haus arrives at the
result (e.g. chirp-free, approximating exponentials, etc.) that the spectral envelope
should be

E(f) = SeCh(f/Afspect)- (61)

This implies the time domain pulse envelope is
E(t) = sech(7?A fopecit ). (6.2)

The true mode-locked spectrum is discrete and has the form

o0

E(f)= Z sech(nAf /A fopect)0(f — nA[) = sech(f A fopect), (6.3)

n=—co
with the approximate equality representing what I will call the continuous spectrum
approximation. This continuous spectrum approximation is only accurate when Af
is small. Here Af represents the mode spacing as defined in Fig. 6.1. Of course, the
pulse train period is Ty, = 1/Af, thus it is apparent that if Af is large enough such
that the repetition period is within a factor of ten of the pulse width, some overlap
of the previously assumed independent pulses exists, and the time domain result may

not be accurate. Fourier transforming the above spectrum leads to

Et)=1/2+ i sech(nA /A fopect) cos(n2r A ft) = sech(7?A fopecit)- (6.4)

n=1
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Figure 6.1: The mode spacing, A f, is shown for the a high repetition rate mode-locked

spectrum. Haus’ theory uses the envelope to approximate the actual spectrum.

The approximation in the previous equation is compared for various mode spac-
ings. A plot with Af = 0.569 of the spectral full width at half maximum is shown
in the Fig. 6.2 and already shows some disagreement with a normalized RMS error
calculated to be 4.9%. For a range of Af values, a curve of normalized RMS er-
ror values is plotted in Fig. 6.3. The onset of significant error occurs when Af is
about 0.380 of the spectral FWHM, and the plot vividly demonstrates that there
are some assumptions in Haus’ theory that do not permit it to accurately describe
high-repetition-rate modelocking.

In fact, the gain material has a spectral response ~ 1 — bQ2% and reshapes the
optical spectrum each time the pulse passes through it (here we are still ignoring

saturation effects). Only in the case of a continuous spectrum can one say this is
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pulse shape from the continuous spectrum approximation (solid line).
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equivalent to an operator of (1 + b%) in time domain as in Eqn. (2.5). Therefore
the continuous spectrum approximation is involved once again, here. In this case the
agreement between the time domain second derivative from the approximation and
the corresponding quantity from the exact calculation are even further in disagreement
since the tail in the time domain extends farther, meaning the independence of some

of the pulses displayed in Fig. 6.3 is actually an optimistic estimate.

6.2 Limits of the standard time domain model

due to carrier saturation

Not only does the continuous spectrum approximation present a source of error in the
standard time domain model at high repetition rates, but even larger discrepancies
result from approximating the carrier saturation and recovery effects. To date, I
am aware of no studies on the adequacy of this standard time domain model for
high-repetition-rate lasers, yet there has been attempted application of the theory for
describing high-repetition-rate lasers [8].

Using the form of E(t) for discrete modes spaced Af apart, we may calculate the

material’s response through the rate equations for the gain and loss,

dngt(t) _ "Z(t) — GIE@)A(ny(t) — ner) + Ry (6.5)

and

Lell) = 2ol B 1) ~ ), (6.6)
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where the terms above have been defined in chapter 2. One expects that if Af
approaches 1/7, or 1/7,, the material does not recover fully at any point within the
cycle. However, the standard time domain model assumes a full recovery between
pulses. Therefore, it gives a greatly overestimated modulation depth of the carrier
densities at high repetition rates. When the model is applied to cases where the carrier
recovery between pulses is incomplete, the reduction in the magnitude of carrier
modulation depth which is limited by the exponential material recovery occurring over
the cycle period Ty, can be partially taken into account [1]. Still, at high repetition
rates, for example, if the pulse width is more than T}, /10, a noticeable amount of the
material’s recovery occurs within the pulse itself and less than 9/10 occurs during the
space between pulses. Most high repetition rate lasers have a duty cycle far larger
than 1/10, and therefore in this regime, the accuracy of this assumption becomes
questionable. For reasonable parameters of monolithic semiconductor lasers as shown
in the parameter list below, a calculation testing the accuracy of this assumption has
been carried out.

ny =1x 108 cm™
7, = 1l ns
7o = 0.3 ns
G=1x10""cm?
A=3x10""cm?

Eo =1.903 x 10" cm™?sec™
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Ry, = 5.23 x 10*” cm™3sec™?
ng(t=0)=3x10® cm™
ne(t=0)=5x 10" cm™

The calculation involved breaking the period of one repetition cycle into 200 points
in time and numerically integrating the rate equation over this interval. Initial volu-
metric carrier densities for each section were assumed, ny(t = 0) and n,(¢t = 0). The
peak electric field, Ey, was chosen such that the absorber carrier density possesses the
same value at the beginning and end of each cycle. Then, requiring the same condi-
tion to be satisfied for the gain, R,,,the gain pumping rate, was chosen. An example
of the time evolution of the carrier density for Af = 0.15 (normalized to the spec-
tral FWHM) is shown in Fig. 6.4 for one repetition cycle. One can see a significant
disagreement exists during the pulse, even though the same maximum and minimum
carrier densities are obtained in both cases. The pulse-intensity-weighted RMS error
is found to be 29% in this case, meaning that even during the pulse, a considerable
disagreement is obtained at high repetition rates for Haus’ n(t) ~ exp(%(l + tanh(¢))
expression resulting from assumption 5. A plot of the pulse-intensity-weighted RMS
error for various Af is displayed in Fig. 6.5 and shows significant error results for
assumption 5 if Af < 0.019 of the FWHM, showing it will generate questionable
results when used to analyze high-repetition-rate lasers.

In summary of this section on the limits of the standard time domain model for

passive modelocking, assumption 1-3 were not expected to impose significant limits on
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Figure 6.4: Change in the absorber carrier density during one cycle. The dashed line

shows what would be derived from Haus’ model.
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high-repetition-rate modelocking, assumption 4 is expected to limit the model to rates
of Af < 0.380, and assumption 5 is expected to limit the application of the model to
rates of Af < 0.019 or, more practically, duty cycles of about 5% or less which are
certainly considered to be outside the regime of high-repetition-rate semiconductor
lasers. Nothing has been mentioned yet about the limits of assumption 6. It is
well known from experimental studies that most mode-locked semiconductor pulse
trains are composed of strongly chirped pulses. There are some cases in which the
mode-locked semiconductor laser has generated essentially unchirped pulses [7,8], and
there has been some work extending the standard time domain mode-locking model
to chirped pulses [9,10], however, these have only involved phase effects from fast
saturable absorption (i.e., the assumption that the absorber recovers much quicker
than the pulse duration) and are inappropriate for mode-locked semiconductor laser
studies. The investigation of assumption 6 and chirped pulse high-repetition-rate
modelocking will follow the extensive development of a frequency domain steady-

state model of high-repetition-rate passively mode-locked lasers.

6.3 A supermode model for high-repetition-rate

passive modelocking

In this section, a steady-state analysis of high-repetition-rate passively mode-locked
semiconductor lasers is derived. The analysis includes effects of amplitude-to-phase

coupling in both gain and absorber sections. A many-mode eigenvalue approach is
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presented to allow one to obtain supermode solutions. Using a nearest-neighbor mode
coupling approximation, chirp-free pulse generation is explained. The presence of a
non-zero alpha parameter is found to change the symmetry of thg supermode and
significantly reduce the mode-locking range over which the lowest-order supermode
remains the minimum gain solution. The effects of individual laser parameters are
considered, and agreement with recent experimental results is discussed. In addition
to explaining the steady-state operation of the laser, another motivation exists for
finding the supermode solution and that is that once the supermode solution is known,
the noise effects due to perturbations around this steady state can accurately be found.

Previously, the theory of passive modelocking has been analyzed thoroughly in
the time domain [1], but calculations in the previous section have shown Haus’ model
to be inaccurate for high-repetition-rate modelocking. Active mode-locking, on the
other hand, has been analyzed thoroughly in both the time domain and the frequency
domain [11]-[13]. It has been suggested that passive mode-locking should be analyzed
in the time domain since simple products in the time domain analysis result in cum-
bersome convolutions in the frequency domain analysis [2], however, in the case of
high-repetition-rate passive modelocking, where few modes are involved and the in-
duced carrier modulation is much closer to a sinusoid [14], the frequency domain
approach becomes more appropriate. In this section, an analysis is done in the fre-
quency domain, extending that presented in [14]. Section 6.4 describes the model and
arrives at an equation for each mode in the supermode. It incorporates dispersive

effects through the common semiconductor laser parameters and is carried out for
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more than just three modes. Section 6.5 describes the eigenvalue formulation used
to arrive at a self-consistent solution of the coupled nonlinear equations. Section 6.6
presents an approximate analytical expression based on (the minimum) three modes
in order to reduce the complexity and allow one to build physical intuition about
the gain requirements and amplitudes and phases of the supermode spectrum. Sec-
tion 6.7 presents results for the full calculation. The following chapter will compare
the results with experiments for high-repetition-rate passively mode-locked lasers and

include conclusions.

6.4 Derivation of model for supermode analysis

High-repetition-rate modelocking (> 50 GHz) was first demonstrated by Vasil’ev [15]
and by Sanders et al. [16]. To date, semiconductor lasers are the only mode-locked
lasers that have been able to generate repetition rates of hundreds of GHz. Due
to their large material gain coeflicients, short recovery times, and the ability to be
made into short monolithic cavities, high-repetition-rate pulse trains can be generated
easily. Typically, high-repetition-rate lasers involve a monolithic semiconductor laser
structure, meaning no external cavity is used. The model presented is intended to
analyze the monolithic multisection laser, and no intention of including an external
cavity is made here although one could easily modify the modelled cavity to include
a reflection-free facet and some length of free space to account for an external cavity.

Passive modelocking requires a minimum of two sections such that one section is
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Figure 6.6: Schematic for two-section monolithic passively mode-locked laser.

pumped above transparency and one remains below. A standard two-section mono-
lithic passively mode-locked laser structure is shown in Fig. 6.6. More complex struc-
tures have been made to achieve Bragg filtering [17], incorporate additional sections
[7], change recombination rates [18], or develop transient gratings to increase the ef-
fectiveness of absorber saturation [7]. The steady-state effects of each of these can be

taken into account by adjusting the appropriate parameters of the model in Fig. 6.6.
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Figure 6.7: Without any mode coupling a homogeneously broadened laser will lase
in the single mode at which the gain and loss are equal (left side of figure). Allow-
ing mode coupling, amplitude modulated (AM) passive modelocking may permit a
cooperative saturation of the absorber during some part of the repetition cycle and
allow supermode lasing to occur (right side) with a lower threshold gain than if mode

coupling were disallowed.

Physically, one may model the average net gain of a semiconductor laser as having
an approximately parabolic spectrum near its peak. Typically, if one pumps the gain
strongly enough, it will reach a point at which the gain equals the loss as shown in
the left side of Fig. 6.7. If the gain equals the loss for some mode, this mode will start
lasing, the homogeneous gain will become clamped, and further pumping will go into
generating light in the lasing mode.

On the other hand, if one allows a coupling to exist between the modes, the

presence of light in mode n, under some conditions, can make it easier for the light in
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mode n+1 (and vice versa) to saturate through the absorber at certain times during
the repetition cycle. Thus, the laser may operate at a lower average carrier density
than it could if mode coupling were disallowed (see right side of Fig. 6.7). One can
write an equation for the net gain of each mode including the coupling effects due
to each of its neighboring modes. Also there are phase effects, and for stable mode-
locking one requires that all the modes will be equally spaced in frequency. The rest
of this section will be devoted to deriving an equation for each of these coupled modes
which will subsequently be solved to find the supermode for the high-repetition-rate
passively mode-locked laser.

The net optical field inside the laser can be written as a sum over individual
modes,

E(7t) =Y E.()Tn(7), (6.7)
where £,(t) represents the time dependence of mode n, and @, () represents the nth
spatial eigenmode of the cold cavity and satisfies V2@, (F) + pocn Qs %% (7) = 0. Here,
to is the magnetic permeability of free space, €, is the electric permittivity, and €,
is the resonant frequency of the nth mode of the cold cavity. Assuming we have some
uniform guiding (through index or gain-guiding) structure longitudinally throughout _

the laser, we can write

@ (7) = V2@(z, ) cos(B,2). (6.8)

These modes of the cold cavity may be delta-function normalized,
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Similar to (6.7) the net electronic polarization can be written as a sum of terms
separable in space and time. Upon writing the wave equation for the net field and

polarization and projecting onto ,(7), we find

A&, (1) 1 dE,(1) . _ —1d*P.(1)
7z T o di +Q6(1) = o aE (6.10)

where P, (t) = —‘}: fﬁ(F,t) - Ul (7)dV is the projection of the polarization on mode n.
Here 7, represents the photon lifetime for the nth mode.
With the optical frequency much greater than the repetition rate, we may write

E,(t) as the slowly varying complex envelope of &,(¢) such that

E.(t) = ZE, (e + c.c., (6.11)

N —

where w, is the optical angular frequency of the nth lasing mode (w, # Q,, for non-zero
detuning), and correspondingly P,(t) may be written as the slowly varying complex

envelope of the polarization. Thus,

dE,(t)
dt

1 - Wy, ~

E.(t) = ——P,(t), (6.12)

- Z(Qn - Wn)En(t) +

2Tpn
where Pn(t) will contain coupling terms to electric fields spaced at harmonics of the
repetition rate, A = w, — w,_1, since the net polarization is given by

P(7,t) = eox(F ) E(7, 1), (6.13)

where

X(75) = f(wn)xo(7) + D f(wnt) Xk (F) cos(RAL + 4y (7)) (6.14)

k>0
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may possess optical-pulse-induced oscillations in the carrier density [14], and f (wn)
takes into account the frequency dependent gain or loss of the material. Although in
general the material’s loss spectrum has somewhat different center and shape than
that of the material’s gain spectrum, we shall not attempt to model that here.

Because lasers tend to operate at their gain peak and semiconductor lasers have
a significant contribution of gain-dependent phase shift at their gain peak, xk(7) =
Xi(7) + ¢x%(7) presents not only a gain but a change in refractive index as well. The
mode-locked laser is in fact no better in this respect. It tends to operate at an even
longer wavelength than a continuous wave (CW) laser (due to the presence of the
absorber) [14] and is expected to produce even a slightly larger amplitude-to-phase
coupling factor « in its gain section [20], where a = — x4 (7)/x%(F).

Since P,(t) is computed from a projection of P(7, t) onto @, (7) over the whole

length of the laser, there is a contribution from both the gain and absorbing sections

Pa(t) = flwn) e Eult)
%‘:lgolf(wn_k)@kg_e%+5ka-ewka)En-k<t>+f<wn+k><akg+e-%+§ka+e-wka>én+k<t>],
(6.15)
where
b= [ %ol (7)Fav (6.16)
and
Entofore e = [ Xntojo) (Fitas (7) - Tu(F)AV. (6.17)

(The notation (g/a) indicates quantities pertaining to the gain or absorber region,



125

respectively.) We will use x” = gu-c/wo to relate the material gain coefficient, §, to
the imaginary part of the susceptibility with y, being the cold-cavity refractive index.

The imaginary part of (6.16) yields

lon) 2 = LMoty g g, (6.19)

and this term is proportional to the average single pass gain where I' is the confinement
factor, c is the speed of light, & is the material gain coefficient of the absorber section
(@ < 0), I, 1s the total laser length, and h, and k, are the ratios of the gain section and
absorber section lengths, respectively, to the full laser length. The term £ .e™ ks
will be determined from the carrier dynamics by using a linear approximation for the
change in optical gain (loss) versus carrier density for the gain (absorber) section with
g = G(ny(t) — ng). Here, G is the differential gain, n,(¢) is the the time dependent
carrier density, and ng is the carrier density at transparency. Correspondingly, & =
A(n,(t) — ng) for the absorber.

Gain and absorber dynamics result from the photon intensity, which is propor-

tional to
S(z,t) = s + ; sk(2) cos(kAt) (6.19)
with
s0= (ol = 5( 3 IBu(0Fa2() (6.20)
and
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where (), represents a spatial average over a wavelength. Permitting this form, one
notices from the carrier rate equation that a modulation in the light intensity will
induce a modulation in the carrier density at the same fundamental and harmonics of
that frequency. However, the effect of both the small number of modes and the shorter
in-phase overlaps of quickly beating pairs of modes causes the coupling of higher
harmonics to drop off. Ignoring the terms responsible for second nearest neighbor
and higher coupling terms to simplify the problem and still keep it suitable for high-

repetition rate modelocking, from the carrier rate equation,

dn a th) ~ 1A i g Z7t
g/a

we find a saturated material gain ¢ for the gain section, dependent on the gain
recombination time 7, and the injection pumping R/, and correspondingly a for
the absorber section dependent on the absorber recombination time 7,

Al

. g
=< 6.23
g I+ Gryso ( )
&/
a = m. (624)

Here, ¢’ and &' represent the unsaturated gain and unsaturated loss. Additionally,
the carrier density is written n(g/q)(2,1) = no(g/a) + N1(g/a)(2) cos(At + Vig/a)) + - s

and terms showing modulation at the first harmonic in the rate equation lead to:

5 () = —gs1(2)
a?) VAT + (1), + Gso)?’ (6:25)

(6.26)

'ng = — arctan(m),
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—as1(2)

g = ) 6.27
n I(Z) \/A2 n (]_/Ta n A80)2 ( )
and
A
¢a = — arctan(m). (628)

So the carrier modulation becomes small and it lags the optical pulses by nearly /2
radians since the repetition rate is well beyond the recombination rate or saturation

rate. Computing the spatial integrals in (6.17), we find that

é :I:eiwg . #72 ;
ﬁ—‘—/:—— = (—oay + z)w—o;-_;&gsle e (6.29)
where
—Ggo 1 )
K = -+ sin(27h 6.30
g \/Az + (1/7'g + G30)2 2 47Thg ( g)] ( )
and
Go = Tgh, (6.31)

T

is the normalized gain. Likewise for the part of the integral over the absorber,

raxee N it

= (—aq + Z)onp KaS1€%%, (6.32)

where

—Aad 1 1
Ko = i =+ sin(27 k)] (6.33)
\/A2 +(1/7. + Aso)? 2 4mh,
and

do = Dihg—2. (6.34)

7

One can write the single pass gain from (6.18) along with its corresponding phase
contribution. Also, for generality, one should allow the inclusion of a frequency de-

pendence [21] of o (accomplished through (y/4)n), giving the single pass net gain and
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phase effects that are not due to coupling as

fon _ f(wn)”—’z[(—agn +4)do + (—agn + 1)a0)- (6.35)

V; wOTp
For steady state we can ignore all time derivatives and using (6.12), (6.15), (6.29),

(6.31), (6.32), (6.34), and (6.35), the equation for mode n becomes,

{QiTpn(Qn—wn)_l+f(wn)[(1+iagn)?]0+(1+iaan)&0]}En+z_l(ﬁn—En—l+ﬁn+En+1) =0,

0

(6.36)

where we have defined coupling coefficients for the nearest neighbor modes,
e = flwn)[kg(1 4 t0g, )€™ + ko(1 + z'a,m)ew“]SQ—0 (6.37)
ot = Sy (1 + dagn)e™ + ka1 4 ian)e™ )2, (6.38)

These two terms are completely determined by the structure of the laser and the
average photon intensity.

Let a single detuning in the separation of modes be defined, 6 = w,, —Q,, — (w1 —
Q,,_1), since for stable modelocking the detuning of the repetition rate, §, must equal
the detuning in the separation between all neighboring modes. The detuning, é,, of
mode n with respect to €2, is then the detuning of the zeroth mode plus n times
the repetition rate detuning, 8, = &y + nd. The general equation then for the nth |
mode with nearest neighbor coupling, for o parameters incorporated for the gain and

absorber, and with geometric overlap factors included is

(=207 (60 + 18) + (1 + i0gn)Gn + (1 + 10an)in — 11E, + 81 (fine En_y + fing Fnyr) = 0.

(6.39)
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Here §; = s1/s0, and the material gain bandwidth is taken into account with §, =

f(wn)._éO) and an = f(wn)&o

6.5 The solution of the supermode model

The coupled nonlinear equations (6.39) can be solved systematically. Also, one should
solve the problem for a large enough number of equations such that the result does
not depend strongly on the fact that the modes beyond those considered have been
forced to have an electric field of zero. To reduce the number of parameters for the

calculation, it will be helpful to transform to dimensionless parameters,

s = A/G, (6.40)
r=r1./7, (6.41)
A = Ar,, (6.42)
§o = G7ys0, (6.43)
Ry = 4/ (GT,), (6.44)
and
Ra = Kaf(AT,). (6.45)

One may subtract out the detuning of mode zero from the set of equations (6.39).

Defining a constant,

- P
R=(fo-E_1+ 770+E+1)*E~—1', (6.46)

0
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Im(R) is the component of detuning of the center mode due to mode coupling and
Re(R) is the reduction in required average gain for the center mode due to mode
coupling, similar to that discussed in [22]. Taking the imaginary part of the n = 0

equation and subtracting it from the general mode n equation leads to
[—2i7pmm6 + (1 + i0gn)dn + (1 + i@an)dn — i(@godo + Qaodo) — iIm(R) — 1]E,+

81 (fine En_y + finp Enyy) = 0. (6.47)

The net gain spectrum of the semiconductor material is concave downward and may
be represented by the form f(w,) = 1/[1 4 (w, — wo)?/(Aw)?]. Since to second order,
we can write f(w,) = 1 — bn®, we may substitute this, and since b < 1 and the
coupling term is of the same order, we may ignore their product which goes like b°.
Now the general equation for mode n with center mode detuning subtracted finally

becomes
[—2i7m8 + (Jo + @) (1 — bn®) — ibn*(agndo + Qandio) — 1 — iIm(R))E,+

51(fineEn-y + finp Eny1) = 0. (6.48)

Considering a set of 2¢ + 1 modal equations (all are complex except for the n = 0
equation), there are 4¢ 4 1 real equations and a list of 4¢ + 3 unknowns including
4q + 1 unknowns to specify the fields (we may take arg(Eo) = 0 to define an absolute
optical phase) and two other unknowns, gy and 8. The phase of the repetition rate
is also a degree of freedom and we may specify arg(s;) = 0. Then, the modulation

response of the laser sections can be referenced relative to the phase of the optical
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pulses. Since physically one considers a laser operating with a specific DC pumping
(or more appropriately here, a constant average output power), one may specify a
particular average cavity photon intensity for 35. The latter two conditions, without
loss of generality, reduce the number of unknowns in the field vector to 4q — 1,
making the problem completely determined. Due to the nonlinear dependence of
the parameters §o, do, 6, Im(R),7’s, and 3; on the vector E’, the problem remains
challenging. However, the solution is vastly simplified by viewing it as an eigenvalue

problem. For example, one may directly write the problem in a matrix form as below

[ Ay -o(§0,6,E)  A_y1-4(G0, 6, E) 0 0 --1[E,]
At geglfor6.E) Aroyaos(50,6,E) Arys—y(io,6, ) 0 By,
0 Apy1og(§0: 6, E)  Asygaalilo, 6, E) By | =0
0 0 As—ga-olio 6, E) - By,

(6.49)

Through multiplications of the rows by the appropriate complex factors one may also

show that the problem can always be written, having a single complex eigenvalue, X,
in the form

(A (G0, 6, E) = INE,, =0, (6.50)

where A,,(go, 9, E) is a modified complex matrix and L%m is a modified eigenvector.

The problem is more easily solved by keeping it in the form of (6.49), however.

For a non-trivial eigen-solution, we require that the real and imaginary parts of the

determinant of the matrix in (6.49) equal zero. This gives two conditions from which

we may find a best estimate for gy and 8, and this was done simply through Newton’s
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method. With this better estimate of the eigenvalue we proceed to update the relevant
parameters and find a new estimate of the eigenvalue. The process is repeated as
shown in Fig. 6.8 until convergence is reached. The computation gives the supermode

solutions of the high-repetition-rate laser for the chosen average operating power 3.

6.6 Results from an approximate 3-mode solution

The full numerical solution is complicated, involving a large number of interrelated
parameters, and it does not quickly lead to a simple intuitive picture of the effects
of the device parameters. To supplement the full numerical solution, an approximate
analytical description involving only 3 modes and an approximation of the supermode
symmetry is pursued. One may show that if the o parameters of the gain and absorber
sections are ignored, and the gain bandwidth is symmetric relative to the cavity
modes, a totally symmetric (odd symmetry) supermode solution for any number of

modes will result. The form of the supermode solution will be

E, = E* (6.51)

-1

and one can always find a three-mode solution having all three modes exactly in
phase. However, as soon as a, # 0 or o, # 0 is chosen, the symmetry is broken and
one finds that now a chirp-free supermode solution of this form will not generally
exist.

Thus no passively mode-locked supermode will exist having the form of (6.51)

when the amplitude-to-phase coupling is taken into account. The relative phases of
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Figure 6.8: Flowchart of calculation for self-consistent supermode solution.
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the modes in the supermode depend strongly on the amplitude-to-phase coupling.
One finds, for numerous solutions of the full numerical analysis that once a non-zero

a parameter is chosen, the solutions are of the even symmetric form

E,~E_,, (6.52)

since phase effects resulting from the a parameter greatly outweigh the effects present
when the a’s were zero.

Since a simple, analytic, and reasonably accurate result can be obtained assuming
(6.52) when some non-zero « is present, we derive a solution for three mode-locked
modes using this even symmetric assumption. The term —ib(ag(+1)do + Qqa(41)G0) 1s
found to have little effect on the net gain, amplitudes, or phases of the supermode

and will, for this reason, be ignored in this 3-mode approximation.

From the n =1 and n = —1 equations of (6.48), the expressions
Im(R)
- (S0 — 6.53
27, Re( 1ot tT0=) (6.53)
70+ =70 —
and
B idi(ios — o
o 181 (o4 — 7jo-) (6.54)
E, 47'p6

can be obtained. Combining this with the n = 0 equation, we can find the reduction

in required gain for the center mode,

Im(ﬁg+ - 773-)
. 0= 6.55
Re(iigy —72-) (6.33)

From equation (6.54) we will find that a chirp-free solution will exist if

Rgogsinth, = —R,a, sin ¥,. (6.56)
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In this case, a soliton-like compensation effect occurs in the monolithic laser cavity.
This condition implies that the self-phase modulation (SPM) of the absorber section
may exactly oppose the SPM from the gain section [23,24]. For a larger ratio of
@y : g, a net upchirp (optical frequency rising with time during the pulse) due to
SPM will occur. In the frequency domain picture this corresponds to a phase term,
eia(“"‘”o)z, multiplying the optical spectrum, where a is negative. For a smaller ratio
of ay : a,, a net down-chirp due to SPM is found to occur. A plot o% chirp verses
the ratio of o, : «, for a specific laser operating point will be shown in the next
section, using the full calculation. Evidence of both these regimes has recently been

demonstrated [19].

6.7 The full supermode calculation

As formulated in section 6.6, the high-repetition-rate laser supermode can be found
numerically. This may be accomplished even while eliminating all assumptions on
the modal phase and removing any restrictions on the number of participating Fabry-
Perot modes. One finds that if a large enough number of modes is allowed such that
the outermost modes have powers of < 107% compared to the strongest modes, there

is little further change in the result if additional modes are included.
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6.7.1 Before amplitude-to-gain coupling is included

Given reasonable parameters for laser material and structure, such as those shown
in Table 6.1, one can find the supermode solution. In general, one would not expect
the < parameter from the gain and absorber regions to be equal. Previously [20],
the dependence of the interband transition component of this parameter has been
calculated. One would expect a smaller o parameter for laser sections pumped to
lower carrier densities. This, in fact, is found to be an important consideration in
finding a stable supermode solution. Lau [14] has calculated supermode solutions
for three modes with a = 0 for both sections. We find reasonably good qualitative
agreement with these results even as the number of modes considered is increased.
The plots resulting from a = 0, 5, = 2.5, a 15-mode calculation, and the parameters
in Table 6.1 are shown in Figs. 6.9-6.10. From here on, the frequency dependence
of the cold cavity loss is neglected so 7,, = 7,. Fig. 6.9 shows the calculated field
strengths for the 15-mode supermode. Fig. 6.10 shows the corresponding modal
phases, where ¢, is defined as the optical phase in £, e!(wnt+én), Clearly, the symmetry
of (6.51) is present here. Fig. 6.11 shows the threshold gain difference, Re(R), as a
function of 3, defined previously and is displayed in units of 10~ times the cold
cavity loss (from 7,). The right side scale of this plot shows the expected detuning,
6, of the cavity repetition rate. Fig. 6.12 shows the modulation depth at the first
harmonic as a function of average intensity. The threshold gain for single mode

operation must be greater than the mode-locking threshold gain, meaning Re(R) > 0
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Variable Symbol V@lue Units
Number of Modes Considered 2¢+1 15
Center Wavelength A 0.85 pm
Effective Index of Refraction fr 3.6
Differential Gain G 1x107%  cm?
Ratio of Diff. Abs. / Diff. Gain s 2.2
Gain Section Recovery Time T, 1x107° s
Ratio of Abs. Recov. Time / Gain Recov. Time r 0.3
Fundamental Repetition Rate A/2w 80 GHz
Gain Section « parameter oy 4
Absorber Section o parameter Q, 2.1
Photon Cavity Lifetime T 10 ps
Confinement Factor r 0.05
Ratio of Absorber Length / Total Laser Length he 0.25
Normalized Unsaturated Absorption A -2.0
Gain Bandwidth Aw/2m 10 THz
Coefficient for a’s dependence on intensity o 0.25

Table 6.1: Parameter values used in supermode calculations.
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for stable modelocking to be realized [14]. In ideal amplitude modulated (AM) passive
modelocking, a minimum mode coupling is required in order to obtain simultaneous
lasing from 3 or more modes of a homogeneously broadened laser. This requires a
minimum nonlinearity to be present. Hence, if the average cavity intensity, 3o, is too
low, an inadequate amount of mode coupling is generated, and mode-locked operation
cannot be obtained. Additionally, if the cavity intensity is large such that the absorber
is strongly saturated to a point far beyond the knee of the nonlinearity, the minimum
mode coupling again cannot be obtained. This explains why modelocking may only
be obtained over a finite range in Fig. 6.11. The right scale in Fig. 6.12 shows in this
case where oy = 0 and @, = 0, one does not expect SPM to generate any pulse chirp
effects and the quadratic phase (¢1 + ¢_1 — 2¢o)/2 = 0 indicates that, to first order,

no linear chirp is present in this case.

6.7.2 Including amplitude-to-gain coupling

As discussed in the previous section, the o parameter can have a large effect on the
phase of each optical mode. Assuming an o parameter of oy = 4 for the gain section,
only a limited range of values for o,, the a parameter for the absorber section, was
found to give stable self-consistent solutions. A calculation of the approximately linear
chirp (quadratic phase) at the center of the optical spectrum, (¢; + ¢_; — 2¢0)/2,
versus ./, is plotted in Fig. 6.13 for the range of stable mode-locked solutions.
The range is quite narrow and corresponds to a region where the SPM effects from

absorber and gain nearly cancel as discussed in [19]. The dependence of the a’s on
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frequency is ignored in this and subsequent plots.

The same plots as shown in Figs. 6.9-6.12 can be shown for the case including
effects of reasonable non-zero a’s. The new calculated field strength for the 15-mode
supermode with a, = 4 and a, = 2.1 is shown in Fig. 6.14. Fig. 6.15 shows the
corresponding modal phases, ¢,. The previously discussed change in supermode
symmetry is mainly shown in this plot of ¢,,. Before discussing the other three plots,
it should be mentioned that physically as the gain current in the laser is increased to

raise the average intensity, 3y, one weakens the absorber section through the relation
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ao = dy/(1 +rs8g), where aj is the section’s normalized unsaturated absorption. The
strength of the gain is also weakened since we require that §o + @o — 1 ~ 0. Thus,
the two sections both operate closer to transparency as 3§y is increased. This implies
a change in each section’s a parameter also occurs and their dependence on §, will
be approximated to first order here by Aa, = —o;A3y and Aa, = A3y, where «;
takes into account a linear decrease (increase) in @, (a,) as the cavity intensity is
increased. Here, o; is taken as 0.25 around the point 5, = 2.5.

Fig. 6.16 shows the plot of required gain reduction, Re(R), and the expected
detuning in the repetition rate as a function of §y. Fig. 6.17 shows the modulation
depth and an estimate of the mode-locked laser’s linear chirp (¢, +¢_; —2¢0)/2. One
can see that the expected mode-locking range over which the coupled equations can be
simultaneously satisfied is severely limited when the phase condition including the o
parameter is considered. This is a direct result of the presence of the a parameters in
the coupling terms and occurs consistently regardless of whether or not one includes
more allowed modes in the calculation.

It is expected that the mode-locked laser’s operation will change if one modifies
the structure or bias parameters. These effects are important if one intends to un-
derstand or optimize the laser’s operation. We have calculated results one would
expect from modifying key laser parameters and using the nearest-neighbor mode
coupling approximation for the range of supermode solutions that exist around the
case considered in Fig. 6.14.

One finds that if s, the ratio of the differential absorption to differential gain is
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increased, a larger mode coupling is obtained. This leads to a larger value of Re(R),
the reduction in the mode-locking threshold relative to the single mode threshold, as
shown in Fig. 6.18, which is expected to lead to a more stable mode-locked supermode.
Fig. 6.18 also shows that a decreased up-chirp or increased down-chirp is expected to
occur if a larger s is present and all other parameters are unchanged.

The effect of r, the ratio of absorber recovery time to gain recovery time, is ex-
pected to be nearly the opposite. Shown in Fig. 6.19, an increased r leads to a decrease

in the mode-locked gain reduction and ultimately a loss of a stable mode-locked so-
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lution altogether as the ratio is increased above r = 0.46 in this case. Simultaneously
the increased value of r will lead to an increased up-chirp as shown in F ig. 6.19. It
is known that one can reduce the value of r through stronger reverse bias or ion
implantation into the absorber section.

An increase in @, the unsaturated absorption strength of the saturable absorber,
is shown to lead (as shown in Fig. 6.20) to an increase in the mode-locked gain
reduction, Re(R). The strength of the unsaturated absorption is proportional to this

section’s length and absorption coefficient. An increase in either of these is expected
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to lead to a more strongly down-chirped pulse as shown in Fig. 6.20. This agrees
with expectations described in [19] where a stronger saturable absorber is cited as
the reason for a significant down-chirp being obtained over most of the experimental
chirp-versus-current curve.

The ratio of the physical length of the absorber to the total laser length, h,, is
expected to change the effectiveness of mode coupling. If the same absorber strength
can be incorporated into a smaller segment of the laser, one can achieve a more
effective mode coupling and obtain a larger mode-locked gain reduction, Re(R). This
is consistent with results determined in [25]. Fig. 6.21 also shows the effects on pulse
chirp when the parameter h, is varied.

The mode-locked laser’s round-trip frequency is determined by the laser’s cavity
length. A larger cavity round-trip frequency is expected to result in reduced mode
coupling due to a reduction in k, and k,. This will eventually lead to a point where the
minimum mode coupling cannot be obtained and no stable mode-locked supermode
exists. Although the point is ~ 105 GHz in this case (Fig. 6.22), using larger values
of s (= 5), we have obtained stable supermode solutions slightly beyond 200 GHz.
This agrees well with the theoretical results presented by Lau [14]. In this case, larger
mode coupling effects resulted in a reduced down-chirp.

As intuitively expected, lasers having a larger gain and absorber bandwidth will
obtain a greater mode-locked gain reduction. Fig. 6.23 shows the expected increase
in Re(R) as one solves the supermode equations allowing successively larger material

bandwidths. Even larger advantages are found to occur if one assumes a gain band-
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width wider than the laser’s absorption bandwidth. An expected decreased pulse

chirp for larger material bandwidth is also shown in Fig. 6.23.
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Chapter 7

Experimental results from
high-repetition-rate passively

mode-locked lasers

Presentation of a bold new theoretical analysis is useless unless it can aid our under-
standing or give good agreement with the actual experimental devices it is intended
to model. In this chapter, we hope to show that the theoretical model developed in
chapter 6 fills both these demands. First, the monolithic device structures will be
described. Results from devices showing stable high-repetition-rate modelocking will

be given. Then, agreement between experiment and theory will be discussed.



161

7.1 Structure of monolithic devices

A variety of monolithic devices were fabricated. Detailed information about all the
different fabricated structures involved would require a full chapter, therefore, we will
only briefly summarize the structures that led to the most stably mode-locked re-
sults and the reader will be referred elsewhere for more details about other fabricated
structures. All the results to be presented in this chapter came from two structures:
those from regrown two-section GaAs lasers from Ortel Corporation (similar to re-
grown lasers described in chapter 3) and those from colliding-pulse mode (CPM)

stripe GaAs lasers fabricated in our facilities at Caltech.

7.1.1 Regrown two-section monolithic GaAs lasers

The regrown two-section monolithic GaAs lasers are similar in all but one major
respect to those described in chapter 3. The monolithic lasers have high reflection
coatings on both facets and are therefore set up without an external cavity. Those
monolithic lasers with about 30% power reflectivities or less are typically prone to
self pulsation when operated with no external cavity [1,2]. The high reflection (HR)
coatings are created from multilayer quarter wavelength, Ag/4n, coatings. These have
been provided mainly from Silicon oxide (Si0;) and Aluminum oxide (Al,O3) through
Dr. T. R. Chen at Ortel Corporation and in some cases from SiO, and Silicon nitride
(SizNy) through Prof. Axel Scherer at Caltech. Typical coatings involve between

2 and 6 layers and give between 65 and 90% power reflectivity. Thresholds for the
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regrown structures are as low at 5-10 mA with the very low thresholds being due to
the regrown structure’s superior carrier and optical confinement. The onset of stable

modelocking tends to be about 15 mA in our best devices.

7.1.2 Stripe CPM lasers

As mentioned previously, these stripe CPM devices were totally grown and processed
within Caltech. This allows added flexibility to customize the laser structures for the
monolithic mode-locking applications. By placing the absorbing section directly in
the middle of the cavity, one can obtain an advantage over the two-section devices
that do not have perfect reflection on their absorber facet. The first CPM mode-
locked laser was made from a dye laser in 1981 [3]. The CPM laser is meant to
operate in such a way that two pulses exist in the laser and saturate the absorber
simultaneously. By operating in this manner, a stronger absorber saturation can be
achieved for the same average power. This may upon first expectation appear to give
a factor-of-two larger saturation effect within the absorber since, due to spatial beats,
only half of the absorber media is exercised. The more exact saturation advantage
calculation demonstrates that the effect is even more significant than that over op-
eration without pulses colliding in the absorber [4]. This calculation which considers
the coherent counter-propagating field coupling and assumes pulse widths temporally
shorter than diffusion effects shows that a 3 to 1 absorber saturation advantage is
obtained by designing the cavity such that the pulses meet within the absorber. This

would equivalently be modelled by assuming a tripling of the differential absorption
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Figure 7.1: The top side of a GaAs wafer showing one ridge. To create stripe lasers,
ridges of slightly less than 3 pum width and slightly more than 1 gm in height are

etched uniformly across the wafer.

(A — 3A) in chapter 6 (or a 3/2 increase over that expected from the case of no
transient material gratings from the steady state). In addition the transient material
gratings are proposed to enhance noise performance of the mode-locked laser due
to the coherent coupling between pulses [5]. However, incomplete mode suppression
effects are suspected to reduce this noise advantage of the CPM effect and perhaps
sometimes furn it into a disadvantage.

Separate laser contact sections were fabricated on top of a 2-3 um ridge material as

shown in Fig. 7.1. The main photolithographic mask used to make the three-section
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structure for the CPM lasers is shown in Fig. 7.2. It permits large (> 100 um) pads
intended for easy electrical contacting, an absorber region of 50 pm, and gain regions
of up to 985 pm in length each with 15 pm spacing longitudinally be:cvveen each
contact giving it a pattern repetition period of 1065 um. By appropriately cleaving
the fully processed wafer one can produce laser devices with the absorber in the center.
A diamond-tipped Kulicke and Soffa scribing system was used to accurately place a
scribe transversely across part of the wafer to obtain accurate cleavage points. It
was found that accuracies better than 10 ym could routinely be obtained and were
adequate for CPM devices. The n contact of the cleaved laser bars was subsequently

mounted with a conductive Indium alloy on Gold plated laser mounts.

7.1.3 Measurement of high-repetition-rate pulses from CPM
lasers

About 10% of the numerous CPM lasers fabricated within the group actually dis-
played stable modelocking. Most lasers were deemed to have insufficient mode cou-
pling (as defined in chapter 6) for their cavity round-trip frequency and would only
operate in CW or self-pulsed modes as determined through streak camera and au-
tocorrelation analysis. Many had thresholds that were excessive and could not be
adequately tested due to the laser heating damage. Decent lasing thresholds for the
stripe CPM lasers was typically 30 mA. A light versus injection current (L-I curve)

for a CPM laser of 570 pm total length equally pumped at all contacts is shown in
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Figure 7.2: The mask which defines the contacts for the CPM laser fabrication.
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Figure 7.3: An L-I curve for all sections of the CPM laser equally pumped.

Fig. 7.3. Cavity lengths from about 1.4 mm down to as short as 400 um total length
have been fabricated. Under CPM operation, two pulses exist simultaneously in the
cavity, therefore the expected repetition rate or mode spacing frequency is ¢/(n,,(.)
or in other words twice the expected cavity Fabry-Perot mode spacing. This means
that under ideal CPM operation, every other mode is suppressed. It is not a priori
known which set of modes will be suppressed and which will lase, however, once one
set dominates, there is a bistability on the order of 0.5 mA in the L-I curve which
exists and permits the laser to maintain stable operation until conditions change by
at least some minimal amount to overcome the stability. If every other mode is not

significantly suppressed then one cannot conclude that the pulses have a fundamental
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repetition rate of ¢/(n,.l,) or even that the pulses of this frequency are truly equally
spaced. Otherwise, if the mode suppression is for all purposes complete, then the
steady-state operation is equivalent to a two-section laser having a perfect (100%)
HR coating on its absorber facet and having exactly half the length of the actual
CPM laser. Therefore, the steady-state model in the previous chapter will apply
directly to the CPM structure also.

There is a trade off in the advantages for high-repetition-rate modelocking versus
the number of quantum wells. As mentioned in chapter 3, one can obtain the broadest
modal gain spectrum from single well material since maximum cavity gain becomes
much more on-par with the cavity losses and requires a higher volumetric carrier
density. However, as seen in the previous chapter, the coupling strengths £, and &,
must satisfy a minimum magnitude requirement, and are proportional to the modal
differential gain which is proportional to the number of quantum wells. Thus, a higher
number of quantum wells is necessary for high-repetition-rate modelocking. Too many
quantum wells means an excessive current density will be needed in these structures
which are already nearing the limits of heat sinking. The optimum number of quantum
wells for the monolithic laser structures with these cavity losses is determined to be
about 3 or 4 quantum wells.

We have achieved mode-locked pulse trains at frequencies up to 180 GHz. Unfor-
tunately, the train, as seen through streak camera measurements was not consistent
for all times. The laser did not undergo stable modelocking for CW current injection.

Instead the pulse train disappeared and reappeared as is common with lasers having
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self pulsing as the envelope on top of the mode-locked pulse train. Most hopeful
applications of passively mode-locked lasers more stringently require the pulse train
to be continuous. Therefore only results satisfying this requirement will be presented
in this thesis.

The highest repetition rate from stably mode-locked pulse trains from our CPM
devices was 126 GHz. In the case of this high-repetition-rate modelocking only a few
modes are present in the optical spectrum, and each of these modes is easily resolvable
with a spectrometer. If the modes of the optical spectrum were all in phase, time-
bandwidth-limited pulses would be obtained, however, measurements seem to indicate
even in these small energy pulses, the SPM effects are important and cause noticeable
chirp in the pulses. This is not surprising since the ratio of gain or loss saturation
effects to SPM effects is still of the same order even though pulses may be a factor of
100 smaller in energy than they were in the external cavity laser.

A measured pulse train from streak camera measurements for a laser having 250
pm long gain contacts and therefore a total length of 570 ym is shown in Fig. 7.4. For
this measurement, the gain current was 112 mA and the absorber bias was —0.84 V. It
shows a distinctly periodic pattern of pulses spaced by about 8 ps (more precisely at
126 GHz), and the average pulse width from this measurement was found to be 2.9 &
1.0 ps. From these results one finds that the group index corresponds to n,, = 4.16.
which is a reasonable value. At these low pulse energies and high repetition rates,
streak camera measurements (especially at 0.85 pm or longer wavelength) are much

noisier than the actual pulse trains. These pulses are also approximately at the limit
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Figure 7.4: A single shot streak camera trace showing the intensity of the CPM pulse

train having a repetition rate of 126 GHz.
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Figure 7.5: A single shot streak camera trace showing a second point within the

regime of stably mode-locked CPM pulse trains having a repetition rate of 126 GHz.

of our streak camera’s quoted 2 ps resolution limit.

For a significant region in the range of gain currents and absorber voltages, one
can obtain stably mode-locked pulse trains. For the same laser but with a smaller gain
current of 103.8 mA and a bias across the absorber section of ~1.13 V a second trace of
the pulse train is shown in Fig. 7.5. As one goes to lower currents, the laser will stop -
lasing as it is unable to achieve the necessary bleaching of the absorber. However,
before that happens, or with simultaneous reduction of the absorber reverse bias, one
typically reaches a regime where the laser self pulsates. Firstly, one notices (through

the electrical current alone) that when the laser leaves the mode-locked regime, there
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Figure 7.6: A streak camera trace showing the intensity of a single self pulsation in
a consistent train of self pulsations from the CPM laser driven with a gain current

below the regime of modelocking.

is an abrupt drop in the DC current drawn from the voltage source supplying the
absorber section. This is due to the fact that less of the rapid exponential recovery
per unit time occurs for low-repetition-rate pulses. Self pulsations typically occur at
the rate of about 1 GHz in these monolithic semiconductor lasers. Data was taken
to capture the consistent self pulsation that occurs in these lasers at current levels
beneath that necessary for modelocking. Fig. 7.6 shows a detailed graph of a single
self pulsation with a FWHM of about 40 ps. In this case the gain current was 85.4

mA, and the absorber bias was -2.2 V (with absorber current being only -14.2 mA as
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Figure 7.7: A streak camera trace showing the self pulsation in a consistent train of

self pulsations for gain currents beyond that of the stably mode-locked regime.

opposed to —24 mA in the stably mode-locked case). The self-pulsed repetition rate
of these lasers was about 400 MHz. Thus, the duty cycle was quite low.

When one applies larger currents, all lasers tested have also exited the regime
of modelocking. They tend to begin self pulsation in this case also, but here the
characteristics of the self pulsations are different. The frequency of the self pulsations
is higher, close to or beyond a GHz (roughly agreeing with the trend mentioned in
chapter 2). The pulses tend to have a larger width also. Both these factors tend to give
pulses having a rather low duty cycle at the higher currents. Fig. 7.7 shows a typical

self pulsation from a pulse train of about 0.95 GHz. This data was taken from a CPM
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Figure 7.8: An autocorrelation of the 126 GHz CPM laser pulse train.

laser operating with a gain current of 119.2 mA and an absorber voltage and current
of -1.6 V and -20.2 mA, respectively. A sharp peak followed by a broad rounded tail
is a common, although yet unexplained, characteristic of many self-pulsing lasers.
More accurate pulse width estimates can be determined from autocorrelation mea-
surements. The measured autocorrelation under conditions of 112 mA current into
the gain contact and -0.84 V bias across the absorber section is shown in Fig. 7.8.
The FWHM of the measured autocorrelation was 1.3 ps which, assuming a sech?
pulse shape would give a 0.84 ps FWHM pulse. These are the shortest pulses we have
produced directly within the laser, and correspond to a spatial length of 61 ym within

the laser cavity. The absorber length is 50-80 um (actual absorber contact 50 pm
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long) thus the pulse FWHM is essentially the same length spatially as the absorber
section. Perhaps shorter pulses could be obtained by using a shorter absorber section
as collision effects are more complete in a shorter absorber, but a corresponding drop

in pulse energy would likely result.

7.2 Experimental results in regrown high-repetition-

rate lasers

Similar measurements along with more in-depth measurements of the high-repetition-
rate regrown lasers were taken. These measurements included the first chirp char-
acterization of monolithic passively mode-locked semiconductor lasers and led to the
first demonstration of direct chirp control in passively mode-locked lasers. Knowledge
and control of the chirp parameters of semiconductor lasers is a prerequisite to ob-
taining transform-limited pulses and/or to compensate for group velocity dispersion
in fiber. Here we report measurements of the sign and magnitude of chirp in high-
repetition-rate mode-locked semiconductor lasers. The chirp of these monolithic lasers
is measured in the frequency domain using filtering and cross-correlation techniques.
For different injection currents, a range of different chirp values is measured, includ-
ing strongly down-chirped pulses at higher injection currents and transform-limited
pulses to slightly up-chirped pulses at lower injection currents. The pulse chirp and
the resulting broadening are due to the algebraic addition of opposite-signed chirps

from saturation of the absorption section and the gain section. These may cancel
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each other under some conditions leading to soliton-like transform-limited pulses.
Mode-locked semiconductor lasers have produced higher repetition rate pulses
than all other types of lasers. Large material gain coeflicients, fastr recovery times,
and the ability to make short monolithic cavities allow high-repetition-rate pulse
trains (> 50 GHz) to be generated easily. Repetition rates of up to 240 GHz [9] in
GaAs/AlGaAs and above 1.5 THz [10] in InGaAs/InGaAsP multisection structures
have been reported. Although the carrier populations in both the gain and absorber
sections are incapable of fully recovering during these < 20 ps periods, a sufficient
modulation in each section is obtained to couple the modes [1]. The oscillation in the
gain and absorber section populations are small enough to be accurately considered
as linearized modulations which produce mode coupling [1,11]. As is known from
studies in noise [12] or semiconductor laser amplifiers [13], changes in optical gain are
accompanied by a material-generated phase shift due to amplitude-phase coupling
characterized by the material parameter a = —=
Analysis shows that the phase modulation which results when a pulse saturates
an absorbing medium has a sign opposite to that due to saturating a gain medium
[14]. In general, the passively mode-locked semiconductor laser is not likely to be
purely amplitude modulated. The accompanying phase modulation typically results
in a nearly linear chirp on the pulses. To our knowledge, down-chirped pulses have
never been obtained from electrically-pumped passively mode-locked semiconductor
lasers [15]. It would be useful for one to develop a laser which can operate in all three

dispersion regimes (i.e., down-chirped, chirp-free, and up-chirped) and to achieve
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control over its operation. In this section, we present experimental results from a
regrown monolithic passively mode-locked laser. We find that both the magnitude
and sign of chirp may be controlled. Dispersion is expected to result from SPM of
both the saturable gain and absorption sections and from cavity dispersVion. When
using a relatively strong saturable absorber, opposite-signed contributions may cancel,
causing a soliton-like pulse shaping to occur [16], creating a compensated net cavity

dispersion. Chirp-free operation is obtained within the monolithic cavity, producing

time-bandwidth-limited pulses without the need for any gratings or filters.

7.2.1 Experimental setup for monolithic chirp measurements

The two-section regrown monolithic GaAs/AlGaAs quadruple-quantum-well buried
heterostructure laser is used in this experiment. The laser is 510 um in length with a
390 um long gain section, a 70 um absorber section, and a 50 pum isolation region be-
tween sections. The threshold was 9.5 mA with the gain section pumped and absorber
contact floating. All mode-locked measurements presented here were done with the
absorber section grounded and the gain section driven by a DC current source. Both
facets were coated for a reflection of 70%, and no additional feedback was added.
Mode-locked measurements were obtained using light from the gain facet, however, -
results using the absorber facet were also measured with no noticeable difference,
showing that the single pass effects from each section were relatively small.

The phase of the optical spectrum was measured as described previously [17,18]

using a spatial filter in the Fourier plane of the dual-grating pulse compressor shown
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in Fig. 7.9. This filtered beam was temporally cross-correlated with an unfiltered,
variable-delay beam from the same laser. The cross-correlation signal was obtained
using a SHG setup and the relevant delay times versus filter center wavelengths were
recorded to measure the mode-locked laser’s chirp, dr/dw, as for the extérnal cavity
lasers in chapter 4. The sliding filter width was adjusted to pass 0.5 nm of the pulse

train’s optical spectrum.

7.2.2 Experimental results from monolithic chirp measure-
ments

The laser was found to generate stable mode-locked pulse trains at 73 GHz with
the absorber grounded over a range of gain currents from 18 mA to at least 40 mA.
At the average power of 2.5 mW for a 30 mA gain current, the optical spectrum
had 4 modes within its FWHM intensity as shown in Fig. 7.10. With the gratings
placed at the focal points of the telescoped dual-grating pulse compressor, adding no
additional chirp, the plot, Fig. 7.11, time delay of the filtered pulse versus filter center
wavelength was obtained. The positive slope of the plot corresponds to a pulse in
which the frequency decreases with time, i.e., a down-chirp. The magnitude of this
down-chirp was found to be 1.7 ps/nm and appears essentially linear although the
spectrum is not broad enough to allow one to convincingly rule out the presence of
higher order chirp.

The same chirp measurement was also made by moving the second grating to
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Figure 7.9: Two-section monolithic passively mode-locked laser in pulse measurement
setup. The laser’s back contact (left in the picture) is grounded to extract carriers
from the saturable absorber section. The front contact is forward biased to inject
carriers into the gain section. The laser is followed by a beam splitter. One of the
beams is filtered and its pulse is cross-correlated with the original pulse to measure

the time delay of its peak.
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Figure 7.10: Optical spectrum of regrown two-section mode-locked laser with absorber

section grounded and 30 mA into gain section.
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Figure 7.11: Chirp measured in frequency domain, displayed in terms of the time delay
of the pulse’s peak versus the center wavelength of a 0.5 nm rectangular spectral filter.
The measurement is done with 30 mA into gain section and with absorber grounded.

It shows an essentially linear down-chirp of 1.7 ps/nm.
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a position where the net chirp was best eliminated (i.e., the time delay verses A
curve was made flat). This position for the second grating was found to be 5.8 cm
inside the focal length for 2000 lines/mm gratings tilted with their normal 39.7° off
the telescope’s central axis, indicating a down-chirp of 1.62 ps/nm was produced by
the monolithic mode-locked laser. These frequency domain chirp measurements are
possible even though the measured pulses may have less than 10 {J each. From these
measurements, one would conclude that if the center mode’s optical phase was taken
to be 0, the phases of the modes on each side of this mode, progressively out from
the center, would be 0.07, 0.28, and 0.62 rad, meaning that the standing waves for
each of these modes would reach their peaks at earlier times corresponding to these
optical phase shifts than the center mode would.

To verify these cross-correlation measurements, a set of standard autocorrelations
was taken. Replacing the beams splitters in Fig. 7.9 with mirrors, the pulse width for a
variety of positions of the telescoped compressor’s second grating was measured. With
all points plotted and fit with the expected function 7(1 4 az?)'/?, again the minimum
chirp position is shown to be inside the focal length of the second lens by about 5.8
cm. The curve, confirming the measured down-chirp, is shown in Fig. 7.12. The
down-chirp depends on the injection current. As the relative strength of the absorber
and gain sections is changed, the relative amount of phase modulation from both the
gain and absorber is expected to change, causing a different net chirp. In fact, the
down-chirp was found to increase at larger injection currents. The results of the chirp

measurement for injection currents of 18 mA, 20 mA, 30 mA, and 40 mA into the
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Figure 7.12: Pulse width versus position of second grating in dual-grating compressor
is shown. A position of zero indicates the grating is at the focal point and no chirp
is added. Negative positions indicate the grating is closer than the focal point of the
second lens. A minimum pulse width occurs near -5.8 cm corresponding to a 1.62 -

ps/nm down-chirp from the laser.
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Figure 7.13: Measured values of chirp as a function of gain section current. An

increasing down-chirp is seen as the gain current is increased.

gain section are shown in Fig. 7.13. The CPM effect which has been observed in dye
lasers and suggested [5] and studied [19] in semiconductor lasers was not noticeable
here. Two possible reasons for the absence of a transient grating are noted. The
effectiveness of transient grating build-up is expected to be proportional to both the
peak intensity and the diffusion time constant. This product is rather small for

2 (about 1/100 of that from external cavity

peak cavity intensities around 5 MW /cm
lasers) and a relatively short diffusion time. The ambipolar diffusion constant, D* =

15 cm?/sec, for GaAs, results in a carrier diffusion time [20] of ¢; ~ L?/16D* = 0.6

ps for a grating to smear out to a full width of L = \/2n, where n = 3.6 is the
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material’s index of refraction. This implies that the transient grating decays in a
time shorter than the pulse width. Saturation effects, however, are a cumulative
result from a number of pulses since the repetition rate is faster than the recovery
time of either section. Thus, for high-repetition-rate lasers, the grating is expected
to be blurred even while the saturation effects are significant. Secondly, the 70%
reflection provides incomplete standing wave interference for building the saturation
grating. Nevertheless, without significant saturation grating effects, chirp-free pulses

were obtained at the lower injection currents.

7.3 Discussion of monolithic results

Experimental measurements of the spectrum, pulse chirp, and the variation of pulse
chirp with injection current have just been reviewed. They show qualitatively the
same characteristics as the calculation for 80 GHz in the previous chapter. A broader
spectrum and larger pulses as found from streak camera results can typically be ob-
tained at higher bias conditions. An optical spectrum for the laser operating at 30 mA
had been shown in Fig. 7.10. The chirp of this spectrum has been measured through
cross-correlation techniques [21], and integration of these results leads to phase values,
#(X), of the optical spectrum plotted in Fig. 7.14. The figure is derived from an inte-
gration over Fig. 7.11 and shows a phase of the optical spectrum corresponding to a
train of pulses with a 1.7 ps/nm down-chirp and a time-bandwidth product, A7, Av,

which is 19% larger than the compressed pulse time-bandwidth product achieved in
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Figure 7.14: Chirp measured in frequency domain, displayed in terms of the phase
of optical spectrum vs. the center wavelength of a 0.5 nm rectangular spectral filter.
The measurement is done with 30 mA into gain section and with absorber grounded

and shows an essentially linear down-chirp of 1.7 ps/nm.
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the experiment. This regime of operation qualitatively corresponds to the calculated
optical phase from chapter 6. Additionally, the experimental measurement of 1.7
ps/nm down-chirp for this laser is equivalent to (¢1 4+ ¢_1 — 2¢0)/2 = 0.07 rad, just
as in Fig. 6.15. Furthermore, experimental results have demonstrated the effect of
changes in the DC gain section injection current from the preceding case. The experi-
mental results are shown in Fig. 7.13. While the laser is above threshold, the changes
in DC injection current are nearly linearly related to the average photon intensity
inside the cavity, §,. Hence, we expect Fig. 7.13 to show agreement with the calcu-
lated pulse chirp in Fig. 6.17. Both show a sequence of up-chirped, chirp-free, and
down-chirped operation as the photon intensity inside the cavity is increased. Not
only is the magnitude of chirp in agreement at the point of 5, = 2.5, but it remains in
close agreement over the full experimentally measured range of pumping strengths.
This is the first time amplitude-to-phase coupling has been able to explain the chirp
in passively mode-locked lasers.

The theoretical model seems to provide an excellent indication of which parameter
values will satisfy the necessary conditions for modelocking. Theoretical results for
the CPM laser modelocked near 126 GHz have shown very good agreement with
measurement also, and indicate that a larger ratio of absorber differential gain (or
other parameter adjustments following the same trends) is required to satisfy the
coupled mode equations at this repetition rate. Reasonable parameter values have
not been able to satisfy the coupled mode equations for rates of over 500 GHz in any

theoretical work on passive modelocking to date, since for lasers at these rates the
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minimum threshold solution has always been found (theoretically) to be the single-
mode solution. Suspicions lead one to suspect that the amplitude-to-phase coupling
could be responsible for introducing instabilities at the round-trip frequency and
causing fluctuations to de-stabilize the single mode operation, however, no result
demanding this has been derived yet.

Although good agreement between theory and experiment is obtained, we do not
intend to imply that we have found the actual parameters of the mode-locked laser.
However, we believe that the chosen parameters place the calculations in qualitatively
the same regime of operation and that the calculated effects of the o parameter, the
laser structure parameters, and the bias parameters will show a good correspondence
with future experimental results.

Additionally, all results presented in this thesis are believed to be for the lowest-
order supermode — the one which possesses a minimum threshold gain. We have
found some relatively small regions in the parameter space in which a second super-
mode solution could be found as a self-consistent solution. For a set of reasonable
parameters and an arbitrary 3p, the second supermode was always found to exist
for a slightly different repetition rate detuning, ¢, and a higher required gain, go.
The supermode solutions were not orthogonal. This is contrary to some assumptions
in a recent publication on passively mode-locked laser noise [23]. One would ex-
pect actively mode-locked supermode solutions to be orthogonal. However, passively
mode-locked lasers are inherently nonlinear, i.e., mode coupling is a direct conse-

quence of the saturation effects resulting from the beating of the Fabry-Perot laser
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modes. Only in a linear coupled mode problem would one expect the eigenvectors
to be orthogonal. In passive modelocking, however, the presence of one supermode
will modify the system (the laser) such that conditions will not permit a second su-
permode to exist simultaneously. Thus a superposition of supermodes is not a valid
solution to the set of coupled nonlinear equations. The characteristic shape of the
second supermode we have found has essentially the same shape for its supermode
envelope but was offset by half of one mode spacing from the usual spectrum center.
Two of the lasing modes in its supermode thus possessed nearly equal field strengths,
the nearly quadratic phase was essentially centered about this offset point and the
necessary gain was always found to be higher than that required for the supermode

which was not offset.

7.4 Conclusion for high-repetition-rate lasers

In conclusion, a steady-state analysis for high-repetition-rate passively mode-locked
semiconductor lasers was presented (chapter 6). We derived an equation for an ar-
bitrary mode that exists in the supermode of the laser. The equation requires gain
to balance loss and incorporates phase effects that result from amplitude-to-phase -
coupling in each section of the laser. Additionally, mode coupling enters through the
nonlinearity of both the saturable gain and saturable absorption sections. A nonlin-
ear eigenvalue problem approach was presented to numerically solve for the passively

mode-locked laser’s supermode. An approximation of nearest-neighbor-only coupling
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was used here. Next, an approximate 3-mode solution was analytically solved for the
purpose of building intuition and theoretically explaining recent experimental results
which show the possibility of obtaining up-chirped, chirp-free and down-chirped pulses
all from a single laser under different gain section bias. Results of the full supermode
calculation (with nearest-neighbor-only coupling) were presented. The supermode
magnitude and phase were plotted in the case where no amplitude-to-phase coupling
exists in either laser section. In this case, supermode solutions could be obtained over
a broad range of cavity intensities. Other characteristics of the supermode solution
were plotted as a function of cavity intensity also.

When reasonable amplitude-to-phase coupling factors were chosen for both laser
sections, the supermode symmetry was severely changed. The phase was found to
take on a predominantly quadratic shape in the region of the spectrum where the
mode strengths are significant. This indicated the presence of essentially linearly
chirped pulses. The presence of a non-zero a parameter was found to drastically
limit the range (in terms the variation of cavity intensity) over which stable mode-
locked solutions could be found owing to the added phase effects. The effect of the o
parameters on the reduction in gain due to coupling were neither very advantageous
nor very harmful. They typically led to a slight weakening in Re(R), the reduction in
threshold gain due to mode coupling. To facilitate understanding and optimization
of high-repetition-rate passively mode-locked lasers, calculations of the reduction in
gain provided through mode coupling and of the expected linear chirp were presented

for variations in parameters of the laser structure and bias.
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Finally, experimental results from a high-repetition-rate passively mode-locked
laser at 73 GHz were compared to the supermode calculations in this paper. A
good qualitative agreement for the spectral shape, chirp, and variation in chirp with
changing injection current was found. Identical to the theoretical calculations, stable
pulse trains of slightly up-chirped, chirp-free, and relatively strongly down-chirped
pulses were obtained from high-repetition-rate passively mode-locked lasers. The se-
quence of different regimes of operation was obtained in the same order as pumping
was increased experimentally and in the the model. Both gave similar magnitudes
of chirp also. The changing SPM effects are attributed to a change in the ratio of
absorber to gain section strengths. At strong pumping, strongly down-chirped pulses
are demonstrated both theoretically and experimentally from these relatively-long-
absorber-section lasers. These pulses would undergo compression in fiber propagation
at this wavelength. The calculated supermodes analyzed were typically not as broad
as the measured supermode. The reason for choosing rather narrow supermodes in
the theoretical supermode analysis is that in this case the higher-order coupling effects
(e.g. second nearest neighbor, third nearest neighbor coupling, etc.) are expected to
be smaller. Thus, in this case, the nearest-neighbor-coupling approximation is ex-
pected to be more accurate. However, by including second-nearest-neighbor coupling
and higher-order coupling in the matrix for the supermode solution, one may more
accurately model lower repetition rate mode-locked lasers at repetition rates (= 5
GHz) which are viable for data rates in communication systems which are practical

today.



191

References

[1] J. Paslaski and K. Y. Lau, Appl. Phys. Lett., 59, 7 (1991).

[2] K. Y. Lau and J. Paslaski, IEEE Photon. Technol. Lett., 3, 974 (1991).
[3] R. L. Fork and C. V. Shank, Appl. Phys. Lett., 38, 671 (1981).

[4] M. S. Stix and E. P. Ippen, IEEE J. Quantum Electron., 19, 520 (1983).
(5] Y. K. Chen and M. C. Wu, IEEE J. Quantum FElectron., 28, 2176 (1992).

[6] R. L. Fork, C. H. B. Cruz, P. C. Becker, and C. V. Shank, Opt. Lett., 12, 483

(1987).
[7] P. P. Vasil'ev and A. B. Sergeev, Electron. Lett., 25, 1049 (1989).
(8] S. Sanders, L. Eng, J. Paslaski, and A. Yariv, Appl. Phys. Lett., 56, 310 (1990).
[9] J. F. Martins-Filho and C. N. Ironside, Appl. Phys. Lett., 65, 1894 (1994).

[10] S. Arahira, S. Oshiba, Y. Matsui, T. Kunii, and Y. Ogawa, Optics Lett., 19, 834

(1994).



192

[11] R. A. Salvatore, S. Sanders, T. Schrans, and A. Yariv, “Supermodes of high-
repetition-rate passively mode-locked semiconductor lasers,” submitted to IEEE

J. Quantum FElectron.
[12] K. Vahala and A. Yariv, IEFE J. Quantum Electron., 19, 1096 (1983).

[13] M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, IEEE

J. Quantum Electron., 30, 1122 (1994).
[14] G. P. Agrawal and N. A. Olsson, IEEE J. Quantum Electron., 25, 2297 (1989).
[15] A. Azouz, N. Stelmakh, and J.-M. Lourtioz, Electron. Lett., 29, 1437 (1993).
[16] O. E. Martinez, R. L. Fork, and J. P. Gordon, J. Opt. Soc. Am. B, 2, 753 (1985).
[17] J. L. A. Chilla, and O. E. Martinez, IEEE J. Quantum Electron., 27,1228 (1991).
[18] R. A. Salvatore, T. Schrans, and A. Yariv, Optics Lett., 20, 737 (1995).

[19] D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and

J. E. Bowers, IEEE J. Quantum Electron., 28, 2186 (1992).

[20] C. M. Wolfe, N. Holonyak, and G. E. Stillman, Physical Properties of Semi-

conductors, Prentice Hall, Englewood Cliffs, NJ (1989).

[21] R. A. Salvatore and A. Yariv, “Demonstration of down-chirped and chirp-free
pulses from high-repetition-rate passively mode-locked lasers,” accepted for pub-

lication in IEEE Photon. Tech. Lett., Oct. 1995.



193

[22] S. Sanders, Ph.D. Thesis, California Institute of Technology (1991).

(23] I. Kim and K. Y. Lau, JEEE J. Quantum Electron., 29, 1081 (1993).



