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ABSTRACT 

 

 Transition metal complexes have enormous potential as diagnostic and 

therapeutic agents, but their internalization and distribution in living cells are only poorly 

understood. Here, we perform one of the few systematic explorations of the uptake 

efficiency and mechanism of a class of metal complexes: luminescent dipyridophenazine 

(dppz) complexes of ruthenium(II). Substitution of the ancillary ligands permits variation 

in the overall complex charge, size, and hydrophobicity. We find that internalization of 

these complexes occurs mostly through passive diffusion, driven by the membrane 

potential, and that hydrophobicity, rather than size, is the most important determinant of 

compound accumulation. Across different cell types with all compounds, mostly uneven 

cytoplasmic staining is observed with near exclusion from the nucleus. Conjugation to 

cell-penetrating peptides, such as D-octaarginine, increases uptake efficiency, but leads to 

trapping in endosomes below a threshold concentration. Above this threshold 

concentration, substantial staining of the nucleus as well as the cytosol is observed. An 

appended fluorescein tag lowers the threshold concentration, indicating the importance of 

payload to the internalization and distribution of cell-penetrating peptides. Shorter 

peptides, including the nuclear targeting signal RrRK (where r = D-arginine), are also 

studied, though none have as high a degree of uptake nor as low a threshold concentration 

as the octaarginine conjugate. These studies provide a basis for the future design and 

optimization of metal complexes for biological application. 
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CHAPTER 1: METHODS TO EXPLORE THE CELLULAR UPTAKE OF 

LUMINESCENT RUTHENIUM COMPLEXES
† 

 

1.1: INTRODUCTION 

1.1.1: SIGNIFICANCE OF UPTAKE 

 Transitional metal complexes are appealing candidates in the search for new 

diagnostic and therapeutic agents. They represent a uniquely modular system, wherein 

the metal center holds its ligands in a precisely defined three-dimensional structure. 

These ligands can be varied relatively easily, in order to selectively change the 

characteristics of the complex in either subtle or dramatic fashion. Transition metal 

complexes also offer rich photophysical and photochemical properties, expanding their 

utility beyond structural recognition. 

 Biological applications of transition metal complexes are increasingly being 

explored.1–3 Currently, we are investigating 5,6-chrysenequinone diimine (chrysi) 

complexes of rhodium(III) as potential chemotherapeutic agents. These complexes target 

single base mismatches in DNA and selectively inhibit cellular proliferation in mismatch 

repair-deficient cell lines.4–6 To be effective, these compounds must reach the intended 

location inside the cell. 

 The cell membrane represents a formidable barrier to this goal. Only molecules 

within a narrow range of molecular weight, charge, and polarity are typically able to 

directly cross the plasma membrane by passive diffusion.7 Larger molecules are generally 
                                                 
† Parts of this chapter were adapted from Puckett, C. A.; Barton, J. K. Methods to explore cellular uptake of 
ruthenium complexes. J. Am. Chem. Soc. 2007, 129, 46–47. 
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internalized by endocytosis, a process that involves invagination of the plasma membrane 

to form a vesicle. However, molecules that enter by this route often fail to escape from 

these vesicles. Compounds that target genomic DNA must also bypass the nuclear 

membrane. 

 The cellular uptake properties of transition metal complexes are not well 

developed. The notable exception is cisplatin, whose cellular accumulation has been 

examined in detail and recently reviewed.8 Also, Parker and coworkers have 

characterized the mechanism of uptake for several luminescent Eu(III) and Tb(III) 

complexes, and found that they enter cells by endocytosis (specifically 

macropinocytosis).9 Generally, studies of metallocomplexes have revealed that they are 

as diverse in their uptake properties as organic and biomolecular compounds. Here, we 

apply a broad spectrum of techniques to explore the uptake and distribution of 

ruthenium(II) polypyridyl complexes, which serve as luminescent analogues of our 

rhodium therapeutics. 

 

1.1.2: METHODS TO EXAMINE CELLULAR ACCUMULATION OF METAL COMPLEXES 

 Metal complexes for diagnostic applications are frequently luminescent, allowing 

ready characterization of their uptake characteristics. They can be examined by 

fluorometry, confocal microscopy,3 and flow cytometry.10 For non-luminescent 

complexes, inductively coupled plasma mass spectrometry (ICP-MS),11,12 atomic 

absorption spectroscopy (AAS),13 and UV-visible absorption spectroscopy14 are used. 

 Prior to ICP-MS, AAS, UV-visible absorption spectroscopy, and fluorometry 
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measurements, cell lysates are prepared from cells that have been incubated with metal 

complex. When adherent cells are used, they are either detached from the culture dish and 

then lysed, or lysed directly in the dish. Alternatively, the cells can be detached and 

treated with complex in suspension, though in this case, the cells are not in their normal 

growing environment. This cell lysate is analytically diluted, and the amount of metal in 

the solution is quantified. Amounts are typically reported versus cell number or total 

protein concentration. Independent of the quantification technique, attention must be paid 

to certain steps to ensure accurate results. Egger and colleagues have found that 

adsorption to the culture plates and sample storage conditions prior to analysis 

significantly influence recovery of the metal.11 Factors affecting adsorption include 

concentration of the complex, the amount of protein in the medium, the duration of 

contact of protein-containing medium before treatment with complex, and the 

lipophilicity of the complex. Adsorption-related artifacts are particularly an issue when 

lysis is performed directly in the culture dishes. To correct for these effects, adsorption 

blanks of cell-free samples treated with metal complex should be performed. A second 

major issue is the time that the sample is stored prior to measurement, as the recovery of 

analyte decreases with time. Consequently, samples should be quantified immediately 

after preparation. When these considerations are taken into account, reliable 

measurements of metal complex uptake can be performed. 

 The cellular uptake of luminescent metal complexes are primarily examined using 

two complementary methods, flow cytometry and confocal microscopy; fluorometry of 

cell lysates can also be performed. For flow cytometry, cells are detached from culture 
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either before or after incubation with the metal complex to produce a cell suspension. 

Untreated cells are used for the autofluorescence control. To exclude dead cells from 

analysis, a membrane-impermeable dead cell dye, such as propidium iodide, can be 

added.15 The cells are inspected individually as they pass single file through the laser 

beam(s) and the instrument records their light scatter and luminescence. Optical band 

pass filters separately collect the emission from multiple fluorophores. The result is a 

distribution of luminescence for the cell population, which can be depicted as a histogram 

of luminescence intensity versus the number of cells. The luminescence intensity of 

different cell populations, e.g., treated with different complexes or different incubation 

conditions, is easily compared. 

 Flow cytometry is faster and less labor intensive than preparation of samples for 

ICP-MS. It also provides a distribution of cellular uptake, rather than only the mean 

uptake of all the cells. Samples prepared for flow cytometry will have the same 

adsorption issues described above, though they may be less significant, as the cells are 

detached from the culture dish after incubation with the metal compound, rather than 

lysed in the dish, or incubated in suspension following detachment. Flow cytometry 

distinguishes live from dead cells by uptake of a dead cell dye, whereas with ICP-MS, 

dead cells are eliminated from analysis if they have lost adherence to the culture dish and 

are washed away before the lysis step. Both techniques have their purpose, as ICP-MS 

provides absolute values for uptake, while flow cytometry is limited to luminescent 

compounds and is better suited for comparing the amount of uptake under different 

conditions.  
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 Flow cytometry and analysis of cell lysates by ICP-MS and other methods only 

provide a measurement of the total amount of metal complex associated with the cell; 

they do not distinguish between membrane-bound and intracellular material. Localization 

is difficult to discern by these techniques, where cellular components, such as nuclei, 

must be physically isolated before the metal content can be determined.  

 Confocal microscopy, on the other hand, reveals the spatial distribution of 

luminescent metal complexes inside the cell. Co-staining with organelle dyes can be 

performed to further pinpoint their intracellular location. Another notable advantage of 

microscopy over ICP-MS is that lesser amounts of metal complex are typically required, 

as the incubations can be performed in small wells (e.g., those of a 96-well plate). To 

acquire better quality images, adherent cells are preferable over suspension cells, and the 

cells should not be confluent. Importantly, cells should be imaged live rather than fixed, 

as fixation can cause artifactual redistribution of compounds.16 In all the uptake 

experiments, attention should be paid to the number of cells incubated with the metal 

complex, since the amount of uptake may be dependent on it. This has been shown to be 

the case for cell-penetrating peptides.17 

 

1.2: EXPERIMENTAL PROTOCOLS 

1.2.1: MATERIALS AND INSTRUMENTATION 

 Media, cell culture supplements, and TO-PRO®-3 iodide were purchased from 

Invitrogen (Carlsbad, CA). RuCl3 was purchased from Pressure Chemical Co (Pittsburgh, 

PA). 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), 4,4′-dimethyl-2,2′-bipyridine, and 
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3,4,7,8-tetramethyl-1,10-phenanthroline (Me4phen) were obtained from Sigma-Aldrich 

(St. Louis, MO). 4,7-diphenyl-1,10-phenanthroline (DIP) was purchased from GFS 

Chemicals (Columbus, OH). Calf thymus (CT) DNA was purchased from Amersham 

Biosciences, GE Healthcare (Pittsburgh, PA). All commercial materials were used as 

received. 

 1H NMR spectra were recorded on a 300 MHz Varian spectrometer. Mass 

spectrometry was performed at either the Caltech mass spectrometry facility or in the 

Beckman Institute Protein/Peptide Micro Analytical Laboratory. Absorption spectra were 

recorded on a Varian Cary 100 or Beckman DU 7400 spectrophotometer. Unless 

otherwise referenced, extinction coefficients of Ru complexes were determined using 

inductively coupled plasma mass spectrometry (ICP-MS). Luminescence measurements 

were performed on an ISS K2 fluorimeter equipped with a 300 W xenon lamp as an 

excitation source. HPLC was performed on an HP1100 system equipped with a diode 

array detector using a Vydac C18 reversed-phase semipreparative column. 

 

1.2.2: RU COMPLEX SYNTHESIS 

 Dipyrido[3,2-a:2′,3′-c]phenazine (dppz) and 4′-methyl-2,2′-bipyridine-4-

carboxylic acid (mcbpy) were prepared according to previously recorded procedures.18,19 

4-Aminomethyl-4′-methyl-2,2′-bipyridine (NH2-bpy) was prepared from 4,4′-dimethyl-

2,2′-bipyridine as described by Berg et al. (to make 4-hydroxymethyl-4′-methyl-2,2′-

bipyridine) and Hamachi et al.20,21 
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1.2.2.1: SYNTHESIS OF 4-ETHOXY-4′-METHYL-2,2′-BIPYRIDINE (CO2ET-BPY) 

 4′-methyl-2,2′-bipyridine-4-carboxylic acid (111 mg) was refluxed in 10 mL 

ethanol with conc. H2SO4 (10 drops). Reaction progress was complete by 8 h, as 

monitored by TLC (silica, 5% methanol in CH2Cl2). The mixture was cooled to 0 °C and 

neutralized with saturated NaHCO3, then concentrated in vacuo. Water was added, and 

the solution was extracted with CH2Cl2. The organic layer was washed with water, dried 

with Na2SO4, filtered, and concentrated in vacuo. The pale yellow solid was purified on a 

silica column using 1:1 ethyl acetate:hexanes to yield a white solid. 1H NMR (acetone-d6, 

300 MHz): δ 8.98 (m, 1H), 8.86 (dd, 1 H, 5.0 Hz, 1.1 Hz), 8.57 (m, 1H), 8.34 (m, 1H), 

7.89 (dd, 1 H, 5.0 Hz, 1.7 Hz), 7.30 (dd, 1 H, 5.0 Hz, 1.1 Hz), 4.45 (q, 2H, 7.1 Hz), 2.47 

(s, 3H), 1.42 (t, 3H, 7.1 Hz). 

 

1.2.2.2: SYNTHESIS OF 4-NH-FMOC-4′-METHYL -2,2′-BIPYRIDINE 

 4-Aminomethyl-4′-methyl-2,2′-bipyridine (45 mg, 0.23 mmol) was dissolved in 

3 mL CH2Cl2.  9-Fluorenylmethoxy-carbonyl-N-hydroxysuccinimide (Fmoc-OSu) 

(114 mg, 0.34 mmol), dissolved in 3 mL CH2Cl2, was added. After 2 h, 59 μL DIEA was 

added, and the mixture was stirred under Ar(g) for 29 h. The solution was rinsed twice 

with saturated sodium bicarbonate. The dichloromethane solution was dried with 

magnesium sulfate, filtered, and concentrated in vacuo.  The product was purified by 

silica column (pre-treated with 90:10 hexanes:triethylamine), eluting with 1:1 ethyl 

acetate:hexanes followed by ethyl acetate. A white solid was obtained. ESI-MS (cation): 

422.2 m/z (M+ + H+) obsd, 422.2 m/z (M+ + H+) calcd. 1H NMR (CDCl3, 300 MHz): 
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δ 8.62 (d, 1H, 5.1 Hz), 8.53 (d, 1H, 5.1 Hz), 8.30 (s, 1H), 8.23 (s, 1 H), 7.77 (d, 2H, 7.5 

Hz), 7.61 (d, 2H, 7.5 Hz), 7.41 (m, 2H), 7.31 (m, 2H), 7.19 (d, 1H, 5.1 Hz), 7.15 (d, 1H, 

3.6 Hz), 5,23 (broad s, 1H), 4.49 (m, 4H), 4.25 (t, 1H, 6.6 Hz), 2.45 (s, 3 H). 

 

1.2.2.3: SYNTHESIS OF [RUL2DPPZ]CL2; L = 2,2′-BIPYRIDINE (BPY), 1,10-

PHENANTHROLINE (PHEN), OR 4,7-DIPHENYL-1,10-PHENATHROLINE (DIP) 

 Ru(bpy)2Cl2 was synthesized as previously described.22 Ru(DIP)2Cl2 and 

Ru(phen)2Cl2 were synthesized in an analogous fashion to Ru(bpy)2Cl2. The 

dipyridophenazine (dppz) ligand was added to RuL2Cl2 by refluxing in ethanol-water for 

> 3 h to make Ru(DIP)2dppz2+ and Ru(phen)2dppz2+. The ethanol was removed under 

vacuum, resulting in precipitation of [Ru(DIP)2dppz]Cl2, which was collected by 

filtration. The compound was purified via room temperature recrystallization by diffusion 

of ether into acetonitrile. Ru(phen)2dppz2+ was precipitated from water as the 

hexafluorophosphate salt, then returned to the chloride salt by Sephadex DEAE anion 

exchange column. The Ru complexes utilized are racemic mixtures of the two 

enantiomers. Ru complex concentrations were determined by UV/vis absorbance: 

Ru(bpy)2dppz2+, ε444 nm = 16,100 M-1 cm-1;24 Ru(phen)2dppz2+, ε440 nm = 

21,100 M-1 cm-1;25 and Ru(DIP)2dppz2+, ε433 nm = 34,300 M-1 cm-1. 

 

1.2.2.4: SYNTHESIS OF [RU(ME4PHEN)2DPPZ]CL2 

 Ru(Me4phen)2Cl2 was synthesized in a similar manner to Ru(bpy)2Cl2, except that 

the reaction time was shortened to 3 h (reaction for 8 h produces a larger amount of 
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impurities), and the reaction was performed under Ar(g) and protected from light. Dppz 

was added to Ru(Me4phen)2Cl2 as described above to form Ru(Me4phen)2dppz2+. The 

complex, as the PF6
- salt, was first purified on a neutral alumina column, eluting with 

CH3CN. The product was converted to the Cl- salt by anion exchange chromatography 

(Sephadex DEAE). Further purification by HPLC yielded the complex in analytical 

purity. ESI-MS (cation): 428.2 m/z (M2+) obsd, 428.1 m/z (M2+) calcd. UV/vis (H2O, 

pH 5): 269 nm (130,500 M-1 cm-1), 358 nm (18,100 M-1 cm-1), 376 nm (22,900 M-1 cm-1), 

422 nm (21,200 M-1 cm-1). 

 

1.2.2.5: SYNTHESIS OF [RU(CO2ET-BPY)2DPPZ]CL2 

 Ru(CO2Et-bpy)2Cl2 was synthesized according to the protocol of Leasure and 

coworkers,23 except 2:1 dimethoxyethane:ethanol was used as the reaction solvent. The 

dppz ligand was added by refluxing in ethanol for 24 h. The complex was purified by a 

neutral alumina column eluting with CH3CN, followed by recrystallization by slow 

diffusion of ether into CH3CN. Complex was converted to the Cl- salt by anion exchange 

chromatography (Sephadex DEAE). ESI-MS (cation): 433.9 m/z (M2+) obsd, 434.1 m/z 

(M2+) calcd. UV/Vis (H2O, pH 5): 293 nm (110,000 M-1 cm-1), 360 nm 

(28,700 M-1 cm-1), 372 nm (28,200 M-1 cm-1), 463 nm (29,300 M-1 cm-1). 

 

1.2.2.6: SYNTHESIS OF RU(MCBPY)2DPPZ  

 This complex was formed by hydrolysis of the ester. [Ru(CO2Et-bpy)2dppz]Cl2 

was suspended in 0.5 M LiOH and stirred overnight. The reaction mixture was 
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neutralized with 1 M HCl and desalted with a Sep-Pak C18 cartridge (Waters Chemical 

Co). A red-orange solid was obtained. ESI-MS (cation): 406.0 m/z (MH2
2+), 416.9 m/z 

(MNaH2+), 427.9 m/z (MNa2
2+) obsd, 406.1 m/z (MH2

2+) calcd. UV/Vis (H2O, pH 5): 

292 nm (100,200 M-1 cm-1), 358 nm (25,400 M-1 cm-1), 372 nm (24,600 M-1 cm-1), 

458 nm (25,400 M-1 cm-1). 

 

1.2.2.7: SYNTHESIS OF [RU(NH2-BPY)2DPPZ]CL2 

 This complex was synthesized using the Fmoc-protected ligand, 4-NH-Fmoc-4′-

methyl-2,2′-bipyridine. Preparation of Ru(NH-Fmoc-bpy)2Cl2 was accomplished using 

the method of Leasure and coworkers.23 Dppz was added by refluxing in 1:1 

ethanol:water for 7 h. The ethanol was removed in vacuo, and the water solution was 

filtered. Ru(NH-Fmoc-bpy)2dppz2+ was precipitated by addition of NH4PF6 to the filtrate, 

and converted to the chloride salt by anion exchange chromatography (Sephadex DEAE). 

Product was purified by HPLC. 

 Deprotection of Ru(NH-Fmoc-bpy)2dppz2+ to give Ru(NH2-bpy)2dppz2+ was 

performed using 0.5% piperidine (v/v) in DMF for 15 min. Higher concentrations of 

piperidine (5%) produced impurities. The DMF/piperidine solution was removed in 

vacuo. The residue was dissolved in water, filtered, and the product was precipitated as 

the PF6
- salt using NH4PF6. After rinsing carefully with water, the orange solid was 

dissolved in 1:1 acetonitrile:water and converted to the chloride salt by anion exchange 

chromatography (Sephadex DEAE). ESI-MS (cation): 391.1 m/z (M2+) obsd, 391.1 m/z 
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(M2+) calcd. UV/Vis (H2O, pH 5): 286 nm (99,400 M-1 cm-1), 359 nm (19,900 M-1 cm-1), 

371 nm (19,500 M-1 cm-1), 458 nm (17,900 M-1 cm-1).  

 

1.2.3: CELL CULTURE 

 Cell lines were maintained in the following medium: minimal essential medium 

alpha with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 μg/mL 

streptomycin for HeLa (ATCC, CCL-2) and DU-145 (ATCC, HTB-81); McCoy’s 5a 

medium with 10% FBS, 100 units/mL penicillin, and 100 μg/mL streptomycin for 

SKOV-3 (ATCC, HTB-77) and HT-29 (ATCC, HTB-38); F-12K medium with 10% FBS 

100 units/mL penicillin, and 100 μg/mL streptomycin for A-549 (ATCC, CCL-185); and 

RPMI medium 1640 supplemented with 10% FBS, 2 mM L-glutamine, 0.1 mM 

nonessential amino acids, 1 mM sodium pyruvate, 100 units/mL penicillin, 100 μg/mL 

streptomycin, and 400 μg/mL Geneticin (G418) for HCT116N and HCT116O. Cells were 

grown in tissue culture flasks at 37 °C under 5% CO2 atmosphere. 

 

1.2.4: FLOW CYTOMETRY 

 Cells were detached from culture with EDTA (0.48 mM in phosphate-buffered 

saline) and incubated at 1x106 cells/mL with 10 μM ruthenium complex (added from a 

concentrated stock) in Hanks’ Balanced Salt Solution (HBSS) supplemented with 

2.5 mg/mL bovine serum albumin fraction V (BSAV) at 37 °C for 2 h, then rinsed with 

buffer and placed on ice. TO-PRO-3 was added at 1 μM immediately prior to flow 

cytometry analysis to stain dead cells. The fluorescence of ~20,000 cells was measured 
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using a BD FACS Aria at the Caltech Flow Cytometry Facility. Ruthenium complexes 

were excited at 488 nm, with emission observed at 600–620 nm. TO-PRO-3 was excited 

at 633 nm, with emission observed at 650–670nm. Cells exhibiting TO-PRO-3 

fluorescence were excluded from the data analysis. For nuclei experiments, the nuclei 

buffer (vide infra) was used as the sheath fluid on the flow cytometer.  

 

1.2.5: CONFOCAL MICROSCOPY 

 Cells used for microscopy were seeded on glass-bottom 96-well plates (Whatman) 

and allowed to attach overnight. For incubations shorter than 24 h, approximately 4000 

cells were seeded. Longer incubations required that fewer cells be seeded to allow room 

for cell proliferation, e.g., for the cell line comparison experiments, 3000 cells were 

seeded. After incubation with the ruthenium complex in complete medium (containing 

10% fetal bovine serum), cells were rinsed with Hanks’ Balanced Salt Solution and 

imaged without fixation (unless otherwise noted). Images were collected on a Zeiss LSM 

510 or Zeiss LSM 5 Exciter inverted microscope using a 63x/1.4 oil immersion objective 

at the Caltech Biological Imaging Center. Nuclei were examined using a 20x objective. 

The ruthenium complexes were excited at 488 nm, with emission observed using a long-

pass 560 nm filter. 

 For the cell fixation experiments, HeLa cells were incubated with 5 μM 

Ru(DIP)2dppz2+ for 2 h at 37 °C. One well of cells was subsequently treated with cold 

methanol for ~ 3 min and rinsed with phosphate-buffered saline (PBS). A second well 
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was fixed with 2% formaldehyde for 5 min, then permeabilized with 0.1% Triton X-100 

in PBS for 6 min. 

 

1.2.6: ISOLATION OF NUCLEI 

 Cells were detached with trypsin (no EDTA) for 5 min at 37 °C. The cells were 

rinsed once with cold phosphate-buffered saline (PBS), then resuspended in cold nuclei 

extraction buffer (320 mM sucrose, 5 mM MgCl2, 10 mM HEPES, 1% Triton X-100 at 

pH 7.4), giving approximately 1 mL per 1 million cells. The cell suspension was vortexed 

for 10 s and incubated on ice for 9 min. The nuclei were pelleted by centrifuged at 2000 g 

(~2950 rpm) for 4 min at 4 °C, washed twice with cold nuclei wash buffer (320 mM 

sucrose, MgCl2, 10 mM HEPES at pH 7.4), and resuspended in cold nuclei wash buffer 

with vortexing. The solution was triturated 5–10 times with a 1 mL micropipette to break 

up clumps of nuclei, then filtered through a 35 μm cell strainer (BD Falcon) to remove 

any remaining clumps. The nuclei solution was stored on ice until analysis. Nuclei 

isolation was confirmed by examining an aliquot mixed with an equal volume of 0.4% 

Trypan blue (the nuclei stain blue). For confocal microscopy, nuclei were suspended in 

PBS prior to imaging. 

 The following control for contamination of nuclei by ruthenium during the lysis 

procedure was performed. The cell lysates from cells incubated with ruthenium complex 

were filtered through 0.2 μm nylon membrane (Whatman Centrex MF-5.0 filters), by 

centrifugation at 1,700–2,000 rpm. HeLa that were not incubated with ruthenium were 

detached with trypsin (no EDTA) and rinsed once with cold PBS. The cells were 
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resuspended in cold cell lysate (from the Ru-treated cells), vortexed, and incubated on ice 

for 9 min. The nuclei were pelleted by centrifugation at 2000 g (2,950 rpm) for 4 min at 

4 °C, then washed twice with cold nuclei wash buffer. The nuclei were resuspended in 

cold nuclei wash buffer, vortexed, and triturated to break up clumps. The solution was 

filtered through a 35 μm cell strainer and stored on ice until analysis. 

 

1.3: RESULTS AND DISCUSSION 

1.3.1: STRATEGY TO MEASURE UPTAKE 

 The dipyridophenazine (dppz) complexes of ruthenium(II) act as reporters for 

non-aqueous environments, luminescing only when bound to the hydrophobic regions of 

membranes, nucleic acids, and other macromolecules.26,27 Using their luminescence as a 

handle, we can readily analyze their cellular accumulation by confocal microscopy and 

flow cytometry. 

 Ru(II) polypyridyl complexes provide a systematic route for comparing factors 

affecting uptake, since ligands can be easily varied with respect to their characteristics 

and then metalated via the same synthetic strategy. In addition, the complexes under 

study are coordinatively saturated, with ligands that are inert to substitution. As a result, 

they are stable in buffer, medium, and the cellular environment. Their characteristic 

luminescence indicates that the complexes remain intact once inside the cell, as any 

decomposition or loss of ligands, albeit unlikely, would render the complexes non-

luminescent.   
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 A series of Ru(II) dppz complexes was synthesized for evaluation of their cellular 

uptake properties. Substituting the ancillary ligands on the dppz complex permits 

variation in the overall complex charge, size, and hydrophobicity (Figure 1.1). 

 

1.3.2: CHARACTERISTICS OF THE RUTHENIUM COMPLEXES 

 Since the nature of the ancillary ligands can affect the luminescence properties of 

the ruthenium complexes, we measured their relative luminescence in CH3CN and when 

bound to calf thymus DNA (Table 1.1). The complexes were excited at 488 nm, the same 

wavelength used for the confocal microscopy and flow cytometry experiments. The 

integrated emissions at 600–620 nm and 560–800 nm, the ranges recorded in flow 

cytometry and confocal microscopy analysis, respectively, are compared. All the 

complexes are non-luminescent in aqueous solution, but display luminescence in CH3CN 

and in the presence of DNA. Also, there is no evidence of non-specific protein binding 

giving luminescence. Notably, Ru(DIP)2dppz2+ exhibits enhanced emission compared to 

the other complexes.  

 The lipophilicity of a compound can have a large influence on its cellular uptake.  

A common measure of a compound’s lipophilicity is its octanol-water partition 

coefficient (P), defined as the ratio of the equilibrium concentrations of the dissolved 

compound in 1-octanol and water. This value is usually given in the form of its logarithm 

to base 10 (log P). Measurement of the partition coefficient can be performed by the 

“shake-flask” method or by HPLC analysis in comparison to reference substances.28 We 

include the partition coefficients of our ruthenium complexes, obtained by the 
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Figure 1.1: Dipyridophenazine complexes of Ru(II). 
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shake-flask method, in Table 1.1. The only complex to prefer the octanol phase to water 

is Ru(DIP)2dppz2+. 

 Another factor that may affect a compound’s uptake profile is its size. The 

diameters of our ruthenium complexes were estimated using the program Titan, and these 

are listed in Table 1.1. The largest complexes are Ru(DIP)2dppz2+ and Ru(CO2Et-

bpy)2dppz2+ at approximately 20.4 Å in diameter, and the smallest complexes are 

Ru(phen)2dppz2+ and Ru(bpy)2dppz2+ at 16.2 Å in diameter. 

 

1.3.3: FLOW CYTOMETRY ANALYSIS OF UPTAKE 

 Flow cytometry allows the rapid quantification of luminescence intensity of 

individual cells as they pass single file through the laser beam, with thousands of cells 

analyzed in a few minutes. For our studies, we employed TO-PRO-3, a membrane 

impermeable dye, to stain dead cells and exclude them from analysis. The resulting data 

for the cell population can be displayed as a histogram of luminescence intensity versus 

number of cells. Uptake for different ruthenium complexes may be compared using the 

mean luminescence intensity of the cell population. 

 We used flow cytometry to examine the effect of ancillary ligand variation on the 

accumulation of dipyridophenazine complexes of Ru(II) in the human cervical cancer cell 

line, HeLa. Cells were incubated with 10 µM RuL2dppz (where L = bpy, phen, NH2-bpy, 

CO2Et-bpy, mcbpy, Me4phen, and DIP) for 2 h at 37 °C. The mean luminescence 

intensity of cells exposed to Ru(DIP)2dppz2+ ranges from 11-fold to 47-fold greater than 

that of the other complexes, and this difference is too large to be due solely to the 
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superior brightness of Ru(DIP)2dppz2+ (Figure 1.2, Table 1.2). The lipophilic DIP ligand 

seems to facilitate uptake, despite the larger size of the complex. Consistent with its 

intermediate lipophilicity, Ru(Me4phen)2dppz2+ exhibits less efficient uptake than 

Ru(DIP)2dppz2+, but still better than the other complexes. Ru(phen)2dppz2+, 

Ru(bpy)2dppz2+, Ru(NH2-bpy)2dppz4+, and Ru(CO2Et-bpy)2dppz2+ are taken up to some 

extent, but little luminescence is evident for Ru(mcbpy)2dppz. The lower emission 

intensity of  Ru(mcbpy)2dppz with nucleic acids contributes to its relatively poor 

luminescence inside cells but cannot fully account for it. Likely, its reduced overall 

charge impairs its ability to use the membrane potential as a driving force for cellular 

entry (see Chapter 2). Accordingly, Ru(NH2-bpy)2dppz4+, with its increased positive 

charge, exhibits slightly better uptake than Ru(bpy)2dppz2+. 

 These results are in agreement with uptake studies on cisplatin analogues, where 

the complexes with the greatest lipophilicity exhibit the highest uptake. Although, for the 

Pt complexes, all were hydrophilic, with octanol-water partition coefficients of < 1.12 

 

1.3.4: CONFOCAL MICROSCOPY IMAGING 

1.3.4.1: UPTAKE AND LOCALIZATION OF THE RU COMPLEXES 

 The subcellular distribution of our dipyridophenazine complexes of Ru(II) was 

studied using confocal microscopy. Ru(DIP)2dppz2+, which exhibits the greatest uptake 

by flow cytometry analysis, accumulates predominantly in the cytoplasm of HeLa cells. 

Luminescence is evident in the cell interior within 2 h when incubated at 5 μM (Figure 

1.3A). Under similar conditions (10 μM, 2 h), Ru(Me4phen)2dppz2+ is observed  
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Figure 1.2: Flow cytometry analysis of ruthenium complex cellular uptake. HeLa 

cells were incubated with 10 µM RuL2dppz2+  (where L = bpy, phen, Me4phen, and DIP) 

for 2 h at 37 °C. Luminescence data were obtained by excitation at 488 nm with emission 

at 600–620 nm. Dead cells were excluded from analysis using the membrane 

impermeable dye TO-PRO-3. 
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Figure 1.3: Confocal microscopy of HeLa cells incubated with dipyridophenazine 

complexes of Ru(II). (A) Ru(DIP)2dppz2+ (5 μM, 2 h).  

(B) Ru(Me4phen)2dppz2+ (10 μM, 2 h). (C) Ru(phen)2dppz2+ (20 μM, 24 h). 

(D) Ru(bpy)2dppz2+(20 μM,72 h). Scale bars are 10 μm. 
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inside the cytoplasm of cells (Figure 1.3B). All of the other complexes, including 

Ru(bpy)2dppz2+ and Ru(phen)2dppz2+, which display limited uptake at 10 μM and 2 h by 

flow cytometry analysis, are also internalized, though longer incubation times and/or 

higher concentrations are required to obtain high-quality confocal images (Figures 1.3C, 

1.3D). Inside the cell, the complexes are likely protected from water by macromolecular 

binding, without which quenching in the cytosol is expected. 

 At a slightly higher concentration and longer incubation time (10 μM, 12 h), there 

is a small increase in the amount of Ru(DIP)2dppz2+ in the nucleus, as shown by line plot 

quantitation (Figure 1.4), though the majority of complex remains in the cytoplasm. 

Longer incubations (5 μM, 72 h) do not produce a preference for the nucleus. 

 For most of the complexes, their exact location in the cytoplasm is difficult to 

discern. However, for Ru(bpy)2dppz2+, some of the luminescence has a stringy 

appearance that is characteristic of mitochondria (Figure 1.5). The putative 

mitochondrial staining is less intense than the additional, globular staining; as a result, it 

is visible in many but not all cells. 

 

1.2.4.2: LIVE VERSUS FIXED CELL IMAGING 

 Cell fixation can sometimes alter the subcellular distribution of compounds. For 

example, some peptide-fluorophore conjugates have been shown to move from the 

cytoplasm to the nucleus following fixation with formaldehyde.16 We evaluated the effect 

of different fixation methods on the localization of Ru(DIP)2dppz2+. 
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Figure 1.4: Quantitation of nuclear uptake. (A) HeLa cells were incubated for 12 h 

with 10 μM Ru(DIP)2dppz2+. Scale bar is 10 μm. The arrow indicates the section taken 

for the line plot in (B). 
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Figure 1.5: Subcellular localization of Ru(bpy)2dppz2+. HeLa cells were incubated 

with 40 μM Ru(bpy)2dppz2+ for 24 h. Scale bars (white) are 10 μm. The luminescence is 

shown on an intensity scale, denoted by the color-coded scale bars. 
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 Live HeLa cells, incubated with 5 μM Ru(DIP)2dppz2+ for 2 h, were imaged 

before fixation to reveal cytoplasmic staining. Treatment with cold methanol causes a 

dramatic redistribution of the complex almost entirely to the nucleus (Figure 1.6). 

Though methanol enhances the luminescence of these complexes, the cells were rinsed 

with buffer following fixation and only trace methanol should remain. Likely, methanol 

solubilizes Ru(DIP)2dppz2+, aiding its diffusion into the now more permeable nucleus. 

Once inside the nucleus, the complex can bind to DNA, resulting in intense 

luminescence. In contrast, fixation with 2% formaldehyde does not produce any 

noticeable changes in the subcellular distribution of Ru(DIP)2dppz2+. Permeabilization of 

the formaldehyde-treated cells with 0.1% Triton X-100 (a non-ionic detergent), however, 

results in some nuclear accumulation of the complex. Rinsing with buffer following 

Triton X-100 treatment did not abrogate this effect, indicating that the increased 

luminescence is not conferred directly by presence of the fixative. 

 Formaldehyde appears to have fewer effects on ruthenium complex localization 

than methanol. Nevertheless, all of the confocal microscopy studies described elsewhere 

in this thesis were performed on live cells.  

 

1.3.5: ANALYSIS OF ISOLATED NUCLEI 

 The metal complexes of the Barton lab target DNA, therefore we are keenly 

interested in the ability of our complexes to accumulate inside the nucleus. Hence, flow 

cytometry analysis of isolated nuclei was performed. In contrast to the live cell 

experiments, we cannot discriminate nuclei originating from dead cells versus those from  
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Figure 1.6: Effect of fixation on ruthenium complex subcellular localization. HeLa 

cells were incubated with 5 μM Ru(DIP)2dppz2+ for 2 h. Live cells (A, C) show 

cytoplasmic localization. After fixation of Ru-treated cells with methanol (B), the 

ruthenium complex relocates almost entirely to the nucleus. Fixation with 2% 

formaldehyde does not change the distribution (D), but treatment of the formaldehyde-

fixed cells with 0.1% Triton X-100 increases the nuclear staining (E). Scale bars are 

10 μm. 
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live cells. However, we expect that dead cells would accumulate a much greater amount 

of complex, resulting in nuclei that can be recognized by their increased staining. Also, 

analogous to the whole cell experiments, complex bound to the exterior of the nucleus 

cannot be distinguished from that in the interior. Therefore, confocal microscopy must be 

used to confirm internalization. 

 Nuclei isolated from HeLa cells incubated with 5 or 10 μM Ru(DIP)2dppz2+ for 

2 h at 37 °C were analyzed for Ru uptake by flow cytometry. The mean luminescence 

intensity of the nuclei population increased substantially compared to nuclei from cells 

not treated with complex (Figure 1.7), consistent with nuclear uptake. Two populations 

of nuclei are seen in the histogram, with the population at very high luminescence likely 

coming from dead cells. Nuclei from cells incubated with 10 μM complex show greater 

luminescence than those incubated with 5 μM complex. There is also a positive 

correlation between length of incubation (2–24 h) and intensity of the ruthenium 

luminescence. 

 In order to isolate the nuclei, the cells are lysed. Since this procedure also 

permeabilizes the nuclear envelope, there is a possibility that during cell lysis, ruthenium 

complex located in the cytoplasm could move into the nucleus. Thus, we performed the 

following control for contamination of nuclei by ruthenium during the lysis procedure. 

Cells, which had not been incubated with ruthenium complex, were lysed using cell 

lysate from cells incubated with complex. These nuclei showed similar luminescence as 

the untreated, autofluorescence controls, which indicates that no substantial crossover of 
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Figure 1.7: Flow cytometry analysis of nuclei isolated from HeLa cells incubated 

with 5 or 10 μM Ru(DIP)2dppz2+ for 2 h at 37 °C. Controls were performed to evaluate 

the extent of Ru contamination into the nucleus from the cytoplasm during lysis. For 

these controls, cells were lysed using cell lysate from cells incubated with 

Ru(DIP)2dppz2+. 
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Figure 1.8: Confocal microscopy of nuclei isolated from HeLa cells incubated with 

5 μM Ru(DIP)2dppz2+ for 2 h at 37 °C.  (A) 1.1 μm optical slice. (B) 10.0 μm optical 

slice, which encompasses the entire thickness of the nuclei. Images are shown as overlay 

of the transmitted light image (gray) and the ruthenium luminescence (red). Scale bars are 

20 μm. 
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ruthenium complex from the cytoplasm to the nucleus occurs during lysis. 

 Nuclei isolated from HeLa incubated with 5 μM Ru(DIP)2dppz2+ for 2 h at 37 °C 

were also examined by confocal microscopy (Figure 1.8). Ruthenium luminescence is 

not visible when the optical slice is set to 1.1 μm. When the optical slice is widened to 

10.0 μm, thus increasing the sensitivity, the nuclei are brightly luminescent, which is 

consistent with the flow cytometry data. Ruthenium complex is associated with the 

nucleus, but the presence inside the nucleus cannot be established based on the 10.0 μm 

optical slice, because it encompasses the entire thickness of the nucleus. 

  Although we cannot confirm nuclear uptake using confocal microscopy of 

isolated nuclei when cells are treated with 5 μM Ru(DIP)2dppz2+, we can observe some 

complex inside the nucleus of intact cells when the incubation concentration is increased 

to 10 μM for 12 h (vide supra). Presumably, nuclei isolated from such cells would also 

show nuclear uptake. Furthermore, the increased luminescence of nuclei from treated 

versus untreated cells, the concentration dependence, and the time dependence observed 

by flow cytometry are all consistent with nuclear accumulation. 

 

1.3.6: CELL LINE COMPARISON 

 The cellular accumulation and subcellular distribution of a compound can vary 

dramatically between cell types. For example, Dervan and co-workers have observed 

different degrees of nuclear uptake of pyrrole-imidazole polyamides depending on the 

cell line.29 Hence, we compare the cellular uptake of our dipyridophenazine complexes of 

Ru(II) in human cancer cell lines derived from several different tissue types, namely  
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Figure 1.9: Accumulation of Ru(bpy)2dppz2+ by different cell lines. Ru(bpy)2dppz2+ 

(40 μM, 24 h) was incubated with (A) HeLa, (B) SKOV-3, (C) HT-29, (D) HCT116N, 

(E) HCT116O, (F) A-549, and (G) DU-145. Scale bars are 10 μm. 
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Figure 1.10: Accumulation of Ru(phen)2dppz2+ by different cell lines. 

Ru(phen)2dppz2+ (40 μM, 24 h) was incubated with (A) HeLa, (B) SKOV-3, (C) HT-29, 

(D) HCT116N, (E) HCT116O, (F) A-549, and (G) DU-145. Scale bars are 10 μm. 
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Figure 1.11: Accumulation of Ru(bpy)2dppz2+ in DU-145 cells. Ru(bpy)2dppz2+ was 

incubated at 40 μM for 24 h. The morphology of the staining is characteristic of 

mitochondria. Scale bar is 10 μm. 
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HeLa (cervix), SKOV-3 (ovary), HT-29 (colon), HCT116O (colon), HCT116N (colon), 

DU-145 (prostate), and A-549 (lung). 

 The cells, seeded at identical density, were incubated with 40 μM Ru(bpy)2dppz2+ 

or 40 μM Ru(phen)2dppz2+ in complete medium for 24 h then rinsed with buffer and 

imaged by confocal microscopy. Instrument settings were kept the same to allow for 

direct comparison of the luminescence intensity between the cell lines. 

 In all of the cell lines, both Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ were localized 

in the cytoplasm but were absent from the nucleus (Figures 1.9, 1.10). The appearance of 

the cytoplasmic staining was similar between the lines, except for DU-145, where 

Ru(bpy)2dppz2+ seems to accumulate preferentially in mitochondria. Here, the staining 

displays a stringy shape that is characteristic of mitochondria (Figures 1.9G,  1.11). This 

pattern is also seen in HeLa treated with Ru(bpy)2dppz2+, but in a smaller percentage of 

the cells along with additional non-mitochondrial staining (Figures 1.5, 1.9A). Since the 

complex carries a positive charge, it may be pulled into the mitochondria in response to 

the membrane potential. However, the reason that mitochondrial localization is preferred 

by one cell line more than the others is not clear. 

 

1.4: CONCLUSIONS 

 Using a series of dipyridophenazine complexes of Ru(II), we systematically 

compared the factors affecting cellular uptake and distribution. We find that 

Ru(DIP)2dppz2+ exhibits enhanced cellular accumulation compared to other complexes 

studied. Uptake appears to be facilitated by the lipophilic DIP ligand, even at the cost of 
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expanded size. Accordingly, Ru(Me4phen)2dppz2+, which is intermediate in lipophilicity 

between Ru(DIP)2dppz2+ and Ru(phen)2dppz2+, enters cells with efficiency less than 

Ru(DIP)2dppz2+ but better than Ru(phen)2dppz2+. Reducing the charge of the complex 

hinders uptake: little luminescence is apparent for the neutral complex, Ru(mcbpy)2dppz. 

In contrast, increasing charge from +2 to +4 results in a modest increase in uptake: 

luminescence of Ru(NH2-bpy)2dppz4+ is slightly greater than that of Ru(bpy)2dppz2+. 

This correlation between charge and uptake is consistent with the plasma membrane 

potential serving as the driving force for cellular entry. 

 The complexes accumulate in the cytoplasm of live cells but are mostly excluded 

from the nucleus. However, flow cytometry analysis of nuclei isolated from cells treated 

with Ru(DIP)2dppz2+ are consistent with some nuclear entry, and nuclear staining is 

apparent by confocal microscopy when the incubation concentration is sufficiently high 

(10 μM, 12 h). Importantly, the rhodium analogues that we are exploring as potential 

therapeutic agents have been demonstrated to exert their biological effect in a manner 

dependent on direct binding to DNA,6 implying that these complexes reach the nucleus. 

The present studies suggest that the population responsible for activity represents a 

fraction of the total compound inside the cell. 

 Ruthenium luminescence in the cytoplasm is uneven, which could indicate 

association with organelles, though the exact subcellular localization is not clear. This 

staining pattern is consistent across several different human cancer cell lines, with two 

exceptions. For HeLa and DU-145 cells incubated with Ru(bpy)2dppz2+, the morphology 

of the staining pattern is characteristic to that of mitochondria (Figures 1.5, 1.11).  
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 Furthermore, we demonstrate that confocal microscopy and flow cytometry, in 

concert, are effective techniques for characterizing internalization and distribution of 

luminescent transition metal complexes. Ruthenium analogues in particular can be 

readily tested without special instrumentation or complicated synthesis; they can be 

excited by the 488-nm laser, common to most confocal microscopy and flow cytometry 

systems. Statistics on thousands of cells of varied cell type, under different incubation 

conditions, and using a range of metal complexes can be generated to provide a powerful 

complement in the design of metal complexes for biological application. 

 These data establish that the ruthenium complexes indeed accumulate in human 

cancer cell lines isolated from a variety of tissue types. In the following chapters, we will 

explore the mechanism of uptake and strategies to direct the compounds to the nucleus. 
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CHAPTER 2: MECHANISTIC STUDIES OF RUTHENIUM COMPLEX CELLULAR 

UPTAKE
* 

 

2.1: INTRODUCTION 

 Transition metal complexes have tremendous potential as diagnostic and 

therapeutic agents. They can be exploited for their modularity, reactivity, imaging 

capabilities, redox chemistry, and their precisely defined three-dimensional structure. An 

increasing number of biological applications have been explored.1–3 Complexes that are 

currently in clinical use include the platinum anticancer drugs, radiodiagnostic agents 

containing 99mTc, and gadolinium(III) magnetic resonance imaging contrast agents. 

 In order to design new metal-based therapeutics more rationally, an understanding 

of the physiological processing of metal complexes is required. Though cellular uptake is 

critical to the success of a drug or probe, few mechanistic details are known regarding 

metal complex uptake. Different entry mechanisms may be preferred depending on the 

application, as the mode of entry affects cell-type specificity, the rate of internalization, 

and the fate of the compound once inside the cell. For example, entry by diffusion affords 

broad cell-type specificity, a great advantage in the use of fluorescent probes for live cell 

imaging. Conversely, medicinal chemists may seek to deliver drugs to target organs, 

taking advantage of tissue-specific transporters4 or receptors.5 For each mode of entry, 

there are also drawbacks. With protein-mediated transport, the degree of modification of 

                                                 
* Adapted from Puckett, C. A.; Barton, J. K. Mechanism of cellular uptake of a ruthenium polypyridyl 
complex. Biochemistry 2008, 47, 11711–11716. 
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the molecule is limited because transport relies on recognition. With endocytosis, 

molecules are often trapped in endosomes and face degradation by lysosomal enzymes. 

 Ruthenium(II) polypyridyl complexes are useful for studying cellular uptake due 

to their facile synthesis, stability in aqueous solution, and luminescence. Using confocal 

microscopy and flow cytometry, we have examined the uptake of a series of 

dipyridophenazine (dppz) complexes of ruthenium.6  Despite its larger size, the lipophilic 

Ru(DIP)2dppz2+, illustrated in Figure 2.1, accumulates in cells more quickly than 

Ru(bpy)2dppz2+ (where bpy = 2,2′-bipyridine) and Ru(phen)2dppz2+ (where phen = 1,10-

phenanthroline). Ru(DIP)2dppz2+ enters cells within an hour at micromolar 

concentrations, providing a reasonable time window for uptake experiments. Details of 

the cellular uptake mechanism of Ru(DIP)2dppz2+ can then be applied to understanding 

uptake characteristics of other structurally similar cationic metal complexes. 

  The biological activity of ruthenium complexes was first examined by Francis 

Dwyer in the 1950s, where a full family of tris(polypyridyl) complexes was shown to 

have bacteriostatic and anti-viral activities.7 More recently, many ruthenium complexes 

have been tested for therapeutic potential,8 and two ruthenium anticancer drugs (NAMI-A 

and KP1019) have reached clinical trials.9,10 Cellular uptake of some ruthenium(III) 

complexes appears to be mediated by the iron transport protein transferrin. KP1019 

(indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)]) binds transferrin with 

displacement of a chloride ligand, and is transported into cells with transferrin by 

receptor-mediated endocytosis.5 Ruthenium complexes lacking a labile ligand such as  
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Figure 2.1: A luminescent ruthenium probe used to examine metal complex uptake. 

Top: Chemical structure of Ru(DIP)2dppz2+. Bottom: HeLa cells incubated with 5 μM 

Ru(DIP)2dppz2+ for 4 h, imaged by confocal microscopy.  Note that the cytoplasm is 

extensively stained with the Ru complex. Scale bar is 10 μm. 
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chloride are unlikely to be able to enter cells in this manner and their mechanism of entry 

has not been established. 

  Such coordinatively saturated tris(chelate) ruthenium complexes furthermore 

serve as close fluorescent analogues of rhodium complexes that we have explored as 

potential chemotherapeutic agents.11 These lipophilic, cationic rhodium complexes target 

single base mismatches in DNA and selectively inhibit cellular proliferation in mismatch 

repair-deficient cell lines.3 

 The main routes into a cell are endocytosis, active transport, facilitated diffusion, 

and passive diffusion. Due to its lipophilicity and positive charge, Ru(DIP)2dppz2+ likely 

traverses the membrane in response to the membrane potential, similar to other lipophilic 

cations such as tetraphenylphosphonium and rhodamine 123.12,13 Here, we use chemical 

tools to elucidate the cellular uptake mechanism of Ru(DIP)2dppz2+, with the degree of 

uptake analyzed by flow cytometry.   

 

2.2: EXPERIMENTAL PROTOCOLS  

2.2.1.: MATERIALS 

 Cell culture reagents, transferrin-AlexaFluor488 conjugate, and TO-PRO®-3 

were purchased from Invitrogen. Oligomycin, deoxyglucose, and the cation transporter 

inhibitors were obtained from Aldrich. Valinomycin was purchased from CalbioChem. 
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2.2.2: SYNTHESIS OF RU COMPLEXES 

  Ru(DIP)2dppz2+ and Ru(phen)2dppz2+ were synthesized as described previously 

(see also Chapter 1 of this text).6  Briefly, Ru(DIP)2Cl2 and Ru(phen)2Cl2 were 

synthesized in an analogous fashion to Ru(bpy)2Cl2.
14 The dipyridophenazine (dppz) 

ligand was synthesized as previously described15 and added to RuL2Cl2 by refluxing in 

ethanol-water for > 3 h to make Ru(DIP)2dppz2+ and Ru(phen)2dppz2+. The ethanol was 

removed by rotary evaporation, resulting in precipitation of [Ru(DIP)2dppz]Cl2, which 

was collected by filtration. Ru(phen)2dppz2+ was precipitated as the hexafluorophosphate 

salt, then returned to the chloride salt by Sephadex DEAE anion exchange column.  The 

Ru complexes utilized are racemic mixtures of the two enantiomers. 

 

2.2.3: CELL CULTURE 

 HeLa cells (ATCC, CCL-2) were maintained in minimal essential medium alpha 

with 10% fetal bovine serum, 100 units/mL penicillin, and 100 μg/mL streptomycin. 

 

2.2.4: INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC (ICP-MS) DETECTION 

OF RU 

 HeLa cells were grown to ~ 30% confluency in 75 cm2 flasks and incubated with 

5 μM Ru(DIP)2dppz2+ for 1 h at 37 °C in either medium with serum or medium without 

serum. The solution from the serum-free incubation was saved for circular dichroism 

measurements (described below). The cells were rinsed with PBS, detached with trypsin, 

and counted. The cells were isolated by centrifugation and digested in concentrated nitric 
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acid for 1.5 h at 60 °C. The solution was diluted with Millipore water to 2.0 mL for the 

incubation with serum and 20.0 mL for the serum-free incubation, adding nitric acid to 

give 2%. The Ru content was measured using a Hewlett Packard 4500 ICP-MS. Data are 

reported as the mean ± the standard deviation (n = 3). 

 

2.2.5: ASSAY OF ENANTIOMERIC PREFERENCE IN RU UPTAKE 

 HeLa cells were grown to ~ 30% confluency in 75 cm2 flasks and incubated with 

5 μM Ru(DIP)2dppz2+ for 1 h at 37 °C in medium without serum and phenol red. After 

incubation, the medium was retrieved from the flask. The Ru complex was purified from 

the medium using a Waters C18 Sep-Pak. The solution was loaded onto a 1 g Sep-Pak 

equilibrated with water. The Sep-Pak was then rinsed with 150 mL water and 15 mL 

20:80 CH3CN:H2O with 0.1% TFA. The Ru complex was eluted with 90:10 CH3CN:H2O 

with 0.1% TFA and lyophilized. For circular dichroism (CD) measurements, this isolated 

complex was dissolved in CH3CN to give 8 μM complex. CD spectra were recorded on 

an AVIV 62 CD spectrometer. 

 

2.2.6: METABOLIC INHIBITION 

 HeLa cells were detached from culture and treated with either 50 mM 2-deoxy-D-

glucose and 5 μM oligomycin in PBS (to inhibit cellular metabolism) or 5 mM glucose in 

PBS for 1 h at 37 °C. Both solutions also contained 2.5 mg/mL bovine serum albumin 

fraction V (BSAV). The cells were then rinsed and suspended in either PBS with BSAV 

for the inhibition cells, or PBS with BSAV and 5 mM glucose for the control cells. The 
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cells were incubated with 10 mg/L transferrin-AlexaFluor488 or 5 μM Ru(DIP)2dppz2+ 

for 1 h at 37 °C. Following incubation, the transferrin-treated cells were rinsed with PBS 

and trypsinized to cleave the transferrin receptors from the cell surface.16 The Ru-treated 

cells were rinsed. The cells were analyzed by flow cytometry. Ru-treated cells were not 

trypsinized following incubation, as rinsed cells and trypsinized cells gave the same mean 

luminescence in a control experiment: 282 ± 18 for the rinsed cells and 284 ± 23 for the 

trypsinized cells, following a 1 h incubation at 37 °C with 5 μM Ru(DIP)2dppz2+. 

 

2.2.7: TEMPERATURE DEPENDENCE OF UPTAKE 

 HeLa cells were detached from culture and washed with Hanks’ Balanced Salt 

Solution (HBSS) supplemented with 2.5 mg/mL BSAV. The cells were incubated with 

5 μM Ru(DIP)2dppz2+ or Ru(phen)2dppz2+ for 2 h, or 10 mg/L transferrin-Alexa488 for 

1 h, in HBSS with BSAV at 4 °C, ambient temperature (20–23 °C), or 37 °C. 

Transferrin-treated cells were trypsinized following incubation. The amount of uptake 

was analyzed by flow cytometry. 

 

2.2.8: CATION TRANSPORTER INHIBITION 

 HeLa cells were detached from culture and washed with buffer (HBSS 

supplemented with BSAV), then pre-treated for 20 min with either 1 mM cation 

transporter inhibitor or buffer only. The cells were then incubated with 5 μM 

Ru(DIP)2dppz2+ for 1 h at ambient temperature. The cells were rinsed with buffer and Ru 

uptake was analyzed by flow cytometry.  
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2.2.9: MODULATION OF MEMBRANE POTENTIAL 

 HeLa cells were detached from culture and washed three times with either HBSS 

(containing 5.8 mM K+) or high K+-HBSS (containing 170 mM K+), both supplemented 

with 2.5 mg/mL BSAV. Some of the cells in HBSS were pre-treated with 50 μM 

valinomycin for 30 min at 37 °C. The cells were incubated with 2 μM Ru(DIP)2dppz2+ 

for 1 h at 37 °C in one of the following solutions:  HBSS, HBSS with valinomycin (to 

hyperpolarize the cells), or high K+-HBSS (to depolarize the cells). The solutions also 

contained BSAV. After incubation, the cells were rinsed and the extent of uptake was 

analyzed by flow cytometry. 

 

2.2.10: FLOW CYTOMETRY 

 Cells were detached from culture with EDTA (0.48 mM in PBS) and incubated at 

1x106 cells/mL with Ru complex (added from a concentrated DMSO stock) under 

conditions described above, then placed on ice. TO-PRO-3 was added at 1 μM 

immediately prior to flow cytometry analysis to stain dead cells. The fluorescence of 

~ 20,000 cells was measured using a BD FACS Aria, exciting with the 488 nm laser for 

Ru and transferrin-AlexaFluor488, and with the 633 nm laser for TO-PRO-3. Emission 

was observed at 600–620 nm for Ru, 515–545 for AlexaFluor488, and 650–670 nm for 

TO-PRO-3. Cells exhibiting TO-PRO-3 fluorescence were excluded from the data 

analysis. Fluorescence data is reported as the mean ± the standard deviation (n = 3). 

 

 



 49

2.3: RESULTS 

2.3.1: STRATEGY TO MEASURE UPTAKE  

The dipyridophenazine (dppz) complexes of ruthenium serve as light switches for 

non-aqueous environments, luminescing only when bound to the hydrophobic regions of 

membranes, nucleic acids, and other macromolecules.17,18 If the Ru complex decomposes 

or ligand substitution occurs, the resulting complex would no longer luminesce.  

Additionally the ligands themselves are not luminescent. Accordingly, the characteristic 

luminescence indicates that the complex inside the cell remains intact. We can use the 

luminescence of these ruthenium complexes to track their cellular uptake in both confocal 

microscopy and flow cytometry experiments. Confocal imaging confirms that 

Ru(DIP)2dppz2+ accumulates inside the cell rather than associating solely at the 

membrane surface, as seen in Figure 2.1 and previously.6 Ruthenium luminescence is 

observed throughout the cytoplasm, though mostly excluded from the nucleus. Flow 

cytometry, on the other hand, enables the rapid measurement of ruthenium luminescence 

intensity for multiple cell populations. Using primarily flow cytometry, we can then 

explore the cellular uptake mechanism of Ru(DIP)2dppz2+ by comparing the ruthenium 

luminescence following different incubation conditions. 

 

2.3.2: ICP-MS MEASUREMENT OF RU UPTAKE 

 Inductively coupled plasma mass spectrometry (ICP-MS) measurements were 

performed to quantify the amount of Ru taken up by the cell. HeLa cells were treated 

with 5 μM Ru(DIP)2dppz2+ for 1 h at 37 °C in medium with or without serum. ICP-MS 
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measurements give 26.4 ± 6.3 amol of Ru per cell for the incubation in medium with 

serum, and 677 ± 73 amol per cell for the serum-free incubation. Assuming an average 

cell volume of 1.7 pL19 and that the complex is evenly distributed throughout this 

volume, the Ru concentration in the cell is approximately 16 μM for incubation with 

serum and 398 μM for the serum-free incubation. These results indicate substantial 

concentration of the complex within the cell, with serum acting to attenuate the effective 

free ruthenium complex available in solution. 

 

2.3.3: ENANTIOMERIC PREFERENCE IN UPTAKE 

 As racemic Ru(DIP)2dppz2+ was used for uptake experiments, we considered 

whether HeLa cells preferentially take in one enantiomer over the other. To test for 

enantioselectivity associated with uptake, we assayed for enantiomeric enrichment in the 

supernatant. Following incubation of 5 μM Ru(DIP)2dppz2+ with HeLa cells in serum-

free medium, the Ru complex was recovered from the medium and the circular dichroism 

(CD) was examined. Serum-free medium was used for the incubation to remove any 

potential chiral bias created from interaction of the complex with serum proteins. ICP-

MS determination of the Ru content of the cells confirms that a significant amount of Ru 

(~ 3% of the total) was taken in by the cells. Given this depletion, we estimate that an 

enantiomeric preference in uptake of 2.5:1 or greater would be detectable above 

instrument noise. However, the CD spectra of Ru(DIP)2dppz2+ after incubation with cells 

is within the level of the noise. This absence in optical activity indicates that any 

enantiomeric preference must be below this limit. 
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2.3.4: ENERGY-DEPENDENT UPTAKE MECHANISMS 

 Certain cellular uptake routes are energy-dependent, such as endocytosis20 and 

active protein transport. These pathways are hindered when cells are incubated at low 

temperature (4 °C instead of 37 °C) or in ATP-depleted environments (e.g., from 

metabolic poisons). To determine whether Ru(DIP)2dppz2+ enters cells by an energy-

dependent process, the complex was incubated with HeLa cells after ATP depletion by 

deoxyglucose (a glucose analogue that inhibits glycolysis) and oligomycin (an inhibitor 

of oxidative phosphorylation).21, 22 As transferrin is internalized by clathrin-mediated 

endocytosis, fluorescently (AlexaFluor488) labeled transferrin was used as a positive 

control. The cellular uptake of Ru(DIP)2dppz2+ remains essentially unchanged when cells 

are under metabolic inhibition, with a mean luminescence of 659 ± 12 compared to 

675 ± 10 for the cells not treated with deoxyglucose and oligomycin (Figure 2.2). Thus 

Ru(DIP)2dppz2+ appears to enter cells by an energy-independent process. In contrast, 

metabolic inhibition dramatically reduces the endocytosis of transferrin, demonstrated by 

the large decrease in the mean fluorescence from 3034 ± 52 to 210 ± 5. 

 The temperature dependence of Ru(DIP)2dppz2+ uptake was also explored. HeLa 

cells were incubated with the complex at 4 °C, ambient temperature (20–23 °C), and 

37 °C (Figure 2.3). The mean Ru luminescence increases with incubation temperature, 

from 589 ± 17 at 4 °C to 826 ± 71 at 37 °C. Given the lipophilicity of Ru(DIP)2dppz2+, 

the increase in cellular uptake with temperature could also be the result of improved 

solubility in buffer at higher temperatures. To test this hypothesis, the temperature 

dependence of uptake was studied for a similar but more soluble complex,  
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Figure 2.2: Flow cytometry measuring Ru incorporation used to examine the effect 

of metabolic inhibition on Ru(DIP)2dppz2+ cellular uptake. HeLa cells were pretreated 

for 1 h with 50 mM deoxyglucose (dGlc) and 5 μM oligomycin, then rinsed and 

incubated with 5 μM Ru(DIP)2dppz2+ or 10 mg/L transferrin-AlexaFluor488 (Tf-

Alexa488) for 1 h. Cells treated with inhibitors (red) are compared to control cells (blue). 

Top: Ru(DIP)2dppz2+ uptake. Bottom: transferrin-AlexaFluor488 uptake. 
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Figure 2.3: Effect of incubation temperature on Ru(DIP)2dppz2+ cellular uptake 

measured by flow cytometry. HeLa cells were incubated with 5 μM Ru(DIP)2dppz2+ for 

2 h at 4 ºC, ambient temperature (20–23 ºC), or 37 ºC. 
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Ru(phen)2dppz2+. In this case, the mean luminescence remains roughly the same at the 

different incubation temperatures, 133 ± 10 at 4 °C and 141 ± 3 at 37 °C.  Transferrin 

internalization was significantly more sensitive to temperature, with the mean 

fluorescence increasing from 480 ± 7 at 4 °C to 4071 ± 167 at 37 °C. 

 

2.3.5: EFFECT OF ORGANIC CATION TRANSPORTER INHIBITORS 

 Organisms use polyspecific organic cation transporters (OCTs) for the 

distribution of endogenous organic cations and the absorption, distribution, and 

elimination of cationic drugs and toxins.23 These transporters facilitate the diffusion of 

structurally diverse compounds. OCT substrates are typically organic cations and weak 

bases, though some neutral compounds and anions are also transported. Expression of the 

OCTs varies by tissue type. The carnitine and cation transporter OCTN2 has the most 

widespread tissue distribution among the OCTs, and its expression has been detected in 

some cancer cell lines, including HeLa.24 Numerous compounds that inhibit OCT-

mediated transport have been identified. Procainamide inhibits across the OCT family 

(including OCT1–3, OCTN1, and OCTN2). Tetraethylammonium ion is translocated by 

most of the OCTs, while other n-tetraalkylammonium salts inhibit OCT1 and OCT2, and 

for some OCTN1.25  

 To investigate whether Ru(DIP)2dppz2+ crosses the membrane using an organic 

cation transporter, uptake of Ru(DIP)2dppz2+ in the presence of OCT inhibitors was 

analyzed. HeLa cells were incubated with 1 mM inhibitor for 20 min before addition of 

Ru(DIP)2dppz2+ for 1 h. For OCTs, the IC50s of the inhibitors used are generally less than 
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1 mM. Procainamide has an IC50 of < 3 mM and cimetidine <2 mM for OCTN2. As 

shown in Figure 2.4, the extent of uptake was analyzed by flow cytometry. Significantly, 

the n-tetraalkylammonium salts and procainamide do not appreciably alter the cellular 

uptake of Ru(DIP)2dppz2+. Within error, the cells have a similar mean luminescence 

intensity. The complex does not appear to use an organic cation transporter for entry into 

HeLa cells. 

 

2.3.6: EFFECT OF MEMBRANE POTENTIAL 

 The plasma membranes of viable cells exhibit a membrane potential (−50 to 

−70 mV), with the inside of the cell negative with respect to the outside.26 As 

Ru(DIP)2dppz2+ carries a positive charge, uptake may be driven by the potential 

difference across the cell membrane. The membrane potential in animal cells depends 

mainly on the K+ concentration gradient. Here, the potential was reduced to close to zero 

by incubating the cells in buffer with potassium concentration equivalent to that found 

intracellularly (~170 mM).27 This high potassium buffer (K+-HBSS) was created by 

replacing sodium salts with equimolar potassium salts, while hyperpolarization of the 

membrane was achieved by adding valinomycin to low potassium buffer (HBSS).28 

Valinomycin is a cyclic peptide that selectively shuttles potassium ions across the 

membrane down the electrochemical potassium ion gradient, and it increases the 

membrane potential by exporting potassium from the cell. 

 Ru(DIP)2dppz2+ was incubated with HeLa cells for 1 h in either HBSS, HBSS 

with valinomycin (hyperpolarizes), or K+-HBSS (depolarizes). The amount of Ru  
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Figure 2.4: Effect of organic cation transporter inhibitors on Ru(DIP)2dppz2+ 

cellular uptake measured by flow cytometry. HeLa cells were pretreated with 1 mM 

inhibitor for 20 min, then 5 μM Ru(DIP)2dppz2+ was added for 1 h. Each data point is the 

mean ± the standard deviation of three samples. 
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Figure 2.5: Effect of modulating the plasma membrane potential on Ru(DIP)2dppz2+ 

cellular uptake determined by flow cytometry. HeLa cells were incubated with 2 μM 

Ru(DIP)2dppz2+ in Hanks’ Balanced Salt Solution (HBSS), HBSS with 50 μM 

valinomycin to hyperpolarize the cells, or modified HBSS with 170 mM potassium (K+-

HBSS) to depolarize the cells. 
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complex uptake was analyzed by flow cytometry (Figure 2.5). Depolarization of the 

plasma membrane reduces the uptake of Ru(DIP)2dppz2+, decreasing the mean 

luminescence of the cells from 232 ± 5 to 154 ± 1. Conversely, hyperpolarization of the 

membrane with valinomycin clearly promotes Ru complex uptake, increasing the mean 

luminescence to 428 ± 13. These results indicate that the positively charged complex is 

being driven inside the cells at least in part by the membrane potential. 

 

2.4: DISCUSSION 

 Cellular uptake of small molecules can occur through energy-dependent 

(endocytosis, active transport) and energy-independent (facilitated diffusion, passive 

diffusion) processes. Metabolic inhibitors deplete the cell of energy, resulting in 

diminished uptake of molecules entering by endocytosis and active transport. HeLa cells 

treated with the metabolic inhibitors deoxyglucose and oligomycin show greatly reduced 

uptake (over 10-fold) of fluorescently labeled transferrin, which enters cells by 

endocytosis. On the other hand, deoxyglucose and oligomycin treatment cause no 

reduction of Ru(DIP)2dppz2+ cellular uptake, suggesting an energy-independent mode of 

entry. In fact, the midpoint of the luminescence intensity profile increases slightly in cells 

facing metabolic inhibition, though the mean fluorescence remains approximately the 

same. If Ru(DIP)2dppz2+ is actively exported, this efflux would be slowed under energy 

depletion and could explain the small increase. In contrast with the metabolic inhibition 

data, Ru(DIP)2dppz2+ uptake decreases slightly with lower temperature (4 °C versus 

37 °C), consistent with energy-dependent transport. The difference is not as dramatic as 
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for transferrin, however, whose fluorescence changes 8-fold. Given that Ru(DIP)2dppz2+ 

is poorly soluble in buffer, this change may be due to improved solubility with 

temperature. Accordingly, a similar but more soluble complex, Ru(phen)2dppz2+, shows 

constant uptake at different temperatures. Low temperature also increases membrane 

viscosity, via decreased membrane fluidity, which can impair diffusion through the 

membrane. 

 The possible role of an organic cation transporter (OCT) in translocation of 

Ru(DIP)2dppz2+ across the membrane was also explored. These transporters facilitate the 

diffusion of endogenous organic cations as well as a variety of drugs and toxins. 

Ru(DIP)2dppz2+ uptake is not significantly altered in cells co-incubated with OCT 

inhibitors, indicating that the complex is likely not an OCT substrate. This result is 

consistent with the large size of Ru(DIP)2dppz2+ (~ 20 Å diameter) compared to known 

OCT substrates. 

 The cellular uptake of Ru(DIP)2dppz2+ is, however, influenced by the membrane 

potential. Consistent with diffusion of a positively charged molecule, uptake increases at 

higher potential and decreases at lower potential. That severe metabolic impairment does 

not discourage complex uptake is also consistent with diffusion. As both passage through 

a channel or passive carrier and diffusion directly through the lipid bilayer are energy-

independent and respond to changes in the membrane potential, other factors must be 

considered to distinguish between these two mechanisms. The ability of Ru(DIP)2dppz2+ 

to enter the cell despite cation transporter inhibition, its larger size than typical 
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transporter substrates, and its relatively slow rate of cellular accumulation implicate 

passive diffusion as the mechanism of entry. 

 Passive diffusion is less cell-type specific, allows greater freedom for 

modification of the complex than transport via membrane proteins, and does not lead to 

entrapment in endosomes, as often occurs with endocytosis. As a result, this mechanism 

of passive diffusion may portend the broad applicability of metal complexes in different 

cell types for different intracellular functions. Certainly these results provide some basis 

for considering the biological activities that have already been identified for cationic 

transition metal complexes.3,7 Significantly, knowledge of the mechanism of cellular 

uptake of this ruthenium(II) polypyridyl complex can now be applied to the design of 

structurally similar metal complexes for therapeutic and diagnostic use.  
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CHAPTER 3: DIRECTING THE SUBCELLULAR LOCALIZATION OF A 

RUTHENIUM COMPLEX WITH OCTAARGININE
‡ 

 

3.1: INTRODUCTION 

 In addition to crossing the cellular membrane, molecular probes and therapeutics 

must reach their intended location inside the cell. The 5,6-chrysenequinone diimine 

(chrysi) complexes of rhodium(III) that we are developing as potential chemotherapeutic 

agents target single base mismatches of DNA.1–3 Therefore, we are interested in 

promoting their nuclear accumulation, which should increase their potency and reduce 

off-target effects. 

 Confocal microscopy studies on dipyridophenazine (dppz) complexes of Ru(II), 

luminescent analogues of our rhodium complexes, reveal that they accumulate in the 

cytoplasm but are predominantly excluded from the nucleus (see Chapter 1).4 One may 

surmise, then, that only a fraction of the rhodium(III) chrysi complexes inside the cell are 

localizing in the nucleus. 

 A widely used strategy to improve both cellular uptake and nuclear localization is 

conjugation to a peptide. Cell-penetrating peptides (CPPs), such as the HIV Tat peptide 

and oligoarginine, facilitate the cellular uptake of many cargos, including peptides, 

proteins, oligonucleotides, plasmids, and peptide nucleic acids.5–7 Some CPPs also act as 

nuclear localization signals (NLSs). Such peptides are rich in positively charged residues 

such as arginine or lysine and promote active transport through the nuclear pore 
                                                 
‡ Adapted from Puckett, C. A.; Barton, J. K. Fluorescein redirects a ruthenium-octaarginine conjugate to 
the nucleus. J. Am. Chem. Soc. 2009, 131, 8738–8739. 
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complex.8 However, the use of peptides is not a fail-proof method for nuclear 

localization, as entrapment in endosomes can occur, leaving the peptides unable to access 

the nuclear import machinery. 

 In earlier work, we prepared a chrysi complex of Rh(III) covalently tethered to D-

octaarginine (D-R8) fluorescein and found that it rapidly localizes to the nucleus of HeLa 

cells.9 As the rhodium complex itself is not fluorescent, fluorescein was attached to 

monitor the subcellular distribution of this Rh-D-R8 conjugate. However, the potential 

effects of the fluorescein on the cellular uptake properties cannot be ignored. Some 

laboratories have varied the fluorescent dye used to assess uptake of a cell-penetrating 

peptide and found some fluorophore-dependent changes.10–12 Similarly, the uptake 

characteristics of pyrrole-imidazole polyamides have been shown to vary with the nature 

of the appended fluorophore.13,14 

 Luminescent ruthenium(II) polypyridyl complexes allow us to directly observe 

their subcellular localization, without need of a fluorescent tag. Furthermore, using these 

complexes, we can isolate the effect of a covalently attached fluorophore on the cellular 

uptake properties of the metal-peptide conjugate. 

 

3.2: EXPERIMENTAL PROTOCOLS 

3.2.1: MATERIALS AND INSTRUMENTATION 

 Media, cell culture supplements, Hanks’ Balanced Salt Solution, and TO-PRO®-3 

iodide were purchased from Invitrogen (Carlsbad, CA).  
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 ESI mass spectrometry was performed at either the Caltech mass spectrometry 

facility or in the Beckman Institute Protein/Peptide Micro Analytical Laboratory. MALDI 

measurements were performed on an Applied Biosystems Voyager 6215. Absorption 

spectra were recorded on a Varian Cary 100 or Beckman DU 7400 spectrophotometer. 

HPLC was performed on an HP1100 system equipped with a diode array detector using a 

Vydac C18 reversed-phase semipreparative column. 

 

3.2.2: SYNTHESIS OF RU-PEPTIDE CONJUGATES 

 Peptides, protected and resin-bound, were purchased from Anaspec (Fremont, 

CA); arginine was protected as its 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl 

(Pbf) derivative and lysine as its methyltrityl (Mtt) derivative. Ru(phen)(bpy′)(dppz)2+ 

was coupled to the peptide in an analogous manner to that previously described (where 

phen = 1,10-phenanthroline, bpy′ = 4-(3-carboxypropyl)-4′-methyl-2,2′-bipyridine, and 

dppz = dipyrido[3,2-a:2′,3′-c]phenazine).9,15 Briefly, the acid of the ruthenium complex 

was coupled to the free N-terminal amine of the peptide by HOBT/HBTU or HATU 

activated coupling reaction. Fluorescein was added by reaction of fluorescein-5-

isothiocyanate (5-FITC) with a lysine residue at the C-terminus. The peptides were 

cleaved from the resin using 95% trifluoroacetic acid, 2.5% triisopropylsilane, and 2.5% 

water for 3 h at ambient temperature and then precipitated by addition of cold diethyl 

ether. Conjugates were purified by reversed-phase HPLC using a water (0.1% 

trifluoroacetic acid)/acetonitrile gradient and characterized by MALDI-TOF or ESI mass 

spectrometry; Ru-octaarginine (Ru-D-R8): 2069.3 m/z (M+) obsd, 2069.4 m/z (M+) calcd, 
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Ru-octaarginine-fluorescein (Ru-D-R8-fluor): 2585.9 m/z (M+) obsd, 2586.9 m/z (M+) 

calcd, Ru-fluorescein (Ru-fluor):  668.7 m/z (M2+) obsd., 668.7 m/z (M2+) calcd. All 

conjugates employed in this study were used as their trifluoroacetate salts. Concentrations 

were determined by the absorption of Ru(phen)(bpy′)(dppz)2+; for Ru-D-R8-fluor and 

Ru-fluor, 361 nm, which is not obscured by fluorescein, was used (ε440= 19,000 M-1 cm-1; 

ε361= 19,469 M-1 cm-1). 

 

3.2.3: CELL CULTURE 

 HeLa cells (ATCC, CCL-2) were maintained in minimal essential medium alpha 

with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 μg/mL 

streptomycin. 

 

3.2.4: CONFOCAL MICROSCOPY 

 HeLa were seeded using 4000 cells in wells of a glass-bottom 96-well plate 

(Whatman, Inc.) and allowed to attach overnight. The complexes were incubated with 

HeLa cells in complete medium (medium with 10% fetal bovine serum) at 37 °C under 

the following conditions: Ru-D-R8 at 2–20 μM for 30 min, Ru-D-R8-fluor at 2–5 μM for 

30 min, and Ru-fluor at 5 μM for 30 min and 20 μM for 41 h. The samples were then 

rinsed with Hanks’ Balanced Salt Solution (HBSS) and imaged without fixation. Imaging 

was performed using a 63x/1.4 oil immersion objective on a Zeiss LSM 510 or a Zeiss 

LSM 5 Exciter inverted microscope. The optical slice was set to 1.1 μm. Ru-D-R8 was 

excited at 488 nm, with emission observed at 560+ nm. For Ru-D-R8-fluor and Ru-fluor, 
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the emission was collected as the combined emission of Ru and fluorescein (505+ nm), 

both of which are excited at 488 nm. For spectral confocal imaging, HeLa cells were 

incubated with 10 μM Ru-D-R8-fluor for 60 min at 37 °C, rinsed with HBSS, and 

analyzed. Emission was collected as a series of bands (10.7 nm width) from 500–720 nm 

using the multi-channel (META) detector. 

 

3.3: RESULTS AND DISCUSSION 

3.3.1: SYNTHESIS OF THE CONJUGATES 

 Three Ru(II) dipyridophenazine conjugates were synthesized: Ru-octaarginine 

(Ru-D-R8), Ru-octaarginine-fluorescein (Ru-D-R8-fluor), and Ru-fluorescein (Ru-fluor) 

(Figure 3.1). D-Arginine was chosen for its improved biostability over the L-enantiomer. 

The conjugates were prepared by solid-phase coupling of Ru(phen)(bpy′)(dppz)2+ to the 

N-terminal amine of the peptide. Addition of fluorescein to the C-terminus of the peptide 

was accomplished via a Mtt-protected lysine, which was selectively deprotected to yield 

the free ε-amine and reacted with fluorescein-5-isothiocyanate (Figure 3.2). For Ru-

fluor, a single lysine residue, on solid support, was coupled to the ruthenium complex, 

followed by addition of fluorescein. Cleavage from the resin can be performed using 

standard Fmoc cleavage protocols, since the ruthenium complexes are found to be stable 

under these conditions.15 

 

 

 



 68

 

 

 

Figure 3.1: Chemical structures of the ruthenium conjugates. 
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Figure 3.2: Synthesis of Ru-D-R8-fluor. Ru-fluor was synthesized in an analogous 

procedure using (Fmoc)Lys(Mtt) on the solid support instead of the peptide. 
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3.3.2: SUBCELLULAR LOCALIZATION OF RU-OCTAARGININE 

 HeLa cells incubated with Ru-D-R8 at 5 μM for 30 min exhibit punctate 

luminescence in the cytoplasm, with complete exclusion from the nucleus (Figure 3.3). 

The punctate distribution implicates endocytosis, a proposed internalization mechanism 

for oligoarginine CPPs, as its route into the cell.16 Entrapment in endosomes would 

explain the lack of nuclear entry. In this context, the peptide changes the mode of uptake 

relative to unconjugated complexes, such as Ru(phen)(bpy′)(dppz)2+, Ru(phen)2dppz2+, 

and Ru(bpy)2dppz2+, which enter by passive diffusion.17 As expected, for the peptide 

conjugates, cellular uptake is strongly enhanced compared to these unconjugated 

complexes; higher luminescence is evident in cell samples even after short incubation 

times. Notably, increasing the incubation time from 30 min to 2 h or 24 h does not 

change the subcellular localization of 5 μM Ru-D-R8 (Figure 3.3). 

 At higher concentrations, the distribution of Ru-D-R8 changes significantly. Up to 

10 μM, the complex is restricted to punctate structures in the cytoplasm. At 15–20 μM, 

the cell population is heterogeneous. Some cells have only punctate cytoplasmic staining, 

while others exhibit additional diffuse cytoplasmic as well as nuclear and nucleolar 

staining (Figure 3.4). Nucleolar labeling is typical of D-octaarginine, as seen here, 

although not of L-octaarginine.18 The fraction of cells in the latter population increases 

with concentration (Table 3.1). The nucleolar and punctate staining are of similar 

intensity, with fainter nuclear and cytoplasmic staining. 

 Population heterogeneity has been described for nonaarginine-fluorescein (R9-

fluor).19,20 What differentiates cells that have greater uptake and nuclear staining versus  
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Figure 3.3: Cellular distribution of Ru-D-R8 following different durations of 

incubation. HeLa cells were incubated with 5 μM Ru-D-R8 in complete medium for 

0.5 h, 2 h, or 24 h. The complex is localized in the cytoplasm at all three time points. 

Scale bars are 10 μm. 
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Figure 3.4: Cellular distribution of Ru-D-R8 at higher concentration. HeLa cells 

were incubated with 20 μM Ru-D-R8 for 30 min at 37 °C in complete medium. The cells 

shown exclude the membrane-impermeable dead cell dye TO-PRO-3. Some cells have 

only punctate staining of the cytoplasm (left) while others show additional staining of the 

nucleus and nucleoli as well as diffuse cytoplasmic staining (right). Scale bars are 10 μm. 
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those that have less is not clear, but these groups of cells do not represent distinct, stable 

phenotypes. Rothbard and coworkers sorted by flow cytometry the top and bottom 5% of 

stained cells, re-exposed them to R9-fluor, and re-analyzed them. These cells displayed a 

similarly broad range of uptake.19 

 A concentration threshold for diffuse cytoplasmic and nuclear labeling is a feature 

of oligoarginine-fluorophore conjugates and has been reported previously.18,20,21 Above 

the extracellular threshold concentration, the peptides are postulated to enter by a non-

endocytic mechanism in addition to the endocytic mechanisms evident at lower 

concentrations.  

 

3.3.3: EFFECT OF FLUORESCEIN ON RU-OCTAARGININE LOCALIZATION 

 Remarkably, the Ru-octaarginine conjugate containing an appended fluorescein 

(Ru-D-R8-fluor) enters the nucleus under the same incubation conditions for which the 

complex without fluorescein is excluded. Ru-D-R8-fluor shows diffuse cytoplasmic and 

nuclear fluorescence, strong nucleolar staining, and some punctate cytoplasmic staining 

when incubated at 5 μM for 30 min with HeLa (Figure 3.5, center). Some cells have 

numerous fluorescent punctate structures, while others have relatively few. The intensity 

of fluorescence in the nucleoli is roughly equal to that of these punctate, vesicular 

structures. Notably, at this concentration, D-R8-fluor and the Rh(III) conjugate of D-R8-

fluor also localize to the nucleus.9 The threshold for Ru-D-R8-fluor nuclear entry is 

between 2 and 5 μM, significantly lower than that for Ru-D-R8 (Table 3.1). 
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Figure 3.5: Cellular distribution of Ru conjugates. HeLa cells were incubated with 

5 μM Ru-D-R8 for 30 min (top), 5 μM Ru-D-R8-fluor for 30 min (center), or 20 μM Ru-

fluor for 41 h (bottom) at 37 °C in complete medium. Note that Ru-D-R8 is isolated to 

the cytoplasm while Ru-D-R8-fluor stains the cytosol, nucleus, and nucleoli. Ru-fluor 

shows only weak cytoplasmic staining. Scale bars are 10 μm. 
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Figure 3.6: Spectral confocal imaging (10.7 nm bandwidth) of HeLa cells incubated 

with 10 μM Ru-D-R8-fluor for 60 min. (A) Emission at 521 nm. (B) Emission at 

618 nm. (C) Emission spectra from nuclear (red) and cytoplasmic (green) regions. 

Fluorescein (521 nm) and ruthenium (618 nm) emission from the nucleus are apparent.  
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 Not surprisingly, the Ru-fluorescein conjugate lacking octaarginine is unable to 

enter the cell under the same incubation conditions for which its octaarginine 

counterparts can translocate (5 μM for 30 min). The complex is poorly internalized even 

following a longer incubation time with higher concentration (20 μM for 41 h) (Figure 

3.5, bottom). Given its significantly lower positive charge (as both the fluorescein and the 

internal carboxylic acid are likely partially deprotonated), the complex cannot as 

effectively use the membrane potential as a driving force for cellular entry. 

 Spectral confocal imaging of HeLa cells incubated with Ru-D-R8-fluor (10 μM, 

60 min) was performed. Emission from both fluorescein (λmax = 521 nm) and Ru (λmax = 

618 nm) are observed in the cytoplasm and in the nucleus, which indicates that the 

conjugate remains intact inside the cell (Figure 3.6). 

  What role is fluorescein playing in the uptake? Fluorescein, due to its greater 

lipophilicity versus the Ru moiety, increases the interaction of Ru-D-R8-fluor with the 

cell membrane compared to Ru-D-R8. This high concentration at the cell surface could 

facilitate the non-endocytic uptake mechanism, promoting access to the cytosol and, 

ultimately, the nucleus, while low concentrations at the cell surface should limit the 

uptake to endocytosis, with consequent endosomal trapping, observed as punctate 

cytoplasmic staining. 

 

3.4: CONCLUSIONS 

 Conjugation of D-octaarginine to Ru(phen)(bpy′)(dppz)2+ dramatically improves 

its rate of cellular uptake, reducing the incubation time required to microscopically 
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observe uptake to less than an hour. At sufficient concentration of conjugate (~ 15 μM), 

the peptide also increases the nuclear localization; below this threshold concentration 

only cytoplasmic staining is observed. 

 This system also allows us to directly observe the effect of a covalently attached 

fluorescein on cellular uptake properties of the Ru-peptide conjugate. The fluorescein 

labeled conjugate, Ru-D-R8-fluor, localizes in the nucleus under conditions in which Ru-

D-R8 is excluded. Thus, fluorophore tagging of a cell-penetrating peptide does more than 

supply luminescence. The molecular nature of the organic fluorophore affects the 

transport pathway and its subcellular localization. Hence, the localization of the 

fluorophore-bound peptide cannot simply serve as a proxy for that of the free peptide. 
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CHAPTER 4: TARGETING A RUTHENIUM COMPLEX TO THE NUCLEUS WITH 

SHORT PEPTIDES  

 

4.1: INTRODUCTION 

 Peptide conjugation is a widely used and effective method for improving both 

cellular and nuclear entry of a variety of cargo molecules.1–3 We have successfully 

delivered our rhodium(III) 5,6-chrysenequinone diimine (chrysi) and ruthenium(II) 

dipyridophenazine (dppz) complexes to the nucleus through covalent attachment of 

octaarginine (Chapter 3).4,5 Without the peptide, these compounds localize in the 

cytoplasm, as seen by microscopy studies on the luminescent Ru(II) dppz complexes.6 

The chrysi complexes of rhodium(III) bind single base mismatches in DNA,7,8 but the 

added +8 charge imparted by octaarginine increases the nonspecific binding of the metal-

peptide conjugate, due to electrostatic association with the negatively charged DNA 

backbone.4 In order to enhance the nuclear accumulation of our chrysi complexes of 

rhodium(III) without significant impairment of their specificity for mismatches, we 

appended shorter peptides possessing less overall charge than octaarginine. 

 Studies by Kelley and coworkers have demonstrated the feasibility of using very 

short peptides to target small molecules to the nucleus or mitochondria.9,10 Thiazole 

orange (TO) conjugated to the tetrapeptide RrRK (r = D-arginine) accumulates primarily 

in the nucleus of HeLa cells, whereas TO-FrFK localizes mainly in the mitochondria. 

Both conjugates are reported to cross the plasma membrane with efficiencies approaching 

that of the longer Tat peptide (RKKRRQRRR).9 Using RrRK as the nuclear targeting 
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signal for our chrysi complexes of rhodium(III) cuts the positive charge added by the 

peptide in half compared to octaarginine, and thus should reduce the amount of 

nonspecific DNA binding. Here, we use dppz complexes of Ru(II) functionalized with 

short peptides, luminescent analogues of our rhodium complexes, to evaluate the cellular 

uptake.  

 

4.2: EXPERIMENTAL PROTOCOLS 

4.2.1: MATERIALS AND INSTRUMENTATION 

 Media, cell culture supplements, Hanks’ Balanced Salt Solution, and TO-PRO®-3 

iodide were purchased from Invitrogen (Carlsbad, CA).  

 MALDI measurements were performed on an Applied Biosystems Voyager 6215. 

Absorption spectra were recorded on a Beckman DU 7400 spectrophotometer. HPLC was 

performed on an HP1100 system equipped with a diode array detector using a Vydac C18 

reversed-phase semipreparative column. 

 

4.2.2: SYNTHESIS OF RU-PEPTIDE CONJUGATES 

 Peptides, protected and resin-bound, were purchased from Anaspec (Fremont, 

CA). Rink resin was used to produce amide-terminated peptides. Ru(phen)(bpy′)(dppz)2+ 

was coupled to the peptide in an analogous manner to that previously described (where 

phen = 1,10-phenanthroline, bpy′ = 4-(3-carboxypropyl)-4′-methyl-2,2′-bipyridine, and 

dppz = dipyrido[3,2-a:2′,3′-c]phenazine).4,11 The Ru-RrRK conjugate was synthesized in 

both the amide- and carboxy-terminated versions for comparison; unless otherwise noted, 
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Ru-RrRK refers to the amide-terminated form. Ru-KSKKQK and Ru-PKKKRKV were 

synthesized with C-terminal amides, and Ru-D-R4, Ru-KKKK, and Ru-SrSr have the C-

terminal carboxylic acid. Ruthenium-peptide conjugates were purified by reversed-phase 

HPLC using a water (0.1% trifluoroacetic acid)/acetonitrile gradient and characterized by 

MALDI-TOF mass spectrometry; Ru-RrRK: 1416.3 m/z (M+) obsd, 1415.6 m/z (M+) 

calcd, Ru-RrRK-COOH: 1417.6 m/z (M+) obsd, 1416.6 m/z (M+) calcd, Ru-RrRK-fluor: 

1935.6 m/z (M+) obsd, 1933.7 m/z (M+) calcd, Ru-D-R4: 1443.6 m/z (M+) obsd, 

1444.6 m/z (M+) calcd, Ru-KKKK: 1333.0 m/z (M+) obsd, 1332.6 m/z (M+) calcd, Ru-

SrSr: 1307.1 m/z (M+) obsd, 1306.4 m/z (M+) calcd, Ru-PKKKRKV: 1683.8 m/z (M+) 

obsd, 1683.8 m/z (M+) calcd, Ru-KSKKQK: 1546.6 m/z (M+) obsd, 1546.7 m/z (M+) 

calcd. All conjugates employed in this study were used as their trifluoroacetate salts. 

Concentrations were determined by the absorption of Ru(phen)(bpy′)(dppz)2+; for Ru-

RrRK-fluor, 361 nm, which is not obscured by fluorescein, was used (ε440= 

19,000 M-1 cm-1; ε361= 19,469 M-1 cm-1). Ru(phen)2dppz2+, used for comparison to the 

conjugates in uptake studies, was synthesized as described previously;6 ε440 nm = 

21,100 M-1 cm-1. 12 

 

4.2.3: CELL CULTURE 

 HeLa cells (ATCC, CCL-2) were maintained in minimal essential medium alpha 

with 10% fetal bovine serum (FBS), 100 units/mL penicillin, and 100 μg/mL 

streptomycin. Cells were grown in tissue culture flasks at 37 °C under 5% CO2 

atmosphere. 
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4.2.4: CONFOCAL MICROSCOPY 

 HeLa were seeded using 4000 cells in wells of a glass-bottom 96-well plate 

(Whatman, Inc.) and allowed to adhere overnight. The complexes were incubated with 

HeLa cells at 37 °C in complete medium (minimal essential medium alpha with 10% 

fetal bovine serum) or medium without serum, as indicated. Imaging was performed 

using a 63x/1.4 oil immersion objective on a Zeiss LSM 510 or a Zeiss LSM 5 Exciter 

inverted microscope. The optical slice was set to 1.1 μm. Ru-peptide conjugates were 

excited at 488 nm, with emission observed at 560+ nm. For Ru-RrRK-fluor, the emission 

was collected as the combined emission of Ru and fluorescein (505+ nm), both of which 

are excited at 488 nm. A higher detector gain was necessary to observe the luminescence 

of Ru-KSKKQK and Ru-PKKKRKV compared to the other conjugates. 

 

4.2.5: FLOW CYTOMETRY 

 Cells were detached from culture with EDTA (0.48 mM in phosphate-buffered 

saline) and incubated at 1x106 cells/mL with 10 μM ruthenium complex in Hanks’ 

Balanced Salt Solution (HBSS) supplemented with 2.5 mg/mL bovine serum albumin 

fraction V (BSAV) at 37 °C for 2 h, then rinsed with buffer and placed on ice. TO-PRO-3 

was added at 1 μM immediately prior to flow cytometry analysis to stain dead cells. The 

fluorescence of ~ 20,000 cells was measured using a BD FACS Aria at the Caltech Flow 

Cytometry Facility. Ruthenium complexes were excited at 488 nm, with emission 

observed at 600–620 nm. TO-PRO-3 was excited at 633 nm, with emission observed at 
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650–670nm. Cells exhibiting TO-PRO-3 fluorescence were excluded from the data 

analysis. 

 

4.3: RESULTS AND DISCUSSION 

4.3.1: SYNTHESIS OF THE CONJUGATES 

 A series of Ru(II) dipyridophenazine (dppz) conjugates were prepared by solid-

phase coupling of Ru(phen)(bpy′)(dppz)2+ to the N-terminal amine of the peptide. The 

dppz complexes of ruthenium(II) serve as luminscent analogues of our chrysi complexes 

of rhodium(III); They function as light switches for non-aqueous environments, 

luminescing only when bound to the hydrophobic regions of membranes, nucleic acids, 

and other macromolecules.13,14 Furthermore, the ruthenium complexes are stable in 

aqueous solution, making them useful cellular probes. 

 

4.3.2: CELLULAR UPTAKE OF RU-RrRK  

 We conjugated Ru(phen)(bpy′)(dppz)2+ to the nuclear targeting signal RrRK (r = 

D-arginine)(Figure 4.1). HeLa cells incubated for 2 h with 5–20 μM Ru-RrRK show 

punctate cytoplasmic luminescence, but no staining of the nucleus (Figure 4.2). 

Interestingly, increasing the incubation time to 24 h does not change the subcellular 

localization of 20 μM Ru-RrRK. This staining pattern is similar to that previously 

observed for the D-octaarginine conjugate of this ruthenium complex (Ru-D-R8) at 5–

10 μM.5 This distribution also implicates endocytosis, a proposed mechanism of uptake 

for oligoarginine cell penetrating peptides,15 as the mode of entry; though, this remains to  
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  Figure 4.1: Structures of Ru-RrRK conjugates. 
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Figure 4.2: Subcellular distribution of Ru-RrRK. HeLa were incubated with (A) 20, 

(B) 40, or (C) 100 μM Ru-RrRK in complete medium for 2 h. At 20 μM, only punctate 

staining of the cytoplasm is present. At higher concentrations, some cells show additional 

nuclear staining. Scale bars are 10 μm. 
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be confirmed by mechanistic studies. As expected, cellular uptake of the peptide 

conjugate is enhanced compared to the unconjugated complex Ru(phen)2dppz2+, as 

observed by direct comparison of the two complexes by confocal microscopy following 

identical incubation conditions (10 μM, 2 h). The same enhancement is seen by flow 

cytometry analysis; cells treated with Ru-RrRK have a 1.7-fold increase in mean 

luminescence compared to those exposed to Ru(phen)2dppz2+. Note that the luminescence 

of Ru-RrRK is inherently 60% of Ru(phen)2dppz2+, when measured with calf thymus 

DNA. In contrast, cellular uptake of Ru-RrRK is a quarter of that for Ru-D-R8 (Table 

4.1), consistent with previous observations that short oligoarginines are less effective at 

promoting the cellular entry of fluorescein than longer ones.16 

 There is evidence in the literature that fluorescein-conjugated cell-penetrating 

peptides can adhere to the cellular exterior,17 artificially increasing the apparent uptake 

when measured by flow cytometry. Although trypsinization is recommended to reduce 

the membrane-bound material, we did not use trypsin in these experiments as it would 

preferentially cleave at the L-amino acids, thus increasing the apparent amount of Ru-D-

R8 cellular uptake versus our other conjugates. Furthermore, the lack of defined staining 

of the cellular periphery in our confocal microscopy experiments indicates that either our 

conjugates do not accumulate at the membrane, or that the luminescence of such bound 

species is quenched. 

 At higher concentrations, the distribution of Ru-RrRK changes and the cell 

population becomes heterogeneous. In addition to the punctate cytoplasmic structures, the 

complex localizes in the nucleus in a small percentage of cells when incubated at  
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30–40 μM (Figure 4.2). The fraction of cells with nuclear staining increases with 

concentration of the complex. At 100 μM, the complex is located in the nucleus in 74% 

of cells (Table 4.2). 

 This population heterogeneity has been observed previously for fluorescein-

nonaarginine18,19 and for our ruthenium-octaarginine conjugate lacking fluorescein 

(Chapter 3).5 A notable difference is that Ru-RrRK requires a higher concentration 

(30 μM versus 15 μM) to accumulate inside the nucleus than Ru-D-R8, and a greater 

amount (> 40 μM versus 20 μM) is necessary for the majority of cells to exhibit nuclear 

staining. RrRK is a less effective at promoting nuclear uptake of our ruthenium complex 

than D-octaarginine. 

 A shortened oligoarginine, Ru-tetraarginine (Ru-D-R4) was also examined, and it 

was found to have similar cellular uptake characteristics to Ru-RrRK. When incubated at 

20 μM for 2 h, Ru-D-R4 is limited to punctate structures in the cytoplasm (Figure 4.3). 

At 30 μM, no cells had nuclear staining, in contrast to Ru-RrRK which reached the 

nucleus in 7% of cells. These two conjugates were synthesized with different C-termini, 

an amide for Ru-RrRK and a carboxylic acid for Ru-D-R4. This could play a small role 

in their differences in cellular internalization, however the amide- and carboxy-

terminated versions of Ru-RrRK at 20 μM and 24 h show similar uptake. 

 We also evaluated the cellular accumulation of Ru-RrRK in serum-free medium, 

to allow comparison to the previously described experiments on the thiazole-orange 

conjugate (TO-RrRK), which were performed in the absence of serum.9 Not surprisingly, 

Ru-RrRK enters cells more readily under these conditions, and the concentration required  



 91

 

 

 



 92

 

 

 

Figure 4.3: Subcellular distribution of Ru-D-R4. The structure of the conjugate is 

shown in (A). HeLa cells were incubated with (B) 20 or (C) 30 μM Ru-D-R4 in complete 

medium for 2 h. Punctate staining of the cytoplasm is observed. Scale bars are 10 μm. 
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for nuclear staining is reduced. At 30 μM complex for 2 h, half of the cells show nuclear 

staining (Figure 4.4, Table 4.2). However, Ru-RrRK exhibits less efficient nuclear entry 

than TO-RrRK, which localizes in the nucleus at a lower incubation concentration (5 μM 

for 1.5 h) in the same cell line.9 Hence, the ability of RrRK to impart nuclear localization 

is affected by the nature of the cargo, with the larger and more positively charged 

ruthenium complex being more difficult to direct than thiazole orange. 

 In earlier experiments, we observed that attachment of fluorescein to Ru-D-R8 

influences its subcellular distribution, allowing the conjugate with fluorescein to enter the 

nucleus under conditions for which the complex without fluorescein is excluded.5 

Interestingly, an appended fluoresscein does not have the same effect on Ru-RrRK; 

instead, cellular uptake is impaired by the dye. At concentrations up to 30 μM and 2 h 

incubation, only punctate cytoplasmic luminescence is seen (Figure 4.5). The lack of 

benefit from fluorescein could be due the stronger relative effect of its negative charge on 

this shorter peptide. With reduced positive charge, the conjugate is less able to use the 

membrane potential as a driving force for entry; membrane potential has been shown to 

be an important factor in the cellular uptake of guanidinium-rich peptides.20 

 

4.3.3: EFFECT OF SEQUENCE VARIATIONS ON SHORT PEPTIDES  

 It is known in the literature that charge is not the sole determinant in the uptake of 

cell-penetrating peptides; oligoarginines enter cells much more effectively than 

oligolysines.18 To confirm this for our system, we observed the cellular entry of Ru-

KKKK. We also synthesized Ru-SrSr, which has even less charge, but contains two  
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Figure 4.4: Subcellular distribution of Ru-RrRK in serum-free medium. HeLa were 

incubated with (A) 20 or (B) 40 μM Ru-RrRK in for 2 h. At 20 μM in medium without 

serum, the most cells show only punctate cytoplasmic staining, while at 40 μM, the 

majority of cells exhibit additional nuclear labeling. Scale bars are 10 μm. 
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Figure 4.5: Subcellular distribution of Ru-RrRK-fluor. HeLa were incubated with 

30 μM Ru-RrRK-fluor for 2 h in complete medium. Punctate staining of the cytoplasm is 

observed. Scale bar is 10 μm. 
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arginines. For Ru-KKKK and Ru-SrSr, only faint luminescence in the cytoplasm was 

observed after incubation at 40 μM for 2 h. Increasing the incubation concentration and 

time (100 μM, 4 h) leads to brighter, punctate cytoplasmic staining, and a small 

percentage of cells (17% for Ru-KKKK and 5% for Ru-SrSr) exhibit additional nuclear 

staining (Figure 4.6). Ru-KKKK luminescence is a little more intense than Ru-SrSr, 

indicating that its increased positive charge gives a small advantage over the two 

arginines of Ru-SrSr. As expected, both Ru-KKKK and Ru-SrSr are poorly internalized 

compared to Ru-RrRK. 

 Two longer peptides that correspond to known nuclear localization signals (NLSs) 

were also studied, PKKKRKV and KSKKQK.21 NLSs promote active transport through 

the nuclear pore complex, but the use of an NLS does not guarantee nuclear uptake. They 

must reach the cytosol in order to access the nuclear import machinery. If the NLS 

conjugates enter by endocytosis, they could become trapped in endosomes. However, a 

cobaltocenium cation has previously been successfully targeted to the nucleus using 

PKKKRKV.22 Furthermore, the chosen peptides possess less overall charge than 

octaarginine, and thus are suitable candidates in our efforts to reduce the nonspecific 

binding of our metal-peptide conjugates to DNA.  

 Treatment of HeLa cells with 10 μM Ru-PKKKRKV or Ru-KSKKQK for 2 h 

reveals faint punctate luminescence in the cytoplasm and no nuclear staining. Increasing 

the incubation time to 19 h provides the same result (Figure 4.7). Hence, neither NLS is 

better at promoting nuclear localization of our ruthenium complex than D-octaarginine,  
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Figure 4.6: Subcellular distribution of Ru-KKKK and Ru-SrSr. HeLa cells were 

incubated for 4 h with 100 μM (A) Ru-KKKK  or (B) Ru-SrSr in complete medium. 

Structures of the conjugates are shown at left. The cells shown display punctate staining 

of the cytoplasm. Scale bars are 10 μm. 
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Figure 4.7: Subcellular distribution of Ru-NLS conjugates. HeLa cells were incubated 

for 19 h with 10 μM (A) Ru-KSKKQK or (B) Ru-PKKKRKV in complete medium. 

Structures of the conjugates are shown at left. Punctate staining of the cytoplasm is 

observed. Scale bars are 10 μm. 
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which is also excluded from the nucleus at 10 μM. In fact, analysis by flow cytometry 

reveals that cellular accumulation is even less than that for Ru-RrRK, despite having 

similar charge (Table 4.1). Presumably, at higher concentrations, these Ru-NLS 

conjugates will accumulate in the nucleus, similar to Ru-RrRK. Without measurement of 

this threshold concentration, we cannot compare their ability as nuclear delivery vectors 

to RrRK. 

 

4.4: CONCLUSIONS 

 The large positive charge of octaarginine-metal complex conjugates both 

improves uptake and interferes with selective DNA-binding. To resolve this issue, we 

studied our luminescent ruthenium complex tethered to the shorter and less charged 

RrRK, which efficiently addresses the organic fluorophore thiazole orange to the 

nucleus.9 We found that this peptide was far less capable for delivery of the ruthenium 

complex than it was for thiazole orange, further demonstrating the importance of payload 

to the accumulation and distribution of cell-penetrating peptides. Furthermore, the low 

positive charge of short peptide conjugates abrogates the benefits from fluorescein 

attachment that we previously observed for Ru-octaarginine. Nevertheless, RrRK 

conjugation increases cellular uptake as compared to analogous unconjugated complexes, 

and, above a threshold concentration of 30 μM, this peptide targets the ruthenium 

complex to the nucleus. 
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CHAPTER 5:  CONCLUSIONS  

 

 The cellular uptake of transition metal complexes is only beginning to be 

explored, despite their potential utilization for biological applications. Here, we have 

demonstrated that luminescent dipyridophenazine (dppz) complexes of ruthenium(II) are 

well suited for studies of internalization and distribution in living cells. Using flow 

cytometry and confocal microscopy, we have systematically examined the effect of 

ancillary ligand variation on their cellular uptake. Lipophilicity is the strongest structural 

determinant for uptake efficiency, with the greatest internalization observed for 

Ru(DIP)2dppz2+, where DIP = 4,7-diphenyl-1,10-phenanthroline. This complex enters 

cells via passive diffusion, driven by the plasma membrane potential, as determined by a 

series of mechanistic studies. Furthermore, the dependence of cellular accumulation on 

lipophilicity is consistent with passive diffusion being the common mechanism of entry 

for the entire family. Surprisingly, although the nuclear pore complex is purported to be 

permeable to small molecules, nuclear accumulation of these complexes is relatively poor 

under conditions where they are present in the cytoplasm.  

 The dipyridophenazine complexes of ruthenium(II) furthermore serve as 

luminescent analogues of our 5,6-chrysenequinone diimine (chrysi) complexes of 

rhodium(III), which we are exploring as potential chemotherapeutic agents. These 

rhodium complexes target single base mismatches in DNA and selectively inhibit cellular 

proliferation in mismatch repair-deficient cell lines. Importantly, the biological activity of 

these complexes has been demonstrated to be a consequence of their DNA-binding, 
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suggesting that they reach the nucleus.1,2 Naturally, we have a strong interest in 

understanding the uptake of these complexes, and optimizing their structure for the 

uptake and distribution properties that maximize therapeutic function. However, larger, 

more lipophilic complexes, although more readily internalized, interfere with DNA-

binding, and hence biological activity.2 As a result, we explored peptide conjugates, 

which we hypothesized should enter cells readily, without need of lipophilic bulk added 

near the metal. 

 Conjugation of D-octaarginine to Ru(phen)(bpy′)(dppz)2+ dramatically improves 

its rate of cellular uptake. At sufficient concentration of conjugate (~ 15 μM), the peptide 

also increases the nuclear localization; below this threshold concentration only 

cytoplasmic staining is observed. However, the uptake properties of the peptide are not 

independent of its payload. This is well demonstrated by the effects of tethering 

fluorescein to the metal-peptide conjugate. This doubly labeled peptide has a lower 

threshold concentration: the conjugate strongly stains the nucleus under conditions for 

which the construct without fluorescein is excluded. Furthermore, appending octaarginine 

to the rhodium complex increases the nonspecific affinity for DNA, decreasing the 

selectivity for mismatches.3 We attempted to attenuate this effect by employing, shorter, 

less charged peptides, but found in each case that a much higher threshold concentration 

was required for nuclear entry. Hence, peptide conjugation as a strategy for nuclear 

delivery is subject to the same challenge as we demonstrated for the lipophilic 

complexes: structural variation for the optimization of uptake and distribution invariably 

affects functional properties, while the reverse is also true. 
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 To avoid this complication, we are exploring strategies to allow optimization of 

the nuclear targeting moiety without affecting the activity of the complex.  Current efforts 

involve separation of the uptake moiety from the payload with cleavable linkers. Ideally, 

these will release the active compound upon delivery to the target. 
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APPENDIX: SYNTHESIS OF A LONG-LIFETIME BINARY MOLECULAR BEACON
§ 

 

A1.1: INTRODUCTION 

 Ruthenium complexes possess long luminescent lifetimes (~ 1 μs). When the Ru 

complex functions as the donor in a resonance energy transfer (RET) pair, its long 

lifetime is inherited by the RET acceptor. Here, we describe the synthesis of a long-

lifetime molecular beacon consisting of two probes: (1) Ru(DIP)2(bpy′)2+ (where bpy′= 4-

(3-carboxypropyl)-4′-methyl-2,2′-bipyridine) tethered to the 3′ end of a DNA 

oligonucleotide and (2) the organic fluorophore Cy5 tethered to the 5′ end of a DNA 

oligonucleotide. The two strands are complementary to adjacent regions of the target. In 

the presence of target DNA or RNA, the two fluorophores are brought together and 

energy transfer between Ru and Cy5 occurs (Figure A1.1). Described elsewhere, 

detection by these probes was studied by time-resolved emission measurements, and the 

luminescence in the presence of target is temporally well distinguished from the intense, 

but shorter-lived autofluorescence of cellular media.1 

 

A1.2: EXPERIMENTAL PROTOCOLS 

A1.2.1: PROBE SEQUENCE 

 The probe sequences are complementary to a region of Aplysia californica 

sensorin mRNA. A region low in secondary structure was selected as the target for the  

                                                 
§ Adapted from the supporting information to Martí, A. A.; Puckett, C. A.; Dyer, J.; Stevens, N.; Jockusch, 
S.; Ju, J.; Barton, J. K.; Turro, N. J. Inorganic-organic hybrid luminescent binary probe for DNA detection 
based on spin-forbidden resonance energy transfer. J. Am. Chem. Soc. 2007, 129, 8680–8681. 
 



 107

 

 

Figure A1.1: Detection of DNA by a binary molecular beacon. When the probes are 

free in solution, only emission from the ruthenium complex is observed. In the presence 

of target, Ru(DIP)2(bpy′)2+ and Cy5 are brought into close proximity, a condition 

favorable for resonance energy transfer (RET), and mainly Cy5 emission is observed. 
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binary probe based on the modeled secondary structure. The modeling details have been 

reported elsewhere.2 

 

Ru-probe:   5′-AAG TTG ATC AAG TTG GT-(Ru(DIP)2(bpy′)2+)-3′ 

Cy5-Probe-1: 5′-Cy5-TAT GTT TCA CTG GAT GA-3′ 

Cy5-Probe-2: 5′-Cy5-ATG TTT CAC TGG ATG A-3′ 

Cy5-Probe-3: 5′-Cy5-TTC ACT GGA TGA-3′ 

Target:     5′-TCA TCC AGT GAA ACA TAC AGC ACC AAC TTG ATC AAC TT-3′ 

 

A1.2.2: PROBE SYNTHESIS  

A1.2.2.1: SYNTHESIS OF [RU(DIP)2(BPY′)]CL2 

 Ru(DIP)2Cl2 was synthesized in analogous fashion to the published synthesis of 

Ru(bpy)2Cl2.
3 Ru(DIP)2(bpy′)2+ was prepared by refluxing 41 mg of Ru(DIP)2Cl2 

(49 μmol) and 16.4 mg (64 μmol) of 4-(3-carboxypropyl)-4′-methyl-2,2′-bipyridine 

(prepared according to the published procedure)4 in 10 mL of 1:1 ethanol:water for 3 h. 

The mixture was cooled to ambient temperature and the ethanol removed in vacuo. The 

solution was diluted with water (20 mL) and filtered. The complex was precipitated as 

the PF6
- salt by addition of NH4PF6, then returned to the Cl- salt using a Sephadex DEAE 

anion exchange column. ESI-MS (cation): 511.3 m/z (M2+) obsd, 511.1 m/z (M2+) calcd. 

ε440 = 35,200 M-1 cm-1 in water, as determined by inductively coupled plasma mass 

spectrometry (ICP-MS) measurements. 
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A1.2.2.2: SYNTHESIS OF THE RU-PROBE 

 Ru(DIP)2(bpy′)2+ was tethered to the 3′-end of DNA by first coupling the complex 

to amine-modified beads, followed by DNA synthesis and cleavage of the Ru-DNA 

conjugate from the beads (Figure A1.2).5 The Fmoc group was removed from 3′-amino-

modifier C7 CPG 500 beads (Glen Research) by incubation with 20% piperidine in DMF 

for 15 min. The beads were rinsed with DMF and CH3CN, dried in vacuo, then placed 

under Ar(g). To the beads (2 μmol), [Ru(DIP)2(bpy′)]Cl2 (4.5 mg, 4 μmol), HBTU 

(1.5 mg, 4 μmol), HOBT (0.6 mg, 4 μmol), and DIEA (2 μL, 12 μmol) in anhydrous 

DMF (1.5 mL) were added. The reaction mixture was shaken for 30 min at ambient 

temperature. The beads were rinsed with DMF, CH3CN, and CH2Cl2, then divided into 

two aliquots and transferred into two DNA synthesis columns. DNA was synthesized 

using an ABI 3400 DNA synthesizer. The DNA was cleaved from the beads and 

deprotected with conc. NH4OH (2 h at ambient temperature, 6 h at 60 °C). The Ru-DNA 

conjugate was purified by HPLC using a gradient of 5:95 to 65:35 (acetonitrile:50 mM 

ammonium acetate) over 30 min. The DMT was removed with 80% acetic acid for 

15 min, followed by addition of ethanol, and removal of solvent in vacuo.  The Ru-DNA 

conjugate was purified once more by HPLC. MALDI-TOF: 6473 m/z (M+) obsd, 

6477 m/z (M+) calcd. 

 

A2.2.2.3: SYNTHESIS OF THE CY5-PROBES 

 DNA was synthesized using ‘ultramild’ reagents with Cy5 was added at the 5′-

end, using a Cy5 phosphoramidite (Glen Research).  The MMT group was removed by  



 110

the DNA synthesizer. The DNA was cleaved and deprotected with 0.05 M potassium 

carbonate in methanol for 4 h at ambient temperature. To the supernatant, 1.5 equivalents 

by volume 2.0 M TEAA were added. The solution was concentrated in vacuo and 

desalted using a Nap10 column (GE Healthcare), eluting with water. The Cy5-DNA 

conjugate was purified by HPLC using a gradient of 5:95 to 65:35 (acetonitrile:50 mM 

ammonium acetate) over 30 min. MALDI-TOF: Cy5-Probe-1, 5748 m/z (M+) obsd, 5749 

m/z (M+) calcd; Cy5-Probe-2, 5442 m/z (M+) obsd, 5445 m/z (M+) calcd; Cy5-Probe-3, 

4193 m/z (M+) obsd,  4194 m/z (M+) calcd.  
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Figure A1.2: Synthesis of the Ru-probe.
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