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Abstract 
 
 This thesis describes the essential roles of Dna2 and the Tim/Tipin complex in the 

maintenance of genomic stability.  Dna2 participates in DNA replication and double-

strand break repair by homologous recombination.  Meanwhile, the Tim/Tipin complex is 

required for efficient checkpoint activation upon replication stress, which can be caused 

by stalled DNA replication forks. 

While yeast genetics and experiments with purified proteins have revealed much 

about yeast Dna2, we chose to pursue characterization of metazoan Dna2 using Xenopus 

cell-free extracts.  We show that binding of Dna2 to origins of replication is dependent 

upon formation of pre-replication complexes but independent of CDK2 activity.  Upon 

initiation of DNA replication, Dna2 travels with replication forks.  Physical interactions 

with Mcm10 and And-1, proteins involved in lagging strand DNA replication, are 

indicative of a role in replication of the lagging strand; this result is consistent with 

genetic results in yeast and in vitro biochemical experiments. 

Dna2 also participates in the response to double-strand breaks and accumulates on 

chromatin containing double-strand breaks.  We show that Dna2 binds to free DNA ends 

after the Mre11-Rad50-Nbs1 complex and ATM, but before RPA.  Dna2-depleted 

extracts exhibit delayed processing of DNA ends, indicating that other nucleases do not 

easily compensate for the lack of Dna2.  Consistent with genetic results in yeast, we find 

that the Mre11-Rad50-Nbs1 protein complex is essential for the processing of free DNA 

ends, but inhibition of Mre11 nuclease activity only slows processing.  This observation 

indicates that other nucleases, possibly Dna2, can compensate for loss of Mre11 nuclease 
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activity.  Despite the role of Dna2 in double-strand break processing, Dna2 is not 

required for checkpoint activation. 

Timeless (Tim) and Tipin participate in the checkpoint response to stalled 

replication forks.  We demonstrate here that Tim and Tipin form a complex, associate 

with chromatin in S phase, and physically interact with many proteins at the replication 

fork.  Human cells lacking the Tim/Tipin complex do not exhibit robust checkpoint 

activation in response to stalled replication forks.  Finally, we show that Tipin is also a 

target of both the ATR and Cdc7 kinases, which respond to stalled replication forks.   
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1  Introduction 

 As cells grow and divide, their DNA content is monitored to prevent 

accumulation of mutations which can lead to the development of cancer (Hartwell & 

Kastan, 1994).  Mutations are the result of DNA damage caused by external sources such 

as UV light, X-rays, radiation, and chemical carcinogens, or they can be caused by 

cellular events including stalled DNA replication forks, incompletely replicated DNA, 

and programmed DNA double-strand breaks.  Damaged DNA can be repaired, but 

mutations are made permanent when the damaged DNA is not repaired accurately or cells 

divide without fixing the damage.  To prevent accumulation of mutations, cells have 

developed checkpoints to delay cellular growth in the presence of DNA damage or 

incomplete DNA replication, giving the cell time to repair the DNA before making 

mutations permanent upon cell division (Weinert, 1998).  Abrogation of these 

checkpoints leads to increased susceptibility to cancer, neurodegeneration, and 

accelerated aging (Cimprich & Cortez, 2008; Czornak et al, 2008). 

 Cells can suffer DNA damage at all points in the cell cycle.  It is both the type of 

DNA damage and the stage of the cell cycle that determines which checkpoints are 

activated as well as the method of repair.  During DNA replication in S phase of the cell 

cycle, cells monitor for both stalled replication forks, which activates the ATR-dependent 

checkpoint response, and DNA double-strand breaks, which activate the ATM- and 

DNA-PK dependent checkpoints.  The ATM-dependent checkpoint and repair 

mechanism results in a more accurate repair of double-strand breaks, while the DNA-PK-

dependent pathway can be accurate or error-prone repair.  The ATM-dependent pathway 

is the prominent repair pathway for DNA double-strand breaks (DSBs) during S or G2 
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phase, since this pathway relies on the presence of a sister chromatid which is only 

present in S and G2 phases, while the DNA-PK pathway is the primary DSB repair 

pathway in G1 and M phase when a sister chromatid is not available.   

The ATR-dependent pathway can be activated in S or G2 phases, while DNA is 

being replicated and incomplete DNA replication is detected.  Some of the same proteins 

that are necessary for these checkpoint responses are also involved in DNA replication.  

In S phase, the process of DNA replication is physically coupled to checkpoint 

mechanisms.  Some proteins that are required for checkpoint activation that travel with 

the replication fork are TopBP1, Claspin, and the Timeless/Tipin complex (Chini & 

Chen, 2003; Errico et al, 2007; Gotter et al, 2007; Hashimoto & Takisawa, 2003; 

Kumagai & Dunphy, 2000; Lee et al, 2003; Makiniemi et al, 2001; Unsal-Kacmaz et al, 

2007; Van Hatten et al, 2002; Yoshizawa-Sugata & Masai, 2007).  Recent work in yeast 

also highlights this coupling of DNA replication and checkpoints in S phase; Mrc1, the 

yeast ortholog of Claspin, is required for activation of the S-phase checkpoint and 

physically interacts with Pol 2, a catalytic subunit of DNA polymerase ε (Alcasabas et al, 

2001; Lou et al, 2008).  Upon checkpoint activation by stalled replication forks, this 

interaction is altered but not abolished, potentially altering polymerase activity in 

response to the replication stress.  Alternatively, the change in Mrc1 binding may provide 

a docking site for additional checkpoint response proteins (Lou et al, 2008).  Physically 

coupling these mechanisms ensures an immediate response when problems arise in DNA 

replication, so any stalled replication forks can be stabilized quickly to prevent 

dissociation of replication fork proteins, a signal of fork collapse from which the 

replication fork can not recover.  The coupling of DNA replication and checkpoint 
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activation is exemplified by the fact that the ATR-dependent DNA replication checkpoint 

requires the initiation of DNA replication (Stokes et al, 2002).  Since these mechanisms 

are intertwined, both DNA replication and checkpoints are discussed below. 

1.1  DNA Replication Initiation 

 
 The replication of genomic DNA is a well-conserved and highly regulated 

process.  All chromatin must be replicated once and only once per cell cycle with a 

minimal rate of mutation.  The activity of cell cycle-dependent kinases regulates the 

process of DNA replication; origins of replication are “marked” for replication in late M 

phase and early G1 phase, when S-phase CDK (S-CDK) activity is low, and DNA is 

replicated when S-CDK levels are high.  While there are many points of regulation and 

feedback, this overarching model guides DNA replication in the cell cycle (Diffley, 

1996). 

When S-CDK levels are low, the Origin Recognition Complex (ORC) first binds 

chromatin and marks the origins of replication during early G1 phase for the upcoming S 

phase (Diffley, 2004; Nguyen et al, 2001).  Origins are interspersed throughout 

chromosomes, and not every origin is used every S phase (for review see Natsume & 

Tanaka, 2009).  Cdc6 and Cdt1 subsequently bind origins of replication during G1 phase.  

Recent results revealed that the Cdt1 that binds origins is bound to Mcm9, a protein with 

ATPase activity and a helicase domain (Lutzmann & Méchali, 2008).  The MCM2-7 

complex, which is the replicative helicase, subsequently binds origins of replication, and 

the binding of this set of proteins signals the formation of the pre-replication complex 

(pre-RC) and “licensing” origins of replication (Bell & Dutta, 2002; Nishitani & 
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Lygerou, 2002).  Pre-RC complexes must be formed in G1 phase, when S-CDK levels 

are low, because they can not form when S-CDK levels are high in S phase (Diffley, 

2004; Nguyen et al, 2001).  Also, at the onset of DNA replication, Cdt1 is bound by 

geminin, not Mcm9, and is subsequently degraded in a PCNA- and Cul4-dependent 

manner, preventing the licensing of additional origins of replication (Arias & Walter, 

2005; Arias & Walter, 2006; Lutzmann & Méchali, 2008).  Cdc6 is also regulated to 

prevent licensing of additional forks.  Upon initiation of DNA replication, yeast Cdc6 is 

degraded, while human Cdc6 is exported from the nucleus, to prevent additional origin 

firing (Elsasser et al, 1999; Jallepalli et al, 1998; Jiang et al, 1999; Perkins et al, 2001; 

Petersen et al, 1999; Saha et al, 1998).  These are some of the many points of regulation 

in which DNA replication can be limited to one round of DNA replication per cell cycle 

(Arias & Walter, 2007). 

It is at this pre-RC stage of replication fork maturation that proteins such as Dna2, 

required for efficient DNA replication, and Mcm10, responsible for retention of DNA 

polymerase α at the fork, bind origins of replication (this work and Liu et al, 2000b; 

Wohlschlegel et al, 2002).  TopBP1, which is necessary for the ATR-dependent 

checkpoint, also binds the developing replication fork at this point (Van Hatten et al, 

2002).  Binding of the above proteins at this stage of replication fork development is 

essential; in the absence of Mcm10 and TopBP1, replication forks do not develop further.  

The presence of Mcm10 at the fork is also required for binding of Cdc45 and formation 

of the CMG complex, mentioned below.  TopBP1 is necessary for both Cdc45 binding 

and association of the GINS complex, also described below (Im et al, 2009; Kubota et al, 
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2003; Van Hatten et al, 2002).  This ordered binding of proteins is highly conserved from 

yeast to human, with only minor variations. 

Upon entry into S phase, marked by activation of S-CDK, pre-RC complexes are 

activated by binding of additional proteins, transforming it into what is known as the pre-

initiation complex (pre-IC).  Activation of both the Cdc7 and CDK2 kinases are required 

for pre-IC formation, and this step is also well-conserved from yeast to metazoans 

(Aparicio et al, 1999; Mimura et al, 2000; Walter & Newport, 2000; Zou & Stillman, 

2000).  Notable pre-IC proteins include Cdc45 and the GINS (Go, Ichi, Nii, and San) 

complex, and the chromatin binding of Cdc45 and GINS are mutually dependent (Kubota 

et al, 2003).  Cdc45 recruits DNA polymerase α/primase, necessary for initiation of 

replication, and GINS activates it (De Falco et al, 2007; Mimura et al, 2000).  It also may 

be that both Cdc45 and the GINS complex activate the MCM replicative helicase, as the 

MCM2-7 helicase can be isolated in the Cdc45-MCM-GINS (CMG) complex and is 

bound to the same region of DNA as Cdc45 and GINS upon uncoupling of the replicative 

helicase and polymerase activities in both Xenopus and yeast (Gambus et al, 2006; 

Kubota et al, 2003; Pacek et al, 2006). 

DNA can be unwound by the MCM replicative helicase and subsequently bound 

by RPA, a single-stranded DNA binding protein.  It is also at the pre-IC stage of 

replication fork maturation that additional DNA replication proteins bind the fork, 

including notable proteins involved in DNA replication, such as the DNA polymerases, 

Claspin, the Tim/Tipin complex, and the ssDNA-binding protein RPA (Lee et al, 2003; 

Mimura et al, 2000; Tanaka et al, 2009; Walter & Newport, 2000). 
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Once replication has initiated, DNA replication forks proceed away from the 

replication origins with coupled leading and lagging strand replication.  Data from yeast 

suggests that DNA polymerase ε is the leading strand polymerase and polymerases α and 

δ participate in lagging strand replication (McElhinny et al, 2008; Pavlov et al, 2006; 

Pursell et al, 2007).  Claspin, Timeless (Tim), and Tipin are not essential for DNA 

replication but serve to stabilize replication forks and prevent fork stalling in both 

metazoans and yeast (Chou & Elledge, 2006; Errico et al, 2007; Katou et al, 2003; Liu et 

al, 2006b; Noguchi et al, 2003; Noguchi et al, 2004; Petermann et al, 2008; Szyjka et al, 

2005; Tourriere et al, 2005; Unsal-Kacmaz et al, 2007; Yoshizawa-Sugata & Masai, 

2007).   

The termination of DNA replication is less understood than the initiation of 

replication.  In eukaryotic cells, replication forks terminate when two replication forks 

meet or when one replication fork approaches the end of a telomere.  However, most data 

on the termination of replication are from studies in prokaryotes; the current theory is that 

as two forks approach each other from opposite directions, one fork stops while the other 

proceeds (Kaplan, 2006).  This process is regulated so forks do not collide and all DNA is 

replicated. 

1.2  Checkpoints 

Checkpoints are cellular mechanisms that pause the cell cycle to prevent pre-

mature entry into the next phase of the cell cycle.  DNA damage and the subsequent 

repair of that damage activate checkpoints to allow the cell additional time to repair the 

damage before it is made permanent by cell division.  When DNA is not completely 

replicated in S phase or DNA damage is encountered, cells delay the cell cycle, maintain 
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the replication fork structure so replication can re-start upon repair of the damage, repair 

the DNA, inhibit replication from other origins of DNA replication, and alter the 

transcriptional program of the cell.  If checkpoint mechanisms fail, cells suffer from 

higher mutation rates and potentially cell death, are more likely to become cancerous, and 

can suffer from accelerated aging (Czornak et al, 2008; Erkko et al, 2008; Hartwell & 

Kastan, 1994; Karppinen et al, 2006; Kerzendorfer & O'Driscoll, 2009; Singh et al, 

2009).   

Like DNA replication, the initial steps of checkpoints are better understood than 

the termination of the checkpoint signal and the recovery from checkpoints.  It is likely 

that checkpoints are down-regulated upon removal of the activating signal once the 

damaged DNA has been repaired.  If DNA damage can not be repaired, an adaptation 

response, observed in yeast, Xenopus, and human cells, can occur in which cells enter 

mitosis with the DNA damage still present (Leroy et al, 2003; Pellicioli et al, 2001; 

Sandell & Zakian, 1993; Syljuasen et al, 2006; Toczyski et al, 1997; Vaze et al, 2002; 

Yoo et al, 2004a). 

The type of DNA damage present and the stage of the cell cycle specifies which 

checkpoint mechanism and method of repair will be utilized by the cell.  Checkpoint 

responses to DNA replication stress and DNA double-strand breaks, both active in S and 

G2 phases, are described below; other checkpoint responses are present in G1 and M 

phases.  The main checkpoint mechanisms each have a main, apical kinase regulating 

many aspects of the checkpoint response.  It is the ATR kinase that responds to 

replication stress, while ATM is the prominent kinase that responds to DSBs in S and G2 

phases. 
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1.3  Replication Stress 

 As cells replicate their DNA, replication stress occurs when replication forks stall 

upon encountering damaged DNA, protein bound to DNA, abnormal DNA structures, or 

when the helicase and polymerase activities of the fork become uncoupled.  Replication 

stress triggers the activation of the ATR-dependent checkpoint, and signaling through this 

pathway retards cell cycle progression, keeping the cell in S phase and providing 

additional time to complete the replication of genomic DNA.  In addition to replication 

stress, the ATR-dependent checkpoint is also activated by ATM in the presence of DNA 

double-strand breaks (DSBs), discussed below (Jazayeri et al, 2006; Yoo et al, 2007). 

Upon occurrence of replication stress, tracts of single-stranded DNA (ssDNA) are 

formed at the replication fork, likely due to the activity of the MCM replicative helicase.  

As with most ssDNA in the cell, this is coated in the ssDNA-binding protein RPA to 

protect the ssDNA from degradation.  RPA-coated ssDNA is believed to be the signal for 

activation of the ATR-dependent DNA replication checkpoint (Costanzo et al, 2003; Zou 

& Elledge, 2003).  The extent of checkpoint activation depends upon both the length of 

RPA-coated ssDNA tracts and the type of DNA end exposed, with maximal checkpoint 

activation when a 5′ end is exposed at a ssDNA-dsDNA (double-stranded DNA) junction 

(MacDougall et al, 2007; Shiotani & Zou, 2009).  

The ATR kinase and its partner ATRIP, henceforth referred to as the ATR-ATRIP 

complex, are recruited to RPA-coated ssDNA through an RPA-binding domain in ATRIP 

(Ball et al, 2005; Kim et al, 2005; Zou & Elledge, 2003).  Other proteins recruited to the 

RPA-coated ssDNA are TopBP1, a BRCT-containing protein, and Rad17.  Rad17 forms 

a DNA damage response alternative RFC complex, containing the same small RFC 
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subunits as the replicative RFC complex but the large subunit is replaced by Rad17.  

Whereas the RFC complex participates in loading of the PCNA sliding clamp onto DNA 

for DNA replication fidelity, the Rad17 complex loads the 9-1-1 (Rad9-Rad1-Hus1) 

clamp onto damaged DNA.  The Rad17 complex preferentially loads the 9-1-1 complex 

onto DNA containing a free 5′ end at a ssDNA-dsDNA junction, the same DNA structure 

that elicits maximal checkpoint activation (Ellison & Stillman, 2003; MacDougall et al, 

2007; Shiotani & Zou, 2009).  Once the 9-1-1 complex is loaded onto chromatin, the C-

terminal tail of Rad9 in the 9-1-1 complex interacts with both ATRIP in the ATR-ATRIP 

complex and with TopBP1 (Lee et al, 2007; Yan & Michael, 2009).  Both TopBP1 and 

Rad9 stimulate ATR kinase activity (Delacroix et al, 2007; Kumagai et al, 2006; Mordes 

et al, 2008).  While the signal to activate the checkpoint appears to be RPA-coated 

ssDNA, its real purpose may be to simply bring these three proteins in close proximity, 

increasing the local concentration of these proteins.  Elegant experiments in both yeast 

and human cells reveal that simply increasing the local concentration of checkpoint 

proteins is sufficient to activate the checkpoint response in the absence of DNA damage 

or replication stress (Bonilla et al, 2008; Soutoglou & Misteli, 2008; Stucki & Jackson, 

2006). 

Interestingly, ATR-ATRIP binding to RPA-coated ssDNA is not strictly essential 

for ATR kinase activity stimulation, since ATR can still be activated when bound to 

ATRIP mutants lacking the ability to bind RPA (Ball et al, 2005; Kim et al, 2005).  The 

reciprocal result was shown in yeast; mutants of Rfa1, the yeast homolog of RPA, that 

are unable to bind Ddc2, the ATRIP homolog, only suffer minor checkpoint activation 

defects (Lee et al, 1998; Umezu et al, 1998).  Additionally, overexpression of the ATR-
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activating protein TopBP1 in human cells results in ATR-dependent phosphorylation of 

proteins in the absence of RPA-bound ssDNA (Ball et al, 2007; Kumagai & Dunphy, 

2006).  This also supports the theory that simply increasing the local concentration of 

checkpoint proteins is sufficient to activate checkpoints, as previously seen in both yeast 

and human cells (Bonilla et al, 2008; Soutoglou & Misteli, 2008; Stucki & Jackson, 

2006). 

Active ATR phosphorylates a myriad of proteins, some of which have recently 

been identified through large-scale screens (Matsuoka et al, 2007; Mu et al, 2007; Smith 

et al, 2009; Smolka et al, 2007; Stokes et al, 2007).  One of the most studied ATR 

substrates is Chk1, a serine/threonine kinase.  Human Chk1 is activated upon ATR-

dependent phosphorylation of residues S317 and S345 (Liu et al, 2000a; Zhao & 

Piwnica-Worms, 2001).  Active Chk1 then inhibits the Cdc25 phosphatases, thus 

preventing CDK activation and entry into mitosis (Furnari et al, 1997; Peng et al, 1997; 

Sanchez et al, 1997).  

Interestingly, TopBP1 and Rad17, proteins responsible for the activation of ATR 

kinase activity, are also targets of ATR phosphorylation (Bao et al, 2001; Kumagai et al, 

2006).  ATR-dependent Rad17 phosphorylation is required for 9-1-1 foci formation and 

checkpoint activation (Bao et al, 2001; Medhurst et al, 2008).  Rad9, of the 9-1-1 

complex, binds the same basic cleft in RPA that ATRIP binds, and the Rad9 C-terminal 

tail bridges TopBP1 and the ATR-ATRIP complex (Lee et al, 2007; Xu et al, 2008).  This 

data again suggests that without Rad17 phosphorylation and 9-1-1 accumulation, TopBP1 

alone would not activate ATR as efficiently.  Therefore, the checkpoint signal would not 

be amplified and perpetuated, so the checkpoint signal would not be sufficiently activated 
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in response to ssDNA.  Alternatively, the ATR-dependent phosphorylation of Rad17 may 

serve another purpose in checkpoint signaling. 

In addition to slowing cell cycle progression, as mentioned above, activate ATR 

kinase also affects other pathways.  Upon checkpoint activation, the further firing of 

DNA replication origins is inhibited until the DNA damage is repaired and the 

checkpoint mechanism is down-regulated (Costanzo et al, 2003; Maya-Mendoza et al, 

2007; Shechter et al, 2004).  ATR also participates in the recovery from stalled 

replication forks, as illustrated by recent work on the ATR-dependent phosphorylation of 

Mcm2.  Mcm2, a member of the MCM replicative helicase complex, can be 

phosphorylated by either ATM or ATR upon checkpoint activation (Trenz et al, 2008; 

Yoo et al, 2004b).  During checkpoint activating conditions, ATR phosphorylates Mcm2 

on S92 of the Xenopus protein, and this modification promotes Plx1, the Xenopus 

orthologue of Plk1 (Polo-like kinase 1), binding to Mcm2.  This interaction in turn 

promotes recovery from the checkpoint response by promoting origin firing (Trenz et al, 

2008).  Plx1 also binds and phosphorylates Claspin, causing it to release from chromatin 

and thus down-regulate the checkpoint response (Yoo et al, 2004a).  In human cells, 

Plk1-dependent degradation of Claspin in G2 phase of the cell cycle also downregulates 

the checkpoint mechanism by physically removing proteins that can keep the checkpoint 

activated (Gewurz & Harper, 2006). 

ATR phosphorylates many proteins at the replication fork, including RPA, the 

MCM2-7 complex, Mcm10, various DNA polymerases, TopBP1, Rad9 of the 9-1-1 

complex, Tipin, WRN, BLM, and BRCA1 (Bao et al, 2001; Cortez et al, 2004; Liu et al, 

2006a; Matsuoka et al, 2007; Oakley et al, 2001; Yoo et al, 2004b).  The function of 
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many of these phosphorylation events is as yet unknown; they may be related to 

maintenance of replication fork integrity, DNA repair, checkpoint recovery, protein 

degradation, or the transcription of genes.  Understanding the purpose of these ATR-

mediated modifications will shed light on the role of the ATR-dependent checkpoint 

pathway. 

Other unresolved questions surround the topic of replication fork stability upon 

stalling.  Both Claspin and the Tim/Tipin complex are required to maintain replication 

fork integrity, but results in yeast reveal that they are not equivalent, and forks lacking 

the respective homologs of these proteins respond differently when encountering a 

replication fork barrier (Chou & Elledge, 2006; Errico et al, 2007; Katou et al, 2003; 

Mohanty et al, 2006; Petermann et al, 2008; Unsal-Kacmaz et al, 2007; Yoshizawa-

Sugata & Masai, 2007).  Many questions remain regarding the similarities and 

differences between these fork-stabilizing proteins.  Also, the effect of ATR-dependent 

phosphorylation of Tipin is as yet unknown; however, Claspin phosphorylation by ATR 

is necessary for ATR-dependent checkpoint signaling in response to DSBs, but not in 

response to replication stress (Yoo et al, 2006).   

It is worth noting that there are also ATR-independent responses to stalled 

replication forks, although these mechanisms are not as well described.  One example of 

an ATR-independent response is the ubiquitylation of PCNA upon induction of stalled 

replication forks (Chang et al, 2006; Yang et al, 2008).  Ubiquitylation of PCNA 

promotes recruitment of translesion DNA polymerases, believed to be necessary for 

efficient replication in the presence of damaged DNA (Lopes et al, 2006).  This response 
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is dependent upon both Claspin and the Tim/Tipin complex, but independent of ATR 

(Yang et al, 2008). 

The Cdc7 kinase has been detected in a complex with the Claspin and Tim/Tipin 

homologs in yeast, may be a target of the ATR-dependent checkpoint, and these proteins 

participate in checkpoint mechanisms in yeast (Jares et al, 2000; Matsumoto et al, 2005; 

Shimmoto et al, 2009; Sommariva et al, 2005; Yanow et al, 2003).  In yeast, the Cdc7 

homolog participates in both the response to stalled replication forks and the response to 

alkylated DNA (Shimmoto et al, 2009; Sommariva et al, 2005).  The human Cdc7/Dbf4 

complex is a target of Chk1, and Dbf4 overexpression reverses the checkpoint response 

(Heffernan et al, 2007).  Cdc7 is involved in the metazoan checkpoint response, but the 

extent of conservation is unresolved.  Further research is needed to examine the role of 

Cdc7 in the response to replication stress and, potentially, the ATR-dependent 

checkpoint. 

1.4  DSB Resection through Homologous Recombination 
 

 Unlike DNA replication stress, DNA double-strand breaks (DSBs) can occur at 

any point during the cell cycle.   DSBs can be caused by exogenous sources, such as 

exposure to ionizing radiation, radiomimetic drugs, or UV light, or by endogenous 

cellular processes, including meiosis, V(D)J recombination, and immunoglobulin class-

switch recombination.  Unlike the replication stress checkpoint, there are two kinases that 

may regulate the checkpoint response to and repair of DSBs.  The ATM-dependent 

checkpoint pathway is coupled to repair by homologous recombination (HR), while the 

DNA-PK-dependent checkpoint pathway is associated with repair of DSBs by non-
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homologous end joining (NHEJ).  The repair method of choice is also cell-cycle 

dependent; homologous recombination relies on the presence of a sister chromatid, only 

present in S or G2 phases, for use as a template for repair, so HR is the dominant repair 

mechanism in S and G2.  Meanwhile, NHEJ is the predominant DSB repair mechanism 

in G1 phase, since cells have a 1N DNA content and there is no sister chromatid template 

available.  Repair by HR is an accurate repair, since there is a DNA template for repair, 

while repair by NHEJ is not necessarily accurate, as DNA ends are joined irrespective of 

homology (for review see Hartlerode & Scully, 2009).  The HR mechanism and ATM-

dependent checkpoint response will be reviewed here. 

 Upon DSB formation, free DNA ends are rapidly bound by the MRN (Mre11-

Rad50-Nbs1) complex.  Mre11 is a nuclease, Rad50 is a member of the SMC family 

proposed to hold sister chromatids in close proximity, and Nbs1 physically interacts with 

the ATM kinase (for review see Lavin, 2007).  MRN is also bound to CtIP (CtBP 

interacting protein), which interacts with BRCA1 and is essential for DNA end joining 

through homologous recombination (Sartori et al, 2007; Takeda et al, 2007; Yu et al, 

2006).  Mre11 in the MRN complex first processes the break by degrading the 5′ ends, 

and this processing releases short single-stranded DNA oligomers capable of activating 

the ATM kinase (Jazayeri et al, 2008).  Inactive ATM dimers are recruited to the DSB 

ends and activated by the MRN activity.  ATM dimers autophosphorylate and dissociate, 

and the active ATM monomers subsequently phosphorylate proteins involved in the 

checkpoint response and repair of DSBs (Bakkenist & Kastan, 2003).  One protein of 

interest that is quickly phosphorylated by ATM is the histone variant H2AX.  

Phosphorylated H2AX, together with the MDC1 adapter protein, recruit DSB checkpoint 
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and repair proteins to sites of damage and mediate repair by homologous recombination 

(Hartlerode & Scully, 2009).  ATM is also responsible for phosphorylating and activating 

Chk2, a serine/threonine effector kinase that further phosphorylates proteins in response 

to DSBs (Matsuoka et al, 1998; Matsuoka et al, 2000). 

 While the checkpoint signal is perpetuated and amplified by the ATM and Chk2 

kinases, the break is also being processed for repair.  DSBs are first processed by Mre11 

in the MRN/CtIP complex, as mentioned above.  This Mre11 processing is both the initial 

step of repair and an activating step for the checkpoint pathway.  DNA ends are further 

processed by a helicase and nuclease, either WRN and Dna2 or BLM and Exo1 (Liao et 

al, 2008; Nimonkar et al, 2008).  This mechanism of processing is well-conserved and 

consistent with genetic results in yeast (Budd & Campbell, 2009; Zhu et al, 2008).  If the 

break is processed by the WRN helicase and the Dna2 helicase-nuclease, WRN unwinds 

the duplex DNA and Dna2 degrades the 5′ strand, lengthening the 3′ ssDNA tail (Liao et 

al, 2008).  Yeast genetics indicate that it is the nuclease, not the helicase, activity of Dna2 

that participates in DSB processing (Budd & Campbell, 2009).  Exo1 is also capable of 

processing this 5′ end, thus extending the 3′ ssDNA tail, and the BLM protein stimulates 

Exo1 activity without requiring BLM helicase activity (Nimonkar et al, 2008).  While 

these two parallel pathways exist, the factors that drive the cell to use one pathway versus 

another are as yet unknown.   

The nuclease degradation of the 5′ strand to reveal a longer 3′ ssDNA tail allows 

the accumulation of RPA on the ssDNA.  Eventually, the bound RPA is replaced with 

Rad51 recombinase with the help of BRCA1, BARD1, and BRCA2.  It is the Rad51-

coated ssDNA that is competent for strand invasion of the sister chromatid to search for a 
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homologous sequence.  The cell can then synthesize the remaining missing DNA 

sequence, and this DNA structure is resolved by one of many enzymes capable of 

resolving the structure, including BLM and Topoisomerase IIIα, GEN1, SLX4, and the 

MUS81-EME1 complex (for review see Hartlerode & Scully, 2009). 

Checkpoint signaling in response to DSBs is not independent of the repair 

process.  Many DSB repair proteins are substrates of the ATM kinase, including Mre11.  

It has only recently been discovered that phosphorylation of Mre11 by ATM triggers the 

dissociation of Mre11 from DNA ends, likely releasing these ends for further processing 

for repair (Di Virgilio et al, 2009).  ATM phosphorylates many additional targets that 

participate in DSB repair, although the function of many of these modifications is as yet 

unknown (for review see Czornak et al, 2008).   These ATM-dependent phosphorylations 

may be involved in the recruitment of proteins to DSBs, in processing the DSBs, or in the 

down-regulation of the checkpoint signal. 

Processing of a DSB by HR also activates the ATR-dependent checkpoint 

pathway.  The extended RPA-coated 3′ ssDNA tails generated during processing of DNA 

ends may serve to recruit ATR-ATRIP (Shiotani & Zou, 2009).  Active ATM kinase 

phosphorylates TopBP1 with MRN as a mediator, which in turn activates the ATR kinase 

(Yoo et al, 2007; Yoo et al, 2009).  Therefore, DSBs activate both the ATM- and ATR-

dependent pathways, thus expanding the cellular response to DNA damage.  There is also 

cross-talk between the ATR- and ATM-dependent responses.  Chk1, a downstream target 

of the ATR kinase activated in response to replication stress, is essential for repair of 

DSBs by HR (Sorensen et al, 2005).  Additionally, Exo1, one of the nucleases that 

participates in the resection of DSBs by HR, was recently found to be a target of the ATR 
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under conditions of replication stress, with phosphorylation leading to degradation of 

Exo1 (El-Shemerly et al, 2008).  It is as yet unknown if ATM-mediated ATR activation 

by the DSB checkpoint also causes degradation of Exo1, or if this effect is limited to 

replication stress.  Degradation of Exo1 may signal completion of a given step of repair, 

or it may function in down-regulation of the checkpoint response.  Cross-talk between 

cellular pathways is a point of interest as we strive to understand the cellular response to 

DNA damage. 

 The importance of resolving DSBs is underscored by the multiple redundancies in 

the DSB processing pathway detected through yeast genetics.  In yeast, the nuclease 

activity of the Mre11 is not essential, although the MRN protein complex itself is 

necessary for DSB processing.  This is likely due to other nucleases, potentially Dna2 and 

Exo1, compensating for the lack of Mre11 nuclease activity.  Yeast lacking Dna2 or Exo1 

can still repair DSBs, suggesting that cells can compensate for the lack of either of these 

proteins and that Dna2 and Exo1 may be able to compensate for each other (Budd et al, 

2009; Zhu et al, 2008).  Supporting this theory, yeast genetic interactions revealed that it 

is the nuclease activity of the Dna2 helicase-nuclease that participates in DSB repair; a 

helicase-dead mutant had no affect on repair efficiencies (Budd & Campbell, 2009).  

Yeast genetic interactions has revealed much about these functional redundancies, and a 

current point of interest is understanding these functional redundancies in metazoans. 

 While much has also been learnt about the response to DSBs, many questions 

remain regarding the DSB checkpoint and repair.  Recent data suggests how the cell 

cycle may influence the prevalence of DSB repair by HR versus NHEJ at different cell 

cycle stages.  CtIP, which participates in HR, is regulated by CDK-dependent 
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phosphorylation events, and this may promote repair by HR over NHEJ in S and G2 

phases (Chen et al, 2008; Huertas & Jackson, 2009; Yun & Hiom, 2009).  There are 

likely many more points of cell cycle regulation that are not yet understood, including as 

yet unidentified proteins and modifications to proteins involved in DSB repair.   

Cross-talk between checkpoint pathways is also a point of interest.  The ATM-

dependent activation of ATR was only recently identified, and the extent of cross-talk 

between other PIKKs, particularly ATR and DNA-PK, is an area of current research.  

ATM does phosphorylate DNA-PK in irradiated cells, and this ATM-dependent 

modification acts cooperatively with DNA-PK autophosphoryalation for cooperative 

activation of the DNA-PK kinase activity (Chen et al, 2007).  ATR-dependent activation 

of ATM upon DNA replication fork stalling or UV has been reported in human cells; 

however, this effect was not observed in Xenopus extract treated ssDNA or dsDNA to 

induce checkpoint activation (Jazayeri et al, 2008; Stiff et al, 2006).  

Finally, the role of MRN in DSB repair is intriguing.  Mre11 nuclease activity is 

not required for DSB resection, but the intact MRN protein complex is required.  MRN 

may serve as a scaffold for binding of other repair proteins, or it may be a domain in 

Rad50 or Nbs1 that is essential for DSB repair.  Understanding the role of MRN past the 

role of the nuclease, the non-essential role, should yield a greater understanding of DSB 

repair.  Interestingly, MRN also participates in DSB repair by NHEJ (non-homologous 

end joining).  Removal of the MRN complex, or any protein within this complex, greatly 

reduces the efficiency of NHEJ by both classical and alternative pathways in human cells 

(Deng et al, 2009; Dimitrova & de Lange, 2009; Dinkelmann et al, 2009; Rass et al, 

2009; Xie et al, 2009).  The role of MRN in repair of DSBs by both HR and NHEJ is 
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interesting, and is likely to be one of multiple points in which these pathways are 

intertwined. 

1.5  Xenopus Cell-Free System 
 

This work examines the vertebrate homologs of the well-studied S. cerevisiae 

proteins, Dna2, Tof1, and Csm3, in an effort to further the understanding of these 

proteins in metazoans.  Most experiments were performed in Xenopus laevis cell-free 

extract, derived from X. laevis eggs arrested in metaphase of meiosis II that were crushed 

by centrifugation.  The addition of calcium stimulates the extract to enter interphase, or S 

phase, and the further addition of chromosomal DNA and an ATP-regeneration system 

results in the formation of nuclei and DNA replication in this cell-free extract.  The 

maternal stores of protein from the eggs are sufficient for DNA replication without the 

need for transcription. This DNA replication is both regulated and synchronized, and 

cellular responses to DNA damage can be successfully recapitulated in this extract (Blow 

& Laskey, 1986; Garner & Costanzo, 2009). 

 In this text, interphase extract refers to S phase extract with no DNA added, and 

CSF extract is extract that has not been stimulated by addition of calcium, so it is arrested 

in metaphase II of meiosis.  CSF extract is commonly referred to as “M phase” extract, 

due to its resemblance to M phase extracts.  For all experiments involving the addition of 

DNA to these extracts, Xenopus laevis demembranated sperm chromatin was used as the 

source of chromosomal DNA. 
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2  Xenopus Dna2 is a Helicase/Nuclease with Roles in 

DNA Replication and Double-Strand Break Processing 

 
Karen E. Wawrousek, Barbara K. Fortini, Piotr Polaczek, Lu Chen, Qingquan Liu, 

William G. Dunphy, Judith L.Campbell 

 

2.1  Abstract 

 
Xenopus laevis egg extracts provide experimental approaches to study DNA replication 

and double-strand-break (DSB) repair that complement other systems.  Here, we define 

specific mechanisms by which Dna2 participates in these processes.  We establish that 

Xenopus Dna2 is a helicase, as well as a nuclease.  We further show that Dna2 is actively 

recruited to DNA only after replication origin licensing and that Dna2 levels on 

chromatin increase after induction of DSBs.  Dna2 co-localizes with RPA and binds the 

lagging strand replication proteins And-1 and Mcm10.  Dna2 also interacts with the DSB 

repair and checkpoint proteins Nbs1 and ATM.  In yeast, Dna2 nuclease is required for 

initial steps of 5′ resection at DSBs, and the order of arrival of proteins at DSBs suggests 

the same is true in Xenopus.  Dna2 binds to DNA ends independently of MRN, but 

resection requires MRN.  Mre11 nuclease inhibition delays both full Dna2 recruitment 

and resection.  Although Dna2 is necessary for RPA loading at early time points, 

resection by Dna2 is not required for checkpoint induction, likely due to functionally 

redundant nucleases. 
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2.2  Introduction 
 

Dna2 is a structurally well-conserved helicase and nuclease.  Yeast Dna2 is an 

essential protein involved in removing RNA/DNA primers during Okazaki fragment 

processing (OFP), as well as resection of 5′ ends during the early steps of homology 

dependent repair of double-strand breaks (DSBs) (Budd et al, 2009).  Functional genomic 

screens indicate additional roles in the maintenance of chromatin, nuclear structure, and 

telomere biogenesis (Budd et al, 2005).  Thus, Dna2 is a major contributor to genomic 

stability in yeast, and an important remaining question is the extent to which its 

physiological functions are conserved in metazoans. 

Work in Xenopus, C. elegans, and human cells suggests a conserved role for Dna2 

in nuclear DNA replication (Duxin et al, 2009; Kim et al, 2005; Lee et al, 2003b; Liu et 

al, 2000).  Yeast and human Dna2 (hDna2) both have the unusual feature of functioning 

as a DNA replication and repair protein in both the nucleus and mitochondrion (Copeland 

& Longley, 2008; Duxin et al, 2009; Zheng et al, 2008).  Knockdown of hDna2 leads to 

growth arrest, accumulation of cells in G2, accumulation of tetraploid cells, and aberrant 

cell division resulting in the formation of inter-nuclear chromatin bridges, suggesting that 

hDna2 is necessary for the completion of nuclear DNA replication (Duxin et al, 2009).  

Like yeast Dna2, hDna2 may be involved in replication and repair of telomeres, since 

both human and S. cerevisiae Dna2 can bind telomeric G4 structures and unwind 

telomeric DNA structures (Masuda-Sasa et al, 2008).  Consistent with a role in 

mitochondrial DNA replication and repair, hDna2 knockdown also results in delayed 

base excision repair in mitochondria (Duxin et al, 2009; Zheng et al, 2008).   
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We previously showed that depletion of Xenopus Dna2 from cell-free extracts led 

to a 90% reduction in replication of sperm chromatin, but not a complete absence of 

replication (Liu et al, 2000).  This effect is consistent with yeast dna2 hypomorphic 

mutant phenotypes, in which DNA replication is incomplete and low molecular weight 

nascent DNA intermediates, not full-length DNA, accumulate (Budd et al, 1995).  

Xenopus Dna2 may be required for DNA replication, but further evidence is required to 

determine whether or not it plays the same roles as in yeast.   

Elegant studies with purified proteins and in nuclear extracts of Xenopus recently 

demonstrated that Dna2 is required for processing of DNA double-strand ends by 5′ 

resection, another function conserved between yeast and Xenopus (Budd & Campbell, 

2009; Liao et al, 2008; Zhu et al, 2008).  Dna2-dependent processing is required for 

single-strand annealing (SSA), which mimics the early steps of homology-dependent 

repair of a DSB.  In Xenopus, SSA is a two step process in which the duplex DNA ends 

are unwound by a helicase, primarily WRN/FFA-1, and then the free 5′ single-stranded 

DNA (ssDNA) is degraded by a nuclease, primarily Dna2, revealing a free 3′ strand that 

can anneal to a complementary sequence (Liao et al, 2008).   

In this work, we extend our studies of the role of Dna2 in DNA replication and 

repair.  We first demonstrate that Dna2 is a helicase; therefore, Xenopus Dna2 is a 

helicase-nuclease as in yeast and human.  We confirm that Dna2 is a DNA replication 

protein; Dna2 binds chromatin during S phase in a regulated manner, and Dna2 interacts 

with proteins involved in lagging strand DNA replication.  We also confirm and extend 

the data on the role of Dna2 in early steps of the response to DSBs.  Namely, we find that 

Dna2 is recruited to DSBs after ATM and MRN, and with similar timing to RPA.  Both 
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Dna2 and MRN are necessary for efficient resection of DSBs, but when Mre11 nuclease 

is inhibited and Dna2 is present, resection is delayed but not completely inhibited.  

Importantly, depletion of Dna2 from extracts does not prevent induction of the DNA 

damage checkpoint response, indicating that the main roles of Dna2 are in DNA 

replication and repair.  

2.3  Results 
 

2.3.1  Xenopus Dna2 has Both Helicase and Nuclease Activities 

 
Due to robust nuclease activity, previous attempts to detect helicase activity in 

purified wild-type Xenopus Dna2 protein were unsuccessful, raising the question of 

whether the helicase activity had been lost during evolution.  Since Dna2 is a potent 

nuclease that degrades both standard helicase substrates and products, we increased the 

sensitivity of the helicase assay by mutating a key aspartate residue, D278, in the Dna2 

nuclease domain active site to alanine.  We expressed and purified the mutant protein 

from insect cells, as previously described for the wild-type protein (Liu et al, 2000), and 

assayed for helicase activity.  The helicase assay measures unwinding of a labeled 

oligonucleotide; this 52 nucleotide sequence has 22 bp of complementary sequence that is 

annealed to M13mp18 and has a 30 nucleotide noncomplementary tail.  As shown in 

Figure 2.1, there is little if any residual nuclease activity in the protein, but there is 

significant accumulation of the free 52 nucleotide product.  Thus, like yeast and human 

Dna2, Xenopus Dna2 is a combined helicase-nuclease.   
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2.3.2  Dna2 Associates with S-phase Chromatin 

 
To clarify the role of Dna2 in DNA replication, we used the Xenopus cell-free 

extract system.  We first examined the association of Dna2 with chromatin in S phase.  

We see that Dna2 does bind chromatin and accumulates on chromatin during DNA 

replication, consistent with the dynamics of proteins that participate in DNA replication, 

such as RPA70, the large subunit of the replicative single-stranded DNA binding protein, 

and Cdc45, a protein required for activation of the MCM helicase complex (Figure 2.2A).  

We next determined the stage of replication fork assembly which is required for 

Dna2 binding.  Initiation of DNA replication requires the formation of a pre-replication 

complex (pre-RC), which consists of ORC, the MCM2-7 helicase complex, Cdc6, and 

Cdt1.  The pre-RC is thought to serve as a “landing pad” for the remaining components 

of the replisome, or as a “licensing” complex for the initiation of DNA replication.  As 

shown in Figure 2.2B, depletion of Mcm3, a component of the MCM2-7 helicase, 

reduced Dna2 binding to chromatin, suggesting that licensing of the replication fork is 

required for Dna2 association with chromatin in S phase and indicating that the binding 

we see is specific.  To strengthen this conclusion, we took advantage of the fact that Cdt1 

is required for stable association of the MCM helicase with pre-RC components, and that 

geminin, an inhibitor of Cdt1, inhibits pre-RC formation.  As shown in Figure 2.2C, 

geminin inhibits the accumulation of Dna2 on chromatin.  Thus, we conclude that pre-RC 

formation is required for Dna2 loading.  Some residual binding is observed in the 

presence of geminin, which may be due to a low level of insoluble Dna2 in the extract, 

since the same amount is seen in control extracts to which no DNA was added.  

Alternatively, if Xenopus Dna2 is also both a nuclear and a mitochondrial protein, as in 
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yeast and human, this assay could also be detecting small amounts of residual 

mitochondrial Dna2 contaminating the chromatin fraction. 

The pre-RC is activated for replication by binding of additional proteins, some of 

which require the active Cdk2 cyclin-dependent kinase, to form what is referred to as the 

pre-IC (pre-initiation complex).  The binding of Cdc45, which is dependent on active 

Cdk2, marks the transition from the pre-RC to pre-IC.  p27 is an inhibitor of Cdk2 and 

inhibits origin firing by preventing the loading of some replication proteins, including 

Cdc45, in Xenopus extracts.  As shown in Figure 2.2D, Dna2 still associates with 

chromatin in the presence of p27.  The ability to load after pre-RC formation but in the 

presence of p27 suggests that loading of Dna2 is similar to loading of other replication 

fork proteins such as Mcm10 and different from that of pre-IC proteins such as Cdc45.  

We conclude that pre-RC formation is specifically required for the loading of Dna2 at the 

beginning of S phase, but Cdk2 activity is not required. 

 Immunofluorescence was used to track the localization of Dna2 during DNA 

replication.  As DNA is being replicated, Dna2 co-localizes with RPA in numerous foci 

(Figure 2.3).  Although RPA is known to form foci at sites of both DNA replication and 

DNA repair, co-localization of Dna2 and RPA on chromatin in the absence of DNA 

damage suggests that the foci observed are due to DNA replication complexes.  The co-

localization of Dna2 with RPA during DNA replication suggests that Dna2 travels with 

replication forks during DNA replication. 

 

2.3.3  Dna2 Interacts with And-1 and Mcm10 
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We wished to define the subassemblies of replication proteins with which Dna2 

interacts during S phase.  To do so, we immunoprecipitated Dna2 from Xenopus extracts, 

isolated individual bands larger than 80 kD from a protein preparative gel, and identified 

the proteins by tandem mass spectrometry.  A summary of results is provided in Figure 

2.4A.  The protein of greatest interest to us was And-1, the Xenopus ortholog of Ctf4 

(chromosome transmission fidelity 4).  In both yeast and Xenopus, And-1 (acidic 

nucleoplasmic DNA-binding protein 1) is necessary for both DNA replication and the 

establishment of sister chromatid cohesion and is known to physically interact with 

Mcm10 and DNA polymerase α (Tanaka et al, 2009b; Tsutsui et al, 2005; Zhu et al, 

2007).  In the yeast replication progression complex (RPC), it is thought to be part of the 

assembly that links the polymerase on the lagging strand to the replicative helicase, the 

MCM complex (Gambus et al, 2006; Tanaka et al, 2009a).  In addition, dna2 ctf4 double 

mutants display synthetic lethality in yeast (Budd et al, 2005; Formosa & Nittis, 1999).  

We therefore chose to further pursue this interaction (see below).   

A variety of additional interesting proteins were identified, including importin 

beta and nucleoporin 205.  Importin beta is likely responsible for the nuclear import of 

Dna2, and nucleoporin 205 may also affect the nuclear localization of the Dna2 protein.  

In yeast, Loeillet and colleagues have shown synthetic-lethal interactions with nuclear 

pore proteins and DNA replication and repair proteins (Loeillet et al, 2005).  TPR 

(Translocated Promoter Region) is also a constitutive component of the nuclear pore 

complex (Byrd et al, 1994).  Pcm1 (pericentriolar material 1) is essential for the radial 

organization of microtubules and recruitment of proteins to the centrosome 

(Dammermann & Merdes, 2002; Hames et al, 2005), and is necessary for preventing cells 
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from exiting the cell cycle (Balczon et al, 2002; Srsen et al, 2006).  Other proteins 

involved in DNA replication, repair, and sister chromatid cohesion were identified in our 

analysis, but the scores of these proteins were below our cutoff.  Some notable proteins 

were DNA polymerase κ, DNA polymerase α catalytic subunit, Smc5, Scc2-1a, Securin, 

and FFA-1/WRN.  We cannot determine at this time whether their low abundance was 

due to migration in the gel between the bands that were actually excised or to non-

specific and substoichiometric association with Dna2, so they will not be discussed 

further. 

To verify the Dna2 and And-1 interaction, we carried out immunoprecipitations 

from interphase extracts.  We see that Dna2 co-immunoprecipitates And-1 (Figure 2.4A 

and B).  Conversely, anti-And-1 antibodies also co-immunoprecipitate Dna2 with And-1 

from interphase extract (Figure 2.4C).  DNA polymerase α, a lagging strand DNA 

polymerase, was also observed in the And-1 immunoprecipitate along with Dna2, 

consistent with the reported interaction between And-1 and DNA polymerase α (Zhu et 

al, 2007).  Thus, these proteins interact even in the absence of DNA. 

Although yeast Ctf4 is a component of the RPC (Gambus et al, 2006; Tanaka et 

al, 2009b), its precise roles in DNA replication, sister chromatid cohesion, and 

recombination are not clear.  Xenopus Mcm10, an initiation and elongation protein, has 

been shown to interact with Xenopus And-1, and together with And-1 may be required 

for recruitment of DNA polymerase α (Zhu et al, 2007).  As shown in Figure 2.4D and E, 

we find that Mcm10 and Dna2 co-immunoprecipitate, suggesting that Dna2 interacts with 

both Mcm10 and And-1 during DNA replication.  The interaction of Dna2 with both 
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And-1 and Mcm10 indicates that Dna2 is a member of the complex of proteins involved 

in lagging strand replication.  

In Xenopus, Mcm10 is required for chromatin loading of And-1 in S phase (Zhu 

et al, 2007).  We wished to determine if the Dna2 interactions with And-1 and Mcm10 

are required for the association of Dna2 with chromatin in S phase.  Zhu et al. elegantly 

demonstrated that anti-And-1 antibodies can be used for an immunoblock by simply 

adding anti-And-1 antibodies to the extract.  Unfortunately, we were not able to replicate 

this And-1 immunoblock, since we still detected DNA polymerase α on chromatin in the 

And-1 immunoblock samples (unpublished data and Zhu et al, 2007).  However, we were 

able to deplete Mcm10 from the extracts (Wohlschlegel et al, 2002).  Interestingly, the 

association of Dna2 with chromatin does not appear to be dependent on Mcm10 (Figure 

2.4F).  We conclude that Dna2 interacts with an early intermediate in replication fork 

establishment, given that Mcm10 is loaded onto the pre-RC before Cdc45 (Wohlschlegel 

et al, 2002), and Dna2 associates with chromatin after pre-RC formation, independently 

of CDK2 phosphorylation and independently of Mcm10. 

 

2.3.4  Dna2 Interacts with DSB Repair and Checkpoint Proteins 

 
 In response to DSBs, cells induce both specific repair pathways and checkpoints 

that inhibit cell cycle progression to allow time for repair to proceed.  Biochemical 

experiments have shown that Dna2 is a major 5′-3′ nuclease in Xenopus cell-free extract 

and is required for 5′-3′ resection during homology dependent repair of DSBs by SSA in 

Xenopus, as it is in yeast (Budd & Campbell, 2009; Liao et al, 2008; Zhu et al, 2008).  To 
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further characterize the participation of Dna2 in events at DSBs, we investigated the 

interaction of Dna2 with other proteins involved in DSB repair and checkpoint pathways.  

We speculate that Dna2 acts in the early steps of recombination, so we asked if Dna2 

interacts with ATM and Nbs1.  As shown in Figure 2.5A, Dna2 co-immunoprecipitates 

both ATM and Nbs1.  Thus, we conclude that Dna2 interacts with proteins that 

participate in the early events of DSB signaling and repair.  These interactions are 

observed in egg extracts and therefore do not require DNA. 

 As mentioned earlier, when DSBs are induced, proteins involved in checkpoint 

signaling and DNA repair accumulate transiently on chromatin, and we were interested to 

see if Dna2 behaves similarly.  To address this, PflM1, a restriction enzyme that produces 

a 3′ overhang, was used to induce DSBs in sperm chromatin, and the amount of Dna2 on 

chromatin was analyzed.  Dna2 is found on PflM1 treated chromatin, with further 

accumulation on chromatin containing DSBs when the checkpoint is inhibited by caffeine 

or wortmannin (Figure 2.5B).  Similar results were seen when using EcoRI, which 

cleaves to reveal a 5′ overhang, to induce DSBs (unpublished data).  Inhibition of the 

checkpoint may retard the release of Dna2 or may lead to the formation of inactive 

complexes on chromatin, and we see a corresponding increase in ATM on damaged 

chromatin in the presence of checkpoint inhibitors. 

 Dna2 likely associates with and dissociates from DNA ends to allow for 

downstream processing events. In yeast and human, ATM and the MRN complex 

(Mre11/Rad50/Nbs1) are among the first proteins to be detected at a DSB, and RPA is 

subsequently recruited, presumably through the production of ssDNA by 5′ resection 

(Budd & Campbell, 2009; Lisby et al, 2004; Shiotani & Zou, 2009; Shroff et al, 2004; 
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Zhu et al, 2008; Zou & Elledge, 2003).  ATR is recruited after the generation of RPA-

coated ssDNA, and TopBP1 is involved in the ATM-dependent activation of ATR 

(Shiotani & Zou, 2009; Yoo et al, 2009).  To investigate the likely transient association of 

Dna2 with DSBs, we compared the kinetics of association of Dna2, MRN, ATM, and 

other proteins with DNA ends.  To look directly at DNA ends, we examined the binding 

of Dna2 to linear DNA in a manner similar to previous experiments to examine Ku 

binding to DNA ends (Postow et al, 2008).  For these experiments, we biotinylated either 

1 or 2 ends of linear pBluescript with a fill-in reaction to produce blunt ends, and bound 

the biotinylated DNA to streptavidin beads, generating beads with DNA resembling 

either unbroken DNA (2X, both ends of pBluescript bound to beads) or DNA with a DSB 

(1X, one free end) (Figure 2.6A).  Protein binding to the DNA ends was then monitored 

over time in interphase extract, with 3 x 1011 DNA ends/µl of extract (Figure 2.6B).  

Controls show that there is background binding of DSB-response proteins to the 

“unbroken” (2X biotin) DNA control beads, which we propose derives from incomplete 

binding of the biotinylated DNA ends to the beads.  However, binding to the “broken” 

DNA beads (1X) is clearly greater than to controls, especially at the earlier time points.  

With the “broken” DNA beads (1X), MRN and ATM associate at the earliest time points, 

and Dna2 associates with a slight delay compared to MRN.  Dna2 accumulates to peak 

levels with similar timing to RPA, consistent with the role of Dna2 in producing single-

stranded DNA overhangs that may recruit RPA.  ATR then accumulates on the RPA-

coated DNA ends, consistent with the requirement of RPA-coated ssDNA for the switch 

from ATM to ATR in human DNA end resection (Shiotani & Zou, 2009).  MRN 

dissociation from breaks correlates with activation of the ATM kinase and progression of 
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DSB repair (Di Virgilio et al, 2009).  MRN is expected to dissociate from the DNA ends 

slightly before Dna2 in yeast, consistent with our results (Lisby et al, 2004; Shroff et al, 

2004; Zhu et al, 2008).  The kinetics of binding and release of Dna2 at the DNA ends is 

consistent with a role in DSB resection, since Dna2 accumulates after ATM and with 

similar timing to RPA70. 

The role of Dna2 in DSB processing may be cell cycle regulated.  To determine 

the effect of cell cycle stage on association of Dna2 at DNA ends, we performed the same 

DNA end binding assay in CSF extracts, which mimic M phase, since the previous 

experiment was carried out in interphase extracts, which are in S phase (Figure 2.6C).  

Under these conditions, Dna2 associates with DNA ends after ATM and Nbs1, and with 

similar timing to RPA, consistent with results from interphase extract.  While the timing 

of each step varies between interphase and CSF extracts, the general temporal program of 

binding to DNA ends is consistent.  Therefore, we conclude that the role of Dna2 in DNA 

end resection is not limited to one phase of the cell cycle.   

 

2.3.5  Interplay of Nucleases: Dna2 and MRN 

 
 To confirm that Dna2 participates in DNA end processing, we used the 

accumulation of RPA at DNA ends in the bead-based assay as a measure of successful 

resection/processing of a DSB.  When Dna2 is removed from the extract by 

immunodepletion, both ATM and Nbs1 can still associate with DNA ends.  However, 

RPA does not accumulate on DNA ends to the same level as it does in the presence of 

Dna2 (Figure 2.7A), confirming that Dna2 is necessary for efficient DNA end processing, 
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though some residual processing may occur.  This is consistent with the role of Dna2 in 

SSA (Liao et al, 2008).  

In yeast, Dna2 can compensate for the loss of Mre11 nuclease activity, but not for 

the complete lack of Mre11 protein, in the repair of X-ray-induced DNA damage (Budd 

& Campbell, 2009).  One possible role for the MRN complex is to recruit Dna2 to breaks, 

consistent with our observation that MRN seems to associate with DSBs before Dna2.  

To test this idea, extracts were depleted of Nbs1, which efficiently depletes the MRN 

complex (Yoo et al, 2009), and the association of repair proteins was re-assessed.  Dna2 

still accumulates on DNA ends in the absence of Nbs1, though there is a reproducibly 

lower accumulation than in the presence of MRN (Figure 2.7B).  Without MRN, 

however, RPA does not accumulate on DNA ends.  Therefore, although Dna2 is 

recruited, there is not enough ssDNA generated to recruit RPA. We conclude that MRN 

is not absolutely required for the recruitment of Dna2 to DNA ends, but is required for 

DNA end processing and resection. 

 To investigate if Mre11 nuclease activity is required for resection, Dna2 and RPA 

recruitment to DNA ends was monitored in the presence and absence of Mre11 nuclease 

activity.  Mirin, a small molecule inhibitor of the Mre11 nuclease, was used to block the 

nuclease activity of endogenous Mre11 in extracts (Dupre et al, 2008; Garner et al, 2009), 

and the association of Dna2 and RPA with DNA ends was again assessed.  Care was 

taken to use functionally validated mirin (see Materials and Methods).  In the presence of 

mirin, Dna2 binds DNA ends, although binding is reduced compared to extracts without 

mirin (Figure 2.7C).  RPA accumulation is retarded but not abolished in the presence of 

mirin.  We propose that RPA accumulation on chromatin is delayed upon inhibition of 
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Mre11 nuclease, implying a partial defect in resection.  We conclude that either mirin 

only partially inhibits Mre11 nuclease, or, as in yeast, other nucleases can compensate 

when Mre11 nuclease activity is compromised.  Dna2 may be one of these nucleases, 

since it binds to DNA ends in the absence of Mre11 nuclease activity (Figure 2.7B and 

C). 

 

2.3.6  Dna2 is Not Required for Induction or Signaling of Checkpoints  

 
 In the DSB checkpoint, the ATM kinase is first activated, and active ATM 

subsequently activates the ATR kinase (Yoo et al, 2007).  Recognition of RPA-ssDNA 

complexes is thought to be part of the ATR-activation process (Shiotani & Zou, 2009; 

Zou & Elledge, 2003).  Since Dna2 is involved in resection to produce ssDNA, we asked 

if Dna2 is also involved in activation or signaling of the DSB checkpoint.  To do this, we 

depleted Dna2, added known checkpoint inducers, and monitored phosphorylation of 

Chk1, an effector kinase and target of ATR, and Chk2, an effector kinase and target of 

ATM, as indicators of checkpoint activation.  First, the checkpoint was induced with 

pA/T70 oligonucleotides, which activate both ATM and ATR, resulting in 

phosphorylation of Chk1.  In Dna2-depleted extract with added pA/T70 oligos, Chk1 was 

efficiently phosphorylated (Figure 2.8A).  Since the pA/T70 oligos can form a variety of 

structures, we also examined the checkpoint response to linear DNA in the Dna2-

depleted extract.  Linear pBluescript was added to extract to activate the DSB checkpoint 

response, and we see that in the absence of Dna2, Chk2 is well phosphorylated in 

response to linear DNA (Figure 2.8B), with the weaker signal for phospho-Chk2 due to a 
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weaker interaction with the antibody in the immunoblot (Guo & Dunphy, 2000).  To 

eliminate the possibility that Dna2 has a specific role in the checkpoint response that was 

overcome in these assays with synthetic checkpoint activators, we studied the activation 

of checkpoints in nuclei during S phase.  We observed that nuclear Chk1 was also 

phosphorylated in the presence of stalled replication forks induced by aphidicolin and in 

the presence of DSBs induced by PflM1, regardless of the presence of Dna2 (Figure 

2.8C).  Thus, we conclude that the Dna2 protein itself is not necessary for checkpoint 

signaling.  We have shown that Dna2 plays a role in 5′-3′ resection, and activation of 

checkpoints in the absence of Dna2 implies that another nuclease(s) can compensate for 

the lack of Dna2. 

2.4  Discussion 
 

2.4.1  Dna2 is a DNA Replication Protein 

 
In this work, we present evidence supporting our previous results suggesting that 

Xenopus Dna2 participates in chromosomal DNA replication, as does yeast and human 

Dna2.  Xenopus Dna2 is recruited to chromatin in a regulated manner and binds 

chromatin in egg extracts with similar timing as other DNA replication proteins.  

Efficient Dna2 recruitment to chromatin requires formation of the pre-RC and origin 

licensing, as Dna2 is not efficiently recruited to chromatin in the absence of the MCM 

replicative helicase or in the presence of geminin.  Dna2 appears to participate in the 

elongation of replicating DNA; Dna2 and RPA co-localize during replication, consistent 

with Dna2 being present at DNA replication forks and traveling with forks throughout 

DNA replication.  Dna2 associates with And-1 and Mcm10, proteins associated with 
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lagging strand replication, that also travel with the replication fork (Pacek et al, 2006; 

Yoshizawa-Sugata & Masai, 2009; Zhu et al, 2007). 

Although formation of the pre-RC is a pre-requisite for Xenopus Dna2 binding to 

chromatin in S phase, Dna2 binding does not require activation of the pre-RC by Cdk2 

activity, as is the case for the Mcm10 protein (Figures 2.1 and 2.3).  Like Dna2, Mcm10 

binds chromatin after the MCM2-7 helicase complex and independently of Cdk2 activity 

(Wohlschlegel et al, 2002).  Mcm10 is, in turn, required for the binding of Cdc45, which 

allows unwinding of the origin of replication.  Despite their similar requirements for 

chromatin binding, the association of Dna2 with chromatin is independent of Mcm10.  

Therefore, Dna2 associates with chromatin early in the formation of the replication fork, 

after the MCM helicase complex but independent of the binding of Cdc45.  These 

findings may indicate that Xenopus Mcm10 and Dna2 interact with a similar intermediate 

in the formation of the replisome. 

2.4.2  Dna2 is Likely Involved in Lagging Strand Replication 

 
The interaction of Dna2 with And-1 and Mcm10 correlate with genetic 

interactions seen in yeast.  Ctf4, the yeast ortholog of human And-1, is the most abundant 

DNA polymerase α-interacting protein in yeast, and dna2-2 shows synthetic lethality 

with ctf4Δ (Formosa & Nittis, 1999; Miles & Formosa, 1992).  Additionally, yeast dna2 

is synthetically lethal with mcm10, and the same mcm10 mutant is synthetically lethal 

with both dna2 and ctf4 (Araki et al, 2003; Budd et al, 2005).  We believe that the 

physical interactions that we have detected in Xenopus between Dna2, And-1, and 

Mcm10 explain genetic interactions seen in yeast, where such physical interactions 
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cannot be studied easily.  The presence of these three proteins in the same complex could 

account for the observed synthetic lethality, since mutation of either protein might 

destabilize complexes containing them.  

The accepted role of Dna2 in yeast DNA replication is to assist the major Okazaki 

fragment processing nuclease, Fen1, in the removal of RNA/DNA primers on the lagging 

strand.  The best single piece of evidence for this is that DNA2 is an essential gene, yet 

deletion of DNA2 can be complemented by overproduction of FEN1 (Budd & Campbell, 

2000).  Numerous biochemical and genetic interactions support this model (Budd et al, 

2005; Stewart et al, 2008).  In both yeast and Xenopus, And-1, Mcm10, and DNA 

polymerase α are all implicated in replication of the lagging strand.  DNA polymerase 

α is necessary for RNA/DNA primer synthesis, and Mcm10 is responsible for preventing 

premature degradation of DNA polymerase α in both yeast and human cells 

(Chattopadhyay & Bielinsky, 2007; Ricke & Bielinsky, 2004).  Yeast Ctf4, Mcm10, and 

DNA polymerase α are part of the replication progression complex along with the MCM 

helicase, and it has been proposed that Ctf4 and Mcm10 serve to couple the lagging 

strand polymerase with the replicative MCM helicase (Ricke & Bielinsky, 2004; Tanaka 

et al, 2009a; Zhu et al, 2007).  The occurrence of these proteins in complexes that also 

contain Dna2 is consistent with the idea that Dna2 is involved in lagging strand events in 

Xenopus. 

It has been claimed that in human cells, Dna2 is solely a mitochondrial protein 

(Zheng et al, 2008).  While other work has revealed that human Dna2 does reside in both 

nuclei and mitochondria (Duxin et al, 2009), the role of human Dna2 in nuclei has yet to 

be thoroughly studied.  Our results show that Xenopus Dna2 clearly participates in 
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genomic DNA replication, and the protein-protein interactions demonstrated here with 

And-1 and Mcm10 indicate an important role for nuclear Dna2.  It is likely that these 

mechanisms are conserved in human cells.   

 

2.4.3  Dna2 in DSB Repair 

 

In addition to its role during lagging strand DNA replication, yeast Dna2 has been 

shown to play a role in 5′ to 3′ resection during the early steps of DSB repair (Budd & 

Campbell, 2009; Zhu et al, 2008).  Evidence for a similar role in Xenopus is also strong 

(Liao et al, 2008).  DSBs activate homologous recombination pathways and the DNA 

damage checkpoint.  Our finding that Dna2 physically interacts with ATM and Nbs1, 

(Figure 2.5A), which are both recruited to and accumulate at DSBs, stimulated us to 

investigate the role of Dna2 in the homologous recombination and DNA damage 

checkpoint pathways.  DSB repair and checkpoint proteins associate with and dissociate 

from DSBs in a specific temporal order (Shiotani & Zou, 2009).  Our finding that Dna2 

accumulates slightly after ATM and Nbs1 and with similar timing to RPA is consistent 

with the documented role of Dna2 in resection (Liao et al, 2008).  This is similar to the 

ordered binding that is observed in S. cerevisiae (Lisby et al, 2004; Shroff et al, 2004; 

Zhu et al, 2008).  Dna2 accumulates to an even greater extent on DNA ends when 

checkpoint kinase inhibitors such as caffeine and wortmannin are present.  This may be 

due to either retention of DSB processing proteins on chromatin or the generation of non-

functional DNA replication and repair complexes on chromatin.  These data place Dna2 
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early in the timeline of the double-strand break response, and we speculate that the 

nuclease activity of Dna2 participates in DSB resection. 

Resection of DSBs in yeast involves both Dna2 and the MRX complex.  MRX 

appears to initiate strand displacement and Dna2 further degrades the 5′ strand, revealing 

an elongated 3′ ssDNA strand to be used for strand exchange (Zhu et al, 2008).  The 

MRX complex itself must be present for resection, but resection still occurs with a 

complex containing nuclease-dead Mre11 (Budd & Campbell, 2009; Llorente & 

Symington, 2004).  The ability to bypass the requirement for the Mre11 nuclease activity 

relies on compensation by Dna2 for the nuclease-dead Mre11.  However, Dna2 can not 

compensate for the complete absence of the Mre11 protein (Budd & Campbell, 2009; 

Zhu et al, 2008).  The non-nucleolytic role of Mre11 is a matter of interest.  One possible 

explanation is that another protein, such as Ku, may compete in the resection reaction in 

the absence of MRN (Wasko et al, 2009).  Another possibility is that the MRN protein 

complex is required at DSBs to recruit additional proteins necessary for DNA end 

resection, or perhaps the real requirement for successful DNA end resection has more to 

do with Rad50 or Nbs1 in the MRN complex, as opposed to the Mre11 nuclease activity.  

The MRN complex, regardless of Mre11 nuclease activity, may be necessary to process 

the DNA and create a substrate for Dna2.  The Xenopus extract system used here allows 

us to begin to discriminate among such possibilities.  We found that the MRN complex 

was not necessary for recruitment of Dna2, but even though Dna2 was recruited to DNA 

ends, resection was not efficient.  Further study is warranted, however, since the level of 

Dna2 on DNA ends was reproducibly lower in the absence of MRN. 
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Mirin is an inhibitor of the Mre11 nuclease that does not prevent the binding of 

MRN to a DSB (Dupre et al, 2008; Garner et al, 2009).  Thus, mirin can be used to 

distinguish whether it is the presence of the MRN complex or the Mre11 nuclease activity 

that is required for bound Dna2 to create a substrate for RPA.  Mirin, as expected, does 

not inhibit the recruitment of Dna2 to the DSB.  Unlike the MRN depletion, however, 

RPA did accumulate at the DNA ends, although it was significantly delayed.  We 

speculate this delayed RPA accumulation is due to other nucleases, possibly Dna2, 

compensating for the lack of Mre11 nuclease activity, as this clearly happens in yeast.  

Alternatively, we cannot rule out that mirin may not fully inhibit Mre11 nuclease activity, 

and we are detecting residual activity. 

  

2.4.4.  DNA Damage Checkpoint Activation 

 

The DSB checkpoint first activates the ATM kinase, which subsequently activates 

the ATR kinase (Shiotani & Zou, 2009; Yoo et al, 2007).  A possible role for Dna2 in 

checkpoint activation and signaling was assessed by monitoring phosphorylation and 

activation of Chk1 and Chk2, downstream targets of the DNA damage checkpoint 

pathway, in the absence of Dna2.  When checkpoint inducers, pA/T70 and linear DNA, 

are added to Dna2-depleted extracts, Chk1 and Chk2 are well phosphorylated.  We also 

observed checkpoint activation in the absence of Dna2 in nuclei during DNA replication 

stress, i.e., in the presence of stalled replication forks, induced by aphidicolin, or DSBs, 

induced by the addition of PflM1 restriction endonuclease (Figure 2.8).  Therefore, 

neither the Dna2 protein itself nor the enzymatic activities of Dna2 are necessary for the 
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checkpoint response, indicating that the role of Dna2 in replication fidelity does not rest 

with activation of checkpoints, but with allowing efficient DNA replication and repair of 

damaged DNA.  We speculate that another nuclease may compensate for the lack of 

Dna2, so ssDNA will still be generated at DSBs and the checkpoint will be functional.  

Redundancy in resection is consistent with the observation that processing is not 

completely defective in the SSA assay in Xenopus nuclear extracts (Liao et al, 2008), 

which also suggests functional redundancy in the nucleases participating in resection. We 

observed minimal RPA binding to DNA ends in Dna2-depleted extracts in our bead-

based assay (Figure 2.7A), but limitations of this assay restrict its usage for early time-

points.  However, in the checkpoint assays in which aphidicolin or PflM1 is added to 

induce checkpoint activation, we observed a much later time-point (100 min).  

Compensating nucleases may be slower than Dna2 to resect the DSB, but 100 min may 

be sufficient for compensation.  It is also possible that compensating nucleases are more 

concentrated in nuclei than in interphase extract, allowing a more efficient nuclease 

compensation than in interphase extract.  A likely candidate nuclease is the homolog of 

yeast Exo1, and it will be valuable to test Xenopus Exo1. 

In conclusion, our studies have used biochemistry, depletion, and protein/protein 

interaction studies to probe the physiological roles of Dna2.  This study is the first to 

show that Xenopus Dna2 is a helicase-nuclease.  We find that both the DNA replication 

and DSB repair activities are similar to those in yeast.  While there may potentially be 

some differences between metazoan and yeast Dna2, such as the timing of association 

with origins of replication and the nature of the interaction with the Mre11 nuclease, the 

diverse roles of Dna2 in DNA metabolism are evolutionarily conserved.   
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2.5  Materials and Methods 
 

Helicase assay.  Helicase activity of recombinant Dna2 was measured using the nuclease-

deficient mutant of Dna2 (human Dna2 D294A or Xenopus Dna2 D278A) in a 20 µl 

standard reaction mixture containing 50 mM Tris-HCl (pH 7.5), 25 mM NaCl, 2 mM 

DTT, 0.25 mg/ml bovine serum albumin, 4 mM MgCl2, 4 mM ATP and 32P-labeled 

helicase substrate.  After incubation at 37°C for 1 h, reactions were stopped with 5x stop 

solution, which consisted of 60 mM EDTA, 40% sucrose, 0.6% SDS, 0.25% 

bromophenol blue and 0.25% xylene cyanole FF.  Reaction products were then separated 

using 8% native polyacrylamide gels containing 0.1% SDS and detected using a Storm 

860 PhosphorImager. 

 

Xenopus Egg Extracts.  Xenopus cell-free extract was prepared as described previously 

(Murray, 1991).  To elicit a checkpoint response, extracts were treated with either 50 

µg/ml pA/T70 oligos or 25 µg/ml linear pBluescript (Guo & Dunphy, 2000; Kumagai & 

Dunphy, 2000).  For reactions involving nuclei, demembranated sperm chromatin was 

incubated at 3,000 sperm/µl in extract for 100 min.  Inhibitors (5 mM caffeine, 0.1 mM 

wortmannin, 0.3 mM geminin, 0.1 mM p27) were incubated in extract for 20 min on ice 

before addition of sperm chromatin.  Double-strand breaks were induced by addition of 

0.1 units/µl PflM1.  Nuclei and chromatin were isolated as described (Lee et al, 2003a).  

Chromatin isolation in Mcm10-depleted extracts was performed as previously described 

(Zhu et al, 2007). 
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Antibodies and recombinant proteins.  Anti-Dna2 antibodies were affinity-purified with 

the N-terminal 712 aa of Dna2 (Liu et al, 2000).  Antibodies recognizing DNA 

polymerase α p70 subunit, RPA70, Cdc45, Claspin, Orc2, ATM, BLM, Nbs1, Chk2, 

ATR, and TopBP1 were previously described (Guo & Dunphy, 2000; Kumagai & 

Dunphy, 2006; Lee et al, 2003a; Li et al, 2004; Yoo et al, 2009; Yoo et al, 2004).  Anti-

human BM28 monoclonal antibody, which recognizes Xenopus Mcm2, was purchased 

from Cell Signaling Technology (Beverly, MA), and control rabbit IgG was purchased 

from Zymed Laboratories (South San Francisco, CA).  Anti-And-1 antibodies were a gift 

of A. Dutta, anti-Mcm10 antibodies were a gift of J. Walter, and anti-Mcm3, anti-Cdc6, 

and anti-RPA70 antibodies used for immunofluorescence were a gift of P. Jackson.  

Production of recombinant Xenopus Dna2 is described in Liu et al, 2000.  35S-Labeled 

Chk1 was generated using the TnT system (Promega, Madison, WI). 

 

Immunological methods.  For immunoprecipitations, 2.5 µg antibodies were pre-

incubated with 5 µl Protein A Support  (BioRad) and subsequently incubated with 50 µl 

interphase extract for 1hr at 4°C.  Beads were washed 4 times with 10 mM HEPES-KOH 

[pH 7.6], 150 mM NaCl, 0.1% CHAPS, 2.5 mM EGTA and analyzed by SDS-PAGE.  

Mcm3 was depleted with 30 µl of antibodies per 100 µl extract, using 2 rounds of 

depletion that were 45 minutes each.  Immunofluorescence on sperm nuclei was 

performed as described, using 30 µl anti-RPA70 antibodies raised in chicken and 2.5 µl 

anti-Dna2 antibodies raised in rabbit per sample (Carpenter et al, 1996).  Dna2 and Nbs1 

depletions were performed as described (Liu et al, 2000; Yoo et al, 2009). 
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Mass Spectrometry.  Dna2 interphase IPs were performed as described above, subjected 

to SDS-PAGE and stained with Coomassie Blue.  Bands were excised, an in-gel trypsin 

digest was performed, peptides were extracted and subjected to electrospray ionization 

tandem mass spectrometry, and samples were identified with the Xenopus Mascot Search 

database.  Hits with an ion score >500 were used for analysis.  Mass spectrometry work 

was done by Sonja Hess at the Proteome Exploration Laboratory at Caltech. 

 

Bead experiments.  DNA-bead binding experiments were modified from previously 

published assays (Nishiyama et al, 2006; Postow et al, 2008).  Briefly, pBluescript II KS– 

was linearized using either NotI (for biotinylation of both ends) or NotI and EcoRI (for 

biotinylation of one end).  Klenow was used for fill-in reactions in the presence of biotin-

14 dCTP.  The 2.9 kb DNA fragments were then purified and bound to M-280 

Streptavidin Dynabeads (Invitrogen, Carlsbad, CA) at a concentration of 0.5 µg DNA/5 

µg beads, following the manufacturer’s protocol.  Beads were incubated in extract for the 

indicated times, washed 2 times with 5 volumes of 20 mM HEPES-KOH [pH 7.6], 80 

mM KCl, 2.5 mM K-gluconate, 10 mM Mg-gluconate, 1% NP-40, and 1 mM DTT, and 

subjected to SDS-PAGE and immunoblotting.  For experiments involving mirin, 100 µM 

mirin was added to extracts.  Experiments were conducted using both validated mirin that 

was a kind gift of Dr. Alan Eastman and mirin purchased from Enzo Life Sciences 

(Plymouth Meeting, PA).  The two mirin preparations yielded similar results, and were 

thus determined equivalent. 
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2.7  Figures 
 

 
 

Figure 0.1 
Figure 2.1: Helicase activity of Xenopus Dna2.  Wild-type Xenopus Dna2 (lanes 3 to 10) 
and nuclease-deficient Xenopus Dna2 D278A (lanes 11 to 18) were incubated in helicase 
assay conditions with approximately 1 fmol of annealed M13-HPR substrate at 37°C for 
15 min, either in the presence of ADP (lanes 3 to 6 and 11 to 14) or ATP (lanes 7 to 10 
and 15 to 18).  Solid triangles represent increasing amount of Dna2 protein:  
approximately 43 (lanes 3 and 7), 86 (lanes 4 and 8), 172 (lanes 5 and 9), and 344 fmol 
(lanes 6 and 10) of wild-type Xenopus Dna2 and 43 (lanes 3 and 7), 86 (lanes 4 and 8), 
172 (lanes 5 and 9), and 344 fmol (lanes 6 and 10) of Xenopus Dna2 D278A were used.  
No proteins were added in lanes 1 and 2.  The reaction in lane 1 was boiled for 4 min, and 
all products were separated using native gel electrophoresis and detected by 
autoradiography.  Positions of the substrate, helicase products, and nuclease products are 
indicated on the left of the figure. 
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Figure 0.2 
Figure 2.2: Dna2 associates with S-phase chromatin.  A) Dna2 accumulation on sperm 
chromatin throughout S phase.  Sperm chromatin was incubated in cell-free extract at 
3,000 sperm/µl, isolated at indicated time-points throughout DNA replication and 
analyzed by immunblotting.  DNA replication begins at 30 min; 60 min is representative 
of mid-S phase; and DNA is fully replicated by 90 min.  Cdc45 and RPA both associate 
with replicating chromatin.  B) Dna2 accumulation on chromatin requires the MCM 
helicase complex.  Extracts were mock-depleted or Mcm3-depleted, preventing formation 
of the MCM helicase complex, and sperm chromatin was incubated in these extracts.  
Chromatin was then isolated, and protein association with chromatin was assayed by 
immunoblotting.  C) Pre-RC formation is necessary for Dna2 binding to chromatin.  
Sperm chromatin was incubated without or with 300 nM geminin, which prevents 
formation of the pre-RC, in extract for 100 min, and a sample containing no sperm 
chromatin was used as a negative control.  Chromatin was then isolated and analyzed by 
immunoblotting.  D) Pre-IC formation is not required for Dna2 binding to chromatin.  
Chromatin was incubated in untreated extracts or extracts containing 0.1 mM p27, an 
inhibitor of pre-IC formation, for 100 min.  The negative control was a sample containing 
no chromatin.  Chromatin fractions were isolated and analyzed by immunoblotting. 
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Figure 0.3 

Figure 2.3: Dna2 foci during DNA replication.  Sperm chromatin was incubated in 
extract, fixed, centrifuged onto coverslips, and subjected to immunofluorescence with 
antibodies to Dna2 and RPA.  DNA was stained with DAPI.  
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Figure 0.4 

Figure 2.4:  Dna2 interacts with DNA replication fork proteins.  A) Results from 
electrospray ionization tandem mass spectrometry analysis of Dna2 immunoprecipitates 
from interphase extract.  Only hits with an ion score above 500 are listed.  B) Control IgG 
(Mock) and anti-Dna2 antibodies were used for immunoprecipitations from interphase 
extracts, and samples were analyzed by immunoblotting.  C) Immunoprecipitations from 
interphase extract were performed with control or anti-And-1 antibodies, and 
immunoprecipitates were analyzed by immunoblotting.  D) Dna2 was 
immunoprecipitated in interphase extract using anti-Dna2 antibodies, and isolates were 
analyzed by immunoblotting.  E) Control and anti-Mcm10 antibodies were used to 
immunoprecipitate proteins from interphase extract.  Reactions were analyzed by 
immunoblotting.  F) The ability of Dna2 to bind chromatin was assessed in the presence 
and absence of Mcm10.  Interphase extracts were mock or Mcm10-depleted; 0.5 µl of 
this extract was analyzed by immunoblotting to confirm depletion of Mcm10.  Sperm 
chromatin was added to the mock or Mcm10-depleted extracts, incubated for 100 min., 
chromatin fractions were isolated, and chromatin-associated proteins were analyzed by 
immunoblotting.  
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Figure 0.5 
Figure 2.5: Dna2 and double-strand breaks.  A) Dna2 interacts with DSB proteins.  Anti-
Dna2 antibodies were used to immunoprecipitate Dna2 from interphase extract, and 
immunoblots were performed for Dna2, ATM, and Nbs1.  B) Dna2 accumulates on 
damaged chromatin.  Chromatin-association of proteins was analyzed in the absence or 
presence of induced double-strand breaks (0.1 units/µl PflM1) and inhibited checkpoint 
(5mM caffeine, 0.1mM wortmannin).  Chromatin fractions were isolated from extract and 
protein levels on chromatin were analyzed by immunoblotting. 
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Figure 0.6 
Figure 2.6: Dna2 at DNA ends.  A) Schematic of beads used for experiments.  
pBluescriptIIKS- was linearized and biotinylated on one or both ends, and bound to 
streptavidin beads.  These beads simulated unbroken DNA or DNA with a DSB.  B) 
Time-course of binding of DSB repair and checkpoint proteins to DNA ends.  Beads 
were incubated in interphase extract, isolated at indicated time-points, and the relative 
amounts of Dna2, ATM, Nbs1, RPA70, and ATR bound to the beads were analyzed by 
immunoblotting.  C) Time-course of binding of DSB proteins to DNA ends in CSF 
extract.  Experiment was performed as described for panel B, except in CSF, not 
interphase, extract. 
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Figure 0.7 
Figure 2.7:  Dna2 and MRN at DNA ends.  A) Effect of Dna2 depletion on processing of 
DNA ends.  Interphase extracts were untreated, mock, or Dna2-depleted, and incubated 
with the appropriate beads for 15 or 30 min.  Beads were isolated and protein binding 
was assessed by immunoblotting.  B) DNA end binding of proteins in Nbs1-depleted 
extract.  Extracts were untreated, mock-depleted, or Nbs1-depleted, which depletes the 
whole MRN complex, and incubated with the appropriate beads for 15 or 30 min.  Beads 
were isolated, and protein binding to the beads was analyzed by immunoblotting.  C) 
Mirin was used to inhibit the nuclease activity of Mre11.  Mirin or DMSO was incubated 
in extracts with the appropriate beads.  Beads were isolated at the indicated times and 
protein levels were analyzed by immunoblotting. 
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Figure 0.8 
Figure 2.8:  Assessment of the DNA replication checkpoint in Dna2-depleted extracts.  
For all panels in this figure, interphase extracts were untreated, mock, or Dna2-depleted.  
A) Phospho-Chk1 in Dna2-depleted extracts.  pA/T70 oligos were added to interphase 
extract to elicit a checkpoint response.  The electrophoretic mobility of 35S-Chk1 was 
monitored by autoradiography, and 35S-Chk1 is well phosphorylated, as indicated by the 
arrow.  B) Phospho-Chk2 in extracts lacking Dna2.  Linear pBluescript was added to the 
extract to elicit the DSB checkpoint response, and immunoblotting was used to assess 
activation of the checkpoint by monitoring Chk2 phosphorylation.  C) The checkpoint 
response to stalled replication forks and DSBs was assessed in nuclei using APH and 
PflM1, respectively.  Sperm chromatin was incubated in extracts without or with APH, or 
without or with PflM1 to induce replication fork stalling or DSBs, respectively.  Nuclei 
were isolated.  Dna2 levels in nuclei were assessed by immunoblotting, while 35S-Chk1 
electrophoretic mobility was assessed by SDS-PAGE and autoradiography. 
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3  The Tim/Tipin Complex Participates in the DNA 

Replication Checkpoint and is a Target of Multiple 

Checkpoint Kinases 

 
 

3.1  Abstract 
 
 Tim and Tipin participate in DNA replication, checkpoints, and sister chromatid 

cohesion.  In this work, we characterize Xenopus Tim and Tipin; like the yeast homologs 

Tof1 and Csm3, respectively, Tim and Tipin form a complex and associate with DNA 

during S phase.  Tim and Tipin interact with various DNA replication and checkpoint 

proteins, including Orc2, Claspin, ATR, ATRIP, RFC40, Rad17, Cdc7, and Drf1.  

Efficient phosphorylation of Chk1 upon replication fork stress requires Tipin, and it is 

Tipin that is a target of the ATR kinase upon checkpoint activation.  We also find that 

Tipin is additionally a target of the Cdc7 kinase, which is active during the early stages of 

DNA replication and recently reported to be involved in the checkpoint response to 

stalled replication forks in yeast.  We conclude that many roles of Tim and Tipin are 

well-conserved from yeast, and that Tim/Tipin both participates in and is a target of the 

DNA replication checkpoint. 
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3.2  Introduction 
 

Faithful replication of the genome is essential to prevent cells from acquiring 

deleterious mutations, and the interplay of many proteins is required to maintain this 

fidelity.  Studies in yeast indicate that Mrc1 (Mediator of Replication Checkpoint 1), 

Tof1 (Topoisomerase 1-associated Factor 1), and Csm3 (Chromosome segregation in 

meiosis 3) form a replication fork protection complex (RPC); these proteins are not 

essential for cell viability, but they do contribute to replication fork stability and the 

maintenance of genomic integrity.  In the absence of any of these three proteins, there is 

increased DNA replication fork stalling and collapse, decreased sister chromatid 

cohesion, and cells no longer pause the cell cycle in response to DNA replication stress 

(Alcasabas et al, 2001; Foss, 2001; Katou et al, 2003; Krings & Bastia, 2004; Mayer et al, 

2004; Noguchi et al, 2003; Noguchi et al, 2004; Tanaka & Russell, 2001; Warren et al, 

2004; Xu et al, 2004).  The Tof1 and Csm3 proteins form a complex, explaining the 

similar phenotypes when either is deleted, and this Tof1/Csm3 complex interacts with 

Mrc1.  Mrc1 does interact directly with both Tof1 and Csm3, but judging by the 

stoichiometry of the interactions, Mrc1 is clearly an interacting protein and not a member 

of the Tof1/Csm3 complex.  (Bando et al, 2009; Mayer et al, 2004; Nedelcheva et al, 

2005; Noguchi et al, 2004). 

Loss of Swi1 or Swi3, the S. pombe orthologs of Tof1 and Csm3, respectively, 

results in increased spontaneous DNA damage in an otherwise unchallenged S phase, as 

evidenced by increased DNA repair foci (Noguchi et al, 2003; Noguchi et al, 2004).  

Also, like Mrc1-deficient cells, yeast cells lacking either member of the Tof1/Csm3 (or 

Swi1/Swi3) complex are sensitive to agents that cause DNA replication fork stalling, 
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such as UV and HU (hydroxyurea) (Alcasabas et al, 2001; Foss, 2001; Noguchi et al, 

2003; Noguchi et al, 2004; Szyjka et al, 2005; Tanaka & Russell, 2001).  One main 

difference between the Tof1/Csm3 complex and Mrc1 is apparent when replication forks 

encounter RFBs (replication fork barriers), such as proteins tightly bound to the DNA at 

pause sites surrounding the DNA-encoding ribosomes.  Replication forks lacking Mrc1 

do pause at RFB sites like wild-type cells, but fail to restart replication after release of the 

pausing agent.  However, in the absence of Tof1/Csm3, replication forks fail to pause at 

RFBs, unlike forks in wild-type or Mrc1-deficient cells.  It is possible that Tof1/Csm3 

inhibit Rrm3, a helicase that removes RFBs, and that without this inhibition Rrm3 is free 

to clear RFBs prematurely (Calzada et al, 2005; Mohanty et al, 2006; Tourriere et al, 

2005).  Therefore, it appears that the main role of Tof1/Csm3 involves replication fork 

stability. 

Initial studies in Xenopus extracts and human cells indicate that the role of Tim 

and Tipin, the Tof1 and Csm3 homologs respectively, is conserved from yeast.  

Tim/Tipin are involved in the maintenance of genomic stability, namely through 

activation of the DNA replication checkpoint response to stalled replication forks, and are 

also involved in the recovery of stalled replication forks (Chou & Elledge, 2006; Errico et 

al, 2007; Gotter et al, 2007; Unsal-Kacmaz et al, 2007; Yoshizawa-Sugata & Masai, 

2007).  Claspin, the Xenopus and human ortholog of Mrc1, also functions during DNA 

replication and is a mediator protein necessary for the DNA replication checkpoint 

response to replication stress (Chini & Chen, 2003; Kumagai & Dunphy, 2000; Lee et al, 

2003), indicating that the roles of Claspin are also well-conserved from yeast to 

metazoans. 
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 The Tof1/Csm3 complex (and the Swi1/Swi3 complex) interact both physically 

and genetically with Hsk1, the yeast homolog of Cdc7.  In the absence of Tof1/Csm3 or 

Hsk1, the cell cycle is not paused in response to DNA damage by alkylating agents.  

These effects are independent of the downstream effector checkpoint kinases Cds1 and 

Chk1; therefore, Tof1/Csm3 and Hsk1 are implicated in a Chk1, Cds1-independent 

checkpoint pathway (Matsumoto et al, 2005; Sommariva et al, 2005).  Interestingly, Mrc1 

also interacts with Tof1/Csm3 and Hsk1, and these proteins form a complex involved in 

the cellular response to stalled DNA replication forks (Shimmoto et al, 2009). 

 In this work, we further studies on Xenopus Tim/Tipin in an effort to understand 

the effect of these proteins at the DNA replication fork.  Both the data presented in this 

work and published data on Tim/Tipin suggest conserved roles for the Tim/Tipin 

complex.  Our results confirm and expand upon current data on Tim/Tipin, including the 

Tim/Tipin association with chromatin during S phase, interactions with DNA replication 

and checkpoint proteins, and the necessity of Tim/Tipin for the checkpoint response to 

stalled forks (Chou & Elledge, 2006; Errico et al, 2007; Gotter et al, 2007; Unsal-Kacmaz 

et al, 2007; Unsal-Kacmaz et al, 2005; Yoshizawa-Sugata & Masai, 2007).  We further 

show that Tipin is phosphorylated upon checkpoint activation and is a target of the ATR 

kinase.  Finally, we show that Tim/Tipin interacts with Cdc7, Drf1, and Claspin in 

Xenopus extracts, and that Tipin is a target of the Cdc7 kinase. 

3.3  Results 
 

3.3.1  Tim and Tipin Form a Complex 
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To investigate the role of Timeless (Tim) and Tipin in vertebrates, antibodies 

were raised to the Xenopus homologs of Tim and Tipin and subsequently used to 

characterize Tim and Tipin in a Xenopus cell-free system.  Antibodies to either Tim or 

Tipin efficiently isolate both Tim and Tipin, confirming that these proteins interact and 

form a complex in interphase extract (Figure 3.1A), consistent with their homologs in 

yeast (Bando et al, 2009; Mayer et al, 2004; Noguchi et al, 2004).  Immunoprecipitation 

of either Tim or Tipin from interphase extracts reveals that Tim and Tipin are the main 

proteins in the complex that they form, and either antibody pulls down a complex with 

similar stoichiometric ratios of Tim and Tipin as visualized by Coomassie stain (Figure 

3.1B).  Therefore, most of the Tim and Tipin in interphase extract are present in the 

Tim/Tipin complex. 

 

3.3.2  Nuclear Tim/Tipin 

 

Yeast Tof1 and Csm3 are nuclear proteins.  It was next confirmed that Xenopus 

Tim and Tipin are nuclear proteins and the Tim/Tipin complex also exists in nuclei.  The 

Tim antibody immunopreciptated the Tim/Tipin complex from nuclear extracts, and the 

reciprocal Tipin immunoprecipitation also isolated this complex (Figure 3.1C).  

Interestingly, the stoichiometry of the interacting partner seems to have changed slightly 

in these immunoprecipations compared to those done in interphase extract.  The Tipin 

immunoprecipitation consistently pulled down more Tipin than the Tim 

immunoprecipitation, and the reverse was true for the Tim pull-down.  While some of the 

Tim/Tipin complex remains intact, this result indicates that some of the Tim/Tipin 
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complexes dissociate in the nucleus.  Thus, we are detecting free Tim and free Tipin in 

our immunoprecipitations.  This dissocation of the complex in nuclei has not yet been 

reported, and it is not known what function such a dissociation would serve.  However, 

yeast Tof1 and Csm3 do have slightly different phenotypes when deleted (Bando et al, 

2009; Noguchi et al, 2004), so the individual proteins are likely acting when not in the 

Tof1/Csm3 complex. 

 Tof1/Csm3 associates with DNA replication forks, so the potential presence of 

Tim/Tipin at the DNA replication fork was evaluated in order to address conservation 

with yeast (Bando et al, 2009; Calzada et al, 2005; Gambus et al, 2006; Katou et al, 2003; 

Krings & Bastia, 2004; Mohanty et al, 2006; Noguchi et al, 2004).  Tim and Tipin 

associate with chromatin in S phase, although not all nuclear Tim and Tipin is chromatin-

bound (Figure 3.1D).  To determine if this is a regulated association with chromatin in S 

phase, the binding of Tim and Tipin to chromatin was assessed in the presence of 

geminin, an inhibitor of pre-RC formation.  When geminin is added, the Origin 

Recognition Complex (ORC) complex still binds chromatin, but binding of Cdt1, Cdc6, 

and the Mcm2-7 complex is disrupted.  The association of Tim and Tipin with chromatin 

is dependent on pre-RC formation, as binding is inhibited with geminin (Figure 3.1E).  

Therefore, the association of Tim and Tipin with chromatin during S phase is regulated 

and specific, and it requires the early steps of formation of the replication fork, namely 

the association of ORC, the MCM replicative helicase complex, Cdc6, and Cdt1 with 

origins of replication. 

Tim and Tipin could mainly be necessary for the initiation of replication, or the 

proteins could travel with the replication forks during replication of the DNA strands.  To 



95 

differentiate between these models, levels of Tim and Tipin on chromatin were monitored 

during DNA replication.  Both Tim and Tipin protein levels increase during DNA 

replication and decrease at time-points consistent with the completion of DNA replication 

(Figure 3.1F).  This binding pattern is consistent with other DNA replication proteins that 

travel with the replication fork, so we propose that Tim and Tipin travel with the 

replication fork, like Tof1 and Csm3 in yeast (Bando et al, 2009; Gambus et al, 2006; 

Katou et al, 2003; Mohanty et al, 2006).  The behavior of Tim and Tipin on chromatin 

was also examined when DNA replication forks were stalled by the addition of 

aphidicolin.  Aphidicolin inhibits DNA polymerases and leads to the uncoupling of DNA 

polymerases and the MCM helicase, resulting in larger regions of single-stranded DNA 

(ssDNA) that promote activation of the DNA replication checkpoint (Byun et al, 2005).  

In the presence of aphidicolin, chromatin-bound Tim and Tipin increase as in S phase 

with no treatment, except these proteins continue to accumulate on chromatin past the 

normal peak levels in mid-S phase at 40-60 minutes (Figure 3.1F).  This behavior is 

consistent with many other proteins involved in DNA replication and the DNA 

replication checkpoint, including Claspin (Kumagai & Dunphy, 2000). 

 

3.3.3  Tim/Tipin Interactions in Interphase 

 

 To elucidate the cellular pathways in which Tim and Tipin participate, Tim/Tipin 

interacting proteins were identified.  Tim and Tipin were individually 

immunoprecipitated from interphase extract, and interacting proteins by detected by 

immunoblot.  Very few proteins interact with the Tim/Tipin complex in interphase 
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extract, but both Tim and Tipin antibodies detected a physical interaction with Orc2 

(Figure 3.2A), a member of ORC and part of the pre-RC required for Tim/Tipin loading 

onto chromatin in S phase.  In addition to its role at the origins of replication, human 

Orc2 also impacts upon both centrosome copy number and chromosome structure, with 

Orc2 knock-down cells arresting with abnormally condensed chromosomes (Prasanth et 

al, 2004).  From this single interaction, we can not conclusively determine within which 

of these pathways Tim/Tipin contributes. 

Interestingly, we also detected BLM, a helicase involved in DNA replication and 

repair (Li et al, 2004; Wu & Hickson, 2006), in the Tipin immunoprecipitate from 

interphase extract, but we did not see this interaction with Tim (Figure 3.2B).  This may 

represent a non-specific interaction, since Tipin was not detected in a BLM 

immunoprecipitation from interphase extract, or it may be that a small amount of Tipin 

that is not in a complex with Tim interacts with BLM.  Alternatively, BLM association 

with Tim/Tipin could occupy the Tim antibody binding site, eliminating the possibility of 

immunoprecipitating this complex with the Tim antibody.  Both BLM and FFA-1, the 

Xenopus homolog of the WRN helicase, are RecQ helicases and BLM can physically 

interact with FFA-1 (von Kobbe et al, 2002), so the potential for FFA-1 and Tim/Tipin 

interactions was assessed.  FFA-1 does interact with BLM, but not Tim or Tipin (Figure 

3.2B).  Therefore, Tipin is not binding indiscriminately to RecQ helicases.  It is worth 

noting that the potential interaction between Tipin and BLM is one of the few differences 

detected regarding protein-protein interactions with Tim and Tipin. 
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3.3.4  Nuclear Tim/Tipin Interactions 

 

Novel protein-protein interactions of Tim and Tipin were examined in nuclei, also using 

immunoprecipitations.  For these experiments, Tim antibody was used to 

immunoprecipitate the Tim/Tipin complex from extracts of nuclear proteins, not the 

weaker Tipin antibody.  Interacting proteins were identified both through immunoblotting 

and mass spectrometry (data not shown), and many of the detected interactions listed 

below were confirmed by Tipin immunoprecipitation follow by immunoblotting (data not 

shown).  For these immunoprecipitations, sperm chromatin was incubated in extract for 

50 minutes, when Tim and Tipin levels on chromatin peak during S phase (Figure 3.1F).  

Chromatin was then isolated and proteins were eluted off chromatin with buffer 

containing 250 mM NaCl.  Tim was then immunoprecipitated from the eluate after salt 

concentrations were adjusted to 150 mM.  Tim immunoprecipitations pulled down 

various DNA replication and checkpoint proteins as shown in Figure 3.2C, a compilation 

of Tim immunoprecipitation experiments.  As in interphase extract, Orc2 interacts with 

Tim.  This interaction has been detected using a variety of antibodies both to Tim and 

Tipin, indicating that this is a specific interaction (data not shown).  However, due to the 

reasons listed above, it can not be conclusively determined that this interaction is 

pertinent to DNA replication.  Additionally, Tim also interacts with Claspin, Cdc7, Drf1 

(Dbf4-related factor 1), RFC40 (replication factor C 40), Rad17, ATR (ataxia 

telangiectasia and Rad-3 related), and ATRIP (ATR-interacting protein).  Cdc7 and Drf1 

are necessary for DNA replication in Xenopus extract and participate in both the DNA 

replication checkpoint and the establishment of sister chromatid cohesion (Takahashi et 
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al, 2008; Takahashi & Walter, 2005; Yanow et al, 2003).  ATRIP and the ATR kinase 

form a complex and are necessary for the activation of the DNA replication checkpoint, 

and Claspin is a checkpoint mediator protein, necessary for the ATR phosphorylation of 

downstream targets including Chk1 (Cortez et al, 2001; Kumagai & Dunphy, 2000).  

RFC40 is a subunit of the RFC and alternative RFC complexes and is involved in DNA 

replication, checkpoint responses, and sister chromatid cohesion (Mossi & Hubscher, 

1998).  Rad17, a large subunit of one of the alternative RFC complexes, is also present in 

the Tim isolate.  The Rad17 complex is involved in both the DNA replication checkpoint 

and its initial activation (Bao et al, 2001; Delacroix et al, 2007; Enoch et al, 1992; Lee et 

al, 2007), yet Tim interacts with Rad17 even in the absence of DNA damage. 

 Since Tim/Tipin interacts with DNA replication checkpoint proteins, and the 

Tim/Tipin homologs in yeast are involved in S phase checkpoint activation (Foss, 2001; 

Noguchi et al, 2003), the possibility that checkpoint activation may alter the protein 

complexes with which Tim/Tipin interacts was investigated.  To assess this, 

demembranated sperm was pre-treated with UV light to generate lesions in the DNA.  

The DNA damage caused by UV light results in activation of the checkpoint due to the 

stalling of DNA replication forks, providing time to repair the lesions and resume DNA 

synthesis (Kumagai et al, 1998).  Under these conditions of checkpoint activation, 

Tim/Tipin interacts with similar proteins as during unchallenged DNA replication, 

namely Orc2, Claspin, ATR, ATRIP, RFC40, and Rad17.  Rad17 forms an alternative 

RFC complex with four small RFC subunits, one of which is RFC40, and loads the Rad9-

Rad1-Hus1 (9-1-1) clamp onto damaged DNA (Bermudez et al, 2003; Ellison & 

Stillman, 2003; Majka & Burgers, 2003).  Interestingly, Hus1 was not detected in our 
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Tim immunoprecipitation, indicating that Tim/Tipin interacts with Rad17 but not the 

protein complex that it loads onto damaged DNA.  Given the checkpoint defects of yeast 

Tof1/Csm3 mutants and of Tim/Tipin knockdown cells, it is tempting to speculate that 

the interaction of Tim/Tipin with Rad17 may be involved in activation of the checkpoint, 

since Rad17 can activate the ATR kinase through TopBP1 (Chou & Elledge, 2006; Errico 

et al, 2007; Foss, 2001; Gotter et al, 2007; Lee et al, 2007; Yoshizawa-Sugata & Masai, 

2007).  Alternatively, this interaction may also influence downstream events including 

maintenance or down-regulation of the checkpoint signal. 

 Given the newly identified protein-protein interactions, the role of Tim in the 

loading of these proteins onto chromatin was assessed.  Chromatin was isolated from 

either mock or Tim/Tipin-immunodepleted extracts, and chromatin-associated proteins 

were analyzed by immunoblotting.  Orc2, Claspin, and ATRIP protein levels on 

chromatin were largely unchanged (Figure 3.3).  It is important to note that the Tim/Tipin 

depletion is incomplete.  Previously published work reveals that Claspin association with 

chromatin is compromised in the absence of the Tim/Tipin complex (Errico et al, 2007; 

Tanaka et al, 2009; Yoshizawa-Sugata & Masai, 2007), but this is not apparent in our 

results.  This inconsistency is likely due to residual Tim/Tipin remaining in the depleted 

extracts, which may be sufficient to elicit wild-type conditions. 

 

3.3.5  Tim/Tipin is Not Essential for DNA Replication 

 

 Because the Tim/Tipin complex physically interacts with proteins involved in 

DNA replication and checkpoints, we sought to determine whether or not this complex is 
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necessary for DNA replication.  To assess this, incorporation of 32P from radiolabeled 

dATP into chromatin during DNA replication was monitored in both mock and 

Tim/Tipin-depleted extracts (Figure 3.4A and B).  There was no significant change in 32P 

incorporation in extracts without the full complement of Tim/Tipin, indicating that the 

Tim/Tipin complex is not essential for DNA replication.  Again, there was likely a small 

amount of Tim/Tipin remaining in the immunodepleted extract, so we cannot rule out the 

possibility that this small amount was sufficient to suppress any defects.  However, when 

Tipin was knocked down in human cells, the cells grew and divided with similar timing 

to the control cells, indicating that Tipin is not essential for DNA replication and cells 

were proceeding normally through the cell cycle (data not shown). 

 

3.3.6  Tipin is Involved in Activation of the DNA Replication Checkpoint 

 

 The necessity of Tof1/Csm3 for activation of the S-phase checkpoint in yeast 

(Bando et al, 2009; Foss, 2001; Noguchi et al, 2003; Noguchi et al, 2004) compelled us to 

investigate the conservation of this role in Xenopus.  Activation of the DNA replication 

checkpoint in response to stalled replication forks was assessed in human cells; HeLa 

cells with or without siRNA knock-down of human Tipin were monitored for checkpoint 

activation in the presence of hydroxyurea (HU).  When HU, a ribonucleotide reductase 

inhibitor that leads to inhibition of DNA synthesis (Koc et al, 2004), is used to induce 

replication fork stalling, the ATR kinase is activated.  Active ATR phosphorylates 

downstream proteins involved in the checkpoint response, such as Chk1, and activation 

of the ATR kinase is used as a marker for stalled replication forks and DNA damage.  
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Checkpoint activation was assessed by monitoring Chk1 phosphorylation at S317, a 

known target of the ATR checkpoint kinase (Zhao & Piwnica-Worms, 2001).  When 

Tipin knock-down cells were treated with HU, the Chk1-S317 phosphorylation was not 

as complete as phosphorylation in control cells (Figure 3.4C).  Therefore, Tipin is 

necessary for full activation of the DNA replication checkpoint in response to stalled 

replication forks.  This is consistent with results published subsequent to the initiation of 

this project (Chou & Elledge, 2006; Errico et al, 2007; Gotter et al, 2007; Unsal-Kacmaz 

et al, 2007; Yoshizawa-Sugata & Masai, 2007).  

 

3.3.7  Tipin is a Target of the ATR Checkpoint Kinase and Cdc7 kinase 

 

 Many proteins involved in the DNA replication checkpoint are also targets of 

checkpoint kinases, including Claspin and Chk1 (Guo & Dunphy, 2000; Kumagai & 

Dunphy, 2000; Zhao & Piwnica-Worms, 2001).  To assess if Tim and/or Tipin are also 

targets of checkpoint kinases and potentially regulated by the checkpoint, 

phosphorylation of Tim and Tipin was monitored in interphase extract containing a 

synthetic checkpoint activator, pA/T70, which activates both the ATR and ATM kinases 

(Kumagai & Dunphy, 2000).  Upon checkpoint activation, neither Tim nor Tipin undergo 

an observable mobility shift on an SDS-PAGE gel.  However, when 32P-ATP is added to 

the extract, Tipin is clearly phosphorylated in a checkpoint-dependent manner (Figure 

3.5A).  Both ATR and ATM kinases primarily phosphorylate proteins at SQ/TQ (Kim et 

al, 1999).  Therefore, Tipin protein sequences from Xenopus, human, mouse, and chicken 

were compared.  Analysis of these sequences revealed only 1 conserved SQ sequence, 
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S222 in human Tipin, which is not in a particularly well-conserved sequence of the 

protein (Figure 3.5B).  Interestingly, this serine in human Tipin was also identified as a 

target of checkpoint kinases in a large-scale proteomic screen (Matsuoka et al, 2007). 

 To determine if Tipin is a substrate of ATR, ATM, both, or neither of these 

kinases, human Tipin and Tipin-S222A were expressed as GST fusion proteins in 

bacteria, purified, and used as substrates for in vitro ATM and ATR kinase assays using 

32P-ATP.  Incorporation of radiolabeled phosphate into GST-Tipin or GST-Tipin-S222A 

indicates that the protein is indeed a substrate of the kinase.  Incubation of GST-Tipin or 

GST-TipinS222A with active ATM yielded no increase in radiolabeled GST-Tipin or 

GST-TipinS222A compared to these proteins incubated with inactive ATM (Figure 

3.5C).  However, PHAS-I, a known substrate of ATM and ATR, was well-

phosphorylated by ATM, as evidenced by the increase of radiolabel in the presence of 

active ATM kinase.  Therefore, we do not believe that Tipin is a substrate of the ATM 

kinase. 

 GST-Tipin and GST-Tipin-S222A were also used as substrates in an ATR kinase 

assay in which a TopBP1 fragment was used to activate ATR (Kumagai et al, 2006).  The 

radiolabel on GST-Tipin increases significantly upon stimulation of ATR kinase activity 

with the TopBP1 fragment (Figure 3.5D).  However, this increase is not seen with GST-

Tipin-S222A, indicating that S222 is the one and only ATR phosphorylation site in 

human Tipin.  We are confident that the ATR kinase is active in all reactions containing 

both the kinase and the TopBP1 fragment, as this fragment is also a target of ATR 

phosphorylation and is phosphorylated in all reactions in which it is present. 
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 In addition to the ATR-dependent checkpoint pathway involving Chk1, yeast 

Tof1/Csm3 has been reported to participate in a Chk1 independent checkpoint pathway in 

response to DNA damaged by alkylation (Sommariva et al, 2005).  This pathway is 

dependent on Hsk1, the yeast homolog of Cdc7.  In Xenopus, the Cdc7 kinase and Drf1, 

the Cdc7 regulatory subunit in Xenopus extracts, are necessary for initiation of DNA 

replication and may be a target of the DNA replication checkpoint (Takahashi & Walter, 

2005; Yanow et al, 2003).  To determine if this relationship between Tim/Tipin and Cdc7 

may be conserved in Xenopus, Tim was immunoprecipitated from egg extracts.  Both 

Cdc7 and Drf1 were present in the pull-down, and this interaction was not dependent on 

DNA damage (Figure 3.2C).  Since Cdc7 is a kinase, we were also interested to see if 

either Tim or Tipin is a substrate of Cdc7 and may be regulated by this kinase.  GST-

Tipin is phosphorylated by Cdc7 in an in vitro kinase assay, as is the positive control 

protein Mcm2 (Figure 3.6).  Tim was also evaluated as a substrate of Cdc7, but did not 

appear to be a target of the kinase (data not shown).  Therefore, it is possible that Cdc7 

regulates Tim/Tipin through phosphorylation of Tipin. 

3.4  Discussion 
 

 Initial observations in yeast regarding the participation of Tof1 and Csm3 in the 

maintenance of genomic integrity motivated us to pursue characterization of these 

proteins in a metazoan system to determine the extent of conservation of their functions.  

Subsequent to the initiation of this project, there has been a fair amount of literature 

published on the roles of Xenopus and human Tim and Tipin. 
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 Consistent with yeast Tof1/Csm3 and human Tim/Tipin, Xenopus Tim and Tipin 

form a complex, are the major proteins in that complex, and associate with DNA 

replication forks (Figure 3.1) (Bando et al, 2009; Calzada et al, 2005; Chou & Elledge, 

2006; Gotter, 2003; Gotter et al, 2007; Katou et al, 2003; Mayer et al, 2004; Nedelcheva 

et al, 2005; Tourriere et al, 2005; Unsal-Kacmaz et al, 2007; Yoshizawa-Sugata & Masai, 

2007).  The protein-protein interactions of Xenopus Tim/Tipin indicate roles in DNA 

replication and the checkpoint response to stalled DNA replication forks, again consistent 

with roles in yeast and metazoans (Chou & Elledge, 2006; Errico et al, 2007; Foss, 2001; 

Gotter, 2006; Gotter et al, 2007; Noguchi et al, 2004; Smith et al, 2009; Tanaka et al, 

2009; Unsal-Kacmaz et al, 2007; Urtishak et al, 2009; Yoshizawa-Sugata & Masai, 

2007). 

 Through this work, we have identified additional proteins that interact with 

Tim/Tipin in interphase extract and in nuclei.  The reason for the physical interaction 

between Tim/Tipin and Orc2 in both interphase extract and nuclei is puzzling, as it is yet 

unclear if this interaction is related to DNA replication or an alternate function of Orc2.  

In addition to its role in DNA replication, Orc2 participates in replication of centromeres, 

and other proteins in the Orc1-6 complex, which contains Orc2, are involved in 

chromosome segregation, cytokinesis, and centriole and centromere copy number 

(Hemerly et al, 2009; Prasanth et al, 2004; Prasanth et al, 2002).  Meanwhile, in addition 

to their roles in DNA replication and checkpoints, Tim/Tipin is also involved in sister 

chromatid cohesion and potentially in circadian rhythms (Chan et al, 2003; Mayer et al, 

2004; Tanaka et al, 2009; Unsal-Kacmaz et al, 2005; Warren et al, 2004; Xu et al, 2004).  

Further study is needed to examine the nature of the interaction between Orc2 and 
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Tim/Tipin and determine if this relationship is related to DNA replication or another 

cellular process. 

 When proteins are isolated from chromatin, it was found that Tim/Tipin interacts 

with ATR, ATRIP, Claspin, RFC40, Rad17, Cdc7, and Drf1, all components of the DNA 

replication fork that travel with it throughout S phase.  Previously published work has 

identified additional Tim/Tipin interacting proteins, including RPA, the MCM helicase 

complex, DNA polymerases δ and ε, PCNA, and Claspin (Chou & Elledge, 2006; Errico 

et al, 2007; Gotter et al, 2007; Unsal-Kacmaz et al, 2007; Yang et al, 2008).  These 

interactions all support the data that Tim/Tipin associate with chromatin in S phase and 

travel with the DNA replication fork. 

 Some proposed roles for Tof1/Csm3 and Swi1/Swi3 in yeast are the stabilization 

of replication forks and the recovery of stalled replication forks (Calzada et al, 2005; 

Katou et al, 2003; Mohanty et al, 2006; Noguchi et al, 2003; Tourriere et al, 2005).  The 

many Tim/Tipin protein-protein interactions also support the idea that Tim/Tipin may be 

a fork stabilizer, as its partners contact many parts of the fork.  In human cells lacking 

Tim or Tipin, low levels of H2AX phosphorylation are present during otherwise 

unchallenged DNA replication, indicative of low levels of endogenous DNA damage 

(Chou & Elledge, 2006; Smith et al, 2009; Urtishak et al, 2009).  These results are 

consistent with ours, in that Tipin knock-down cells do not exhibit obvious growth 

defects and the rate of DNA replication is largely unaffected in the absence of Tim/Tipin. 

The Tim/Tipin-interacting proteins ATR, ATRIP, Claspin, RFC40, Rad17, Cdc7, 

and Drf1 are all involved in the checkpoint response to stalled DNA replication forks, 

indicating that Tim/Tipin may also be involved in this response.  This was confirmed 
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when Tipin was knocked down in human cells, and Chk1 was not well phosphorylated 

upon activation of the ATR-dependent checkpoint by exposure to HU.  Tipin is 

phosphorylated in a checkpoint-dependent manner, and human Tipin is only 

phosphorylated upon one residue by the ATR kinase (Figure 3.5D).  It is tempting to 

speculate that this phosphorylation by ATR may be necessary for a fully functional ATR-

dependent checkpoint response.  Experiments to test this hypothesis yielded results that 

were inconclusive, leaving us unable to resolve this issue (data not shown).  However, it 

is also possible that this phosphorylation is involved in recovery from the checkpoint, 

sister chromatid cohesion, or the regulation of protein-protein interactions.  The 

conserved S222 that is phosphorylated by ATR is adjacent to a conserved RPA-

interacting domain in Tipin, stretching from amino acids 185-218 (Unsal-Kacmaz et al, 

2007).  Gotter and colleagues have reported that the Tim/Tipin interaction with RPA is 

weakened upon UV treatment in human cells, although the other protein-protein 

interactions of Tim/Tipin appear unaffected by UV exposure (Gotter et al, 2007).  ATR is 

activated upon cellular exposure to UV, so it is possible that ATR phosphorylation of 

Tipin diminishes the ability of Tim/Tipin to bind RPA, allowing other proteins 

potentially involved in DNA repair or checkpoint recovery to bind the RPA-coated 

ssDNA.  To test this, it would be interesting to compare the RPA-binding capabilities of 

ATR-phosphorylated Tipin and non-phosphorylated Tipin.  Alternatively, this 

phosphorylation could also alter the dynamics between Tim and Tipin, although a 

significant change in association of Tim and Tipin has not been detected upon checkpoint 

activation (Gotter et al, 2007).  It has been reported that murine Tipin disrupts association 
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of Tim complexes (Gotter, 2003), and it would be interesting to see if Tim forms higher 

order complexes when Tipin is phosphorylated by ATR. 

 Tipin is the target of ATR, the checkpoint kinase activated by incomplete DNA 

replication and stalled replication forks, and not ATM, the checkpoint kinase activated by 

DNA double-strand breaks (Figure 3.5), suggesting that the role of Tim/Tipin is related to 

DNA replication fork stability and the cellular response to stalled replication forks.  In 

Xenopus and human, Tim and Tipin are necessary for the recovery of stalled replication 

forks, maintenance of replication fork progression rate, and prevention of endogenous 

damage during unchallenged DNA replication (Chou & Elledge, 2006; Errico et al, 2007; 

Gotter et al, 2007; Smith et al, 2009; Tanaka et al, 2009; Unsal-Kacmaz et al, 2007; 

Urtishak et al, 2009; Yoshizawa-Sugata & Masai, 2007).  All of these functions are 

consistent with the involvement of Tim/Tipin in the ATR-dependent checkpoint pathway. 

 Tim/Tipin also interacts with Cdc7 and its regulatory subunit in Xenopus extracts, 

Drf1 (Figure 3.2C).  Cdc7 activity is necessary for the maturation of replication forks for 

DNA replication, and in yeast this protein participates in checkpoint mechanisms 

(Matsumoto et al, 2005; Shimmoto et al, 2009; Sommariva et al, 2005).  Given the role of 

Tim/Tipin in the DNA replication checkpoint, this relationship with Cdc7/Drf1 was 

further investigated in Xenopus.  Tim/Tipin physically interacts with Cdc7/Drf1 in nuclei, 

potentially explaining genetic interactions seen in yeast.  Tipin is also a target of the Cdc7 

kinase, and this phosphorylation may serve to regulate the Tim/Tipin complex.  

Interestingly, like Tim/Tipin, Xenopus Cdc7/Drf1 is also involved in the establishment of 

sister chromatid cohesion at the DNA replication fork (Chan et al, 2003; Takahashi et al, 
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2008; Tanaka et al, 2009).  Further studies are required to determine if the role of 

Tim/Tipin in sister chromatid cohesion involves Cdc7. 

 ATM, ATR, and DNA-PK, three PIKKs that regulate the cellular response to 

damaged DNA, are all proposed to have a smaller regulatory subunit (Falck et al, 2005).  

Tim and Tipin have extremely similar phenotypes when either knocked-down in human 

cells or when deleted in yeast (Bando et al, 2009; Gotter et al, 2007; Katou et al, 2003; 

Noguchi et al, 2004; Yoshizawa-Sugata & Masai, 2007), leaving us to wonder about the 

roles that the individual Tim and Tipin proteins play.  It is tempting to speculate that 

Tipin is the smaller, regulatory protein in this complex, like ATRIP in the ATR/ATRIP 

complex, but in this case Tim has no known enzymatic activity.  It is interesting, though, 

that it is the smaller protein in this complex that is the target of both the Cdc7 kinase and 

the ATR checkpoint kinase, yet there was no observable change in Tim phosphorylation 

upon DNA damage checkpoint induction or incubation with the active Cdc7 kinase 

(Figures 3.5 and 3.6).  Xenopus Tipin is also a target of the Cdk2 kinase as well as other 

CDK kinases, although the function of these modifications is as yet unknown (Errico et 

al, 2007).  Additionally, it is Tipin that contains a conserved RPA-binding domain, 

similar to those found in XPA and SMARCAL1, proteins involved in checkpoints and 

DNA repair (Bansbach et al, 2009; Unsal-Kacmaz et al, 2007).  The Tim/Tipin complex 

is involved in various cellular processes, many of which could be regulated through 

Tipin.  These individual pieces of data collectively imply a regulatory function for Tipin, 

but direct evidence for this is lacking.  The functional rationale for these post-

translational modifications to Tipin should prove revealing for both the roles of Tim and 

Tipin and the cellular processes as a whole.  
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3.5  Materials and Methods 
 

Xenopus Egg Extracts.  The preparation of Xenopus cell-free extracts was performed as 

previously described (Murray, 1991).  For reactions in which a checkpoint response was 

induced in interphase extracts, 50 µg/ml pA/T70 oligos was added to extracts (Kumagai 

& Dunphy, 2000).  For reactions requiring isolation of nuclei or chromatin, 

demembranated sperm chromatin was incubated at 3,000 sperm/µl in extract for 100 min 

or the indicated time.  Nuclei and chromatin were isolated as described (Lee et al, 2003).  

When geminin was used to inhibit pre-RC formation, it was added at a concentration of 

0.3 mM to the extract prior to addition of sperm chromatin. 

 

Antibodies.  Polyclonal anti-Tipin antibodies were generated by injecting rabbits with 

bacterially-expressed Xenopus Tipin amino acids 11-181.  Antibodies to Xenopus Tim 

were also generated in rabbits, with bacterially expressed Xenopus Tim amino acids 

1109-1286 serving as the antigen.  Both antibodies were affinity purified with their 

respective antigens according to standard protocols.  Antibodies to Claspin, Orc2, ATR, 

ATRIP, Drf1, Rad17, Hus1, and BLM were previously described (Kumagai & Dunphy, 

2000; Lee et al, 2003; Li et al, 2004; Yanow et al, 2003).  Antibodies recognizing FFA-1 

were generated by S.K. Kim and W.G. Dunphy (unpublished).  Anti-RFC40 antibodies 

were a kind gift of J. Hurwitz (Uhlmann et al, 1996), and anti-Cdc7 antibodies were 

kindly provided by J. Walter (Takahashi & Walter, 2005).  The BM28 monoclonal 

antibody, which recognizes Xenopus Mcm2, and antibodies to Ser317-phosphorylated 

Chk1 were purchased from Cell Signaling Technology (Beverly, MA).  Anti-human 
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Tipin antibodies were purchased from Bethyl Laboratories (Montgomery, TX), and 

control rabbit IgG was purchased from Zymed (South San Francisco, CA). 

 

Recombinant Proteins.  The cDNA for human Tipin, a kind gift of A. Gotter, was cloned 

into pGEX4T-3 with BamH1 and Xho1.  The GST-Tipin-S222A mutant was created 

using site-directed mutagenesis, and a HindIII site was also inserted to verify successful 

cloning.  Primers for site-directed mutagenesis were hTipin_g654t_a664g_g665c_t666c 

and hTip_g654t_a664g_g665c_t666c_R, with sequences of 5'-GGA AAG AAG GCA 

GGC AAA GCT TCT GAG TAA TGC CCA GAC CCT AGG AAA TGA TAT G -3' 

and 5'- CAT ATC ATT TCC TAG GGT CTG GGC ATT ACT CAG AAG CTT TGC 

CTG CCT TCT TTC C -3', respectively.  Mutagenesis was performed with the 

QuikChange Site-Directed Mutagenesis Kit (Stratagene).  Proteins were expressed in E. 

coli BL21 CodonPlus RIL cells at 30°C for 3 hours after induction with 1 mM IPTG.  

Recombinant proteins were isolated using Glutathione Sepharose (Pharmacia), eluted 

with glutathione, dialyzed, frozen, and subsequently used as substrate in kinase assays. 

 

Immunological Methods.  To immunoprecipitate Tim or Tipin from interphase extracts, 

2.5 µg purified antibody was pre-bound to 5 µl Protein A Support (BioRad), beads were 

incubated in interphase extract for 90 min at 4°C, subsequently washed four times with 

10mM HEPES-KOH [pH 7.6], 150 mM NaCl, 0.5% NP-40, 2.5 mM EGTA, and 

analyzed by SDS-PAGE.  For immunoprecipitations involving radiolabeled ATP, 32P-

ATP was added to the extract to a concentration of 0.35 µCi/µl, and the 

immunoprecipitation was performed as described above.  Samples were analyzed by 
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SDS-PAGE, and the gel was stained, dried, and imaged on a Phosphorimager 445 SI.  

For immunoprecipitations from chromatin fractions, demembranated sperm chromatin 

was added to a concentration of 3,000 sperm/µl in activated extract and incubated at 

room temperature for 50 min.  Extracts (250 µl) were spun through 1ml sucrose cushion 

(20 mM HEPES-KOH [pH 7.6], 1 M sucrose, 80 mM KCl, 2.5 mM K-gluconate, and 10 

mM Mg-gluconate) at 6,100xg for 5 minutes at 4°C twice.  Four pellets were combined, 

resuspended in an additional 1ml sucrose cushion, and spun down as before.  Pellets were 

then resuspended in 1 ml sucrose cushion + 0.5% NP-40 and spun down as before.  

Proteins were eluted from chromatin with 125 µl 10mM HEPES-KOH [pH 7.6], 250 mM 

NaCl, 0.5% NP-40, and insoluble chromatin was pelleted by spinning at 6,100xg, 5 min, 

4°C.  This step was repeated, supernatants containing eluted proteins were pooled, salt 

concentrations were adjusted to 10 mM HEPES-KOH [pH 7.6], 150 mM NaCl, 0.5% NP-

40, and antibody pre-bound to Protein A beads, as for interphase extract 

immunoprecipitations, was added to this extract.  Immunoprecipitations were rotated at 

4°C for 2 hours, beads were washed twice with 10 mM HEPES-KOH [pH 7.6], 150 mM 

NaCl, 0.5% NP-40, and bead-bound proteins were analyzed by SDS-PAGE and 

immunoblotting.  Tim/Tipin was immunodepleted from 100 µl interphase extract using 

100 µg anti-Tim antibodies and 60 µg anti-Tipin antibodies pre-bound to Protein A 

support (BioRad), and each of 2 rounds of depletion were performed at 4°C, rotating for 

90 min. 

 

Replication Assay.  Replication assays were performed as described previously (Yanow 

et al, 2003).   
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Human cell culture.  HeLa cells were maintained in DMEM containing 10% fetal bovine 

serum at 37°C, 5% CO2, according to standard protocols.  siRNA oligos to human Tipin 

were from Qiagen (Valencia, CA), and sequences were as follows:  Tipin 1:  5'-

AAGCTTGGCGTTACTATGTAT-3'; Tipin 2:  5'-CTGAGTTAAGTAGAAGCCTAA-

3'; Tipin 3:  5'-ACCCTAGGAAATGATATGTTA-3'.  Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA) was used to transfect siRNA oligos, according to the manufacturer’s 

protocol.  Cells were transfected with either Qiagen AllStars Negative Control or a 

mixture of siRNA oligos; A was a 1:1 mix of siRNA oligos Tipin 1 and Tipin 2, B was a 

1:1 mix of Tipin 2 and Tipin 3, and C was a 1:1 mix of Tipin 1 and Tipin 3.  Cells were 

transfected twice with siRNA oligos, on Day 1 and Day 2, and on Day 4 cells were 

treated with 10 mM hydroxyurea (HU) for 2 hours.  Cells were then harvested and 

analyzed by SDS-PAGE. 

 

Kinase assays.  ATR and ATM kinase assays have been described previously (Kumagai 

et al, 2006; Yoo et al, 2004).  For the Cdc7 kinase assay, bacteria expressing His6-

FLAG-Cdc7-Dbf4 were grown at 30°C, and  8ml of bacterial culture was processed for 

each batch of kinase.  Bacteria were pelleted and suspended in lysis buffer (10 mM 

HEPES-KOH [pH 7.5], 150 mM NaCl, 0.5% Triton X-100, 1 mM DTT, 1 mM PMSF, 10 

µg/ml leupeptin, 10 µg/ml chymostatin, 10 µg/ml pepstatin) + 0.1 mg/ml lysozyme on ice 

for 15 min.  Samples were sonicated and again pelleted.  His6-FLAG-Cdc7-Dbf4 was 

isolated first by pull-down with Ni+2 beads.  Ni+2 resin was incubated with the soluble 

fraction for 1 hour at 4°C, the beads were subsequently washed 3 times with lysis buffer, 
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and bound proteins were eluted with 250 mM imidazole in lysis buffer.  Eluted proteins 

were subsequently FLAG immunoprecipitated at 4°C for 1 hour, and purified Cdc7-Drf1 

was eluted from beads with FLAG peptide suspended in 10 mM HEPES-KOH [pH 7.6], 

150 mM NaCl, and used in Cdc7 kinase assays.  Cdc7 kinase assays were performed as 

described for ATR kinase assays, except the composition of the kinase buffer was 50 mM 

Tris-HCl [pH 7.5], 10 mM MgCl2, 1 mM DTT, and 50 µM ATP. 
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 3.6  Figures 

 
Figure 0.1 
Figure 3.1:  Tim and Tipin associate with replicating DNA.  A) Tim and Tipin antibodies 
were used to immunoprecipitate the Tim/Tipin complex from interphase extract.  
Reactions were analyzed by immunoblotting.  B) Tim and Tipin immunoprecipitates 
from interphase extract were subjected to SDS-PAGE and proteins were detected by 
silver stain.  C) Anti-Tim antibodies and anti-Tipin antibodies were used to 
immunoprecipitate Tim and Tipin, respectively, from extracts containing chromatin-
associated proteins.  Tim and Tipin were detected in the pull-down by immunoblotting.  
D) Nuclei were isolated from extract and fractionated into soluble and chromatin-bound 
fractions.  Equal amounts of fractions were analyzed by SDS-PAGE and immunoblotting.  
E) Chromatin was isolated from extract in the absence or presence of geminin, a pre-RC 
inhibitor, and protein binding to chromatin was assessed by immunoblotting.  F) Tim and 
Tipin binding to chromatin was monitored over time during DNA replication, with the 
addition of sperm nuclei at 0 minutes.  Chromatin was isolated from cell-free extracts at 
the indicated time-points, and Tim and Tipin levels were analyzed by immunoblotting.  
For samples in which aphidicolin (APH) was added to stall DNA replication forks, 
aphidicolin was added at 0 minutes. 
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Figure 0.2 
Figure 3.2:  Tim/Tipin interactions.  A) Mock, anti-Tim, and anti-Tipin 
immunoprecipitates from interphase extract were subjected to SDS-PAGE, and 
interacting Tim and Orc2 were detected in immunoprecipitates by immunoblotting.  
Rabbit IgG was used for Mock IP.    B) Interactions between Tim, Tipin, FFA-1, and 
BLM in interphase extract were analyzed.  Each of these proteins was 
immunoprecipitated, as well as a mock sample.  Samples were analyzed by SDS-PAGE 
and immunobloting.  Blots were probed for Tim, Tipin, FFA-1, and BLM.  C) Extracts 
with nuclei were incubated for 50 min, which corresponds to mid-S phase, nuclei were 
pelleted, and chromatin-associated proteins were isolated through salt-washes of 
chromatin.  Control or anti-Tim antibodies were used for immunoprecipitation of proteins 
from this fraction of chromatin-associated proteins, and interacting proteins were 
detected by immunoblotting.  Input is 20 µl of the fraction of chromatin-associated 
proteins prior to immunoprecipitations.  D) Experiment was performed as in part C, 
except sperm DNA was pre-treated with UV to induce checkpoint activation upon DNA 
replication, and extracts containing nuclei were incubated for 100 min to allow activation 
and amplification of checkpoint signaling. 
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Figure 0.3 
Figure 3.3:  Characterization of Tim-depleted chromatin.  Interphase extracts were mock 
or Tim-immunodepleted.  Sperm chromatin was added to extract (3,000 nuclei/µl), 
incubated for 100 min, chromatin was isolated, and chromatin-associated proteins were 
analyzed by immunoblotting.  Unlike published results, Claspin levels are not 
significantly decreased in the absence of Tim, likely due to the small amount of 
remaining Tim in Tim-depleted extracts that associates with chromatin. 
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Figure 0.4 
Figure 3.4:  Tim/Tipin in DNA replication and the DNA replication checkpoint.  A) The 
amount of Tim and Tipin in 1 µl of mock or Tim-immunodepleted extracts was analyzed 
by immunoblotting.  These extracts were subsequently used for the DNA replication 
assay in panel B.  B) Incorporation from 32P-dATP was used to monitor DNA replication 
in extracts that were untreated, mock depleted, or Tim-depleted.  DNA (3,000 sperm/µl) 
was incubated in extracts for 100 minutes before reactions were stopped.  Samples were 
analyzed on a 1% agarose gel and imaged by Phosphorimager.  C) HeLa cells were 
transfected twice with either control or Tipin siRNA oligos.  48 hours after the second 
transfection, cells were treated with 10 mM HU for 2 hours, harvested, and analyzed by 
immunoblotting.  siRNA oligo sequences are listed in Materials and Methods. 
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Figure 0.5 

Figure 3.5:  ATR phosphorylation of Tipin.  A) Interphase extracts containing 32P-ATP 
were incubated without or with pA/T70 oligos to stimulate checkpoint activation.  Mock 
or anti-Tipin immunoprecipitates were isolated from these extracts, separated by SDS-
PAGE, visualized by Coomassie staining, and exposed to a Phosphorimager screen for 
autoradiography.  B) Alignment of human, mouse, chicken, and Xenopus Tipin sequences 
near the best conserved SQ residue, S222 in human Tipin.  C) GST-Tipin and GST-
Tipin-S222A were used as substrates in an in vitro ATR kinase assay.  All reactions 
contained ATR kinase and 32P-ATP, and TopBP1 972-1279 was added to select reactions 
to activate ATR kinase activity.  GST-Tipin and GST-Tipin-S222A were incubated with 
inactive and active ATR, and SDS-PAGE followed by Coomassie staining was used to 
visualize proteins.  The gel was then subjected to autoradiography.  D) Inactive ATM and 
active ATM were isolated from interphase extracts lacking or containing pA/T70 
oligomers, respectively, and used for in vitro kinase assays.  Substrates for the kinase 
assays were GST-Tipin, GST-Tipin-S222A, and PHAS-I, a documented ATM substrate.  
Substrates were incubated with inactive (lanes 1-4) or active (lanes 5-8) ATM, proteins 
were separated by SDS-PAGE, visualized by Coomassie stain, and the gel was 
subsequently analyzed by autoradiography.  While PHAS-I protein levels are equivalent 
in lanes 4 and 8, ATM activation by the pA/T70 oligos is evidenced by the increased 
signal in the autoradiograph from phosphorylated PHAS-I (lane 8) compared to that 
incubated with inactive ATM (lane 4).
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Figure 0.6 
Figure 3.6:  Tipin is phosphorylated by Cdc7.  Bacterially expressed Cdc7/Dbf4 complex 
was isolated and used in an in vitro kinase assay, with substrates of Cdc7 being Tipin and 
Mcm2 as a positive control.  Substrates were incubated with the kinase complex and 32P-
ATP, analyzed by SDS-PAGE, visualized by Coomassie stain, and subsequently 
analyzed by autoradiography. 
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4  Conclusions 
 

4.1  Dna2 
 

4.1.1  Summary of Results 

 Dna2 is a well-conserved protein from yeast to human, and we first demonstrate 

that Xenopus Dna2 is indeed a helicase-nuclease, as in yeast and human.  Since previous 

work indicated a role for Dna2 in Xenopus DNA replication (Liu et al, 2000), the 

association of Dna2 with chromatin in S phase was first examined.  Dna2 associates with 

chromatin in S phase and does so in a regulated manner; Dna2 binding to chromatin 

requires formation of the pre-replication complex (pre-RC) but is independent of both 

CDK2 activity and the presence of Mcm10 at the forming replication fork, indicating that 

Dna2 interacts with an early intermediate during replication fork formation.  Co-

localization with RPA, a single-stranded DNA-binding protein that concentrates at DNA 

replication forks, reveals that Dna2 moves with the replication fork throughout S phase.  

And-1, the Xenopus ortholog of yeast Ctf4, and Mcm10 were identified as Dna2 

interacting proteins; both of these proteins participate in replication of the lagging strand, 

and Mcm10 is necessary for stable association of DNA polymerase α with the lagging 

strand during DNA replication (Chattopadhyay & Bielinsky, 2007; Ricke & Bielinsky, 

2004).  These novel protein-protein interactions are indicative of a role in lagging strand 

replication, consistent with the role of Dna2 in yeast (Budd & Campbell, 1997; Formosa 

& Nittis, 1999). 
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 In addition to involvement in DNA replication, Dna2 is also a DNA repair protein 

that participates in the repair of DNA double-strand breaks (DSBs).  Dna2 physically 

interacts with ATM and Nbs1, proteins involved in the early steps of the cellular response 

to DSBs when repaired by homologous recombination (HR).  Upon DSB induction in 

chromosomal DNA, Dna2 accumulates on the broken DNA, consistent with other repair 

proteins, and accumulates on broken DNA to an even greater extent upon checkpoint 

inhibition.  To clarify the role of Dna2 in the processing of a DSB for repair by HR, the 

temporal association of HR proteins with broken DNA ends was assessed.  ATM and 

Nbs1 associate with DNA ends quickly, with subsequent Dna2 and RPA binding.  ATR 

accumulation is also late, corresponding to the established model that ATR is recruited by 

RPA-coated ssDNA.  This pattern of binding was observed in both interphase (S phase) 

and CSF (M phase) extracts, revealing that the ability of Dna2 to bind free DNA ends is 

not limited to a single phase of the cell cycle.  Depletion of various proteins reveal that 

both the Dna2 protein and the MRN complex are necessary for processing of a DSB by 

HR, but the nuclease activity of Mre11 is not essential for DSB processing.  Finally, we 

see that even though Dna2 participates in DNA replication and repair of DSBs by HR, 

neither the Dna2 protein itself nor its enzymatic activities are essential for checkpoint 

signaling in response to stalled DNA replication forks or DSBs. 

 

4.1.2  Significance of Results and Future Directions 

 While Xenopus Dna2 is known to be a potent nuclease (Liao et al, 2008; Liu et al, 

2000), this work is the first to show that the helicase activity of Xenopus Dna2 has also 

been evolutionarily conserved.  Since the enzymatic activities of Dna2 are well-
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conserved, the biochemical roles of Dna2 in cellular functions are also expected to be 

conserved. We find that this is true of the roles of Dna2 in both DNA replication and 

DSB repair by HR.  

As to whether Dna2 is a genomic DNA replication protein, this work clearly 

shows that the DNA replication observed is replication of nuclear DNA, not just 

mitochondrial DNA as suggested previously (Zheng et al, 2008).  The regulated binding 

of Dna2 to chromatin during S phase provides insight into the role of Dna2 in DNA 

replication, since Dna2 binding is dependent on pre-RC formation but independent of 

either CDK2 activation or Mcm10 association with the replication fork.  As to further 

studies regarding the role of Dna2 at the replication fork, interesting experiments could 

include depleting Dna2 and assessing the binding of DNA replication proteins that 

associate with the fork downstream of Dna2, such as Cdc45, And-1, and DNA 

polymerase α. 

The novel protein-protein interactions detected between And-1, Mcm10, and 

Dna2 physically link Dna2 to proteins that participate in lagging strand replication.  This 

role in lagging strand replication is consistent with the role of yeast Dna2 in Okazaki 

fragment processing, as indicated by genetic interactions and assays with purified 

proteins (Budd et al, 1995; Budd et al, 2005).  These physical interactions also suggest 

potential roles for Dna2 at the replication fork; And-1 is proposed to link the MCM 

replicative helicase to the DNA polymerases, and Mcm10 stabilizes DNA polymerase α 

at the replication fork (Chattopadhyay & Bielinsky, 2007; Ricke & Bielinsky, 2004; 

Tanaka et al, 2009a).  Further studies are required to determine if Dna2 contributes to 

either of these activities.  Disruption of either of these processes would lead to replication 
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stress and increased DNA damage in an otherwise unchallenged S phase.  While DNA 

replication is not efficient in the absence of Dna2, replication does initiate.  

Understanding how replication fails in the absence of Dna2 would provide insight into 

the necessity of Dna2 in replication. 

This work is the first to demonstrate that Dna2 accumulates on chromatin 

containing DSBs and is necessary for the processing of DSBs by the HR pathway in 

Xenopus extracts. We show that Dna2 physically interacts with proteins involved in HR 

and the DSB checkpoint response, namely ATM and Nbs1.  The temporal association of 

these proteins with DNA ends that we see reflects the order in which these enzymes 

process the DNA ends (Liao et al, 2008).  Analyses of depletion experiments allow us to 

discriminate between the roles of multiple, possibly redundant, nucleases involved in HR.  

This work is the first to examine relevant genetic results in yeast, presenting biochemical 

evidence that this phenomenon observed in yeast HR is conserved in Xenopus, and 

providing novel physical interactions of proteins that both confirm and explain known 

yeast genetic interactions.  Mre11 and Dna2 were the main nucleases studied in this 

work, but future work with CtIP, Exo1, and other proteins involved in HR will continue 

to provide insight into this DNA repair mechanism, as will exploring the expected 

redundancies in the Dna2 and Exo1 nucleases in repair by HR. 

The ATM-dependent DSB repair checkpoint can be activated in the absence of 

Dna2.  A likely reason for this result is that Exo1, a nuclease, may compensate for lack of 

Dna2, consistent with yeast Exo1 and Dna2 (Budd & Campbell, 2009; Zhu et al, 2008).  

To continue to understand the HR mechanism in Xenopus, exploring the functional 

interactions of Dna2 and Exo1 should be pursued. 
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The biophysical data presented in this work furthers knowledge of the role of 

Dna2 in both lagging strand DNA replication and DSB repair by HR.  Much future work 

is needed to comprehend the details of the participation of Dna2 in both processes, for 

which this work lays a foundation. 

 

4.2  Tim/Tipin 
 

4.2.1  Summary of Results 

 Timeless (Tim) and Tipin form a complex in both interphase extract and in nuclei, 

and these two proteins are the main members of this complex.  The Tim/Tipin complex 

binds chromatin in S phase in a regulated manner and accumulates on chromatin when 

replication forks stall.  Immunoprecipitation analyses identified a range of Tim/Tipin-

interacting proteins that participate in DNA replication and the DNA replication 

checkpoint, including ATR, ATRIP, Rad17, RFC40, Claspin, Cdc7, Drf1, and BLM.  

Absence of the Tim/Tipin complex does not greatly affect bulk DNA replication, but full 

activation of the DNA replication checkpoint is dependent upon the presence of the 

Tim/Tipin complex.  Consistent with participation in the DNA replication checkpoint, 

Tipin is also a target of the ATR kinase on residue S222 of human Tipin.  This appears to 

be the only ATR phosphorylation site on Tipin, as detected in an in vitro kinase assay.  

Tipin is not phosphorylated by the ATM kinase, indicating that the Tim/Tipin complex is 

mainly responsible for checkpoint activation due to stalled replication forks and 

incomplete DNA replication, not DNA double-strand breaks.  Interestingly, Tim was not 

phosphorylated upon induction of the ATM and ATR-dependent checkpoints.  Tipin, but 
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not Tim, was also found to be a target of the Cdc7 kinase.  While the Cdc7 

phosphorylation site(s) on Tipin has not been found, potential regulation of Tim/Tipin by 

Cdc7 has interesting implications for DNA replication and checkpoint activation. 

 

4.2.2  Significance of Results and Future Directions 

 The findings that Tim and Tipin form a complex, associate with replicating 

chromatin in a regulated manner, accumulate on chromatin with stalled replication forks, 

interact with Claspin, are not necessary for DNA replication, and are involved in 

activation of the DNA replication checkpoint have all been confirmed by published 

papers subsequent to the initiation of this project (Chou & Elledge, 2006; Errico et al, 

2007; Gotter et al, 2007; Smith et al, 2009; Tanaka et al, 2009b; Unsal-Kacmaz et al, 

2007; Urtishak et al, 2009; Yoshizawa-Sugata & Masai, 2007).  We confirm that Tipin is 

phosphorylated upon checkpoint induction (Matsuoka et al, 2007) and determine that 

Tipin is a target of the ATR, not ATM, kinase.  Tipin contains one conserved SQ motif, 

and it is this serine, S222 of human Tipin, that is the target of ATR.  Mutation of this 

residue reveals that this is the only ATR phosphorylation site in Tipin.  Interestingly, 

S222 resides at the edge of a conserved RPA binding site in Tipin, and it has been 

previously reported that the interaction between Tipin and RPA is lessened upon UV 

treatment (Gotter et al, 2007; Unsal-Kacmaz et al, 2007).  Given these results, we 

speculate that ATR phosphorylation of Tipin on residue S222 may weaken the RPA-

binding activity of Tipin, promoting dissociation of Tim/Tipin from RPA-coated ssDNA 

and allowing the binding of other proteins necessary for replication fork re-start or DNA 

repair.  However, ATR phosphorylation of Tipin could affect many other processes in 
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which Tim/Tipin are involved, including checkpoint activation, recovery or adaptation, 

DNA replication, or sister chromatid cohesion. 

 Cdc7 and Drf1 are necessary for efficient DNA replication in Xenopus, and like 

Tim/Tipin, accumulate on chromatin when DNA replication forks stall (Yanow et al, 

2003).  The yeast homolog of Cdc7, Hsk1, participates in DNA replication checkpoints 

with the yeast homolog of Tim (Matsumoto et al, 2005; Shimmoto et al, 2009; 

Sommariva et al, 2005), and this work shows that Xenopus Tim interacts with both Cdc7 

and Drf1.  The Cdc7 kinase also phosphorylates Tipin, but not Tim.  This data may 

indicate that Tim/Tipin and Cdc7 cooperate in the DNA replication checkpoint.  

Examination of impacts on cellular processes in the presence of either disrupted Cdc7-

Tim/Tipin binding or a Tipin mutant that is not phosphorylated by Cdc7 would further 

understanding of this interaction. 

 Regulatory kinases tend to phosphorylate Tipin, not the larger Tim protein; Tipin 

is a target of ATR, Cdc7, and CyclinE/CDK2 (this work and Errico et al, 2007).  Neither 

Tim nor Tipin has any known enzymatic function, so current theory revolves around the 

Tim/Tipin complex as scaffolding proteins.  Since it is Tipin that is the target of 

regulatory kinases and disrupts Tim self-association (Gotter, 2003), data indicates that 

Tipin may be serving as the regulatory member of the Tim/Tipin complex.  However, 

knockdown of either Tim or Tipin destabilizes its partner (Chou & Elledge, 2006; Unsal-

Kacmaz et al, 2007; Yoshizawa-Sugata & Masai, 2007), so it has been difficult to 

determine the roles of the individual proteins.  Tipin may regulate binding of the 

Tim/Tipin complex to RPA-coated ssDNA, since it is Tipin that contains a conserved 

RPA binding site (Unsal-Kacmaz et al, 2007), and the post-translational modifications to 
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Tipin may affect binding of the complex to the replication fork and ssDNA.  These 

modifications may also affect stability of the replication fork, since replication forks do 

not extend as far as wild-type in the absence of Tipin (Unsal-Kacmaz et al, 2007). 

 Further studies should be conducted regarding the Tim/Tipin interaction with 

Orc2, the regulation of Tipin by regulatory kinases, and the roles of the individual Tim 

and Tipin proteins.  Additionally, when Tim is immunoprecipitated from interphase 

extract, there is caffeine-sensitive kinase activity in the immunoprecipitate that 

phosphorylates Tim.  This activity is present even when washes are sufficiently harsh to 

dissociate Tipin from Tim (unpublished data).  Identification of the protein responsible 

for this kinase activity may also help delineate the role of the Tim/Tipin complex in 

cellular processes. 

 In conclusion, both Dna2 and Tim/Tipin contribute to the maintenance of 

genomic integrity in different ways.  These proteins travel with the DNA replication forks 

during S phase, but they likely have very different roles at the fork, since they also 

respond to different forms of DNA damage.  Dna2 participates in the response to DNA 

double-strand breaks, while Tim/Tipin respond to replication forks.  These mechanisms 

represent part of the cadre of cellular responses to DNA damage, yet impairment of just 

one of these processes produces significant effects.  Through understanding each of these 

processes, research can progress to develop better treatments for diseases caused by these 

failed cellular mechanisms. 
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