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1  Introduction 

 As cells grow and divide, their DNA content is monitored to prevent 

accumulation of mutations which can lead to the development of cancer (Hartwell & 

Kastan, 1994).  Mutations are the result of DNA damage caused by external sources such 

as UV light, X-rays, radiation, and chemical carcinogens, or they can be caused by 

cellular events including stalled DNA replication forks, incompletely replicated DNA, 

and programmed DNA double-strand breaks.  Damaged DNA can be repaired, but 

mutations are made permanent when the damaged DNA is not repaired accurately or cells 

divide without fixing the damage.  To prevent accumulation of mutations, cells have 

developed checkpoints to delay cellular growth in the presence of DNA damage or 

incomplete DNA replication, giving the cell time to repair the DNA before making 

mutations permanent upon cell division (Weinert, 1998).  Abrogation of these 

checkpoints leads to increased susceptibility to cancer, neurodegeneration, and 

accelerated aging (Cimprich & Cortez, 2008; Czornak et al, 2008). 

 Cells can suffer DNA damage at all points in the cell cycle.  It is both the type of 

DNA damage and the stage of the cell cycle that determines which checkpoints are 

activated as well as the method of repair.  During DNA replication in S phase of the cell 

cycle, cells monitor for both stalled replication forks, which activates the ATR-dependent 

checkpoint response, and DNA double-strand breaks, which activate the ATM- and 

DNA-PK dependent checkpoints.  The ATM-dependent checkpoint and repair 

mechanism results in a more accurate repair of double-strand breaks, while the DNA-PK-

dependent pathway can be accurate or error-prone repair.  The ATM-dependent pathway 

is the prominent repair pathway for DNA double-strand breaks (DSBs) during S or G2 
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phase, since this pathway relies on the presence of a sister chromatid which is only 

present in S and G2 phases, while the DNA-PK pathway is the primary DSB repair 

pathway in G1 and M phase when a sister chromatid is not available.   

The ATR-dependent pathway can be activated in S or G2 phases, while DNA is 

being replicated and incomplete DNA replication is detected.  Some of the same proteins 

that are necessary for these checkpoint responses are also involved in DNA replication.  

In S phase, the process of DNA replication is physically coupled to checkpoint 

mechanisms.  Some proteins that are required for checkpoint activation that travel with 

the replication fork are TopBP1, Claspin, and the Timeless/Tipin complex (Chini & 

Chen, 2003; Errico et al, 2007; Gotter et al, 2007; Hashimoto & Takisawa, 2003; 

Kumagai & Dunphy, 2000; Lee et al, 2003; Makiniemi et al, 2001; Unsal-Kacmaz et al, 

2007; Van Hatten et al, 2002; Yoshizawa-Sugata & Masai, 2007).  Recent work in yeast 

also highlights this coupling of DNA replication and checkpoints in S phase; Mrc1, the 

yeast ortholog of Claspin, is required for activation of the S-phase checkpoint and 

physically interacts with Pol 2, a catalytic subunit of DNA polymerase ε (Alcasabas et al, 

2001; Lou et al, 2008).  Upon checkpoint activation by stalled replication forks, this 

interaction is altered but not abolished, potentially altering polymerase activity in 

response to the replication stress.  Alternatively, the change in Mrc1 binding may provide 

a docking site for additional checkpoint response proteins (Lou et al, 2008).  Physically 

coupling these mechanisms ensures an immediate response when problems arise in DNA 

replication, so any stalled replication forks can be stabilized quickly to prevent 

dissociation of replication fork proteins, a signal of fork collapse from which the 

replication fork can not recover.  The coupling of DNA replication and checkpoint 
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activation is exemplified by the fact that the ATR-dependent DNA replication checkpoint 

requires the initiation of DNA replication (Stokes et al, 2002).  Since these mechanisms 

are intertwined, both DNA replication and checkpoints are discussed below. 

1.1  DNA Replication Initiation 

 
 The replication of genomic DNA is a well-conserved and highly regulated 

process.  All chromatin must be replicated once and only once per cell cycle with a 

minimal rate of mutation.  The activity of cell cycle-dependent kinases regulates the 

process of DNA replication; origins of replication are “marked” for replication in late M 

phase and early G1 phase, when S-phase CDK (S-CDK) activity is low, and DNA is 

replicated when S-CDK levels are high.  While there are many points of regulation and 

feedback, this overarching model guides DNA replication in the cell cycle (Diffley, 

1996). 

When S-CDK levels are low, the Origin Recognition Complex (ORC) first binds 

chromatin and marks the origins of replication during early G1 phase for the upcoming S 

phase (Diffley, 2004; Nguyen et al, 2001).  Origins are interspersed throughout 

chromosomes, and not every origin is used every S phase (for review see Natsume & 

Tanaka, 2009).  Cdc6 and Cdt1 subsequently bind origins of replication during G1 phase.  

Recent results revealed that the Cdt1 that binds origins is bound to Mcm9, a protein with 

ATPase activity and a helicase domain (Lutzmann & Méchali, 2008).  The MCM2-7 

complex, which is the replicative helicase, subsequently binds origins of replication, and 

the binding of this set of proteins signals the formation of the pre-replication complex 

(pre-RC) and “licensing” origins of replication (Bell & Dutta, 2002; Nishitani & 
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Lygerou, 2002).  Pre-RC complexes must be formed in G1 phase, when S-CDK levels 

are low, because they can not form when S-CDK levels are high in S phase (Diffley, 

2004; Nguyen et al, 2001).  Also, at the onset of DNA replication, Cdt1 is bound by 

geminin, not Mcm9, and is subsequently degraded in a PCNA- and Cul4-dependent 

manner, preventing the licensing of additional origins of replication (Arias & Walter, 

2005; Arias & Walter, 2006; Lutzmann & Méchali, 2008).  Cdc6 is also regulated to 

prevent licensing of additional forks.  Upon initiation of DNA replication, yeast Cdc6 is 

degraded, while human Cdc6 is exported from the nucleus, to prevent additional origin 

firing (Elsasser et al, 1999; Jallepalli et al, 1998; Jiang et al, 1999; Perkins et al, 2001; 

Petersen et al, 1999; Saha et al, 1998).  These are some of the many points of regulation 

in which DNA replication can be limited to one round of DNA replication per cell cycle 

(Arias & Walter, 2007). 

It is at this pre-RC stage of replication fork maturation that proteins such as Dna2, 

required for efficient DNA replication, and Mcm10, responsible for retention of DNA 

polymerase α at the fork, bind origins of replication (this work and Liu et al, 2000b; 

Wohlschlegel et al, 2002).  TopBP1, which is necessary for the ATR-dependent 

checkpoint, also binds the developing replication fork at this point (Van Hatten et al, 

2002).  Binding of the above proteins at this stage of replication fork development is 

essential; in the absence of Mcm10 and TopBP1, replication forks do not develop further.  

The presence of Mcm10 at the fork is also required for binding of Cdc45 and formation 

of the CMG complex, mentioned below.  TopBP1 is necessary for both Cdc45 binding 

and association of the GINS complex, also described below (Im et al, 2009; Kubota et al, 
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2003; Van Hatten et al, 2002).  This ordered binding of proteins is highly conserved from 

yeast to human, with only minor variations. 

Upon entry into S phase, marked by activation of S-CDK, pre-RC complexes are 

activated by binding of additional proteins, transforming it into what is known as the pre-

initiation complex (pre-IC).  Activation of both the Cdc7 and CDK2 kinases are required 

for pre-IC formation, and this step is also well-conserved from yeast to metazoans 

(Aparicio et al, 1999; Mimura et al, 2000; Walter & Newport, 2000; Zou & Stillman, 

2000).  Notable pre-IC proteins include Cdc45 and the GINS (Go, Ichi, Nii, and San) 

complex, and the chromatin binding of Cdc45 and GINS are mutually dependent (Kubota 

et al, 2003).  Cdc45 recruits DNA polymerase α/primase, necessary for initiation of 

replication, and GINS activates it (De Falco et al, 2007; Mimura et al, 2000).  It also may 

be that both Cdc45 and the GINS complex activate the MCM replicative helicase, as the 

MCM2-7 helicase can be isolated in the Cdc45-MCM-GINS (CMG) complex and is 

bound to the same region of DNA as Cdc45 and GINS upon uncoupling of the replicative 

helicase and polymerase activities in both Xenopus and yeast (Gambus et al, 2006; 

Kubota et al, 2003; Pacek et al, 2006). 

DNA can be unwound by the MCM replicative helicase and subsequently bound 

by RPA, a single-stranded DNA binding protein.  It is also at the pre-IC stage of 

replication fork maturation that additional DNA replication proteins bind the fork, 

including notable proteins involved in DNA replication, such as the DNA polymerases, 

Claspin, the Tim/Tipin complex, and the ssDNA-binding protein RPA (Lee et al, 2003; 

Mimura et al, 2000; Tanaka et al, 2009; Walter & Newport, 2000). 
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Once replication has initiated, DNA replication forks proceed away from the 

replication origins with coupled leading and lagging strand replication.  Data from yeast 

suggests that DNA polymerase ε is the leading strand polymerase and polymerases α and 

δ participate in lagging strand replication (McElhinny et al, 2008; Pavlov et al, 2006; 

Pursell et al, 2007).  Claspin, Timeless (Tim), and Tipin are not essential for DNA 

replication but serve to stabilize replication forks and prevent fork stalling in both 

metazoans and yeast (Chou & Elledge, 2006; Errico et al, 2007; Katou et al, 2003; Liu et 

al, 2006b; Noguchi et al, 2003; Noguchi et al, 2004; Petermann et al, 2008; Szyjka et al, 

2005; Tourriere et al, 2005; Unsal-Kacmaz et al, 2007; Yoshizawa-Sugata & Masai, 

2007).   

The termination of DNA replication is less understood than the initiation of 

replication.  In eukaryotic cells, replication forks terminate when two replication forks 

meet or when one replication fork approaches the end of a telomere.  However, most data 

on the termination of replication are from studies in prokaryotes; the current theory is that 

as two forks approach each other from opposite directions, one fork stops while the other 

proceeds (Kaplan, 2006).  This process is regulated so forks do not collide and all DNA is 

replicated. 

1.2  Checkpoints 

Checkpoints are cellular mechanisms that pause the cell cycle to prevent pre-

mature entry into the next phase of the cell cycle.  DNA damage and the subsequent 

repair of that damage activate checkpoints to allow the cell additional time to repair the 

damage before it is made permanent by cell division.  When DNA is not completely 

replicated in S phase or DNA damage is encountered, cells delay the cell cycle, maintain 
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the replication fork structure so replication can re-start upon repair of the damage, repair 

the DNA, inhibit replication from other origins of DNA replication, and alter the 

transcriptional program of the cell.  If checkpoint mechanisms fail, cells suffer from 

higher mutation rates and potentially cell death, are more likely to become cancerous, and 

can suffer from accelerated aging (Czornak et al, 2008; Erkko et al, 2008; Hartwell & 

Kastan, 1994; Karppinen et al, 2006; Kerzendorfer & O'Driscoll, 2009; Singh et al, 

2009).   

Like DNA replication, the initial steps of checkpoints are better understood than 

the termination of the checkpoint signal and the recovery from checkpoints.  It is likely 

that checkpoints are down-regulated upon removal of the activating signal once the 

damaged DNA has been repaired.  If DNA damage can not be repaired, an adaptation 

response, observed in yeast, Xenopus, and human cells, can occur in which cells enter 

mitosis with the DNA damage still present (Leroy et al, 2003; Pellicioli et al, 2001; 

Sandell & Zakian, 1993; Syljuasen et al, 2006; Toczyski et al, 1997; Vaze et al, 2002; 

Yoo et al, 2004a). 

The type of DNA damage present and the stage of the cell cycle specifies which 

checkpoint mechanism and method of repair will be utilized by the cell.  Checkpoint 

responses to DNA replication stress and DNA double-strand breaks, both active in S and 

G2 phases, are described below; other checkpoint responses are present in G1 and M 

phases.  The main checkpoint mechanisms each have a main, apical kinase regulating 

many aspects of the checkpoint response.  It is the ATR kinase that responds to 

replication stress, while ATM is the prominent kinase that responds to DSBs in S and G2 

phases. 
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1.3  Replication Stress 

 As cells replicate their DNA, replication stress occurs when replication forks stall 

upon encountering damaged DNA, protein bound to DNA, abnormal DNA structures, or 

when the helicase and polymerase activities of the fork become uncoupled.  Replication 

stress triggers the activation of the ATR-dependent checkpoint, and signaling through this 

pathway retards cell cycle progression, keeping the cell in S phase and providing 

additional time to complete the replication of genomic DNA.  In addition to replication 

stress, the ATR-dependent checkpoint is also activated by ATM in the presence of DNA 

double-strand breaks (DSBs), discussed below (Jazayeri et al, 2006; Yoo et al, 2007). 

Upon occurrence of replication stress, tracts of single-stranded DNA (ssDNA) are 

formed at the replication fork, likely due to the activity of the MCM replicative helicase.  

As with most ssDNA in the cell, this is coated in the ssDNA-binding protein RPA to 

protect the ssDNA from degradation.  RPA-coated ssDNA is believed to be the signal for 

activation of the ATR-dependent DNA replication checkpoint (Costanzo et al, 2003; Zou 

& Elledge, 2003).  The extent of checkpoint activation depends upon both the length of 

RPA-coated ssDNA tracts and the type of DNA end exposed, with maximal checkpoint 

activation when a 5′ end is exposed at a ssDNA-dsDNA (double-stranded DNA) junction 

(MacDougall et al, 2007; Shiotani & Zou, 2009).  

The ATR kinase and its partner ATRIP, henceforth referred to as the ATR-ATRIP 

complex, are recruited to RPA-coated ssDNA through an RPA-binding domain in ATRIP 

(Ball et al, 2005; Kim et al, 2005; Zou & Elledge, 2003).  Other proteins recruited to the 

RPA-coated ssDNA are TopBP1, a BRCT-containing protein, and Rad17.  Rad17 forms 

a DNA damage response alternative RFC complex, containing the same small RFC 
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subunits as the replicative RFC complex but the large subunit is replaced by Rad17.  

Whereas the RFC complex participates in loading of the PCNA sliding clamp onto DNA 

for DNA replication fidelity, the Rad17 complex loads the 9-1-1 (Rad9-Rad1-Hus1) 

clamp onto damaged DNA.  The Rad17 complex preferentially loads the 9-1-1 complex 

onto DNA containing a free 5′ end at a ssDNA-dsDNA junction, the same DNA structure 

that elicits maximal checkpoint activation (Ellison & Stillman, 2003; MacDougall et al, 

2007; Shiotani & Zou, 2009).  Once the 9-1-1 complex is loaded onto chromatin, the C-

terminal tail of Rad9 in the 9-1-1 complex interacts with both ATRIP in the ATR-ATRIP 

complex and with TopBP1 (Lee et al, 2007; Yan & Michael, 2009).  Both TopBP1 and 

Rad9 stimulate ATR kinase activity (Delacroix et al, 2007; Kumagai et al, 2006; Mordes 

et al, 2008).  While the signal to activate the checkpoint appears to be RPA-coated 

ssDNA, its real purpose may be to simply bring these three proteins in close proximity, 

increasing the local concentration of these proteins.  Elegant experiments in both yeast 

and human cells reveal that simply increasing the local concentration of checkpoint 

proteins is sufficient to activate the checkpoint response in the absence of DNA damage 

or replication stress (Bonilla et al, 2008; Soutoglou & Misteli, 2008; Stucki & Jackson, 

2006). 

Interestingly, ATR-ATRIP binding to RPA-coated ssDNA is not strictly essential 

for ATR kinase activity stimulation, since ATR can still be activated when bound to 

ATRIP mutants lacking the ability to bind RPA (Ball et al, 2005; Kim et al, 2005).  The 

reciprocal result was shown in yeast; mutants of Rfa1, the yeast homolog of RPA, that 

are unable to bind Ddc2, the ATRIP homolog, only suffer minor checkpoint activation 

defects (Lee et al, 1998; Umezu et al, 1998).  Additionally, overexpression of the ATR-
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activating protein TopBP1 in human cells results in ATR-dependent phosphorylation of 

proteins in the absence of RPA-bound ssDNA (Ball et al, 2007; Kumagai & Dunphy, 

2006).  This also supports the theory that simply increasing the local concentration of 

checkpoint proteins is sufficient to activate checkpoints, as previously seen in both yeast 

and human cells (Bonilla et al, 2008; Soutoglou & Misteli, 2008; Stucki & Jackson, 

2006). 

Active ATR phosphorylates a myriad of proteins, some of which have recently 

been identified through large-scale screens (Matsuoka et al, 2007; Mu et al, 2007; Smith 

et al, 2009; Smolka et al, 2007; Stokes et al, 2007).  One of the most studied ATR 

substrates is Chk1, a serine/threonine kinase.  Human Chk1 is activated upon ATR-

dependent phosphorylation of residues S317 and S345 (Liu et al, 2000a; Zhao & 

Piwnica-Worms, 2001).  Active Chk1 then inhibits the Cdc25 phosphatases, thus 

preventing CDK activation and entry into mitosis (Furnari et al, 1997; Peng et al, 1997; 

Sanchez et al, 1997).  

Interestingly, TopBP1 and Rad17, proteins responsible for the activation of ATR 

kinase activity, are also targets of ATR phosphorylation (Bao et al, 2001; Kumagai et al, 

2006).  ATR-dependent Rad17 phosphorylation is required for 9-1-1 foci formation and 

checkpoint activation (Bao et al, 2001; Medhurst et al, 2008).  Rad9, of the 9-1-1 

complex, binds the same basic cleft in RPA that ATRIP binds, and the Rad9 C-terminal 

tail bridges TopBP1 and the ATR-ATRIP complex (Lee et al, 2007; Xu et al, 2008).  This 

data again suggests that without Rad17 phosphorylation and 9-1-1 accumulation, TopBP1 

alone would not activate ATR as efficiently.  Therefore, the checkpoint signal would not 

be amplified and perpetuated, so the checkpoint signal would not be sufficiently activated 
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in response to ssDNA.  Alternatively, the ATR-dependent phosphorylation of Rad17 may 

serve another purpose in checkpoint signaling. 

In addition to slowing cell cycle progression, as mentioned above, activate ATR 

kinase also affects other pathways.  Upon checkpoint activation, the further firing of 

DNA replication origins is inhibited until the DNA damage is repaired and the 

checkpoint mechanism is down-regulated (Costanzo et al, 2003; Maya-Mendoza et al, 

2007; Shechter et al, 2004).  ATR also participates in the recovery from stalled 

replication forks, as illustrated by recent work on the ATR-dependent phosphorylation of 

Mcm2.  Mcm2, a member of the MCM replicative helicase complex, can be 

phosphorylated by either ATM or ATR upon checkpoint activation (Trenz et al, 2008; 

Yoo et al, 2004b).  During checkpoint activating conditions, ATR phosphorylates Mcm2 

on S92 of the Xenopus protein, and this modification promotes Plx1, the Xenopus 

orthologue of Plk1 (Polo-like kinase 1), binding to Mcm2.  This interaction in turn 

promotes recovery from the checkpoint response by promoting origin firing (Trenz et al, 

2008).  Plx1 also binds and phosphorylates Claspin, causing it to release from chromatin 

and thus down-regulate the checkpoint response (Yoo et al, 2004a).  In human cells, 

Plk1-dependent degradation of Claspin in G2 phase of the cell cycle also downregulates 

the checkpoint mechanism by physically removing proteins that can keep the checkpoint 

activated (Gewurz & Harper, 2006). 

ATR phosphorylates many proteins at the replication fork, including RPA, the 

MCM2-7 complex, Mcm10, various DNA polymerases, TopBP1, Rad9 of the 9-1-1 

complex, Tipin, WRN, BLM, and BRCA1 (Bao et al, 2001; Cortez et al, 2004; Liu et al, 

2006a; Matsuoka et al, 2007; Oakley et al, 2001; Yoo et al, 2004b).  The function of 
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many of these phosphorylation events is as yet unknown; they may be related to 

maintenance of replication fork integrity, DNA repair, checkpoint recovery, protein 

degradation, or the transcription of genes.  Understanding the purpose of these ATR-

mediated modifications will shed light on the role of the ATR-dependent checkpoint 

pathway. 

Other unresolved questions surround the topic of replication fork stability upon 

stalling.  Both Claspin and the Tim/Tipin complex are required to maintain replication 

fork integrity, but results in yeast reveal that they are not equivalent, and forks lacking 

the respective homologs of these proteins respond differently when encountering a 

replication fork barrier (Chou & Elledge, 2006; Errico et al, 2007; Katou et al, 2003; 

Mohanty et al, 2006; Petermann et al, 2008; Unsal-Kacmaz et al, 2007; Yoshizawa-

Sugata & Masai, 2007).  Many questions remain regarding the similarities and 

differences between these fork-stabilizing proteins.  Also, the effect of ATR-dependent 

phosphorylation of Tipin is as yet unknown; however, Claspin phosphorylation by ATR 

is necessary for ATR-dependent checkpoint signaling in response to DSBs, but not in 

response to replication stress (Yoo et al, 2006).   

It is worth noting that there are also ATR-independent responses to stalled 

replication forks, although these mechanisms are not as well described.  One example of 

an ATR-independent response is the ubiquitylation of PCNA upon induction of stalled 

replication forks (Chang et al, 2006; Yang et al, 2008).  Ubiquitylation of PCNA 

promotes recruitment of translesion DNA polymerases, believed to be necessary for 

efficient replication in the presence of damaged DNA (Lopes et al, 2006).  This response 
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is dependent upon both Claspin and the Tim/Tipin complex, but independent of ATR 

(Yang et al, 2008). 

The Cdc7 kinase has been detected in a complex with the Claspin and Tim/Tipin 

homologs in yeast, may be a target of the ATR-dependent checkpoint, and these proteins 

participate in checkpoint mechanisms in yeast (Jares et al, 2000; Matsumoto et al, 2005; 

Shimmoto et al, 2009; Sommariva et al, 2005; Yanow et al, 2003).  In yeast, the Cdc7 

homolog participates in both the response to stalled replication forks and the response to 

alkylated DNA (Shimmoto et al, 2009; Sommariva et al, 2005).  The human Cdc7/Dbf4 

complex is a target of Chk1, and Dbf4 overexpression reverses the checkpoint response 

(Heffernan et al, 2007).  Cdc7 is involved in the metazoan checkpoint response, but the 

extent of conservation is unresolved.  Further research is needed to examine the role of 

Cdc7 in the response to replication stress and, potentially, the ATR-dependent 

checkpoint. 

1.4  DSB Resection through Homologous Recombination 
 

 Unlike DNA replication stress, DNA double-strand breaks (DSBs) can occur at 

any point during the cell cycle.   DSBs can be caused by exogenous sources, such as 

exposure to ionizing radiation, radiomimetic drugs, or UV light, or by endogenous 

cellular processes, including meiosis, V(D)J recombination, and immunoglobulin class-

switch recombination.  Unlike the replication stress checkpoint, there are two kinases that 

may regulate the checkpoint response to and repair of DSBs.  The ATM-dependent 

checkpoint pathway is coupled to repair by homologous recombination (HR), while the 

DNA-PK-dependent checkpoint pathway is associated with repair of DSBs by non-
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homologous end joining (NHEJ).  The repair method of choice is also cell-cycle 

dependent; homologous recombination relies on the presence of a sister chromatid, only 

present in S or G2 phases, for use as a template for repair, so HR is the dominant repair 

mechanism in S and G2.  Meanwhile, NHEJ is the predominant DSB repair mechanism 

in G1 phase, since cells have a 1N DNA content and there is no sister chromatid template 

available.  Repair by HR is an accurate repair, since there is a DNA template for repair, 

while repair by NHEJ is not necessarily accurate, as DNA ends are joined irrespective of 

homology (for review see Hartlerode & Scully, 2009).  The HR mechanism and ATM-

dependent checkpoint response will be reviewed here. 

 Upon DSB formation, free DNA ends are rapidly bound by the MRN (Mre11-

Rad50-Nbs1) complex.  Mre11 is a nuclease, Rad50 is a member of the SMC family 

proposed to hold sister chromatids in close proximity, and Nbs1 physically interacts with 

the ATM kinase (for review see Lavin, 2007).  MRN is also bound to CtIP (CtBP 

interacting protein), which interacts with BRCA1 and is essential for DNA end joining 

through homologous recombination (Sartori et al, 2007; Takeda et al, 2007; Yu et al, 

2006).  Mre11 in the MRN complex first processes the break by degrading the 5′ ends, 

and this processing releases short single-stranded DNA oligomers capable of activating 

the ATM kinase (Jazayeri et al, 2008).  Inactive ATM dimers are recruited to the DSB 

ends and activated by the MRN activity.  ATM dimers autophosphorylate and dissociate, 

and the active ATM monomers subsequently phosphorylate proteins involved in the 

checkpoint response and repair of DSBs (Bakkenist & Kastan, 2003).  One protein of 

interest that is quickly phosphorylated by ATM is the histone variant H2AX.  

Phosphorylated H2AX, together with the MDC1 adapter protein, recruit DSB checkpoint 
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and repair proteins to sites of damage and mediate repair by homologous recombination 

(Hartlerode & Scully, 2009).  ATM is also responsible for phosphorylating and activating 

Chk2, a serine/threonine effector kinase that further phosphorylates proteins in response 

to DSBs (Matsuoka et al, 1998; Matsuoka et al, 2000). 

 While the checkpoint signal is perpetuated and amplified by the ATM and Chk2 

kinases, the break is also being processed for repair.  DSBs are first processed by Mre11 

in the MRN/CtIP complex, as mentioned above.  This Mre11 processing is both the initial 

step of repair and an activating step for the checkpoint pathway.  DNA ends are further 

processed by a helicase and nuclease, either WRN and Dna2 or BLM and Exo1 (Liao et 

al, 2008; Nimonkar et al, 2008).  This mechanism of processing is well-conserved and 

consistent with genetic results in yeast (Budd & Campbell, 2009; Zhu et al, 2008).  If the 

break is processed by the WRN helicase and the Dna2 helicase-nuclease, WRN unwinds 

the duplex DNA and Dna2 degrades the 5′ strand, lengthening the 3′ ssDNA tail (Liao et 

al, 2008).  Yeast genetics indicate that it is the nuclease, not the helicase, activity of Dna2 

that participates in DSB processing (Budd & Campbell, 2009).  Exo1 is also capable of 

processing this 5′ end, thus extending the 3′ ssDNA tail, and the BLM protein stimulates 

Exo1 activity without requiring BLM helicase activity (Nimonkar et al, 2008).  While 

these two parallel pathways exist, the factors that drive the cell to use one pathway versus 

another are as yet unknown.   

The nuclease degradation of the 5′ strand to reveal a longer 3′ ssDNA tail allows 

the accumulation of RPA on the ssDNA.  Eventually, the bound RPA is replaced with 

Rad51 recombinase with the help of BRCA1, BARD1, and BRCA2.  It is the Rad51-

coated ssDNA that is competent for strand invasion of the sister chromatid to search for a 
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homologous sequence.  The cell can then synthesize the remaining missing DNA 

sequence, and this DNA structure is resolved by one of many enzymes capable of 

resolving the structure, including BLM and Topoisomerase IIIα, GEN1, SLX4, and the 

MUS81-EME1 complex (for review see Hartlerode & Scully, 2009). 

Checkpoint signaling in response to DSBs is not independent of the repair 

process.  Many DSB repair proteins are substrates of the ATM kinase, including Mre11.  

It has only recently been discovered that phosphorylation of Mre11 by ATM triggers the 

dissociation of Mre11 from DNA ends, likely releasing these ends for further processing 

for repair (Di Virgilio et al, 2009).  ATM phosphorylates many additional targets that 

participate in DSB repair, although the function of many of these modifications is as yet 

unknown (for review see Czornak et al, 2008).   These ATM-dependent phosphorylations 

may be involved in the recruitment of proteins to DSBs, in processing the DSBs, or in the 

down-regulation of the checkpoint signal. 

Processing of a DSB by HR also activates the ATR-dependent checkpoint 

pathway.  The extended RPA-coated 3′ ssDNA tails generated during processing of DNA 

ends may serve to recruit ATR-ATRIP (Shiotani & Zou, 2009).  Active ATM kinase 

phosphorylates TopBP1 with MRN as a mediator, which in turn activates the ATR kinase 

(Yoo et al, 2007; Yoo et al, 2009).  Therefore, DSBs activate both the ATM- and ATR-

dependent pathways, thus expanding the cellular response to DNA damage.  There is also 

cross-talk between the ATR- and ATM-dependent responses.  Chk1, a downstream target 

of the ATR kinase activated in response to replication stress, is essential for repair of 

DSBs by HR (Sorensen et al, 2005).  Additionally, Exo1, one of the nucleases that 

participates in the resection of DSBs by HR, was recently found to be a target of the ATR 
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under conditions of replication stress, with phosphorylation leading to degradation of 

Exo1 (El-Shemerly et al, 2008).  It is as yet unknown if ATM-mediated ATR activation 

by the DSB checkpoint also causes degradation of Exo1, or if this effect is limited to 

replication stress.  Degradation of Exo1 may signal completion of a given step of repair, 

or it may function in down-regulation of the checkpoint response.  Cross-talk between 

cellular pathways is a point of interest as we strive to understand the cellular response to 

DNA damage. 

 The importance of resolving DSBs is underscored by the multiple redundancies in 

the DSB processing pathway detected through yeast genetics.  In yeast, the nuclease 

activity of the Mre11 is not essential, although the MRN protein complex itself is 

necessary for DSB processing.  This is likely due to other nucleases, potentially Dna2 and 

Exo1, compensating for the lack of Mre11 nuclease activity.  Yeast lacking Dna2 or Exo1 

can still repair DSBs, suggesting that cells can compensate for the lack of either of these 

proteins and that Dna2 and Exo1 may be able to compensate for each other (Budd et al, 

2009; Zhu et al, 2008).  Supporting this theory, yeast genetic interactions revealed that it 

is the nuclease activity of the Dna2 helicase-nuclease that participates in DSB repair; a 

helicase-dead mutant had no affect on repair efficiencies (Budd & Campbell, 2009).  

Yeast genetic interactions has revealed much about these functional redundancies, and a 

current point of interest is understanding these functional redundancies in metazoans. 

 While much has also been learnt about the response to DSBs, many questions 

remain regarding the DSB checkpoint and repair.  Recent data suggests how the cell 

cycle may influence the prevalence of DSB repair by HR versus NHEJ at different cell 

cycle stages.  CtIP, which participates in HR, is regulated by CDK-dependent 
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phosphorylation events, and this may promote repair by HR over NHEJ in S and G2 

phases (Chen et al, 2008; Huertas & Jackson, 2009; Yun & Hiom, 2009).  There are 

likely many more points of cell cycle regulation that are not yet understood, including as 

yet unidentified proteins and modifications to proteins involved in DSB repair.   

Cross-talk between checkpoint pathways is also a point of interest.  The ATM-

dependent activation of ATR was only recently identified, and the extent of cross-talk 

between other PIKKs, particularly ATR and DNA-PK, is an area of current research.  

ATM does phosphorylate DNA-PK in irradiated cells, and this ATM-dependent 

modification acts cooperatively with DNA-PK autophosphoryalation for cooperative 

activation of the DNA-PK kinase activity (Chen et al, 2007).  ATR-dependent activation 

of ATM upon DNA replication fork stalling or UV has been reported in human cells; 

however, this effect was not observed in Xenopus extract treated ssDNA or dsDNA to 

induce checkpoint activation (Jazayeri et al, 2008; Stiff et al, 2006).  

Finally, the role of MRN in DSB repair is intriguing.  Mre11 nuclease activity is 

not required for DSB resection, but the intact MRN protein complex is required.  MRN 

may serve as a scaffold for binding of other repair proteins, or it may be a domain in 

Rad50 or Nbs1 that is essential for DSB repair.  Understanding the role of MRN past the 

role of the nuclease, the non-essential role, should yield a greater understanding of DSB 

repair.  Interestingly, MRN also participates in DSB repair by NHEJ (non-homologous 

end joining).  Removal of the MRN complex, or any protein within this complex, greatly 

reduces the efficiency of NHEJ by both classical and alternative pathways in human cells 

(Deng et al, 2009; Dimitrova & de Lange, 2009; Dinkelmann et al, 2009; Rass et al, 

2009; Xie et al, 2009).  The role of MRN in repair of DSBs by both HR and NHEJ is 
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interesting, and is likely to be one of multiple points in which these pathways are 

intertwined. 

1.5  Xenopus Cell-Free System 
 

This work examines the vertebrate homologs of the well-studied S. cerevisiae 

proteins, Dna2, Tof1, and Csm3, in an effort to further the understanding of these 

proteins in metazoans.  Most experiments were performed in Xenopus laevis cell-free 

extract, derived from X. laevis eggs arrested in metaphase of meiosis II that were crushed 

by centrifugation.  The addition of calcium stimulates the extract to enter interphase, or S 

phase, and the further addition of chromosomal DNA and an ATP-regeneration system 

results in the formation of nuclei and DNA replication in this cell-free extract.  The 

maternal stores of protein from the eggs are sufficient for DNA replication without the 

need for transcription. This DNA replication is both regulated and synchronized, and 

cellular responses to DNA damage can be successfully recapitulated in this extract (Blow 

& Laskey, 1986; Garner & Costanzo, 2009). 

 In this text, interphase extract refers to S phase extract with no DNA added, and 

CSF extract is extract that has not been stimulated by addition of calcium, so it is arrested 

in metaphase II of meiosis.  CSF extract is commonly referred to as “M phase” extract, 

due to its resemblance to M phase extracts.  For all experiments involving the addition of 

DNA to these extracts, Xenopus laevis demembranated sperm chromatin was used as the 

source of chromosomal DNA. 
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