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Abstract

In situ hybridization methods enable the mapping of mRNA expression within intact bio-

logical samples. With current approaches, it is challenging to simultaneously detect mul-

tiple target mRNAs in vertebrate embryos and tissue sections – a significant limitation in

attempting to study interacting regulatory elements in systems most relevant to human

development and disease. This thesis presents a multiplexed fluorescent in situ hybridiza-

tion method based on orthogonal amplification with hybridization chain reaction (HCR).

Using this approach, RNA probes complementary to mRNA targets trigger chain reactions

in which fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent ampli-

fication polymers. Robust performance and high signal-to-background are achieved when

imaging five target mRNAs at the same time in fixed whole-mount zebrafish embryos. The

programmability and sequence specificity of these amplification cascades enable all five

amplifiers to operate orthogonally at the same time in the same sample. The fact that

amplification polymers are triggered to self-assemble in situ results in excellent sample pen-

etration and high signal-to-background. These properties suggest the broad applicability

of fluorescent in situ HCR amplification to multiplexed imaging of mRNA expression in

normal and pathological cells, embryos, and tissue sections.
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Chapter 1

Introduction

Each cell in a developing embryo contains the same genome, yet the regulatory circuits

encoded within this genome implement a developmental program yielding significant spa-

tial heterogeneity and complexity. In situ hybridization (ISH) methods are an essential

tool for elucidating these developmental processes, enabling the detailed spatial mapping

of mRNA expression in a morphological context from subcellular to organismal levels [1–

16]. ISH, introduced in 1969 [17–19], initially used radioisotopes to label RNA probes,

providing high sensitivity but limited spatial resolution. The inconvenience of hazardous

materials led to the invention of several nonradioactive alternatives. Direct fluorescent de-

tection [3] yields low sensitivity due to difficulties involved in the synthesis and purification

of multiply labeled oligonucleotides [10, 15]. Amplification using dendritically branched

DNA self-assembly [20, 21] improves sensitivity, but the use of large components is known

to reduce sample penetration [22]. Multiple (50–130) singly-labeled short probes [15] can

be used to detect single mRNAs in cells, but this approach does not provide the degree

of amplification currently required for tissue sections or whole-mount embryo studies. To

date, immunological detection equipped with catalyzed reporter deposition (CARD) is the

most popular ISH method [8, 10, 11, 23–27]. Commercially available reagents and high

sensitivity make CARD attractive, but simultaneous detection of multiple mRNA species is

cumbersome and time-consuming [28, 29]. Owing to the lack of compatible orthogonal de-

position chemistries, multiple probes must be amplified serially to ensure that each reporter

is deposited at only one target species. Due to sample degradation, serial amplification

is generally difficult to extend beyond two colors [27–30] in vertebrate embryos and tissue
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sections, a signicant limitation in attempting to study interacting regulatory elements in

systems most relevant to human development and disease. Here, we overcome this difficulty

by programming orthogonal HCR amplifiers [31] that function as independent molecular

instruments, simultaneously reading out the expression patterns of five target mRNAs from

within a single intact biological sample.

In Chapter 2, it is shown that previous HCR designs are not functional under the

stringent buffer conditions of ISH, which are necessary to destabilize non-specific binding in

situ [32, 33]. In vitro and in situ calibration experiments are performed to obtain constraints

for engineering new HCR systems suitable for ISH applications.

In Chapter 3, newly designed HCR systems are validated for imaging mRNA expression

with high signal-to-background. The parallel multiplexing capabilities of in situ HCR am-

plification are demonstrated by simultaneously imaging five mRNA target species in fixed

whole-mount zebrafish embryos.

Appendices A and B provide supplementary information for Chapters 2 and 3 and

Appendix C describes an autonomous bipedal walker powered by DNA hybridization.
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Chapter 2

HCR Design Constraints for In
Situ Hybridization Applications

2.1 Introduction

Hybridization chain reaction (HCR) was invented by Dirks and Pierce in 2004 [1]. HCR is an

amplification mechanism that exploits the concept of triggered self-assembly [2] to assemble

a long polymer from two small monomer species upon detection of a target molecule. Using

nucleic acids as a building material, one can design many HCR systems that can simultane-

ously detect and amplify unique targets without cross-talk. The ability to multiplex makes

this mechanism extremely attractive in situations when one wishes to study the relationship

between multiple targets, since it facilitates their simultaneous detection in a single sample.

In this chapter, HCR is introduced, and it is shown that the original design is not func-

tional under the stringent ISH conditions required for target specificity. Several calibration

experiments are used to measure the free energy requirements for HCR to proceed as in-

tended under ISH conditions. These measurements will be employed in Chapter 3 to build

a new HCR amplifier suitable for localizing mRNA targets in fixed zebrafish embryos.

2.2 Hybridization Chain Reaction

An HCR amplifier consists of two nucleic acid hairpin species (H1 and H2 in Figure 2.1a)

that are designed to coexist metastably in the absence of a nucleic acid initiator (I). Each

HCR hairpin consists of an input domain with an exposed toehold and an output domain
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with a toehold sequestered in the hairpin loop (see Figure 2.2 for hairpin nomenclature).

Hybridization of the initiator to the input domain of H1 (labeled ‘a-b’ in Figure 2.1a) opens

the hairpin to expose its output domain (‘c*-b*’). Hybridization of this output domain

to the input domain of H2 (‘b-c’) opens the hairpin to expose an output domain (‘b*-

a*’) identical in sequence to the initiator. Regeneration of the initiator sequence provides

the basis for a chain reaction of alternating H1 and H2 polymerization steps leading to

formation of a nicked double-stranded ‘polymer’. If the initiator is absent, the hairpins

are metastable (i.e., kinetically impeded from polymerizing) due to the sequestration of

the output toeholds in hairpin loops. Figure 2.1b demonstrates simultaneous and specific

detection of four different DNA targets using four HCR amplification systems in the presence

of total RNA extracted from zebrafish embryos.

This mechanism has two conceptual properties that are significant in attempting to

achieve simultaneous multiplexed in situ amplification in vertebrate embryos. First, the

programmable chemistry of nucleic acid base pairing suggests the feasibility of engineering

orthogonal HCR amplifiers that operate independently in the same embryo at the same

time. Second, in contrast to molecular self-assembly via traditional annealing protocols in

which components interact as soon as they are mixed together [3–5], HCR is an isother-

mal triggered self-assembly process. Hence, hairpins should penetrate the sample prior

to undergoing triggered self-assembly in situ, suggesting the potential for excellent sample

penetration and high signal-to-background.

2.3 Testing the Original HCR System for In Situ Hybridiza-

tion

The original HCR system was designed to function optimally at room temperature in a

phosphate buffered sodium solution (1× SPSC: 50 mM Na2HPO4, 0.5 M NaCl, pH 6.8)

[1]. Under these conditions, the stem of each hairpin remains closed in the absence of an

initiator and the two monomers will not interact with each other. When an initiator is

introduced to the system, a nucleation event between the toehold of an H1 hairpin and the

initiator occurs. This triggers a cascade of branch migration reactions that leads to polymer
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Figure 2.1: Multiplexing amplification with orthogonal hybridization chain reactions. (a)
HCR mechanism. Metastable DNA hairpins self-assemble into amplification polymers upon
detection of a specific DNA initiator. Initiator I nucleates with hairpin H1 via base-pairing
to single-stranded toehold ‘a’, mediating a brach migration [6] that opens the hairpin to
form complex I·H1 containing single-stranded segment ‘c*-b*’. This complex nucleates with
hairpin H2 via base-pairing to toehold ‘c’, mediating a brach migration that opens the hair-
pin to form complex I·H1·H2 containing single-stranded segment ‘b*-a*’. Thus, the initiator
sequence is regenerated, providing the basis for a chain reaction of alternating H1 and H2
polymerization steps. (b) Four orthogonal HCR amplifiers were used to demonstrate the
specific detection of four distinct DNA fragments in the presence of total zebrafish RNA.
All lanes in the native agarose gel contained four pairs of hairpin species (HA1 and HA2,
HB1 and HB2, HC1 and HC2, and HD1 and HD2) comprising the four independent HCR
systems. Hairpins HA2, HB2, HC2, and HD2 were labeled with the organic fluorophores
FAM (blue), Cy5 (green), Cy3 (red), and Cy5.5 (yellow), respectively. Lane 1: No ampli-
fication in the absence of initiator. Lane 2–5: specific detection of an unique initiator for
each HCR system. See Appendix A for sequences and experimental details.
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Stem

ToeholdLoop

HCR hairpin

Figure 2.2: HCR hairpin nomenclature.

formation, as shown in Figure 2.1.

ISH uses a solution that contains a high concentration (40–50%) of formamide, a desta-

bilizing agent, which inhibits the formation of nucleic acid duplexes by disrupting their

hydrogen bonds [7, 8]. Additionally, ISH is performed under temperature ranges from 45

to 70 ◦C. These stringent conditions are used to minimize non-specific binding within the

sample; however, they are not amenable to proper function of the original HCR system.

Due to the incompatibility between HCR and traditional ISH conditions, we decided to

decouple the detection and amplification steps. (1) Detection step: a 78-nucleotide (nt) long

probe is hybridized to a target using the traditional stringent ISH protocol. The probe is

made up of a 24-nt HCR initiator, a 4 uridine spacer, and a 50-nt target recognition region

(Table A.2). Excess probes are removed with a series of stringent washes. (2) Amplification

step: HCR hairpins (H1 and fluorescently labeled H2) are introduced in an HCR-friendly

buffer (1× SPSC) to the sample. After polymerization, unreacted hairpins are removed

with mild washes.

We chose an EGFP transgene, driven by an flk1 promoter, as the target in fixed 25

hours postfertilization (hpf) zebrafish embryos [9, 10] to test this protocol (Figure 2.3).

Fluorescent signal (red) was observed in both the GFP+ and GFP- embryos, which shows

that the staining is not triggered by the GFP mRNA and that the hairpin washes were not

sufficiently stringent. Additionally, fluorescent signal in the embryo treated with only H2

hairpin further suggests that the staining is an outcome of random aggregation instead of

the designed polymerization. After testing HCR in zebrafish embryos under a variety of

conditions in situ, we found that it was not possible to adjust the ISH protocol to ensure

HCR functionality, therefore we decided to modify the HCR design so that it would be
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compatible with stringent ISH conditions.

(a) GFP+ (b) GFP+ with HCR

(c) GFP- with HCR (d) GFP+ with H2 only

ventral

dorsal

yolk sac

GFP

Figure 2.3: In situ hybridization with the original HCR system. (a) Expression pattern of
the flk1::egfp transgene. The gene is expressed in the endothelial cells of the blood vessels
above the yolk sac and under the notochord (shown by the green fluorescence of GFP). (b-c)
The experiment was performed in two steps with different hybridization conditions. First, a
probe trailing an HCR initiator was incubated with the embryos in stringent hybridization
solution at 45 ◦C for 16 hr. Excess probes were removed with stringent washes as described
in Appendix A.1. Then, HCR hairpins were introduced to the embryos in 1× SPSC buffer
at room temperature. The embryos were washed with 1× SPSC buffer after 16 hr to remove
unbound hairpins. (d) Same experimental procedure as (b-c) but only the H2 hairpin was
introduced to the sample. Without stringent hybridization conditions, non-specific staining
will be problematic as demonstrated by the red puncta in all three cases. See Appendix A
for sequences and experimental details.
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2.4 Duplex Calibration

The free energy of each HCR polymerization step arises from the enthalpic benefit of form-

ing additonal stacked base pairs between the toehold in the output domain at the living end

of the polmyer and the toehold in the input domain of a newly recruited hairpin, as well as

from the entropic benefit of opening the hairpin loop of the recruited hairpin. The original

HCR system employed DNA hairpins with 6-nt toeholds/loops and 18-bp stems [1] (result-

ing in six stacked base pairs plus the opening of a 6-nt hairpin loop per polymerization step).

Previous in vitro and in situ studies revealed that this small-loop DNA-HCR system did not

polymerize under stringent hybridization conditions due to insufficient free energy per poly-

merization step. Thus, we confronted the challenge of engineering new HCR hairpins that

retain two key properties under these conditions: (1) hairpin metastability in the absence

of the initiator, (2) hairpin polymerization in the presence of the initiator. Previous expe-

rience told us that these two objectives are at odds. Hairpin metastability is promoted by

reducing toehold/loop size; hairpin polymerization is promoted by increasing toehold/loop

size. Hence, it was unclear a priori whether HCR hairpins could be re-dimensioned for use

in stringent hybridization conditions.

Secondary structure free energy parameters [11, 12] have not been measured for stringent

hybridization conditions (e.g., 50% formamide), so we could not re-dimension components

based on computational simulation [2, 13]. Instead, we employed test tube and in situ con-

trol experiments to measure the minimum number of base pairs required for two monomers

to hybridize stably under stringent conditions by using an RNA probe of fixed length while

varying the length (L = 10, 12, 18, 24, 30) of an RNA target strand with roughly 50%

GC content (Table A.3). Figure 2.4 shows the binding assay, performed using a native

polyacrylamide gel, and its quantification, for an RNA target strand of length 12. Similar

experiments were performed for all other lengths (data not shown). We found that 12 RNA

base pairs provide the minimum free energy gain required for two strands to form a stable

duplex in hybridization solution at 45 ◦C. A similar binding assay performed in situ with

fixed zebrafish embryos reached the same conclusion (Figure 2.5).
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Figure 2.4: In vitro RNA duplex binding assay. This assay helped us to determine the
minimum number of base pairs required for two complementary strands to form a stable
duplex in stringent hybridization solution (50% formamide, 2× SSC, 0.1% Tween 20, 9 mM
citric acid, 500 µg/mL tRNA, 0.02% BSA, 0.2% fish powder) at 45 ◦C. The concentration of
the FAM-labeled probe was fixed at 100 nM for all lanes. We varied the target concentration
(lane 2–7) and quantified the target-probe duplex (upper band) to determine the extent of
hybridization. The slope of the fitted line suggests that 99% of the targets were bound to
a probe when the duplex length was 12 base pairs long. See Appendix A for experimental
details.

2.5 Hairpin Calibration

To favor metastability of the HCR hairpins, it is preferable to use a smaller loop and corre-

spondingly shorter toehold. Since additional free energy can be gained from the increase in

entropy due to opening of the hairpin loop, we repeated the in vitro binding assay described

above, this time substituting a hairpin for the target. In this study, we varied the length

of the hairpin toehold (L = 8, 10, 12 nt) with roughly 30% GC content. Figure 2.6 shows

the binding assay and its quantification for a hairpin with toehold of length 10. Similar

experiments were performed for all other toehold lengths (data not shown). From these

data, we conclude that L ≥ 10 is required to provide stable binding between the hairpin

and the initiator. This in vitro result guides the design of new HCR systems for in situ

applications in Chapter 3.
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(a) Schematic

L = 10, 12, 24, 30reporter

  reporter
complement
    (80-L)

probe GFP mRNA

helper

(c) Target+ (L = 24)(b) Target+ (L = 30) (d) Target+ (L = 12)

(e) Target+ (L = 10) (f) Target- (L = 12) (g) Target+ with reporter only

Figure 2.5: In situ duplex binding assay. (a) Schematic of the binding assay. A 50-nt RNA
probe (orange strand) for GFP mRNA has a single-stranded region of length L that is
complementary to the overhang of the reporter complex. The reporter (green) was labeled
with multiple Alexa 647 fluorophores. The reporter complement strand (purple) was used
to prevent any non-specific base pairing of the reporter strand to other DNA or RNA in
the zebrafish and the 50-nt helper strand (cyan) was there to block undesired hybridization
between the overhang of the probe to the proximal mRNA sequence. (b-f) The assay was
performed over a two-day period. On the first day, the GFP probe and helper strand were
hybridized to the fish for 16 hr in hybridization solution. Excess probes and helper strands
were eliminated with stringent washes as described in Appendix A.1.6. The reporter com-
plex, labeled with Alexa 647, was then introduced to start the second day of hybridization.
Finally, the embryos were washed again to remove unbound reporters. (g) Same experimen-
tal procedure as (b-f) but only the helper strand (no probe) was introduced on the first day.
The occurrence of staining (blue), only in the GFP positive embryos, demonstrated that
L ≥ 12 is sufficient for the reporter to hybridize stably and specifically to the probe. The
morphology of the fish is shown in green, using autofluorescence from an image acquired
with a 488 nm laser and a 515 ± 15 nm bandpass filter. Scale bar, 50 µm, is applicable to
all images.
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Figure 2.6: In vitro RNA hairpin binding assay. This assay allows us to determine the
minimum number of base pairs required for adding a hairpin monomer to an HCR polymer
in stringent hybridization solution (50% formamide, 2× SSC, 0.1% Tween 20, 9 mM citric
acid, 500 µg/mL tRNA, 0.02% BSA, 0.2% fish powder) at 45 ◦C. The concentration of the
FAM-labeled probe (HCR initiator) was fixed at 100 nM for all lanes. We varied the hairpin
concentrations (lane 2–5) and quantified the hairpin-probe duplex band (upper band) to
determine the amount of probe hybridized to a hairpin. From the plot, we conclude that
a hairpin toehold length of 10 RNA bases is sufficient for the initiator to hybridize stably.
See Appendix A for experimental details.

2.6 Conclusion

The original HCR system is not functional under stringent ISH conditions due to insuf-

ficient free energy gain from nucleation between the hairpin and the initiator. However,

we have demonstrated that relaxing the ISH conditions to ensure HCR functionality is not

viable because stringency during hybridization is crucial to avoid non-specific staining in

the sample. Therefore, we attempted to modify the dimensions of the HCR hairpins to

make them functional under stringent ISH conditions.

By performing duplex and hairpin calibration experiments both in vitro and in situ, we

have successfully determined the minimum number of base pairs necessary for two RNA

strands to hybridize stably and specifically in stringent conditions. We conclude that a

minimum of 12 RNA base pairs with 58% GC content provide the minimum free energy

gain required for two single-stranded RNA sequences to form a stable duplex in hybridization
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solution at 45 ◦C. For the hairpin construct, a toehold at least 10 RNA bases long with 30%

GC content will ensure stable binding between the hairpin and the initiator. In the next

chapter, the results drawn from these extensive studies will lead us to a new HCR system

that is functional in stringent ISH conditions.

Please refer to Appendix A for supplementary information pertaining to this chapter.
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Chapter 3

Multiplexed In Situ Amplification
via Fluorescent Hybridization
Chain Reactions

The work presented here is heavily based on the following manuscript in preparation:

H. M. T. Choi, J. Y. Chang, L. A. Trinh, J. E. Padilla, S. E. Fraser and N. A. Pierce.

Programmable in situ amplification for multiplexed bioimaging.

3.1 Introduction

Based on the free energy design constraints obtained in Chapter 2, here we develop a new

HCR-based ISH method to achieve multiplexed ISH with high signal-to-background. This

method will offer biologists, medical researchers, and doctors new possibilities for observing,

elucidating, and diagnosing the regulatory circuits encoded in our genes.

3.2 Redesigning HCR for ISH Applications

The results from Chapter 2 showed that a gain of 10 RNA base pairs with 30% GC content

is sufficient to achieve stable hybridization between a hairpin and its target in stringent

ISH conditions. Imposing this design constraint to promote hairpin polymerization did not

prevent us from retaining hairpin metastability under the same conditions. Therefore, we

designed four new HCR systems, each consisting of RNA hairpins with 10-nt toeholds and

loops targeting four unique RNA initiators. The test tube study of Figure 3.1b illustrates
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four HCR amplifiers operating simultaneously and orthogonally in a background of zebrafish

total RNA under stringent hybridization conditions. The hairpins exhibit metastability in

the absence of initiators; the introduction of a single initiator species selectively triggers the

cognate polymerization reaction. The designed sequence independence between amplifiers

ensures that multiple targets can be amplified in parallel without cross-talk. These results

suggest that the ability to generate orthogonal amplifiers (i.e., the numbers of mRNAs that

can be detected simultaneously) will not be a limiting factor because the design space for

nucleic acid sequences is large.
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I4I2 I3
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hairpins

100 bpI1
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b bb* b*
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Figure 3.1: Multiplexed amplification with orthogonal HCR amplifiers. (a) Mechanism.
Metastable fluorescent RNA hairpins self-assemble into a polydisperse population of fluo-
rescent amplification polymers upon detection of specific RNA initiators. (b) Validation
in a test tube. Agarose gel demonstrating orthogonal amplification in a reaction volume
containing four HCR amplifiers and zebrafish total RNA. Minimal leakage from metastable
states is observed in the absence of initiators.
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3.3 Multiplexed In Situ Hybridization using In Situ HCR

Amplification

We perform in situ hybridization in two stages independent of the number of target mRNAs

(Figure 3.2). In the detection stage, all target mRNAs are detected simultaneously via

in situ hybridization of complementary RNA probes; unused probes are washed from the

sample. Each target mRNA is addressed by a probe set comprising one or more RNA probe

species carrying identical initiators; different targets are addressed by probe sets carrying

orthogonal initiators. In the amplification stage, optical readouts are generated for all

target mRNAs simultaneously using fluorescent in situ HCR. Orthogonal initiators trigger

orthogonal hybridization chain reactions in which metastable RNA hairpins self-assemble

into tethered amplification polymers labeled with spectrally distinct fluorophores; unused

hairpins are washed from the sample prior to imaging.

3.4 Validation of In Situ HCR Amplification

To validate in situ HCR amplification in fixed whole-mount zebrafish embryos, we first

targeted a transgenic mRNA, observing bright staining with the expected expression pattern

(Figure 3.3a). Wildtype embryos (lacking the target) show minimal staining (Figure 3.3b),

comparable to the autofluorescence observed in the absence of probes and hairpins (Figure

3.3c). As expected, amplification is not observed if the probe or either of the two hairpin

species is omitted (Figure 3.3d-f). To verify that the staining in Figure 3.3a results from

the intended polymerization mechanism rather than from aggregation of closed hairpins,

alteration of one or both hairpin stem sequences yields the expected loss (Figure 3.3g and

3.3i) and recovery (Figure 3.3h) of signal.
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Figure 3.2: In situ hybridization using fluorescent in situ HCR amplification. (a) Detection
stage. Probe sets are hybridized to mRNA targets prior to washing unused probes from
the sample. (b) Amplification stage. Initiators trigger self-assembly of tethered fluorescent
amplification polymers prior to washing unused hairpins from the sample. (c) Experimental
timeline. The same two-stage protocol is used independent of the number of target mRNAs.
For multiplexed experiments (3-color example depicted), probe sets for different target
mRNAs carry orthogonal initiators that trigger orthogonal HCR amplification cascades
labeled by spectrally distinct fluorophores.
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Figure 3.3: Validation of fluorescent in situ HCR amplification in fixed whole-mount ze-
brafish embryos. Embryo morphology is depicted by autofluorescence in the gray channel.
The target is the transgenic transcript Tg(flk1:egfp), expressed below the notochord and
between the somites (see the expression atlas of Figure 3.5a). Fluorescent staining (green
channel) using in situ HCR in Target+ (a) and Target- (b) embryos compared to (green
channel) autofluorescence in the absence of probes and hairpins (c). No amplification in the
absence of probes (d) or of one hairpin species (e, f). Modification of hairpin stem sequences
(H1′, H2′) disrupts (g, i) and restores (h) toehold-mediated branch migration, confirming
that staining arises from triggered polymerization rather than from random aggregation
of hairpins. Typical for zebrafish, the yolk sack (bottom left of each panel) often exhibits
autofluorescence. Embryos fixed 25 hpf. Probe set: 1 RNA probe. Scale bar: 50 µm.
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3.5 Sample Penetration with Small Components and Trig-

gered Self-Assembly

Detection and amplification components must successfully penetrate an embryo in order to

generate signal at the site of an mRNA target. HCR is a triggered self-assembly mechanism,

offering the conceptual benefit that small RNA probes and hairpins penetrate the embryo

prior to generating larger, less-mobile amplification polymers at the site of mRNA targets.

To assess the practical significance of these properties, we imaged an endogenous mRNA

with a superficial expression pattern, comparing in situ HCR to the ex situ HCR alternative

in which amplification polymers are pre-assembled prior to penetrating the sample. The

images of Figure 3.4a and pixel intensity histograms of Figure 3.4b demonstrate dramatic

signal loss using ex situ HCR, confirming that it is desirable to penetrate the sample with

small components that self-assemble in a triggered fashion at the site of mRNA targets.

3.6 High Signal-to-Background

In situ amplification is intended to generate high signal-to-background to enable accurate

mapping of mRNA expression patterns. With our approach, signal is produced when specif-

ically hybridized probes initiate specific HCR amplification to yield fluorescent polymers

tethered to cognate mRNA targets. Background can arise from three sources: non-specific

detection (probes that bind non-specifically and are subsequently amplified), non-specific

amplification (hairpins and polymers that are not hybridized to cognate initiators), and

autofluorescence (inherent fluorescence of the fixed embryo). To characterize the relative

magnitudes of these effects, we imaged an mRNA target with a sharply defined region of

expression and plotted histograms of pixel intensity within a rectangle that crosses the

boundary of this expression region. The pixel intensity histograms of Figure 3.4b reveal

that autofluorescence is the primary source of background, that non-specific detection con-

tributes a small amount of additional background, and that non-specific amplification con-

tributes negligibly to background. By comparison, the signal generated using in situ HCR

amplification yields pixel intensities that are significantly higher than background.
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The observation that autofluorescence is the dominant source of background suggests

that addressing each target mRNA with a probe set comprising multiple probes [1–3] would

further increase the signal-to-background ratio. Subsequent in situ HCR amplification would

then decorate each target with an array of amplification polymers. Figure 3.4c demonstrates

that the ratio of signal to autofluorescence increases with the number of probes per target.

Notably, using in situ HCR, the pixel intensity distribution is bimodal using either 3 or

9 probes per target, with a peak at low intensity corresponding to background (from the

portion of the rectangle outside the expression region) and a broad distribution at higher

intensities corresponding to signal (from the portion of the rectangle within the expression

region).

3.7 Simultaneous Mapping of Five Target mRNAs in a Fixed

Whole-Mount Zebrafish Embryo

The fundamental benefit of using orthogonal HCR amplifiers is the ability to perform si-

multaneous in situ amplification for multiple target mRNAs, enabling straightforward mul-

tiplexed imaging. Figure 3.5 demonstrates simultaneous imaging of five target mRNAs in

a fixed whole-mount zebrafish embryo. Targets were detected using five probe sets carry-

ing five orthogonal initiators and amplification was performed using five orthogonal HCR

amplifiers carrying five spectrally distinct fluorophores.
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Figure 3.4: Characterizing signal-to-background for fluorescent in situ HCR amplification.
The target is a muscle gene transcript (desm) expressed in the somites. Embryos fixed 25
hpf. (a) Sample penetration with small components. In situ HCR: probes and hairpins
penetrate the sample prior to executing triggered self-assembly of tethered amplification
polymers in situ. Ex situ HCR: probes trigger self-assembly of amplification polymers prior
to penetrating the sample. Probe set: 3 RNA probes. Scale bar: 50 µm. (b) Background
and signal contributions. Histograms of pixel intensity are plotted for a rectangle partially
within the expression region and partially outside the expression region (e.g., see panel
(a)). Background arises from three sources: autofluorescence (AF; buffer only), non-specific
amplification (NSA; hairpins only); non-specific detection (NSD; in situ HCR amplification
following detection of absent target Tg(flk1:egfp)). Probe set: 3 RNA probes. NSD studies
employ a probe set of three RNA probes targeting transgenic transcript Tg(flk1:egfp), which
is absent from the WT embryo. (c) Multiple probes per mRNA target. Comparison of
autofluorescence and in situ HCR using probe sets with 1, 3, or 9 RNA probes (compare
curves of the same color). The microscope PMT gain was decreased as the size of the probe
set increased to avoid saturating pixels in the images employing in situ HCR amplification
(this accounts for the reduction in AF intensity as the size of the probe set increases).
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Figure 3.5: Multiplexed imaging in fixed whole-mount zebrafish embryos. (a) Expression
atlas for five target mRNAs (Tg(flk1:egfp), tpm3, elavl3, ntla, sox10 ). (b) mRNA expression
in six lateral slices within an embryo using confocal microscopy. This type of multiplexed
experiment can be routinely performed using the same two-stage protocol that we employ
for single-color experiments (summarized in Figure 3.2). Detection is performed using five
probe sets carrying orthogonal initiators. The probe sets have different numbers of RNA
probes (10, 7, 18, 30, 20) based on the strength of expression of each mRNA target and
the strength of the autofluorescence in each channel. Amplification is performed using five
orthogonal HCR amplifiers carrying spectrally distinct fluorophores. Embryos fixed 27 hpf.
Scale bar: 50 µm.
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3.8 Conclusion

The sequencing of numerous genomes has launched a new era in biology, enabling pow-

erful comparative approaches, and revealing the nucleotide sequences that contribute to

the differences between species, between individuals of the same species, and between cells

within an individual. However, knowledge of these sequences is not sufficient to reveal the

architecture and function of the biological circuits that account for these differences. Much

work remains to elucidate both the details and the principles of the molecular circuits that

regulate development, maintenance, repair, and disease within living organisms.

Over four decades [4], in situ hybridization methods have become an indispensible tool

for the study of genetic regulation in a morphological context. Current methods-of-choice

for performing in situ amplification in vertebrate embryos and tissue sections require serial

amplification for multiplexed studies [5–7]. This shortcoming is a major impediment to the

study of interacting regulatory elements in situ.

In recent years, biomolecular engineers have made significant progress in designing nu-

cleic acid molecules that interact and change conformation to execute diverse dynamic

functions [8–15]. Here, we exploit design principles drawn from this experience to engineer

RNA molecules that interact and change conformation to amplify the expression patterns

of multiple target mRNAs in parallel within intact vertebrate embryos. The resulting

programmable molecular technology addresses a longstanding challenge in the biological

sciences.

Fluorescent in situ HCR is conceptually suited for use in a variety of biological contexts

including fixed cells, embryos, tissue sections, and microbial populations. By coupling

HCR initiators to aptamer or antibody probes, the approach is also suitable for extension

to multiplexed imaging of small molecules and proteins. The HCR amplifiers presented

here are suitable for use with diverse mRNA targets because the initiator sequences (and

consequently the HCR hairpins) are independent of the mRNA target sequences. Imaging a

new target mRNA requires only a new probe set with each probe carrying an HCR initiator.

Please refer to Appendix B for supplementary information pertaining to this work.
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Appendix A

Supplementary Information for
Chapter 2

A.1 Methods

A.1.1 DNA and RNA Synthesis

DNA/RNA sequences were synthesized and HPLC purified by Integrated DNA Technologies

(IDT). The purified DNA strands were resuspended in ultrapure water (resistance of 18 MΩ

cm). The concentrations of the DNA/RNA solutions were determined by the measurement

of UV absorption at 260 nm. Each RNA hairpin for the hairpin calibration experiment was

synthesized as two pieces which were then ligated to produce the full hairpin (see Table

A.5 for the ligation site). The ligation was performed using T4 RNA ligase (New England

Biolabs) at 16 ◦C overnight. Ligated strands were then purified using a 15% denaturing

gel. The bands corresponding to the RNA strands of expected sizes were visualized by UV

shadowing and excised from the gel. The RNA hairpins were then eluted, and recovered by

ethanol precipitation.

A.1.2 Probes and Reporter Synthesis for ISH

RNA probes were synthesized using in vitro transcription. The DNA templates were gener-

ated by PCR from a plasmid containing the EGFP gene. RNA probes were then transcribed

using a template and an AmpliScribe T7 or T3 high yield transcription kit (Epicentre

Biotechnologies). The probes were purified using an RNeasy mini kit (Qiagen).
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A.1.3 HCR Reaction Buffer and Hairpin Preparation

The reaction buffer used in the multiplexed HCR gel (Figure 2.1) and the second step of

the first in situ HCR experiment (Figure 2.3) was 1× SPSC buffer (50 mM Na2HPO4, 0.5

M NaCl, pH 6.8). Hairpins were prepared as monomers in the reaction buffer using a snap

cooling procedure: heat at 95 ◦C for 90 sec and allow to equilibrate at room temperature

for 30 min before use.

A.1.4 Gel Electrophoresis

For the multiplexed HCR gel (Figure 2.1), the concentration of each hairpin is 0.5 µM

and the concentration of each initiator is 50 nM. Each lane contains 16 ng/µL of zebrafish

total RNA. Samples were loaded with 10% glycerol into a 1% native agarose gel, prepared

with 1x LB buffer (Faster Better Media). The gel was run at 250V for 30 min at room

temperature and imaged using an FLA-5100 fluorescent scanner (Fujifilm Life Science).

The laser excitation sources and the emission filters used were a 473 nm laser and a 530

± 10 nm bandpass filter for FAM, a 532 nm laser and a 570 ± 10 nm bandpass filter for

Cy3, a 635 nm laser and a 665 nm longpass filter for Cy5 and a 670 nm laser and a 705 nm

longpass filter for Cy5.5.

For the duplex (Figure 2.4) and hairpin (Figure 2.6) studies, the concentrations of the

probes were fixed at 100 nM. Samples were loaded with 10% glycerol into a 12% native

polyacrylamide gel, prepared with 1x TBE buffer. The gel was imaged using the fluorescent

scanner with a 473 nm laser excitation source and a 530 ± 10 nm bandpass filter.

A.1.5 Preparation of Zebrafish Embryos

Embryos (25 hpf) were fixed in 4% paraformaldehyde (PFA) for 24 hr at 4 ◦C. Fixation was

stopped by washing the embryos 3 × 5 min with phosphate-buffered saline (PBS). Embryos

were then dehydrated with 5 methanol (MeOH) washes for a total of 1.5 hr and rehydrated

with a series of graded MeOH/PBST (PBS with 0.1% Tween 20) washes (75% MeOH /

25% PBST, 50% MeOH / 50% PBST, 25% MeOH / 75% PBST; 5 min each). Embryos

were then washed 5 × 5 min in 100% PBST.
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A.1.6 In Situ Hybridization

The probe hybridization of the first in situ HCR experiment (Figure 2.3) and the in situ

duplex binding assay (Figure 2.5) used the protocol described here. Embryos were first

exchanged into the hybridization solution (50% HB: 50% formamide, 2× saline sodium

citrate (SSC), 0.1% Tween 20, 9 mM citric acid (pH 6.0), 500 µg tRNA, 0.02% BSA, 0.2%

fish powder) and incubated at 45 ◦C for 1 hr. Probe solution was prepared by diluting 6

pmol of probe into 200µL of 50% HB and heating to 45 ◦C. After 16 hr of incubation with

the embryos, excess probes were washed away with a series of graded 50% HB / 2× SSC

washes (75% of HB / 25% of SSC, 50% of HB / 50% of SSC, 25% of HB / 75% of SSC;

15 min each) at 45 ◦C. Embryos were further washed with a 15 min 2× SSC wash at 45

◦C and a 30 min 2× SSC wash at 45 ◦C. Finally, the embryos were washed with a series of

graded 2× SSC / PBST washes (75% 2× SSC / 25% PBST, 50% 2× SSC / 50% PBST,

25% 2× SSC / 75% PBST, 100% PBST; 10 min each) at room temperature.

In Figure 2.3, the polymerization step used 20 pmol of each hairpin in 200 µL of 1× SPSC

buffer. The embryos were washed with 1× SPSC buffer before imaging. In Figure 2.5,

hybridization of the reporter followed the same procedures as the probe hybridization with

the probe substituted with the Alexa 647 labeled reporter complex.

A.1.7 Fluoresecence Microscopy

For Figure 2.3 and Figure 2.5, a Zeiss 510 upright confocal microscope with a LD LCI

Plan-Apochromat 25× / 0.8 Imm Corr DIC objective was used to acquire the images. The

channel used to show the morphology and the GFP expression of the embryos was obtained

using a 488 nm Ar laser for excitation and a 515 ± 15 nm bandpass filter for emission. The

Alexa 647 channel was acquired by exciting the fluorophores with a 633 nm HeNe laser and

collecting fluorescence with a 650 nm long pass filter.
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A.2 DNA and RNA Sequences

A.2.1 DNA Sequences of Four Original HCR Systems

HCR #1 Sequence
Initiator (IA) AACCACCACCAACCACCCAACATC

Hairpin 1 (HA1) GATGTTGGGTGGTTGGTGGTGGTTCTCACAAACCACCACCAACCACCC

Hairpin 2 (HA2) /FAM/ TT AACCACCACCAACCACCCAACATCGGGTGGTTGGTGGTGGT

TTGTGAG

HCR # 2 Sequence
Initiator (IB) ACAACACACACAAACCACGCACTA

Hairpin 1 (HB1) TAGTGCGTGGTTTGTGTGTGTTGTGAAGAAACAACACACACAAACCAC

Hairpin 2 (HB2) /Cy5/ TT ACAACACACACAAACCACGCACTAGTGGTTTGTGTGTGTTG

TTTCTTC

HCR # 3 Sequence
Initiator (IC) ATCCTTCCCTTCCTCTCCTCCAAT

Hairpin 1 (HC1) ATTGGAGGAGAGGAAGGGAAGGATTCTGTCATCCTTCCCTTCCTCTCC

Hairpin 2 (HC2) /Cy3/ TT ATCCTTCCCTTCCTCTCCTCCAATGGAGAGGAAGGGAAGGA

TGACAGA

HCR # 4 Sequence
Initiator (ID) TCTCTTCTTCTCTTCTTCACTCAT

Hairpin 1 (HD1) ATGAGTGAAGAAGAGAAGAAGAGATCGTGTTCTCTTCTTCTCTTCTTC

Hairpin 2 (HD2) /Cy5.5/ TT TCTCTTCTTCTCTTCTTCACTCATGAAGAAGAGAAGAAGA

GAACACGA

Table A.1: DNA sequences of the four orthogonal HCR systems. Note the TT-spacer
(italicized) in between the fluorophore and the hairpin sequence that is employed to reduce
the influence of the dye on the kinetic and thermodynamic properties of the hairpins.

A.2.2 DNA Sequences for the First In Situ HCR Experiment

Strand Sequence
Probe CTTAGTTTCATTCAGTACGTCCAA TTTT

GTTCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGTAGTTGT

Hairpin 1 TTGGACGTACTGAATGAAACTAAGCTCGATCTTAGTTTCATTCAGTAC

Hairpin 2 /Cy3/ CTTAGTTTCATTCAGTACGTCCAAGTACTGAATGAAACTAAGATCGAG

Table A.2: Probe and hairpin sequences of the first in situ HCR system.
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A.2.3 RNA Sequences for Calibration Experiments

Strand Sequence
Probe /FAM/ UUUGAGACUGGACGGAUAGAGCGAAUGAUGAG

Target-30 CUCAUCAUUCGCUCUAUCCGUCCAGUCUCA

Target-24 AUUCGCUCUAUCCGUCCAGUCUCA

Target-18 UCUAUCCGUCCAGUCUCA

Target-12 CGUCCAGUCUCA

Target-10 UCCAGUCUCA

Table A.3: RNA sequences for the in vitro duplex study.
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Strand Sequence
Probe-30 CUCAUCAUUCGCUCUAUCCGUCCAGUCUCA AAAAA GUUCUUCUGC

UUGUCGGCCAUGAUAUAGACGUUGUGGCUGUUGUAGUUGU

Probe-24 AUUCGCUCUAUCCGUCCAGUCUCA AAAAA GUUCUUCUGCUUGUC

GGCCAUGAUAUAGACGUUGUGGCUGUUGUAGUUGU

Probe-18 UCUAUCCGUCCAGUCUCA AAAAA GUUCUUCUGCUUGUCGGCCA

UGAUAUAGACGUUGUGGCUGUUGUAGUUGU

Probe-12 CGUCCAGUCUCA AAAAA GUUCUUCUGCUUGUCGGCCAUGAUA

UAGACGUUGUGGCUGUUGUAGUUGU

Probe-10 UCCAGUCUCA AAAAA GUUCUUCUGCUUGUCGGCCAUGAUAU

AGACGUUGUGGCUGUUGUAGUUGU

Reporter UGAGACUGGACGGAUAGAGCGAAUGAUGAG UUACU CGUCUUCUAU

GUCUAGCUACUUGUAUCUUGUUAUGUACUUGACUAUUGUG

Complement-30 CACAATAGTCAAGTACATAACAAGATACAAGTAGCTAGACATAGAAGA

CG

Complement-24 CACAATAGTCAAGTACATAACAAGATACAAGTAGCTAGACATAGAAGA

CGAGTAAC

Complement-18 CACAATAGTCAAGTACATAACAAGATACAAGTAGCTAGACATAGAAGA

CGAGTAACTCATCA

Complement-12 CACAATAGTCAAGTACATAACAAGATACAAGTAGCTAGACATAGAAGA

CGAGTAACTCATCATTCGCT

Complement-10 CACAATAGTCAAGTACATAACAAGATACAAGTAGCTAGACATAGAAGA

CGAGTAACTCATCATTCGCTCT

Table A.4: RNA sequences for the in situ duplex study. Bases are truncated from the 5′

end to obtain various probe lengths. Note the 5-nt spacers (italicized) in the probes and the
reporter strand. The last 50 bases (bold) of each probe correspond to the EGFP mRNA
binding region.

Strand Sequence
Probe-12 /FAM/ UU ACUCCGUUACCUCGCCAUUAUCUGUGUC

Hairpin-12 GACACAGAUAAUGGCGAGGU–AACGGAGUGACUACUCCCGAACUCCGUUAC

CUCGCC

Probe-10 /FAM/ UU ACUCCGUUACCUCGCCAUUAUCUGUG

Hairpin-10 CACAGAUAAUGGCGAGGU–AACGGAGUGCUACUCCCGACUCCGUUACCUCG

CC

Probe-8 /FAM/ UU ACUCCGUUACCUCGCCAUUAUCUG

Hairpin-8 CAGAUAAUGGCGAGGUAACGGAGUCUACUCCCACUCCGUUACCUCGCC

Table A.5: RNA sequences of in vitro hairpin study. The number on the name specified
the length of the hairpin sticky end. In the probe, the dye (FAM) is separated from the
sequence by a UU-spacer (italicized). The dash “–” indicates the ligation point used for
hairpin synthesis (see Section A.1 for details).
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Appendix B

Supplementary Information for
Chapter 3

B.1 Methods

B.1.1 Probe Synthesis

RNA probes are 81-nt long (26-nt initiator, 5-nt spacer, 50-nt mRNA recognition sequence).

mRNAs are addressed by probe sets containing one or more probes that hybridize adjacently

at 50-nt binding sites. Probe sequences are displayed in Section B.8.1. RNA probes were

synthesized by in vitro transcription. The coding strand for each probe contained three

random nucleotides and a 19-nt SP6 promoter sequence upstream of the 81-nt initiator-

linker-probe sequence. Complementary DNA coding and template strands were ordered as

DNA ultramers (unpurified) from Integrated DNA Technologies (IDT). Strands were resus-

pended in ultrapure water (resistance of 18 MΩ cm) and concentrations were determined by

measuring absorption at 260 nm using a NanoDrop 8000 (Thermo Scientific). The double-

stranded template was formed by annealing the two strands (heat at 95 ◦C for 5 min, cool 1

◦C/min to room temperature) in 1× SPSC buffer (0.4 M NaCl, 50 mM Na2HPO4, pH 7.5).

RNA probes were transcribed overnight at 37 ◦C using an AmpliScribe SP6 high yield

transcription kit (Epicentre Biotechnologies) with four unmodified ribonucleotide triphos-

phates. Probes were purified using an RNeasy mini kit (Qiagen) and concentrations were

determined by measuring absorbance at 260 nm.
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B.1.2 Hairpin Design, Synthesis, and Preparation

B.1.2.1 HCR Hairpin Design

RNA HCR hairpins are 52-nt long (10-nt toehold, 16-bp stem, 10-nt loop). Hairpin dimen-

sioning was performed based on in vitro and in situ binding studies performed in Chapter 2.

HCR hairpin sequences were designed by considering a set of target secondary structures

involving different subsets of the strands (I, H1, H2, I·H1 and I·H1·H2, each as depicted

in Figure 3.1). Sequence optimization was performed by calculating the average number

of incorrectly paired nucleotides at equilibrium [1] for each set of strands and correspond-

ing target structure, and mutating the sequences to minimize the sum of this quantity

over all the target structures [2]. Multiple HCR amplifiers were designed independently

and then sequence orthogonality was checked using NUPACK (www.nupack.org) to simu-

late the equilibrium species concentrations and base-pairing properties for a test tube [3]

containing different subsets of strands. This approach was used to check for off-target in-

teractions between each of the five initiators and the other four hairpin sets, as well as

between the 10-nt toehold and loop segments of each hairpin set and the 10-nt toehold and

loop segments of the other four hairpin sets. The sequences are shown in Section B.8.7.

B.1.2.2 HCR Hairpin Synthesis

Each HCR hairpin was synthesized by IDT as two segments with one segment end-labeled

with an amine (3′-end for H1 and 5′-end for H2) to permit subsequent coupling to a fluo-

rophore. The strand with a 5′-end at the ligation site was ordered with a 5′-phosphate to

permit ligation. Ligation of the two segments produced the full 52-nt hairpin. The ligation

was performed using T4 RNA ligase 2 (New England Biolabs) at 16 ◦C for a minimum of

8 hr. The ligated strands were purified using a 15% denaturing polyacrylamide gel. The

bands corresponding to the expected sizes of the ligated products were visualized by UV

shadowing and excised from the gel. The RNA strands were then eluted by soaking in

0.3 M NaCl overnight and recovered by ethanol precipitation. The pellet was dried and re-

suspended in ultrapure water and quantified by measuring absorbance at 260 nm. The dye

coupling reaction was performed by mixing an amine-labeled hairpin with an Alexa Fluor
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succinimidyl ester (Invitrogen) and incubating in the dark for 3 hr. Alexa-labeled hairpins

were separated from unincorporated dyes by repeating the denaturing PAGE purification

described above.

B.1.2.3 HCR Hairpin Preparation

To ensure hairpins were formed properly, as monomers, each hairpin was snap cooled in

1× SPSC buffer (see section B.2.3) by heating at 95 ◦C for 90 sec and allowed to cool to

room temperature on the benchtop for 30 min before use. In the in vitro multiplexing gel

(Figure 3.1), 3 pmol of each hairpin was snap cooled at 3 µM (total 1 µL). In the validation

experiment (Figure 3.3), 10 pmol of each hairpin was snap cooled at 2 µM (total 5 µL). For

the signal-to-background (Figure 3.4) and multiplexing (Figure 3.5) experiments, 30 pmol

of each hairpin is used due to the increased number of probes for each target. Each hairpin

was snap cooled at 3 µM (total 10 µL).

B.1.3 Multiplexed Gel Electrophoresis

Reactions for Figure 1b were performed in 40% hybridization buffer without blocking agents

(40% formamide, 2× SSC, 9 mM citric acid (pH 6.0), 0.1% Tween 20) with 0.1 µg/µL of

total RNA extracted from zebrafish using TRIzol (Invitrogen). Each of the eight hairpin

species (two for each of the four HCR amplifiers) was snap cooled at 3 µM in 1× SPSC buffer.

The RNA initiator for each HCR system was diluted to 0.3 µM in ultrapure water. Each

lane was prepared by mixing 12 µL of formamide, 6 µL of 5× HB supplements without

blocking agents (10× SSC, 45 mM citric acid (pH 6.0), 0.5% Tween 20), 1.76 µL of 1.7

µg/µL extracted zebrafish total RNA, and 1 µL of each of the eight hairpins. When an

initiator was absent (lane 1), 2.24 µL of ultrapure water was added to bring the reaction

volume to 30 µL. For lanes 2 to 5, 1 µL of 0.3 µM initiator for one HCR amplifier and

1.24 µL of ultrapure water were added. The reactions were incubated at 45 ◦C for 1.5 hr.

The samples were supplemented with 7.5 µL of 50% glycerol and loaded into a native 2%

agarose gel, prepared with 1× LB buffer (Faster Better Media). The gel was run at 150 V for

90 min at room temperature and imaged using an FLA-5100 fluorescent scanner (Fujifilm
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Life Science). The 4 HCR systems were labeled and imaged as follows:

HCR # Dye Excitation Filters
3 Alexa 488 473 nm BP 530 ± 10 nm
5 Alexa 546 532 nm BP 570 ± 10 nm
1 Alexa 647 635 nm LP 665 nm
4 Alexa 700 670 nm LP 705 nm

Table B.1: Excitation lasers and emission filters used for multiplexed gel electrophoresis.

For the gel in Figure B.3, the reaction conditions were the same as those of Figure 3.1.

Only two hairpins of each HCR system were used in each lane. The five HCR systems (see

Section B.8.7) were labeled with Alexa 647. The samples were supplemented with 7.5 µL

of 50% glycerol and loaded into a 2% native agarose gel. The gels were run at 150 V for

90 min and imaged with a 635 nm laser and a 665 longpass filter. The 100 bp DNA ladder

was pre-stained with SYBR Gold (Invitrogen) and imaged using a 488 nm laser and a 575

nm long pass filter.

B.1.4 In Situ Hybridization Studies

Embryos were fixed and permeablized using the protocol of Section B.2.1. For the transgenic

samples, GFP+ embryos were identified using a Leica MZ16 FA fluorescence stereomicro-

scope. In situ hybridization experiments for Figures 3.3-3.5 were performed using the proto-

col of Section B.2.2. Overnight incubations were performed for 16 hr. For Figure 3.3, probe

solution was prepared by introducing 6 pmol of each probe (1-3 µL depending on the stock

solution) into 300 µL of 50% HB at 55 ◦C. Hairpin solution was prepared by introducing

10 pmol of each hairpin (snap cooled in 5 µL) into 300 µL of 40% HB at 45 ◦C. Figure 3.4

experiments were performed using WT embryos. A probe set with three probes (1 pmol of

each probe) was used for Figures 3.4a and 3.4b; probe sets with 1, 3, or 9 probes (1 pmol

of each probe) were used for Figure 3.4c. The standard in situ protocol was used for both

the (AF + NSA) sample (with probes excluded) and for the AF sample (with probes and

hairpins excluded). For the (AF + NSA + NSD) sample, desm probes were replaced with

egfp probes carrying the same initiator sequence as the desm probes. For the ex situ HCR

study of Figures 3.4a and 3.4b, snap-cooled hairpins (30 pmol of each hairpin) and probes
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(1 pmol of each probe) were added to 300 µL of 40% HB and incubated at 45 ◦C for 16 hr

while the embryos were incubated without probes in 50% HB at 55 ◦C. For consistency,

these embryos were subjected to the standard probe washes and the standard amplification

protocol (substituting the pre-assembled polymer solution for the hairpin solution).

B.1.5 Confocal Microscopy

A chamber for mounting the embryo was made by aligning 2 stacks of Scotch tape (8 pieces

per stack) 1 cm apart on a 25 mm × 75 mm glass slide (VWR). Approximately 200 µL of

3% methyl cellulose mounting medium was added between the tape stacks on the slide and

embryos were placed on the medium oriented for lateral imaging. A 22 mm × 22 mm No. 1

coverslip (VWR) was placed on top of the stacks to close the chamber. A Zeiss 510 upright

confocal microscope with an LD LCI Plan-Apochromat 25× / 0.8 Imm Corr DIC objective

was used to acquire the images for Figures 3.3 and 3.4. The excitation laser sources and

emissions filters were: 488 nm Ar laser excitation source and a 520 ± 10 nm bandpass

filter (gray; autofluorescence), 633 nm HeNe laser and a 650 nm long pass filter (green;

Alexa 647). A Leica TCS SP5 inverted confocal microscope with an HCX PL APO 20× /

0.7 Imm objective was used to acquire the 5-color image stack of Figure 3.5b. Excitation

laser sources and tuned emissions bandpass filters were as follows: 488 nm / 500-540 nm

(Alexa 488), 514 nm / 550-565 nm (Alexa 514), 543 nm / 550-605 nm (Alexa 546), 594

nm / 605-640 nm (Alexa 594), 633 nm / 655-720 nm (Alexa 647). Cluster analysis (Leica)

was performed to enhance dye separation. All images are presented without background

subtraction.
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B.2 Protocols

B.2.1 Preparation of Fixed Whole-Mount Zebrafish Embryos

1. Collect embryos and incubate at 28 ◦C in a petri dish with egg H2O until they reach
20 hr post-fertilization (20 hpf).

2. Dechorinate using two pairs of sharp tweezers under a dissecting scope.

3. Transfer ∼80 embryos (25 hpf) to a 2 mL eppendorf tube and remove excess egg H2O.

4. Fix embryos in 1 mL of 4% paraformaldehyde (PFA)∗ for 24 hr at 4 ◦C .

5. Wash embryos 3 × 5 min with 1 mL of phosphate-buffered saline (PBS) to stop the
fixation. Fixed embryos can be stored at 4 ◦C at this point.

6. Dehydrate and permeabilize with a series of methanol (MeOH) washes (1 mL each):

(a) 100% MeOH for 4 × 10 min

(b) 100% MeOH for 1 × 50 min.

7. Rehydrate with a series of graded 1 mL MeOH/PBST washes for 5 min each:

(a) 75% MeOH / 25% PBST

(b) 50% MeOH / 50% PBST

(c) 25% MeOH / 75% PBST

(d) 5 × 100% PBST.

8. Store embryos at 4 ◦C before use.†

∗Use fresh PFA and cool to 4 ◦C before use to avoid increased autofluorescence.
†Prepare embryos every two weeks to avoid increased autofluorescence.
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B.2.2 Two-Stage Multiplexed In Situ Hybridization using HCR

Detection Stage

1. For each sample, move 8 embryos to a 1.5 mL eppendorf tube.

2. Pre-hybridize with 300 µL of 50% hybridization buffer (50% HB) for 30 min at 55 ◦C.

3. Prepare probe solution by adding 6 pmol of each probe (1-3 µL per probe depending
on the stock) to HB reagents at 55 ◦C to yield probes in 500 µL of 50% HB.

4. Remove the pre-hybridization solution and add the 500 µL of probe solution.

5. Incubate the embryos overnight (12-16 hr) at 55 ◦C.

6. Remove excess probes by washing at 55 ◦C with 500 µL of:

(a) 75% of 50% HB / 25% 2× SSC for 15 min

(b) 50% of 50% HB / 50% 2× SSC for 15 min

(c) 25% of 50% HB / 75% 2× SSC for 15 min

(d) 100% 2× SSC for 15 min

(e) 100% 2× SSC for 30 min.

Wash solutions should be pre-heated to 55 ◦C before use.

7. Wash at room temperature for 10 min each with 500 µL of:

(a) 75% 2× SSC / 25% PBST

(b) 50% 2× SSC / 50% PBST

(c) 25% 2× SSC / 75% PBST

(d) 100% PBST.

Amplification Stage

1. Prepare 30 pmol of each fluorescently labeled hairpin by snap cooling in 10 µL of 1×
SPSC buffer (heat at 95 ◦C for 90 sec and cool to room temperature on the benchtop
for 30 min).

2. Pre-hybridize embryos with 300 µL of 40% HB for 30 min at 45 ◦C.

3. Prepare hairpin solution by adding all snap-cooled hairpins to HB reagents at 45 ◦C
to yield hairpins in 500 µL of 40% HB.

4. Remove the pre-hybridization solution and add the 500 µL of hairpin solution.

5. Incubate the embryos overnight (12-16 hr) at 45 ◦C.

6. Repeat step 6 above using 40% HB at 45 ◦C (instead of 50% HB at 55 ◦C).

7. Repeat step 7 above.
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B.2.3 Buffer Recipes

50% Hybridization Buffer (50% HB) For 40 mL of solution
50% Formamide 20 mL formamide
2× Sodium Chloride Sodium Citrate (SSC) 4 mL of 20× SSC
9 mM Citric Acid (pH 6.0) 360 µL 1 M Citric Acid, pH 6.0
0.1% Tween 20 400 µL of 10% Tween 20
500 µg/mL tRNA 200 µL of 100 mg/mL tRNA
50 µg/mL Heparin 200 µL of 10 mg/mL Heparin

fill up to 40 mL with ultrapure H2O

40% Hybridization Buffer (40% HB) For 40 mL of solution
40% Formamide 16 mL formamide
2× Sodium Chloride Sodium Citrate (SSC) 4 mL of 20× SSC
9 mM Citric Acid (pH 6.0) 360 µL 1 M Citric Acid, pH 6.0
0.1% Tween 20 400 µL of 10% Tween 20
500 µg/mL tRNA 200 µL of 100 mg/mL tRNA
50 µg/mL Heparin 200 µL of 10 mg/mL Heparin

fill up to 40 mL with ultrapure H2O

5× HB Supplements For 40 mL of solution
10× Sodium Chloride Sodium Citrate (SSC) 20 mL of 20× SSC
45 mM Citric Acid (pH 6.0) 1.8 mL 1 M Citric Acid, pH 6.0
0.5% Tween 20 2 mL of 10% Tween 20
2.5 mg/mL tRNA 1 mL of 100 mg/mL tRNA
250 µg/mL Heparin 1 mL of 10 mg/mL Heparin

fill up to 40 mL with ultrapure H2O

5× HB Supplements without Blocking Agents For 40 mL of solution
10× Sodium Chloride Sodium Citrate (SSC) 20 mL of 20× SSC
45 mM Citric Acid (pH 6.0) 1.8 mL 1 M Citric Acid, pH 6.0
0.5% Tween 20 2 mL of 10% Tween 20

fill up to 40 mL with ultrapure H2O

10× PBS‡ For 1 L of solution
1.37 M NaCl 80 g NaCl
27 mM KCl 2 g KCl
100 mM Na2HPO4 14.2 g Na2HPO4 anhydrous
20 mM KH2PO4 2.7 g KH2PO4 anhydrous
pH 7.4 Adjust pH to 7.4 with HCl

fill up to 1 L with ultrapure H2O

PBST For 50 mL of solution
1× PBS 5 mL of 10× PBS
0.1% Tween 20 500 µL of 10% Tween 20

fill up to 50 mL with ultrapure H2O

5× Sodium Phosphate Sodium Chloride (SPSC) For 50 mL of solution
2 M NaCl 25 mL of 4 M NaCl
250 mM Na2HPO4 12.5 mL of 1 M Na2HPO4

12.5 mL of ultrapure H2O

‡Avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence
in the embryos.
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B.2.4 Reagents and Supplies

SP6 Transcription Kit (Epicentre cat. # AS3106)
RNeasy Mini Kit (Qiagen cat. # 74104)
T4 RNA Ligase II (NEB cat. # M0239L)
Alexa Fluor 488 carboxylic Acid, 2,3,5,6-tetraFluorophenyl ester (Molecular Probes cat.
# A30005)
Alexa Fluor 514 carboxylic acid, succinimidyl ester (Molecular Probes cat. # A30002)
Alexa Fluor 546 carboxylic acid, succinimidyl ester (Molecular Probes cat. # A20002)
Alexa Fluor 594 carboxylic acid, succinimidyl ester (Molecular Probes cat. # A20004)
Alexa Fluor 647 carboxylic acid, succinimidyl ester (Molecular Probes cat. # A20006)
Alexa Fluor 700 carboxylic acid, succinimidyl ester (Molecular Probes cat. # A20010)
Dimethyl Sulfoxide (DMSO) (Sigma cat. # 276855)
Paraformaldehyde (PFA) (Sigma cat. # P6148)
Formamide (EMD cat. # FX0420-6)
20× Sodium Chloride Sodium Citrate (SSC) (Invitrogen cat. # 15557044)
Tween 20 (Sigma cat. # P1379)
tRNA from baker’s yeast (Roche cat. # 109495)
Heparin (Sigma cat. # 3393)
SYBR Gold Nucleic Acid Gel Stain (Invitrogen cat. # S-11494)
25 mm × 75 mm glass slide (VWR cat. # 48300-025)
22 mm × 22 mm No. 1 coverslip (VWR cat. # 48366-067)
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B.3 Gels for In Vitro Validation of HCR Amplifiers

Figure B.1 demonstrates the triggered polymerization properties of each of the five HCR
amplifiers used in Figure 3.5. The hairpins for each HCR amplifier exhibit metastability
in the absence of initiator and undergo triggered polymerization upon the introduction of
initiator. Previous control experiments (data not shown) show that the H1 and H2 hairpins
migrate as separate bands. The hairpins for amplifier HCR4 exist metastably as both
monomers and as putative dimers; introduction of initiators triggers polymerization from
either metastable state.

HCR1 HCR2 HCR3 HCR4 HCR5

Initiator Initiator Initiator Initiator Initiator
+− +− +− +− +−

Figure B.1: Agarose gel electrophoresis for five HCR amplifiers. The reaction conditions
were the same as for Figure1b. Each gel tests the hairpins for one HCR amplifier. All
hairpins were labeled with Alexa 647. Native 2% agarose gels were run at 150 V for 90 min
and imaged with a 635 nm laser and a 665 longpass filter. The 100 bp DNA ladders (red)
were pre-stained with SYBR Gold (Invitrogen) and imaged using a 488 nm laser and a 575
nm long pass filter.
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B.4 Single-Channel Images for In Situ Validation of HCR
Amplifiers

Probe+H1+H2 Probe+H1+H2

Probe+H1 Probe+H2

Probe+H1+H2′ Probe′+H1′+H2′ Probe′+H1′+H2′

Hyb. Buffer Only

H1+H2

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

Target −Target +

Target +

Target + Target + Target +

Target + Target +

Target +

Figure B.2: Single-channel version of Figure 3.3. Turning off the gray autofluorescence
channel emphasizes the minimal degree of background staining. Scale bar: 50 µm.
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B.5 Images for Signal-to-Background Studies

The pixel intensity histograms of Figures 3.4b and 3.4c are calculated within the rectangles
depicted in Figures B.3 and B.4. These rectangles are positioned so that they encompass
both a region with high target expression (to characterize signal) and a region with no tar-
get expression (to characterize background). The conclusions are insensitive to the precise
positioning of the rectangles (data not shown).

In situ HCR Ex situ HCR

AF + NSAAF AF + NSA + NSD

Figure B.3: Images and rectangle placements for the pixel intensity histograms of
Figure 3.4b. Scale bar: 50 µm.
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1-probe 3-probe 9-probe

AF

In situ HCR

Figure B.4: Images and rectangle placements for the pixel intensity histograms of Figure
3.4c. The microscope PMT gain was optimized for each probe set (1, 3, or 9 probes) to
avoid saturating pixels using HCR amplification. The two images in each column were
obtained using the same microscope settings. Scale bar: 50 µm.
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B.6 Expression Patterns for Target mRNAs

Tg(flk1:egfp)

tpm3

elavl3

ntla

sox10

In Situ HCR 
 (Alexa647)

Traditional In Situ Hybridization 
                (NBT/BCIP)

Bright FieldConfocalConfocal

cross
section

dorsal 

ventral

anterior posterior

Expression
Atlas

Figure B.5: Comparison of mRNA expression patterns observed using fluorescent in situ
HCR and traditional in situ hybridization for the five targets of Figure 3.5. Traditional in
situ hybridization experiments were performed using digoxigenin (DIG) labeled probes as
described by Alexander and co-workers [4]. Embryo fixed 25 hpf. Scale bars: 50 µm.
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B.7 Image Stack for Five-Color Fixed Whole-Mount Zebrafish
Embryo

The full image stack for the embryo depicted in Figure 3.5b is available as a Supplementary
Movie. For each frame in the movie, a 3×3 median filter was applied to each channel and
the dimensions were reduced by a factor of two. Each plane in the stack is separated by
4 µm.
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B.8 Sequences

B.8.1 Probe Sets

Sequences for the six target mRNAs used in this paper were obtained from the Zebrafish
Information Network (ZFIN) [5].

B.8.2 SP6 Transcription Construct

To enable in vitro transcription, a 19-nt SP6 promoter sequence was placed in front of the
initiator sequence of the probe. Three additional random nucleotides were added before the
promoter to increase the yield for these short probe syntheses. Depending on the initiator
sequence, the transcribed probes vary in length from 81-83 nt based on the properties of
SP6 (Epicentre Biotechnologies). The construct is:

5′-Three Random Nucleotides - SP6 Promoter - HCR Initiator - Spacer - Probe Sequence-3′

Three Random Nucleotides: CAg
SP6 Promoter: ATTTAggTgACACTATAgA

B.8.3 RNA Probe Sequences for Figure 3.3

A single probe was used to detect the egfp target mRNA and trigger polymerization of HCR1
(Figures 3.3a-f). Figures 3.3g-i also employ a probe with a modified initiator (Probe′) and
amplification hairpins with modified stem sequences (HCR1′). The 26-nt initiator and 5-nt
spacer sequences prepended to the 5′-end of the probes are specified for each HCR amplifer
below.

Target mRNA: enhanced green fluorescent protein (egfp)
Amplifier: HCR1
Fluorophore: Alexa Fluor 647
Initiator – Spacer: gACCCUAAgCAUACAUCgUCCUUCAU - UUUUU

Probe # Probe Sequence

1 gUUCUUCUgCUUgUCggCCAUgAUAUAgACgUUgUggCUgUUgUAgUUgU

Target mRNA: enhanced green fluorescent protein (egfp)
Amplifier: HCR1′

Fluorophore: Alexa Fluor 647
Initiator – Spacer: CCAgUUAUCAgUAgUCCgUCCUUCAU - UUUUU

Probe # Probe Sequence

1 gUUCUUCUgCUUgUCggCCAUgAU-AUAgACgUUgUggCUgUUgUAgUUgU
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B.8.4 RNA Probe Sequences for Figure 3.4a and 3.4b

Three adjacent desm probes, three adjacent egfp probes, and amplifier HCR3 were used for
the penetration study. All probes have identical initiator and spacer sequences.

Target mRNA: desmin (desm)
Amplifier: HCR3
Fluorophore: Alexa Fluor 647
Initiator – Spacer: UACgCCCUAAgAAUCCgAACCCUAUg - AAAUA

Probe # Probe Sequence

1 CUUCgUgAAgACCCUCgAUACgUCUUUCCAggUCCAgCCUggCCAgAgUg

2 gCAgCAUCgACAUCAgCUCUgAAAgCAgAAAggUUgUUUUCAgCUUCCUC

3 CUCACUCAUUUgCCUCCUCAgAgACUCAUUggUgCCCUUgAgAgAgUCAA

Target mRNA: enhanced green fluorescent protein (egfp)
Amplifier: HCR3
Fluorophore: Alexa Fluor 647
Initiator – Spacer: UACgCCCUAAgAAUCCgAACCCUAUg - AAAUA

Probe # Probe Sequence

1 gUUCUUCUgCUUgUCggCCAUgAUAUAgACgUUgUggCUgUUgUAgUUgU

2 ACUCCAgCUUgUgCCCCAggAUgUUgCCgUCCUCCUUgAAgUCgAUgCCC

3 UUCAgCUCgAUgCggUUCACCAgggUgUCgCCCUCgAACUUCACCUCggC

B.8.5 RNA Probe Sequences for Figure 3.4c

Probe sets with 1, 3, or 9 adjacent probes were used to address each mRNA target. HCR3
was used for all probe sets. Probe set 1: probe # 1. Probe set 3: probes # 1-3. Probe set
9: probes # 1-9.

Target mRNA: desmin (desm)
Amplifier: HCR3
Fluorophore: Alexa Fluor 647
Initiator – Spacer: UACgCCCUAAgAAUCCgAACCCUAUg - AAAUA

Probe # Probe Sequence

1 CUCACUCAUUUgCCUCCUCAgAgACUCAUUggUgCCCUUgAgAgAgUCAA

2 gCAgCAUCgACAUCAgCUCUgAAAgCAgAAAggUUgUUUUCAgCUUCCUC

3 CUUCgUgAAgACCCUCgAUACgUCUUUCCAggUCCAgCCUggCCAgAgUg

4 CUgCAgCUCACggAUCUCCUCCUCAUgAAUCUUCCUgAggAAUgCAAUCU

5 ggUUUggACAUgUCCAUUUggAUCUgCACCUgACUCUCCUgCAUCUggUU

6 CgAUAgCCUCgUACUgCAggCgAAUgUCUCUgAgggCCgCAgUCAggUCU

7 UgAAACCUUAgACUUAUACCAgUCCUCggCCUCgCUgAUAUUCUUggCAg

8 UCUCgCAggUgUAggACUggAgCUggUgACggAACUgCAUggUCUCCUgC

9 UUggCUUCUCUgAgAgCCUCgUUAUUCUUgUUCACUgCCUggUUCAAAUC
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B.8.6 RNA Probe Sequences for Figure 3.5

The probe sets for each target mRNA contain different numbers of probes as described
below. All probes in a given probe set contain the same initiator and are amplified using
the same HCR hairpins. The 26-nt initiator and 5-nt spacer sequences prepended to the
5′-end of the probes are also specified below.

Target mRNA: enhanced green fluorescent protein (egfp)
Amplifier: HCR3
Fluorophore: Alexa Fluor 488
Initiator and spacer: UACgCCCUAAgAAUCCgAACCCUAUg - AAAUA

Probe # Probe Sequence

1 gUUCUUCUgCUUgUCggCCAUgAUAUAgACgUUgUggCUgUUgUAgUUgU

2 ACUCCAgCUUgUgCCCCAggAUgUUgCCgUCCUCCUUgAAgUCgAUgCCC

3 UUCAgCUCgAUgCggUUCACCAgggUgUCgCCCUCgAACUUCACCUCggC

4 ACgCUgCCgUCCUCgAUgUUgUggCggAUCUUgAAgUUCACCUUgAUgCC

5 CggggCCgUCgCCgAUgggggUgUUCUgCUggUAgUggUCggCgAgCUgC

6 UUUgCUCAgggCggACUgggUgCUCAggUAgUggUUgUCgggCAgCAgCA

7 gCgggUCUUgUAgUUgCCgUCgUCCUUgAAgAAgAUggUgCgCUCCUggA

8 CgUAgCCUUCgggCAUggCggACUUgAAgAAgUCgUgCUgCUUCAUgUgg

9 UCggggUAgCggCUgAAgCACUgCACgCCgUAggUCAgggUggUCACgAg

10 ggUgggCCAgggCACgggCAgCUUgCCggUggUgCAgAUgAACUUCAggg

Target mRNA: tropomyosin 3 (tpm3)
Amplifier: HCR2
Fluorophore: Alexa Fluor 514
Initiator and spacer: CCgAAUACAAAgCAUCAACgACUAgA - AAAAA

Probe # Probe Sequence

1 UCCUCAACCAgCUggAUACgCCUgUUCAgAgAAgCCACCUCUgCCUCAgC

2 CCAgCUUUUgCAgggCUgUggCCAgUCUCUCCUgAgCACgAUCCAACUCC

3 AAUCACCUUCAUCCCUCUCUCgCUCUCAUCUgCggCCUUCUCggCUUCCU

4 UggAUCUCCUgCAgCUCCAUCUUCUCCUCAUCCUUCAgAgCCCUgUUCUC

5 CUUCAUAUUUgCggUCAgCCUCCUCAgCAAUgUgCUUggCCUCCUUAAgC

6 CUCUgUACgCUCCAACUCUCCCUCAACgAUCACCAgCUUACgAgCCACCU

7 UggUUUUCUCCAgUUUggCCACAgACCUCUCAgCAAACUCUgCACgggUC
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Target mRNA: ELAV (Embryonic Lethal, Abnormal Vision, Drosophila)-like 3
(Hu antigen C) (elavl3)
Amplifier: HCR4
Fluorophore: Alexa Fluor 546
Initiator and spacer: gACUACUgAUAACUggAUUgCCUUAg - AAUUU

Probe # Probe Sequence

1 CCUUgUCggCgUCgUUgggAUCCACAUAgUUUACAAAgCCAUAUCCCAAg

2 CACCUUgAUUgUUUUggUCUgCAgUUUgAgACCgUUgAgCgUgUUgAUAg

3 ACAUACAggUUggCAUCgCggAUggAAgCUgAgCUgggCCUggCgUAAgA

4 AAAACAACUgCUCCAUgUCUUUCUgACUCAUggUUUUgggCAggCCgCUC

5 UgUgACCUggUUUACCAggAUgCgUgAggUgAUgAUCCUUCCAUACUggg

6 gCUUCgUUCCgUUUgUCgAACCgAAUgAAACCUACCCCgCgCgAUAUACC

7 CAgCUgCUCCUAgUggCUUCUgACCgUUCAggCCCUUgAUggCCUCCUCU

8 CUgUCCUgUCUUCUgACUggggUUgUUggCgAACUUUACggUgAUgggCU

9 gggCCAgUgUAgCggCgAgCggCUgUCUggUAgAgCUgggUCAgCAgAgC

10 UgUCAAUggUUAUgggggAgAAUCUgAAgCgCUgggUCUggUggUgCAgA

11 gCCggCUCCAgUgggCCCggUCAggUUgACCCCggCAAgACUAgUCAUgC

12 AggACACUUUCgUCAgCUUCCggggACAggUUgUAgACgAAgAUgCACCA

13 ggAUgACCUUgACgUUUgUgACggCgCCAAAAggCCCgAAgAgCUgCCAC

14 ggUCAUggUgACgAAgCCAAAgCCCUUACAUUUgUUggUggUgAAgUCAC

15 AggCggUAgCCAUUCAgACUggCgAUAgCCAUggCUgCCUCgUCgUAgUU

16 CUCUggCCUgUgAUCUUgUCUCUgACCAAUUUgCAggACUCgAUUUCCCC

17 gAUgCUgCCAAAgAggCUCUUgAACUCUUCCUgggUCAUgUUCUgAggCA

18 ggUAgUUgACgAUCAggUUAgUUUUgCUgUCAUCUgUggCgCCgUUAgUg
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Target mRNA: no tail a (ntla)
Amplifier: HCR1
Fluorophore: Alexa Fluor 594
Initiator and spacer: gACCCUAAgCAUACAUCgUCCUUCAU - UUUUU

Probe # Probe Sequence

1 gCAgCUCUgUggUUCCUCAAgCUggAgUAUCUCUCACAgUACgAACCCgA

2 UgUAgUUAUUggUggUAgUgCUgCggUgggAgUAAUggCUgggAUAUggA

3 CAgggCUgACCAgCUgUCAUgAgACgCAAgACUUCCggAAgAgUUgUCCA

4 gUgUUUgUggUgUgggCCAgggUUCCCAUCCCgCUggAgUUggggAUCUg

5 UCgUCCCUgCAACUgACCACAgACUUgggUACUgACUggUgUUggAggUA

6 UgUCAggCCACCUgUAAUggAgCCCgAUgCUgAgCCUgAUggggUgAgAg

7 gAggAggUCAgACCCgAgUAggACAUCgAAgAACCgCgUAggAACUgAgA

8 CCUCgCUUAggCCUggAUCgUACAUUgAggAgggAgAggACACAggCAgC

9 UgCUgUgAgCCgggCgAUggAgCUCUCgAACUgggCAUCUCCAACgCCAA

10 UCCUUAAAUgUgAAgCgAUCUCAgUAgCUCUgAgCCACAggCgCCCAUgA

11 UUCUAgAUUUCCUCCUgAAgCCAAgAUCAAgUCCAUAACUgCAgCAUCAg

12 gACUUUUAUAgUAAAUCAACCCgUUUUCUgAUUgUCAAAUCAAgAAgCUC

13 ggAgUgAACAggggCCCCAUUgAACUgAggAgggCUgCUgCUggggCCCA

14 UggggCCgUUACUgggCAggAACCAgCCACCgAgUUgUgAAUAUCCAgAU

15 UgCUggUUgUCAgUgCUgUggUCUgggACUUCCUUgUggUCACUUCUCUC

16 UUUggCAUCgAggAAAgCUUUggCAAAAggAUUgUgUUUgAUUUUCAgAg

17 CggUAAUCUCUUCAUUCUgAUAUgCUgUgACUgCAAUAAACUgUgUCUCA

18 ggAAAAgACUgACUgCUgAUCAUUUUCUgAAUCCCACCgACUUUCACgAU

19 gUgUAUCCUgggUUCgUAUUUgUgCAAUgAgUUUAACAUAAUCUgUCCUC

20 CUCCgUUgAgUUUAUUggAgAgUUUgACUUUgCUgAAAgAUACgggUgCU

21 UUCAUCCAgUgCgCgCCgAAgUUgggUgAgUCCgggUggAUgUAgACgCA

22 gCUCgggCUUUggggUUCgggUUUCCCACCgggCACCCAUUCACCgUUCA

23 CgUAUUUCCACCgAUUAUUAUCggCCgCCACAAAAUCCAgCAggACCgAg

24 UACAUUgCAUUAgggUCgAgACCggUgACACUggCUCUgAgCACgggAAA

25 CAUUCgUCUCCCAgUCUUggUgACAAUCAUUUCAUUggUgAgCUCUUUAA

26 AUUUggUCCACAACUCCgCgUCUUCAAgCgAAAgUUUAAUAUCCCgCUCg

27 gACgCgUCCCCUUUCUCgCUgCCCUUCUgAAAUUCgCUCUCCACggCgCU

28 AAggAgAUgAUCCAggCgCUggUCgggACUUgAggCAgACAUAUUUCCgA

29 UCAAAUAAAgCUUgAgAUAAgUCCgACgAUCCUACUAAAUCCCgUUggAU

30 UAAAUgAUgUCAAAAUUUUCUUUUUUgCAAgAACUAACCCUUUAAUUgAU
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Target mRNA: SRY-box containing gene 10 (sox10)
Amplifier: HCR5
Fluorophore: Alexa Fluor 647
Initiator and spacer: gCAUUACAgUCCUCAUAAgUAUCUCg - UUUUU

Probe # Probe Sequence

1 AUAAACggCCgCUUAUCCgUCUCgUUCAgCAgUCUCCACAgCUUCCCCAg

2 ACUCgggAUAAUCUUUCUUAUgCUgCUUCCUCAAgCgCUCggCCUCCUCg

3 UCUgAgCUggAACCCggUUUgCCgUUCUUgCgUCgACgUggCUggUACUU

4 gUgCgCCACCUCCAggUgCAggCUCUUgUAAUgCgAUUggCUgUggCUgA

5 UgUgACUCUgACCUgUAgCgUgAgggUggUgUCCAUCACCCAAUggUgAC

6 CCAgUCCACUCCgAgAggCUCCgCCCUCACgCUUgCCCUCgCCUgAUUUU

7 UCCACgUUACCgAAgUCgAUgUgCggUUUCCCgCUggCAgACgAUgAggC

8 CgUCgAACggCUCCAUgUUggCCAUCACgUCAUggCUgAUUUCgCCAAUg

9 ggACgCCUgCgggUggCCAUUgggUgggAgAUACUggUCgAACUCgUUCA

10 AgUggCCACUAgCggCCgCUAgCgCgCUggAgAUgCCgUAUgUAUACgAU

11 UCUgCgUUUUCCCgCCAUCUgCgCCCAAAUgCUgCUgggACggCAgUUgC

12 gUgUgAACCgCUCgCCgCUgUAUCCCCAgggAAgUgUgUUUCACUCUUUA

13 gAggggAAggCggAgCUgUAgUgCggCAgUgUUAgCggCgUgUAUgUgAC

14 UAgUAggAUCCCgAggCCUggUgCUCggCgUAUUCggCgAAUUgUgCgCg

15 AgUgUggUgUAUACgggCUgCUCCCAAUgCgUAgggCUgUgUgACUgCgg

16 UUggACCUUUAgUgACUggUCAUCUUggUAgAgUgUgUCACggUCgAgAC

17 UgCAggCgAgUgUUUCgAUgAUUUUUAgCACACACACACACACCUUACgg

18 ACACACACACACACACUCgUUUCUCAgAUCUCAgUUUgUgUCgAUUgUgg

19 UCUggACggUggUCgUCUgAggCACgUgAgAAUAUUUCCCUgCAgAUCUC

20 CgUCUUUUUCgAAAAUACUACUggUgUCAAAUUggCgUUgAgggAgCAgg
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B.8.6.1 RNA Probe Sequences for Figure B.5

The following probes were used to perform the traditional in situs of Figure B.5.

Target mRNA: egfp
Probe Sequence: gACgUAAACggCCACAAgUUCAgCgUgUCCggCgAgggCgAgggCgAUgCCACCUACggCAAgCUgACCCUgAA

gUUCAUCUgCACCACCggCAAgCUgCCCgUgCCCUggCCCACCCUCgUgACCACCUUCggCUACggCCUgAUgUgCUUCgCCCgCUACCCCg

ACCACAUgAAgCAgCACgACUUCUUCAAgUCCgCCAUgCCCgAAggCUACgUCCAggAgCgCACCAUCUUCUUCAAggACgACggCAACUAC

AAgACCCgCgCCgAggUgAAgUUCgAgggCgACACCCUggUgAACCgCAUCgAgCUgAAgggCAUCgACUUCAAggAggACggCAACAUCCU

ggggCACAAgCUggAgUACAACUACAACAgCCACAACgUCUAUAUCAUggCCgACAAgCAgAAgAACggCAUCAAggUgAACUUCAAgAUCC

gCCACAACAUCgAggACggCAgCgUgCAgCUCgCCgACCACUACCAgCAgAACACCCCCAUCggCgACggCCCCgUgCUgCUgCCCgACAAC

CACUACCUgAgCUACCAgUCCgCCCUgAgCAAAgACCCCAACgAgAAgCgCgAUCACAUggUCCUgCUggAgUUC

Target mRNA: tpm3
Probe sequence: UgUACAAgACCggUCCUUCAAACAUUgggCUACAgUAUUCCCAgAAggAggACAAgUAUgAggAAgAAAUCAAg

AUCCUCACUgAUAAgCUgAAggAggCUgAgACCCgUgCAgAgUUUgCUgAgAggUCUgUggCCAAACUggAgAAAACCAUUgAUgAUUUggA

AgAUgAgCUUUAUgCUCAgAAACUCAAgUAUAAggCCAUUAgUgAggAgUUggAUCAUgCUCUCAACgACAUgACCUCUAUAUAAAgAgUUU

CUggACUgUUCUgUggCUgACUgUgACUUCAAgAAAUgCUUCCUCgUCUUCUCUgACUgUCCAUAUUUgUUgCUUUUUUUCUUCUUUgUACA

CUUCCUgUUUUgUgUgUUUUUCCgUgUACUCAUgUCUgUAgUgCCAgUUUCUUUAUUCUgUUUCUgCUUCUgUUUUUUAgAUAUUCAUUAUC

UgCCCCAACAUCUUCCUCUUAUCAggAUCUgUUgUUCUUAUgUCCCUgCUCUUgCUCUUCUgUgACCUUUUgCUgUAUUUUUCAUgCCUUgC

gUCCAUgUUUAUUgAAgggAggAgAAAAAACggCUCUgCUCUCUUUUgAAUgUCUgCUUgUCUCUCUUUAUUgCAAUggACUggUgUUgggC

AACCAAgCAUUUACCCAUCUUCAAUUgCACAUgUAUUAUAUCUCAUggUUgAAAgAUAAAAggCUUgAUUAAAUUCUCCgUCACUAAUUgUg

AUUAAAAUCgAAUUCCCgCggCCgCCAUggCggCCggAg

Target mRNA: elavl3
Probe sequence: ggAUAUggCUUUgUAAACUAUgUggAUCCCAACgACgCCgACAAggCUAUCAACACgCUCAACggUCUCAAACU

gCAgACCAAAACAAUCAAggUgUCUUACgCCAggCCCAgCUCAgCUUCCAUCCgCgAUgCCAACCUgUAUgUgAgCggCCUgCCCAAAACCA

UgAgUCAgAAAgACAUggAgCAgUUgUUUUCCCAgUAUggAAggAUCAUCACCUCACgCAUCCUggUAgACCAggUCACAgCAggUAUAUCg

CgCggggUAggUUUCAUUCggUUCgACAAACggAACgAAgCAgAggAggCCAUCAAgggCCUgAACggUCAgAAgCCACUAggAgCAgCUgA

gCCCAUCACCgUAAAgUUCgCCAACAACCCCAgUCAgAAgACAggACAggCUCUgCUgACCCAgCUCUACCAgACAgCCgCUCgCCgCUACA

CUggCCCUCUgCACCACCAgACCCAgCgCUUCAgACUCgACAAUUUACUAAACgCCAgCUACggAgUCAAgAgAUUCUCCCCCAUAACCAUU

gACAgCAUgACUAgUCUUgCCggggUCAACCUgACCgggCCCACUggAgCCggCUggUgCAUCUUCgUCUACAACCUgUCCCCggAAgCUgA

CgAAAgUgUCCUgUggCAgCUCUUCgggCCUUUUggCgCCgUCACAAACgUCAAggUCAUCCgUgACUUCACCACCAACAAAUgUAAgggCU

UUggCUUCgUCACCAUgACCAACUACgACgAggCAgCCAUggCUAUCgCCAgUCUgAAUggCUACCgCCUgggCgACCgCgUgCUgCAggUC

UCgUUCAAgACCAgCAAgCAgCACAAggCUUgAAggAAggCCUAgUCACUAUUgCUCUUUAACAUgCAgggggAgCUACUgAgCUCCCUgUA

CAUUCACUCUACAUgggCCUggACUgAgUCUCUCUCUAACAUACAUUCgACACACACACA

Target mRNA: ntla
Probe sequence: gAAUUCCCgCUgUCAAAgCAACAgUAUCCAACgggAUUUAgUAggAUCgUCggACUUAUCUCAAgCUUUAUUUg

AUCggAAAUAUgUCUgCCUCAAgUCCCgACCAgCgCCUggAUCAUCUCCUUAgCgCCgUggAgAgCgAAUUUCAgAAgggCAgCgAgAAAgg

ggACgCgUCCgAgCgggAUAUUAAACUUUCgCUUgAAgACgCggAgUUgUggACCAAAUUUAAAgAgCUCACCAAUgAAAUgAUUgUCACCA

AgACUgggAgACgAAUgUUUCCCgUgCUCAgAgCCAgUgUCACCggUCUCgACCCUAAUgCAAUgUACUCggUCCUgCUggAUUUUgUggCg

gCCgAUAAUAAUCggUggAAAUACgUgAACggUgAAUgggUgCCCggUgggAAACCCgAACCCCAAAgCCCgAgCUgCgUCUACAUCCACCC

ggACUCACCCAACUUCggCgCgCACUggAUgAAAgCACCCgUAUCUUUCAgCAAAgUCAAACUCUCCAAUAAACUCAACggAggAggACAgA

UUAUgUUAAACUCAUUgCACAAAUACgAACCCAggAUACACAUCgUgAAAgUCggUgggAUUCAgAAAAUgAUCAgCAgUCAgUCUUUUCCU
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gAgACACAgUUUAUUgCAgUCACAgCAUAUCAgAAUgAAgAgAUUACCgCUCUgAAAAUCAAACACAAUCCUUUUgCCAAAgCUUUCCUCgA

UgCCAAAgAgAgAAgUgACCACAAggAAgUCCCAgACCACAgCACUgACAACCAgCAAUCUggAUAUUCACAACUCggUggCUggUUCCUgC

CCAgUAACggCCCCAUgggCCCCAgCAgCAgCCCUCCUCAgUUCAAUggggCCCCUgUUCACUCCUCgggUUCgUACUgUgAgAgAUACUCC

AgCUUgAggAACCACAgAgCUgCUCCAUAUCCCAgCCAUUACUCCCACCgCAgCACUACCACCAAUAACUACAUggACAACUCUUCCggAAg

UCUUgCgUCUCAUgACAgCUggUCAgCCCUgCAgAUCCCCAACUCCAgCgggAUgggAACCCUggCCCACACCACAAACACUACCUCCAACA

CCAgUCAgUACCCAAgUCUgUggUCAgUUgCAgggACgACUCUCACCCCAUCAggCUCAgCAUCgggCUCCAUUACAggUggCCUgACAUCU

CAgUUCCUACgCggUUCUUCgAUgUCCUACUCgggUCUgACCUCCUCgCUgCCUgUgUCCUCUCCCUCCUCAAUgUACgAUCCAggCCUAAg

CgAggUUggCgUUggAgAUgCCCAgUUCgAgAgCUCCAUCgCCCggCUCACAgCAUCAUgggCgCCUgUggCUCAgAgCUACUgAgAUCgCU

UCACAUUUAAggACUgAUgCUgCAgUUAUggACUUgAUCUUggCUUCAggAggAAAUCUAgAAgAgCUUCUUgAUUUgACAAUCAgAAAACg

ggUUgAUUUACUAUAAAAgUCACAUCUgUAUCAUACCgAggCAUACgUAUUUACAAUCAAgAUgAgAgACAAUCAAUUAAAgggUUAgUUCU

UgCAAAAAAgAAAAUUUUgACAUCAUUUACUCACCUUUgUUUUAAACAUUgUUAAgUUUUUAUUCUgUUAAACACAAAAgAAgAUAUUUUgA

AgAAUgUUCAAAACUggUAACCAUUgCAUAgAAgCUgUUUUACUUAUggAAgUAAAUggUUACAggUUAUCAgCAUUUUUUUAAAUAUAUUU

UUUAgUUCAACAgAAgAAAgAAACUCUUUAAAgUUUggAACAACUUgAgggUgAgUAAAUUgAgUAAAAgUACgUUUUUgggUUAACUAUCC

CUUUAACUAUCAgAUUUUAgCCAUACAUUUUggggCAAUUAUAgUgUUUAUUCUUgAUAAUAUUAUCUAAAAgAUUAAUAAAAUCAAAAUUg

UgCUgUUgACUCACUAAAAgUgUAUAUgUgUgUAAAUAAAUAgAAAUUAACgUCCggUUUCAUUgUAUCACAgAAgAAUgUAACAgUCUUAC

AUgUgCUUUCUgUAgAACgAgAgAAAgACAgACUUUgCUgUUUCgUUUgAgAAAgUgAAUACgCUUUgAAAAgUgACCgUAUAgUUUUgUCU

gCUAUUCgUCCUAUAgAgAAACCAUUUgUACAUAUCUAUCUAUUUgUAUUUgUUgggCUCUUUgAgUUUUAUUUAUgUCAUUUUAAUAAUAA

AUUAAAUUUCUUUUUUUUUUCUgUCAAAAAAAAggAgUUCCggAAUUC

Target mRNA: sox10
Probe sequence: gUCgACgCAAgAACggCAAACCgggUUCCAgCUCAgAggCCgACgCCCACUCUgAgggCgAggUCAgCCACAgC

CAAUCgCAUUACAAgAgCCUgCACCUggAggUggCgCACggCggggCUgCAgggUCACCAUUgggUgAUggACACCACCCUCACgCUACAgg

UCAgAgUCACAgCCCUCCAACgCCCCCUACCACCCCCAAgACggAACUgCAgggAggAAAAUCAggCgAgggCAAgCgUgAgggCggAgCCU

CUCggAgUggACUgggggUgggAgCAgAUggAAgCUCCgCCUCAUCgUCUgCCAgCgggAAACCgCACAUCgACUUCggUAACgUggACAUU

ggCgAAAUCAgCCAUgACgUgAUggCCAACAUggAgCCgUUCgACgUgAACgAgUUCgACCAgUAUCUCCCACCCAAUggCCACCCgCAggC

gUCCgCCACUgCCAgCgCAggAUCUgCAgCgCCAUCgUAUACAUACggCAUCUCCAgCgCgCUAgCggCCgCUAgUggCCACUCCACCgCAU

ggCUgUCCAAgCAgCAACUgCCgUCCCAgCAgCAUUUgggCgCAgAUggCggAAAAACgCAgAUAAAgAgUgAAACACACUUCCCCggggAU

ACAgCggCgAgCggUUCACACgUCACAUACACgCCgCUAACACUgCCgCACUACAgCUCCgCCUUCCCCUCgCUggCgUCCCgCgCACAgUU

CgCCgAAUACgCCgAgCACCAggCCUCgggAUCCUACUACgCCCACUCCAgCCAgACCUCAggCCUCUACUCCgCCUUCUCCUACAUgggCC

CCUCACAgCggCCCCUgUACACCgCCAUUCCggAUCCgggAUCCgUgCCgCAgUCgCACAgCCCCACgCACUgggAgCAgCCCgUAUACACC

ACACUgUCUCgACCgUgACACACUCUACCAAgAUgACCAgUCACggAAggUCCAACCgUAAAgUgUgUgUgUgUgUgUgUgUgCUAAAAAUC

AUCgAAACACUCgCCUgCACCACAAUCgA
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B.8.7 HCR Hairpins

RNA initiator and hairpin sequences for the six HCR amplifiers used in this paper. Each
amplifier has an initiator (I) and two hairpins (H1 and H2).

– : Hairpin ligation site
/5′-dye-C12/: 5′ Alexa Fluor modification with a C12 spacer
/C9-dye-3′/: 3′ Alexa Fluor modification with a C9 spacer

HCR1
I gACCCUAAgCAUACAUCgUCCUUCAU

H1 AUgAAggACgAUgUAUgCUUAgggUCgACUUCCAUAgACCCU-AAgCAUACAU /C9-dye-3’/

H2 /5’-dye-C12/ gACCCUAAgC-AUACAUCgUCCUUCAUAUgUAUgCUUAgggUCUAUggAAgUC

HCR1′
I′ CCAgUUAUCAgUAgUCCgUCCUUCAU

H1′ AUgAAggACggACUACUgAUAACUgggACUUCCAUACCAgU-UAUCAgUAgUC /C9-dye-3’/

H2′ /5’-dye-C12/ CCAgUUAUCAgUAgUCCgUCCUUCAUgACUAC-UgAUAACUggUAUggAAgUC

HCR2
I CCgAAUACAAAgCAUCAACgACUAgA

H1 UCUAgUCgUUgAUgCUUUgU-AUUCggCgACAgAUAACCgAAUACAAAgCAUC /C9-dye-3’/

H2 /5’-dye-C12/ CCgAAUACAAAg-CAUCAACgACUAgAgAUgCUUUgUAUUCggUUAUCUgUCg

HCR3
I UACgCCCUAAgAAUCCgAACCCUAUg

H1 CAUAgggUUCggAUUCUUAgggCgUAgCAgCAUCAAUACgC-CCUAAgAAUCC /C9-dye-3’/

H2 /5’-dye-C12/ UACgCCCUAAgAAUCCgAACCCUAUgggAUUC-UUAgggCgUAUUgAUgCUgC

HCR4
I gACUACUgAUAACUggAUUgCCUUAg

H1 CUAAggCAAUCCAgUUAUCAgUAgUCUgACACgACUgACUAC-UgAUAACUgg /C9-dye-3’/

H2 /5’-dye-C12/ gACUACUgAUA-ACUggAUUgCCUUAgCCAgUUAUCAgUAgUCAgUCgUgUCA

HCR5
I gCAUUACAgUCCUCAUAAgUAUCUCg

H1 CgAgAUACUUAUgAggACUgUAAUgCAAgUCgUUCAgCAUU-ACAgUCCUCAU /C9-dye-3’/

H2 /5’-dye-C12/ gCAUUACAgUC-CUCAUAAgUAUCUCgAUgAggACUgUAAUgCUgAACgACUU
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Appendix C

An Autonomous Bipedal Walker
Powered by DNA Hybridization

This work presented here is heavily based on the following paper:

P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce. Programming biomolecular self-

assembly pathways. Nature 451(7176), pp. 318–322 (2008).

C.1 Introduction

The challenge of engineering molecular machines capable of autonomous locomotion has

attracted significant interest in recent years [1–5]. Inspired by the bipedal motor protein,

kinesin, which hauls intracellular cargo by striding along microtubules [6], we have developed

an autonomous enzyme-free bipedal DNA walker capable of stochastic locomotion along a

DNA track. In contrast to previous autonomous DNA-based systems, which have employed

ribozymes, DNAzymes, [2, 4, 7] or protein enzymes, [1, 3] our enzyme-free walker is powered

solely by the free energy of hybridization.

C.2 Fuel System

The bipedal walker is fueled by two DNA hairpins A and B, which are metastable in the

absence of a catalyst I. When the catalyst is present, hairpins A and B can be catalyzed to

form a duplex A·B. Figure C.1 depicts the mechanism and an agarose gel validating these

properties. In the absence of an initiator (lane 7), minimal leakage (formation of A·B in the
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absence of I) is observed. When the catalyst is present (lanes 3-6), the formation of duplex

A·B is dramatically accelerated. The designed release of I from the waste product (A·B)

enables catalytic turnover as indicated by the nearly complete consumption of hairpins at

sub-stoichiometric catalyst concentrations (lanes 4-6).

Strand Sequence
A 5′ AAGTAGTGATTGAGCGTGATGAATGTCACTACTTCAACTCGCATTCATCACGCTCAATC 3′

B 5′ TGATGAATGCGAGTTGAAGTAGTGACATTCATCACGCTCAATCACTACTTCAACTCGCA 3′

I 5′ GACATTCATCACGCTCAATCACTACTT 3′

Table C.1: DNA Sequences of the Fuel System.

In addition to the use of sub-stoichiometric catalyst concentrations in the gel, catalyst

recovery is further investigated using a fluorescence quenching experiment (Figure C.2a). In

this experiment, the catalyst is 3′-labeled with a fluorophore, FAM (6-carboxyfluorescein),

and its fluorescence is observed with a spectrofluorometer. The fluorescence baseline of

FAM is first recorded before the addition of hairpin A. Then, introduction of hairpin A

allows I-FAM to hybridize with A and results in quenching of the FAM fluorescence signal.

This quenching effect is due to hybridization-induced proximity of FAM to the guanine

base near the 5′ end of hairpin A [8]. Addition of hairpin B releases I-FAM from A and the

fluorescence signal recovers (Figure C.2b). The observed recovery of the fluorescence signal

(after correcting for dilution effects) confirms that nearly all of the catalysts are released

from the A·B duplexes. This catalytic fuel system is employed to power the locomotion of

a bipedal DNA walker.
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Figure C.1: Catalytic Fuel System. (a) Reaction schematic. Hairpins A and B coexist
metastably in the absence of catalyst I. Catalyst I catalyzes the reaction of A and B to
form duplex A·B. Step 1: Toehold a* of I nucleates at the toehold a of A, resulting in the
opening of hairpin A and the formation of product I·A. Step 2: With newly exposed c*, I·A
can now open hairpin B and B will subsequently displace I from A. This sequence of reactions
produces the waste product A·B. (b) Native 2% agarose gel electrophoresis demonstrates
the catalytic formation of the DNA duplex. The hairpins were snap cooled in reaction buffer
before use. Lanes 1-3: A gel shifting assay validated each reaction step depicted in panel
(a). Lanes 3-7: Effects of different concentrations of I (1×, 0.5×, 0.25×, 0.1×, and 0×) on
the formation of A·B. Reactants were incubated at 1 µM at room temperature for 2 hours
before loading on the gel. Lane 8: A·B duplexes were formed by annealing 1 µM of each
hairpin over the course of 2.5 hours. A 2% agarose gel was used in this assay.
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66

A

Walker 

B

x
b

a

y
c

x*

a*
d*

c*
b*

y*

x*

a

c

a*

b

d*

x

y
x*

c

d* a*y* x*

d ay x

b*

y*
c*

x*
b*

a*

y*
c*

x
c*
b*
x*

y*

A A A A
Site 1 Site 2 Site 3 Site 4 Site 5

Track

I I

Figure C.3: Secondary structure of the autonomous walker

C.3 Walker Design and Mechanism

Figure C.3 depicts the designed secondary structures of the bipedal walker and the track it

will stride on. Joined by a duplex torso, each of the two identical walker legs, I, is capable of

catalyzing the formation of waste duplex A·B from metastable fuel hairpins A and B via the

reaction pathway described above. The track consists of five A hairpins arranged linearly at

regular intervals along a nicked DNA duplex and the walker is initialized with its two legs

hybridized to sites 1 and 2. In the absence of hairpin B, the walker will stay bound to the

first two anchorages on the track. When hairpin B is introduced to the system, locomotion

begins and a subpopulation of walkers is expected to move unidirectionally along the track

by sequentially catalyzing the formation of A·B. Due to the one-dimensional arrangement

of anchor sites, this processive motion occurs only for those walkers that exhibit a foot-over-

foot gait by stochastically lifting the back foot at each step. Figures C.4 and C.5 show all

possible processive and non-processive movements of the walker when hairpin B is added

to initiate the walker’s locomotion.
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Figure C.4: Detailed secondary structure schematic for the first walker step. Reaction
arrows corresponding to the processive subpopulation of walkers are shown in purple. Gray
arrows represent the non-processive subpopulation of walkers.
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Step 1

Step 2

Step 3

Step 4 

Figure C.5: Step-by-step secondary structure schematic for the autonomous walker. Reac-
tion arrows corresponding to the processive subpopulation of walkers are shown in purple.
Gray arrows represent the non-processive population of walkers. A walker will visit posi-
tions 3, 4, and 5 in that order if it starts at positions 1 and 2 and follows the purple arrows
from step 1 to step 3.



69

C.4 Results and Discussion

Walker locomotion is investigated using a bulk fluorescence assay that tests whether there

is a subpopulation of walkers that locomotes processively through positions 3, 4, and 5,

starting from an initial condition with legs anchored at positions 1 and 2 (Figure C.6a).

Quenchers are attached to the walker’s legs and spectrally distinct fluorophores are posi-

tioned proximally to anchorages 3, 4, and 5. The fluorescence signals of the three fluo-

rophores are monitored with a spectrofluorometer.

Consistent with processivity, the anticipated sequential transient quenching of the fluo-

rophores at positions 3, 4, and 5 is observed (Figure C.6b). To rule out the possibility that

this signal arises from non-processive walker diffusion through the bulk solution from one

position to the next, the experiments were repeated using monopedal walkers (two separate

legs) that lack a mechanism for achieving processivity. In this case, the sequential transient

quenching no longer matches the ordering of the fluorophores along the track (Figure C.6c).

Six independent experiments were performed for both the bipedal and monopedal walkers

(Figure C.8) and a statistical analysis of the experiments (Section C.5.4) supports the inter-

pretation that the observed minima are sampled from a distribution in which the ordering

of the minima matches the physical ordering of the fluorophores along the track.

Overlaying all 36 traces (18 traces per walker type: three fluorophores, six experiments),

it is apparent that the time scale for visiting any one of the three anchorages with the

monopedal walker is longer than the time scale to visit all three anchorages for the bipedal

system (Figure C.6d). Additional control experiments (Figures C.12 and C.13) show that

this difference in time scales cannot be explained by the relative rates with which freely

diffusing bipedal and monopedal walkers land on the track. As a further test of processivity

for the bipedal walker, reordering the fluorophores along the track leads to the expected

change in the ordering of the transient quenching (Figures C.6e and C.9). These experiments

confirm the presence of a subpopulation of processive bipedal walkers.
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Figure C.6: Summarized results for autonomous locomotion: stochastic movement of a
bipedal walker. (a) Secondary structure mechanism depicting processive locomotion. (b-e)
Fluorescence quenching experiments measuring the proximity of the quenchers (black dots)
on the walker feet to the fluorophores (colored stars) decorating the track. Fitted curves
(solid) are used to determine the time at which the minimum fluorescence (maximum
quenching) was observed (dashed vertical line) for each fluorophore. (b) Bipedal walker
with track labeled JOE (green star) → TAMRA (red) → FAM (blue) as in panel (a). For
each pair of consecutive minima (JOE → TAMRA and TAMRA → FAM), we test the null
hypothesis that the median time difference between the minima is zero against the alter-
native hypothesis that the time difference is positive. Based on a statistical analysis of six
independent experiments (Section C.5.4), the null hypothesis can be rejected for both time
differences with the same P -value of 0.0156, supporting the interpretation that the observed
minima are sampled from a distribution in which the ordering of the minima matches the
physical ordering of the fluorophores along the track. Similar interpretations apply to the
ordering of minima for panels (c) and (e). (c) Monopedal walkers on the same track (JOE
(yellow star) → TAMRA (pale green) → FAM (pale blue)). (d) Comparison of time scales
for bipedal and monopedal walkers (18 traces per walker type: three fluorophores, six ex-
periments). (e) Bipedal walker with track labeled TAMRA (red star) → JOE (green) →
FAM (blue).
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C.5 Supplementary Information

C.5.1 Methods

C.5.1.1 DNA and Hairpin Synthesis

DNA was synthesized and purified by Integrated DNA Technologies (IDT). The purified

DNA strands were reconstituted in ultrapure water. The concentrations of the DNA solu-

tions were determined by the measurement of UV absorption at 260 nm. Each hairpin was

synthesized as two pieces which were then ligated to produce the full hairpin (see C.5.7 for

the ligation site). The ligation was performed using T4 DNA ligase (New England Biolabs)

at 16 ◦C overnight. Ligated strands were then purified using a 15% denaturing PAGE

gel. The bands corresponding to the DNA strands of expected sizes were visualized by UV

shadowing and excised from the gel. The DNA strands were then eluted, and recovered by

ethanol precipitation.

C.5.1.2 Reaction Buffer, Snap Cooling, and Annealing

The reaction buffer (4 mM MgCl2, 15 mM KCl, and 10 mM Tris-HCl, pH = 8.0) was used

in all the walker experiments described above. Hairpins were prepared as monomers in the

reaction buffer using a snap cooling procedure: heating at 90 ◦C for 5 minutes and cooling

on ice for 1 minute. The hairpins were then allowed to equilibrate at room temperature for

30 minutes before use. Annealing for the formation of the A·B duplex for the agarose gel

and the walker track for the fluorescence experiments was done by heating the sample at

95 ◦C for 5 minutes and allowing it to cool at 1 ◦C per minute to room temperature.

C.5.1.3 Gel Electrophoresis

In the gel electrophoresis, agarose gel was prepared in 1× LB buffer (Faster Better Media,

LLC). Samples were loaded with 2× SYBR Gold stain (Invitrogen) and 10% glycerol. The

gel used to demonstrate the catalytic mechanism of the fuel system was run at 350 V for 10

minutes at room temperature and the gel used to validate the walker assembly was run at

200 V for 40 minutes at room temperature. Both gels were visualized using an FLA-5100
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imaging system (Fuji Photo Film).

C.5.1.4 Fluorescence Experiments

In the catalyst recovery fluorescence experiment, data were acquired using a spectrofluorom-

eter from Photon Technology International (PTI) equipped with a temperature controller

set at 21 ◦C. A 1.7 mL QS quartz cuvette (Hellma GmbH & Co. KG) was used. Excitation

and emission wavelengths were set at 492 and 517 nm, respectively. All bandwidths were

set at 4 nm.

In the fluorescence quenching experiments used to validate walker locomotion, two

3.5 mL QS quartz cuvettes (Hellma) were used in each set of experiments. Excitation and

emission wavelengths were set to 492 and 517 nm (for FAM), 527 and 551 nm (for JOE),

and 558 and 578 nm (for TAMRA), respectively, with 4 nm bandwidths. The assembly of

the walker system is described in Section C.5.2. Hairpin B was snap cooled in the reaction

buffer before use. The system was assembled using 4 nM track and 3.5 nM bipedal walker.

A sub-stoichiometric amount of walker was used to ensure that no free-floating walker would

bind to hairpin A on the track. For the same reason, sub-stoichiometric monopedal walker

(7 nM) was used in the diffusion experiments. The final concentration of hairpin B was 20

nM, which was equimolar with the five A hairpins on the track (5 × 4 nM = 20 nM). The

assembled track was first introduced to record the fluorescence baselines for FAM, JOE,

and TAMRA. Hairpin B was then introduced and mixed 100 times by rapid pipetting to

start the walker locomotion.
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C.5.2 Assembly of the Walker System

The walker system is assembled in four steps (Figure C.7a).

• Step 0. The walker (W) was assembled by annealing strands W1-BHQ1 and W2-

BHQ1 as follows: heat the mixture at 95 ◦C for 5 minutes and slowly cool to room

temperature at 1 ◦C/min.

• Step 1. Hairpins S1 and S4 were mixed with track strands S2, S3, and S5, then

annealed to produce Track 1 (T1) as above.

• Step 2. T1 and the pre-assembled walker (W) were incubated at room temperature

for 2 hours to produce T1+W.

• Step 3. Hairpins S6, S9, and S11 were mixed with track strands S7, S8, S10, and

S12, then annealed to produce Track 2 (T2). For the bipedal and monopedal landing

control experiments (Figure C.13), the S7 track strand is replaced by S7 truncated

(see Figure C.14b) so that T1 and T2 remain disjoint.

• Step 4. T2 and T1+W were incubated at room temperature for 3 hours to produce

the final system, T1+W+T2.

Native agarose gel electrophoresis demonstrates a band shifting pattern that confirms on a

step-by-step basis the correct assembly of the walker system. (Figure C.7b).
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Figure C.7: Assembly of the walker system. (a) Step-by-step assembly procedure. (b)
Native 3% agarose gel electrophoresis demonstrating the expected assembly of the system.
Samples were annealed and assembled in reaction buffer with all species at 0.5 µM.
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C.5.3 Raw Data of the Fluorescence Quenching Experiments

Figures C.8 and C.9 present the raw data and curve fitting results for the fluorescence

quenching experiments measuring the proximity of the quenchers (black dots) on the walker

feet to the fluorophores (colored stars) decorating the track. In Figure C.8, the walker track

is decorated with fluorophores JOE → TAMRA → FAM; in Figure C.9, the walker track is

decorated with fluorophores TAMRA → JOE → FAM. For each dye ordering, six pairs of

experiments were performed. Each box contains data for one bipedal and one monopedal

experiment that were performed simultaneously in separate cuvettes.

Since the walkers’ motion is not synchronized, the time scale associated with the quench-

ing of a given dye is characterized by approximating the minimum of the corresponding bulk

fluorescence signal. To mitigate the effect of noise on estimating the location of the min-

imum, fitted double exponential curves (solid) were used to determine the time at which

the minimum fluorescence (i.e., maximum quenching) was observed (dashed vertical line)

for each fluorophore. For each curve fit, the data points of the initial baseline and those

after the point of inflection are excluded (as depicted). The same time window was used

for fitting all data for each pair of boxed experiments (i.e., for all six traces: 3 bipedal and

3 monopedal). All curve fits have an R2 of 0.94 or better.
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Figure C.8: Fluorescence data for track with fluorophores JOE → TAMRA → FAM.



77

Ph
ot

on
 c

ou
nt

s
Ph

ot
on

 c
ou

nt
s

Ph
ot

on
 c

ou
nt

s

0 1 2
7

7.5

8
×104

0 1 2
1.5

1.6

1.7
×105

Time (hr)

0 1 2
4.5

5

0 1 2
7

7.5

8
×104

0 1 2
1.5

1.6

1.7
×105

Time (hr)

0 1 2
4.5

5

×104

Time (hr) Time (hr)

0 1 2
7.5

8

8.5
×104

0 1 2

5

5.5

×104

0 1 2
7.5

8

8.5
×104

0 1 2

5

5.5

×104

0 1 2
1.45

1.55

1.65

×105

0 1 2
1.45

1.55

1.65

×105
0 1 2

7

7.4

7.8

×104
0 1 2

4.5

5

×104

0 1 2
1.4

1.5

1.6

×105

Time (hr)

0 1 2
7

7.4

7.8

×104
0 1 2

4.5

5

×104

0 1 2
1.4

1.5

1.6

×105

Time (hr)

Time (hr) Time (hr)

0 1
6.5

7

7.5
×104

0 1
1.2

1.3

1.4

×105
2

0 1 2

4.5  

5

×104

2

0 1 2
6.5

7

7.5
×104

0 1 2

4.5

5

×104

0 1 2
1.2

1.3

1.4

×105

Ph
ot

on
 c

ou
nt

s
Ph

ot
on

 c
ou

nt
s

Ph
ot

on
 c

ou
nt

s

0 1 2
6.6

7

7.4

×104
0 1 2

4.4

4.8

×104

0 1 2

1.5

1.6
×105

Time (hr)

0 1 2
6.8

7.2

7.6
×104

0 1 2

4.4

4.8

×104

0 1 2

1.5

1.6
×105

Time (hr)

0 1 2
7.5

8

8.5
×104

0 1 2

5

5.5
×104

0 1 2
1.5

1.6

1.7

×105

Time (hr)

0 1 2
7.5

8

8.5
×104

0 1 2

5

5.5
×104

0 1 2
1.5
1.6

1.7

×105

Time (hr)

×104

TAMRA FAM

3 5421

JOE
Bipedal

TAMRA FAM

3 5421

JOE
Monopedal

TAMRA FAM

3 5421

JOE
Bipedal

TAMRA FAM

3 5421

JOE
Monopedal

TAMRA FAM

3 5421

JOE
Bipedal

TAMRA FAM

3 5421

JOE
Monopedal

TAMRA FAM

3 5421

JOE
Bipedal

TAMRA FAM

3 5421

JOE
Monopedal

TAMRA FAM

3 5421

JOE
Bipedal

TAMRA FAM

3 5421

JOE
Monopedal

TAMRA FAM

3 5421

JOE
Bipedal

TAMRA FAM

3 5421

JOE
Monopedal

Figure C.9: Fluorescence data for track with fluorophores TAMRA → JOE → FAM.
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C.5.4 Statistical Analysis

For the bipedal walker experiment of Figure C.6c, the fluorophore ordering along the track

is JOE→ TAMRA→ FAM. We wish to assess the statistical significance of the observation

that the time differences between consecutive minima in the three quenching curves are

positive (i.e., that tTAMRA
min − tJOE

min > 0 and tFAM
min − tTAMRA

min > 0). For the monopedal walker

experiments of Figure C.6d with the same ordering of fluorophores along the track, we

wish to test the statistical significance of the observations tJOE
min − tFAM

min > 0 and tTAMRA
min −

tJOE
min > 0. Analogous questions apply to the bipedal and monopedal experiments where the

fluorophores are instead ordered TAMRA → JOE → FAM along the track (Figure C.6f).

For each time gap, we obtain six measurements (x1, x2,. . . , x6; sample size n = 6)

from independent experiments (Tables C.2 and C.3). To avoid making the assumption

that the underlying distribution is normal, we employ the distribution-free sign test, which

applies to any continuous distribution [9]. Our null hypothesis is that the median of these

measurements is zero (H0 : µ̃ = 0); our alternative hypothesis is that the median is positive

(Ha : µ̃ > 0). The test statistic, y, is the number of xi’s that exceed 0; for all time gaps

in Tables C.2 and C.3, y = 6 because all measured time differences are positive. Using a

one-tailed sign test, the P -value is 0.0156 for all tests. Hence, the null hypothesis can be

rejected for each time gap at significance level α = 0.0156.

The above sign test analysis is preferred to the more familiar t-test analysis which

requires the (unjustified) assumption of an underlying normal distribution. For purposes of

comparison, we nonetheless include a t-test analysis (demonstrating that even smaller P -

values are achieved under the assumption that the measurements are sampled from a normal

distribution). In this case, the null hypothesis is that the mean of these measurements is

zero (H0 : µ = 0); the alternative hypothesis is that the mean is positive (Ha : µ > 0).

The test statistic is t = µ/(s/
√
n), where s is the computed standard deviation of the

measurements [9]. For a one-tailed t-test (with five degrees of freedom; n − 1 = 5), the

P -values for all time gaps are shown in Tables C.2 and C.3. In each case, the P -value is

smaller than the one for the corresponding sign test. Hence, the null hypotheses can be

rejected with an even more stringent significance level α using the t-test.
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Bipedal x1 x2 x3 x4 x5 x6

JOE → TMR (sec) 515.5 588.3 621.8 590.1 669.2 658.5
TMR → FAM (sec) 143.0 211.5 135.2 103.3 66.0 287.1

Bipedal Median (µ̃) Sign stat (y) P -value Mean (µ) Std Dev (s) t-stat P -value

JOE → TMR (sec) 606.0 6 0.0156 607.2 56.1 26.5 0.0000
TMR → FAM (sec) 139.1 6 0.0156 157.7 79.7 4.8 0.0024

Monopedal x1 x2 x3 x4 x5 x6

FAM → JOE (sec) 696.8 730.6 659.1 957.9 636.0 656.4
JOE → TMR (sec) 144.6 337.0 184.8 74.3 443.6 3.4

Monopedal Median (µ̃) Sign stat (y) P -value Mean (µ) Std Dev (s) t-stat P -value

FAM → JOE (sec) 678.0 6 0.0156 722.8 120.0 14.8 0.0000
JOE → TMR (sec) 164.7 6 0.0156 198.0 164.8 2.9 0.0169

Table C.2: Measured time differences between minima and statistical analysis for six ex-
periments with bipedal or monopedal walkers on the track with fluorophore ordering: JOE
→ TAMRA → FAM. For raw data see Figure C.8.

Bipedal x1 x2 x3 x4 x5 x6

TMR → JOE (sec) 471.3 658.9 553.5 691.7 615.6 462.6
JOE → FAM (sec) 178.1 216.2 144.0 143.1 215.8 245.6

Bipedal Median (µ̃) Sign stat (y) P -value Mean (µ) Std Dev (s) t-stat P -value

TMR → JOE (sec) 584.6 6 0.0156 575.6 96.1 14.7 0.0000
JOE → FAM (sec) 197.0 6 0.0156 190.5 42.2 11.1 0.0001

Monopedal x1 x2 x3 x4 x5 x6

TMR → FAM (sec) 286.4 427.5 284.1 428.0 542.0 692.2
FAM → JOE (sec) 1092.4 1250.6 1430.4 1573.8 1575.1 799.0

Monopedal Median (µ̃) Sign stat (y) P -value Mean (µ) Std Dev (s) t-stat P -value

TMR → FAM (sec) 427.8 6 0.0156 443.4 156.3 6.9 0.0005
FAM → JOE (sec) 1340.5 6 0.0156 1286.9 304.4 10.4 0.0001

Table C.3: Measured time differences between minima and statistical analysis for six exper-
iments with bipedal or monopedal walkers on the track with fluorophore ordering: TAMRA
→ JOE → FAM. For raw data see Figure C.9.
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C.5.5 Comparison of Walker Time Scales

Figures C.10 and C.11 overlay the fitted curves from the six independent bipedal and

monopedal walker experiments of Figures C.8 and C.9. To enable comparison in a single

plot, all data are normalized: unity corresponds to the last baseline fluorescence value before

adding hairpin B and zero corresponds to the minimum of the fitted curve. The time axis

is translated so that t = 0 corresponds to the time of the last baseline data point before

adding hairpin B. An upper bound on the variability in the time required to add hairpin B

and mix the sample in each experiment is approximately 30 seconds. This represents the

uncertainty in comparing the curve fits between different experiments along the same time

axis.

The variability among the traces for each fluorophore is higher in Figure C.11 (TAMRA

→ JOE → FAM) than in Figure C.10 (JOE → TAMRA → FAM) because the six indepen-

dent experiments in the prior case were performed over a period of several months. The

wearing of the UV lamp over this time period may result in higher variability among the

traces. The same conclusion is drawn from this data: the time scale to visit any one site

with the monopedal walker is longer than the time scale to visit all three sites with the

bipedal walker follows from either data set.
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Figure C.10: Comparison of time scales for bipedal and monopedal walkers using normal-
ized fitted curves from the raw fluorescence data of Figure C.8 with track labeled JOE →
TAMRA → FAM. (a) For each fluorophore, 12 traces (six for each walker type) are plotted
together, demonstrating that the bipedal walker visits each anchorage on a faster time scale
than the monopedal walker. (b) All 36 traces (18 per walker type) are plotted together
to demonstrate that the time scale for the monopedal walker to visit any one of the three
anchorages is longer than the time scale of the bipedal walker to visit all three anchorages.
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Figure C.11: Comparison of time scales for bipedal and monopedal walkers using normalized
fitted curves from the raw fluorescence data of Figure C.9 with track labeled TAMRA →
JOE → FAM. (a) For each fluorophore, 12 traces (six for each walker type) are plotted
together, demonstrating that the bipedal walker visits each anchorage on a faster time scale
than the monopedal walker. (b) All 36 traces (18 per walker type) are plotted together
to demonstrate that the time scale for the monopedal walker to visit any one of the three
anchorages is longer than the time scale of the bipedal walker to visit all three anchorages.
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C.5.6 Control for Walker Landing Effects
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Figure C.12: Comparison of time scales for bipedal and monopedal walkers on the full track
and on a disjoint track that requires both walker types to diffuse through solution to land
on the track (labeled TAMRA→JOE→FAM). (a) These four types of experimental data are
depicted with different colors. Red: Bipedal walker on the full track; purple: monopedal
walker on the full track; brown: bipedal walker on the disjoint track; green: monopedal
walker on the disjoint track. (b) For each of the three sites (3, 4, 5), the time scale for the
bipedal disjoint track walker (brown traces) is similar to those for the the monopedal full
track walker (purple traces) and the monopedal disjoint track walker (green traces), and
slower than the time scale for the bipedal walker on the full track (red traces). See Figure
C.13 for the raw data of bipedal and monopedal walkers on the disjoint track.
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Figure C.13: Raw fluorescence data and curve fits for the three pairs of bipedal (brown) and
monopedal (green) walker experiments on the disjoint track. The protocol for these landing
experiments was the same as for the other walker fluorescence quenching experiments, with
the exception that a disjoint track was pre-assembled as described in Section C.5.2.
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C.5.7 DNA Sequences of the Walker System
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Figure C.14: Secondary structure schematics for the walker system. (a) Full track. (b)
Disjoint track for landing control experiments (Figure C.13). Blue letters indicate sequence
names used in the definitions below. The lengths of segments a, b, c, and d are are 7 nt;
the lengths of segments x and y are 2 nt. Stars, fluorophores; black dots, quenchers.
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Walker track sequences

For each hairpin sequence X, the two segments that are ligated to produce X are indicated

as Xa and Xb. For the walker leg, W1s is the splint strand used for ligating strands W1a and

W1b to produce W1. The same applies for W2s splint. Strand modifications are indicated

as follows:

/5Phos/: 5′ phosphorylation
/36FAM/: 3′ 6-carboxyfluorescein
/5JOEN/: 5′ 6-carboxy-4′,5′-dichloro-2′,7′-dimethoxyfluorescein (NHS Ester)

/5TMRN/: 5′ carboxytetramethylrhodamine (NHS Ester)
/3BHQ 1/: 3′ black hole quencher-1

Strand Sequence

S1 GGTAGTTCTAGGCAGCTGAAGTAGTGATTGAGCGTGATGAATGTCACTAC-
TTCAACTCGCATTCATCACGCTCAATC

S1a GGTAGTTCTAGGCAGCTGAAGTAGTGATTGAGCGT
S1b /5Phos/GATGAATGTCACTACTTCAACTCGCATTCATCACGCTCAATC
S2 TCATAGGCACCGTCAGACAGGATAGAGCAGTGCATAGATAGTCATAGCCTT-

GGACCTGCCTAGAACTACC
S3 GTCCAAGGCTATGACTATCTATGCACT
S4 GCTCTATCCTGTCTGCTGAAGTAGTGATTGAGCGTGATGAATGTCACTAC-

TTCAACTCGCATTCATCACGCTCAATC
S4a GCTCTATCCTGTCTGCTGAAGTAGTGATTGAGCGT
S4b /5Phos/GATGAATGTCACTACTTCAACTCGCATTCATCACGCTCAATC
S5 ACGGTGCCTATGACATGGTACTCAGCT
S6 GCTCGTATCTGGTCGCTGAAGTAGTGATTGAGCGTGATGAATGTCACTAC-

TTCAACTCGCATTCATCACGCTCAATC
S6a GCTCGTATCTGGTCGCTGAAGTAGTGATTGAGCGT
S6b /5Phos/GATGAATGTCACTACTTCAACTCGCATTCATCACGCTCAATC
S7 CGTAAGTCGCAGAGTATGCCATTGCCTCATCAGCGTAGCATCGAGATCTA-

AGTTAGTAACTCTGGCAGCCTGGTAGAGCGAGCCTATCGTCCTGATGTAC-
GACCAGATACGAGCAGCTGAGTACCATG

S7truncated CGTAAGTCGCAGAGTATGCCATTGCCTCATCAGCGTAGCATCGAGATCTA-
AGTTAGTAACTCTGGCAGCCTGGTAGAGCGAGCCTATCGTCCTGATGTAC-
GACCAGATACGAGC

S8-TMR /5TMRN/TACATCAGGACGATAGGCTCGCTCTAC
S8-JOE /5JOEN/TACATCAGGACGATAGGCTCGCTCTAC

S9 CAGGCTGCCAGAGTTCTGAAGTAGTGATTGAGCGTGATGAATGTCACTA-
CTTCAACTCGCATTCATCACGCTCAATC

S9a CAGGCTGCCAGAGTTCTGAAGTAGTGATTGAGCGT
S9b /5Phos/GATGAATGTCACTACTTCAACTCGCATTCATCACGCTCAATC

S10-TMR /5TMRN/ACTAACTTAGATCTCGATGCTACGCTG
S10-JOE /5JOEN/ACTAACTTAGATCTCGATGCTACGCTG

S11 ATGAGGCAATGGCATTAGAAGTAGTGATTGAGCGTGATGAATGTCACTA-
CTTCAACTCGCATTCATCACGCTCAATC

S11a ATGAGGCAATGGCATTAGAAGTAGTGATTGAGCGT
S12-FAM /56FAM/ACTCTGCGACTTACG



87

Strand Sequence

W1 TTGCCTCGTATCCTAACCGAACGGACTCCAGGACATTCATCACGCTCAAT-
CACTACTT

W1a TTGCCTCGTATCCTAACCGAACGGACTCC
W1b AGGACATTCATCACGCTCAATCACTACTT /BHQ-1/
W1s CGTGATGAATGTCCTGGAGTCCGTTCGGTT
W2 GTCCGTTCGGTTAGGATACGAGGCAATCCAGGACATTCATCACGCTCAAT-

CACTACTT
W2a GTCCGTTCGGTTAGGATACGAGGCAATCC
W2b AGGACATTCATCACGCTCAATCACTACTT /BHQ-1/
W2s CGTGATGAATGTCCTGGATTGCCTCGTATC

Hairpin B TGATGAATGCGAGTTGAAGTAGTGACATTCATCACGCTCAATCACTACTTC-
AACTCGCA



88

References

[1] P. Yin, H. Yan, X. G. Daniell, A. J. Turberfield and J. H. Reif. A unidirectional

DNA walker that moves autonomously along a track. Angewandte Chemie-International

Edition 43, 4906–4911 (2004).

[2] Y. Tian, Y. He, Y. Chen, P. Yin and C. D. Mao. A DNAzyme that walks processively

and autonomously along a one-dimensional track. Angewandte Chemie-International

Edition 44, 4355–4358 (2005).

[3] J. Bath, S. J. Green and A. J. Turberfield. A free-running DNA motor powered by a

nicking enzyme. Angewandte Chemie-International Edition 44, 4358–4361 (2005).

[4] R. Pei et al. Behavior of polycatalytic assemblies in a substrate-displaying matrix.

Journal of the American Chemical Society 128, 12693–12699 (2006).

[5] S. Venkataraman, R. M. Dirks, P. W. K. Rothemund, E. Winfree and N. A. Pierce. An

autonomous polymerization motor powered by DNA hybridization. Nature Nanotech-

nology 2, 490–494 (2007).

[6] C. L. Asbury. Kinesin: world’s tiniest biped. Current Opinion in Cell Biology 17, 89–97

(2005).

[7] Y. Chen, M. S. Wang and C. D. Mao. An autonomous DNA nanomotor powered by a

DNA enzyme. Angewandte Chemie-International Edition 43, 3554–3557 (2004).

[8] M. Behlke, L. Huang, L. Bogh, S. Rose and E. Devor. Fluorescence and fluorescence

applications (2005).

[9] J. Devore. Probability and Statistics for Engineering and the Sciences (Brooks/Cole,

1991).


	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	References

	HCR Design Constraints for In Situ Hybridization Applications
	Introduction
	Hybridization Chain Reaction
	Testing the Original HCR System for In Situ Hybridization
	Duplex Calibration
	Hairpin Calibration
	Conclusion
	References

	Multiplexed In Situ Amplification via Fluorescent Hybridization Chain Reactions
	Introduction
	Redesigning HCR for ISH Applications
	Multiplexed In Situ Hybridization using In Situ HCR Amplification
	Validation of In Situ HCR Amplification
	Sample Penetration with Small Components and Triggered Self-Assembly
	High Signal-to-Background
	Simultaneous Mapping of Five Target mRNAs in a Fixed Whole-Mount Zebrafish Embryo
	Conclusion
	References

	Supplementary Information for Chapter 2
	Methods
	DNA and RNA Sequences

	Supplementary Information for Chapter 3
	Methods
	Protocols
	Gels for In Vitro Validation of HCR Amplifiers
	Single-Channel Images for In Situ Validation of HCR Amplifiers
	Images for Signal-to-Background Studies
	Expression Patterns for Target mRNAs
	Image Stack for Five-Color Fixed Whole-Mount Zebrafish Embryo
	Sequences
	References

	An Autonomous Bipedal Walker Powered by DNA Hybridization
	Introduction
	Fuel System
	Walker Design and Mechanism
	Results and Discussion
	Supplementary Information
	References


