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ABSTRACT

The method of Gell-Mann and Brueckner for treating electron
interactions in a degenerate electron gas 1s generalized using the
Feynman-Dyson techniques of field theory. A Feynman propagetor is con-
structed for the effective interaction between electrons which takes
into account the polarizability of the medium of unexcited particles in
the Ferml sea. The well-known plasmon excitation appears as a singu-
larity in this propagator. The plasmon is seen to be a correlated,
resonant oscillation of the electron density field which is damped by
transferring 1ts energy to less correlated, multiple excitations.
General expressions for the plasmon dispersion relation and for the
plasmon level width are derived in terms of the polarizability of the
many body medium.

The self-energies of the lowest states of the electron gas
are discussed by using the adiabatic theorem. This enables us to de-
rive an exact expression for the ground state energy in terms of the
polarizability. Because of the degeneracy of the excited states of the
non-interacting system, the adiabatic transforms of these states are not
étationary states of the interacting system. However, as the momenta
of the excited particles approach the Fermi momenta these states becoume
asymptotically stationary. For states with only a few excited partigles
present an independent particle model is valid with the result that only
the Feynman propagator for the physical one particle state is needed.
This propagator, which is corrected for the wirtual polarization of the
medium by the particle, provides all the information concerning the

energies and damping of the single particle states.



The second part of the paper 1s concerned with the detailed cal-
culation of the effects of the interaction on the properties of an electron
gas. The lowest order exchange correction to the plasmon energy is com-
puted and found to be small in all cases of physical interest. However,
the lowest order contributions to the plasmon damping -a:re seen to modify
the observed cut-off for plasmon excitation in electron energy ioss ex-
perimgnts in a not negligible way. In applying the formalism to such
experiments we also discuss the stopping power of an electron gas and
derived the exact lowest order contribution to the single particle damp-
ing rate.

Using the self-energy method, the correction to the low teumpera-
ture specific heat of an electron gas 1s computed exactly to one higher
order in r (the interelectron spacing) beyond the calculation of Gell-
Mann. It appears that the series in orders of r, converges reasonably well
only for I}S< 2. For ry < 0.8 the specific heat is reduced from the value
for non~interacting electrons while for rs) 0.8 the specific heat is en-
~hanced from this value. The change 1n sign appears %o be a result of
the Pauli Principle.

We conclude from these calculations that the procedure of ex-
pansidn in orders of ry gives useful results for values of rg £ 2. A for-
mal calculation of the third order correction to the correlation energy is
also carried out which will give a further clue concerning the convérgence
of the method 1f the integrations can be evaluated. For intermediate den-
sities (2 < r & 6) the general perturbation approach may still be valid
but a: different approximation procedure for treating the polarization

effects is needed.



ACKNOWLEDGEMENTS

The author wishes to express his thanks to Professor Murray
Gell-Mann for suggesting this subject and for his constant encouragement
throughout the course of this work. A number of stimulating discussions
with Professor R. A. Ferrell and Dr. W. B. Karzas during the early stages
of this work are also gratefully acknowledged.

The author is particularly thankful Ffor the support given to
him by a Rand Corporation Fellowship and an International Business

Machine Corporation Fellowship.



TABLE OF CONTEN

TS

PART ONE
FIELD THEORETIC GENERALIZATION OF THE GELL-MANN-BRUECKNER METHOD

PAGE
INTRODUCTION & ¢ v v v v e v v o o o o o s & o e e . e e e e L
I. BASIC THEORY + v ¢ ¢ ¢ « o o « o & & « & o e s e . - 9
A, Electron-ﬁéle Description . . « ¢ v ¢« + + o . o » e 9
B. 8 Matrix Perturbation Theory e e s o e e o » . 13
C. Density Fluctuations: Palr Propagation Function . . . . 20

IT. THE EFFECTIVE INTERACTION; POLARIZATION OF THE MANY BODY
MEDIUM v v v v e e e v e e e e e e e e e e e e e e e e e e 25
A. Dynamic Dielectric Comnstant . « . « ¢« + o &« & ¢ & & . 25
B. Generalized Calculation of Polarization Charge . . . . . 28
C. Analytic Properties of Q_ (g, . . . C e . e . 32
IIT. ENERGY STATES OF A FERMI GAS s. . s e e . e e e 34
A. Adiabatic Transformation . . . o e e . . o e e e 3k
B. Ground State Energy . . « . . . e e e e e e e .. 38
C. Excited States; Meta-Stable Independent Particle States . L6
IV. THE PLASMON AND THE POLARIZED INTERACTION . . . . . e 57

PART TWO
CALCULATION OF EXCHANGE CORRECTIONS TO THE PROPERTIES OF A DENSE
ELECTRON GAS

INTRODUCTION & v & o 6 ¢ o o o o o o & o o o o o s o o o s o o s 7L
V. PLASMON DISPERSICN CORRECTIONS; LEVEL SHIFT AND LEVEL WIDTH . 72
A. DBelf Energy of the Plasumon e s e s s s s s . 72
B. Plaswon Damping . . « « « « o . o e e . . e e . . 76



VI.

VIL.

EXCITATION OF THE MEDIUM: ELECTRON SCATTERING AND SINGLE
PARTICLE DAMPING .« « v v v v v ¢ v 4 4 4 ¢ s o o o o o

Al

B.

Transition Probabilities from Self Energy Calculations

Calculation of Transition Probabilities for Single
Excitation . . ¢ v v v o o o o o 6 o e 6 0 4

Stopping Power of an Electron Gas . . . . . . . . .« .
Electron Scattering; Plaswon Cut-0ff . . . . . . . .
Damping of Single Particle States . . . . . . . . . .

TEMPERATURE SPECIFIC HEAT OF A DEGENERATE ELECTRON GAS

APPENDIX
ligher COrder Polarization Propagators . . . . . . .
The Propagator Formalism . . . . & ¢ « « & v o o &
Evaluation of Integrals . . . . ¢« + « ¢ ¢ o« & « & « .
Third Order Correlation Energy . « ¢ ¢ ¢ o o « + .

Generalized Sum Rule .« v & v ¢ ¢ ¢« o o o o ¢ o o o

-

PAGE

.83
-
90

9i

95

101

. 106
. 138
T
157

165

L73



INTRODUCTIOH

Recently, Gell-Mann and Brueckner* [1] [ 2] introduced a new
method for treating the pfoblem of electron correlétion effects in a
degenerate gas of interacting electrons. They were able to compute the
correlation energy and the correlation correction to the specific heat
exactly, in the liuit of high electron densities. The present work is
concerned with a generalization of their original theory and an exten-
slion of calculations to electron densities approaching those found in
actual metals.

G-B's method is based on the Feynman propagator method for
sumning up series of diagrams which correspond to terms in a perturbation
expansion. BSince 1t appears that they provide the most natural and
most elegant expression of the theory, we will discuss the theory using
the Feynman-Dyson techniques of fileld theory. Thus the first part of
this paper is devoted to the application of these techniques to the
non-relativistic, wany Fermion problem. The G-B theory is the lowest
order approximation, which we will call the pair approximation, to
this generalized theory and higher order approximations are simply
accounted for in our method. The role of the plasmon excitation, which
a@pears naturally in the G-B theory, and the concept of single particle
excitations will be considered in detail.

The second part of this paper will be devoted to the calculation
of higher order corrections to the G-B theory using the propagator forma-
lism. We willl couwpute the lowest order correction, beyond the pair
approximation, to the plasmon dispersion relation and we will derive

an exact expression for lowest order contribution to the lifetime of

¥
Henceforth to be referred to as G-B.
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the plasmon excitation.

The\excitation of the many body medium by the scattering of
incident electrons will be discussed along with the modification of
the plasmon cut-off wmomentum due to the lifetime and dispersion correc-
tions. Finally, the next highest correction to the low temperature
specific heat of an electron gas will be computed. This extends the
calculation of Gell-Mann [ 2] tothe region of highest physical electron
densities. In an appendix we will also present the formal calculation
of the third order correction to the correlation energy. Unfortunately
we were not able to evaluate all of the multiple integrals which
occur here.

From these higher order calculations we can draw some con-
clusions concerning the convergence of these expansions and thus
determine the range of validity of the high density calculations.

The problem of electron correlations has concerned physicists
for a long time. Some twenty years ago Wigner [ 3] gave the first
guantitative estimate of the correlation energy. The well known collec~
tive theory of Bohm and Pines [ 4] [ 5] [ 6] [ 7] described very well
many of the gqualitative aspects of the interacting electron gas such
as the plaswon excitation and screening effects. However, the
gquantitative accuracy of this method seems doubtful in the light.of
recent exact calculations. Micke [ 8] proposed a method of summing
up a certain series of perturbation terms to remove divergences, due
to the long range of the Coulomb interaction, which otherwise appear.
The G-B method enabled this program tq be carried out by using

Feynman propagator techniques.



The high density results of G-B for the correlation energy
have subsequently been derived by other methods by Sawada et al. [9V}ﬁ
Hubbard [ 10}, and others. Hubbard [ 10} and Pines and Noziere [ 11] have
given approximaete interpolation formulae to connect the exact high
density result with an exact low density calculation of Wigner [3 ].
The accuracy of these formulae i1s rather speculative until more is
known abodt both the high density and low density limit.

The usé of diagrammatical perturbation techniques has been
guite useful in several recent studlies of the many body problem.
goldstone [12] has applied the Dyson U matrix expansion to the problem
of the ground state energy of a many Fermion system. He has derived
the "linked cluster" expansion in terms of the two body scattering
operator which was first given by Brueckner [13]. Hugenholtz has [14]
applied a form of perturbation theory due to Van Hove to a treatment
of the nuclear many body problem. To our knowledge no extensive appli-
cation of the Feynman propagator technigues to the many Fermion problem
has been published to date.

We will begin this paper with a discussion, in Chapter I,
of the application of the Feynman-Dyson techniques to the evaluation
of the 8 matrix for the many body system. A description of the states
of the non-interacting system in terms of electrons excited from
the Fermi sea and holes vacated therefrom will be used.  The ground
state, with no excited electrons or holes, is similar to the vacuum.

state except that the '"passive,”

unexcited Fermions in the Fermi sea
can still interact with each other and with particles excited from the

sea. We will derive a set of rules for evaluating 3 matrix elements



in terms of a single particle Feynman propagator for electrons and holes.
The propagator for a density fluctuation is also derived.

In Chapter II we will apply this formalism to the interaction
of two excilted particles. Since these particles interact in the
mediuvm of tge Fermi sea of unexcited particles, they can induce charge
fluctuations in this medium. This polarization charge can then inter-
act with one of the excited particles., Thé effective interaction
between particies is shown to be screened by this polarization in
such a way that it 1s screened at long distancés so that the divergences
assoclated with the long range Coulowb interaction no longer occur.
A generalized dielectric constant is defined to describe the modified
interaction. The calculation of the polarization is complicated by
the fact that the electrons and holes excited from the sea can also
interact with each other. This leads to so-called "local fileld correc-
tions" to the polarization propagator derived in Chapter I.

The energies of the ground state and the low excited states
of the interacting electron gas are discussed in Chapter III1. By
using the adiabatic theorem these states can be put into one to one
ccgfespondence with the eigenstates of the non-interacting system.
The self energies of these states, due to the virtual polarization
of the many body medium, are calculated using the Feynman techniques
and the theory of the polarized interaction discussed in Chapter II.
In this manner we will derive an exact expression for the ground
state energy in terms of the generalized dielectric constant. Be-~
cause of the degeneracy of the excited states of the non-interacting

‘system, the adiabatic transforms of these states are not exactly
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stationary states of the interacting system. An electron can give

up its energy in a real, energy conserving, excitation of the many
bocdy meéium. Hence, states of a definite number of electrons and
holes are not elgenstates of thekcompléte Hamiltonian. However, states
in which the electrons and holes are excited very close to the Ferml
surface will be shown to beasymptotically stationary.

In Chapter III and mainly in Appendix B we will develop the
theory of the damping and self energies of the low excited states using
the Feynman-Dyson formalism. This theory is applicable to all many
Fermion systems and the technigues are also applicable to the field
theories of interacting elementary particles. We will also prove that
an independent particle model i1s valid for the low excitedkstates of
a many Fermion system so that only the self energies and damping of
single particle states need be computed.

In Chapter IV we discuss the well-known plasmon state which
has no counterpart in the non-interacting system. This state develops
adiabatically from a non-stationary "density fluctuation" state of the
non-interacting system. The intlmate connection of the plasmon with
the propagator for the polarized interaction is discussed and the
general formulas for the plasmon energy and level width are given.

The plasmon state 1s seen to be a resonant, cooperative, excitation
of the density field which, because of its structure, can decay by
glving up its energy to various multiple excitations. Induced charge
fluctuations in the many body medium are shown to be composed of the
plasmon state plus a continuum of pair states. We will discuss the

rules for the calculation of transition matrix elements when in the

initial‘or final states, the many body medium is excited.



"The second part of this work ig concerned with detailed cal-
culations of what we can call exchange corrections to the properties
of the electron gas in the pair approximation. That is we will ex-
tend the calculations of &-B and others to lower eiectron densities,
approaching the densities found in wmetals. We will follow G-B's pro-
cedure of expanding‘expressions in orders of the parameter Ty which is
the ratio of the radius per electron to the Bohr radius.

Corrections to the plasmon dispersion relation are ealculated
in Chapter V to lowest order in roe The greater part of this chapter
is concerned with a calculation of the exact lowest order contributions
to plasmon decay. These are the two pair decay mode and the pair-plasmon
decay mode. It is shown that for very long wavelengths, the plasmon is
a well defined, long lived excitation which, for high densities, is
adequately described by the pailr approximation. For shorter wavelengths
and lower densities the exchange or "local field" corrections to the
plasmon become important and the plasmon is a less clearly defined
state.

In Chapter VI we take up the intimately related probleums
of electron scattering by an electron gas and the lifetime of single
particle excitations of the electron gas. First we will discuss the
calculation of transition probabilities for various scatitering pro-
cesses including exchange contributions which have not been treated
in previous vwork. We point out that in the generalized Bom approxi-
mation, the stépping power of an electron gas 1s given by the well-
known Bethe formula because of the existence of sum rules which take

on an especilally gimple form in our formalism. The effect of the



finite lifetime of the plasmon on the observed plasmon cut off momentum
in energy loss experiments is discussed in some detail. We find that
Tor physical densities the cut-off is no longer well defined but that
it certainly occurs for momenta smaller than the cut off computed

from the pair approximation. This chapter is concluded with a cal-
culation of the lifetime of single particle states. We find the well
known result that single particle states are asymptotlically stationary
as their wmowmenta approach the Fermi momentum.

The low tewperature specific heat of a degenerate electron
gas 1ls computed in Chapter VII. The calculation of Gell-Menn is ex-
tended to electron deunsities near those found in metals. The calcu~
lation is based on the single particle model and the single particle
self energles which were discussed in Chapter III. We find that the
specific heat ils.®nhsneceédfrom the non-interacting value »at physical
densities.

The importance of this calculation is that it provides an
example of the €-B expansion procedure to higher orders in ry and
thus also provides some information on the convergence of the series.
The result shows that the G-B series corrected beyond the pair approxi-
mation probably converges reasonably well down to the highest densities
found in metals. In Appendix D the third order calculation of the
correlation energy is carried out formally. If the wmultiple integrals
in this calculation can be evaluated the result will provide a further

clue as to the convergence of the G-B series.
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~ The method which we will apply in this work depends on the
validity of the use of perﬁurbation theory. The kinetic energy, in
Rydbergs, of an electron at the Ferml surface 1s given by l/agrs2
where o = (h/Qn)l/B and r_ defined by (hTtrSBaOB/ ) z/g_l where f)is
the electron density. Thus the total kinetic energy of the system or the
kinetlc energy of a single electron near the Ferml surface is very large
in the limit of high densities. The Couloub interaction, on the other
hand, is a velatively swmall perturbstion on the motion of the electrons
at high densities, being proportional to l/rs in lowest order. At

least for the highest electron densities found in metals we expect that

a perturbation expansion will be wvalid.



I. BASIC THEORY

A. EILECTRON-HOLE DESCRIPTION

We will adopt the formalism of the second quantization through=
out this paper [15], [18]. The field equation for non-relativistie

electrons moving in the field of the positive ion lattice is

2o oy 8V, |
%V’ \‘fa"‘vlwa“% i (1)

h = U (X,8) 1s the field tor which satisfies the well

where \¥Pa = '\P; Xe 2 eld operator which satisfies we
* .

known anti-commutation rules

G, Yo Gl = SE-I08
(1.2)

MG, TG0, = [y Gatdy oG], =0

The index a denotes the spin coordinate of the electron field. Vi is
the (periodic) potential of the positive ion lattice. We will make the
usual approximation of replacing the lons by a uniform background of
positive charge which cancels the effect of the average electron charge
density. Thus we approximate Vi by a constant (which is infinitel).

The effect of Vi will be seen to cancel in all physical processes.

The generelization of the formalism to be presented here tc more realistie

%
potentials is easily carried out in principle.

+ denotes Hermitian conjugé%eo

. !

- For many applications to metals the effect of the pericedic potential
- of the lattice can be taken into account by replacing m by an
effective mass m¥%,
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The equations (1.1) possess the complete set of solutions

(including degenerate spin variables)

w, @) ==l PEAWEIMA, (1.3)
Pss v y
where )
Ny
- oA
W (p) = v + 5 (1e4)

is the single electron energy,ﬂg is the momentum, V is the volume of
the system of electrons, and X s is the spin eigenfunction (s = + %}.
We are assuming the usual periodic boundary conditions. \V s(z,t) can

be expanded in terms of this complete seb

~ ’ , +
Vebt) = 2o, M@ -pu, Gv) ol 7] (g -p)u, Goo)
P Pe8 Pys Ps3 -Pss $

(1.5)

where a, is the destruction operator for an electron of momentum'ﬁ;,

bs2
spin s, while b:: is the creation operator for a hole of momentum
Pe3

v—/ﬁfg 9 spin—s. These operators obey the usual anti-commtation relations
whiéh can be derived by substituting equation 1.5 in equation 1.2 The
function 7( (x) is defined by
1 x>0
7 @ = | (1.6)
‘ 0 <0 |
o
The association of creation and destruction operators with
electrons and holes in this manner is possible since the operators in the

usual deseription (i.e. eleetrons with all possible momenta and no holes),

satisfy anti-commitation rules. In equation 1.5 the function '7L (p - pF)



restricts electrons to momenta greater than the Fermi momentum, Ppe
and 7( (pp = ) restricts holes to momenta less than Ppe

In this electron-hole description the ground states ¢ s of
the non=interacting system is the state with no electrons and no holes.
It is analogous to the vacuum state in relativistic field theory. @ o
is not identical to the vacuum state however because of the so-called
"passive particles® which fill the Fermi sea(l2]. These are the particles
with momenta less than o for which we have no explicit variasbles, but
which have important interactiong with the electrons and holes. Ue will
discuss this in more detail below. Excited states of the system of a non=
interacting Fermi gas are obtained from @ o by operating on it with
creation operators for electrons and holes.

The electron-hole description given here is very similar to
the electron=positron theory in quantum electrodynamics. Feymman's [?;‘Z’;j;B).
(see also [15]) simplifying ideas can be used to great advantage in our
considerations as welle

Following Feynman we construct a propagation kernel or propa=

-5

gator for electrons and holes. This propagator, SFG;Z =% by = ti")’

-3 -3

Y e » o > - - -
satisfies the inhomogeneous equation (XZ‘E =X, =Xy by T by tj)

2
B/ 2 - O = = > ~ :
vaz V-1 Bt sF(x21 ,tm) = i.é (xz.i) 8 (tm) o (1:7)

#*
The solution which satisfies the boundary conditions of this problem is

If we measure energies relative to the energy 21—;-1 pg + VI’ then the

holes will have negative energies and the electrons positive energies;

just as in quantum electrodynamics.
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- E: u, (;é’tz) u, (§%,t1) b, >
§>pF bss P8
-5
Splxpqotyy) = (1.8)
= Z v, (;;29%2) w, (;1 9131) 'bz < t.g
! §<pF Pss Ps8 .

We see that all components with energy less than the Fermi energy, w =
QJ(pF), propagate backward in time while energies greater than GJ(pF)
propagate forward in time. In the limit as V » « we can replace the

sum over p by an integral in the usual way

= ) = —-—1--- ‘3 Y ¥ - - f -
Splpystyy) = (ZRJBﬁd p(7{ (o) W {p = pp) = 7{ (64,) 7(pp = )]
- o> /
RICETHIN / I (1.9)
We shall work almost exclusively in momentum—energy space so
we will need a 4 dimensional Fourier transform of SF(§;t}. In order

to make the integral over 1t meaningful we add a convergence factor

P * X ~
e Ctth Then the transform is

ik A (p = pg) X (pp=p)
(2m) | W= W) +ie @~ w(p) = ie

(1.11)

(2_;{4 w - E;)(p) - in S(w - W (p)) elp) , (1.12)
ﬁ &

We shall see that this is equivalent to the assumption that the inter—
action between particles vanishes in the remote past (t = = «) and
in the distant future (t = «). Another interpretation, which is
perhaps more meaningful for this problem, is to regard 1/e¢ as the
lifetime of the single particle state. We shall see in Chapter IIT
that the one particle states of the interacting system do indeed have
a finite lifetime.



where £(p) =7 (p = pg) = A{(py -~ p). Ve see from equation 1.11 that
the convergence factor defines the way in which we integrate around the
poles of sF({S, @) in the @ plane, In equation 1,12 P denotes the

Cauchy principal value.

B, HAMILTONTIAN AND S=MATRIX PERTURBATION THEORY

The total Hamiltonian for the system of K particles is

Hp = H_ + &11 (1:13)

o = ). @)+ 2. W) a, a, - 2. wip) bl b, (1.14)

; -3
PP g 9 Ps3 Pss PPy Ps8 PsS
8 8

where < (p) =¥\;§2/2m + Voo

If the interaction between electrons is taken to be the statie

Goalomb interaction then

2
no= 2 DR R L (1.15)
9 9 g

where (D q is the Fourier component of the density operator, 0O (;,ft )

P®= [a% 9% o ) (1.16)

P Gt) = QYA Y ) (1.17)
8

We can write /0 q’ using equation 1.5, as



=14 «

o= e L B +8 e ¥n, L N - B 3D
Ps8

Pytass Pytass
[a, 77 (0-pp) +B, Nl =01 (1.18)
Pss bss .

Since the charge density operator (O (X,t) rather than the
electron field operator \%rs(;’t) is the fundamental quantity occuréiﬁg
in the interaction we mighh expect that the density field will play the
most important role in the interactions between electrons, In fact, we
shall see that the effective interaction between electrons in the medium
of the electron gaskis modified in a fundamental way by the interaction
with the density field,

Although the interaction (1.15) is time=independent it is very
ugeful to introduce time variables and to use a time dependent perturbation.
theory. The physieal reason for this is that the actual interaction
between two electrons polarizes the surrounding medium of electrons and
this induced charge modifies the interaction. Because of the inertia of
the electrons, the effective potential of this polarized charge is time
dependent; thus making tﬁe effective interaction between any two electrons
time dependent. The quantum mechanical theory of this polarized inter=
action will be our main consideration in this paper.

We shall adopt the formalism of the S-matrix perturbation
theory [16]. 1In the interaction representation the interaction
Hamiltonian becomes time dependent

-4iH s
i ot/h . elﬁot/h e~6!tl

H15(t) = e (1019)
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By adding the factor emf:'tl we are making use of the adisbatic theorem.
It is assumed that at t = = « the interaction vanishes and is slowly
turned on and finally turned off again to vanish at 1 = «, In the limit
as € = 0 we do not expect this to affect the validity of our results.
The unitary time transformation operator U a(t"t’o) is intro-

duced which satisfies the equation
: ) = 3y O ;
H,le(t) » U (b, ) = 1p ar U (tst,) (1.20)

and the boundary condition U ﬁ(to,to) =1, If ¥(% of) is an interaction

repregentation state vecter at time to’ then at time ¢
v(t) =U_(t,8 ) ¥(t ) . (1.21)

In particular at t = = w , when the interaction vanishes, if the system

is in a "bare" state @ of the non-interacting system, then at + = 0
¥(6=0) = U_(0y = & P (1.22)

we have a state, ¥, of the interacting system. This method of generating
states of the interacting system from those of the non-interacting system
will be used throughout this paper.

*The S=-matrix is defined as

S = lim linm Ua(t ot ) _ (1.23)

€20 t‘! e

t »an

2
which, after taking the limits, can be written explicitly as

S... -&n see * } ess ) '
0( ) -35- f _aty /:-mdtn PIE(t;) <= H(t )] . (1.24)

n...
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where P is Dyson's chronological operator which orders the operators in
the brackets so that, left to right, they are in order of decreasing time
variables.

The Feynman diagrams are obtained by applying in a well=known
way [flsﬂ the algebra of the anti-commiting operators to the integrahd
in equation 1.24. We can establish a close correspondence with the dia=-
grams in gquantum eleet?odynamics by first rewriting the Hamiltonian H1
in normal product form, (i.e. with all destruction operators to the
right of all creation operators.) Note that in the electron-hole picture

H, (see equations 1.15 and 1.18) is not in normal product form. Now if

1

we write H1 in normal product form and use the anti=-commutation rules

for the operatorss we have in addition to normal products of four operators,

normal products of two operators and also terms with no operators involved.
VWe can represent the possible interactions by Feynman graphs.

The direction of increasing time is taken to be upwards A line in the

direction of increasing time represents an‘electron (p > pF) while a

line in the opposite direction represents a hole (p < pF) in agreement

with the propagator, equation 1.8. The Coulomb interaction is taken to

be a stationary or horizontal dotted line. Thus all interactions which

involve four creation and destruction operators are represented by the

possible topological forms of diagram la. Interactions involving only

two operators arise from the commutation of creatién and destruciion

operators for holes. Following Goldstone [12)we represent these inbter-

actions as in fig. 1b and 1ec. The solid lines which do not propagate

in time are taken to represent the “péssive“ unexcited particles in the

Fermi sea. Finally we have terms which have no creation and destruction
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operators with the graphs 18 and le. We see then that the "passive

particle® interactions arise as a result of the electron-hole desc;'iptions
By expanding the S-matrix according to Wick's theorem [2G)

we can derive a set of rules for the construction of S-matrix elements

from the diagrams. The rules in momentum-energy space are the most use-=

ful. One draws all topologically distinct diagrams leading upwards from

the initial state to the final state. To constrﬁc‘b the S-matrix element

from a given diagram we have a product of

1) A propagation function for each internal electron—hole line of

e
momentum P, energy W :

k. NP =-pp) N {pg = p)
(on)e - W= Q0p) T I & @) - ic

(;,Q))= ].

‘ s
(2ﬁ)4 F

2
hue f for each Coulomb line of momentum qe
(20)*  ¢*

2) A factor

3) Delta functions (2m)% 8(31 + 32 +3) g(c,u1 + W, +u) 5 5.5,
conserving energys momentum, and spin at each vertex. [To apply
this rule we take the Coulomb line as carrying a momentum g and
energy u even though the Coulomb "propagator® (Rule 2) does not
depend on u. This merely expresses conservation of energy in the
interaction which always involves two vertices connected by a

Coulomb line.)

4)  (=1) for each closed loop.

th

5) (=i/X)® for the n"" order coefficient in (1.24)e

6) A factor ((2‘“)3/ 2)-1 X ¢ for each external electron-hole line

of spin s.
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We must also include the passive particle interactions. It
will be shown in Chapter IIL that the interactions in fig. 1b contribute
an infinite constant to the self energy of a particle which cancels the

term V. in equation l.4. Thus we are justified in omitting this inter-

I

action and also the term Vi

The "exchange® interaction (fig. lc) contributes a Coulomb factor (rule

in the single particle energy from now one

2)s the delta functions (rule 3) and a passive particle factor

1 .
-?2';;; 7((pF-=p) (1e25)

where P is the momentum of the passive particle.

The fact that SF(E, +=0) as given by equation 1.9 is un=-
defined enables us to formally include the passive particle factors in
rule {, We define

8.(%,0) = = -1 d3p N (on = p) eip'§ (1.26)
(%5 (o) f N (og

which implies that

[ aws @ e) = - A (op =2, (1.27)

211)3

Then if we consider the passive particle line to represent a particle,
with the propagator SF(Q}t)”which does not propagate in time we can
use rule 1 for the passive particle factor. For all other cases we
will deal with integrals over %t so that the definition abt the single
point t = 0 dis immaterial.

In the problem of a degenerate electron gas it is convenient
to work in a special set of units in which momentum is measured in units

of the Fermi momentum
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/3
PrEar, ? o= (55) 0.520 (1.28)

and energy is measured in units of the Fermi energy ( times A s

1 2 . 2 w4 :
- Rydbergs = === - (1.29)
)f/] a2 ri az I‘§ 2}!12 /1’/1
I'G is defined by
el (1.30)

where N ds¢he total number of electronse In these units the quantity

(1.31)

v
i
t—slu

o lo

where T, dis the Bohr radius (r b = )Az/mez). T replaces e” as
the expansion parameter.

To transcribe the rules into these units the following trans=

formations are useful @

v_ 3N
(2ﬁ)3 8u (1.32)
(2“')4 v qz 211'2“2 q2
2 12 |
wW(p) =5 > 3P (134)

The right hand side expresses the left hand side of each equation in the
new units. Therefore we merely modify the rules on page 17 to read :
ar

Ty

i
2

w0

2') A factor for each Coulomb line

o

51)  (=1)® for n® order perturbation theory.
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We should also point out that the factor 1/nl which occcurs
in equation 1.24 cancels exactly for all diagrams except those leading
from ground state to ground state (the "vacuum fluctuation® diagrams).
Except for the latter diagrams the expansion of the S-matrix always

yields nf didentical terms.

Ce DENSITY FLUCTUATIONS: PAIR PROPAGATION FUNCTION

As we mentioned above the density operator, fS (%st) (equation
1.17)y is very important in the quantum mechanical theory of the polar=
ized interactions in the electron gas. We shall need a propagation
function for charge density fluctuations for our later work. In this
section we derive this propagation function and discuss its properties.

First let us nolte that the propagator for fluctuations in the
electron-hcle field as given by equations 1.8 and 1.9 can also be

written as the matrix element
-2 - -3 -t- =3 ]
SF(X21 Qtz»g) - (@QQT(%(ngt?’)\Pu(Xl ’t.‘)) @0) ) (1035)

where T 4is a time ordering operator which keeps the operator with the
latest time variable on the left. The operation implied by T also

takes into account the anti-commutation properties of the operators. Far

example ‘
T(%(z—zzgtzﬂ[fz&.g b)) = %(ﬁ?zgtz)“\]/z:(;} sty) t, > b,

- -r - \ T
VoGt Y Gty b2t .

(1.36)

i
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From this it seems reasonable to define the matrix element

~20°Gy 0tyy) = (P WT(PGEyet,) PGt D) (1.37)*

as the propagator for density fluctuations in the electron field. This
matrix element is eagily evaluated to give

2
N & . “i|t,, | (E~+qep,) iqex
-~ Q,O(xz,g §t2.g) = deqfdap e =172 1 e 21 (1.38)
p<1
|p+q]>1

The 4 dimengional transform of this is

- =2 °G,w ) =~ /d3§§ f at Q°@,b) o~cltl Filaex-wt)

(2'51)4 (2‘5}4 =co
et o | @i e an e onaiia.

|p+a[>1 |
(1.39)

This propagator is essentially the amplitude for the diagram in

fige 2 which is the analog@e of the vacuum polarization process in guantunm

electrodynamics. Here we have the virtual excitation and de-excitation

of an electron-hole paire. The rules give for the amplitude of this diagram

2
E"‘z - G.Z‘S ’ 2 ‘ /3—) f - - . —_
(=1)° (=1) [jZﬁzq%J (2&)2 a'p / du SF(p + g, u+ w) SF(Q,W)

(140)%

Using equation 111 for SF(ggw) and performing the integration over w

by contour integration we have

Note that a factor of 2 appears here as a result of summing over
the spin states.
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2
s | 2 /3» (ol = 1) 7 (1-p)
* 2 1 [a’p [ e Lo
{2ﬂ%f? (2w) . Pltu - (wlprl- wip)) + 2ie

) e=1) B = |p+al)

£

u+ [ Wip) -W(pHg]) - 2ic *
With W (p) = % p2 and changing p to fg in the last term gives
2
ar 3 > .
- 232] 2 = Qo<q 9u) ' (DE 942)
2% q_‘ o (24}

Therefore we ses that Qo(gst) can also be interpreted as the amplitude
for the propagation of an electron-hole pair. We shall call this
propagator the pair propagator or polarization propagatore

Since we will use this propagator very often in the following
work let us examine ibs analytic properiies. 7The real and imaginary

parts can be written

Re Q°(qy) = f a’g B, f 3 P
p<i 2 p<1 P72
=5 wp > =3 > = q o3 wp
lpta[>1  mtap=-u  |prgl>t S #d.p +u

(1e43)

- 2 -y > . 2 wip o
I Qo(q,u):'ﬂf a’p (%+q~p“u)+uf a’p (% + gep +u)

p<i p<i
[pal>1 [p+al>1

(1 SM}

The restrictions, i; + El > 1, on the region of integration in

equation 1.43 which are a result of the Pauli Principle can be dropped.¥

The author expresses his thanks to Dr. Re 4. Ferrell for pointing this
out to him. The possibility of dropping the restrictions on other
integrals will be discussed as we proceed.
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If we viclate the restrictions in the first integral (i.e. E +q= ;0
where P, < 1) +the resulting contribution is exactly cancelled by
violating the restrictions in the second integral (E-+'§ =—§Q}Q Thus

we may write

i

“Re Q%(q,u) = | f dsp ) £ + =5 £
Ral G +ap)-u (5 +3p)+u
(1.45)
which can be evaluated to give
o _ '} 1 _gy2 (w=g/f2) +1
Re Q_(a,ug)= 2w | 1 =% {1 ~(u - 3) 1 1n @ =2 =1
I . 9)2 (w + g/2) + 1
tog L= @+ 3 1n |05 |« (1.46)

The functions Re Qo(q,qx) and Im Q@Qq,qx) arise frequently. Their

power series expansions in g will be needed:

Re Q (asax) = 4u(1 = £ 1 |FEEI] 4 0(?) (1.47a)
= 4m B_(x) + 0(q%) (1470)
and ‘
= 2 2 '
Im Q (asax) = 47% |x| + 0(a®) . (1.48)

The singularities of Qo(qgu) are of interest. Qe(qgu) has
a discontinmuity (or branch cut) along the real axis from wq2/2 =q to
4%/2 + q. The magnitude of the discontimuity is 21 Im Q°(q,u); the

imaginary part being zerc except along the discontinuity. The singularity
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arigses from a conbimuous distribution of poles corresponding to the
possible energies of (bare) pair states. (See the integrand of
equation 1.39.)

Finally, we should point out the relation of Qéqgu) to

G=B's propagator Qq(u), (G=B equation (18)):
Qolas iqu) = Q (u) ,

Qq(u) has the power series expansion in g

Qq(u) = Ju R{u) + qZ‘R(@)(u) + q4 R(z)(u) (1.50)
where

Rlu) = (1 =u tan™} %) (1.51)

Vo 2% . s

R(.;)(U) == (1 +' *;'2“}2" (1@52}



I3, THE EFFECTIVE INTERACTION; POLARIZATION OF THE MEDIUM

It is well=known that ordinary perturbation treatments of the
Coulomb interactions between electrons fail because of the occurrence of
unphysical "infra-red® divergences) These divergences arise from the
long range of the Coulomb interaction and the resulting singular behavior
of the Coulomb potential.

Gell=Mann and Brueckner [1] have shown that these divergences
can be removed within the framework of perturbation theory. Their method
consists essentially of a formal summation of a certain family of
Feynman diagrams to all orders in perturbation theory. The result of
summing these apparently divergent terms is finite., The reader is urged
to read their original paper for a brief and clear exposition of their
treatment of the ground state problem using ordinary Rayleigh=Schrodinger

perturbation theory.

A. DYNAMIC DIEIECTRIC CONSTANT

The work of Lindhard [22)has clearly demonstrated the relation
of the Tinite range of the effective interactions and the plasmon excita=
tien to the concept of a generélized dielectric constant for the system
of charges and fields. There is a close connection bebtween the method
of G-B (appropriately generalized) and the dielectric constant approache
Since we are neglecting the magnetic interactions we can expect only a

comparison with Lindhard's longitudinal dielectric constant.

*For & review of the early work in this fisld see Do Pines Egi],
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To illustrate the idea consider the scattering of two electrons
in the gas. The simplest dlagram for the interaction is the scabttering
| of the particles by the "bare" Goulomb interaction (Fig. 2a). Clearly
it is unphysical to consider this process alone since we are neglecting
the effect of the surrounding medium of unexcited particles. The scatiter—
ing particles can also interact with the medium and excite density
fluctuations in the medium. The resulting polarization charge (or induced
charge) can then act on one of the particles via the Coulomb interaction.

In terms of graphs this means we should also consider the series
of graphs, two members of which are represented by fig. 2, (b) and (c)
Here the interaction excites and de=excites virtual pairs which in turn
interact with the other particle. As we have seen these virtual pairs
are equivalent to density fluctuations. More complicated processes can
also occur since the virtual pairs can undergo complicated interactions
before annihilating. For the moment let us restrict ourselves to the
series of graphs in fige 2. This ig just the "palr-approximation®
considered by G-B and Sawada et al. [9].

By formally summing these gfaphs we replace the Goﬁlomb factor

(GrSIZﬁz) (qg)m, by the series

Te L4 gm0+ G2 Rlaw) 1 (2.1)
P - - Q q ; O g Q Qel ) = ese 2e
2ﬁ2 q2 n2q2 o 27 ﬁ2q2 2R

where g and O are the energy and momentum transferred in the scatter-
ing and Qo is the polarization or pair propagator discussed in I=C.

Summing this series yields the effective interaction
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2
ar ar
2‘3;5 .g:s i = 23 PI' (Ch w ) (202)
21°g” K, (gsd ) 2w s
s

where

o
Kr (qs ) =1 +"§"§’Qo(qgw}
] LI
(2.3)

We have, in effect, replaced the bare Coulomb interaction by an inter=
action which takes intec account the polarization of the medium. It is a
straightforward exbtension of the concepis of classical electrodynamics

o . , . o .
to regard Kr (gs ) ) as a generalized or "dynamic" dielectric constante
s

Using equations 1.46 and 1.44 for Q°(qs@ ) it is easily verified that
this is exactly Lindhard'’s definition of the longitudinal dielectric con=-
stant, Since K (gs @) dependg on g as well as@ we see that the
space~time transfgrm of this function is a variable function of space as
ﬁell as time. This is to be expected since the polarization charge
density depends upon the position in the gas where the inlteraction occurs.
Let us meke a few general remsrks on the properties of the
effective interaction. First we note that one effect of the polerization
of the medium is to make the efiective interaeﬁion.timemdepenﬁente The
finite propagation velocity arises from the inertia of the electrons which
are excited from the sea and depends on the strength (ez) of the
Coulomb interaction. Secondly, we observe thalt the effective interaction
does not diverge for small momentum transfers g. In the scattering
of two electrons in the ﬁedium, for example, the energy transfer for

small q is 3-; where § is the original momentum of one of the
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scavtered electrons. Thus as q = 0O

2 @)+t (2.4)
® q" + =2 %(peq)

(using 1.47 asb and 1.48) which does not diverge. Thus the interaction

has a finite range. The induced charge screens oubt the charge of the

original electron at large distances.

The detailed properties of this effective interaction will be
discussed in the remaining Chapters of this paper. Essentially all of the
important effects of electron interactions on the properties of the
electron gas arise from the modifying influence of the induced density

fluctuations on the interaction.

Be GENERALIZED CALCULATION OF POLARIZATION CHARGHE

In the ®pair approximation® we have used only the lowest order
contribution, Qciqg W}, to the polarization charge. To extend the theory
we will now congider the correcticns to Qe(qsca) due to virtual inter=—
actiong of the pairs which are excited from the medium. We will first
need a few definitions in order to make the discussion precise.

A"polarization diagram® (PD) is defined to be a diagram with
two external Coulomb lines and no other external lines. The external
Coulomb lines necessarily carry the same momentum ge. A PD thus represents
a virtual state which can absorb a momentum 3, propagate and finaslly
give up this momentume. A Yproper polarization diagram® (PPD) is a PD

which cannot be broken up into two simpler PD's by cutting a single
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Coulomb line. In fig. 3 diagrams a through h are PPD's whereas g is
not a FPl,

With each FPD, i, we associabe a propagator Qél)(q,cu Js

S(1a)

Qo(q,cur) being the simplest example. The propagators Q (1b)

and @
are also important for the applications in this paper and are discussed
in Appendix A. Finally, the total polarization propagator is defined

as the sum of all the propagators for PPDUss

Q (w)=0q(ew)+ Qfa)(qs W) + be)(q,w) + oo
8 8 8
= 5 W)
- (19(,0) (2@5)
ég%' Qrs : *
PPD's

The physical dielectric constant which includes the effect of

all possible polarization processes is then

ar
K, (g W) =1+-53 Q_fs(q,w ); (2.6)

8 g

and the complete propagator for the effective interaction 1S

anr | , or “% ws[z ar_ ( =
—_— P gy ) = =5 K QQCO) = q + gs w) (2e7)
2. T 2n2q2 T, 2ﬁ2 e Qrs

which includes all possible polarizstion diagrams which can be inserted

into a single Coulomb line of momentum 5. Pr (g ) is the effective
g
intersction corrected to all orders of perturbstion theory for polari-

zation effects.

In the actual calculation of the corrections Q(l)(q,(w) to

Q (qs W) from the diagrams in fig. 3, one encounters divergences

Ty

resulting from the use of the bare Coulemb interaction. This, of course,

is correcbed by using the polarized interaction,equation 2.2, in place
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of the Coulomb interaction and omitting all graphs with simple pair loops
sincerthey are included in equation 2.1, Thus we can regard the
correétions Q(i)(QQQJ) as finite and well=defined functions of 3
and &

We can now amend the rules for the S-matrix expansion on page
to include the effective interaction explicitly. The following amend-
ments to the rules on pages I8 and 1¢ are to be made,

I.) In all graphs replace the Coulomb lines by the lines in

fige 3e for the effective interaction which now propagates

ar
in time. For each such line there is a factor & p (qguJ)JL'
22 v 27

28 g 8

given by equation 2.7,

II.) vonsider only those graphs which contain no polarization

processese.

The first amendment includes all possible polarization processes
in each interaction thus making the second amendment necessary so that
no diagrams (in the original set) are counted twice. We shall see that
for diagrams which lead from ground state to ground gtate these rules
must be modified. This results from the fact that the factor 1/ni
in the S-matrix expansion does not cancel exactly for these diagrams.

The amendment Il can be considered to be a subsidiary condition
which arises from the introduction of the effective interaction. This
subsidiary condition is analogous to the well known subsidiary conditions
in the Bohm=Pines approsch, which arise from the introduction of plasmon
coordinates. The fact that these conditions are not satisfied in their
treatment of excited states has cast some doubt as to the quantitative

validity of their results. In our case, howsver, the subsidiary
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conditions are trivially included for all states since we merely omit a
certain class of Feymnman diagrams.

These ideas can be formulated in a more elegant manner to
exhibit closed expressions for Qr (qsw) and integral equations satisfied
by it. However, such expressions :re not useful for explicit calcuiations
so we will not consider them here,

We will only briefly mention the annoying question of convergence.
The series, equation 2.1, rigorously converges only for values of g
greater than some nunmber depending on e We have however extended the
expression 2.4 to g = 0 The justification for this step cannot be found
in the perturbation theory alone. One can take the following view which
is motivated by the physical ideas expressed sbove: The expansion of
the S=matrix in powers of the bare Coulomb interaction is neither
physically or mathematically legitimate. However through the Feynman
diagrams we have kepl track of all the terms of this illegal expansion.

In summing up the polarization diagrams we are merely pubting back
together the functions which were illegally expanded. The method is
consistent and unambiguous and therefore justified.

We should also point out that the calculation of the ground
state energy (or correlation energy) by this method was rigorously
verified in the pair approximation by Sawada et al. ['9.]. The relation-
ship of our method to the dielectric method 'indisates: the validity of
the summation methode.

The fact +that the plasmon modes have not appeared in our
results so far nor in G-B's original paper has caused some doubt and
confusion as to the validity of the method. Sawada et ale. [.2 ] have

shown that the plasmon contribution to the ground stabe energy is
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included in G=B's work. However, it seems to the author that their

approach hides the real simpliecity of the theory. In the following two
chap%eés we will discuss the states of the electron gas and the intimate
connection of the plasmon state with the propagator, Pr {gs )y of the

]
effective interaction will become apparent.

Co ANALYTIC PROPERTIE! Qr (gsy)e

For some of the general discussions in the next chapter we
will need to understand the analytic properties of the propagator

Qr {qs0). We have already discussed Q s the lowest order approximation

to Qr on page2l ; in Appendix A we also discuss Qr1a) erb)
s
in details From these examples we can easily determlne the properiles
of Q(l)
Ts

We have an integral (or sum) over all intermediate states of
a product of energy denominators. These energy denominators are the
difference of the energy of the intermediate state and the initial energy
W, plus or minus ic. The propagators contain all possible time order=
ings by various combinations of energy denominators. Since, in generals
a continuum of energies from O to « 18 possible for intermediate states
there is a branch cut or discontinuity froﬁ 0 to = 4 displaced below
the real W axis by =it We see from the diagrams that all of these
processes are symmetrical in time; thus there is a symmetrical cut along

the negative ) axis displaced by + ice
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Along the cut the propagators have an imaginary part.
These arise from the i€ 1in the energy denominators by virtue of

the limiting relation

1lim 1 = —% +im 8 (am)

o #
>0 AR + ic ok

where A =Ef = E,3 B, Dbeing the energy of an intermediate state,
Also from this relation we see that there is a discontinuity in the

imaginary part on crossing the branch cute.



III. ENERGY STATES OF THE ELECTRON GAS

In this chapter we will discuss some of the low lying
energy states of the interacting electron gas using the perturbation
theory developed in Chapters I and Il. These states can be put into
one to one correspondence with the individual eigenstates @ p of H o°
In the following chapter we will discuss the plasmon state which is
characteristic of the interacting system bul has no counterpart in the
non=interacting electron gas. The states @ P of the non=interaciting
systen are described by emmmerating the electrons, -( gi,s } (Pi > 1)
and holes,{ S:{gsﬂ } (pﬁ“; < 1)y which are excited. These states are

eigenstates of H with energy eigenvalues

(3.1)

}

where € is the Fermi energy & = Z W (p.J)s The ground state
o o i
all piﬂ

@Q is the state with no electrons or holes and has the eigenvalue &
Except for é o’ the staies @ P are highly degenerates

This greatly complicates the problem of generating the eigenstates ¥

of the interacting system, from the states @ p by perturbation theory.
The ground state energy, Eog can be found quite readily since

éo is non-degenerate., We shall calcdulate the self energy of t'nep

ground state, '\If'cy following a method due to Feynman. This will enable

us to derive an exact formula for EO in terms of ithe generalized

dielectric constant.
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Excited states present a much more difficult problem because
of the degeneracies. In his paper on the specific heat of a degenerate
electron gas [ 2], Gell=Mann presented a method for calculating the
energies of low lying excited states. His more or less intuitive
approach was based on the assuwmption that the eigenstates @? could
be put in one to one correspondence with the states éﬁ P and therefore
would bear the same labels., That is, 1f one adiabatically turns on the
interactions between electrons the states of the unperturbed system go
over continuously into the states of the perturbed system;‘@é being
the adiabatic transform of qB p*

In this way Gell=Mann establishes an independent particle
model for the interacting system. 1t seems clear that the only consistent
way to do this is by making suech a correspondence with the independent
particle states of the unperturbed system. Thus if W(p) is the
perturbed single particle energy, then the energy of a state which is

the adiabatic transform of the unperturbed state with ) electrons and

V' holes is
S e YV o4t
By =Eg+ 2, Wp) = 2. Wip)+o(==¥=) = (3.2)
pi>1 p§<1

where Eo is the perturbed ground state energy. The interaction betwesn
the excited particles gives a term of order - 1/ for each pair of
particles. Thus for states with relatively few excited particles
(V+) ' << N) an independent particle model is expected to be a good

approxination,
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That an independent particle model must be valid in some sense

is clear from the success such theories have had in predicting the

glectronic properties of solids.

To egbablish the validity of this models however, one must
reconcile it with two facts. The first, an experimental one, that’the
cross section for scattering an incident electron by the electrons in a
metal is not zero, This means that the probability of being in the
initial unperturbed state of one electron decreases with time. C(learly,
the state describing this scatiering process is not a gtationary state of
the many body system but the scattering process is a physical realization
of the adiabatic transformation.

The second fact which must be reconciled with the independent
particle model is a mathematical one. In ordinary staticnary state
perturbation theory, when one deals with a subset of degenerate zero
order states, the degeneracy is first removed by picking linear combina=
tions of the degenerate states which diagonalize the Hamiltonian. This
method is clearly impossible for such a degenerate system as the present
one, However, there is no unique way to make a correspondence between
the true eigenstates and gingle degenerate unperturbed states.

This problem is a well=known one in quantum theory. The
Weisskopf=Wigner problem of the atom interacting with the radiation field
is the best example. Here the states which are the adiabatic transforms
of the unperturbed states of the free atom are not stationary states.
They are states with a finite (usually small) probability of decayinge
The true eigenstates of the system are complicated linear combinations
of the unpeiturbe& states of atom plus radiation field. Clearly, the

non=stationary states are the physically important states for this
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problem; the vast experimental knowledge of atomic spectra smphasizes
thise The fact that the level widths are small mekes the cbservation
of discrete lines possible, but the widths cannot be zero; there must
be a finite probability of decay. These quasi=gtationary states are
also important in statistical mechanics. A system of atoms reaches
thermal equilibrium through the excitation or decay of these states;
moreover the energies which appear in the formula for the equilibrium
distribution are the energies of these meta-stable states.

The time dependent perturbation theory developed in Chapters
I and IT is well suited to this problem. We define the adiabatic trans=

form of the unperturbed state, @p}?, in the interaction representation as
11 =
7 (8) = U(tss ) B (3.3)

where the adiabatic U malrix is defined in equations 1.20 and 1.22

The initial time to will be taken to be tO = =~ w 30 we see that at

t = t, the interaction vanishes. The boundary conditicns are such that
¥§(to) = d? P’ In the Schrodinger representation the state

=il (t=t )
e ° ° Wé(t) satisfies the Schrodinger equation with the Hamiltonian

HQ + H!; we must investigate under what conditions is ' is. a stationary
statee

With the Feymman formalism we will calculate the self=
energies of the states (ﬁp. This is done by constructing a propagator
for the state @ p? corrected for all virtual self energy processes.
The condition that this propagator have a pole in the complex "energy"
plane gives the dispersion relation for the state ?p(t). If the pole

lies on the real energy axis then ??(t) is a stationary state with the
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energy eigenvalue at the pole. If the pole has a small imaginary part,
then @?(t) can be interpreted o be a metastable state with a level
width given by twice the imaginary part; the approximete energy of the
state being the real part.

In Appendix B we will show that this method is essentially
the same as the theory of radiation damping of Heitler and Ma [ 23)
and that of F. Low [24¢]. The most important advantage of using the
Feynman techniques is that the ground state self energy can be separated
out of the self energy calculation for any state and treated as a

separate problemne.

B. GROUND STATE ENERGY

We now want to apply ouwr perturbation theory to a calculation
of the energy EO of the ground state @b of the gas of inberacting
electrons. In the electron-hole scheme this is equivalent to the field
theoretic problem of finding the energy of the true vacuum state of a
system of interacting fields. This problem has been discussed by Gell=
Mann and Low [25] for the general field theoretic case and by Goldstone
[12] for the case of Fermions interacting via a static, finite range
potentiale Ve shall adopt a somewhat different method due to Feynman
(17

Because of conservation of momentum and energy, there exists
no S-matrix element which connects the ground state éb o with any other
unperturbed state. It follows that ép{) is an eigenstate of S with

eigenvalue U

s, =cd, (3.4)
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Since S is unitary for a system admitting no bound states
= 1 or C =¢ 3 T real . (3.42)

We shall see below that I° is proportional to the (large) time interval
of observation, The diagonal Se-matrix element (QS oﬁsf @ 0) = ei‘r‘ can
be interpreted as the amplitude that the system remains in the ground
state, under the influence of the interaction, after a long time, The
corresponding probability is independent of time which means that the
state ¥ (t) = Ultst ) & ,» vhich is the adisbatic transform of ¢ o 18

stationary as t » o and to -+ = . % Thus in the Schrodinger representation

=i (t=t ) =iB (t=t ) s
e ° % w@)=e ° % v (3.5%
o o
. (b=t ) (8)
=iH (t=t =i8 (t=t
o o - o o
(P le v (L) =e (& lv)
wiﬁa(tmig)
>e (P, 181 )
_ uiﬁo(ﬁatG} =il
=g e
Thus for a long time interval we can identify
= (EO - 5:0) (t - t@) (3.6)
and
(@081{{@) = ‘B (3968.)
*

This is only true for a large time interval © - to s¢ that energy is

conserved. For shorter times there may be components off the energy
shell, These incoherent transient components die out by destructive
interference ag ¢t =t = o , In Appendix B this is discussed in
more detail, °

®% H@rgqci@ the stationary state vector corresponding to qg(%)a
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Knowing T' we ecan compute the energy shift or self energy of
-the ground state from equation 3.6. The normalization of the eigenstate
¥ in equation 3.6a agrees with that found by Goldstome [12] when v is
generated by the "linkedeluster® expansion.

Let us discuss the expansion of (@0385@@) in terms diagrams
using the rules on page 17 s forgetting, for the moment, the amendments
ﬁade on page 5&% to take into account the effective interaction., We see
that this Sematrix element is the sum of all diagrams leading from the
ground state back to the ground state; i.e. all diagrams with no external
‘1inesg Exsmples of these are shown in fig. 4. The lowest order processes
are 4=la and 1b which involve only passive particles, Fig. 4=ls represents
the average Coulomb energy of the system (which is infinite), and thus
cancels the term in €, = 2§:Ui(p) arising from the interaction, VIg with
the positive background ofpchargee The diagram 4-1b represents the well=-
known Yexchange® energy and will be considered below, The sum of these
two terms is then (éﬁ@, H1<§o)o

Folicwimg Feynman we call the sum of all connected ground state
diagrams «il. By connected diagrams we mean diagrams which do not contain

separate parts with no interconnecting lines. Tt then follows that

R sy 4R
(Blsi@y) =1 -+ G- -G e w R )

From equation 3.6 we then have (T =t - to)

A = = 1in _L‘ N (3,8)

o Tos00 T

Thus the self energy can be computed from the connected diagrams alone.
Tt is eagily shown that equation 3.8 is identical to the linked cluster

expansion of Brueckner and of Goldstone. The advantage of equation 3.8



for our purposes is that it allows us to use the Feymman technigues in
calculating AEbe

- Now let us consider the explicit form of <L. Tt is well-known,
and indeed it follows trivially from the rules, that the amplitudes for
all the connected ground state diagrams contain a factor (27?-)4 5(3)’(0)5 (’E)(O)
= VT. This results from the fact that these diagrams have no external
lines and therefore zs many 8 functicns arise from an application of rule
(3) as there are corners in the diagram. Thus from equation 3.8 we see
immediately that the ground state energy shift is proportional to the
volume of the system. We shall see that the excited state self energies,
measured re}ative to Ebg are indepen&ent of the volume provided the volume
is large,

From fig. 4 we see that all the‘connected ground state disgrams
are composed of closed chains of proper polarization disgrams, which we
defined in Chapter II. Thus these processes represent the virtual polare
ization of the many body medium; the zero point motion of the system. [Teo
make this identification with the polarization diagrams one must recognize
that a subset of diagrams, of whichiFigs, 4=1b, 2b, 3e and 3f are members
involves only one proper polarizaticn disgram. Since zero momentum and
energy are carried by these processes it is clear that the sum of all these

single processes is proportional to

I‘s 1 1 . o ﬁI"
e PR ERICHS (3.9)
0 I‘s wl} qu g

i.e@o that there ig no propagation. [This is e asily checked by applying the
rules to these diagrams, except for fig. 4-1b. The diagram in 4-1b repre-

sents the well known exchange energy contribution. To include this in
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the formile 3.9 we must make use of the definition of SF(g, t=0) which

was introduced in 1.27 to include the passive particle effects. Thus

1 T ! ) - - ’__ 3 > - - e -
2 Jawa e =a,a w00 = [% 5,6+, 1) 5,5, 1)

fd%’j 7‘; 3, (q,0) = = fa}"fd s (3.9a)
< lp+qi<"
pet

Then (in Rydbergs)

_ L 3w 1 / f3-> 1
N Cexchange ﬂz'ar 8r 2wt J dw Jd7q Qa(q’au) 2
s q
2 .
B e é”# o .BQE ::_N..‘;?_l;é
2 8w T
T oar, s

Thue these definitions are consistent. However it must be pointed out
that they are introduced only as a convenience to simplify the formilas. ]

We will now show that (in Rydbergs)
23N 2]3-»]9_@ n drg
By = &r 22 M 4"q J 37t ZI [- (q,w)] —¢5 (3.10)
8.

where Q, (g5 ) is the exact corrected polarization propagator defined

s
in Chapter II. Q_ (qgs >} is the sum of all amplitudes for proper polari-

s .
zation processes. The factor %g results from the volume factor, V = %%9
in our special units and we have multiplied by 222 to express the

ar
8

energy in Rydbergs.
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To understand the remaining factors let us first consider the

peir approximetion: Q, (g, w) = Qc(q,ab). The sum in equation 3,10 is
s
then represented by the series of diagrame 4-22, 3a; ... , the general nth

th

order diagram is shown in fig. 4. That the n order contribution is

proportional to :

ar
v [P0 35 [ - 2% e

follows quickly from the rules. [Starting from the bottom of the diagram,
if there are n-k loops on one side and k loops on the other side, con-

servation of energy and momentum at the lowest vertex gives

]n-k

‘GTS n .
—31 [0,(0,w) "™ [0, (=, ~w)]

[
Taq
Since Qb(q,cu) = Qo(=q, -W) the result follows after integrating over q,
W.] However, ﬁere the factor 1/n! which occurs in equation 1.2/ does
not cancel exactly.
The correct factor is found by applying the algebraic method of
Wick to the reduction of the S-matrix. It follows from Wick's theorem
that the correct factor is kn/ni where kn is the mumber of distinct ways
of connecting n points with a closed line, using each point once, kn is
the rumber of distinct contractions¥* from the nth order process. It is
easily seen that kﬁ = ni/n since the n cyclical permutations of the n
points in each arrengement merely repeat the same arrangement and are not

distinct. Thus the correct factor is 1/n.

For the definition of contractions and their use in Wick's theorem see
references [20] [15] |
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Now let us turn on the remaining interactions., It is clear from
the discussion in Chapter II that the effect of including the complete
Hamiltonisn is to replace Qo(q,a)), in equation (3.10), by Q, (q,W), the
corrected polarization propagator. It can be shown directly :hat all the
diagrams in =l are given correctly., This can also be proved by using a
formula used by_Sawada [9] involving an integral over the coupling

constant gze - 2
2
dﬁ
E;oe:afgwﬁw v |5, . (0)]vw
o © o g,2<o~‘ig2 o>
where Wé is the true ground state vector which, in the Helsenberg repre=

séntation, ean be written as
U(Os“‘“’) @G
T{;( =
o (G 000, =T}

Q(t) is the interaction Hamiltonian in the Heisen~

(see reference 15). H

berg representation, defined in terms of the interaction representation
cperator® ‘ -1
H, ,(t) =0 (t,0) H, (t) U(t,0).
~1 2 12

g g
In our units, ve capm writs

3 2mwar
d 5. (v |p(0) P (0)|v (3.11)
< °~P2§ f«q %

g =N _2 frsi‘ié.
o o 8w a2r§ ré (2W)3 q2
where we have introduced equation 1,15 for Hl’ replocing the summations by
integrationse.
Using what are now standard methods in field theory [15][25] it is

readily shown (see alsc page 57) that the following relations hold:
A /oa,(tz) p‘a(miwo)

@OQT(S/OE(%) p%(ti)i ¢, ) (3.11a)

VA (tz—t1) Qr (as0 )
T o ) @, @)
]

i

(2]
- 2 l;» %ﬁ% e

#*
Here our notation makes the dependence of Hy on g2 explicit,
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where the prime on the second expectation value indicates that in evaluating
it in terms of Feymman diasgrems, the disconnected, ground state diagrams are
to be esmit‘ted; These are, in fact, cancelled by the denominator in the
definition of ¥ (see [15]). |

Using equation 3.11a in equation 3,11, we find*

22
o T arlofg gy (ar! /m"q") Ops (@sw)
EoCo” " Br 2 2 2l 3 By (3.122)
- 1+{ar! /17q7)a,, (a>0)
s
or in terms of the dielectric comstant K (as )
s
r
t:lrE
N j [
8r 2.2 o dq [dw]t - KL, (qyw)}zrl (3.12b)
8.

We also obtain this expression by formelly carrying out the summation over

n in equation 3.10.

Since Q (gsw) = 0of 2) as |w| » « and since the singu-
s
larities of K, (qow) 1lie beiow or sbove the positive or negative Re W
$
axis, respectively,** we can deform the contour of integration to lie along

the imasginery W axis. With (W = iu we have then

dr o
- 3_1 fs /3 / du 1 ,
B e B alf ol s d’q o= [1 . ] (3,?2@)
o o 8w a.’?;2"2 o s 2 K;BZq,iuﬁ

Now . Q, (qeiu) is real for resl values of u (in the limit as €=0) so that

8
E o is real, as it must be if it is an eigenvslue of H., That we can generate

a real energy shift depends strongly on the fact that @ o is non-degenerate
go that in all of the energy denominations one can let £+0 without encoun=-
tering the contributions from any poles. This will not be the case for the
excited states which we will consider.

The relation of equation 3.12b to G=R's equation (19) will be made
clear in Appendix D where we formelly compute the third order correctioms
to E;»Ovc@g

aszug

* The appearance of the time order operator T in this expression does not
ceuse any complications. This follows since, in equation 3.11, the
expectation value is integrated over all velue of 3.

** See section ITc and Chap, IV for discussion of the analytic properties
of QI’S and Krsa
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Some guestions arise concerning how the Pauli Principle applies
to the intermediate states of the linkedeluster expansion. This was dis-
cussed in detail for the ground state problem by Goldstone. In ordinary
Raleigh=Schrodinger perturbation expansions it is immaterial whether or
not the exclusion principle is applied in intermediate states; ﬁerms which
violate the exclusion principle always cancel in pairs. However in the
linked ¢luster expansion where we have dropped unlinked terms this cancel=
lation is not complete and it follows from the S-matrix expansion that we
mast include intermediate states which viclate the exclusion principle.
This is automatically done in using the Feynman propagators and diagrams.
We shall discuss this again in the explicit calculation in Appendix C.
The same sort of question arises in connection with our treatment of ex-

cited states so we shall have more to say about it in the next section,

C. EXCITED STATES

Our treatment of excited states will also involve the calculation
of self energies of "bare" or unperiturbed states, q@ n® The perturbation
method is reminiscent of the renormelization procedure in relativistic
field theory [ 15]. Ve will compute the V"physical® propagators for the
states éﬁ p’ which are corrected for all virtual interactions. The
singularities of these propagators provide the dispersion formulae for the
excitation energies of the many electron system. If the unperturbed state,
ééi, belongs to a set of degenerate states, this procedure does not lead
to an eigenvalue of the ccmplete Hamiltonian. In this case we can interpret

the propagetor as describing the evolution in time of a meta-stable state

with a finite lifetime,
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A formel discussion of this method will be given in Appendix B.
In the remainder of this chapter we will discuss the application of the

method to various states of the Fermi gas,

Let us consider calculation of the corrected propagator for the

one particle state, at @ b’ @
5 (<] - o
(j - mgigzﬂn_m (or e
b Al Vv

of one electron (or hole). Such a state does not represent a physically

realizable state of an electron gas since electrons and holes are created

or annihilated in pairs. We shall show however that to a good approximation

the members of a pair move independently of each other and the energy of

the "physical® pair state is the sum of the corrected single electron-hole

epergies. In the extended system in which an externsl electron is secattered

by the electron gas the one electron state is a physically realizable state.
Let us define a "self-energy graph" (SG) to be a graph lesding

from the initial state i) b and back to the same state. A Yproper self

energy graph® (PSG) is one in which the state ép P does not occur as an
intermediate state in such a way that cutting the line () representing
this state produces two self energy graphs of lower order. For example,
(2) and (b) in fig. 6 are proper while (c¢) is nob.

With each proper self energy graph, i, there is associated an
amplitude, or "self energy parth, }E:(i)(g,cu), which depends on the
momentum and energy varisbles of the externsl lines. For example for (a)

in fig. 6 we have

fgzz pw) =5y a3 fdw Sp(pta, urew) By (qu) o (3.13)

2ri /o s

These amplitudes are defined in such & way that if an internal particle

line is modified by inserting & PSG we replace the propagator SF(§,00) by
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s(pew) ) (Byw) Sp(Byw) | (3.14)

Y

Now the sum of all "proper self energy parts® we shall eall

D (Bsw)

5 (2)
2. ) = X Bew) ¢ 2L Baw) ¢ e (3.15)

For any state @ D the sum of all possible self corrections to the propagator
for a single particle line is
(B, w) = 8. (5,@) +S.(Byw) ), (B,w) SL(Buw )
SF 4 T 9 T $ / 9 7 §
(3.16)
e ) = T =& =5 3 i
S (Bs0) *+ 8,3, @) 3 (Byw) Sp(Braw) + 5, 28,2 5

L

+ e e

or
$Gw) = [5G0 - Y Gl . (3a7)
) S

It is important to recognize that the sum of all single particle self
energy processes has the effect of modifying the single particle propagator.
The series of graphs which are formally summed in equation 3,16 is shown in
fig. 6, The shaded bump represents the amplitude Z rgp?,w),

[The "forward écattering" self energy proless (fige Iy which
results from the non-exchange interaction with the passive particles in
the sea contributesan (infinite) negative constant to zi (p,ao) This
represents the interaction with the average electronic charge, i.e. the
Coulomb energy. The term VI in W(p) = p2 * Vg vhich represents
the interaction with the poSitive background charge cancels this constant.

(see footnote on page 9 i]
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The physical plcture of these self-energy effects is guite
simple. An electron or hole moving through the wmedium of unexcilted
particles can polarize this medium in the manner discussed in Chapter II.
The virtual polarization charge can then act back on the electron agailn
through the Coulowb interactlon. Unlike the self—energy processes in
guantum electrodynamics, the electrons or holes can also undergo real,
energy conserving, collisions of this type so that some of the ilnter-
mediate states involved can lie on the energy shell.

The analytic properties of Sg(p,uﬂ will be important in some of
our work. ji(p,Lu), and therefore S%(p,h)), has a branch cut or dis-
continuity which lies along the real axis (displaced by + i g). This
discontinulty arises from a continuous distribution of poles correspond-
ing to the energies of the intermediate states Involved. Along this dis-
continuity zg(p,U)) has a non-zero imaginary part. In addition S}(p,h))
has a pole corresponding to a zero in the denomlnator of equation 3.17

which occurs when

. 4 . - £
5p (ps2,) = Z (ps2,) (3.18)

Clearly, the solution Zo of this equation cannct lie on the real axls

. . 1 . . ) .
where Im 2: is non-zero. Form™ 7 we will show in Chapter VI that

L 2
Tm Z: (p,w)) is proportional to [W- 5 - O(rs)] so that for some

L, O(rs) is possible.

value of p the real solution ZO =7
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The corrected Feynman propagator 5;{:‘@ W) yields all of the
important physical information about the physical one particle state.
As a guide, let us First examine the properties of the "bare" particle
propagator SF('p,a)). In Equation 1.12 SF(p,w) is divided into a real
(or dispersive) part and an imaginary (or absorptive) ;pa,rt. The real
part gives the virtual response of the electron field to a driving
oscillation of frequency () , while the ilmaginary part gives the resonant
response for the frequencyw . Since the imaginary part contalns a
delta function of Q) - W(p), the resonant response is very sharp, occurring
only if W=W(p). Hence the single particle energy may be defined as
the frequency at which the imaginary part of SF(p,lD) is at resonance.

The physical propagator determines the response of the inter-
acting electron field to a driving source of freguency W . In terms

of real and imaginary parts we can write

) = [-0(p) - ReD (p,0)] - 1[Tm 3 (p, )]

(3.19)
W-6(p) - Re) (p,0)1° + [I0) (p,0) ]

% -
bF (p} 2
If we apply the same criterion for determining the energy W(p), of the

physical electron state, we find that the frequency for resonance in

the imaginary part is

W(p) =W(p) + Re ) (p,W(p)) , (3.20)

T

In general, ImZ(p, W(p)) is not zero so that the resonance is no longer
sharp as was the case for SF(p,w). If, however, ImZ(p,w(p)v) / W(p)K1l

then the energy W(p) is well defined within a region measured by the
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*
level width which we define by

=T'(p) - Imzxfp’ W(p))‘ : (3.21)

The physical single particle states are not exact elgenstates
of the Hamiltonian H. Thelr energies are only defined within a range
proportional toIq(p) which we shall see is the inverse lifetime of the
single particle state. In order for these states to be well defined
excitations of the many body system the condition I" /W << 1 must be
satisfied.

The finite lifetime of these states is a direct consequence of
the degeneracy of the states é@n of the non-interacting system. This
means that a single bare electron can be scattered by the many particle
medium into another momentum state of lower energy. The energy dif-
ference 1s absorbed by the many body medium. Similarly, a hole can be
scattered into a state of greater negative energy. In each case the
final state which results from the scatitering has energy equal to the
initial state of a single created particle.

The number of final electron states of lower energy clearly
approaches zero as the momentum p of the original electron approaches
the Fermi momentum. Similarly, the number of hole states with greater
negative energy approaches zero as the momentum of the original hole

approaches the Fermi momentum. This means thamfI1(p)«>O as p L. In

%In our formalism, in which holes propagate backward in tiume,
Im Z(p, W(p)) is positive for p< 1 and negative for p>1l. This is a
direct result of the fact that the imaginary part of Sp (p,) differs
in sign depending on whether p<{1l or p>1. In Chapter VI this will be
seen in detail.
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Chapter VI we will derive the lowest order contributions to]'(p) and we
will prove directly that] (p) o (p - 1)2 for values of p near 1. Hence
physical states representing an electron or hole excited very near the
Fermi surface are vefy nearly stationary (i.e. meta-stable) states of
the interacting systen.

It should be clear that the energies W(p) of these meta-stable
states are measured relative to the corrected ground state energy Ey. In
our discussion so far we have omitted all the disconnected ground state
diagrams which can occur along with these self energy diagrams. It is
well known that the inclusion of these disconnected diagrams multiplies
all matrix elements by a factor of e"iEoT (for large T) and thus shifts

the energy by EO.

The arguments in this section have been largely heuristic.

In Appendix B we will derive these results in a more rigorous manner.,
We will also prove in Appendix B that an independent particle model
can be formulated for the physical state which is the adiabatic trans-
Torm of a state of several electrons and holes.

The ildea here is simple. The self energy processes for a
state of m particles can be divided into two classes:

a) Self energy processes involving only single particle
lines with no interactions between lines. The result of these
processes, we have seen, 1s to replace the bare single particle
propagators Sé. These diagrams take into account the interaction of
a given excited particle with all of the unexcited particles in the

Fermi ses. The excited particle polarizes the many body medium and
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the resulting induced charge acts back on the original particle.
This polarization and reaction is incorporated in the effective inter-
action propagator P (a,Ww.

b) Self ezergy processes involving interactions between
particle lines. These processes measure the interaction energy be-
tween the n excited particles and give only a fraction m/H of the
contribution from processes of type a). Thus for states with only a
relatively few excited particles these interactions can be neglected.

It then follows that the energy of the physical state of

\/ electrons and )/’ holes is given by equation 3.2. The level

width or inverse lifetime of the many particle state is likewise

shown to be

Y
T 2 T+ 2, Ty (3.22)

. - ,
Pi71- i pi>]' i

i.e. the level widths are additive.

Hence we conclude that only a knowledge of the corrected
single particle propagator Sﬁ(p,aﬁ is required. For states of m exclited
particles we have shown then that an independent particle model holds
to terms of order W\/ﬂ, in agreement with Gell-Mann's assumption,
equation 3.2. The significance of these states is clear only if the ratio
of level width to energy is small. This requirement limits us to states

where the excited particles have momenta close to the Fermi momentun

How let us turn briefly to the question of how the Paull

Principle operates in intermediate states. As we mentioned above, if
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all -the diagrams of a given order for a given S-matrix element are in-
cluded it is immaterial whether or not we apply the exclusion principle to
the intermedlate states. For every diagram that violates the principle
there is always an "exchange" diagram which also violates the principle
and whose amplitude exactly cancels the first. In this discussion it is
lmportant to distinguish between the wvarious time orderings of the ianter-
actions in the Feynman diagrams. The Feynman perturbation method auto-
matically sums over all time orderings, sowe of which may violate the
exclusion principle.

For example the self energy diagram in fig. 7g (in terms of the
bare Coulowb interaction) has the time ordering shown which violates the
PP. The "exchange" diagram contributes to the same order and also violates
the PP. DBoth of these diagrams contribute the same amplitude but with
opposite signs since they differ by one closed loop. Another pair of
sell energy diagrams which violate the PP and cancel in the same way is
also shown in fig. 7

It is clear from these examples, and more complicated ones which
the reader can construct, that intermediate states which violate the PP
are included in our definition of the proper self energy processes. We
have separated the éround state self energy processes from the other
self energy processes and, as a result, the cancellation discussed above

does not always occur.
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D. ITERATIVE SOLUTION FOR W(p)

The solution W(p) of equation (3.20) can be generated by an
lteration-perturbation metihod. A solution must, of course, be a pertur-

bation expansion slnce E " itself 1s defined as a perturbation series,

5

as in equation 3.15, in orders of the effective interaction. In addition
eguation 3.20 is a transcendental equation for W(p) which we can solve

by ilteration. This is clearly possible 1f perturbation theory is valid,
for then the difference W(p) -W(p) is a small number of order r . Thus

e

we have the series of iterations:

0) W=
1) W= w+R) (W
2) W=w +Rey (W+ YW ) | (3.23)

=W +Re ) () + ReZ'(w) Re Z w + ...
where we have dropped the momentum index p for convenience. (Hence
Ww=(p), W =1(p)) Y @ is erined as -%)- Y (@, ete.)
- d

Terms involving derivatives such as Re}E?Iﬁ Re 2:'(u» in
this series arise because the corrected energy W(p) should be used in
Re 2:(w) as in equation 3.20. This is the same as saying that in
proper self energy graphs the external lines carry the corrected
energy. Likewise, the internal lines in these graphs can contaln self
energy parts which have the effect of replacing SF by Sﬁ. If both of
these effects are consistently treated together to any glven order in
r , no troubles arise from the repetition of energy denominators in
processes such as figure g¢ .

For example, the energy denominators which occur in the ampli-
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tude for figure B¢ vanish as the momentum transferred by the scatter-
ing goes to zero. The effect of squaring the energy denominator gives
rise to an extra power of the momentum transfer in the denominator. How-
ever if we consider the iteration term Re 2:(1) l(Q&- Re 25(1)(un along
with this we find that there is a cancellation which removes this extra
inverse power of the momentum transfer. This 1s evidently the siumplest
case of a general property which prevents divergences arising from

the piling up of energy denominators.

A representation of the lteration terms by diagrams is use-
ful for classifying these terms. It is not hard to show that all
possible lteration terms are obtained from the proper self-energy
graphs by inserting "interactions" (represented by an %) into
the virtual electron-hole lines. These "interactions" carry no
momentun and energy and coutribute a factor of + B . a Z:(P,Od(p) )

s .. , . R T
if the momentum carried by the line is p - g,



IV, THE PLASMON AND THE POLARIZED INTERACTION

Some of the most important states of the interacting electron
gaé cannot be put into correspondence with single eigenstates of the non=
interécting systems The states /O q é?og which are generated by operating
on é o with the density opera‘tef P qt (see equations 1.16 and 1.17), |

are not eigenstates of HO. In faet the state

P8, MZ [af . bf +a v, 19, (4o1)
|p+q |>1 piass pss pty,s P§°
p<l
s
is a linear combination of one pair eigenstates with different energy
eigenvalues. The propagator for this state of the non-interacting system
was derived in Chapter I {(equations 1.37 to 1.39) where it was pointed out
that such a state represents a density fluctuation. It is clear from
equation 1.37 that as t21 - « the probability that the non-interacting
system remains in this state approaches zero.

An external charge moving through the gas is coupled to these
states by virtue of the Coulomb interaction, i.e. these states are excited
(either as real or virtual states) by a charged particle. The Coulomb
interactions between the particles of the many-body medium alter these
states to produce a well-defined excited state of the interacting system
(at high densities) which is the well=known plasmon excitation,

If at t, (=~ ) the state Paq d, is exc,itedg the state at

time t, which develops as a result of the interaction is

2
‘?’q('ﬁz) = Ult,t, ),oq§ . (4.2)
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in the interaction representation. If we use the method discussed in
Appendix B we can show that the ¥physical' propagator which results from
all possible interactions leading from the state /Oq o and back is given

by the matrix element
(P (s p (Fysty) @ Gysty )| D) (403)

which reduces to equation 1,37 when Hy >0 sothat §= Uley ~ca) = 1,

In the 1limit as tz > W ‘tj < = w we can write equation 4.3 as

© 3
d - ®
fﬁgﬁ_ Sid-%2 (P t;) B lsl pte) ) (4ed)

Since in this 1limit the only non=zero S=matrix elemenits are between states

of egqual energy we can write the matrix element in eguation L.4 in the form

_— -3 ot2‘§ ~ -
= b
(P, P,le Uyt )l Py D) = (2 Bl (60 (4+5)
Thus if 717 (t ) contains a stationary state component the propagator should
~i%t
be of the form ¢ e 21 as t2’3 » w,y yhere B is real and ¢ is the

projection of the statiomary state on /O q§0
If we decompose the matrix element in equation (4.4) using Wickis

theorem we find that for large t’Z!

~i Wt
ALY b, ls Pq('tz)f-lg )=o 0 E f e “ [Qrs(q’w)

or ar 2
2 ° 5) o 1«
- =55 1 4eb)
2R Qrs 22
~1AE w e Q. (gsww)
- o 21 d 21 S .
=@ Jj 2wt ° ar (47)

=1
tEe 4 (w)
L) 8
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The factor e

E t o s : -

0 2L, where bo is the corrected ground state
energy, arises from separating out the disconnected ground state diagrams.
We encountered the remaining series of diagrams, which are summed in

equation 4.6, in Chapter II where we discussed the polarized interaction.

If we write

L L or QTS(Q:L‘J)
= = - il L.
Prs(q,uﬁ s Org qE 'ﬁng ar (4.8)
¢ + ==, (5w Li—=, Q. (q,w)
g s g 5

it is clear that the second term on the right i1s the effect of the
total induced charge. Froum this equation the relation of equation 4.7
to the effective interaction is apparent.

The Coulomb interaction modifies the propagator Q for density
fluctuations 1n two fundamentally different ways. First there are what
we might call the "local field corrections” which change QO to Qr .
These were discussed in Chapter II in sowme detall. Secondly, the;e are
renormalization effects which arise from the repetition of the inter-
action. These account for the denominator 1 + g;~§-Q(q,Q» in equa-
tion 4.7 and are responsible For the plasuon egzi%ation.

We can understand the introduction of the plasmon excitation
by arguing heuristically in terms of diagrams. The corrected propaga-
tor for density fluctuations, equation 4.4 or 4.7 gives the response of
the density field when a disturbance of momentum g and frequency (L is
made, say by a test charge. In the pair approximation we know, from
our discussion in Chapter II, that the disturbance can be described
as the repeated excitation and de-exitation of pair states of momentum gq.

o

These palrs have a continuum of energies ranging from o to %q“ + q. 1T
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the freguency (Y of the test charge lies within this range of pair energles
we see that 1t is possible for the disturbance to drastically alter its
character by exciting a pailr in a real, energy conserving, ftransition.
However, if ) ) %~q2 + g such a "decay" is not possible and the dis-
turbance can only continue to excite and de-excite virtual palrs. Such

a disturbance which continues to propagate without altering its charac-
teristics corresponds to a resonant excitation of the wmedium. TIts
mathematical manifestation is that the denominator 1 +;§;§§ Qo(q,éD

has a pole on the real (I axis. :

Qutside of the palr approximation the situatbn is complicated
by the local field corrections to Q . Since multiple pair (and plasmon)
exciltations are now coupled into Qr sit becomes possible for a disturbance
of frequency’éu) % qg + g to decay into a state of two or wmore pairs.
Hence the plasmon excitation will damp out at all frequencies. However
for small enough values of rg these higher order decay modes are weak
enough so that the plasmon excitation is still well defined for Lk)>

%i@? + g. We shall now make these statements precise by analyzing
the mathematical properties of the propagator.

The integral over (L) in equation 4.7 can be evaluated by con-

tour integration. The polarization propagator @ (g,W) has a branch

S

discontinuity which runs from &) = 0 tod =00 displaced by -i£ from
the real Waxis and a discontinuity from W) = o0 toW = -00 displaced by
+1i& from the negative . real axis (see figure 8). We discussed these
singularities in Chapter II where we saw that on crossing the branch
cut, IQQT (q,Ww) changes sign. The principal branch of this many valued

]

function is defined by letting &= o in the expressions for Q. (q,4)
s

which are given by the Feynman rules. This gives the limiting value of



the function on one side of the branch cut. The principal branch is

thus defined by

Lin Imq_ (o,x18) = | § (a,x)
5_) o s 1"5.
where B(r (q,x) is a positive function of x which is determined from
8
the Feynman rules. For example, in the palr spproximation where

Q. = Q, ve have from squation (1.39)

)

Y (@) =1 d% cg(x-% “-33) ,

<L
ip+gl>l
Hext we analytically continue Qr (q,) to complex values of
8
W=z, In addition to the branch discontinuities of Qr (q,z) the
]
integrand of equation 4.7 has @ pole at z = z, where
ar
L+ =5 Q (Q;ZO) =0 (4.9)

S

Since ImQr (q,2) is not zero, in general, for real z it is clear that
the solutiin Zy of this equation does not lie on the real axis. It

is readily shown, using the same arguments as given in Appendix B for
the poles of the one electron propagators, that the pole at z = Zg

(or z = ;5) does not lie on the principal branch of Q (g,z) but
s
instead lies on a neighboring Riemann sheet.
Hence, to evaluate equation 4.7 by contour integration we

only enclose the branch lines when we deform the contour in the prin-~

cipal branch. For t ) o {(t< o) we close the contour in the lower

(upper) half plane. In figure 8 the relationship of the contours
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and branch lines is shown explicitly. Since the only discontinulty
inQ, (q,z) on crossing the branch is in the imaginary part we find
s

using equations 4.7 and 2.6:

g EiImQr (q)w)
T . -iHT “iE T [dw -i@T s
e m e [0} e ®
<ﬁq¢0I l q{@o) /2111 ‘ 2
P o Krs(q,w)l

A\

In terms of the real and lmaginary parts of § we have

@

<Pq(§0\e—im“)q(}5_0> - e»iﬁlo’l‘ [

aw 2Im3{q,w) 10T . (%.11)
on 2 e °
ers Cﬂ"s
[l + s ReQ(q,w)] -%-[ 55 TuQ (g,
T g

The integrand of this eguation becomes sharply peaked at

W =) (q) where

ar

1L+~ ReQ(q,((q) =o (h.12)
Q2 .
Mg L
*
For tieremainder of this section we will define t.. = T and

~iH t ~1HT 2t
o) .

abbreviate the operator e 21 U(tg,tl) by e
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ILet us define

(W® -0%(a) B, (2,00° -2)

ped

ar

2 s
= e R ;w’ : L‘"l
R Qg Wy (1.13)
so that
ox . -
B, (g,0) = —= [9—-—- ReQ (q,w)& (k.ik)
Tg 712 daf Ts
w =0(q)
and further define
or
L 8 1 L -
st = b, 1E
EF(Q) 72 2[1(a) 3Bla,0) Im@rs(q’ﬂ(q» . (k.15

Then if the conditions r(q) 7«1 and F(q)/o_(q) < 1, are

satisfied we find that (for T-> o)

SR\ - ) v

T-» o

s Tr 2

. g i
ORI R

I P (q) is zero then it follows from the unitarity of the operator

~-1H7 \ . . X
e that there are no matrix elewents of this operator connecting

the state /oqio with any state orthogonal to it so we have

e-—iHT A *@q@o\e_i}m‘/?} @o>
Q¢o - (Pq@o ‘/)q@o> pqéo

from which it further follows that E_ +£2(q) is an eigenvalue of the
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Hamiltonian H.

Thus we see from this development that the adiabatic trans-
formation of the state /oq@o generatgs an approximate eigenstate of
the interacting system. This state or excitation is the well known
plasmon excitation. It is a resonant oscillation of the demnsity fileld.
The nature of the density fluctuations are modified in a fundamental
way by the interaction which introduces a moce of oscillation which
has no counterpart in the non-interacting system.

Equation (4.12) is the generalized dispersion relation for
the plasmon energy L) (q), while equation (L4.15) gives the level width
of the plasmon state. The concept of a discrete state is possible only
ir T /£ 4< 1. This coupled with the condition thatT' T << 1
mesns that the plasmon decays only by a small amount while the energy
time dependence of its state vector undergoes many oscillations.

Let us remark in passing that to lowest order in ry the
values of {2 (q) and % T (q) can be found directly from the real and
imaginary parts, respectively, of the complex number 2, at which the
propagator has a pole (see equation 4.9).

The properties of the plasmon in the pair approximation have
been studied extensively. If we approximate Qr by QO (equations
1.39 to 1.48) we see that the dispersion relatiin, equation 4.12,
is exactly the same as that discussed by Bohm-Pines [ 5], Ferrell [26],
Sawada et al. [ 9] and others. Equation k.12 can easily be solved

in this case as a power series in q. The result is (see Ferrell [B6 1).

Qg(q)—~Q2[l+l2q . 6 1 1 1 Lo ] L
\ = Lt (g 5 =5 ) d + ... (4.17)



where ()P is the classical plasma freguency,in our units

Mars 2
Q,- (=) -

From equation L.4hk we see that ImQy = o forax)% q2 + Q.
Thus limiting energy corresponds to the maximum energy of a single
(bep@) pair of momentum g. If {2 (a)> % q2 + g we see from
equation 4.15 that the plasmon has an infinite lifetime, i.e.
M (q) = 0. Equation 4.17 shows that this is indeed the case for
small enough q. However, as ¢ increases the plaswmon energy finally
merges at g = 4. with the upper limit of the palr continuum of ener-
gles. The value of a. for a given value of rg ig found by solving

2 + g. This natural cut-off

equation 4.12 for g withd = é q
momentum was first discussed by Ferrell [26]. He has shown that for
very small r_

L L

] 1 \2,
g, ar,” (In o )

For values of q) a, the plasmon has a finite lifetime
since 1t can decay by producing a single pair. From equatlons

L.15, 4,14, 1.45 and 1.4k we easily find that for q > 4,

-1

2r-)~;
I:(Q) = I%’d3p [a”/2+d-F] times (4.18)

3
- r
p<l [fli - (q2/2+§'§)£]
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) 2
{1 -ta/e -Qya] ! ; for |a/2 -Q/a|< 1< a/2 +Q4q
L 20,(q)

L

5 qa + q, I:(q) approaches a value

It is clear that for{)&
independent of r_. The requirement thatI?(q)/(Lﬂq)<<1ucaﬂ only be
satisfied for(l?’% qg + g, that is, very near the cut-off so that
beyond the cut-off the plasmon state is no longer well defined. The
plasmon is effectively absorbed by the continuum of pair states Tor
a ) 4 The sharpness of this cut-off is a function of roe We will
not analyze this further since we will see in Chapter VI that for
physically realizable densities, this cut-off is masked by other effects.

In the general case Im Qr is non-zero for all values of W,
gsince states of any number of pairssand plasmons are coupled into the
density fluctuations. Hence the plasmon state 1s never a true station-
ary state. However, for small enough values of r, we expect Im Qr to
be smaller for603>%'q2 + ¢, where only higher order multiple excit;tions
contribute to Im Qr , than for W< % q2 + q where single palr excitations
also contribute. I; Chapter V we will calculate the lowest order con-
tribution to the plasmon lifetime for values of q > A and in Chapter VI
we will estimate the effect of the finite level width on the observed
cut-off momenta in plasmon excitation Ey electron scattering. Also in
Chapter V we will calculate the shift in the plasmon energy due to
higher order local field corrections.

To complete this Chapter let us investigate some further

properties of the propagator P (g,W) for the polarized interaction in
s



the light-of what we have learned about the plasmon. From equations
4.8, 4.7, 4.10 and 2.6 we find that we can write
co
3 h)
1[““121

1 . 1 {
P o) =% -5 | o opor gy Y
8 q d -“i T 1

whexfeaﬁ.is understood to have a negative imaginary part so that the
Fourier transform over T is defined. In the pair approximation we can

write this explicitly as

2
g =2
1 ar, 3 2[§—+q D] 1
P (0 == - [ 5 5 - >
] 2
° 4 P paw® (33D ka5 a )|
>
jp+a D1
1 M, - a) ‘
5 T00) 5 s {(k.20)
T ~120 a)

Here we have used equations 4.12 and 4.13 as well as equation l.hk for
Tm Qo(q,q». In the limit as €= o the plasmon pole contributes a
delta function for q<q, which accounts for the last term. 2 O(q) is

given by equation (4.17) and B (g,0) is found from equation 4.1hk. 1In

8
the pair approximation we have
O‘Ts 4
B. (g,0) = - [*“2;‘36 Qo(q,w)] (k.21a)
S T dws
w =L (a)
s o l.3 _laf/edd]
=_.—2-2P]dp 5 D (4.21v
T p(l[Qo (a) - (o7/2+2-D)7)
qQ 9 qh qé
= o S o( ) . (k.21c)
2 4. 6
Q" 2 Qo Qp
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The expansion in powers of qz/{ng is valld only if g« LR As 9=aq,
B, (q,0) is a rapidly increasing function.

° The interpretation of the three terms in equation 4.20 follows
from our previous remarks. The first term is the Ware Coulomb inter-
action. The second and third terms represent the interaction with
the polarization charge;’the coupling and propagation of the continuum
of pair states and the plasmon state.

| IT we compare the second term in equation 4.20 with equatious
1.40 and 1.42 we see that we can interpret the effect of the repeated
interaction as modifying the coupling of the single pair excitation
to charges. In the palr approximation only these modified palr exci-
tations make up the continuum of states. Thelr effective coupling is

cr 2

L S 1
g (p,0) = g-(TTg) p— - = -
(2) [6° + =5 Re 0_(0,5 0°43.3) 1% +[=5 In q_(a,50°+3.3) ¥
1 T
(k.22)
;] arg 2
instead of 5 (1_ e } -—K as in equation L. Mc In this approximation

1It\(q /L+q p) is unchanged since there are no

the palr propagator e
self energles Tor the one palr state. The modified interaction does

not diverge for small g, instead we have from eguation

& (0,9) — ﬂ.(qrs)e 1 ' (4.23)
e 3 090 2 Y72 &ar
(o) it [qQ . - (l _ I1+xl)] . [Mﬁ ]

where % = ﬁ'ﬁo The interaction in the spacial representation is thus

screened but the “"screening length” depends on the states of the

* -
The factors of (2M) 3 are chosen so that the usuval Feynman rules
apply.-
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interacting pair excitations (i.e. on p as well as q). Thus we have a
refinement of the Bohm-Pines theory. The effect of the polarization of
the medium is to introduce a screened interaction between particle-like
excitations. Along with this a new type of excitation, the plasmon, is
introduced and, furthermore, a second subsidiary condition 1s imposed.
The new subsidiary condition is the restriction that only a single

pair excitation can be coupled in this way to charges. The repeated
annihilation and creation of pairs is included in the modified coupling
constant. This subsidiary condition along with the subsidiary condl-
tion (IT) on page 30 are probably related to Bohm-Pines subsidiary
conditions. The exact connectlon, however, was not clear at the time
of this writing.

In the present theory the cut off 9 for the plasmon state is
introduced in a more natural and satisfactory way than in the Bohu-Pines
approach. In the pair approximation the plasmon is a distinct elgen-
state of the systemﬁwhen g < g, For q)>qc the plasmon is no longer
an eigenstate of the interacting system but can decay into the single
pair states which form the cortinuum. The greater exactness of this
method is at the expense of adding a more complicated screened Couloub
interaction between particle-like pair excitations. The subsidiary
conditions in our approach are easily taken into account by the siumple
comission of certain Feynman diagrams.

The real simplicity of the Gell ~Mann-Brueckner wmethod lies

not in this separation into continuum and plasmon parts but, on the

contrary, in the fact that both are included in the propagator Pr (q,d),
s

as given by equation 2.2 . This greatly simplifies the calculation



m69w

of the properties of the interacting electron gas at high densities. A
discussion of this separation is necessary, however, to show the con-
nection of our approach and the Bohm-Pines theory.

In higher order approximations for Qr (g,W) more complicated

s
states with various numbers of pairs are coupled in the continuum and
the dispersion relation for the plasmon is altered. If self-energy
effects are included to all orders, the palr states in the continuun
have finite lifetimes. This points out the importance of the meta-stable
pair states discussed in Chapter III; these are the states that are ac-
tually excited when a charged particle interacts with the electron gas.
We will not discuss these high@r approximations in a general manner but
rather as corrections to the pair approximation.

Now let us consider the plasmon term in more detall. The
plasmon, as defined by the pair approximation, we will call the "bare"
plasmon. This is consistent with our previous definitions of "bare"
particle states since this is the lowest order approximation in which
the plasmon state occurs; in this approximation the plaswmon has an
infinite lifetine.

The division of the plasmon term into propagator and coupling
constant is somewhat arbitrary. However, if the plasmon propagator is

taken to be of the boson type

~ D (W) = —p (i.24)
Genpt " em’ w® - 0%

then the coupling of a bare plasmon with a charge Z 1s in our special

unlts
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ela) Lo,
(2m)3 e o By (4,0) (h-25)
i
23 O 2
= 75 §7f~g§g (1 + % z%wg + ... (k.25a)
P

for g gq,. [The factor -'j.,/"(?ETr)l‘L in equation 4.21 is chosen so that
the usuval Feynman rules apply: A factor 1 from rule 5' and a factor
(QTT)u from the delté funcﬁions at each vertex cancel this factor. ]

For applications involving the virtual excitation of pairs and
plasmons the separation of Pr (g,) into plasmon and continuum parts is

s

neither physically meaningful or mathematically useful. However, if we
consider the exclitation of real pairs and plaswmons the separation is
useful. The amplitude for the excitation of a real pair stafe is the
same as that for the excitation of a real pailr state of the non-interacting
system since in the palr approxiwmation there are no self energles for
the pairs. Only the coupling constant is changed to g(p,q). The ampli-
tude for the emission or absorption of a plasmon is evidently the sane

as that for a boson since it propagates like a boson. This amplitude is

1 1
375 . (4.26)
(2m) V21 (@)

In Appendix B the general relation of these amplitudes to the propagators
is discussed. Simple amplitudes like eguations 4.2% and L4.26 cannot be
used in higher order approximations where the excitations have finite life-

times. For most of our applications however, equations 4.25 and 4.26 will

suf'fice.
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PART TWO

CALCULATION OF EXCHANGE EFFECTS ON THE PROPERTIES

OF AN BLECTRON GAS

INTRODUCTION

We will now apply the theory developed in Part I to the cal-
‘culation of various properties of a gas of interacting electrons.

In particular we will extend the calculations of G-B and others to
lower densities. To do this we must consider "exchange" corrections
to the results of the pailr approximation.

Before proceeding with these calculations we should point
out that our method of calculation will follow that of G-B. We will
expand expressions in orders of r being careful to retain all terums
of a given order. The expansions in orders of the polarized inter-
action, which we discussed in Part One, are much too complicated to
carry out completely. In actual calculations we will siwmplify the ex-
pression for the polarized interaction to yileld expansions exact
only to some low order of ro. This means that screening effects will
only be treated exactly for small momentum transfers. Hence, those
terms, which are infinite in an ordinary perturbation expansion,
will now become finite functi&ns of ry because of the screening

effects. Tinite terms will remain unchanged.
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V. PLASMON DISPERSION CORRECTICNS: LEVEL SHIFT AND LEVEL WIDTH
A. Self Energy of the Bare Plasmon

In the preceding chapter we discussed the properties of the
“bare" plasmon which was defined by the pair approximation. In the high
density 1imit (;s - 0) this approximation is, in fact, exact. However
for the densities encountered in metals (rs > 1) the validity of this
approximation has not been demongtrated. In this chapter we will calculate
the lowest order corrections to the plasmon dispersion formula, equation
4e9e

In the pair approximation the virtual pairs which make up the
plasmon can only be excited or de-excitede In higher approximations the
pairs can interact with each other or with the particles in the Fermi sea
so that intermediate states with any number of pairs are possible. These
higher order interactions will change the plasmon energy by an amount
which we will call the self-energy of the "bare® plasmon and, since a
plasmon can decay into states of two or more pairs, the plasmon will have
a finite lifetinme.

We will calculate the self=energy and the reciprocal lifetime
to lowest order in the coupling ary, 80 that, again, ocur results will only
be valid for high densities. However, the size of these corrections is a
measure of how fast the perturbation method converges.

The plasmon dispersion relation, equation 4.9, may alsoc bs

E S
weitten as

*
In this chapter we will use the fact, mentioned in Chapter IV, that in

lowest ordery, %the plasmon level width can be found directly from the
real and imaginary parts of the complex valve of w at which P, (q,w)
has & pole ( i.e. the value () = =, defined by equation 4.9.5
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) X Q. (asw) = Q (asw)
(W= = N%q)] =-=2 —& (5.1)
_.Q.o q “2 Brs(q’wz -n i)

g

where () o(q) is the "bare" plasmon energy (equation 4.17) and
Brs(q,a) 2 =0 i) is defined by equations 4.14 and 4@2§@ We can solve this
by iteration; the first iteration gives

Qr (as Q-o) = Qo(§s .Q.o)

(D2 - Q%)) =-—2 —= (5.2)
1 e - Brs(q,O)

or [ [Qrs(q, 0,) = a e, 2 )]

ﬂ.!(q) = ﬂo(Ci) - 5.—{;{0(%) e Brs(qsO)

. (5.3)

Now fz.g(q) = ,Qi(cﬁ +1i r1,,§;q)/2 and we can calculate the lowest order
corrections (L 1 and .'L"‘.é to the plasmon energy and level width from
equation 5.3 We can also write equation 5.2 in terms of the electron=
plasmon coupling of equation 4o25
g 2 2 f_g;ﬁiz_
(L5 =-02@] =- o3 [Q.rs(qs 2,0 =9, Q). (504)
Let uvs first caleulate the 1ﬁwe§§ order correction to the plasmon
energy, i.e. the real part 52.3(q) = Re afll(q). This arises from the
lowest order corrections to Qrs(qs 31,0) which correspond to the diagrams
(b) and (¢) in figure 3. These corrections teke into account the possi=
bility that the virtual pairs, which make up the induced polarization
charge, interact with each other or with the passive particles in the sea

before de~exciting. In Appendix A we derive an expression for the



propagator Qx(;i ) (qs)) which takes these effects into account to lowest

s
order in rye Since we will be interested in small values of ¢q we can

use equation A5 for Q’E“ (g )e Substituting in equation (5.3)

s 1)
or /ﬂz Qﬁs (q’ﬂc)
K¢ (q) -0 (q) = - ;’.?1 o o) + higher order terms in r_

(5.5)

expanding QS) (qs ) o) (equation A5) in powers of qz/_(L f) we have

8
4 6
ar 397 4. q
QI(,”(C{:.Q‘. o) = (21:)2 “’% ~ T + 0(“"""3) ‘ (5.6)
8 4w .QP i7A p

Using this and equation 4.16b for B, (g;0) we get
s

0@ -0y =-2 20, 20w/ . (5.7)

Thus the correction factor for the coefficient of the qz ternm in equation

4011 for _(1_ O(Q‘) is

or
1»#{22 1= 52821 - 00138, . (5.8)

For rg = 2 (nearly the value for Al) this amounts to a 2 percent correction
to the dispersion coefficient. ‘fhe coefficient of r s in equation 5.8 is
a factor of ten smaller than the approximate result found by Ferrell * [26]

but the sign of the correction is the same. Our result also agrees

Previous to our calculation Professor Ferrell pointed out to the
author that an exact evaluation of this correction would give a smaller
result (private communication)e
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qualitatively with an estimate of Pines [277, whose result was of the

seme magnitude as Ferrell's, and a result of Wolff's28] which was not

numerically evaluated.

The dispersion coefficient for the q2 term has been measured
experimentally by Watanabe [29], who studied the angular dependence of
the characteristic energy loss,¥ K.Q.p, of 25-kev electrons passing
through metal foils. In Table I we reproduce a table from Ferrell's paper
which compares the theoretical values with experiments. The theoretical
valuess however, are calculated from owr equation 5.8, Since our correc-
tion is much smaller than Ferrell's original correction, the agreement with
experiment is slightly better. The disagreement is very likely due to the
departure of the real metallic electrons from free electron behavior due
to interactions with the positive ion lattices

Although our result does not agree quantitatively with experiment
it does give an indication of the convergence of the theory. For values
of r, < 5 +the correction is less than 10 percent. If we ggsume that the
series converges uniformly we expect, then, that the rest of the terms in
the series, of order azrz and higher are negligible for these values of
L It seems safe to say that the high density 1imit, for this calculation,
is accurate for the metals with highest electron densities. In Appendix A
we discuss, briefly, the calculation of higher order corrections to
Q. (qso ) = Qo(ﬁbw)o |

° We can also derive this result in another way by considering the

lowest order self energy processes for a bare plasmon. The irreducible

Feynman diagrams would then be those in figure 9. The corrected propagator

*
In the next chapter we shall consider the problem of electron scattering
from metalse
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for the plasmon then becomes

DL, w) = : (5.8)
¥ 2-0%@ - n, (@w)
S

where

(q) (1)
ﬂI’ (q’ M)) = (2“)3 QI‘ ( P (509)

s s
and the condition for the pole of the propagator D§(3;<x3) is identical
to equation 5.1 in the approximation considered here. This serves as a

check on the internal consistency of our formalism.

Be Plasmon Damping
The imaginary part of Ji‘l(Q)’ which is one half the level
width, can also be computed from equation 5.3 However, the calculation
of Ty (q) for g<gq . is much more difficult than the calculation of the
lowest order energy shift () l(q). As we point out invAppendix Ay the
amplitude Qél)(q}.flo) has a zero imaginery part to order r_, if q < qg

8
This is because the plasmon cannot decay into a single pair if ¢q < q, SO

we must go te order r§ or higher in the amplitude Qﬁ1)(qs Q o)’ where

there are intermediate states of tﬁo or more pairse. Thﬁs to compute the
imaginary part of [Qr (s £ o) - Qo(q’ Q 0)] exactly to order r§

we mst calculate the iowest order contribution from the amplitude

Q£2)(Qs !l'o) which is the sum of diagrams (d) to (f) in figure 9, These
di:grams have two pair intermediate states and therefore contribute to the

lovest order ri in the imaginary part. The analytic expression for



Q(Z)(qggl 0) is very complicated so we will proceed to evaluate P!(q)

Ts

by an equivalent but more direct methode

In Appendix B we prove that the imaginary part of wW at the
pole of the physical propagator is equal to one half (M) times the total
probability of transition from the perturbed state, which is represented
by the propagator, to all other perturbed states of (nearly) the same
energy. This identification is valid only if T'Jg << 1, which is the
requirement that the state be well defined. To lowest order in Ty this
transition probability is the same as the transition probability to all
unperturbed states with the same energy as the unperturbed energy of the
initial state. Thus we can compute Fl(q) by calculating the transition
probability fbi’the lowest order process by which the plasmon can decaye.

The lowest order process involving the plasmon-electron coupling
is single pair production by a plasmon. As we have seen, energy can be
congerved in this process only if q > 9, and in this case the plasmon
is absorbed in thg%cnﬁiﬁuﬁgéf single pair states. Thus the plasmon is not
even an appraximaéely indeéendent mode for q > q [26 1 [¢ 1o For
g < q, this decay mode does not exist for the free electron gas; in the
pair approximation the plasmon is a stationary state for these momenta.
For the electron densities found inmetals higher order interactions are
important and the plasmon can decay into two or more pairs for q < 9ge
Double pair production is the lowest.arder process whereby the plasmon
can dissipate its energy.

Two diagrams for this process are shown in figure 10. They
represent two indistinguishable alternatives for the production of two
pairs by an initial plasmono' Besides these two diagrams there are six more

with the final electrons and holes interchanged in all possible permutations.



Since we are dealing with Fermions, interchanging electrons alone or
holes alone gives a minus sign while interchanging both holes and both
electrons gives a plus sign. (These signs, of course, follow from the
S=matrix decomposition by Wick's theorem.)

The transition probability per unit time TI’(q) for this process

is given by the well-=known formula

Mq) = Ll > |< 2 pairs|M|1 plasmon >§2 $ @, +5, =B =5, - a)
2T pinal 2 e T
states

8 [% -(p’i + pﬁ - pf - p:) - 2 (a)] (5.10)

where the matrix M is related to S by the equation

s-1= 8@, -p) 8 Gy ~u) ¥ (5.11)

In this equation Pig wi and B Py Wf are the initial and final total

momenta and energies. The sum over final states is explicitly,

3 fc13p1 /d3p2 ]d3p3 fd p4 (5.12)

final % 2 ‘
states p1 <1 >1 3 4

where the sum over spin states is included. We can easily calculate the

matrix element from the rules to get-

< 2 pairs|M|1 plasmon > = (2?:)-7/2 1
gp(q) 4uar_ i (5.13)

\/2_Q quj
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X )(X ) . (X )(X ) o - )(X -
: b2 o,y - 5 bl o®,F,) - = ZXB 6(F;47,)
(P4~ P.) (P, = By) (Pz —PB)

X XX
+£.4_zi_iLC(3,P)
®, - 3,

where

C(F,oF,) = 85y + 3 wipy) + O (@) + 8 (F, = 3, wlpy) - (a)

= L - L (5.14)
Qo =% Qo * 82
with A -12+ B =1g%-3.8.. since Q(a) > 8,
1q q q 19 =54 =qehge q s 2q
if g < q,s We can obtain the expansion
L. @ -B) o @) - @)
C(P.i,Pz) = 5 4 S + S  (5.15)
{ P ﬂ'P ﬂ‘P

-3/2

The factors of (2w) arise from (2u) for each ingoing or
oubgoing line, (211)“[’ for both the internal electron-=hole line and the
Coulomb line, and (21:)4 from the delta functions at each vertex. The
other factors follow from the rules on pages 17 and 70 o All eight in-
digtinguishable diagrams are ineluded in the expression abovee. |

In the expression above we have used the bare Coulomb interaction
sinee conservation of momentum and energy prohibits zero momentum trans-—

fers in this interaction. This is just because for q < q, the plasmon

cannot conserve energy and momentum in single pair productione Thus only
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short range collisions between electrons contribute to plasmon decay in
agreement with arguments made by Bohm and Pines [6 ] [27]. The inclusion
of polarization effects in this interaction will lead to higher order terms
in ry which we will neglecte

Fortunately, for high densities we do not have tc evaluate T
exactly since the "bare” plasmons are distinct only for small values of
q < q,e Thus we will evaluate equation 5.10 only to lowest order in q?e

To do this we will use the expansion in equation 5.15 which is
valid only if {2 (q)/(g q +q) < 1s Our results then will not be valid
for values of q mnear the cut-off Qe First, we integrate out the
momentum conserving delta functions and introduce a vector variable i
and define P, = ?’1 +% and B L= ?3 - X + 3. With these substitutions
it is easily seen that the bracketed term in equation 5.13 is proportional

to qz. If we also replace 3 by B, we arrive at the expression
3 3

23 0,

r(q) =+ 820 &F a3 & 2 + Be (B P)«n)
ORI [G [ 20 B wOEay T,
§§1+§§>1 !P3+kv,>’!

4 (X )(X ) - o o
v 5 1= 2(30)% - & (@8 @B]
Qy k Qp
(’Xj )( E - > m e> = 2 '
D ZZ N oGRR -2 GRGERI| 6.

k QAp

where §.= k + ?ﬁ + ?ég If we square the brackets, carri out the spin
summations, and make use of the equivalence of kK and &k to combine

terms, the integrand becomes a difference of two terms. We can immediately
carry out the integrations over x = (gek) and the azimuthal angle 30 of q

measured about fe
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F(q)=qzﬂ3(§?alé52/ /dpg fdp3 5>(1~':°1:vc -,
k11
Pt Pyl
|P3+k§>1 [93+k!>1

2 n

—-1: é&éﬂ m m 2 e B ‘_} 2 L k ¢ @

2! {15 T 07 (p1 (Pg k)] = terms of the form (ﬁ;)' (5.17)
P

This expression for I’(g) is of the form ( 3 i’(ﬂp) where
n @1/ 20 Higher order ra.dia‘bive corrections to two pair decay yield
lowest order terms proportional to (2 153 and three pair decay gives terms
proportional to 0 g. Since we are neglecting these higher order processes
we will neglect terms in the expansion of f£{Q p) of order O ; and
higher. This follows our general calculational procedure as discussed
at the start ofipark: Il

The integrals over P4 and Py which are complicated by the
Pauli Prineciple restrictions can be carried out according to a method
outlined in appendix C. These integrals can be evaluated to terms pro-
portional to Q ° From the results in equations C14 and C15 we see that
the first term in brackets contributes terms of order 1 while the second
or "exchange" term contributes terms of order (L ; (1ee0 rs). Since we
are negleeting terms of order (L ; and higher so we will drop the

exchange term, Thus

2

ra) =da ] &2 2/ 5 2+ 555 e
Q
P
ulémﬁuw(n ) + 0( 02)] (5.18)
15 9_2 p? P °

P
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where 2(£2 ,k) and W({QL,k) are given by equations Clh and Cl5 to first
order in S}. . Finally, the integration over k can be carried out

and we find

f;l)(q),: qgflg %gl- [70 - b 1n2 + LA +~o(§l§)} ) (5.19)

[

This contribution to the level width 1s exact to lowest order in g
and to terms of order,fl;p.
Now the plasmon can also decay by exciting a pair plus
another plasmon. The dilagram for this process is also shown in
. . 2 L
figure 10. This contribution is of higher order in qc (i.e. q ) since
for small values of g the energy availeble to produce another plasmon is
R Iy
just at threshold. #e - compute fj;§q) exactly to terms of order g .

For this process we find, by steps similar to those leading to eguation

5.16,

r 1 qi (@) ]f3 j‘3 gi ()
(2)(a) = em> 2@ B A A BTN €Y

p <L
{éz +3 -32] >1 (5.20)

“@,3, 419 - k)S[ %) B, ﬁf‘) +02 (k) -82 J(a)]

SR 2 > ~ o .
where C (pl, pg) is again given by equation 5.15. This expression
is easily evaluated for swmall g, where we can write (see eguation

L.17)
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6 2
Qo(q)=Qp4-~5~ﬁ~——q F oeee .
P
It is easily seen frowm the kinematics that for small g, only small
- =2 . . .
values of (q - K l can contribute to the integrals. In this case

the integration is easily carried out to give

Moy =25 o'+ o, Q2) . (5.21)
This simple result, being proportional UJ(ZD is probably the exact
contribution to the qu term to lowest order in Ty Other contributions
this order would come from the terms of order qn in [—‘(l)(q), and
perhaps from other higher order decay processes. It appears that these
contributions would be of higher order in fl o’ than the expression
5.21 for P(zj (a).

Combining equations 5,17 and 5.21 we then have the followh\g
expression for the plasmon level width rﬂ(q), to lowest orders in
()_, and qe.

B

fﬂ(q) = 9.30 qulg 1+ 0.785£2p] + 2.83 qf(lp + .. J(5.22)

The lifetime of the plasmon is 1/[" (in our units) which follows from
the Uncertailnty Principle. Very long wavelength plasmons have a
very long lifetime. As the wavelength decreases (g increases) the
level width increases until the condition, r‘(q)/fl(q) <L 1, is no

longer satisfied. For a given value of Ty this places a restriction



on the range of wmomenta g for which the plaswon mode is well defined.
At electron densities corresponding to those in actual metals this
criterion limits g to values less than the cut off 4 found in the
palr approximation. We shall defer a discussion of this to the next
chapter where we will investigate the line shape in the characteristic

energy loss experiments,
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VI EKCITATEOE I THE MEDIUM

ELECTRON SCATTERING

In this chapter we will discuss the application of our methods
to the problem of electron scattering from a degenerate electron gas.
Experiments which measure the characteristic energy loss of fast electrons
seattered from metal foils provide an excellent means of studying the
excitations of the gas of conduction electrons in metals. With our formal-
ism we can discuss this problem completely from a quanbum mechanical stand-
point., We will derive some of the basic formulas for the transition
probabilities for this process.

In the lowest order approximation, the pair approximation,; our
results agree, apart from certain small exchange corrections, with the
results of several authors [26] [30] [ ] who have used semi-classical
or one electron quantum mechanical methods. In particular, Ferrell(26)
using a self consistent single particle approach, has given the most
complete calculation. His method and results can be shown to be completely
equivalent to ours in the pair approximation. For this reason, and for
economy of space and time, we will derive the general equations of our
method and refer to Ferrell's work for the detailed results in the pair

approximation,*

An investigation of this problem in the pair approximation in the high
density limit has also been carried out independently by Gell=iann
and R. Latter and W. Karzas of the Rand Corporation (private
communication)e
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We shall consider in more detail the effect of exchange correc=
tions to the results of the pair approximation., In particular, we find
that the plasmon cut—off ( q, in pair approximation) is no longer sharp
when exchange corrections to plasmon dispersion are included. We conclude
from this preliminary investigation that the experimentally determined cute
off can depend strongly on the particular experimental details.

For a review of the theoretical and experimental work on this
subject we refer the reader to a review article by Pines [27),

Our formalism must be modified somewhat to include external

electrons. This is done by adding to our original Hamiltonian a tern

' 2
_ + 2nfe 1
H = z w(pe) a_ a, + __.é.., Eq P P-gex ;2- o1

e s s s
Pe?®e Pe2Ss Pe?%
+ . . s
where a and. a_ are creation and destruction operators for an
s s
Pg?®g Pe*%e

external electron ;e 8, e }’qe is the Fourier component of the density

operator for external electrons

and Pq is the charge density operator for the electron gas. The first
term in equation 6.1 is ‘thekinetic energy of the external particles while
the second term is their energy of interaction with the electron gas.

The states @: of the non=interacting syste‘sa‘are states of
various numbers of external electrons and excited pairs from the Fermi
ses. The ground state @i is the state with no external electrons or
excited pairs. The one electron state is a physically realizable state

of this extended system.
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Since the added interaction term is of essentially the same form
as the original interaction Hamiltonian it follows that the expansion of
the S matrix for the new Hamiltonian will lead to the same types of
Feymman diagrams and rules as discussed in Chapter I, with the exception
that there are no incident hole lines. Note that a line representing an
incident electron can jog backward in time since it can undergo exchange
interactions with the electrons in the Fermi sea.

To calculate the transition probability for electron scattering
by the medium we will make use of the dispersion relation, equation 3.24

for the one electron state.

As Transition Probabilities for Electron Seabbtering From Self Energy
Caleulation

In Chapter III we discussed the congbruction of the physical
propagator for an electron moving bthrough the medium of the electron gas.
We pointed oub that the physical one electron state is nol an eigenstate
of the interacting system since (except for momenta near the Fermi momenta.)
there is a finite probability for the electron to be scattered by the
medivm. The possibility of decay of the one electron state manifests
itself in the imaginary part, /2 = Im ﬁ(po), of- the solution to the
dispersion relation, equation 3.24. In Appendix B we prove that this
imaginary part is indeed the total probability per unit time of transition
from the one electron state. This definition of g probability of transition
per second is only an approximate one which is valid if the lifetimes of

the states involved are large.
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The decay probability is easily understood in terms of the Feynman
graphs for the proper self energy parts. All of these graphs lead from
a one electron state to an intermediate state of one elsctron (or hole)
and variocus numbers of lines representing the excitation of the medium.

If any of these intermediate states lie on the energy shell of the original
electron then the electron can decay into these states. The transition
probability is the absolubte square of an amplitude, §<fls[i>§2 =

<i|s|f> <f|s|i> and thus the self energy graphs lead from the inter-
mediate state f back to the initial state 1. By culting through the
proper self energy graphs in all possible intermediate states we can deduce
from the graphs which transition matrix elements are involved.

Let us examine some of the lowest order graphs. If we cubt the
simplest graph, a in figure 11 , we see thalt the only transition involved
is to a state of one electron and one excitation of the mediun, Note that
the time orderings must be distingulshed in these considerations; the
other possible time ordering (graph b) of this lowest order process cannot
contribute to the transition probability since energy cannot be conserved.
Now the excitation of the medium, as we have seen, includes the plasmon
mode and states of various numbers of pairs. Since the electrons which
are excited from the medium are indistinguishable from the incident electron
we expect exchange diagrans of the same order. To find these consider the
graphs ¢ and ¢ which involve two excitations of the medivm,.

As shown in figure 11 5 we can cut these graphs'in a symmetrical

way to get a two excitation intermediate state or, as in the time order



of graph e, to get a gingle pair intermediate state. The latler gives an
exchange contribution to the single excitation process. (The corresponding
time order of the uncrossed diagram d does not conserve energy.) There

are also intermediste states which arise from unsymmetrical culs which
correspond to eross terms in the square of the transition amplitude. The
reader can conbinue these arguments to include higher order diagrams which
will involve mulbtiple excitation of the medium and exchange contributions
to processes involving smaller numbers of excitations. For example graph
isem exchange contribution to the two pair intermediate state for the single
excitation process. It arises from a self energy graph with three over=-
lapping excitation lines.

If the respective lifetimes are long we expect approximate
conservation of energy for the plasmon and pair components of the exciba-
tions. Thus for small momentum transfers the multiple plasmon processes
will be separated in energy, by approximstely, units of (@] 5° The

X
contimum processes will extend over the whole spectrum so that we cannot
distinguish between the contributions from various multiple excitationse.
¥We will only concern ourselves here with the single excitation processe
Thus we must consider graphs a, e, £ and in general all exchange process
for the one excitatlion case. We will, of course; be calculating only te
lowest orders in Ty for which we will need only the lowest order
gxchange processese.

In the pair approximation we could calculate the S matrix
element for the transition directly using the amplitudes for emission and
abgorption of plasmons and modified pairs which we discussed in the last
chapter. However, in high approximations where the plasmon has a finite

lifetime these rules cannot be usedes
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B. Caleculation of Transition Probabilities for Single Excitation.
We will now apply the ideas developed in section A to the

calculation of the transitlion probability from the one electron state

{ Sogs} to a state of one slectron plus a single excitation of the

medivm, The contribution from graph a is

'j Z(i ) . .
- = -1 £
5T, () =In (b, swlp )) (6.3)
e-etp
(1)
where Z is given by equation 313 and was discussed in Chapter IIl.

(Here we have used the first iteration for the sclution of equation 3.24.)

Writing this explicitly

1 _ dy . e -
2 Tometp o) =+ = -3 Iﬂ[d q j ;;';{ Splp, = a5 wlo ) = w) Prs(q,w)

(6e4)
© g > 2
or, since ; 22.::1 (p - gy w(po) - w) 1/q is real, we can subtract
@ 5 ‘
this to geb
or & dwr 2 -
e -'ﬂ—ﬂ L~ o v
e-?e"fp (D ) ( ®) Llf /oo 2L S‘E‘(po ds w(po) w)
Qrs (qsw)
[ Z
ar . (6e5)

2
¢ +32q (aw)
(3

We can rotate the path of integration counter clockwise to the imaginary w
axis, since Q, (q.w) = (1/ [w [) for lerge |w|s and we enclose only the
) % -
contribution from the poles of the electron component of S, (p Oﬂqgw(p O}mw}
: T

- - -
for lp o~ qi < P4 (i.e. only these states can conserve energy). Since



Q, {gew) = Q, (gs=w) it is easily seen that the integral along the
8 8

imaginary axis is real. Thus we are left with

or 2 3 "‘T (as0) .
Gy =2 m[ L —o N5, =3l - 1) (6.0)
eeip " T g+ —5 @ (a)
S
3 Im Qp (Cls )
= )\[d = (b "q§~1, (6.6a)
o [z, (a:8) |2 7Z
S
Ty [ & 1 > )
- (;-é-%)j IS el (LR (6+6b)

i - % G; - 5)2 2= e 1 q2 + 55‘ 3 and & > 0. From equation

=1
where A = 5 P o >

6.6a, in which K. (gs4) is the generalized dielectric constant defined
8
in Chapter II, we see that this is exactly the same expression for the
probability of transition per unit time as that derived by Hubbard using
the semi-classical dielectric theorye* [To converbtequation 6.4 to ordinary
units we must multiply by (z/azrz) (eAm/ﬁz).] However we see from our
quantum mechanical treatment that this equation is not exact, although it
turns oubt to be a very good approximation for many applications. Multiple
excitations, which include multiple plasmon excitations, and exchange
effects are neglected entirely by the classical theory. Clearly, if we
are interested in a particular momentum transfer ¢, the transition

probability Té(po) is obtained by dropping the integration over d3q

in equation (6.4 ).

Yo

The semi-classical theory can be shown %o be equivalent to our pair
approximation.
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Before discussing equations 6.4 in more detail let us derive
the lowest order exchange correction for the one execitation process. From

our discussion we see that this is

o (2x)
1o ) =m Z (g (o)) (6.7)

1%
e-e+p 8

- (2)
where Z is the amplitude for the proper self energy process in

r
<]

figure 6b . GEvaluating this according to the rules we have

1 o 3 [ “ L dy
2T ) ( j 4 jd 9 2L f 2l
e-eip
SFG;O - ?q; W(po) - wj) Prs(q1 ,wi) (6.8)
Sp (poﬂqj—ng w(po)—wrwz) Pr (qz’“’b)

8

- 5 , \
SpPomdys o) = wy)

To simplify this we note that the exchange correction which we are after

comes from the time ordering in figure llgso we may replace the propagators
in equation 6.8 by the propagators for electrons or holes according to the
way they appear in this diagram. The integrations over Wy and W, can

then be carried out to give for a particular value of ¢

>

i ar 2 5 8GLPE+dp -a) ’
-JH;X (p 90>( ) dp'i > =2 -
eptp py<1 e q ézirs(q,mlizrs(q,zs)!

|5, *al>1

(69)
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where ¢ = Py +p,
To see in detall why this is an exchange correction to FO
e~ etp
let us write equation 6.6b in the pair approximation whereonly single
pair states are coupled into the excitation of the continuum. Using

equation 4«18 we have (omitting the integral over q)

o [ 8(- q" + - 5)
v, (ga) = (=5 "%fﬁ? } qu (610)
e-etp w 4 py<1 lgr (%sﬂ)l
|p,+al>1 i
Q’rs 0 1 \ /. . _
* ﬁz) 2Q ) Brs(qs(?) g(‘l‘ - Q) 7<(qc

In the pair approximation

ar ar
izs:rs(q,a)iz = (1+=2 8 (b)) + (5Em q (a:8))% (6.11)

wq wq
Hote that equabions 0.10 and 6.11 could alsoc have been derived using the
rules for excitation of the medium in equations 4.20 to 4.2k
If we use the definitions in eguations 4.20 and 4.22 for the

plasmon and modified pair couplings we can write equations 6.9 and 6,10 as

3
r, (p)':*l-‘g 4R, g(pisq) 8(—-61'%'“-*&) (6.12)
e~e-tp (2w) py<1
fp1+ql>?

1 2 8(& -Q0(q)) 7( (C}Lc“"
(2n)? % 2Q) (o)
o q
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(b, = -1 f « o, 6o00) loyed) O G PH35,0)u(6013)

5
e~etp (2m)

ipﬁq}ﬂ

In this form it is clear that equation 6.13 is an exchange
correction to the first term in 6.12. It accounts for the fact that the
incident electron and the electron excited in the modified pair are

ndistinguishable particles. Furthermore it is interesting to note that
the second tern in equation 6.12, which is the plasmon contribution, has
no corresponding exchange correction; it is easily verified that equation

6.9 contains no delta function term at A = f) (¢)s Hence the plasmon

behaves exactly like a boson.

C. Stooping Power of an Electron Gas
These transition probabilities can be applied to several

problems. One is a problem which has concerned physicists for many yearss
the stopping power of an electron gas. It is well known that in such
problems the form of the stopping power is given by the Bethe formula [81)
[27)  irrespective of the details of the interaction because of the
existonce of sum rules. Such a sum rule is known to exist for the problem
at hand [31 1 [27 1. They take on very simple forms in our formalism,

namel. in terms of the generaliszed dielectric constant
g =

Im f dw w E{j (gew) = = In f dw w X (qw) = = % ) i’ (6614)
) s 0 s £

[+¢]



We prove this relation in Appendix E. In this equation X, (qsw) is

s
the exact dielectric constant, corrected to all orders.
Thus, 1f only the transition probability PO is taken into

e~

account we can prove by the use of this sum rule that the stopping power

is given by the usual Bethe formula. (Details of such a calculation can
be found for example in Mott and lMassey [ 32 ].) However, exchange effects
and multiple exeitation of plasmons are not taken into account. These
effects are probably small. However, it lies beyond our present scope to

congider them here in a quantitative manner.

D. Electron Scattering; Plasmon Cut-=0ff

Another application of equations 6.6 and 6.9 is the calculation
of the angular distributions of fast electrons scabitered through small
angles by a metal foil. These are the so called characteristic energy loss
experiments. Ferrell has analyzed bthis problem by methods equivalent to
ours in the pair approximation. For very fast incident electrons only
emall momentum transfers g are allowed by energy conservation. In this

-2 2

case the exchange Coulomb denominator q = (po +-p§ +q)° is always
large (p1 < 1) so that the exchange contribubion is small and we will
(as did Ferrell) neglect it. The angle of scatlering essentially determines
the momentum transfer q if p_ is large (po >> q)e

We will summarize Ferrell's results. For q <<q, (6 << @c}
the plasmon contribution accounts for all of the sum rule so that the

intensity of electrons scattered by exciting the conbtinmmm is very weake



wgsw

The plasmon combinues to account for the lionfts share of the sum rule
except for ¢ very near A vhere the plasmon coupling (eqaationi4,l1)
undergoes a sudden decrease to become zero at g = Ay e The conbinuum
contributicon, of courses correspondingly increases in intensity. Tor

Q> aq, the plasmon contribution is not distinguishable from the conbinuume.
Thus Ferrell finds that the experimentally observed cut off would be
relatively sharp and would correspond very nearly to g (equation 4.18)

Note that in the pair approximation the plasmon continues to contribute

In higher order approximabtlons we must consider two effectis:

1) iwltiple pair states are coupled into the excitation of the medium

2 e

which shifts the plasmon energy and gives the plasmon a finite lifetime,
i.e. the plasmon line is broadened. The conbtinuum is also modified by the
multinle pair contribubion so that it extends over the whole energy range.
2) Multiple excitations of the medium, which include multiple plasmon
exeitations, also conbribute to higher orders in rye The various plasmon
lines are separated in energy by units of about j),D. We will fix our
attention on the energy region near the first plasmon line.

Ls a preliminary estimate of the effect of these corrections we
will consider the coupling of the multiple pair continuum only in energy
reglon near the plasmon pole whereits effect is to broaden the plasmonline.
For the energy region away from the plasmon pole we will continue to use

the pair approximation., Thus we write
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1 _ 1 12
I S or_ = Tm A ars for & < 5 q + g
q” + =5 Q. (a:n) q” + == q (as0)
111 = K
_ 1 N
= TIm Ty for & > 5 4 +aq,
¢+ =5 q, (qs)
u 8
(6.15)
In the neighborhood of the plasmon energy g)(q) = A
we can write (see equation 4—13_)
2, e 2 A2 2 2,2 ,
Relq +=—=Q, (q,wg—“-‘ [w* = ()] B.. (gs0) + 0w -Q°)", (6.16)
TS 8

Hence where this expansion is valid we can write for the plasmon conbri-

bution
- 1 - /2 1 1 .
2 Ty b =0@P+1r° B (0,0 20 ()
g + 5= Q, (g,0) A r
ki) a8

(6.17)
In the 1imit as I = 0 we see that this term reduces to the delta function
in the pair approximation. When the expansion above is valid the plasmon
contribution has the form of a broadened intensity distribution of half
width T'(q)/2.

For equation 6.16 to be valid we must have

2

Re—%5 (q»w) l (6.18)
(w2 ”QZ(C{)) d(d ) << 1 °
' ‘Red( > Q‘Ts (QSW)j

w=() {q)
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- . 2 .
If q is near q s (a/a(w™)) Qrs(q,w)lw:‘fl(q) increases very rapidly

(see equation 4Z&1) so that this condition will be satisfied only for
very small values of {wz - f).g(q}]s

The effect of this approximation then for wvalues of ¢ > a,
is to leave the comtinuum term in egquation 6.10 unaffected and to replace
the plasmon delta function by the broadened distribution. This assumes
that the effect of the mulbtiple pair continuum is much weaker than the one
pair continuum so that its principal effect is to spread out the other—
wise singular plasmon delta function. This approximation has the advantag
that the sum rule arguments made for the pair approximation still apply
here since the integrated plasmon intensity is the same in both cases.

Now if we use the result derived in Chapter ¥V for T'(q)
(equation 5.22) we see that the width of the plasmon line increases as g
increases. For sufficiently large values of Ty the plasmon can become
so broadened as to be indistinguishable from the contimmm, for values of
g < Qe A precise definition of this effective cut off a4, is not possible.
However we may ask, for example, for the value of g at which the half

width of the plasmon line becomes equal to the plasmon-continuum energy

difference, That is for the solution 4, of
1 2
Ir=0w6)-1d-q . (6.19)

If we use equabtions%,l2and 4,15 for () (a) (this includes the exchange

correction) and equations.22for T(g) we find that for r =2
s

94 = 0.33 & (6.20)

We egtimate the principal errcr in this to be due to our neglect of
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I . 2, . .
higher order terms in q in our expression for rq(q). If these

terms have the same effect as the corresponding terms in the expression
for ;(2(q) we estimate that the error is no more than 10 percent.
This value of Uy is much smaller than the value q, = 0.73 found by
Ferrell for ry = 2. Because of this the condition 6.18 is satisfied for
|w - fl(qm)‘Aafﬂ(qm) and our approximations seem to be valid.

However, for this value of Uy the plasmon still accounts for
nearly all of the sum rule so that it would still be distinct. At

g = 0.6 the plasmon line is still broader and accounts for a little more

than half of the sum rule so that we can safely say that
0.k < q, < 0.6 ,

These broad limits on the effective cut off emphasize the fact that the
cut off is not sharp at physical densities. In any case it is certainly
lower than 9 = 0.73 for r, = 2. This might account for the fact that
different investigators have found rather different experimental values
for qm.

For example, Watanabe [29] has measured the cut off angle
for the scattering of 25 kev electrons from aluminum (rs = 2.07). He
finds that the plaswmon line fadgs into the continuum at 15 - 18 milli-
radians. The cut-off angleé}& calculated from q, = G.73 in this case
is 16.0 milliradians. G. Meyer [33] finds that Bc is 11.1 - 14.9
milliradians for 30 kev electrons scattered from aluminum. For 30 kev

electronS/E}C = 14.6 milliradians. In both cases the uncertainties

in the location of the cut-off are compatible with the line broadening
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discussed above; Precise measurements of‘rﬁ as a function of g have
not been made.

We éaant, of course, expect precision agreement of this
theory with experiment since we have neglected the effect of the posi-
tive lon lattice. In addition to the "second order” broadening effects
studied in Chapter V, namely two pair decay and pair-plasmon decay, a
plasmon in a metal can decay into a single pair which undergoes a
band~band transition. Thus in actual metals the single pair continuum
is no longer distinct from the plasmén line as is the case in a free
electron gas for g < A The damping due to this effect can be related
to the optical constants n and k for the metal,* which however are
not available experimentally in the necessary frequency range.

The experiments listed in the review by Pines [27] show that
for Al , for example, the broadening of the plasmon line até9~ = 0 (ng = 0),
where [ﬂ (g) = 0, appears no greater than the width observed for elec-
trons which have suffered no energy loss. Hence, the one pair decay
process does not appear to be strong here and we expect that the "second
order" decay modes are, indeed, primarily responsible for the broadening
for values of g near the cut-off. In any case, since the various con-
tributions to the level widths are additive, the results obtained above
represent a lower liwmit to the level width and hence'an upper limit to
the effective cut-off.

The results of this Chapter and the previous one show that for
physical electron densities the pair approximation gives an adequate repre-
sentation of the plasmon only for values of q<§ch. For shorter wave-
lengths exchange effects become ilmportant; especlally the damping associ-

ated with these effects.

*see Wolff Es)
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E. DAMPING OF SINGLE PARTICLE STATES

Another important application of the equations derived in
section B is for values of Pdﬁv ls %hat is, for one particle states
excited very near the Ferml surface. The resulting expression for

rﬁ(PO) can then be used to calculate the total transition probability
for the scattering of a low energy incident electron or the level width
(in appropriate units) of a low excited state, of the closed system
of an electron gas, consisting of several electron-hole pairs. We
proved in Chapter III and Appendix B that the level width of a state
of several electrons and holes is the sum of the individual particle
level widths, provided the nuwber of excited particles is small com-
pared to N.

Instead of evaluating rﬂ(po) directly from equation 6.3 we
will first evaluate Im ;E:(po,a» since its properties are of interest,
especially in Appendix B. We can evaluate Im ;E:(po,ab) by exactly

the same steps as leading to equations 6.6 and we find

——51) or © 3. Imar (q,A E)
- 1 d g’
w ), (W) = - 56 fq?% < (@aT)
« A NUB. -l - Taw) -xa-]3, -3 ) N-AE)
{ o . 0

(6.20)

where AE = W -W(P, +7q). Note that if W= W(p) the second term
in this equation only gives a contribution &f p0411. This term gives

the level width of the one hole state.
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This integral is very simply evaluated in the pailr approxi-
mation if AE is small. We will restrict ourselves to values oféUN%
so that only transitionswith a small excitation energy*l&ﬂ)are allowed
by the restrictions on the integrand in equation 6.20. If we use
equation 1.44 for ImQO, the integratioh over the solid angles of the

vector g 1is simple and we find

(1) - L2
2 2 2 1. 1
w2 (o) = - 2 (o) YRR CEUR
2 N
dq ZIN e -
[ 2asae®) 5 @w (6.21)
o ¢ s
+ higher order terms in r_ and w - % ) .

To evaluate this to lowest order in r, we can neglect the terms of

2 ) . ) .
0(q”) indicated above and we find

'm(l) e 2 M3r 1/2 2 -
w2 (o) - - L (=) -5 Ww-B G -w.
(6.22)
(1)

The next order terus in r, are found by evaluating Im:E:
more exactly to retain terms of this order and by evaluating the exchange

(2x)

contribution Imjz; to lowest order in Ty Equation 6.22 is exact

in the limit as rs“9 0. TFor physical electron densities, however, the
higher order corrections are ilmportant.

The single particle level width rﬁ(p) is given by

2’ Im }i (p,W(p) )[ (see equation 3.21), where W(p) is the corrected
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single particle energy given by equation 3.20. To lowest order in

rog Wip) = W (p) = % p%,so that equation 6.22 predicts that f1(p)a(p—l)2
or that particles excited very near the Fermi surface have a vanishingly
small level width. This is generally true even if correcticns to rﬂ(p)
are taken into account. In this case we must be counsistent and also
take into account self energy corrections in the energies of the final

state. This means that S_ in equation 6.24 must be replaced by 8., the

F ¥’
corrected propagator.

To evaluate the expressions in this case we must also satisfy
the condition rq(p) T &L 1 for all the one electron states involved.
Only if this restriction i1s satisfied is the concept of a transition
probability proportional to T valid (see Appendix B.) Now in the
adiabatic formalism we are using, the quantity L/E measures the time
in which the interaction is "turned on." In the limit T —> 0D,

& > 0 we have T3, 1/€ . Thus the condition [M(p) <<€ wmust

be satisfied. This is equlvalent to setting Im ZRp,LU) equal to zero
in all the one particle propagators occurring in Im Zf(p,UO) and

then taking the limit as &= 0. It is easy to see from the discussion
of Chapter IIT that in this limiting process S} is of the same form

as S, except that W(p) is replaced by W(p), the corrected energy.
Therefore equation 6.22 corrected for self energy effects can immedi-~
ately be written as

o 1/2

2
T Z(po,cu) = - /;'92 ( ﬁs) gig (W- (1) )* [7(((.0 -i(1))

-Q(Wl) -w) 1, (6.23)
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and the single particle level width is

M) = 2] 1 (e, W) |

§ 1/2
TC& L“Oﬂf‘ oAy .
= =5 (=) ) - (1) )T 2 (6.24)
32p m P
1/2
2 homr o :
- 1L 8 2 (a2 L
- 32 ( r,. ) (P"l) dp)p;1 + O(rs) <p 1) ) I

]

This expression is exact as r -~ 0 provided (p - 1)° is swall.

Although this formula is exact only for small values of Ty
the vanishing of "kp) as (p - 1)2 in the limit as p->1 is a general
proeperty of many Fermion systems. Hugenheltz [ 34] has demonstrated
this result for the nuclear mediuvm. This results from the Exclusion
Principle which causes the density of final states for the decay of
an electron or hole vanishes as the momenta of these particles approache:
the Fermi momentum. This was discussed in Chapter III.

Another general property of Im E:(p,oo) is

<0 w> W(1)

Tn > (p,w ) (6.25)
PO w< w1y .

This is clearly the case in equation 6.23. It is also apparently true

in general although we have not attempted a general proof. This

*
This result has been independently derived in lowest order by
Ferrell and Quinn (private communication).
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property is a direct result of the electron-hole formalism in which
electrons propagate forward in time and holes propagate backward
in time. If this were not true the decay factors exp —rﬁt could

be lncreasing exponentials which would be nonsense.
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VIT. LOW TEMPERATURE SPECIFIC HEAT OF A DEGENERATE ELECTRON GAS

In this chapter we will apply the general perturbation
methods discussed in Chapter III to a calculation of the efféct of the
electron interactions on the specific heat of an electron gas at low
temperatures. The lowest order corrections were first calculated
correctly by Gell-Mann [2]. His result is exact in the limit as r> 0.
However, to apply the theory to the densities found in actual wetals
(r52,1.8) higher oder corrections are necessary to determine the con-
vergence of the series,

We present there the calculation of the next term in the
series which is considerably more complicated than the lowest order
correction. Our result shows that the specific heat is enhanced from
the value for non-interacting electrons in the region of highest physi-
cal densities. The change of sign apparent in the calculation of
Gell-Mann at rsn-O,B still occurs when higher order corrections are
included but the origin of the actual sign change 1s different.

To calculate the specific heat we will use the independent
particle model formulated in Chapter ITI (and Appendix B). This
model is valid for the low excited étates where the number of excited
particles is small compared with N. Fortunately, these independent
particle states are asyuptotically stationary if the particles have
momenta near the Fermi momentum. Thus we expect that the results
of Fermi-Dirac statistics apply when only the lowest states are lum-

portant, i.e. at low temperatures. In this case the specific heat
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(3(Tlrs) is proportional to the density of states at the edge of
the Fermi sea which in turn is proportional to [(dW/dp) p = l]-l,
where W(p) is the single particle energy. In a forthcoming paper
we will discuss the statistical mechanical problem in terms of the
grand partition function of the system. Here we will show that the
requirement for the ordinary Ferumi-Dirac formula to hold 1s that the
single particle level width fﬁ(p) approach zero as (p - 1)2. In
Chapter VI we showed that this is indeed the case.

The primary importance of this calculation is that the
specific heat is the property of the system for which the higher order
corrections are most easily calculated. From this result we will

gain some guantitative knowledge concerning the convergence of the

Gell-Mann Brueckner type of expansion.



The iteration equations 3.2 73 will be used for the single
particle energies W(p)e. To calculate the specific heat at low tem—
peratures we will use the well=known relation connecting C(‘T,Ys)with

the density of gtates at the edge of the Fermi sea

c(?grsj — 1&2 ™4 ° g 2[(@i T’? . (7.1)

dp ) p=1

We will need the derivatives of the single particle propagators to compube

the derivative of the single particle energy. From equation 1.11 we have

1

u=w (|otg] )+ w(l) + ic

(2 5,64, wrwGED]_ = @) § (3311 |

- 1 1 + 23] — 1 .
(ww(|o+g] )+u(1) - 1g)

wu(|ntgl) + w(l) - ie i

1
(u - w(!gﬁ-ﬂ) +w(l) + ic

+ (7.2)

v ] ’
/
Since we have set p = 1, (g = ?/P) and because of the delia funcltion,
& (lo+q] = 1) we may set w(|n+gl) = w(1) = 0, in the Aenominator of the
first term. We also note that the second term in brackets is

R

SF(n+q, u + w(l)). Therefore we write

Ty [ Syl + v, = @) S(EA] - 10 @)

3 =
Tie

+ (2ui)

s§(ﬁ+ag u+wl(l) . (7.3)

Similarly, it is easy to show that
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ey [ 5564, w + wi)]

= @D SRR - D § ) + 26D 5k 2@, w (1),

| (7.4)

The first term on the right of equation 7.2 contains the factor
5(?343] - 1) & (u) which restricts this term to transitions n = n+g
on the Fermi surface which reguire no energy. Thig term, which is pro-
portional to qm33 is responsible for the fact that in ordinary pertur—
bation theory (in terms of the bare Coulomb interaction) the expression
for the specific heat is more divergent by one order than the correspond=
ing expression for the correlation energy. The second term in equation
7.3 is the contribution from other transitions to within (EK%EQ < 1)
or without (|o+q] > 1) the Fermi sea. These transitions are less

important since they do not add to the divergence at low momentum

transfers.

1) The contribution to W(p) = wlp) from the self energy process

with one virtual excitation of the medium (see figure 6a) is *

() = 222 ggm(p%w(p)) (1 -1 Mg, wm))
ar
S

Pt

1 3 ® dw - > :
) fd a / oy SF(p+q, w + wip)) P, {qsw)
war, =00 8

ars 3 \/‘de.i I
(- =3 /& )z 5560 vt v) B (aqa)] O(r,)

(7.5)

In this ealculation we can replace Rez(l’,w)by Z(P,w(p))sincehz'% (p-4)7}'
Thus in computing d 2./ dp at p=1 ¢pe imeginary pert of ¥
gives no conbribution. ‘
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where we have multiplied by 2au2 rgz to express the energy in Rydbergs
and we have used equations 3.13 and 3,23 zzg?}(P9W) is the amplitude
for the one virtual excitation self epergy process. (In this chapter we
omit the subscript rss) We have included all terms which are of second
order and lower in the effective interaction since we want to include
all terms of order r:g The term «ij’(?) ZE‘(Q) arises from the

iterative method of solubtion discussed in Chapter ITI. However since

ar Jr 3 & dwj 1
-— Jdq f 2oy w, +wlp)) - =0
on® T, Zm OF * ¥ q2

we can subbract this from Z:’(?) and we f£ind that

X ()(psW(p))—“~(m) de‘:lég fdw S& 3+, wlp) +w,) X
9 Q (qis wy)

q + (Grs/ﬂ ) Qrs(qgwg)

= §
so that Z2a 2 rg Ej(l}{z:(i) is proportional to e It can be shown
that this term contributes terms of order ry to the specific heat. In
fact if we include the contribution from the uncrossed, two virtual
excitabion process (figure 6d) we find a specific heat contribution of

the form rs(a lnrs + K Jo The ‘iteration diagrams and the diagrams

with internal self energy parts should be considered together since certain

cancellations always occur as we pointed out in Chapter III. In the
present case if we considered these processes separately we would find
leading terms proporticnal to r;/z which, in facl, cancel when the

processes are congidered together.
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Thus to order rg we can neglect the term zi (1) in

equation 7.5 and the uncrossed two virtual excitation process as welle
Using equations 7.3 and 7.4 we find that {dw(’)/ap]p=1~ is a sum of
two terms. The first is the contribution from transitions n - 343 from

one point to another on the Ferml surface (p 1)

—»('ﬁ) P =
<dw b=1 = ;f J &q 2 @) &!n-%q) - 1) B, (q,0) . © (7.6a)
]

" oar
8

The second term is bthe contribution from transitions to states not on the

Ferni surface.

m)
oot = @ [ 33 2@, v+ w(1) B, (asv) .
s
(7.6b)
Iet us congider each term separately:
a) Consider first the contribution from equation 7.6b. This arises

from excitations on the surface of the Fermi sphere. If we pub nt = 3439
where n' is a unit vector by virtue of the delta functions, and integrabe

over all directions of the vector n' we get (with x = nen')

(dw(”) _ _2m /'5 x dx

@ PR Yt 2(1 - x) + (ay/R) Q (VA=) 0)
8

S J[A’dz (1 mﬂgé?) ~ . (7.7)
7 ar_ Yo '%+(M§A‘)Qr(N@ s0)
s .

&

This integral clearly diverges logarithmically as ry” 0O, since
QO(O,O) = 4w, The effect of the induced polarization charge is to limit
the range of the Coulomb interaction and mekes the integral finite. If

we define
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s, (72, 0) = q (72, 0) - [q, (0,0) +3q! (0,01, (7.8)
rS TS rS 8

where Qs (gs0) = "ﬂ““m Qr (qs0)s we can write equation 7.7 as

s d(q
(1) 4
'’ I
a dp p=l mar jg dz
(1.~2/2) .
ar ar 3/2
u+wmwmm+ mehw%@
'H S
(7.9)

Writing
(!.I' Ctl”
D, (z) = (1+ «ﬁu Q! (0,0))z + «mw Q. (050) (7.10)

8 S S

we may recast equation 7.9 in the form

(1) ‘ ] = 2/2 1/2
dw _ d iwnwz~§~l dz £Q, ( s0)
) ; - \/ z 3 f D (Z) 5 “

a' dp ‘p=l
S
+ =8 j‘ Uz al2) LA Pl ©(7.11)
RS o o (/2 °
S [z + “"““‘f‘z‘” Qr (z 90)]
T 8

The last term in equation 7.11 is easily seen to contribute

terms of order ry and higher so we will drop ite. UWe can also simplify

\ e} .
the second integral to terms of order Tge Since

aQ, (21/75 o) = % Q;S(O,O) 22 + 0(23?

. . )
we can write to order rs
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AL
a dp p=l or

D (z)
g

r T O

If we consider each part separately we have

4 A
1 = 5/2 1 g1 - 2/2) 1/2
4 dz “5GY =3 j‘ dz AQO(z ,O)+0(rs),

(7.12)

8

4 ar ar ar

1 (1 =2/2)_ 1 { 8 =1 g s =1
dz 14+ ==Q! (0,0) ' [+ —2q (1+—5q )]

mar L Dg&) mar ( i) T ’> on? T T@ T
cr G,I"S
L1 +=5Q ) +—Sq,
1 s i 8.1 2 ;
Ei§ Q (1+ ggﬁ QL)
. I"S . r

if?

“Qrs [2 + ln 2 Qr (0,0)

1+ ~w [3q! (0,0) + 1 Qr (0,0)
S

+ (Q‘ (050) = “ Q. (0 0)) ln 1+ Ofr ) .

2 % (050)

How

Q, (0,0) =4 (0,0) + ¢!V (0,0) + 0(z) .
s

8

Using equations 1.50 and 1.51 and the results of Appendix A for

we see that this is

ars 2
Qrs(ose) = 4ul1 + ~§m] + o(rs}

and from equation 1.45 or 1.46
%(090)2“% *
s

Substituting this into equation (7.13a) we have

(7.13)

(7.13a)

Qﬁé)

s

(7.14)

(7.15)
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4
ﬁlr J~ dz Ll“:"%é%l “”l“ [2 +1n *”“J - L [1 + Z1n gzm] + G(r 3.

8 o Ir
8 (7.16)

Next congsider the second integral in equation 7.12. To

evaluate this we can use equation 1.46 which gives

Qolas0) = 2nl1 + (-— - ~ a) 1n lmwgl] (7.17)
Expanding this and putting gq = z?/2 we have
8q(5,0) = 2 ; G - o) @ (7.18)

80

oo

13 f (1= zgzz s, (21/290) -1 ; 1 {'z 2 1]

JERRA (20 + 1) (20 + 3)

=29010_ _ o0.001 . (7.19)

Adding equations 7.16 and 7.19 we have

(dw“ )

o " o=t 7T

mmm =8 -5 (T R tor ] 4oy,
- 8 T!

(7.20)

The leading terms of order r;3 were Tirst calculated correctly by

Gell=Mann[a],

b) Next consider the firsﬁ term in equation 7.6b which is the
contribution from excitations to states not on the Ferml surface. We

will need the integral

Q22,2 ,
[ 8 2@, v+ w(1) P, (2. (7.21)
-0
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Since jﬁs %%3 sé(E%gg w+ w(1)) qﬁg £ 0 we can subbract this from
the right side of equation 7.27. Nobe that all of the poles of the
propagator SF(ZQEQ w+ w(1)) 1lie below the positive Re w axis or above
the negative Re u axis. Thus, since the integrand vanishes sufficlently
fast as lwi - w , we can rotate the path of integration couniterclockwise
to the imaginary v axis without crossing any singulerities. Substituting
w = igu we have | |
- % (qs iqu)

axr
- f d;zzw[mm%ng,g%

. « (7.22)
'§T2q3 Yoo 2'ﬁ C}Z + (G.I'S/ﬂg) QT (Qg iqu)
8

Since Q, (qs iqu) = Q. (gs ~iqu) it is easy Lo see that this integral
8 s

is real. Using this result we have
'§ } (£4] e
b( dp }pz'a - 'H!{‘ - Zﬁ d q qg [lu 2 q«;l;]

QI" (q; iq‘u;}
2 . (7.23)

o + (/) Qrs(qs iqu)

If we expand (with x = neq)
[in = % o x]mz = [ig = x]mz + glig = X]WB + O(qg)

we note that, since the resgt of the integrand is an odd function of X,
the firgt term in this expansion does nob contribute to the integrale.
The leading term in the integrand considered as a function of g is

"~ proportional to 1/@1 as r > 0o Thus we must keep the screening term
for small values of q. We can use equation 1,50 to approximate

Q. (a5 igu) by 4nR{u)s For higher order terms in g we can neglect
s
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. . . . o
the screening and still retain an expression exact to order r 5° There=

fore, we have

(dw = L du x dx qQdq ™3

o=t ﬁéiw Ai 4 (1w - x)°
5 4 R(n) -+ +0(_) (7e24)
Q" + (4ar/n) R(u)

vhere
oo 1 ol

P 1 .dﬁ 1 .
A= lm{m du x dx Q. (as iqu)
5 +0 e ‘[m [1 3/ q‘?'(iumg'“x)g o

@ 1 ol
- / du x dx f %{"'@L‘?w R(u) } e (7.25)

We can perform the integral over q in equation 7.24 and we see that

Lar

where

L -3
fﬁxéx[iu-x] R{u)

e
:iwil\)
!“‘*ﬂ

1 1
= % x dx / y dy (x + y}-@ = 127 (7.27a)
T o o W :
/ / x dx [du - :x:] 1n R{uw) (7.270)

"’*\»F“' ’% S

f du (1 +u;2)a2 in R(u) = ~0.199 «

To evaluate A we used an integral representation for R(u) (see equations

1.50 and 1.45)
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1 4
R(w) =-(%) j’ dy v [ie = y]~ -1 (1 ~-u tan™! @ '),

o=

B was evalusted by a simple numerical integration. In Appendix C we

outline a method of integration for 4 which yields

A= 00855, (7.28)

Finally we add equations 7.20 and 7.26 to obtain the total

contribution from the one virtual excitation process

;{1 ) ar ar
aw 1 s 4 s
() g = = [2 +1n —2] = 1n o 00387
dp p =1~ mor 7 3ﬁ2 T
‘ +oley) (7.29)

We cannct yet draw any conclusions from this calculation since obher self

energy processes also contribute terms of this order.

2) Next we consider the irreducible self-energy graphs with two
crossing virtval excitations (see figure 6b). The lowest order contri—
bution to the self energy arises from the first term of the iterative

expansion, equation 3.23

. (2a) oo dw ga dw
(Ra),
W= (p) = z;% (pgw@)) f &u f 27l /F(Slq“ﬁ./dc}’2
(7.30)

8p(P+ds w, + w(P)) Prs(qsw,é) Sp(EaHays iy huyte(p)) Prg(qzswz)

From equation 7.3 we see that
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sza ..
(=— P }pg,g =2(K,, + Km} + (Ky, KZZ) (7.21)
where
& dw o dw
T 1 3 > e ()
(Kgq #Byp) =4 =7 sm | mel s /e Bl S@p#dp amle))]
&1 =0 o L)
Prs(qsui) S(ma,Hays wyhiyhe(1)) Prs(qgﬁwz) S (R, wyre(1)) (7.32)
w dw o dw
= 1

éd;& o3 =y en o [N
Prs(qswuzi (5 Spptaytays vpmytu(e))] Prs(ngwz) 8 (tgy syt (1)),

(7.34)

and X are the contributions from transitions on the Fermi surfzce

K11 21
(i.e. from the first term of equation 7.3) and sz and K22 are the

contributions from the transitions to states not on the Fermi surface

(second term in equation 7.3). Let us consider each term separately.

a) Using equation 7.3 we can write X,, in the form

. (54, ) 3(&:‘-?%1@ - 1)

oo dw
3
- d7q q , , (7.35)
Z;. / 21?1‘/ 1/ 2 2 + (Qr /’ﬁ ;3 QT (q§9g)
8

S(aHd, +dys wyhi(1)) P (ayv,) S(EHT,su,e(1))

where we have integrated out the factor & (w?) Ve caen rotate the path

of integration over W, by~+900 without crossing any poles. If we then
~substitute q = qgg Wy = igu and nt E EQE} we can replace the integra=

tion over qf by an integration over the direﬁtions of n' and we have
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%’ﬁjﬁIdh”mm@fma2+w%;%qruﬁum&>%éww)
) (7.36)
where
nen') = ~ du &g 1 1
Irs(nn _;[w 21’1/ q [iug.%qzmg,g] [iumjz-qwgﬁ-g]
1 ' (7.37)
q2 + (GrS/ﬁz) Qr (qs diou)

s
The last integral can be simplified to retain only terms of order r:
exactly. Since Q, (qs iqu) = 4w R{u) (see equation 1.50) as g = 0 we
see that the :‘mtegr:,l diverges like 1n r, as r 0. Only the lowest
order terms in q contribute to this divergence. For the higher order

terms in g we can neglect the screening terms (i.e. set ry = 0) since

they contribute to order r; and higher. Thus to order rg we can write

%0 3
_ d 1 1 1
I (X) - é—}; = wip e, = ;
L LB LS [10 = 23] (10 = 23] o + (e /n) R()
+a(x) + O(rg) (7.38)
and
A(x)=1im{/w d-.u{/ Tg 1 !
§20U-w Y »6 ¢ [1u-1q-23 [wm-1-2-3
g _ 1 1
“f M-Bg -> > * (7539)
§<g<t ¢& [du = n.@a] [ia = n.é}

Carrying out the integration over 1 in the last equation we have
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A(X)-llm {j dq ”U""in"‘q”: 7((1“3n“+q§)
g (a-n")
- f a2q & M(=1e3) = A (= g)_} (7.40)
@ <<t q ge(n = n')

which can be evaluated to give

Ax) = 21 { in 2 In(1 + /% {1 =-=x)) m% (In |1 = %(1@9:”)2
V% (1 - x) (7.41)

- i 103«0«.0(231"’1) 3 [“ m% (1 ax))l’l - 1}} ]
n=] 2efececs(2n - 2)(2n)

If we carry out the integration over q in equation 7.38 we

find that I (x) is of the form

Ts
Lar
I, (x)=Ak) 1a ~—=2 + B(x) + a(x) + ofr,) (7.42)
8
where
1 fdu 1 1
Alx) = == == [d&d - - (7.43)
2 «i{az“ / g [iu = neq] [in = n'eq]
deq-
2n T+ yz“ x)

in

= 1
VST 1@2(’1-'::)

i}

B(x) / an . T . 1n R(uw) (7.44)

in - n‘q] [iu - nt 8]

?mm
-3 V“' 1““.}{}
A - du 4, R{u) 2 1;&:*;;E & (

213 -
Va(i=) = Vi + o - L(1) V1P (1)
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The integral over n'  in equation 7.36 reduces to an integral

5 o o > -3
over x = nen'! (n* = nﬁq})z

==l f x dx
1 - 2
2(1=x) + (ars/'rr) Q. ( /200=x), 0)
S

We can again simplify this to terms of order r: to give

uifi x dx I (1) +D. +0(r)
ﬂ} 1 2(1=x) '@“Zpars/vr T, r s
where
1-€ x dx
o, =% 1m /_, g 1 W -5 ]

If we carry out the integration over x in equation 7.46 we get

ar
1nm] I (1) *D,
S S

[1*2

S
Km"’"”ﬁ,a
s8¢0 we have
ars A ars
K“=L(ln-;;“) *+Mln—=+N

where from equations 7.41 to T.44

L3+J“A(§)zi§
2W3 20

[B(1) +A(1) + 248(1) + 27in 2]

1
M= 4=
2

- L1 /1“67——7“" [4(x) = 4(1)]
| n315ig -1 2(1-x *

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)

© (7.51)
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x dx

| 1= €
= :}-3- [B(1) + A(1) + 2 1n 2] -;36112 / 5 (i) [B(x)=B(1)+a(x)=a(1)],

(7.52)

From equations 7.41 to 7.42 we have

A(1) =¢m; B(1) = v (1.90); A(1) =-2r1n2 (7.53)

where B(1) was evaluated by a numerical integration over u in equation
7o4de The integrals in equation 7,52 were evaluated by series expansions

and numerical integration. Collecting the results we havs:

lim f1 A (ax) = 4] = T (2-3102) == (0.248)  (7.54)
Lin ,4

1=€
1n [ 22 [p(x) - B(1)]
€20 =1 2(1ex)

[i]

f&ulnR[ R+l (R)?] (7.55)
0.59%

T €
i dx '
1im I [Ax) = aA)] =7 [21n2-4 + 321 = -0, . (7.55)
a0 4 2(1=x) yl 471
Therefore
ars
Ky = 0.051 [1n-+=] +o0.013[in wm] - 0.196 . (7.56)

be Next we have the contribubtion Ké, which arises when the central

particle line (of momentum 3*31 + 32) in diagram b of figure 6 represents

a trangition on the Fermi surface.

1 o dv, o
K,, = m—»=Jf — aw, S(n¥g,s w,+ w(1)) P (a,%,) (7.57)
21 A‘mzm./_;z 12 ¥ r 91V

Be (e ) & (3, 4, 11 €y +wg) SGEG,e (1)) By (agevy),
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After integrating out the delta function with w, we can rotate the path

2
of integration over vy by +900, Then we have
1. pau [ v [ 1 1
Kzl""‘”'zfé"%jdﬂn“‘“’ e R T =
2w e 9 iy - 34 =4en iu *‘5 q = g.n’
(7.58)
1 1
2 ) N > - >y 2 2 P
Q“ * (ar /m°) Q. (a5 dqu) (@ =10 =Q)° ¢ (ar /%) Q, ([n'-n-q], iqu)
s s

where we have made the substitutions n' = nég, *329 where |n'| =1, and
also 31 = 3; w = igu. The integration over gé is replaced by an integra-
tion over the directions of n' because of the delta function in the
integrand of equation 7.57.

We can simplify this expression to order rz by noting that since
the integral exists we can first integrate over g = ISB, holding the other
variables fixed. kWé cannot set r, = 0 since we would introduce a divere
gence for small values of ¢, which is of the form a(ln rs)z + in rg +e
as r_ 0. The form of this divergence is obtained by studying the form
of the integrand for small g with r, Os If we set g = 0 in the last
factor we find that the integration over nt  is logarithmically divergent
so we must include the T, dependent screening term in the limit ¢ - Q.

Thus we approximate

lim o ([3* =7 =3, tqu) » 47 + o([5* - F[%) (7.59)
a*0 s

for fixed m'. The terms of order |A* = B|% will be seen to contribute

only to higher orders in Tge
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The integrand, as a function of g, is thus of the form
(A 1n T +c) + qf(q,rs) where qf(qgrs) + 0 as q - 0. For the term
independent of q we must retain the screening terms for small values of
q in the first propagator factor. Thus agein we can approximate @kgqgiqu)
by 4w R{u). We can neglect the screening terms for the q dependent part
of the integrand since no divergence is introduced from the q integration,

Thus we can write

1 ¥ au «»—»[3 1 1 1
K =,,W‘/‘ == [ 4f) n°nt d”q [ - ]
21 ot Voo 2T qe(B-n') iu-n°eg iu-n'°g

? : vEG) +0(r)  (7.60)
q§ * (Aars/v) R(u) (n' - n)? + (Aarsjhﬁ s i

where

1 3
; 1 “ du >, > a’q 1
Eﬁ(r ) B . oo lim f — f dQ nl oy { / =
s 4 g 2m 4 $ 2 q2 + G (mmt)

2 -0 g g
1 1 1
{ 1 > - 1 b o w5 e by 2
fu-%q-nq du+zq=-ng (n'-n=qg)” + Larsfw
) a2 1 I B 1 }
¢ <g<1 q2 qe(n-n')  iu-neg fu-n og (3”43)2 + Aars/v

(7.61)

The first term in equation 7.60 has already been computed in

equations 7.38 to 7.56,

Lar

bar 2 .
K,y = = L[1n I 4™ 1n + N +E(r) (7.62)

w ™

where
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“L = 2ty TR L L 0.051
Mt =M+ —3_3- A (1) = - 0.08k (7.63)
of
1-€
O el L L xdx _
N' ==N + =3 A1) >3 lim m -A(1)]= 0.071

E20 -

(see equations 7.50 to 7.56).

In writing the expression for E(rs) we have simplified the

Ky A —’ 4 s - - - 3
screening term Q_ (n' -n -gq , igu) by replacing it by 4T (see also
° . -2
eguation 7.59). This is exact to order rso since the factor (K‘JE-E)

is "dangerous” only for small values of g, i.e. the integral over B be-
haves like lng. We have also neglected terms of order (ﬁl —'ﬁ)a

1

which appear in equation 7.59 since they contribute to order ry and

higher.

The integration over u in the first term of equation 7.61
is trivial and results in a factor D((- L qg - 2.3) —'?(% qg -2 971,
The remaining integrations are extremely tedious to carry out and

we will merely quote the results here. We find (after a considerable

amount of labor) that to lowest order in r_

2

1 ak 2,
-E(r ) = == [ e (1-%5/2) J(k) + C. + C (7.6k)
s 772 k2+ horg 2 3
w
where
, 1.2 =1
[ 33 (—mk-kn}-@(—»k-km) )
- [ 2 ang 1 ; A’Z 2 (7.65a)
o o (¥ + 7 - 2H°
- L1 [Bln 2-7—7-2»-] (7.65b)
T2 3
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r .3 o
€3 = "'3':'1? ‘-/ 9"“‘1&? fd'ﬂal e 5 ﬁl-»z.? = —»l-» T (7.66a)
7 L X ° (k+n-n")" ke(k+n-n")
kp2
1 510 1 o 1 1\t
= - A [hlne - _ =& AN 66
= - 5 [41n2 "";HF.Z 7 (1n2)" - 3 n—~1<2) 2 ] (7.66Db)

3(k) = 3{“(2 1n2-1n ’g*k‘ -5 [ lp*k[] 7 }};ﬁ)n - (1) }

n=1 o

1
-zf m-a-‘-’"«i—--é;m n (142 | . (7.67)
Lk (27-1)
-1

To obtain these expressions we have made the substitution
A S I
k=qg+mn -n" in the integrand of the first term in equation (7.61)
and have replaced the integratlion over d3q by an integration over dBK.

. . ; . = =1 .y

The integrations over the solid angles of k and n~ can then be carried
out by a long but straightforward computation. The second term in
equation (7.61) was easily evaluated and the limit as B-»0 was then
taken.

On carrying out the integration over k in equation (7.64)

we find to lowest order in r_,
[}

ar

- E(r.) =‘—]-“—§ (3 1n2-1) 1n —= - 2 (L - 1n2) + C, +C, + C, (7.68)
' m m

s
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where

c, :w%f B (108/2) La(x) - 3(0)] (7.69)
o]
1 e 7 2 7% ,Lyol
=5 [6(1n2-1) - B (1n2) Z "2“ "g .

Using equations 7.65b, 7.66b, 7.69 and 7.68 we have then

oQ
ir ) = L , 3 P N L
L(rs) - (1-3 1n2) 1In j;“ + 2 (; (ln2)" + 3 (2) s 9
13
n=1
=-0.110 lnor_ =~ 0.123 . (7.70)

Combining this with equations 7.62 and 7.63 results in

Cr 2 ar

K., ==0.05L [lon —= ] = 0.193 [ln —= ] = 0.052 . 7.71)
12 T . 'y (



We also have the term 2K12 + K22 which 1s the centribution
from transitions to states not on the Fermi surface. By direct caleculation
it is straightforward to show that this term is of order r;e We can also
demonstrate this in terms of diagrams. From equation 7.3 we see that for
these transitions the effect of differentiating the electron hole propa-
gators with respect to p is to replace them by Egé times their square.
In terns of diagrams this is formally equivalent to inserting into the
electron~hcle line an interaction of strength EDS (indicated by a circle)
which does not carry any momentum or energy. (Note the similarity to the
effect of differentiation with respect to w.) ,

The lowest order contribution to this process arises from the
effect of the bare Coulomb interaction. (The integrals converge in this
case.) In figure 13 we show the diagrams involved. All of the diagrams
contribute the same energy denominstors and matrix elements, butb K22 and

K differ by one internal hole line and thus differ in sign. There are

12
two diagrams for K12 which are egusl and are cancelled by the two equal
. . el = =y . - wip .

terms in K22 (i.e. with neqy and noqg) since qq and 9, are equivalent.
Thus all terms of order rg are Zero.

All the remaining self energy processes are of third order or
higher in the number of virtual excitations and can be shown to contribute
terms of order r, and higher to the specific heat.
We have completed the calculation of all terms of order r:a T

we use equations 7.56 and 7.70 we finallyobtain the total contribution

. . . . 5]
from the two virtual excitation process; exact to terms of order e
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(<~;I»J‘2a‘/"dp}p:jL 2K, + K,

2
Qr cr

fe.

0.051 [ln —-7—7-—] - 0.167 [ln — ] = 0.444%. (7.71)

if

If we add this to the contribution from the unperturbed

energy, (d“ydp)p~l = 2a~2r0—£, and the contribution, (&W(l)/dp)pwl,

as given by equation 7.29 we then obtain an expression for (dW/dp)pml

o
exact to terms of order rs.

(aW/ap) = —-—ps - ==— [2+ln 2] 4 0.051 [Ln =2 ]2- 0.302 (10 =21
: p:l @ZI' 2 ﬂ'(xrb T ] e =

The correction to the specific heat C_. of the gas of interacting

F

electrons is then

ar ar ar o cr ar P
/ = e —— (] r— - sl N 1 - N « 0 coeem e
Cp/C = 1 = s ln — [1 +2.98—=+ O(r )] - —= [+ — + 0(r")]
2
CCI'S QII‘S
+ 0.251 [ — ln —=] (7.73)
™ T

=1 - 0.083 r 1o r, [L+ 0.798. r o+ 0 (rsg)]

- 0.017 r [L+ Lli2r, +0(r) I (7.7%)

)

+ 0.0070 {I’S in rslg + 0 (r 3) .

8



=1 30=

The result in equation (7.74) is plotted as a function of
r, in figure 12 . DNote that at for values of r 0.8 the specific
heat is reduced by the interactions while for Ty zh()'8 the specific
heat 1s enhanced. To understand this result 1t appears that the dis-
tinction between self energy transitions parallel to the Ferml surface

1

("surface' transitions) and transitions "perpendicular” to the Fermi
surface 1s important. This distinction is a direct result of the
Pauli Principle from which the two terms in equation T7.73 are seen to
originate. That is, the discontinuity in the propagator SF(p,u))
which distinguishes between electrons and holes is the origin of the
"surface" transitions while the propagation of electrons or holes

gives rise to the "perpendicular" transitions.

. 2
Now a(éw(l)/dp)pml given by equation 7.20 and (dw( )/dp)pwl

given by equation 7.7l both are contributions from "surface" transi-

tions only. The sum of these terms is positive for values of r_
[
up to about r_ = 1.5. It is not hard to see from equation 7.7 that
>3

(dw<l)/dp) is always positive. The apparent change in sign in

a p=1

equation 7.20 at rsn/-z is a result of not including higher order terus
in this expansion. Thus the change of sign in Gellw=Mann's lowest order

calculation at réA-O.B is not real although the corrected result also

changes sign at this value of r_. The sign change in equation 7.7h
[~
has a different origin.

The contribution b( e (equation 7.29) arises from

1) .
3 31
aw /do)pml

"perpendicular" transitions only, and can likewlse be shown to be

always negative. The change in sign of [CF/GfQQ at ré&-O.S thus
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appears to result from a change in the relative luportance of the
two types of transitions. At very high densities only the surface
transitions in the self energy process of figure Ha are important
because, as we polinted out above, they contribute an extra Ilnverse power
of the momentum transfer. As r increases the "perpendicular" transi-
tions from this process begin to contribute a negative amount,

(1) /. v e L . ‘ :
b(uw /dp)pzl’ while the surface transitions from the procesgs in
figure 6b also become important. For r < 0.8 the "surface" transi-
tions dominate while for r > 0.8 the "perpendicular" transitions
dominate.

Thus 1t appears that for T > 0.8 and for densities
approaching the highest physical electron densities the specific heat
is enhanced from the value for non-interacting electrons.

The actual range of convergence of this series cannot be
determined precisely without a knowledge of still higher order cor-

rections. However, we can estimate this in several ways. First of

all it is clear from a statement above that the series for

a(dw(l)/dp)p

carmot be valid for r s~2 since it incorrectly
n

(2)

=1
changes sign here. Also we can compare (AW

(el

/cip)pal with

/up =1 and we Tind that their ratio is less than one for
rs,S 2. It ap?ears then that this series is qulte accurate for
ry € 1 and predicts a change in sign at rsfv 0.8. For 1< r8< 2
the series probably over estimates the enhancement by as
much as 50% at fs = 2. However the sign of the correction is
probably correct in this density range.

This series glves us a further clue concerning the con-
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vergence of the perturbation approach. It appears that this method can
glve quantitative results for densities down to the highest densities
found in metals. For intermediate densities it does not appear so
hopeful. The time and labor necessary to compute the next higher order
corrections are certalnly not Justified considering the uncertainties
in our understanding of phonon and lattice effects. The electron-
phononinteraction has been estimated by Ferrell £40] to give a 20%
enhancement of the speciflc heat for sodium, and thus appears to be a
stronger effect than the electron-electron interaction.

Because of these uncertainties and the rather limited
accuracy in the eéperimental data 1t appears premature to under-
take a detailed comparison with experiment at this tiuwe,

In addition to the specific heat, the single particle
energies W(p) can be used to calculate other properties of the
interacting electron gas. The width of the conduction band in metals
as observed in X-ray emlssion spectra has also been calculated.

Details of this calculation wlll be presented elsewhere.
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VITI. CONCLUSIONS

In Part One of this paper we saw that the Gell-Mann-Brueckner
theory finds a natural description in the Feynman-Dyson formalism of
field theory. We developed a theory of the effective interaction between
electrons which takes into account the polarization of the wmany body
medium. One result of this polarization i1s to screen the effective
interaction at large distances. This effective interaction is most
easily described by a Feynwman propagator which determines the respounse
of the system to a test charge disturbance. In the pailr approximation
of G-B, only the simplest approximation to the polarization charge is
made, 1.e. the excitation of single pairs. One of the wmain problems in
caleulating higher order corrections to their calculations was the
computation of higher order polarization effects. In Chapter III
(and Appendix D) we derived an exact expression for the ground state
energy which takes into account the virtual polarization of the mediuum.

In Chapter IV we saw that the most striking effect of the
polarization process is the introduction of the plasmon mode which
has no counterpart in the non-interacting system. This mode arises
from the repeated excitatlion and de-excitation of the medium. In the
pair approximation of G-B the plasmon is an eigenstate of the Hamil-
tonlan for small momenta (q(xqe), since 1t cannot decay into single pailr
excitations. When higher order polarization effects are consldered we
find that the plasmon energy is shifted and the plaswon has a finite
lifetime since it can decay into wmultiple excitations even for g< U, -

In Chapter VI we derived the lowest order correction to the

plasmon energy and found that it is small for q_(qc even al physical
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densities. However, we also computed the damping of the plasmon which
is of higher order in r than the energy correction since it arises froum
the two pailr decay mode and the palr-plasmon decay mode. The damping
from these processes 1s important at physical densitles even for

values of ¢ appreciably less than 9 Hence, the obsefved plasmon
cut-off in the electron scattering experiments is less sharp and should
actually be observed alt somewhat lower values of g than predicted by
the palr approximation. The fact that the dauping from these processes
is strong at physical densities leads one to expect that the plasmon
level shift caused by these processes 1s not negligible. More work
remains to be done on this matter.

We conclude from these calculations that the plaswmon mode in
a free electron gas is well defined for small values of q<§1c. For
values of q:SqC the plasmon becomes strongly damped. In addition the
formulas for the plasmon energy dispersion (equations 4.17 with equation
5.7) and the plasmon level width (equation 5.22) are probably accurate
only for densities down to the highest densities foundrin metals,
say T < 3. We judge this from the size of the corrections which we
have computed.

In Chapter IIT we investigated validity of an independent
particle model for the interagting Fermi gas. We found that the lowest
states with only a few exclted electrons and holes can be well
described by an independent particle model. For these states only
single particle Feynman propagators are needed. These independent

particle states are not exact eigeustates of the interacting system
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since electrons and holes can undergo real, energy conserving,
"collisions" with the many body medium. The calculation in Chapter VI
showed then the damping of these single particle states vanishes

. . 2 ,
quite rapidly (as (p - P,)") as the momenta of the particles approaches

4

I

the Ferml momentum. Hence the lowest excited statesbare asymptotically
stationary states.

The basic quantity in this independent particle model is
the single particle propagator corrected for self energy effects.
These effects arise from the virtual polarization of the medium by
the particle and the subsequent reaction of the polarization
charge on the particle. In Appendix B we proved that the energy shift
and damping of the single particle states can be found directly from
this propagator. This enabled us in Chapter VI to give & complete
formal discussion of electron scattering from the electron gas,
including exchange corrections.

In Chapter VII the independent particle model and the
self-energy method was used to compute the low temperature specific
heat of an electron gas. By a rather long calculation we extended
the lowest order calculation of Gell-Mann to the next order in Ty
We found as Ty increases that for x}5> 0.8 the correction to the
specific heat of a non-interacting gas changes from a reduction to
an enhancement. This change of sign appears to be the result of the
Pauli Principle. The series for the specific heat appears to con-
verge only for values of rsfg 2 so that 1t applies only to the very

highest electron densities found in metals. We find that for these
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densltles the interactions increase the specific heat.

On the basis of these calculations we conclude that the
procedure of expansion in orders of Ty is only successful for high
densities extending down to the highest physical electron densities
(rsji 2). Por intermediate densities (2<:rs( 5.6) the method
does not appear to converge rapidly enough to be useful. If the
integrals in the third order correction to the correlation energy
(Appendix D) can be evaluated we will have still another exaumple
of the convergence of this method.

If some simple approximation, valid at intermediate den-~
sities, to the dielectric constant fKr (q,) (or eguivalently to

S
Qr (q,W)) can be found the expansion in orders of the effective
s
interaction (not in orders of rs) would still pfobably be useful.
The possibility of this will be the subJect of further research.

In conclusion let us say that through the efforts of
many workers the problem of electron interactlons is now well
understood at least qualitatively. The method of Gell-Mann
and Brueckner has led to quantitative results in the limit of high
densities. Future development will lie in the intermediate density

range and in the application of the theory to actual metals.
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APPENDICES
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APFENDIX A
HIGHER ORDER POLARIZATION PROPAGATORS

In Chapter II we discussed in a general manner the corrections
to the irreducible polarization propagator Q, (9sw)e In this appendix
we shall derive the propagators for the 1owestsorder corrections to
Q. (gsw)s These correspond to the diagrams b and ¢ in figure 3 of the

8

text., Applying our rules we have

(1a) Il 3 r 3> [.3~

" =5 > =
Sp(Pyha, Wyt w) Sp(Pys wy) Prs(P.z =Py wy - wy)

=5 = e
Sp(Pyta, W, +) 8.(Fyy w,) (a1)

e

Sp(Pytay @t w) S,(Fys w ) PrS(Pi - Pys Wy -w2)
SF(§1+§, W tw) 8p(Fyta, W ) A2)

The ccefficients' follow from the rules and the definitions in
Chapter II. For the applications in this paper it is sufficient to calculate
these propagators to lowest order in Tge If we put ry = 0 in the
denominator of P ‘(‘1?1 - gzgcu 1 ~w,) (i.e. if we use the bare Coulomb

interaction ) then the integrals separately diverge due to the singular
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factor ('?1 = 1':-'}2)'“’2e However, the divergences cancel in the sum
Q(” = Q“a') + Q(jb), With this simplification we can carry out the

integrations over @ 1 and W 2 to get

(Dig, ) = —8 [, [ 1 [7( (1B +al=1)7 (1=p,)
Qrs (q o / Pq / P2 (1-;1 ~ ;2)2 W =4y *1ie
_ 7( (Pf"‘” 7((1“531'{'3!) ] x
W =by = ic

w ~z32+1a quzwic

: 7E,A1=1) A (1-p,)  Upy=1) nmwli”ﬁ!)]

_ B 10w Ayt (=B

(w- oy * 15)2 (w = By = 15)2
[.7 (1= p,) = 7(1=|Fyxa])]  (a3)
where A1 = qz/z + Eeﬁ! and Az = q2/2 + 3.32. [Note that we have used

the definitions of equations 1.26 and 1,27 to perform one of the w ,
integrations.] We can use an argument similar to that used to obtain
equation 1.45 to show that the Pauli Principle restrictions can be dropped
in real parts of these integrals. In fact, if 31 + 3 = i;o’ where p 0<1,
in the first term in the first brackets its contribution is exactly
cancelled by the second term when f’} = f?’o - h; Continuing this arguuent

for the other terms in the integrand we can show that
(1), V%5 r3 3 1 2
R W) =—= |d A’p, et 1 - N (1=]P
° 4 'a = [ [&p, G L ey- 1 0-1FHD]
[7 (1=pg) = 7 (1=1E,+ 3]

P[ ;~-b ;~->» = 21;-&»2 (A‘!")
W=g"/2=q°F; wW-q"/2qF, (w=q"2-q-Fy)
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where P denotes the principal value. It is easy to see from equation
A2 that Im Qﬁ”(qgu.)) is zero if |w]| > q2/2 + q and that there is a
discontinuity ?.n In QIE” (gsw) along the real wo axis from -q2/2 -q
to q2/2 + ge Thus ® Qé“(q,w) has the samel branch cut as Qo(q’w)’
We will not have occasion ti use Im QIEU in any of our caleculations so
we will not give an explicit expression for it here.

For much of our work we will need this integral only in the

limit of small q. Using the limiting relation

NQ=18+3]) — (1) - F-q 8 (p=1) + 0(g?)
q0

we find that

(x,=,)
R L e

8 g0 172
1 - 1
)
PR
_F 2 (1),
-m%(zn) g (T) (45)

4Ln

> > >
where xy = (P1 °q) and x, = (Pz"q). We shall also need

ol 1 ax (x, = x
Q’(;;)(O’O) S Qig;)(%o}:;%% (@n)” ‘[»3 ?% /1 dx, !x: “xi! (1e)

=1

- Um)? 8 -
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To calculate the next order corrections to Q (go) we

s
would need to: i) Compute the terms of order r§ in Qr(“ (gs W) which
s
we have neglected above by our use of the bare Coulomb interaction; ii)

compute the lowest order terms in the amplitude Qi('z) (gsw) which corres=

ponds to diagrams 4 through f in figure 3 of the teiscte These diagranms
involve two internal interactions and are therefore of lowest order I’ie
Again we wish to emphasize that it would be misleading to include correla=
tion effects in computing QI(;! ) (gs w) without including terms of the

s
same order from Qﬁz) (gs @) and higher order amplitudese
8
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APPENDIX B
THE PROPAGATOR FORMALISM

In this appendix we will derive on more rigorous grounds some
of the equations and concepts used in the text. In particular we will
discuss: 1) The application of the Feynman-Dyson techniques to many-
particle excited states. 2) The interpretation of the singularities
of the physical propagators which lead to formulas for the energy
shifts and lifetimes of excited states. 3) The relationship of our
methods to other work of a similar nature. 4) The relationship between
the physical prépagator and the amplitude to emit or absorb the physical
particle in a real process.

The basis of our method is the Feynman-Dyson expansion of
the S matrix and the concept of a state of the interacting system
which is the adiabatic transform of a state é@ Q{of the non-interacting
system, This is the state at t2 which develops from the state E@ o

as the interaction is slowly turned on a tl = - @ , Or

gfoz = U(tg’tl)@a

in the interaction representation. In this way the "physical™ state

@%ﬁx is defined in terms of a "bare" state éﬁ o
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We will define the corrected propagator for a state of &
electrons (momenta and spins denoted by the single symbols P‘B s eeo 3 Dy )

and )/ holes (ki’ eee 3 kyy ) as the ground state expectation value*
G,HV(P‘E’ ese 9 P ;k1 eoe k stg‘“tj)
_ + -
= (P IP(s &y, () 45, )P ) B
where P 1s Dyson's time ordering operator and A ,uu("b) is the operator,
in the interaction picture, which destroys the bare state %‘1 y of
AL electrons and )L/ holes. That is

eeo a‘P bk ee® bk

A,/AV(“ =Cav aP1 ’
B2

exp = it {co-%- 'w(p1 )W(pz}+ oo '*W(py,“) = ulk, )“W(kz)““‘“w(ky)}

vhere ¢ Y is an appropriate normalization factor, € o is the unperturbed
ground state energy, and w(p) is the unperturbed single particle energy.
The order of the particle destruction operators in this expression is
arbitrary. In equation Bl, S denotes the S matrix S = U(~ T/2, T/2)

where T is a large interval of time (see equation 1.23)

*
This propagator is not; strictly speaking a Feymman type prop=

agator. It is similar to the representation of many particle Feynman
propagators in relativistic field theory [35][36]. Our definition
differs from the latter in that we use the same time variable for all
particles, which is not a relativistically invariant scheme. With this
change our propagator is essentially the diagonal part of the Feynman
propagators; i.e. the creation and destruction operators refer to the
same state.



If we use equation 1.24 for the U matrix we have (using

units where A = 1)

Gyy (Pys eee o P 5 kg o0 k5 by = %) B3
& ~ 1/2 T/2
- @5 r [ e [,
-9 0= ~T/2 =T/2

PIE, (8,) =+ H, (6 ) &, (6) A%, 61 B ),

This matrix element can be evaluated in a perturbation series by
using Wick's theorem [20] just as was done for the evaluation of the S

matrix itself. It follows that q;“ is the sum of all corrections which

1%
can be made to the uncorrected propagators for the state éé;u « The wn=
corrected propagator is defined by equation Bl with S = 1. In terms of
diagrams equation B3 is the sum of all diagrams leading from the virtual
state .ég at time <+, and back te gﬁ at time t,.. Ground state

Suy 1 Luy 2
(vacuum fluctuation) diagrams can occur as well, but as we have seen these

=iF T
merely contribute a multiplicative factor, e O where Eo is the
corrected ground state energy.
If we consider the time interval where t, = T/2, ty = <T/2

we can write the time ordered expression in equation Bl as

(@, 1a, /2) veas2, x/2) nf2/2) D)

(C_EWE exp = ﬂ{ g T w(Py) = oo = wlk % U(1/2, «T/’z)géy}
B4

i

G

[

~iH T
= ( @WE e ° U(1/2, =1/2)] ('PW) . B>



=145 =

Thus, for a long time interval, t2 - t1 = T, the propagator G 4, 1is
the amplitude that the system which was in the state 42My,a$ tl = =T/2
remains in the state éza“/ at time 1, = T/2. The restriction to a large
time interval is necessary if we use the rules in Chapter I to evaluate
the U matrix. In these rules energy is conserved at each vertex of a
diagrame. The physical justification for this approximation is discussed
in Chapter III.

Let us examine the diagrams which arise from the expansion of
the many particle propagator, equation B3. As in the épecial case of two
particles which we discussed in Section D of Chapter III, the diagranms
can be divided into two groups: 1) Those with no interactions between
particle lines; ii) Those with interactions between particles. Consider
8 diagram of the latter class of nth order in the interaction. Since
momentum and energy must be conserved at each vertex, the requirement that
the final state be identical to the initial state determines at least one
of the energy-momentum transfers in terms of all the others. That is, the
momentum and energy of one of the virtual excitations drefixed which also
means that one of the intermediate states is fixed. The contribution of a
single intermediate state is proportional to 1/V where V is the volume
of the system‘so we see that such diagrams can contribute terms of order
1/N or higher. For a state with At) exeited éarticles there are u+V
possible diagrams which contribute terms of order 1/N. Thus we see that
we can neglect diagrams of the second type if4+V/N << 1, The remaining
diagrams of type i involve only single particle self energy processes
of the type discussed in Chapter III. If we neglect interactions between

particle lines then the time variasbles tagg taz’ eos g tan agsociated
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with the vertices along the ath particle line can be integrated over,
independent of the remaining time variables associated with the other

particles. Thus we are led to write
Gy (Pys eoo s Bys kyy eoe s k5 %, wt.g)

=G, (t, = ;) G _(Py5 05 ¢, - ty) Gy (Po3 05 t, - t.!)

2

Mty

eve G@](O, ks t, =% 5

5 ,32 Gm(O, ku; tzu-a;j) + 0f

1
B6

where G.lo(?ig WH ﬁz - ti) is the corrected propagator for a single

electron state § B., s, and G_,(0, k.3 t, = %,) is the corrected
i’ "1 ol 3 1

2
propagator for the single hole state { Ej’ s j‘} . Goo(t.?; o t.!) is the

propagator for the ground state which is,by equations B1 and B2 ,

~ie_(t,=t,)
Gyo by = £y) = (@O(e BCACI U(-1/2, T/2}] @0) . B7

From section B of Chapter III we have the result for a large time interval

t mt.E:T&

2
v-iEQT
GoofT) = e . B8
Now it is readily shown that the corrected Feynman type propagator
Slg.( % st) which we discussed in some detail in Chapter IIT is related to

thess propagators by

<o . -
SB’,(P,%:,) = 535;{ lmdw o tit S%(P,w)

i

Ggo(i”; F t)7< (p=1) + G, (03 B; -t) 7((3“1%) . B9
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That is, S}; (?,t) combines the electron and hole into one propagator and

reverses the time for the hole. A compact definition of Sf (;23 ,*5:2.3) is
o> PR
given by the ground state expectation Sﬁ‘(le ,tm) = (@o[T(S#"(xz,tQ)

'l}f '(‘xi‘3 ,t,g) f 0}. The above results follow if /L}/ (x,5) is decomposed
into electron and hole parts.

Thus we find that for states where the relative number of excited
particles MtY/N is small we need only to study the properties of the
single particle propagators Sﬁ,(ﬁ?,t)a Equation B6 then forms the basis
for an independent particle formulation for the low excited states of an
elactron gas.

From Chapter III we know that

3 ilpex=wt)
j a’p [mdw ==~ OO B10

§ »s't) =
e (2m)% |

where the kernel Z (; sw) 1is the sum of all the amplitudes for proper
self energy parts. In the complex w plane, Z (psw) has a branch cut
displaced by =~ic below the real w axis from w 21/22: 1/2 Pg/m in
ordinary units) to +« corresponding to a contimuous distribution of
poles which occur in the energy denominators for states of one hole plus
excitations of the medium (i.e. modified pairs and plasmons as discussed
in Chapter IV)., Similarly there is a bx;anch cut located above the real
w axis by +ie from w=0 to w 4 1/2 corresponding to intermediate
states of one hole plus excitations. Near s@%; 1/2 the deﬁsity of inter-
mediate states is of the order of (w - 1/2)2 (see Chapter VI)e It can
also be shown that there is a discontinuity of 21 Imz (psw) on crossing

the branch cut from below, and that for real w

®

It was shm?m %8% r VI thet the dividing point of the branech line
is at w=W(l)= rs) J In the neighborhood of this point Im J2(P,W)

>O( W—N(l } ®



<o W >w)~a
m 2 (p,w) o Bll
J 0 WL<W@@)~ Y2z
The difference in sign is, of course, due to the definition of the
contour of integration which passes below the branch eut for (n ) VV(i)
and above for W< ¥V(1).

In order to evaluate the integral BLO by contour integration
it is necessary to have a precise understanding of the singularities
and analytic properties of the analytic continuation of ji (p,w)
to complex values of W = Z. For real Z this function is defined one
side of the branch line by taking the limit as € @ 0 in the Feynman
propagators. If we analytically continue Z;(p}z) to complex Z we
then define a branch (or Riemann sheet) of the multiple valued function

Ei(p,Z). We will call this the principal branch of EEJ(p,Z) which we
can define more precisely by the equation
Lin J(x+18) =€) 751w B12
8‘ﬁ<+ 0
where x is real and | (%) is a pbsitive function of x. This definition
is clearly equivalent to relation Bll. [In this equation and those im-
mediately to follow we will suppress the momentum 1lndex p. Thus
W=we), 2 = 2]

It is clear, then, that the zeros Zo of

fz)y=2-w - Y@ B13

cannot lie on the real axis except if Z = 1/2 (since [ (x) oc(x-%)g).



g
Yok
o
[ds]

i

In general Zo is complex. For every solution ZO there is also a con-
Jugate solution Zé. The relationship of the zeros ZO to the principal
plane of EE(P}Z) can be determined by expanding Ei(p,Z) in a power
series about Z = QW +~ic§ where S is Infinitesimal. Within its radius
of convergence this series provides an analytic continuation of Z:(p,Z)
across the branch line onto the adjacent branch (or Riemann sheet). If
we then ask for the location of the zeros of 'f(Z); (assuming that for
sufficiently small r_ a Zero lies within the circle of convergence) we

find from equation Bll
<0 o 8 > 0

Im Z
o

Y0 5<0
so that in each case to reach Zo frowm the principal branch of Zf(p,z)
we must analytically continue onto the adjacent branch. In this manner
it can be shown that there are no zeros of i;(Z) lying on the principal
branch of ZZ(p,Z).
Let us demonstrate this more explicitly to lowest order in Ty
Let us arbitrarily pick a zero, ZO. Since ZiJis proportional to r we

know that ZO = W+ O(rs) and we have to first order in re
< i
7= W) = W +Ew - zTW) -
How from equation Bl3 we have to first order in T
i
2.z)= W + 31 W

if ZO is assumed to lie on the principal plane. But then
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£z ) =z, -w- ¥ (z,) = -i[ (W)

O

to lowest order in r, . Thus %  cannot be a zero of f(ZO) unless
"(W) = 0. 1In order to avoid a contradiction, then, Z, cannot lie on
the principal branch of jz:(p,z). Clearly the same holds true for Zg.
To evaluate equation BLO by contour integration we can deform
the original contour, which lies in the principal plane, to encircle
the branch lines without enclosing any poles (see figure 14 ). Since
the discontinuity in :E:(pgz) is in the sign of the imaginary part,
on crossing the discontinuity from below the total discontinuity is
21 Imz‘(p,w) = il (p,w). Hence, if we define E(p,wW) =W(p) + Rez_(p,w),

we can write

Splpoty, - t) [N - L) N(sy - 5y) —7L(l R (ey - )]

. U (p,w)
) [b.)— B (p;w)] + ')1' r'

2

where Cp is the real interval from W(l) to @ if p) 1 and Cp is the
real interval from=00 to W(l) if p< 1.

tow [ (p,W) = O(rs) while E(p,w) = WwW(p) + O(rs) so that if
perturbation theory is valid we have [7/}§<S]” Therefore the inte-

grand is sharply peaked at W % = E(p,J*). As

=T = & the integrand
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oscillates rapidly and the integral vanishes unless the width of the
peak at W = uJ%ﬂis sharp enough to pick out less than one oscillation,
i.e. if | (P,U)*) T << 1. 1In this case only the integrand in the
neighborhood of u)* contributes and we make very little error by replacing
E(p,W) by E(p,w*) and T" (p,w) by fﬂ(p,uf). The integral can then be
evaluated to give exp - i-{E(p,u)*) —%vrkp,uf)} 7. |

Comparing with equation 1.9 for the free particle propagstor
we see that we can define E(p,@f)iVV(p) as the energy of the physical one
particle state and f“(p,w*)x T"(p) as the level width provided [*(p) T< L
and [ (p)/ W (p)<< 1. The single particle energy is defined precisely
by the equation

W(p) = W(p) + Re Z}gp,W(P)) B15a

which, as we have seen in Chapte; III, can be solved b& iteration. The
level width of the one electron state is given by

HROE Lin In Zl(?p o) + 18) . B150

Let us remark that to lowest orders in r  W(p) and ['(p) can be found

s/
directly from the BSLE of the propagator S%(p,qﬂ which is the justifica-
tion of our remarks in Chapter III. This is related to the fact that
the discontinuity across the branch line is proportional to T As

the discontinuity vanishes the pole approaches the real axis and in

the 1imit as rg? 0 the residue from the pole is the only contribution

to the integral BlO.



Hence in the limit of large §t2 - t1l =T

5(2,1) » & O o 2rel VRO AERPENACIE QURSH
B16

provided that
Irp) |r) << 1. - B17

This condition is necessary so that the physical one electron state is
observable and therefore not lost in the background of transient
excitations.

We can now use this result and egquations B5, B6 and B9 to

evaluate the amplitude for remaining in the state i e We have

Y
. . 1
o _ MY 2 tay
( @W e u(r/2, =1/2)| Q/JW) =e e B18
where
A Vv
- ' My W
Euy = Eg + Z w(pi) - Z_: %J(k:j) + 0~} B19
i=o j=o
AL %
r o= Y r.)+ YD) + ol B20
MV i=e + j=o J N

These equations deseribe an independent particle model for the gas of
interacting electrons. It is clear that if T' =0 that E 4, is
then an exact eigenvalue of the Hamiltonian HQ + Hgo As discussed in
Chapter iII, this is only rigorously true for the ground state. The
conditions under which Big is valid are
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1

By T>> 12 350,,1 B21

and E uy
>> 1. B22

Tuy

Physically, this means that we are interested in times much greater than
the period of any of the lower lying states, while in this same time the
physical state has not decayed appreciably. This presupposes that

Sy 7 L
system be well defined. When this condition is not met, the concept of

y which is the requirement that the states of the interacting

a state ¥ ,,, of the interacting system, which is the adiabatic transform
of @,W s is not meaningful.

From equation B18 we can compute the probabllity of remaining
in the state @MV to be

; ~4H T <, T
1€ @.vl e 03'@&» )52"‘9 ol =TT B23

and since S = U(T/2, ~7/2) is unitary we have

. - 2
Ty T = n%vi@nm OIS B2,

So that if Iy, T << 1, T, is given by the usual formula for the transition

(4

probability per unl't time out of the state _¢ We can also compute I,

2
by computing I'(p) directly frem J (p; w)e In this calculation the
condition Ty T << 1 is equivalent to first taking the limit as T = 0O
in all of the propagators and then taking T- « and calculating with the
Feynman rules. If this is done it can be shown that I‘(p) is given by
the usual formula for the transition probability per unit time out of

the single particle state of momentum B. This is demonstrated to lowest

orders by specific caleulations in the text.
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These time deperdent considerations suffer from the necessity
of letting the time interval T become infinitely large. Another approach
is to anslyze the propagators, say S%(x,t), in the Heisenberg represen~
tation (see [15]). Here ome desls explicitly with the true eigenstates
and eigenvalues of H which, of course, are not known to begin with.

One can then show, for example, that if the bare single particle state

is non-degeneraie, ﬁhe Fourier transformed propagator S%,(P,cu)s has

a pole at wW =W(p) where W(p) + Eb is a true eigenvalue of the complete
Hemiltonian. If, on the other hand, the single particle state is degener-
ate, then S%(P,(A% has no true pole but instead has a branch discon-
tinuity extending along the contimuum of eigenvalues of H., If the
degeneracy is small, i.e. if the degenerate states occupy only a small
volume in phase space, then S%(P,U))’ is strongly peaked at W = W(p)
vhers W(p) is approximately an eigenvalue of H. In this case W(p)

is defined only to within a certain range T(p) where T(p) is pro=-
portional to thevvelums of phase space ocecupied by the degenerats states
and to the range of energies into which these degenerate states are trans-
formed by the interaction, We thus find that our time dependent approach
is indeed corrsct.,

These methods also apply to field theoretic problems of inter=
acting elementary particles which one particle can decay weakly into one
or several other partieles. The properties of the single particle
propagators provide a covariant definition of the lifetimes of these
particles.

The self energy method is a more convenient way of actually

computing the energies of excited states than the actual evaluation of
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the 8 matrix elements. This is because only proper self-energy diasgrams
need to be considered. This simplification is similar to the simplification
of linked cluster perturbation expansions over ordinary Raleigh-Schrodinger
perturbation theory.

A similar perturbation theory which provides a definition of
the energy shift and lifetime of meta-stable states has been given by
Hugenholtz [14]. He did not use the Feynman-Dyson theory but rather a
form of perturbation theory developed by Van Héve [38]. This type of
perturbation theory is not readily applicable to the electron gas problen
where the Feynman propagator technique seems to be essential. The results
of the theory presented above are also similar to the theory of radiation
damping of Heitler and Ma [23]. Our method is even more closely re-
lated to the method of Low [24] who applied the Feynman-Dyson techniques
to the theory of radlation damping. The concentration on the analytic
properties of the physical propagator, however, is more closely related
to the Hugenholtz method.

Before ending this appendix we should show how calculations
can be carried out when these metastable states occur as initial or
final states, 1.e. as real processes. The gpplitude to emit a bare

electron {p) 1) or absorb a bare hole of spin S is

+ , ) "tw ¢ ¢
£e8) = %y (1) -7 (1e0)] e 1t wW(p) 528
which we can also write as
o
+ ~ A ar . -1t ) .
A (p,t) = ijmgﬁimm Sp(p, @) e . B29

=0
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1

The intersction changes SF into SF 80 that the corresponding amplitude

for physical particles is

o]
+ i C(po) e
by (est) = Xg 5 > 1 B30
| - E(p,w) 1" + ¢ T (o,0)
-/

where we have used equations BlO, and the definitions preceding equation
Blk. The amplitude to absorb an electron and emit a hole is the con-
jugate Aé(p,t). When these expressions are used in computing 8

matrix elements, the characteristic'"intensity distribution” formulas

familiar to all theories of line broadening appear.
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APPENDIX C

EVALUATION OF IRTEGRALS

Often in the theory of a degenerate electron gas integrals of

the form

1= J & e@3) (1)
p<l

- =
[P+a|>1
where the integration is over all momenta within the Fermi sphere (p=1)

which can be excited outside the sphere by a momentum Z. If we introduce

a parameter a (if a < 1 all integrals which arise are finite ) and define

Iaa) 2 [ & eaa), (c2)
p<i .
|B+ag|>1
Then
ailge) = [% Go@ad) §(IF + adl - 1) 2ad) . ©3)

p<t
-3 = -5 =
Changing vector integration varisbles to n =P + a q where n is a unit

vector ‘by virtue of the delta function and integrating over o we have

3 -3 => =5 - =P g = > 20.
I(Q) = J(qﬂ) / da /d Q 2 gen £n “aq_,q) )z(qen . 93:-—:)
o .

if g<2 (C4)

1 - e
f x dx f(n = ag, q) (c5)
o] o qa/2

]
£
f\’
e
=
(27
h 8
\h&
.
2

where x = g°n and @ is the polar angle measured about g. In this form
the restrictions on the limits of integration are simply incorporated in

the integrations over the solid angle. For gq > 2 +the restriction
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IB+4q] >1 is automatically satisfied if p <1 so

i(q) = /dBp £(Feq) if g<2 ., (c6)
p<1

For the calculation of the plasmon lifetime the following

integral is required (equation 517 )

- 3 3 R =2 22
I(Qpek) = fd b,  [&p, S0 +EE +RE,-a )
p1<1 p2<1
wp = - =
§P1+kl>‘5 5P2+ki>1

[a + b(p? - (7 )77, (©7)

This integral is essentially the volume of phase space available to the

final states of two pairs. To evaluate these integrals with the Pauli
Principle restrictions we can use the method outlined above. Using

P

o it(k-i—gaig_!-%-k-? - /)

S0 +kB, + B, -n) =5 [ave 2
=0

1 (c8)

we can write for k £ 2
Q) =2m [ ab o200 TG hb) 2(8) - e, (1) B (®)] (09)

where
1

£.(t) = [ ae [ xax it (x=ka) _ __3,5 (1 + %)[eitu-k)geit] - .,,% o itk/2

0 ka/2 kt t
(c10)
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i 1 .
() = da < ax o3t (x=ka)
i '£ kggz
2 s 2 2 - 7
= =L 38 _ _6_ 6iy p it(l=k)_ ity _ 6 ., _ KiT) -itk/2

(c11)

We will not need the integrals for k > 2 for smallfll . To
evaluate the integral over + in equation ¢y we note that the integrand
is regular at t = 0 and we can deform the path of integration to go around
a (small) semicircular indentation at t = 0 in the upper half plane.

We call this contour € o It is then easily showm by contour integration
that
7? gt o-italk) gmn _ 2n(a)% o yn=l
e -G&:ﬂl: a 7( (alk)) (c12)

D G0 c
where 7( (x) is the step function. Using this we can evaluate I(& ok)
exactly. The exact expressions are rather long and since we are interested
only in small values of ) we will give only the expansions valid for
small L o We have

1 5 (0 k) = (a + ) Z( 4k) = (2 k) (¢13)
(27)

where
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0 k<.f7;,/2
103 Q 2 Q2 0
2Bk) =k o gyt oF el -3 Z k< (1)
3 2
%L+k(%%) N <k
k k
[ o < /2
1 0° 102 0% a 2
W k) =k 4 === + 3 L S
’ 26 5 273 "2 "k 75
+k(i~w2ﬂ' +2ﬂ2~l——-—mﬂ”4} N <cx <
k T22 T4 4
1 a4 |
- 20 }é +k(4 kz;, -(L<k9
(c15)

Here we neglected terms of the order L 2 and higher. We see that for

small values of {1 the leading terms arise from small values of ke
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2. INTEGRALS ARISING IN SPECIFIC HEAT CALCULATION

a. For the evaluation of the specific heat we needed the sub-

raction integral, equation 7.25. The problem is to evaluate

o 1 00
b5 — 2 _@;9‘_ il E_i_g._ 1‘ ~Y L
HS »«);E ]2” f KUX / 3 ) T - ) Qq(u) @ (b}.O)
5 d (iu - x4 - x)
- 0 -

The integration over u is easily accomplished using equatlon 1.43 for

Qq(u) = Qo(q, iqu). We then find

2 1 1
Ly = = jk @1{ J[ dx x I( ) (%) - /f dx x 1(2)(x) ]
a3 5 q3 q
~q/2 a/2
@ 1
+ j[ 9%-j[ dx x I(3> (%) (c17)
q g
2 -1
where
(1) 3 1 o
lq = G P ( A “’)2 (ClO)
el g+%+Q . P
[B+d) L
(2) .3 1 C
Iq = /(i Jo] —{"—-_;—:Sé* (Cl))
o<l K4Q . D
I el )yl -
(3) Jf.3 1 ‘
I = [ ATD  em—— (ceo)
L (q+x+8.3)°



Using equation C5 for the integrals with the Paull Principle restric-

tions we have (with y = 4.D)

1 1
(1) :, 1 3 s ’2
Iq (x) = emg |da vady [a(l-) + x + y]
°o
2
=omg [ = 1n|£i§i3 NP il BER (c21)
q L+x L
Xt =
2
and similarly we find that
(2) (1) N
I () = - I y ce
I COIRE A € (c22)
Also
IéB) (x) =20 (g + x)d %f%%ﬂ -2 ] (c23)

Using these results in equation CL7 we can perform the integral over x

which gives

2
b [a o2 L2y 1 219
Hg =7 { q2 [ 3 in (1 ra ) 30+ 759 lnl 2~q| ] (Ccak)
®
Eofd 2% L2 2 B
ﬁng [ q3 [ 3 lnl 1 2‘ +q (1 za Jln |1 - qg 34 ]

Finally we carry out the integrations over g and obtain the result

Hy :=;%§ [ % 1nd + % ln 2 = g'] + 0(8) (c25)

So that

2 - &« ] = -0.0855 (c26)

oo
S
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b. As an example of the evaluation of the integrals arising

from the exchange contribution to the specific heat we will discuss the

integral in equation 7.55. We can write (from equations 7.36, 7.khk)
o
1z xdx 1 7 du -
S & P S gy > ; - 7\
a/ 2(1-x) 2 =3 3 / o R(u)  aflw aldq (cer)
-1 ~olp
1 1 1
- -1, 2 . & A . A A
(n-n ) iu-g'n  iu-g-n

> ]2 . . R
where (n—nl) > 2 . The angular integrations over the azimuthsal
angle between o and El and over y = (ﬁ»gl) can egsily be carried out
to give
< 1-4 8
~:}; /“@:glnR fdx*gx ~3 [in jl':; + 2X2}+ )’LE + 0(A).
< e -l+hg  u” o+ x° 1-x 1+u
(ce8)
Carrying out the integration over x gives
< -
1 | 2 Y(1-uten ) -1 142
= ]du 1na{ 3 (-1n28) + 3 - 2(tan G) e (C29)
RPN 1l+u 1+u

The integral with B(x) replaced by B(1) is found by taking the limit as

—

7 BT in the imtegrand of (C27) with the result
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Taking the difference of these integrals and the limit as & - 0 we

then obtain equation 7.55.
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APFENDIX D
THIRD ORDER CORRELATION ENERGY

In this appendix we will briefly outline the steps necessary to
compute the third order correction to the ground state selfl energy C»E.
Unfortunately some of the multiple integrals which result are too difficult
to evaluate without the aid of an electronic computer. Thus we will pre-
sent only a partisl caleulation, We present the calculation here as a
specific demonstration that the theory can be consistently applied to
higher orders with all divergences removed,

Acecording to equation 3.12¢ the caleulation of Aﬁ@ depends
entirely on knowing the propagator Q (g5 iu). The expansion of Q. {qeiu)

8

8
in terms of proper polarization diagrams is (omitting the argument (q,iu))

QI‘ = QQ + Q(1) + Q§2) ¥ ove D‘a
s 8 s
where QQ was discussed in Chapter I, section C and Q(l) wag discussed
in Appendix A, Qéz) is the propagator or amplitude for all proper polar-
izstion diagrams wgth two internal interactioms.

We can expand equation 3.12¢ in orders of ry in the following

way (using equation B1)

1 I E;m du 3 e
-5 [ [ [0 Sha)
(1) HE
rs dr? ar? ) Qr? . ar? 2 onﬂ QO
ey —— e —
A rt LYz 2 ar_ 2 arl 2
1+ 2 2 Qo (1 + 22 Qo)
T g T q
(2)
ary 2,
* 53) ar? ]} +olrg) . p
a4 . 2 4
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Iet us take this term by term:

a.) The first term may be written as

= \e 16 22
—-%: - ;ig @ 27 Y - 2q2 2 q (u)]

D3
vhere we have separated out the lowest order contribution which is the
exchange energy (see equations 3.9 and 3.%9a). We also have substituted
gqu for u and made use of equation 1.49 defining qq@;)e The second
term in D3 is the contribution to the correlation energy per particle
which was called &f by G-B. They evaluated this expression to lowest
order in r 3 we will evaluate it to the next highest order. To do this
we make use of equation 1.50 which gives Qq(u} as a power series in g
iecee

Qq(u) = 4u R{u) + q2 R(@)(u) + Aq(u)

which defines Aq(u). Using this expansion we can show that to order r_

we can write

Lor 2
R (u)+( ﬁg) uq(u)]

22 e Lar Lar
- 3 d 3
el = = o5 %) f “zzfd g glin(1 + """"zﬂ.qs R(u)) = g
ar e g

R ( )R (u)
- —%5 ars }@f fd g2 - (1) = + ﬁq(u)] + O(ri) D4
8 - a° + —£ R(u)

whers

~{4m)? mq(u) = &8 (Ry + 3a) +~% (B, + )2 = ”%: {QE(H) - (4nR(w))?]

2
q 29
D5
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P 2 - 2 -
(4w ) /8 (u) = (4“%) A+ 4R (R, + q_2 &)2 + & (R, + qu}B
q qé“’ q2 1 3 Y1

i

AL EICOE TR R TCHES FINCY) R
-9
Now we perform the integrals over ¢ for O to, say, 1 and correct to

order Ty exactly., We find

=g Lo [ arE) [ +20m (2 RMW) - 5 2 r@] + §
T .52 2n :
gn” -
3ar w box
1 2 B
4 ;2“6 nmdu R (u) R(”(u) In( - R(u)) + rg 8,3 D7

where

1 co o
=2 [T 2 2 [ du dg 2
8 B o f_‘w 2 fo q dq aq(u) + 3 J;w PR F [Qq(u)] b8

=00

It is not difficult to see that 8 'is G-B's subtraction term which was

evaluated by Pines to give 8 = - 0,0508, We can write equation D7 in the

form

o=
et =Alnr +C+r (A” 1nrs+c”) D10
where A and C were evaluated by G~B.

[=+]
= % f du Rz(u) = 0,0622 D11

L | =00
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4o 1l - ,
C= <+ A 1n - + < 1n R>av -3 0.050 D12

The coefficients of the higher order terms are

hyq = 43[ du B? (u) R(i)(u) = ﬁb 16@ 0+0052 D13

By ® ;@345[0 du R (u) + -;Ag 4] da 1¥a) R, (1) 1n R(w)
’ 5;4;;2% 1n &2 D14

b) The second and fourth term in equation D2 introduce the lowest order
exchange effects. To terms proportionsl to ‘T, We can write their

contributions ag#®

dr' ar? — ’
e 31 s sfdu ___g;_, (140)
€1x 8r 22 [ fd | S s
ars [0} a8

(190)

ar I‘ 2]

S
=3 =3 YRR |
ma” (1 + (arl/mq") Q)]

where Qéi’e) is given explicitly in equation A5 of Appendix A, By carry-

s
ing out the integrations over u and r; in the first term we find

[a (@) a$'(q, 1qu)

Q

+ O(r ) D15

ofEs =

“‘ugﬁgz) * "25‘ % d” e [ & | 2r 2 D16
8r’ ry o q(q + (ar*fﬂ )a (u))

™

N@te that (1)
' rl Q. o dpt ©
s dr 3 S rs s 4rs [.3 du
d”q = - |d7q 5 r!
l*(ar*/ Te o0 8

G

(1,0)

1 2(arl/m )Q Q
[

® 1+ (aryfr )Q)

)

is proportional to the amplitude for diagram IIb in figure 4 if both
Coulomb lines are replaced by the polarized interaction. The first term
on the right corresponds to this diagram with only bare Coulomb inter-
actions; the second term arises from the lowest order polarization
corrections. The factor of 2 occurs since both intersction lines are
equivalent. The fourth term in equetion D2 also contributes such a
term yielding the factor of 3 in equation D15.
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where ség) = 0,046 + 0,02 ies G-B's second order exchange energy. To low=
est order in ry Ve need only include screening terms for small values of q.

The result, exact to lowest order in Ty is

r
£1x3 (2)+$ s dr;(rg)z j du f q & R(u) R( )(J__); +p é D17
k o

o qa  qlqlsarymr)  ®
where
8 9 1 wgﬂ 3 Qq(u) QS)(CH igu)
r x 3 [ 2 d°g 3
ﬁ*@ i 5 =] q

[ 3 émR@) e, RV (1u) }

159> 3 d’q qB pi8
Performing the integration over q and r; in equation D17 we find
= (2) | 2
Eig = &y * rs(Aix Inr_ +'Clx) + O(rs) D19
where
38 [ (1)
A = 28 f du R(u) B''/(du) = = 0,00045 D20
1% F5 ) o

6. = -2% [ Td" r(a) () (10) 1n R(w)] + 4, [1n .,%.9‘ - %] * ‘Sle p2i

ix 8w5 2

A wag evaluated analyticelly using equation A5 in appendix A for

ix
R(‘! ) (iﬂ)e

¢) Pinally, we come to the third term in equation D2, When reduced to

terms prop@rtienal to rsg this becomes

8ﬂ5 ar ).,..., f art f a Q<2)(q 1u) D22

We have not derived an expression for Qéz)(q,iﬁ). However, we can avoid
s
the necessity for this by noting that, according to the arguments leading

up to equation 3.9 in the text, oy is the sum of all third order

perturbation diagrams which have three different Coulomb
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denominators. To order r, we can drop the screening terms since the
sun of these processes is still finite., Below we list the integrals which

correspond to the third order diagrams in Figure 4 .

@) _ %5 3 3 3 dBQ? a%, 1
ey i"-‘mg( )J\dp‘!fdp2 5 5 - " D23
g q a, (g *+aq,)
1 2 179

T e

R—g (51 ;G:l 9;2) R-! (p29qs1 9q2) + RZ (;1 931 !32) Rz (1029% qu)
2 - -» - > 2 -3 -3 -3 =
[a] + qe oy +p010(ay + ay)™ + (qy + qy)e (g +p,)]

@ p =

_ 28-'5 (p‘i 9@1 ’q‘z) Rz(gzs 319 32)

gf (;2 = 51 )(51 + 5.2) (;2"51)

3 3
ar d7q d”q
) _ s (~2) deP deP / J;/ 2 1
2x 2 574 1 d 2 2 2 = 2
2w 8w ay 1 (o4 )

=3 - g
+p, tay ta,

firet Sermr
in . D24

brackets
ahove

where
Ry 5dy 5 3) ® 10 -p)) [lley + 4yl =D U5y +ay +a, | -1

RZ(;’B 931 g 3.2)5 7((133 "‘5)4(1 = gg-g +%“7Z (1 - lgj '*‘5»3 +§25)

D25

(e) , (@) _ “s“_gﬁfafs 3 (&g 1 1
[ + € = === (===) [ dp d’p fd D
2 - =» = P =5 =
2 ' T2 03 LR RN e g N AT
Pyt Py
lpy*al>1 o *al>1
JaA+d) =M= U8, +3l =D T4 -»y)
[o® + -6, + 3,017 [0 + G- (B + By)[a® + 3 (B, +3,)]
D26
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These multiple integrals are much too difficult to evaluate without the
aid of an electronic computer. With the restrictions shown on the domains
of integration, these integrands are easily divided into positive and
negative definite parts. Integrals of this type can be evaluated quite
readily by Monte Carlo methods using an electronic computer. It is hoped
that this will be undertaken in the near [future.

a(a) + c(b) + 5(0) + a(d) =r C then

If we call &, =&, " v &y " 6y T T L T lo

combining equations D10-14, D19=21, and D23-26 we find

§ = A o o . P
€' = 0.0622 In r_ = 0.096 + eeooagirs Inr, +r (G 0y, + Cop)

ba7
" where 0119 0129 and 022 still awalt evaluation. We see from this result
that an attempt to caleulate the term proportiocnal to Ty using ordinary
third order perturbation theory would be disastrous; since the Ty in Ty
term cannot be expressed as a power series in rge This agrees with
G~Bl's discussion of the form of the third order term.
The "linked cluster® expansion which we have used here (see page
41 ) is also an improvement on Rayleigh=Schrodinger (Rrs) perturbation
heory. In the latter theory we would have to include disconnected third
rder ground state diagrams which would further complicate the calculation.
As we mentioned in Chapter III, our linked cluster expansion includes inter-
mediate states which violate the exclusion prineiple. This is clear from
the diagrams in figure 4 in which we have made no attempt to saﬁisfy
the exclusion principle. In R=S perturbation theory these diagrams are

cancelled by similar disconnected diagrams. For instance, diagran g -
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of figure 5 would be cancslled by discomnected diagram b for all
states which violate the exclusion principle. The reader is referred to

Goldstone's paper for more details concerning this matter.
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APPERDIX E
CENERALIZED SUM RULE

Two sum rules involving oscillator strengths are well known in
the theory of the stopping power of an electron gas {311 [27]. Here we

wish to derive a generalized sum rule which reduces to the usual sum

rules to lowest order in Ty (or ez). The generalized sum rule is
& _} a;rs =]
In fdww e = =52 In /dww@,r(qsw) (E1)
© 1+ £ 0 (qew) T4 © s
22 % ¥?
g 8
e l T Q 2
2 P

or in terms of the dielectric constant

[++3 L=
W I =1 2 ;
T ‘{) dw mm = - Im ‘4 dw w Krs(q,w) 5 a() o (E2)
s

W

The derivation of this sum rule is very simple and depends only on the
analytic properties of Q. {gsw) which we discussed in Chapter II. Since

Qr (qew) = O(m:l”é-) as |w| » « and has no singularities in the first
s W

quadrant of the w plane, the path of integration for the integral

- Qﬁ (qsw) C w QS (g, iu)
- 8 - : 8
{) aw W Grs = A du u Ctrs, (£3)
T+—=5350q, (qw) 1+ =55 Q, (g, iu)
wq 8 T q 8

can be robtated counter clockwise to the imaginary axis. Bul since

Q. (qs =iun) = Qr (gs iu) this integral is real. Thus since
s s
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[xe)
Im / dw ¥
o 1 + 2 2 Qrs(q.ﬁw)
Cms 2 (4)
oo (ﬁg 2 Qrs (QSW))
V. g
= Ia fo ars ]
1+ =55 QI, (gsw)
T s

the first result follows. The second result follows in exactly the same

manner since Q, (qow) = Q (q,w) + AQP {qsw) where iur (qsw) -%’O(l !3
Ts W

as !wi » o Ve see this by studying the diagrams which contribute to

AQr (gsw)s The lowest order diagrams are shown in figure 3. The very
s
lowest order contribution is f‘“ ) (qsw) which the explicit calculation in
s
Appendix & shows to have this behavior. All other diagrams contribute a

factor of three or more energy denominators (i.e. three or more inter-
N -3
mediate states) and therefore behave as 1/|w’| as |w] » «. Tius
ar

252 In f dw w Q, (qsw) = 9 2 Inm f dw w Qo(q,‘w) (E5)
noq o) s )

and we have from equation le.44

&0 2
f aw w Im Q_(qsw) = = f g, (P2 v apy) = B §F . (58)
o 1 1 3
o p<l
=
}pﬁqiﬂ
. . ) a0 () 2 2
The final result in equation Ej follows using p = 40:-6/311.
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Theoretical and experimental values of the eigenloss and
dispersion ecefficients for various metals.

exchange give the q? dispersion coefficient corrected by

equabion 5.8
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TABLE 1

The entries under

Bigenloss Dispersion Coefficient
Metal rg p Expe Paiyr approx. Exchange Experiment
Be  Te88  18.2 19,0 0s72 0470 0085
Al 2§O? 15.7 15,0 0,65 0,63 0.74
Ge 2,08 15,6 1645 0.65 0,65 1.22
Mg 265 10,9 10.8 087 0,49 081
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