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Appendix 4 — Derivations

Derivation 1 - Fourier Heat Equation

We begin with the Fourier heat equation.

oU(x,y,z,t) VT
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Where U is the temperature of the sample at every point in space and time, a is
o> o ¢’
+ + .
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We could solve this equation for many geometries, but the simplest solution is for an
infinite plane of material in the y, z directions with thickness L in the x direction. This

reduces the problem to 1D and approximates a cast plate where the thickness is much
smaller than the other two dimensions. The equation reduces to:

2
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a constant, and V? =

Boundary conditions

1. Let us assume that the temperature of the mold is absolute zero so U(0,t) = U(L,t)
= 0. This is a reasonable Oth order approximation if Ty >> Tpo1q Where T, 1s the
glass transition temperature where the liquid material becomes a glass, and Tyo1g
is the temperature of the mold.

2. Let us assume that the temperature of the material when it is cast into the mold at
t=01s U(x,0) = Ty or the liquidus temperature.

We must also assume that T(x,t) = T(t)X(x) so separation of variables applies. This gives

(@) _X"(x)_
alT(t)  X(x)

The solutions for A < 0 force U = 0 and for A > 0 we find
T(t)= Ae ™
and X (x) = Bsin(x\/z) + Ccos(xﬁ) where A =nx/L

Applying boundary conditions gives

2.2

Ux,0)=Y.D, (sin %)e_ r

n=1

Where D, =3ILTL sin| % dx=TLM
LY L nr

The critical cooling rate is the time required to cool the centerline to T,.
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Critical cooling rate = U(L/2,t)=T,.

© _ _)12722at
T,=T, 2—2 2c08(n) sin(%)e z

n=1 nrw

We can solve this for n = 1 for the first order approximation and find that

T
t=——In—*+
nca T

g

The important message from this derivation is that the critical cooling rate goes like the
thickness squared (L.
Derivation 2 - Implications of Slope Change in Thermodynamic Variables

Assume a slope change in the entropy S(T) or enthalpy H(T) of a material. Call the
temperature where the slope change occurs T,. We know from thermodynamics that

. =T(§j and cP=T[§j =(6_Hj
or ), or ), \oT ),

If either H or S changes slope at T, then

{&S‘(T;)J [6S(Tg_)J [8S(Tg+)J [6S(Tg_)J
# and #
or ) or ) or | or |

and we would expect a discontinuous ¢y and C,. Similarly if the slope of P(T) changes at
T, then we would expect discontinuities in the compressibility. These slope changes are
observed in glass forming liquids and the discontinuities in ¢, as measured in a DSC
provide a way to determine the glass transition temperature.

Derivation 3 - Stephan’s Equation for Parallel Plate Viscometer

The viscosity equation for a parallel plate viscometer geometry is called Stefan’s
Equation. It is solved fully in “Theory and Application of the Parallel Plate Plastometer
[G.J. Dienes, H.F. Klemm, J. Appl. Phys. 17 (1946) 458]. The derivation takes four
journal pages and the basic strategy is given here.

99

Begin with the equation of motion for a viscous fluid. Neglect body forces. Transform
to cylindrical coordinates and consider a cylinder with height << radius. Assume no
slippage at the plates and a parabolic flow front.
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General expression for motion of a Newtonian fluid of viscosity n neglecting body forces
is
dv Vevvs=-v PR3 L noved
p— +pVe = - + + — °
dt p+n 3 n
assuming incompressibility requiresve v= 0
assuming velocity is small we neglectp Vevv

-

d >
and are left with pd—: - vp+nv3V

In cylindrical coordinates we have three equations

= +
Pge “"ar ™" ¥x
dv, 1 dp 2y
=—— — +
Pae ""rae " Ve

Pat “Taz’
The parallel plates are located atz=0and z=h

circular symmetry requires v, = 0

assuming a short sample lets us assume v~ 0
assuming no slippage and steady state flow means

d
Ve (2=0) =v, (z=h) = 0Oand Zr =
ASSUMPTIONS ARE GREAT!!!!!! We are left with
dp _ d2vr
dr 7 dz?2
Integrate twice and apply the boundary conditions
r= —— @ (z-h) z
2n dr
consider flow through a surfaceelementrdodz=rdo dz v,
h d h
U= flowperunitarclengﬂa:f vedz= — had z? - zhdz
0 2n dr Jo
B dp
~ 12n dr
dh
nextwelettheplatesnbvetowardseachotherataratea
dh
avolumeelenentrdrdedzchangesvolumeataraterdrdeE

since the fluid is incompressible the rate of decrease of volume

must equal the outward flow rate. Thus,

dh o] 12n dh o o]
-rdrds— = — (rd V) dro 1 Ty 9 (r—p)
or h3 dt or or

Integrating and requiring that p is finite for r = 0 and p(r = R) = atmospheric pressure
gives
3n dh

p:—ﬁ at (RZ_rZ) +1latm
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We must balance the forces on the plate in steady state flow.
R
Downward force applied to top plate= F+ j latm* 2 rrdr
0

R
Sample applies this force upwards =f p2rrdr
0

h R
Wearriveat F= -2 dh 3n j (R2 —r2) rdr
dt B Jo
solving for the case where radius of plate (R) = radius of sample (a)we obtain
__3nnat dn
2n3 dt

Solving for the case where we assume the plates are larger than the diameter of the
cylinder we are squishing and we find:

B 3V’ dh

F
27k dt

Where F is the applied force, 7 is the viscosity, V is the volume, h is the height, dh/dt is
the time derivative of the height of the specimen which is assumed to be incompressible.
Derivation 4 — Vogel-Fulcher-Tammann Viscosity

Some liquids are observed to exhibit Arrhenius type behavior. This means that their flow
properties as a function of temperature can be well described by

Ty

n(T) =n,e" " where npis the high temperature viscosity limit = 10°° Pa-s, and Ty is the
temperature at which no flow occurs. Deviations from this behavior are observed for
many liquids. The deviation usually results in a steeper drop of viscosity with
temperature than the Arrhenius relationship predicts. This is called hyper-Arrhenius
behavior. To allow for this, the Vogel-Fulcher-Tammann (VFT) fit to the viscosity data
has a multiplier in the exponent as seen below.

D" =T,

n=n,exp’ "

where D is a fitting constant and 1o and Ty are defined as before. Ty is also called the
VFT temperature.

Derivation S - Viscosity of BMG from Potential Energy Landscape Perspective

Flow of a metallic glass is described as barrier crossing events in “Rheology and
Ultrasonic Properties of Metallic Glass-Forming Liquids” published in Materials
Research Society Bulletin [W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, K.
Samwer, MRS Bull. 32 (2007) 644].
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A barrier to flow is argued to be a function of STZ volume (€(T, P)) and the energy
barrier to shear flow of the STZ which is shear modulus (G(T, P)). The total barrier to
flow is W~G*Q. The barrier to flow at the glass transition temperature is W,.

Experimental data suggests that the contributions of the shear modulus and STZ volume
barriers are similar and can be well represented by

W=W (G (T), o (T)) =ngE\n(Tg\P

\t) (1)
W~Wy (Tg/ T)2"

Taking the barrier crossing rate normalized by an attempt frequency to follow a
Boltzmann distribution (equivalently, thermally activated hopping), one arrives at a
viscosity law that takes the form

— = Exp[-W/KT]

©

Because these flow barriers give rise to the observed viscosity, The exponents are shown
to be related to the fragility as follows.

m= (1+2n) Log (Ng/ Nw)
where

aLogn
"o (Tg/ T) )T T

and

Wy = kTg In (ng/ n) -

We can combine terms

i ) E {Tg‘Zn
Moo _ExP[kT (T) ]
Ln[l _ " {E] solve for Ty
Noo kr \T) ,
Ng Wy {Tg] " g .
in[ 21=_—"2 [=2 =KT,In|— | pl back
L) = |, "= KTin[ ] pluggingbackin
2n+l
[ "] =[] 7]
Noo Nw - \ T )
I-n[E m/10g (ng/meo)
o e
Neo In[10] ( T)
If we let
A=T‘®(ng/noo)
we arrive at the expression
m/A
Log[—] A{Tg]

\T)
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Derivation 6 - Thermoplastic Formability Parameter
Tg m/A
Starting with the result of Derivation 5: [— | = {— ]

We integrate as shown in Figure A4.1 by oversimplifying BMG physics and assuming all
BMG exhibit the same viscosity at Tx.

Log(n /M)

Log(ny/n=)
Log(n,/m,)

6 Figure A4.1: Thermoplastic formability

parameter & found by integrating as shown.
s ’ T mih
dé=
Ty/T
Ty/T, 1

In reality, the square region may be different from alloy to alloy.

1
6=f [A-Log (n/ne)1d (Tg/ T)
To/Tx

1
5= A—A{—g] d(T,/T
J‘Tg/Tx[ \T) ] (Tg /%)

s-af1- o). 2
\ x) 1+%

Squish data and correlation with 6 are detailed in Figure A4.2.

12.8mm 21.7mm 23.7mm 24.7mm 28.5mm
Zryy 5Tig3 6CUy, gNijgBe,, 5 21y, Tiy CuyoNijgBe,s Pty sNig ;Cuy, 7Py 5 Pd,;Ni;,Cu,;P,, ZrysTiyCu, ;Bey, 5
0=0.15 0=0.56 0=0.48 0=0.57 0=0.86

Figure A4.2: Squish test data for 5 TPF candidate alloys shows 6 is a decent predictor of TPF potential.
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Derivation 7 - Composition Counting

To determine the number of compositions one must create for 1 - 5 element alloys
assuming 5% composition steps. There is a constraint that the sum of the elements = 100.

One element: There is only one choice with 100% of that element.

Two elements: Give the alloys shown in Table A4.1.

Table A4.1: All possible two component compositions with 5% composition steps.

Alloy # P2 3 4] a| 6B 7T 8] 9| @] W[ 2] B[] @[T ] B8] 13]20] 2

Yelment! | 100 | 35 | 30 | 83 | 80 | 75 | 70 | Ba | 6O | 55 [ o0 | 45 | 40 |30 |30 |20 |20 15 ) ID| 3| O

Y%element2 | 0| 9| 10 ) 15|20 | 25 |30 | 3b | 40 | 4 |30 | 53 | 6O | Bo | 70 | 7a | 80 | 85 | 90 | 85 | 100

We see 21 possible compositions.

Three elements: This case is best thought of with a ternary phase diagram as shown in
Figure A4.3. This can be drawn in 2D because of the constraint that the sum of the
elements = 100. The alloy's composition is determined by drawing lines orthogonal to
the corners. In the Ti corner, the alloy would have 100% Ti. Horizontal lines orthogonal
to the Ti corner are drawn in 5% composition steps. The lines slanting downward are
drawn orthogonal to the Be corner in 5% composition steps. Intersections of the lines
form a grid in the triangle where the Zr composition = 100 — Ti — Be. There are 21
compositions along the bottom of the triangle going from the Be corner to the Zr corner
with Ti = 0%. There are 20 compositions possible along the line Ti = 5% just above the
bottom of the triangle. This continues until we reach the Ti corner with 1 possible
composition. The total number of compositions is 21 +20+ 19+ ...+ 2+ 1=231.
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Figure A4.3: All possible three component compositions with 5% composition steps found at line
intersections.
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Four elements: This case is best approached with a quaternary phase diagram drawn in
3D because of the constraint as shown in Figure A4.4. In this case the phase diagram is
an equilateral pyramid with compositions determined by a plane orthogonal to each
corner. Instead of adding line elements, we add equilateral triangle elements as shown
below. A table with the math is included after the 5 element analysis.

Figure A4.4: Four component phase diagram is an equilateral pyramid / tetrahedron.

Five elements: This case can't be drawn and occupy a 4D phase diagram that is an
equilateral hyperpyramid as shown in Figure A4.5. Instead of adding equilateral triangles
for composition steps, we now add equilateral pyramid elements shrinking in size as
shown below. The counting follows.

4D

Figure A4.5: Five component phase diagram is a 4D equilateral hyperpyamid.
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The 3 element phase diagram compositions were counted using an additive factorial type
function which we will define as !:.The combinatorics are shown in Table A4.2.

Jelement=211:=21+20+19+...+2+1=231
4 element =21!: +20!: + 191: +. .. +21: + 1 =1771
5 element = 4 element(21) + 4 element(20) +. .. + 4 element(2) + 1 = 10626

Table A4.2: Combinatorics for 3 - 5 element alloys.
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Derivation 8 - Limiting Cases of Two Phase Liquid Flow

A recent study of amorphous alloys in the ZrTiBe system showed the possibility of a
miscibility gap in the supercooled liquid region along the Be = 40 pseudo binary line, but
no microscopic evidence of the two phases was obtained. The two phase glasses are
thought to separate into a Zr rich phase with a glass transition temperature Ty ~ 320 °C
and a Ti rich phase with Ty, ~ 375 °C. If there are indeed two glasses, one would expect
to see flow, or more precisely viscosity, as a function of temperature characteristic of a
two phase liquid.

The flow of liquids with multiple phases was a phenomenon studied extensively in the
early 1900s. Two limiting cases were solved for ideal mixtures. Variations of these ideal
cases were postulated to explain the flow of other types of liquid mixtures. Both cases
consider a liquid mixture with parallel layers or laminae. The applied shear stress is
orthogonal to the layers in Case 1 as shown in Figure A4.6. The applied shear stress is
parallel to the layers in Case 2 as shown in Figure A4.7.

The fundamental law governing viscous flow is

dv F
el ()
dr n

Where F'is the applied shear stress, # is the viscosity, and ? 1s the spatial derivative of
r

the velocity orthogonal to the shear direction.

787 R ek

E

Figure A4.6: Case 1 showing laminae of two fluids orthogonal to shear direction.
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Case 1 constrains the layers to have the same velocity. For simplicity consider a liquid
with alternating laminae 4, B, . . . with viscosities 774 and #; . . ., and laminae thicknesses
s4and sp . . ., and shear stresses per unit area P4 and Pp . .. Since we are considering
only a simple shear stress, we can integrate equation 1 and find

_RP _RP, _RE

v
H 4 My
Where R is the distance between horizontal planes, H is the viscosity of the mixture, and
P is the average shear stress over the entire distance S. PS = Pys4, + Ppsp +... Hence
I :ﬁ P, +Psy+...
v S

Because s5,/S is the fraction by volume of substance A in the mixture, we can use the
volume fraction ¢; for the ith substance in the mixture and find viscosities are additive for
Case 1.

H =% cn (2)

B

Figure A4.7: Case 2 showing laminae of two fluids parallel to shear direction.
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The constraint in Case 2 requires the shearing stress to be constant across the layers such
that

p=T1a _ Vs _ ..(3)
T4 "

where the v, and vp are the partial velocities, and ra and rp are the thicknesses of the A
and B laminae. The measured viscosity may be determined by the velocity of the top
plane relative to the bottom one such that

Hv
P= ? (4).

The partial velocities of each layer are additive and combining equations 3 and 4 gives

PR Pr
AR TS

Substituting in the fluidity, @, which is defined to be the 1/, we find that
PRO = P(r @, +1y¢, +...).

But ra/R is the volume fraction of substance A in the mixture and can be replaced by c..
We find that fluidities are additive in Case 2.

®=>cg, (5)

A similar derivation can be found in [1]. In immiscible fluids, the layers A and B resist
indefinite extension and flow resembling Case 1 results. See page 87 of [1].

In the two phase amorphous (Zr,Ti;.,)s0Beso alloys, one would expect to see three regions
of flow. The first region is at temperatures below T, where the sample would behave
like a solid and little or no flow would be observed. The second region covers the
temperature range Ty <T < Tg. Inregion 2, we should see a slope change in the
viscosity versus temperature curve as the liquid-solid solution begins flow. The third
region spans the temperature range Ty, <T < Ty. In region three, the sample should
exhibit flow characteristic of a two phase liquid. At Ty the sample begins to crystallize
and flow stops.

It is difficult to predict the flow properties of the (Zr,Ti;_,)s0Beso system in a quantitative
manner. First we don’t know the fragilities of the phases in the alloys. These will be
assumed similar to Vitreloy type alloys with m = 40. Also, the flow in region 2 depends
not only on volume fraction of the solid phase, but also the size distribution, which is
unknown. There are many theoretical models predicting measured viscosity of a liquid
solid mixture with known viscosity and solid phase fraction, but they vary by orders of
magnitude in their predictions [2]. They are not presented here. A schematic picture of
flow is desired. As such, the Johnson viscosity model [3] will be used and a solid will be
assumed to have a viscosity = 10" Pa-s. At Tg1, the first phase is assumed to soften and
at Ty, the second phase is assumed to soften and flow according to the Johnson model.
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We will assume T, values measured in the DSC are correct and also assume a fragility of
40 which is reasonable for Vitreloy type alloys.

We will look at flow predicted by both Case 1 and Case 2 for a glass similar to
Zr30Ti30Beso with about 60% of the low T, phase. Assume Ty =310 °C, T =360 °C,
m = 40.

Case 1: Additive viscosities:

Region 1: (T <310 °C)=0.6*10">+ 0.4*10'*)Pa-s

4 310

Region 2: (310 °C <T <360 °C) = | 0.6* 5, *10 (7] +0.4%10" |Pa-s

4 310 4 360

Region 3: n(360°C<T<Tx)=|0.6*n_*10 [T) +04%*n, *10 (TJ Pa-s

These equations are taken from the final equation of derivation 5 and solved for 1.

Case 2: Additive fluidities so - = ¢ = c¢, + e, = <+ <2
d M1
*
Solving for n gives 77 = _hrm
a1, + 6o,

10" *10"
0.6*10” +0.4*10"

Region 1: (T <310 °C) = [ JPa-s = 10" Pa-s

310

n,* IOA[TJWA *10'2

Region 2: n(310 °C <T <360 °C) = i Pa-s
Al 2=
0.6"‘7700"‘10(Tj +0.4*10"
310" 360\""*
Region 3: n(360 °C <T <Ty) = - — —
2 %)
0.6%n, *10 * 7 +04%p *10 7

The two limiting cases for two phase liquid flow are plotted in Figure A4.8.
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Figure A4.8: Additive fluidity cases and additive viscosity cases on three flow regions of a glass with 60%
low T, phase are shown. It is interesting to note that the theoretical additive viscosity case resembles the
flow seen in figure 6.5 suggesting that we may approach the immiscible fluids resisting indefinite extension
case proposed in [1] on page 87.

Derivation 9 - Modulus of Rupture Equation for Rectangular Beam

Modulus of Rupture for beam bending

Mxy 3xF*L
o= =
I 2 xb*h?

Where

o = stress parallel to neutral axis
M = bending moment

y = distance from neutral axis

I = second moment of area

We begin by considering a strain in the x direction which is related to the distance from
the neutral axis as follows

€Ex=-KY
The resulting stress is

ox=Eex=-Exy
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m= —O'XYdA

M=fExy2dlA

o fyans [ o

b/2

bh3
I=-
12
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