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Abstract

Quantum Monte Carlo is a relatively new class of electronic structure methods that
has the potential to calculate expectation values for atomic, molecular, and materials
systems to within chemical accuracy. QMC scales as O (N?) or better with the size
of the system, which is much more favorable than traditional electronic structure
methods capable of comparable accuracy. In addition, the stochastic nature of QMC
makes it relatively easy to parallelize over multiple processors.

QMC calculations use the Metropolis algorithm to sample the electron density
of the system. This method has an inherent equilibration phase, during which the
configurations do not represent the desired density and must be discarded. Because
the time spent on equilibration increases linearly with the number of processors, this
phase limits the efficiency of parallel calculations, making it impossible to use large
numbers of processors to speed convergence.

This thesis presents an algorithm that generates statistically independent walker
configurations in regions of high probability density, shortening the length of the equi-
libration phase and ensuring the accuracy of calculations. Shortening the length of
the equilibration phase greatly improves the efficiency of large parallel calculations,
which will allow QMC calculations to use the next generation of homogeneous, hetero-
geneous, and distributed computing resources to conduct highly accurate simulations
on large systems.

The most common formulation of diffusion Monte Carlo has two sources of error:
the time step used to propagate the walkers and the nodes of the trial function. In
order to explore these sources of error, DMC calculations were carried out on three

pericyclic hydrocarbon reactions using Hartree-Fock, generalized valence bond, and
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multiconfiguration self-consistent field trial functions and time steps ranging from
107* to 1072 au. The results are compared to values from experiment and high
quality ab initio calculations, as well as the recently developed X3LYP, M06, and
XYG3 density functionals. The appropriate time step and trial functions for the
reactants, transition states, and products are identified to begin to develop guidelines

for researchers carrying out calculations on larger systems.
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Chapter 1

Electronic Structure Theory

The goal of electronic structure theory is to understand the geometries, reactions, and
other properties of molecules and materials based on simulations of their electronic
structure. The behavior of particles on this scale is governed by the laws of quantum
mechanics. Although these laws are well understood, applying them to nontrivial
systems leads to equations too complicated to solve exactly. Since exact solutions are
not possible, researchers use approximatations that trade accuracy for computational
tractability.

Approximate electronic structure methods are classified as ab initio methods,
which are based only on the laws of quantum mechanics, or semiempirical methods,
which use experimental results to determine functional forms and fit parameters.
Methods of both types are used to understand and predict experimental phenomena
such as reaction mechanisms, electrical properties, and biological activity for a wide
variety of systems. This chapter contains a very basic introduction to the laws of
quantum mechanics and the approximate methods used to apply them to molecular
and solid state systems. Further information on quantum mechanics can be found in
references [1, 2|, while applications to chemistry and materials science are covered in

references (3, 4, 5, 6, 7].
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1.1 Quantum Mechanics

The fundamental postulate of quantum mechanics is that the energy and all other ob-
servable properties of an atom or molecule are expressed in its wavefunction, which can
be obtained by solving the Schrédinger equation. Exact solutions for the Schrédinger
equation are possible for only the simplest systems. Larger systems lead very quickly
to equations with too many dimensions to be solvable.

Quantum mechanics dictates several necessary features for o, the wavefunction of
a particle. The product of the wavefunction with its complex conjugate, 1*¢) = [)]?, is
interpreted as the probability density function for the position of the particle. Since
the particle must exist somewhere, integrating [¢)|? over all space must give unity.
Wavefunctions that satisfy this condition are referred to as normalized. Accordingly,
we multiply ¢ by a normalization constant ¢ so that [ d7|c|? = 1.

The mathematical framework of a many particle wavefunction, ¥, must account
for the fact that electrons are indistinguishable from each other. This means that the

spatial probability density, p, cannot vary with the interchange of any two electrons:
p(L,2) = [T (L2)P = [T @1)[=p(21). (1.1)

Therefore,
U(1,2)=+¥(2,1). (1.2)

Particles such as electrons with half-integer spin are fermions, for which the wave-
function is antisymmetric: ¥ (1,2) = =W (2,1).
The time-dependent Schrodinger equation determines the evolution of the wave-

function of a system with time [8]:
.0 A

where H is the Hamiltonian or energy operator of the system, ¢ is time, and X is a

generalized coordinate that includes the spatial and spin coordinates of the particles



of the system.

The solution to the time-dependent Schrodinger equation can be expanded as
t) = cie s (X)), (1.4)
j

where the coefficient ¢; = (®; (X) |V (X,0)) and the E; and |®; (X)) are the eigen-

values and eigenfunctions of the time-independent Schrodinger equation:
H|2; (X)) = Ej|@; (X)) (1.5)

Because they do not change with time, the eigenfunctions |®; (X)) are known as
the stationary states of the system. Each stationary state has an associated eigen-
value, E;, which can be interpreted as its energy. The stationary states are usually
ordered so that Ey < E; < E; < .-+, with the lowest energy state, |®y (X)), being
called the ground state.

Because H is a Hermitian operator, its eigenvalues are real and its eigenfunctions
are orthogonal to each other and span the space of all possible solutions. They can

also be chosen to be normalized, so that

(@i (X) @ (X)) = &y, (1.6)

where d;; is the Kronecker delta: d;; equals 1 if 7 = j and 0 otherwise.

1.1.1 Cusp Conditions

The Hamiltonian operator for a system of N electrons and K nuclei with charges Z;,

and masses My, is

NN AV

I v (R YIS w DL o) N CIES

2 oM i—1L=1" i=1j>i | I=1J>1 T1J

where lowercase indices refer to electrons, uppercase indices refer to nuclei, and 7;; is

the distance between particles ¢ and j.
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In equation 1.7 and throughout this work, atomic units are used, in which A =1,
me = 1, le] = 1, and 4mwey = 1, where m, is the mass of an electron, |e| is the
magnitude of its charge, and ¢, is the permittivity of free space.

The Coulomb terms in the Hamiltonian diverge when two particles approach each
other. The Schrodinger equation can be solved analytically for these configurations
because the kinetic and potential terms of the two approaching particles dominate the
others. In order for the energy of the system to be finite, a divergence in the kinetic
energy must exactly cancel the divergence in the potential. Solving the Schrodinger
equation for these configurations to achieve this cancellation leads to the following

cusp condition for the wavefunction [9]:

lim 0 = Phi i v, (1.8)
rij—=0 Or; [+1 rij—0

where f1;; is the reduced mass of the particles, ¢; and ¢; are their charges, and [ is 1
for same-spin electrons and 0 otherwise. An accurate wave function must satisfy the

cusp condition for each pair of particles in the system.

1.1.2 The Variational Theorem

The most powerful tool researchers have in constructing approximate ground state
wavefunctions is the variational principle, which provides a way to compare their
quality. The exact eigenfunctions, |®; (X)), of the Hamiltonian span the space of all
possible wavefunctions for the system. Therefore, any normalizable trial wavefunc-
tion, |¥r (X)), that satisfies the boundary conditions of the system can be expanded
in terms of the |®; (X)):

(X)) = YDble (X)), (1.9)

bi = (@ (X)[¥r (X)). (1.10)

The expansion can be used to calculate the expectation value for the energy of



the trial wavefunction:

_ (W (X) [H|Or (X)) _ % |6
Er) = T e (X)) b 2P (1.11)

where the equality applies if |¥y (X)) = |®g (X)).

The expectation value of the energy of a trial wavefunction is an upper bound to
the ground state energy. The closer the trial wavefunction is to the actual ground
state, the lower its energy will be. This provides a way to approximate the ground
state. First, a parametrized wave function is constructed with a form that can easily
be evaluated. Then the parameters are adjusted to minimize the expectation value
of the energy. This is the closest approximation to the ground state in the space of
the adjustable parameters. Physical arguments must be used in choosing the form of
the trial wavefunction: it determines the restrictions on the interactions that can be

described and therefore represents a model.

1.2 Approximate Methods

In most cases, the first simplification to the Schrodinger equation is the Born-Oppenheimer
approximation, which makes use of the fact that the masses of nuclei are much greater
than that of an electron. The electrons see the heavy, slow-moving nuclei as almost
stationary charges, and the nuclei see the much faster electrons as essentially a three-
dimensional distribution of charge. The Born-Oppenheimer approximation simplifies
the molecular problem by treating the electronic and nuclear motions separately [10].
In this method, one assumes a fixed configuration for the nuclei, and for this
configuration solves an electronic Schrodinger equation to find the electronic wave
function and energy. This process is repeated for different configurations to give the
electronic energy as a function of the positions of the nuclei. The nuclear configuration
that minimizes the energy is the equilibrium geometry of the molecule. The electronic
energy can be used as the potential energy function in a Schrédinger equation for the

nuclear motion, which can be solved to give the molecular vibrational and rotational



energy levels for a given electronic state.

1.2.1 Hartree-Fock

The basis for almost all methods to solve the electronic part of the Schrodinger equa-
tion is the Hartree-Fock (HF) method. In HF, the trial wavefunction is expressed
as an antisymmetric product of normalized, orthogonal molecular orbitals, ¢);. The
simplest way to construct a trial wavefunction from a set of orbitals is to use a Slater
determinant, a framework that ensures the antisymmetry of the overall wavefunc-

tion [11]:

Y1 (w1) Yo (x) - Yn (1)
U1 (w2) o (x2) - Y (22)

1
\I’AS (l‘l,.’Eg,...,.’EN) :ﬁ (]_]_2)

Y1 (on) Yo (zy) - Yn (zn)

In equation 1.12, z; contains the space and spin coordinates of electron 7. Since the
determinant of a matrix changes sign if two rows or columns are interchanged, the
overall wavefunction will have the proper antisymmetry with respect to permutation
of the electrons.

The molecular orbitals can be factored into spatial and spin components:

Y (o) =9 ()=o) x (), (1.13)

where ¢ is a spatial orbital and x is a spin function, either o or 5. The spatial orbitals

are written as linear combinations of basis functions:

O = Zcﬂxﬂ, (1.14)
"

where the ¢, are the molecular orbital expansion coefficients. The basis functions, x,,
are usually centered on the nuclei and resemble atomic orbitals, but any normalizable

functions can be used. Because of the ease with which they are evaluated, Gaussian
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type orbitals (GTO) are usually used as basis functions. GTOs have the following

radial part:

XSTO (r) = d,r' exp (—aur2) : (1.15)

Since the derivative of a Gaussian is zero at its origin, these functions cannot satisfy
the electron-nuclear cusp condition of section 1.1.1. The resulting multicenter inte-
grals can be evaluated analytically, however, so a large number of Gaussians can be
used in the basis set with little computational expense.

Slater type orbitals (STO) have the correct form to satisfy both the electron-
nuclear cusp condition and the long range behavior of molecular orbitals, but are
not typically used in basis sets because they lead to very complicated integrals in

calculations:

XSTO (r) = durl“ exp (—ayr) . (1.16)

Since the molecular orbitals are constructed from the basis functions, the basis set
restricts them to certain shapes and regions of space. The more functions in a basis
set, the more flexibility it has to approximate molecular orbitals. Larger basis sets
generally produce better results in computations, but require more computer time.
Since an electron has a finite probability of existing anywhere in space, an infinite
basis set would be necessary to completely describe its possible position.

In order to solve for the orbital expansion coefficients, the Hartree-Fock method
makes use of the variational principle. Minimizing the expectation value of the energy

of the wavefunction leads to a series of equations, which can be written in matrix form:
FC = SCk, (1.17)

where each element is a matrix. The Fock matrix, F', represents the average effects
of the field of all the electrons on each orbital. The matrix C' contains the orbital
coefficients, S indicates the overlap between the orbitals, and € is a diagonal matrix
of the orbital energies.

Both the Fock matrix and the orbitals depend on the molecular orbital coefficients.
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Thus equation 1.17 is not linear and must be solved with an iterative procedure
called the self-consistent field (SCF) method. First, an initial guess for the orbital
coefficients is formed, and the corresponding density matrix is constructed. Using it,
the Fock matrix is formed. Then, solving the eigenvalue problem yields a new set of
orbital coefficients. This procedure is repeated until both the orbital coefficients and
the energy have converged. At this point, the orbitals generate a field that produces
the same orbitals. This method produces both occupied and virtual (unoccupied)
orbitals. The total number of orbitals formed is equal to the number of basis functions.

Solving the eigenvalue problem is the slowest step of the process. It involves
diagonalizing a matrix, a process that scales as O (N?), where N is the linear size of

the matrix. In this case, N is the number of basis functions.

1.2.2 Post Hartree-Fock Methods

The errors of Hartree-Fock are due to the fact that it treats the repulsion of the
electrons for each other in an average way and neglects the details of their motion.
The shape of the orbital an electron occupies is determined by the potential field
of the nuclei and the density of the other occupied orbitals. An electron sees only
the “mean field” of the other electrons, which allows them to come close together
more often than they should and makes it impossible for the wavefunction to satisfy
the electron-electron cusp conditions of section 1.1.1. The difference in energy that
would result from properly allowing the electrons to avoid each other is called the
correlation energy. Several methods go beyond Hartree-Fock and attempt to treat

this phenomenon properly.

1.2.2.1 Configuration Interaction

The configuration interaction (CI) method uses the virtual orbitals generated by
Hartree-Fock in addition to the occupied orbitals to construct a wavefunction as a
linear combination of Slater determinants. The determinants are formed by exciting

electrons from the ground state occupied orbitals into the virtual orbitals, and the
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expansion coefficients are found by diagonalizing the resulting Hamiltonian matrix:
\IICI (fl, .’fg, e ,fN) = Z am\IIflS (.’fl, .’fg, e ,fN) . (]_]_8)
m

If a Slater determinant correponding to every possible occupation of the orbitals is
included in the expansion, the calculation is a “full CI.” In most cases, full CI is
impossible because the number of possible Slater determinants is too large.

In practice, CI calculations are usually carried out by including a limited number
of determinants in the expansion. A CI singles (CIS) calculation excites one electron
at a time into a virtual orbital, a CI doubles (CID) excites two at a time, a CISD cal-
culation includes singles and doubles, a CISDT calculation includes singles, doubles,
and triples, etc. CI calculations can provide quantitative results (within 2 kcal/mol)
for energies of molecules, but are extremely time consuming and require immense
amounts of memory, even for small systems and minimal basis sets. In addition, the

correlation energy recovered scales poorly with the number of configurations included.

1.2.2.2 Coupled Cluster

In coupled cluster (CC) calculations, the trial wavefunction is expressed as a linear
combination of Slater determinants, but an exponential form of an excitation operator

is used to generate the configurations and calculate the energy [12]:
Wee) = exp (1) V). (1.19)

The excitation operator, T, makes Slater determinants by exciting electrons from the

ground state into virtual orbitals. Equation 1.19 can be expanded in a Taylor series:

[Wee) = exp (T)|‘I’HF>

~ ~ 1.
= |[Yyp)+ T |¥yp) + <T2 + §T12> Var)

N A A 1.
+ <T3 + T + 6T13> Wpr)+ -, (1.20)
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where 7T} creates single excitations, Ty creates double excitations, and so on. In equa-
tion 1.20, the terms are grouped into levels of excitation. At each level of excitation,
several terms contribute. At the second level, for example, T, generates connected
double excitations, while Tf generates two disconnected single excitations.

Coupled cluster makes it easy to treat molecules of different sizes with the same
level of correlation, which is important for chemical reactions, in which bonds may
form or a large molecule may dissociate into fragments. Treating the products and
reactants of a reaction consistently is necessary to get accurate energy differences.

Like configuration interaction, coupled cluster calculations are named by the levels
of excitation included in the expansion. A CCSD calculation includes single and
double excitations, while CCSD(T) includes triples as a perturbation. CCSD(T) is a
very popular method for conducting accurate calculations with reasonable cost, and
is often used as a benchmark to compare the results of other methods. The expense
of CCSD(T) scales as O (N7) with the number of basis functions, which limits its

appliction to small molecules and basis sets.

1.2.2.3 Multiconfiguration SCF

In a multiconfiguration self consistent field (MCSCF) calculation, the user defines an
“active space” consisting of a subset of the elecrons and orbitals of a molecule. The ac-
tive electrons are excited into the active virtual orbitals to form a set of determinants,
and both the orbitals and CI expansion coeflicients are variationally optimized [13].
If a full CI is carried out on the active space, and all possible occupations of the
active orbitals are considered, the calculation is called a complete active space SCF
(CASSCF) [14] or fully optimized reaction space (FORS) [15] calculation. Because
both the orbitals and CI coefficients are optimized, MCSCF offers the most general
approach available to computing electronic structure. The large number of varia-
tional parameters makes the optimization a challenge, so users must be careful to
only include the electrons and orbitals involved in the reaction under investigation in
the active space.

The generalized valence bond (GVB-PP) method can be thought of as a limited



11
form of MCSCF in which electrons are excited pairwise from valence orbitals into
virtual orbitals [16]. Although the selection of configurations is constrained, the
optimization procedure for GVB calculations is much more systematic and reliable
than a general MCSCEF calculation. The GVB wavefunction is the simplest form that
allows molecules to dissociate into open shell fragments, which allows it to produce

accurate dissociation curves for chemical bonds.

1.2.3 Perturbation Theory

Mgller-Plesset (MP) perturbation theory is a non-iterative method for calculating
the correlation energy of a set of orbitals. In perturbation theory, the Hamiltonian is
divided into two parts:

H=Hy+ \V, (1.21)

where Hy is exactly solvable and AV is a perturbation that is assumed to be small

compared to it. The perturbed wavefunction can be expanded as a power series in \:
U =00+ \TWD 4 \2G@) 4 By (1.22)

The perturbed wavefunction is substituted into the Schrodinger equation:
(Ho+AV) (90 +20W 4 ) = (B + B ) (04200 ) (1.23)

Equating terms with the same power of A gives formulas for corrections to the energy
for varying lengths of the expansion.

In electronic structure theory, the unperturbed Hamiltonian and wavefunction are
the Fock operator and its ground state Slater determinant. The perturbation, V, is
the Coulomb repulsion between the electrons, which is replaced with the mean field

approximation in Hartree-Fock. The second-order correction to the energy involves
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integrals between determinants:

(P01 )

E® — _
E,—E° ~

(1.24)

where the index ¢ sums over determinants in which two electrons have been excited
into virtual orbitals. It is easy to see from the denominator of equation 1.24 that the
greatest contributions to the second-order correction will come from low-lying excited
states, whose energy is close to the ground state energy.

Moller-Plesset perturbation theory is referred to by the order of the expansion of
the perturbation. Second order (MP2) is commonly used, and third (MP3) and fourth
(MP4) order are implemented in many quantum chemistry programs. Multireference
MP theory, in which an MCSCF or CI wavefunction is used as the unperturbed
wavefunction, has also been developed [17].

While MP2 generally gives good results for molecular geometries and changes
in energy for chemical reactions, recent studies comparing levels of perturbation for
different chemical systems and basis sets have shown that MP perturbation theory en-

ergies are not necessarily convergent in the limit of higher orders of perturbation [18].

1.2.4 Extrapolated Methods

Several methods have been developed to approximate an extremely expensive calcula-
tion by systematically combining less accurate results. Although multiple calculations
are run, the overall cost can be significantly less than that of the single highly accurate
calculation.

The complete basis set (CBS) methods address the errors due to using a finite
basis set in calculations. They extrapolate to an infinite basis using expressions
for the correlation energy recovered for electron pairs as functions of higher angular
momentum are included in the basis set [19]. A CBS calculation consists of a Hartree-
Fock calculation with a large basis set, an MP2 calculation with a moderate basis
set, and higher level calculations with progressively smaller basis sets. The results

and several empirical corrections are combined to estimate the results that would be
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obtained for a high level calculation with an infinite basis set.

The Gaussian-1 (G1) method approximates a quadratic CISD(T) result with a
large basis set using four smaller calculations [20]. It corrects for truncation of the
basis set by carrying out MP4 calculations with three different basis sets and for the
limited level of correlation by carrying out a quadratic CISD(T) calculation with the
smallest basis set. The results are entered into a formula that includes some empirical
corrections for the remaining systematic errors to give the G1 energy. G2 [21], G3 [22],
and G4 [23] methods have subsequently been developed.

The focal point method explicitly examines the convergence of the energy with
respect to both the basis set and level of correlation to estimate the ab initio limit
within the Born-Oppenheimer approximation [24]. In the focal point procedure, HF
energies are extrapolated to the CBS limit, and CCSDT and CCSDT(Q) calculations
are carried out using a moderate basis set. The results are combined to estimate the
CBS limit of the CCSDT(Q) energy. Corrections for non-Born-Oppenheimer [25] and

special relativistic effects [26] are added to give the focal point result.

1.2.5 Density Functional Theory

Density functional theory (DFT) is another widely used class of methods for tak-
ing into account the effects of electron correlation. DFT is based on the theorem
of Hohenberg and Kohn, which proves the existence of a functional that determines
the exact electron density and energy for a given a nuclear potential field [27]. Un-
fortunately, the theorem does not provide the form of the exact functional. While
the exact functional would take an electron density as input and return the energy,

approximate functionals partition the energy into several terms [28]:
E=E"+EV +E + EXC (1.25)

The first three terms correspond to the kinetic energy, the attraction between the
nuclei and the electrons, and the repulsion of the electrons for each other. The

fourth is called the exchange-correlation term and includes the remaining interactions
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between the electrons.

In principle, a pure density functional method would deal directly with the electron
density, a function of the three spatial variables. No orbitals would be involved, and
calculations would scale linearly with the size of the system. In practice, however,
a method similar to Hartree-Fock is used. The wavefunction is written as a Slater
determinant of orbitals, and the Fock operator is replaced with one that takes the
effects of electron correlation into account.

The exchange-correlation energy of equation 1.25 is separated into exchange and
correlation terms. The exchange energy arises from the interactions between same
spin electrons, which are kept apart by the antisymmetry of the spatial part of the
wave function. The correlation energy is due to the interactions between opposite
spin electrons.

The exchange and correlation energy terms are calculated by functionals of the
density. The basis for most functionals is the local density approxrimation, in which
electrons uniformly occupy a volume with a positive background charge to keep the

overall charge neutral. For this system, the exchange energy has a simple form:

3/3\3
Eipa=— (7) ’ / dr p3. (1.26)

Local correlation functionals are more complicated, but are also in use [29].

The electron density of atoms and molecules, however, is not uniform, so re-
searchers have developed exchange and correlation functionals that use the gradient
of the density as well as its value [30, 31].

Some of the most accurate density functional methods in use are hybrid func-
tionals, in which the Hartree-Fock definition of the exchange energy, which is based
on molecular orbitals, is included as a component of the exchange-correlation en-
ergy [32, 33]. The exchange-correlation energy term for B3LYP, one of the most

popular density functional methods, includes local, gradient corrected, and Hartree-
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Fock terms:

Egspyr = Efpa+co (E;{(F - Ei(DA) +exABjgs + Efy yy + co (EEYP - E\C;WN3) ;

(1.27)
where AFE3%g, is a gradient-corrected exchange term, ESy, v, is a local correlation
term, and E¢, , is a gradient-corrected correlation term. The coefficients ¢y, cx, and
cc were fit to experimental data.

Density functional theory is a very popular way for researchers to include electron
correlation in calculations and obtain results that are accurate enough for many ap-
plications with moderate computational expense. These methods have been applied
successfully to a large variety of systems and have been a benefit to many areas of re-
search. While post-Hartree-Fock methods can always be improved by including more
configurations, using a larger basis set, or calculating higher orders of perturbation,
DFT suffers from the fact that there is no systematic way to improve its results.
New density functionals are continuously being developed [34, 35, 36|, but none give
results with errors consistently less than 4 to 5 kcal/mol for molecular systems. If

more accurate results are necessary, different methods must be used.
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Chapter 2

Parallel Computing

The extraordinary increase in computing power available to researchers over the last
fifty years has revolutionized engineering, astronomy, biology, chemistry, physics, eco-
nomics, and many other fields. The long term trend in the number of circuits that
can be placed on an integrated circuit inexpensively was described in 1965 by Gordon

Moore:

The complexity for minimum component costs has increased at a rate
of roughly a factor of two per year .... Certainly over the short term this
rate can be expected to continue, if not to increase. Over the longer term,
the rate of increase is a bit more uncertain, although there is no reason to
believe it will not remain nearly constant for at least 10 years. That means
by 1975, the number of components per integrated circuit for minimum
cost will be 65,000. I believe that such a large circuit can be built on a

single wafer [37].

In 1975, Moore’s prediction for the time to double the number of transistors on a
circuit was revised to 18 months. The trends in almost every measure of electronic
devices, such as processing speed, memory capacity, and computing performance per
unit cost, are closely related to Moore’s law.

It has often been predicted that chip designers would not be able to keep up with
Moore’s law. Gordon Moore himself has stated that the rate of increase in computing

power cannot be sustained indefinitely, but it has been sustained through 2009, with
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chip makers predicting new processors consistent with Moore’s law for another ten
years.

Not satisfied with the computing power available in a single processor, researchers
have developed techniques for parallel computing, in which multiple processors con-
nected with a network are used together to solve a problem. This chapter describes
some of the ways parallel programs are designed and analyzed. Additional informa-

tion can be found in reference [38].

2.1 Designing Parallel Algorithms

In order for an algorithm to be executed in parallel, the programmer must decompose
the work into tasks and identify which tasks can be executed concurrently. The
concurrent tasks can be assigned to different processors to be executed. In order for
a processor to be able to complete its task, the appropriate instructions, input, and
output must be communicated.

The granularity of a problem refers to the number and size of the tasks into which
it can be decomposed. The degree of concurrency is the number of tasks that can be
executed simultaneously. This number is usually less than the total number of tasks
due to dependencies among them.

There are many techniques for decomposing a problem into tasks. The nature of
the problem determines how it can be divided and how the different tasks interact
with each other. A problem for which a fine-grained decomposition into independent
tasks is possible is well suited for parallel computing, and will benefit greatly from
being carried out on multiple processors. A less ideal application may benefit less from
the parallel environment. In especially unfavorable circumstances, such as if many
processors are idle while they wait for another task to supply them with input, or if
interprocessor communication saturates the bandwidth of the network, an application

may take longer to execute in parallel than on a single processor.
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2.2 Analyzing Parallel Algorithms

Using twice as many processors to execute a program rarely results in it completing
in half the time or generating twice as much useful output. Overhead expenses,
unavoidable in the parallel environment, subtract from the performance. Computer
scientists have developed several metrics to measure the expense and performance of
parallel algorithms.

The most basic measure of performance is the speedup, the ratio of the serial

execution time, T, to the parallel execution time, Tp:

T
Speedup = T—S (2.1)
P

The largest source of overhead is usually communication of data between pro-
cessors. In addition, some processors may become idle if they finish their task and
must wait for a new one. The parallel algorithm may also have to carry out excess
computation compared to the serial algorithm. For example, if the result of a certain
calculation must be available to each task, it may have to be carried out separately on
each processor in a parallel calculation, while the serial algorithm only has to carry
out the calculation once.

The overhead for a parallel algorithm is the difference between the parallel and

serial costs:

T, = pTp — Ts, (2.2)

where p is the number of processors.
An important measure for the effectiveness of a parallel algorithm is its efficiency,

which is the ratio of the serial cost to the parallel cost:

Ts
FE = — 2.3
pIp ( )
T
_ T (2.4)
T+ T,

Because every algorithm has at least some serial component, the parallel overhead
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increases with the number of processors. As can be seen in equation 2.4, an increase
in overhead causes a decrease in efficiency. The loss of efficiency leads to decreasing
returns as more processors are used to execute an algorithm.
The decreasing gain in performance as the number of processors increases is ex-
pressed in a slightly different way in Amdahl’s Law [39]. If P is the fraction of
an algorithm that can be parallelized and S is the fraction that must be computed

serially, the speedup can be written as a function of the number of processors:

S+ P
Speedup (p) = 5 (2.5)
S+
1
= ) 2.6
S+ (26)

As the number of processors increases, the speedup asymptotically approaches %

According to this formula, if the serial portion of an algorithm is 10%, the greatest
possible speedup is ten times, no matter how many processors are used. As a result,
much of the effort in designing parallel algorithms goes into parallelizing as much of
the work as possible.

After examining Eqs 2.4 and 2.6, it would be easy to become skeptical as to the
viability of massively parallel computers, since the benefit of using more processors
is bounded. In practice, however, the size of the problem usually increases with the
number of processors. When given more processors, researchers will usually increase
the size or complexity of the problem to keep the run time approximately constant. As
the problem size increases, the fraction of the run time spent on overhead decreases,

which improves the efficiency for large numbers of processors.

2.3 Supercomputers

Since 1993, the Top500 list has kept track of the most powerful supercomputers in
the world [40]. The United States Department of Energy has constructed several

of the highest ranking machines to conduct simulations on nuclear weapons through
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the Advanced Simulation and Computing program [41]. These are homogeneous ma-
chines, meaning they are constructed from one type of processor, with huge memory
and fast interconnection hardware.

Several calculations presented later in this work were carried out using Blue
Gene/L at Lawrence Livermore National Laboratory. The unclassified portion of
this machine consists of 81,920 IBM PowerPC processors running at 700 MHz [42].
Although the processor speed is slow, the great number of processors gives uBGL
almost 230 TFlops of computing power.

The most powerful computer in the world at the moment is Roadrunner at Los
Alamos National Laboratory. Roadrunner has 13,824 1.8GHz AMD Opteron proces-
sors to handle operations, communications, and some computation and 116,640 IBM
PowerXCell 8i processors to handle floating point-operations. Roadrunner is the first
machine to have over 1 petaflop sustained performance [43].

Not to be outdone, LLNL has announced they will be constructing Sequoia, a
Blue Gene/Q machine that will exceed 20 petaflops, to go online in 2011. Sequoia
will have more computing power than the current Top500 list combined [44].

The rate of escalation in computing power is easy to see. Access to the DOE ma-
chines is difficult to obtain, however, and most researchers do not have the resources to
construct and maintain this sort of supercomputer. The advances in processors, inter-
connection hardware, and management software brought about by the DOE project

have improved the performance of the machines an individual research group can

afford.

2.4 Beowulf Clusters and Grid Computing

In contrast to the massively expensive homogeneous computers of the previous sec-
tion, researchers can assemble a low cost cluster using off-the-shelf processors and
connection hardware in a Beowulf framework [45]. Such a cluster can be homoge-
neous if one type of processor is used, or heterogeneous if the processors are not

equivalent. This sort of cluster is also scalable, as researchers can add processors as
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applications demand and resources allow, or retire processors as they become obsolete.

Another development in parallel computing is the use of loosely coupled, widely
distributed grids of processors to carry out computations. Some examples include
SETI@home [46] and Folding@home [47], which use idle internet connected computers
to search for extraterrestrial intelligence and simulate protein folding. BOINC is a
project at UC Berkeley that has tools to help researchers develop software for and
connect to distributed volunteer computing resources [48].

Parallel algorithms must have certain characteristics in order to perform well in a
heterogeneous, loosely coupled environment. An application that must communicate
large amounts of data among the tasks or is unable to balance the work between
processors running at different speeds will encounter large overhead costs and perform
very poorly. A parallel algorithm with low communications requirements and the
ablity to use processors running at different speeds will be able to efficiently use
inexpensive computing resources to carry out large computing jobs.

The bulk of the computing effort in traditional electronic structure methods such
as those discussed in chapter 1 is spent diagonalizing matrices. This operation is very
difficult to parallelize, since each step involves all of the rows. As a result, calculations
such as DFT and coupled cluster are unable to efficiently use more than a few tens
of processors. Since coupled cluster scales as O (N7) with the size of the system,
the inability to use large numbers of processors prevents researchers from carrying
out highly accurate calculations on large systems, such as nanodevices or biological
systems.

Quantum Monte Carlo (QMC) is an alternate approach to electronic structure
simulations that calculates expectation values stochastically rather than analytically.
The stochastic nature of QMC makes it well suited for parallel implementation. QMC
can, in principle, calculate exact expectation values and scales as O (N?) with the size
of the system. QMC can be formulated to have very small memory and communica-
tions requirements and automatically balance the work between processors running
at different speeds [49, 50]. The favorable scaling of QMC and the ability to efficiently

use large numbers of processors will allow it to provide highly accurate expectation
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values for systems too large for other methods.
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Chapter 3

Random Number Generation

Random numbers have applications in areas such as cryptography, electronic gaming,
and statistical sampling and analysis. In addition, stochastic, or non-deterministic,
simulations can be used to model many types of physical and mathematical systems.
In these simulations, the behavior of some part of the system is randomly generated.
Because of the essential role played by random numbers, they are grouped into a
class called “Monte Carlo” methods. Electronic structure applications include Vari-
ational Monte Carlo (VMC), in which the parameters of a trial wavefunction are
optimized, and Diffusion Monte Carlo (DMC), which has the potential to calculate

exact expectation values for many-body quantum mechanical systems.

3.1 Random Number Generation

Truly random numbers can be generated based on unpredictable physical phenomena,
such as the noise of an analog circuit, the decay of radioactive nuclei [51], or back-
ground atmospheric radio noise [52]. Computers, on the other hand, only operate
based on programmed instructions. They can generate sequences of “pseudorandom”
numbers that lack patterns, but are determined by a formula. Statistical tests have
been developed to detect correlations in sequences of numbers. The quality of a pseu-
dorandom number generator is judged by which tests for randomness its sequences

pass.
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3.1.1 Uniform Random Numbers

Uniform random numbers lie within a specified range, usually 0 to 1, with all numbers
in the range having the same probability of being generated. Virtually every scheme
to generate random numbers with respect to a desired probability density relies on
converting uniform random numbers.

The most common way to generate uniform random numbers is with a linear con-
gruential, or modulo, generator, which generates a series of integers, {Iy, I1, I, .. .},

by the recurrence relation
It = alj + c¢(mod m), (3.1)

where m, a, and c are positive integers called the modulus, multiplier, and increment.
They define the linear congruential generator. The first integer, Iy, is called the seed.
Using the same seed with a certain generator will always give the same sequence of
numbers.

Clearly, I; < m for all j. Therefore, the algorithm can generate at most m dis-
tinct integers. The sequence of integers is transformed into uniform random numbers
between 0 and 1 by letting u; = %

The sequence {I;} generated by equation 3.1 will eventually repeat itself with a
period p that is less than or equal to m. If m, a, and ¢ are properly chosen, the period
will be of maximal length. Several rules have been developed and implemented to
maximize p and give the best results in statistical tests for randomness [53].

Poor choices of a, ¢, and m, can result in random number sequences with very
short periods. Many linear congruential generators implemented as library routines
in compilers have been shown to be deeply flawed and give poor results in statistical

tests.
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3.1.2 The Transformation Method

Monte Carlo simulations often require random numbers distributed with respect to a
given probability density function, p (x). The most efficient way to generate such a
sequence is with the transformation method, which directly converts uniform random
numbers to the desired density.

The cumulative distribution function represents the probability that a point in

the given density is less than or equal to y:

Py = [ dop). (3.2)

If p (x) is normalized, P (y) will increase monotonically from 0 to 1.

To generate a random number, w, distributed with respect to p(x), a uniform
random number, u, is generated. Then w = P~' (u), where P~! is the inverse of P.
This method requires that the function P be known and invertible, which is the case
for some very simple distributions, such as exponential or Gaussian distributions. For

more complicated functions, different algorithms must be used.

3.1.3 The Von Neumann Method

The Von Neumann, or rejection, method is a less efficient but more generally appli-
cable way to generate points with respect to a probability density function that is
known and can be calculated. The cumulative distribution function does not have to
be known or invertible.

In order to use this method, one first finds a function, h (z), that is everywhere
greater than and preferably close to the desired probability density function, p (z),
and for which the transformation method can be used. A random number, z, is
generated with respect to h (x) and the ratio A (2) = % is calculated. Because h (z)
is always greater than p (), this ratio will be between 0 and 1.

The number z is accepted as a member of the probability density p with probability

A (z). This last step involves generating a uniform random number, u, and accepting
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zif u < A (z) and rejecting z if u > A (z). The effect of the rejection step is to weight
the density h (z) by % so that p (x) emerges. This method is very simple, but will
lead to excessive rejection and be very inefficient if h (x) is not close to p (), in which
case the acceptance probability A (z) will often be small. This loss of efficiency is

particularly important for high-dimensional spaces.

3.1.4 The Metropolis Algorithm

Quantum Monte Carlo calculations require random electronic configurations dis-
tributed with respect to the quantum mechanical probability density, the square of
the magnitude of the electronic wavefunction. This is an extremely complicated
and tightly coupled 3N-dimensional function, where N is the number of electrons.
Furthermore, it has appreciable magnitude only in a very small fraction of the total
available configuration volume. The transformation and rejection methods are unable
to efficiently generate random points with respect to this sort of probability density.

In order to distribute electronic configurations with respect to their quantum
mechanical probability density, the idea of generating statistically independent con-
figurations must be abandoned. Instead, a Markov chain is used, in which each new
configuration is generated with respect to a probability distribution depending on the
previous configuration. The sequence of configurations forms a “random walk” that
is proportional to the desired density. Because each configuration depends on the one
before it, they will have some degree of serial correlation, which must be considered
when the variance of quantities derived from these configurations is calculated.

A Markov chain is defined in terms of the transition probability 7" (x — z') for
having the point 2" after the point x in the chain. The transition probabilities depend
only on the current state of the system and are independent of time and the history of
the walk. The Metropolis algorithm is a series of rules for generating a Markov chain
of points distributed with respect to a desired probability density function, p () [54].

A Markov chain will converge to the desired density if its transition probabilities
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satisty the following relationship:

Tx—a)px)=T (" —z)pa). (3.3)

Eq 3.3 is known as the detailed balance condition. Using it, the probability for

accepting a proposed move from z to z’ is

eail, (x’)) | -

It should be noted that in equation 3.4, only the ratio % is calculated, rather
than the values p (z) and p (2') separately. As a result, the probability density function
p does not have to be normalized.

In the simplest version of the Metropolis algorithm, the transition probabilities
are chosen so that 7' (xr — 2') = T (2’ — x). The acceptance probability can be
increased by using importance sampling algorithms, which manipulate the transition
probabilities to direct the proposed moves into regions of high density [55].

The Metropolis algorithm guarantees the Markov chain will equilibrate to a sta-
tionary distribution, which will represent the desired probability density function.
This method allows virtually any probability density to be sampled, which makes it
an invaluable tool for high dimensional simulations. The Metropolis algorithm is com-

monly used in simulations of liquids and disordered materials, as well as in molecular

dynamics and quantum Monte Carlo.
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Chapter 4

Quantum Monte Carlo

Quantum Monte Carlo (QMC) is a relatively new class of methods for conducting
highly accurate quantum mechanical simulations on atomic and molecular systems.
Variational and diffusion Monte Carlo, the most commonly used electronic structure
QMC variants, use stochastic methods to optimize wavefunctions and calculate ex-
pectation values [56] and can provide energies to within chemical accuracy [57, 58, 59].
Because QMC trial functions do not have to be analytically integrable, there is con-
siderable freedom as to their form. The inclusion of explicit interparticle coordinates,
which is impossible with traditional electronic structure methods, allows QMC trial
functions to have a very compact form compared to SCF wavefunctions of comparable
accuracy [60].

The computational expense of QMC calculations scales with the size of the system
as O (N?) or better [61, 62, 63, 64]. Mean field methods capable of comparable accu-
racy, such as coupled cluster, scale much less favorably, as O (N°) to O (N!). Since
QMC is a stochastic method, it lends itself naturally to parallelization across multiple
processors. Although QMC is not “perfectly parallel,” as has been claimed [65], the
parallel overhead function can be very small, and large numbers of processors can
be used with high efficiency. The use of large numbers of processors allows QMC
calculations to finish in a reasonable amount of time, despite the slow convergence
of Monte Carlo. The combination of favorable scaling and parallelizability of QMC
make it possible to conduct highly accurate simulations on systems that are too large

for other methods.
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Many parallel scientific applications require large memory and fast interprocessor
communication to run. Supercomputers that satisfy these needs are very expen-
sive to construct and maintain. The most powerful supercomputers in the world
today are owned by the United States Department of Energy, which has commit-
ted vast resources to constructing them in order to conduct simulations on nuclear
weapons (42, 43, 44].

Quantum Monte Carlo, however, can be formulated to run with very small memory
and interprocessor communication requirements [49, 50]. It is reasonable to envision
an inexpensive QMC specific supercomputer made of nodes with no hard drives and
inexpensive connection hardware. Such a machine would give researchers who do not

have access to national lab computers the ability to conduct QMC calculations.

4.1 Variational Monte Carlo

Variational quantum Monte Carlo (VMC) uses the Metropolis algorithm to minimize
the expectation value of the energy of a trial wavefunction with respect to its ad-
justable parameters. Because the high dimensional integrals are done using Monte
Carlo methods, some of the restrictions on the form of the wavefunction that are
necessary when the integrals are evaluated analytically can be relaxed.

The expectation value for the energy of a trial electronic wavefunction, |¥;), is

)

=4

Ur|HWy) [dR (R) fw, (

_
= (Ur[¥r) — dR vy (R)vr (R

, (4.1)

N——"

where H is the Hamiltonian operator for the system and R is a vector containing the
3N spatial coordinates of the N electrons of the molecule. The local energy of an

electronic configuration is defined as
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It Op (R) is an eigenfunction of H, the local energy will be constant with respect to

R. Using the local energy, the expectation value can be rewritten:

JdR v (R) vy (R) By, (R)

T R v (B) v (A) 3)
_ dR |\IfﬂT (R) |2ﬂEL (R) w4
JdR v (R) |
where py e (ﬁ) is the probability density for the configuration R:
3) |2
pPvMC (ﬁ) or (R) | (4.6)

~JdR e (R) [

VMC employs the Metropolis algorithm to generate a series of electronic config-
urations, {ﬁz}, distributed with respect to pyac (ﬁ) The expectation value of the

energy can then be evaluated as

(E)vme = % > EL (Rz) +0 <\/LM> : (4.7)

1=0

As the wavefunction is sampled, the expectation value of the energy will fluctuate
within its statistical uncertainty, which makes comparing different sets of variational
parameters difficult. This effect can be mitigated by using correlated sampling, in
which expectation values for several sets of parameters are calculated using one set
of configurations [66]. Correlated sampling allows the difference between the energies
of two sets of parameters to be calculated with much less variance than if the two
expectation values are compared after being calculated separately.

Because the local energy for an eigenfunction of H is constant, the variance of its
expectation value will be zero. As a trial wavefunction is optimized and it approaches
the exact ground state, its local energy will vary less strongly with R and its variance

will decrease. As a result, the variance of the energy can be used as a criterion to
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optimize the parameters of the wavefunction rather than its expectation value. This
method works well for Monte Carlo optimization because the exact minimum value
of the variance of the energy is known, while the minimum of the expectation value
for the energy is unknown. Some optimization methods minimize a combination of
the energy and its variance [67]. Algorithms that sample the derivatives of the energy
with respect to the adjustable parameters in the wavefunction can be used to speed

convergence and ensure the true minimum is found [68, 69].

4.2 VMC Trial Functions

As discussed in section 1.2.1, quantum mechanical wavefunctions have space and spin
components. Since the QMC Hamiltonian does not have spin terms, we integrate
over spin and consider only the spatial component. The spatial trial functions used

in VMC typically have the form

Uy = (Z ci\IIf‘S> J, (4.8)

where the ¢; are CI expansion coefficients, the W% are Slater determinant wave-
functions, and J is a symmetric function of the distances between particles called
the Jastrow function. This results in an overall antisymmetric function with explicit
interparticle terms. The ¢; and U2¥ can be obtained through standard electronic
structure methods such as Hartree-Fock, GVB, MCSCF, CI, or DFT.

There are many adjustable parameters in W,. The ¢;, the orbital coefficients
and basis functions in the ¥#% and the parameters in the Jastrow function can all
be optimized through VMC. Even when correlated sampling is used, optimizing a
wavefunction with a large number of adjustable parameters is a challenging task.
The form of the trial wavefunction must be chosen with care, so that time is not
wasted optimizing parameters that have little effect on the expectation value of the

energy.
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The two body Jastrow function is written as

J = exp [Z Wi (Tij)] , (4.9)
1,J

where the sum is over all pairs of particles, r;; is the distance between particles 7 and

J, and u;j (r45) is a function that describes the interaction between particles ¢ and j.

The two body Jastrow function makes it straightforward to construct trial wave-
functions that satisfy the quantum mechanical cusp conditions for pairs of particles [9].
Satisfying these cusp conditions removes the singularities in the local energy that oc-
cur when particles collide, which lowers the variance of the energy.

If Gaussian orbitals are used in the SCF part of the wavefunction, the cusp condi-
tion for particles ¢ and j approaching each other leads to the following condition for
the function w;;:

uij (riy) _ Wij%igy

li = 4.10
Ti;r—I}O 8""w [ + 1 ’ ( )

where 1 is the reduced mass of the particles, ¢; and ¢; are their charges, and [ is 1
for same spin electrons and 0 otherwise.

A form for the two-body correlation function commonly used for molecular systems
is the Padé-Jastrow function:

N k
CijTij + 2p—2 Gij kT
M l )
L+ 30050 bijari;

ug (rij) = (4.11)
where the a;; 5, and b;;; are adjustable parameters. The constant ¢;; is set to the value
of the cusp condition for the particles ¢+ and j. To ensure that the limit as r — oo
remains finite, M and N are usually chosen so that M > N. Many other forms for
correlation functions are in use, including some with scaled variables and some with
three- and higher-body terms [70, 71].

In addition to allowing W to have explicit interelectronic coordinates, QMC allows
freedom in the form of the orbitals that make up the Slater determinant part of the
trial wavefunction. Because they are convenient to evaluate, Gaussian basis functions

are used by most SCF programs to construct orbitals.
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Gaussian functions have zero derivative at their origin, so molecular orbitals con-
structed from Gaussian basis functions are unable to satisfy the electron-nucleus cusp
condition. Although these cusps can be satisfied by two-body correlation functions,
replacing the Gaussian orbitals with exponential functions that satisfy the cusp near
the nuclei gives much better results in QMC calculations [72]. When the orbitals are
modified in this way, the electron-nucleus cusp values in the two body correlation

functions are set to zero.

4.3 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) does not rely on the variational principle to calculate
expectation values, but its convergence depends on accurate trial functions.

DMC starts with the time dependent Schrodinger equation:
¢3|x1;(ﬁ,t)> = H|V (R,1)). (4.12)
ot

With a change of variables to imaginary time, 7 = ¢, equation 4.12 takes the form of

a diffusion equation:

o (7)) = (7)) 113

The formal solution to equation 4.13 can be written:
@ (B,7)) = e ¥ (R,0)). (4.14)
At some time 77, the state |¥ (ﬁ, 7'1)> is expanded in eigenstates of the Hamiltonian:

W (Ra Tl)> = Zcz’|q)i>; (4.15)

7

where

H|®;) = E;|®;), (4.16)
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and

¢ = (B;|V (R,m)). (4.17)

The expansion in equation 4.15 is substituted into equation 4.14:
W (B, m+dr)) =3 cie™7|0y). (4.18)

As equation 4.18 is propagated with 7, contributions to ¥ (ﬁ, T) with ¢ > 0 will die
out exponentially, leaving ®g, the ground state.

Propagating equation 4.18 with Monte Carlo methods is inefficient because the
potential part of the Hamiltonian varies widely throughout configuration space and
diverges when charged particles approach each other. Efficient DMC calculations use
importance sampling, in which W (ﬁ), a trial function that approximates the ground

state, is used as a guide function. A mixed distribution is defined:

3, (R) vy (F)

PDMC ﬁ = = e o (419)
(7) JdE @ () ¥y ()
The mixed expectation value for an operator, /Al, has the form
(@0l A[¥r)
A = 4.2
< >DMC <(I)0|\IJT> ( 0)

For operators that commute with the Hamiltonian, the DMC expectation value

equals the expectation value of the true ground state:

(Dol A[Wr) _ (o] A| Do)
(Do[¥r) (Po|Po)

(A)pmc = (4.21)

The DMC expectation value for the energy can be rewritten in a manner similar

to the VMC expectation value:

(Qo|H |V y)

Elowe = o)

(4.22)
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= /dﬁ PDMC (ﬁ) E; (ﬁ) . (4.25)

A series of electronic configurations is generated with respect to pprc (ﬁ), which
allows the expectation value to be evaluated. Generating electronic configurations
with respect to ppyre will be discussed in the next section.

Interpreting ppyc (ﬁ) as a probability density is only possible if it is nonnegative
for all . For bosons, this property is easily satisfied because the ground state wave-
function has one sign everywhere in configuration space. If the trial wavefunction has
the same sign, ppuc (ﬁ) will be nonnegative for all R. Ground state wavefunctions
for fermions, however, have positive and negative regions separated by nodes. If the
nodes of U (ﬁ) and @ (ﬁ) are identical, the two functions will have the same sign
in every nodal region, and ppyc (ﬁ) will be nonnegative for all R.

If the nodal structures of ¥ (ﬁ) and @, (ﬁ) are different, pprc (ﬁ) will have
positive and negative regions. This is known as the fermion problem in DMC. In
VMC, the magnitude squared of the trial function is sampled, so there is no analagous
nodal problem.

The nodal surface of an electronic wavefunction is a (3N — 1)-dimensional hyper-
surface where the wavefunction vanishes. The spatial antisymmetry of the wavefunc-
tion defines a set of (3N — 3)-dimensional hyperpoints embedded in the nodal surface.
Although these points are known, no general techniques exist for constructing a trial
wavefunction with the same nodal structure as the true ground state.

The simplest and most widely used solution to this problem is the fized-node
approximation, in which the nodes of the true ground state are assumed to be the
same as the nodes of the trial wavefunction. When this approximation is used, @, (ﬁ)

becomes the ground state wavefunction consistent with the boundary condition that



36
it vanish at the nodes of W (ﬁ) The fixed-node approximation is enforced in a DMC
calculation by rejecting any proposed move that crosses a node and causes W (ﬁ)
to change sign. The resulting energy lies above the exact energy and is variational in
the nodal structure of the trial function [73, 74].

Other solutions to the nodal problem that do not rely on the fixed node approx-
imation have been developed. For example, the transient estimator method propa-
gates two bosonlike walker ensembles, representing the positive and negative parts of
Ol (R) This method is not stable with respect to 7, the imaginary time variable in
which the ensembles are propagated, because both parts of the simulation converge
to the nodeless boson ground state. Expectation values can only be calculated during
the intermediate regime before this occurs, which limits the statistical accuracy that
can be attained.

For most small molecules, the nodes of trial wavefunctions obtained by standard
SCF methods are of good enough quality for fixed node DMC calculations to yield
results within chemical accuracy [57, 59]. In some cases, such as the beryllium atom,

multi-configuration wavefunctions are needed to obtain nodes of sufficient quality.

4.4 Generating Configurations in DMC

Electronic configurations are generated with respect to ppy¢ using the distribution
f (R, T) =@ (R, T) U (ﬁ) , (4.26)

where |® (1%, 7')> is a solution to the time-dependent Schrodinger equation, equa-
tion 4.12.
The distribution f (R, T) is a solution to a Fokker-Planck equation:

0

D (fr) = (B - Ba) £ (r). (427
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where

L= —%V%V-V(ﬁ) + By (R). (4.28)

V (ﬁ) is the local velocity of the trial function at R:

. VU (R)
and £, (ﬁ) is its local energy:
. HY; (R
E, (R) = \IITT(%)). (4.30)

In the case ¥y (ﬁ) = 1, equations 4.27 and 4.28 reduce to equation 4.13, the
Schrodinger equation in imaginary time.

The operator L defines an eigenvalue equation:
LIK; (R)) = ril K; (R)). (4.31)

The K; (ﬁ) = P, (R) Uy (R) and the k; = E;, where the ®; (ﬁ) and F; are the
eigenvectors and eigenvalues of the Hamiltonian.
Equations 4.27 and 4.28 describe a diffusion process in a potential. As with

equation 4.13, the formal solution to equation 4.27 can be written:

—

f(B.r)=e(=P0)f (R 0). (4.32)
This solution can be expanded in the eigenvectors of L:

f(Rr) = > e T, (R) (4.33)

—

= Y e HTg, (R) wr (R), (4.34)



38

where

¢ = (K (B) If (B,0)) = (@ (R) |=—=0). (4.35)

~
N
oIl
o=
N——"

It is easy to see that if £y = Ej, contributions to f (ﬁ, 7') from the ®; (ﬁ) with
¢ > 0 will die off exponentially as 7 increases, leaving the desired density, ppc (ﬁ) =
®, (R) ¥r (R).

In order to propagate Eq. 4.32 with 7 and obtain ppye (ﬁ), it is rewritten in

integral form:
f (Y7 +dr) = etrbatrean / iR G (V. R,dr) f (R,7), (4.36)

where G (}7, ﬁ, dT) is the Green’s function corresponding to the operator L. Unfortu-
nately, this Green’s function, like the Green’s functions for most complicated physical
processes, cannot be written for arbitrary dr.

The three terms of equation 4.28 describe diffusion, drift, and branching processes.
Green’s functions can be written for each process individually, and an approximate

Green’s function can be written as their product:

¢ (VR 7)) ~ Wa[i-ﬁ—v(ﬁ)dﬂ
(v-2)

T

xe s B (MR 1 0 (4r?).

The factorization of the Green’s function neglects the fact that the terms of L do not
commute, so equation 4.37 is exact only in the limit dr — 0. Equation 4.34, however,
is only exact in the limit 7 — oco. Any choice of time step is a tradeoff between these
two considerations. In practice, runs with several values of dr must be done, and the
results are extrapolated to dr = 0.

During a DMC calculation, f (ﬁ, 7') is represented by an ensemble of walkers,
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each consisting of an electronic configuration and a statistical weight:

f (R, 7') = anﬁé (R — ﬁn,T) ) (4.38)

Each iteration in a DMC calculation consists of four stages: drift, diffusion, weight-
ing, and branching. In the drift step, the electrons are moved according to the time
step and the local velocity. In the diffusion step, the electrons are moved to new
positions with transition probabilities given by the kinetic part of the Green’s func-
tion. The weighting and branching step takes into account the potential part of the
Greens’s function.

After a walker is moved from configuration R to }7, its weight is calculated based
on the local energy at RFand Y. In the branching step, walkers with high weight give
birth to new walkers, while low weight walkers are deleted.

The trial energy, E7r, serves as a normalization factor and is adjusted after each
step based on the sum of the weights of the walkers in order to keep the population
stable. The average value of Ep after many steps will converge to the ground-state
energy.

Several DMC algorithms, each with slightly different schemes for factoring the
Green’s function, proposing configurations, calculating the weights, and branching
the walkers have been published [66, 75]. The DMC calculations presented later in
this work use a combination of Umrigar’s DMC algorithm [55] and the reweighting
method of Assaraf et al. [76].
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Chapter 5

An Optimized Initialization
Algorithm to Ensure Accuracy in
Quantum Monte Carlo
Calculations
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Abstract

Quantum Monte Carlo (QMC) calculations require the generation of random elec-
tronic configurations with respect to a desired probability density, usually the square
of the magnitude of the wavefunction. In most cases, the Metropolis algorithm is
used to generate a sequence of configurations in a Markov chain. This method has
an inherent equilibration phase, during which the configurations are not representa-
tive of the desired density and must be discarded. If statistics are gathered before
the walkers have equilibrated, contamination by nonequilibrated configurations can
greatly reduce the accuracy of the results. Because separate Markov chains must be
equilibrated for the walkers on each processor, the use of a long equilibration phase
has a profoundly detrimental effect on the efficiency of large parallel calculations.
The stratified atomic walker initialization (STRAW) shortens the equilibration
phase of QMC calculations by generating statistically independent electronic configu-
rations in regions of high probability density. This ensures the accuracy of calculations
by avoiding contamination by nonequilibrated configurations. Shortening the length
of the equilibration phase also results in significant improvements in the efficiency of
parallel calculations, which reduces the total computational run time. For example,
using STRAW rather than a standard initialization method in 512 processor calcu-
lations reduces the amount of time needed to calculate the energy expectation value
of a trial function for a molecule of the energetic material RDX to within 0.01 au by

33%.
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5.1 Introduction

Quantum Monte Carlo methods for simulating the electronic structure of molecules |77,
78] can in principle provide energies to within chemical accuracy (~ 2 kcal/mol) [57,
58, 59]. The computational expense of QMC scales with system size as O(N?) or
better [61, 62, 63, 64], albeit with a large prefactor. This is much more favorable
than other electronic structure methods capable of comparable accuracy, such as cou-
pled cluster, which tend to scale very poorly with the size of the system, generally
O(N® to N!) [79]. Moreover, the stochastic nature of QMC makes it relatively easy
to parallelize over a large number of processors, which can allow calculations to finish
in a reasonable amount of time despite the slow convergence of Monte Carlo.

As supercomputing resources improve and become more accessible to researchers [42,
80], QMC will become a powerful tool for conducting accurate simulations on chemi-
cally interesting systems. Recent efforts have focused making these calculations more
straightforward and efficient on heterogeneous and homogeneous computers. To this
end, a finite all-electron QMC program, QMcBeaver, has been written and used to
develop and demonstrate several new algorithms [49, 50, 81].

Before statistics gathering begins in a QMC calculation, the walkers must be
allowed to equilibrate so that their configurations are proportional to the desired
density. It is impossible to calculate accurate expectation values if nonequilibrated
configurations contaminate the statistics. In order to ensure their statistical indepen-
dence, the walkers must equilibrate separately. This makes the equilibration phase
a serial step of the calculation and a major limiting factor in the efficiency of par-
allel calculations. These considerations make it imperative that the equilibration
process be fast and reliable. For example, we show that for the energetic material
RDX, approximately 30,000 iterations are necessary for equilibration when the initial
configurations are generated by a standard method.

We present here a simple method for choosing initial electronic configurations
designed to reduce the length of the equilibration phase of calculations. The Stratified

Atomic Walker initialization (STRAW) for quantum Monte Carlo calculations uses a
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shell model to distribute the electrons. When STRAW is used in RDX calculations,
100 iterations are sufficient for equilibration.

Avoiding contamination by nonequilibrated configurations in quantum Monte
Carlo calculations ensures their accuracy, and reducing the cost of equilibration makes
calculations with large numbers of processors much more efficient. Improving the par-
allel efficiency of these calculations makes better use of computer resources and will
broaden the range of systems for which quantum Monte Carlo calculations are prac-

tical.

5.2 The Metropolis Algorithm and the Initializa-
tion Catastrophe

Quantum Monte Carlo calculations center around the random generation of electronic
configurations with respect to quantum mechanical probability densities. In this
work, we focus on variational Monte Carlo (VMC), in which the trial wavefunction
is sampled in order to optimize its adjustable parameters [67, 68, 69].

VMC trial functions usually have the form ¥y ;¢ = VgeoprJ, where Ygeop is one or
a sum of Slater determinant wavefunctions obtained by a standard electronic structure
method such as Hartree-Fock (HF), density functional theory (DFT), or multiconfigu-
ration self-consistent field (MSCSF). The Jastrow factor, J [70, 71, 82], is a symmetric
function of the interparticle coordinates meant to account for quantum mechanical
cusp conditions [9] and short range correlations.

The expectation value for the energy of this trial function is

~

<‘I’VMC|ﬁ|‘I’VMC> J7% dZ VY 0 (B) HVy e (7)
(Vyme|¥yume) J2% AT Va0 (7) Wy ne (7)

(E) = (5.1)

where 7 is a 3N-dimensional vector of the positions of the NV electrons in the molecule.
Because the Jastrow factor includes explicit interparticle coordinates, equation 5.1
cannot be separated into independent electron problems and solved using the standard

SCF procedure. Instead, the expectation value is evaluated stochastically [75].
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HUvao(E)

The local energy of a configuration, Z, is defined as E; (¥) = \I,VMC(;,) . Using
this quantity, the expectation value of the energy can be rewritten:
J2% A7 | Wy pe (7) PEL (7
E) = {== / d EL (7)), 5.2
( > ffooo dz |\I]VMC( ) xpVMC’( ) L (LL’) ( )
with
pvuc (T) = [Fvac (@)] (5.3)

S5 A Wy are (7) [*
The expectation value now has the form of a weighted average. A series of M elec-
tronic configurations, {Z;}, is generated with respect to py e and used to evaluate

the expectation value of the energy:

(E) = % ; Ep (#)£0 (ﬁ) . (5.4)

The VMC probability density, py ¢, is an extremely complicated, 3/N-dimensional
function. An effective way to generate electronic configurations with respect to this
type of function is to use a Markov chain, which is defined in terms of the transition
probability T (Z — ¥) of having the configuration 7 after & in the chain. The Metropo-
lis algorithm [54] is a method for generating a Markov chain of points distributed with
respect to a desired probability density. It states that a Markov chain will converge to

a desired density, f (Z), if its transition probabilities satisfy the following relationship:

TE—=g)f@)=TG—12)f{). (5.5)

Equation 5.5 is known as the detailed balance condition. The most commonly
used formula for calculating the probability of accepting a proposed move from & to

/ that satisfies detailed balance is

[ W=D @)
AT =) =min 1 G (@) (5.

where w (Z — ¥) is the probability for proposing a move from & to .

In this work, we use the accelerated Metropolis algorithm developed by Umrigar
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and coworkers [55, 83] to propose configurations and calculate w (Z — ). This al-
gorithm allows different length scales for the motions of core and valence electrons,
which increases the size of the time step that can be used in a calculation while
maintaining a high acceptance rate.

The Metropolis algorithm guarantees that the Markov chain will equilibrate to
the desired distribution, but does not provide any criteria to predict the number of
iterations necessary for equilibration or to determine when it has occurred. It is
vital to avoid contamination by nonequilibrated points in calculations, because it is
impossible to calculate accurate expectation values using configurations that do not
represent the desired density.

The equilibration time will depend strongly on the choice of the initial configu-
ration, @y. If ¥y is in a region of low probability density, repeated iterations using
equation 5.6 will guide the chain into regions of higher probability density. The chain
is equilibrated when it reaches a region whose probability density is high enough
that sampling it is consistent with the desired probability density and the total num-
ber of iterations. Clearly, the number of iterations required for equilibration can be
minimized by making an intelligent choice for .

In Monte Carlo simulations, a walker is an entity that defines the state of the sys-
tem at a particular instant. In QMC, a walker consists of a 3/N-dimensional electronic
configuration. An ensemble of walkers is used to carry out the integration, with each
one tracing out an independent Markov chain in configuration space. In a parallel
calculation, an ensemble of walkers is equilibrated and propagated on each processor,
and the results are gathered to obtain the global results.

In the QMcBeaver program, each processor must have at least one walker, and
the number of walkers per processor is a user defined constant. Since the number
of walkers increases linearly with the number of processors, the computational effort
devoted to equilibration increases as well. The impact of the equilibration phase on
the efficiency of a parallel calculation was predicted and demonstrated by Feldmann
and Kent [50], and we follow their derivation.

Since separate Markov chains must be equilibrated on each processor, the total
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equilibration time scales as O(Npyocessors)- Lhe time devoted to generating statis-
tics, TPToPagate geales as O(1) because the number of independent samples needed to
achieve a certain level of convergence does not change with the number of processors.
From this, the efficiency, or fraction of the total calculation time devoted to useful

work, €, is

TPropagate

€ = (5.7)

T Initialize + T Equilibrate + "T'Synchronize + T Communicate + T Propagate
0(1)
O(NProcessors) + O(]-) .

(5.8)

Since the synchronization and communication costs for QMC calculations are ex-
tremely small, the main threat to efficiency in parallel calculations will be the equili-
bration time. In order to use a large number of processors efficiently, an algorithm for
quickly generating equilibrated, statistically independent electronic configurations for
the walkers is necessary. The next section examines how initial walkers are generated

in several QMC programs and considers possibilities for improvement.

5.3 Walker Initialization

The walker initialization algorithm originally implemented in the QMcBeaver pro-
gram works as follows: the electrons of the molecule are assigned to the nuclei
according to the density implied by the SCEF wavefunction. Each nucleus and its
electrons are treated as an atom, and the electrons are distributed with respect to
a three-dimensional Gaussian centered on the nucleus whose variance is related to
the covalent radius of that atom. The configuration is discarded and a new one is
generated if substituting the locations of the electrons into the Slater determinant
part of the wavefunction results in a singularity [81]. This happens if there is any
linear dependence among the columns of the determinant, which can happen if two
parallel spin electrons are too close to each other. We will refer to this method as the

Gaussian atomic walker initialization (GAWTI).
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The initialization algorithm of Casino, a QMC program developed at Cambridge,
assigns the electrons to atoms and then places the electrons randomly within spheres
centered on the atoms [84].

QMAGIC, a QMC program developed at UC Berkeley and the Lawrence Berke-
ley National Laboratory, uses an initialization method similar to GAWI [85]. The
electrons are distributed with respect to three-dimensional Gaussians centered on the
nuclei, and then the configuration is checked to ensure no two particles are closer
than a tolerance distance to each other. Zori, a new QMC program developed in the
same research group, distributes electrons randomly in spheres of the atomic cova-
lent radius and checks to make sure no electron-electron distance is smaller than a
threshold. A configuration is discarded if its local energy is not within a given range
of an estimate of the energy of the system [86]. This test is probably effective in elim-
inating some unfavorable initial configurations, but requires additional user specified
parameters and could cause the walker initialization to scale badly if a large fraction
of the configurations generated were discarded.

These initialization methods give satisfactory performance in calculations on small
molecules using moderately large computers. In these calculations, the equilibration
phase is a small part of the total computational expense and does not have a severely
detrimental effect on the efficiency. As the size of the molecules and the number
of processors increase, however, the fraction of the total time spent equilibrating can
become significant. By improving the way initial configurations are chosen, the length
of the equilibration phase can be reduced, which will improve the parallel scaling and
efficiency of calculations using large numbers of processors.

The walker initialization algorithms described above suffer from several deficien-
cies. Most importantly, because all the electrons of an atom are distributed with
respect to the same probability distribution, the electrons tend not to avoid each
other in the initial configurations. For opposite spin electrons, this is unfavorable
because of their coulomb repulsion. For parallel spin electrons, however, it is even
worse. The antisymmetry of the wavefunction dictated by the Pauli principle forces

the wavefunction to go to zero as two parallel spin electrons approach each other. In
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addition, these methods ignore the structure of the energy levels, in which there will
be certain numbers of electrons mostly within annular shells.
Because the initialization methods of this section share these deficiencies, we as-
sume that their performance will be similar, and will use GAWI to represent them in

comparisons.

5.3.1 STRAW

The Stratified Atomic Walker initialization (STRAW) is a method for generating
initial electronic configurations that addresses the problems described above. In
STRAW, the electrons are assigned to the nuclei as in the other methods. Care
is taken to ensure that, for an overall neutral molecule, each atom is neutral. The
atoms are treated separately, and the electrons are partitioned into energy levels,
with one alpha spin and one beta spin electron in the first energy level, up to four
alpha spins and four beta spins in the second energy level, and so on. The electrons
in each energy level are distributed using the transformation method with respect
to probability densities in spherical coordinates: r, 6, ¢. The transformation method
directly converts uniform random numbers on the interval (0,1) to random num-
bers distributed with respect to a desired probability density using the inverse of its
cumulative distribution function [53].

To obtain the radial densities for the energy levels, Hartree-Fock/6-311G** cal-
culations were carried out for each atom in the first three rows of the periodic table
using Jaguar [87]. The occupied atomic orbitals were localized by the Boys proce-
dure, which creates orbitals with maximum insensitivity to changes in distant nuclear
charges [88]. For molecules, the resulting orbitals are localized around the chemical
bonds and in the atomic lone pair regions. In our case, the Boys procedure hybridizes
the valence orbitals of the atom.

A representative orbital for each energy level was chosen and expressed as a sum
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Figure 5.1: The inverted radial distributions for the first and second energy levels
of carbon. To generate the radial coordinate for an electron in one of these energy
levels, we generate a uniform random number in the range (0,1) and then evaluate
the appropriate inverted distribution.

of primitive Gaussians:
Y= diz"yz exp (—air2) : (5.9)
i

The d; are the expansion coefficients and the exponents a;, b;, and ¢; determine the
symmetry of the primitive Gaussians. The square of the orbital is its probability
density:

p=|P =" didjaitoiybithiz6ite exp [— (e + ) 7“2] : (5.10)
2

Converting the probability density into spherical coordinates and integrating over the

angles yields the radial marginal probability distribution of the orbital:

2w p-
R(s) = E didj/ dp cos ¢% T4 sin @Pitbi / dO sin Quitaitbithi L Lo geites
0,

/0 drr pAHaTa bttt o [_ (o + o)) TZ] _ (5.11)
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The integrals over the angles were done analytically, and the radial integrals were
evaluated numerically by a change of variables from the incomplete gamma function.
Because the orbitals are normalized and their probability densities are always positive,
R (s) increases monotonically with r from zero to one.

Radial probability distributions for each energy level of each atom were tabulated
and inverted by interchanging the coordinates. For example, the inverted radial
marginal distributions for the first and second energy levels of carbon are shown in
figure 5.1. In order to generate the radial distances for the electrons in an energy level,
QMcBeaver fits a cubic spline to the appropriate tabulated inverted distribution. A
uniform number in the range (0,1) is generated for each electron and converted to a
radial coordinate by evaluating the spline.

The transformation method is also used to generate the angular coordinates for the
electrons. Probability densities in 6 and ¢ for s, sp, sp?, and sp?® hybrid orbitals were
found in terms of the real spherical harmonics [89] and integrated analytically. The
results were tabulated and inverted. As with the radial distributions, splines are fit
to the tabulated inverted distributions and used to generate the angular coordinates
of the electrons in the energy level.

The probability densities in 6 and ¢ are chosen for each electron so that they avoid
each other, with parallel spin electrons having higher priority. For example, if there
are three alpha and two beta electrons in an energy level, the three alpha electrons
are distributed with respect to the angular probability distributions of the three sp?
orbitals in the xz plane, while the two beta electrons are distributed with respect to
those of the sp orbitals along the y axis.

Once the radial and angular coordinates for the electrons of an energy level have
been assigned, they are converted to Cartesian coordinates. The entire energy level is
then given a random rotation about a random axis. This rotation is easily computed
using quaternions and prevents the distribution from becoming skewed along any axis
or plane.

STRAW has been implemented in QMcBeaver, an open source program [81]. Re-

searchers interested in further details of the algorithm are encouraged to download



Figure 5.2: The RDX molecule.

and examine the source code.

5.3.2 Equilibration Behavior

The computational experiments described in this section comparing the performance
of the initialization methods were conducted using QMcBeaver [81].

The VMC trial functions used in this section have the form Wy 0 = Yeop/,
where Vgop is a HF/6-311G**+4 wavefunction calculated using Jaguar [87] and J
is a Pade-Jastrow correlation function with terms for each pair of particles in the

molecule:

J = exp (ZZUU), (5.12)

i j<i
CijTij
Ujj = ———. 5.13
" 1 + bijTij ( )
In order to satisfy the cusp condition [9] for an electron approaching a nucleus,
we set ¢ = —Z for the electron-nuclear v functions, where Z is the charge of the
nucleus. Similarly, we set ¢ = % for opposite spin electron pairs and ¢ = i for same
spin electron pairs.

For opposite spin electron pairs, we use b = 3.0, and for same spin electron pairs
and all nuclear-electron terms, we use b = 100.0. Our experience is that these values
work reasonably well for ground states of molecules composed of atoms from the first

three rows of the periodic table.
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Figure 5.3: Local energies of two RDX walkers. The walker initialized with GAWI
starts off with very high local energy and approaches equilibration after several thou-
sand steps, while the walker initialized with STRAW reaches a constant distribution
very quickly.

This is a very simple trial wavefunction, and its parameters are not optimized. In
order to calculate accurate electronic properties for these molecules, the trial function
could be improved by modifying the orbitals to satisfy the electron-nucleus cusp
condition [72], using a better Jastrow form [71, 82], and optimizing its parameters [67,
68, 69]. In this work, however, we are focusing on equilibration and our ability to
sample a wavefunction, so the simple trial function is sufficient.

In the calculations of this section, we use a time step of 0.001 au for both the
equilibration and propagation phases, which results in propagation phase acceptance
probabilities of 85% for SiCly and 93% for RDX. Methods such as using a larger time
step during the equilibration phase can be used to accelerate equilibration. In order
to simplify comparisons between initialization methods, however, we use a constant
time step in all of our calculations.

The effort that has gone into the more complicated initialization scheme pays off
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Figure 5.4: Local energies of SiCl4 walkers. The local energy of the walker initialized
with GAWI starts in a high energy region and approaches a steady state after several
thousand steps, while the walker initialized with STRAW is equilibrated very quickly.

handsomely. Figures 5.3 and 5.4 show the behavior of the local energy of VMC walkers
initialized with GAWI and STRAW. In each case, we find that walkers initialized
with GAWI require several thousand steps to reach an equilibrium distribution, while
walkers initialized with STRAW require very few.

Figure 5.3 shows the behavior of the local energy of two walkers during calcula-
tions on hexhydro-1,3,5-trinitro-1,3,5-triazine, or RDX (figure 5.2) [90], an energetic
material. The local energy of the walker initialized with GAWI approaches a steady
state after several thousand steps. This figure clearly shows the importance of avoid-
ing contamination by the high energy nonequilibrated configurations in the beginning
of the calculation. In contrast, the distribution of local energies for the walker ini-
tialized with STRAW is constant throughout the run. The initial configuration is in
a region of high probability density and low local energy, and the long equilibration
phase we see in the case of the GAWI walker is eliminated.

In order to test the effectiveness of STRAW on a molecule with atoms from the
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Figure 5.5: VMC calculations on RDX were carried out using 512 processors and
5 walkers per processor. Ensembles initialized with GAWI require 30,000 equilibra-
tion steps before contamination by high energy samples is eliminated. The ensemble
initialized with STRAW is equilibrated after 100 steps.

third row of the periodic table, a series of calculations was carried out with the SiCly
molecule. Figure 5.4 shows the behavior of the local energy of walkers initialized
with GAWI and STRAW. Once again, we see that the local energy of the walker
initialized with GAWI approaches equilibration after several thousand steps, while the
local energy of the walker initialized with STRAW reaches an equilibrium distribution
very quickly.

Figures 5.3 and 5.4 examine only one walker for each initialization method. The
results are encouraging, but a visual examination of the local energy is hardly a
quantitative measure of equilibration. In addition, realistic QMC calculations on the
molecules of this section will use ensembles of thousands to hundreds of thousands
of walkers. In order to compare the behavior of ensembles of walkers generated by
GAWI and STRAW, VMC calculations on the RDX molecule were carried out using
the ASCI-QSC supercomputer at the Los Alamos National Laboratory. This machine
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Initialization | Eq (E) (au) Total
steps samples

GAWI 10K | -893.114 £ 0.0122 | 26,324,421
GAWI 15K | -893.235 £ 0.0103 | 26,334,855
GAWI 20K | -893.275 4+ 0.0102 | 26,024,948
GAWI 25K | -893.291 4+ 0.0184 | 26,272,857
GAWI 30K | -893.296 4+ 0.0101 | 26,291,124
STRAW 100 | -893.298 + 0.0099 | 25,145,777
STRAW 20K | -893.291 4+ 0.0117 | 26,071,024

Table 5.1: VMC calculations on RDX were carried out using 512 processors with 5
walkers per processor to compare different initialization methods and equilibration
lengths. Calculations with too few equilibration steps are contaminated by nonequi-
librated samples and do not agree with calculations that are allowed to equilibrate.
RDX calculations initialized with GAWI require 30,000 steps to equilibrate, while 100
steps are sufficient when STRAW is used.

is composed of 256 4 CPU HP/Compaq Alphaserver ES45s running at 1250 MHz.
Calculations using 512 processors, 5 walkers per processor, and varying equilibration
lengths were run until about 26 million samples were collected. The results are
summarized in table 5.1.

Expectation values calculated using equilibrated walkers should be approximately
independent of time, with random fluctuations. A long term, low frequency drift in
an expectation value as samples are collected is a sign of contamination by nonequili-
brated configurations. Figure 5.5 shows the energy expectation value vs the number
of samples collected for these calculations. The left side of the figure shows the calcu-
lations initialized with GAWI. In the calculations with less than 30,000 equilibration
steps, we see a monotonic decrease in the expectation value of the energy as points are
collected. These calculations are contaminated with high energy, nonequilibrated con-
figurations from the beginning of the calculation, and the expectation value decreases
as equilibrated samples are added. The energy expectation value in the calculation
with 30,000 equilibration steps has the desired behavior, fluctuating about the limit
with no long term drift.

The calculations initialized with STRAW used 100 and 20,000 equilibration steps.

We use a minimum of 100 equilibration steps in our calculations as a safety margin to
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Figure 5.6: The energy expectation values and standard deviations for two uncontam-
inated RDX VMC calculations are shown. The calculations used 512 processors with
5 walkers per processor. The eventual answer is within one standard deviation of the
expectation value at almost every point during the calculations. This shows that for
uncontaminated calculations, the standard deviation of the energy expectation value
is a good measure of its convergence.

be sure that each walker has at least one accepted move during the equilibration phase.
The behavior of the energy expectation value in these calculations is very similar to
that of the calculation initialized with GAWI using 30,000 equilibration steps. These
three calculations show no signs of contamination. In Table 5.1, we see that their
expectation values all agree to within one standard deviation of each other. These
results demonstrate that 100 steps is sufficient for equilibration for RDX ensembles
initialized with STRAW, while 30,000 equilibration steps are necessary when GAWI
is used.

In QMcBeaver, standard deviations for expectation values are calculated using
DDDA [49], which averages samples into blocks in order to account for their serial
correlation. If we examine the results for the calculations initialized with GAWI

using 10,000, 15,000, and 20,000 equilibration steps in table 5.1, we see that their
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energy expectation values do not agree with each other or those of the equilibrated
calculations to within one standard deviation. This is important because it shows
that the standard deviation calculated during a contaminated calculation does not
necessarily reflect the inaccuracy of its expectation value. If a researcher specifies an
equilibration phase that is too short and nonequilibrated configurations contaminate
the statistics, the expectation values will be inaccurate, and their standard deviations
will not be a reliable measure of their inaccuracy.

The energy expectation value in the calculation that used GAWI and 25,000 equi-
libration steps agrees with the equilibrated results to within one standard deviation,
but its behavior in figure 5.5 still shows signs of contamination by high energy samples
in the beginning of the run.

In contrast, figure 5.6 replots the energy expectation value for two of the uncon-
taminated calculations. The error bars show the standard deviation of the expectation
value. For these uncontaminated calculations, the eventual answer is within the range
(E) + o(E) at almost every point. In an uncontaminated calculation, we see that
the standard deviation calculated by DDDA as the calculation progresses is a good

measure of the level of convergence of the expectation value.

5.3.3 Timing and Spatial Correlation

Because it is more complicated than GAWI, STRAW takes more time to generate
an initial electronic configuration for a walker. The new initialization method would
be of little use if the time it took to generate an initial configuration was greater
than the time saved in equilibration steps. Although coordinates are generated for
each electron individually, the use of splines makes the process very inexpensive.
Generating an initial configuration using STRAW requires less time than two VMC
iterations for each of the molecules examined in this work.

The equilibration phase of a QMC calculation allows the walkers to become in-
dependent of their initial configurations and, by extension, each other. Since our

objective is to shorten the equilibration phase of the calculation, an important objec-
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Figure 5.7: Standard deviation of energy expectation values for single proces-
sor ethanol calculations using equilibrated, identical, and STRAW ensembles after
200,000 propagation steps. The points for the equilibrated and STRAW ensembles
are very close to the function 0.20 - WW=%5 which shows that walkers generated by
STRAW are statistically independent of each other.

tion to using STRAW could be raised if it led to spatial correlation, or any kind of
statistical dependence within the ensemble of walkers.

Testing for spatial correlation in an ensemble of walkers is difficult. Vectors can be
tested for spatial correlation by taking dot products, but a comparison of electronic
configurations must take into account the indistinguishability of identical particles and
the symmetry of the molecule. We avoid these difficulties by instead examining the
statistical consequences of spatial correlation. If the walkers are indeed independent
of each other, we expect that for a fixed number of iterations, the standard deviation
of the energy expectation value will be proportional to \/LW’ where W is the number
of walkers. Any spatial correlation among the walkers will result in a different trend.

Single processor VMC calculations with 200,000 propagation steps and different

ensemble sizes were carried out using the ethanol molecule. The trial function has

the form Uy 0 = YgopJ, where Ugop is a HF/6-311G** 4+ wavefunction calculated
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using Jaguar [87] and J is the Jastrow function described in equations 5.12 and 5.13.
One series of calculations was initialized with GAWI and allowed to equilibrate for
200,000 steps. We assume the walkers in these ensembles are independent of each
other and their initial configurations. A second series was started with ensembles
of identical walkers. These ensembles start with perfect spatial correlation. A third
series of calculations was initialized with STRAW and used 100 equilibration steps.

Figure 5.7 shows the results for the different ensembles. The points for the equili-
brated and STRAW ensembles are close to each other and the function 0.20 - W 95,
which is what we expect for independent walkers. The points for the identical en-
sembles, on the other hand, are very close to the function 0.24 - W=3. Because they
do not sample as much configuration space as independent walkers, ensembles with a
high degree of spatial correlation generate less information than ensembles that are
independent. Although the equilibration phase is very short, the statistical behavior
of the STRAW ensembles is very similar to that of the equilibrated ensembles and to
the behavior expected of independent walkers.

The initial electronic configurations generated by STRAW are statistically inde-
pendent of each other and in regions of high enough probability density that a long
equilibration phase is not necessary. The initialization algorithm is based on general
principles of electronic structure, such as energy levels and the Pauli principle. It
does not, however, generate configurations directly with respect to py ¢, and is not

meant to substitute for Metropolis sampling.

5.3.4 Parallel Calculation Efficiency

The equilibration phase of a QMC calculation is an inherently serial step: the walk-
ers on each processor must be equilibrated individually, so adding more processors
increases the time spent on this phase of the calculation. Knowing the appropriate
number of iterations to exclude is vital, because leaving out too many wastes computer
time, while leaving out too few will result in nonequilibrated values contaminating

the statistics.
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Efficiency of Parallel RDX Calculations
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Figure 5.8: RDX calculations with one walker per processor were run until 1,000,000
total samples were collected. The calculations initialized with GAWI used 30,000
equilibration steps, while the calculations initialized with STRAW used 100 equi-
libration steps. Decreasing the number of equilibration steps greatly improves the
efficiency of calculations with large numbers of processors. The data are fit to
€ (Nprocessors) = ————— with a = 34.0 for GAWI and a = 12,514.0 for STRAW.

a+Nprocessors

The calculations of sections 5.3.2 and 5.3.3 give us confidence that STRAW can
generate independent initial configurations for RDX and SiCly in regions of high
enough density that one hundred equilibration steps is sufficient before calculating
expectation values. We expect that the electronic structure of other molecules com-
posed of atoms from the first three rows of the periodic table will be similar enough
to these examples to allow STRAW to be successful for them as well.

To demonstrate the effect of shortening the equilibration phase of a calculation,
a scaling experiment was performed on ASCI-QSC. VMC calculations on RDX were
conducted using 1,000,000 total propagation steps and 1 walker per processor. Follow-
ing the results of Section 5.3.2, 30,000 equilibration steps were used in the calculations
initialized with GAWI, while 100 equilibration steps were used with STRAW. The

efficiency of each calculation was found using equation 5.7.
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Figure 5.9: VMC calculations on RDX were carried out using 512 processors and 5
walkers per processor. The total iterations on the x axis include the equilibration
phase of the calculations. Initializing the walkers with STRAW decreases the wall
clock time needed to calculate the RDX energy expectation value to within 0.01 au
from 9.4 hours to 6.3 hours, an improvement of 33%.

The points in figure 5.8 were fit to the function a/(a + Nprocessors). The value
for a for GAWI is 34.0, while for STRAW it is 12,514.0. This result clearly shows
the effect of reducing the number of equilibration steps on the efficiency of parallel
calculations. The experiment has a short statistics gathering phase, which makes it
scale particularly badly as the number of processors increases. In a realistic calculation
on RDX, many more steps will have to be used before the expectation values converge
to within chemical accuracy. A calculation with a longer statistics gathering phase
will scale more favorably as the number of processors increases, which can be seen by
examining equation 5.7. As computers with large numbers of processors come into
general use [80, 42], however, the equilibration phase will limit the efficiency of any
calculation.

The most important consequence of reducing the length of the equilibration phase

with STRAW is that the improvement in parallel efficiency will speed the calcula-
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Initialization | Eq (E) (au) Steps on | Eff | Wall clock
steps root proc time

GAWI 30K | -893.291 £ 0.0099 85500 65.0% 9.40h

STRAW 100 | -893.287 £ 0.0098 57048 99.8% 6.30h

Table 5.2: RDX calculations using 512 processors and 5 walkers per processor were
run until 0.01 au convergence in the energy expectation value was achieved. The cal-
culation initialized with GAWTI used 30,000 equilibration steps, while the calculation
initialized with STRAW used 100 equilibration steps. The calculation initialized with
STRAW took 6.3 hours to converge, while the calculation initialized with GAWI took
9.4 hours.

tion of converged expectation values. Using an automatic method to terminate the
calculation based on the convergence of the energy expectation value [49, 50], RDX
calculations using 512 processors with five walkers per processor were run until the
expectation value of the energy converged to within 0.01 au or 6.27 kcal/mol. The
calculations initialized with GAWT used 30,000 equilibration steps, while the calcula-
tions initialized with STRAW used 100 equilibration steps.

Table 5.2 summarizes the results from these calculations, and figure 5.9 shows
the standard deviation of the energy expectation value vs total iterations on the root
processor. The total iterations include the equilibration phase, and we see that the two
calculations have very similar convergence behavior, with the calculation initialized
with GAWT offset by about 30,000 iterations compared to the one initialized with
STRAW. The calculation initialized with STRAW converged to the desired level in
6.3 hours with 99.8% efficiency, while the calculation initialized with GAWI took 9.4
hours with 65.0% efficiency.

5.4 Conclusion

We have presented and tested STRAW, a simple and automatic method for generat-
ing initial electronic configurations for QMC calculations. STRAW is based on the
structure of the energy levels of atoms and distributes the electrons in annular shells.

The electrons in each energy level are distributed with respect to probability distri-
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butions in the angular coordinates so that they avoid each other. The configurations
generated by STRAW are statistically independent of each other and are in regions
of high probability density, which reduces the length of the equilibration phase of
the calculation, during which the statistics must be discarded. STRAW has been
implemented in QMcBeaver, an open source QMC program [81].

Using an appropriate equilibration length is vital, because when the statistics
are contaminated by nonequilibrated configurations, both the expectation values and
their standard deviations can be inaccurate. STRAW simplifies the job of the user to
specify the equilibration length by generating initial configurations that show no signs
of contamination or spatial correlation after an equilibration phase of one hundred
iterations.

Shortening the equilibration phase increases the efficiency of parallel QMC cal-
culations and decreases the amount of computer time needed to calculate converged
expectation values. For example, using STRAW instead of a standard initialization
method in 512 processor calculations decreases the time needed to calculate the en-
ergy expectation value of a trial function for an RDX molecule to within 0.01 au from
9.4 hours to 6.3 hours, an improvement of 33%.

Using STRAW improves the parallel scaling of QMC and will increase the effi-
ciency of calculations using tens to hundreds of thousands of processors. This will, in
turn, allow highly accurate simulations on a broader range of chemically interesting
systems than is possible today. QMC results will be useful as benchmarks for training
force fields for molecular dynamics simulations and developing new density functional
(DFT) methods. There are several classes of systems that have proven elusive for cur-
rent DFT methods [91, 92]. Reproducing QMC results for these systems will be an
important goal for the next generation of DFT methods.

Clearly, many other schemes for generating initial electronic configurations for
QMC calculations are possible. The tests for equilibration of the Markov chain,
initialization time, and spatial correlation described in the sections 5.3.2 and 5.3.3

will provide a basis for comparison of future initialization schemes.
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Chapter 6

A Quantum Monte Carlo Study of
Three Pericyclic Hydrocarbon
Reactions
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Abstract

Diffusion quantum Monte Carlo calculations using Hartree-Fock, generalized valence
bond, and multiconfiguration self-consistent Field trial functions were carried out for
three pericyclic hydrocarbon reactions. The enthalpies of activation and reaction
are compared to experimental, CCSD(T), and CBS-QB3 results, as well as those
of BSLYP and the recently introduced X3LYP, XYG3, and M06 family of density
functional methods.

For all three reactions, B3LYP geometries and zero point energies combined with
DMC electronic energies calculated with the appropriate trial function result in accu-
racy comparable to CCSD(T) and CBS-QB3. HF trial functions are sufficient for C-C
o bonds, while GVB trial functions are necessary for 7 bonds. For molecules with
multiple 7 bonds and transition states with several bonds being formed or broken,

MCSCF trial functions must be used.
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6.1 Introduction

The advances in computing power and electronic structure theory in recent years
have increased the role of simulations in understanding systems in chemistry and
materials science. Electronic structure calculations can provide information on the
geometry, molecular orbitals, and vibrations of not only stable molecules, but also
transition states and reaction intermediates that are impossible to observe experimen-
tally. Understanding the properties of transition states is crucial in areas such as the
development of new catalysts and energetic materials. Transition states are difficult
cases for electronic structure methods, with the errors for most methods larger by a
factor of three or four for transition states than for stable molecules.

Quantum Monte Carlo (QMC) is a class of stochastic electronic structure meth-
ods that can, in principle, calculate expectation values to within chemical accu-
racy [57, 59]. Although the expense of QMC will keep it from replacing traditional
methods such as Density Functional Theory (DFT) for routine calculations, its fa-
vorable scaling [62, 63, 64] and parallelizability [65] will allow QMC calculations on
systems too large for other comparably accurate methods. QMC has the potential to
resolve disagreements and provide benchmark results when other electronic structure
methods are too expensive or not reliable enough for a certain application.

The QMC variants used in this work are variational Monte Carlo (VMC), in which
the adjustable parameters of a trial wavefunction are optimized, and diffusion Monte
Carlo (DMC), which simulates a diffusion process to sample the exact ground state
wavefunction of a system. The most common formulation of DMC uses two main
approximations. First, the factorization of the Green’s function that propagates the
walkers is exact only for a time step of zero. In order to propagate the walkers and
sample configuration space, however, a finite time step must be used. As the size of
the time step increases, configuration space is sampled more quickly, but the time
step error increases. The second source of error is the fixed node approximation, in
which the nodal structure of the exact ground state is assumed to be the same as

that of the SCF part of the trial wavefunction. In this work, we explore both sources
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of error for stable molecules and transition states by conducting DMC calculations
on three pericyclic hydrocarbon reactions. Trial functions were constructed for each
reaction using Hartree-Fock (HF), generalized valence bond (GVB) and multiconfig-
uration self-consistent field (MCSCF) wavefunctions and used in DMC calculations
with time steps from 1072 to 10~* au. The time step and fixed-node errors in the
activation barriers and overall reaction energies are analyzed to develop guidelines for
calculations on larger systems.

There are many interesting systems in chemistry and materials science that are too
large for highly accurate SCF methods, and for which DFT methods are unreliable.
DMC has the potential to provide accurate expectation values in these cases. Because
the DMC results will become the benchmarks against which other calculations are
judged, it is essential that they be accurate. In order to carry out accurate and efficient
DMC calculations, researchers will have to use the appropriate trial function and time
step for the system being studied. Studying reactions involving small molecules, for
which several time steps and trial funtions can be compared, and for which the results
of experiments and other high quality calculations are available, will provide a base

of knowledge for researchers addressing larger problems.

6.2 Reactions

Figure 6.1 shows the three reactions studied in this work. Reaction 1 is the 2+2
cycloaddition of ethylene to form cyclobutane. Several mechanisms have been inves-
tigated for this reaction. The supra-supra pathway with D2h symmetry is a classic
example of a reaction forbidden by orbital symmetry [93]. In the supra-supra path-
way with C2v symmetry, a biradical tetramethylene chain is formed, which closes to
form cyclobutane. In the supra-antara pathway, which we examine in this work, the
C-C bond of one ethylene twists during the course of the reaction. This mechanism
is allowed by orbital symmetry, but has a very high activation barrier because bond-
ing cannot be maintained as the reaction proceeds. In the transition state, the four

carbons have a dihedral angle of about 40 degrees.
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Figure 6.1: Reactions 1, 2, and 3.

Reaction 2 is the 442 cycloaddition of ethylene and butadiene to form cyclo-
hexene. This thermally allowed reaction is the prototype Diels-Alder reaction and
represents an important class of reactions in organic synthesis. Reaction 3 is the ring
opening of cyclobutene to form butadiene. For reaction 3, we examine the symmetry-
allowed conrotatory pathway, in which the two terminal CH, groups rotate in the
same direction. The disrotatory pathway is forbidden by orbital symmetry.

Although these reactions involve small molecules, with at most six carbon atoms,
the breaking and forming of ¢ and m bonds make them difficult cases for density
functional methods, with most methods predicting reaction enthalpies with errors of
four to five kcal/mol. We compare the DMC results with those of B3BLYP and the
recently developed X3LYP, XYG3, and the M06 family of density functional methods.

6.3 Experimental and Computational Results

In all three mechanisms for reaction 1, bonds must be broken for the reaction to
happen. As a result, the activation enthalpies are very high and the reaction is difficult
to carry out under thermal conditions. Reliable experimental results for the enthalpies

of activation and reaction are not available. Using the experimental enthalpies of
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formation of ethylene [94] and cyclobutane [95], we calculate AHyx = —16.5 keal/mol
for reaction 1. In 2002, Sakai calculated an MP2/CAS/6-3114+G(d,p) 0K activation
enthalpy for the supra-antara pathway of 77.6 kcal/mol [96]. In 2006, Sirjean et al.
calculated a CBS-QB3 [97] 0K enthalpy for reaction 1 of -16.66 kcal/mol [98].
Detailed experimental and computational results for reactions 2 and 3 were as-
sembled by Guner et al. in 2003 [99]. They compared HF, MP2, CASSCF, CASPT?2,
B3LYP, BPW91, MPWI1K, KMLYP, and CBS-QB3 results with experiment for 11
pericyclic hydrocarbon activation and reaction enthalpies. Reactions 2 and 3 of
this work are reactions 1 and 7, respectively, of theirs. We use their experimen-
tal values of AHyx = —39.6 kcal/mol and AH, = 23.3 4+ 2 kcal/mol (later re-
vised to 25.0 kcal/mol [100]) for reaction 2 and AHyx = —10.6 £ 1 kcal/mol and
AH}, = 31.9 + 0.2 keal/mol for reaction 3.

6.4 Computational Methods

The structures of the reactants, products, and transition states of reactions 1, 2, and
3 were optimized with Jaguar [87] using B3LYP DFT [33] and the 6-311G** basis
set [101]. Frequency calculations were carried out to verify the optimized geometries
and calculate zero point energies. All stable molecules had no negative frequencies,
and the transition states for reactions 2 and 3 each had one negative frequency corre-
sponding to the desired reaction. The transition state for reaction 1 had two negative
frequencies, one corresponding to the reaction and the another corresponding to a
rocking motion. Zero point energies were calculated using unscaled frequencies.

Ab initio SCF calculations were conducted with GAMESS [102] using the B3LYP/6-
311G** geometries to provide trial functions for the DMC calculations. The aug-cc-
pVTZ basis set was obtained from the EMSL website [103, 104] and used for all of
the wavefunctions. HF wavefunctions were calculated for all molecules to provide a
“zero correlation” starting point. GVB and MCSCF wavefunctions were calculated
to see the effect of correlated trial functions on the QMC results.

In a GVB-PP calculation, geminal pairs are defined, each of which consists of two
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orbitals and two singlet paired electrons. The first orbital is usually a bonding orbital
occupied in the HF configuration. The second orbital is usually the corresponding
antibonding orbital, orthogonal to the first and unoccupied in the HF configuration.
The two orbitals are combined to form two singlet paired GVB orbitals that allow
the electrons to avoid each other [16].

For reaction 1, two sets of GVB wavefunctions were calculated. The first defined
two geminal pairs for the product, transition state, and reactants, containing the
electrons and orbitals involved in the reaction. The 7 and 7* orbitals of ethylene were
used as a geminal pair. Two nonneighboring o bonds of cyclobutane were correlated
with their ¢* orbitals, and the corresponding intermediate bonds of the transition
state were correlated with their antibonding orbitals. Because these wavefunctions
involved two electron pairs and four orbitals, they are labeled GVB 2,4. Because the
C-C bonds of cyclobutane are equivalent, a second set of GVB wavefunctions were
calculated with four geminal pairs for each molecule. All four ¢ bonds of cyclobutane,
the o and 7 orbitals of ethylene, and the corresponding four orbitals of the transition
state were correlated. These wavefunctions are labeled GVB 4,8.

GVB wavefunctions were calculated for the molecules of reactions 2 and 3 with
geminal pairs for the electrons and orbitals involved in the reaction. Three pairs in six
orbitals were used for reaction 2, and two pairs in four orbitals were used for reaction
3.

In an MCSCF calculation, an active space consisting of a subset of the orbitals
and electrons of a molecule is defined. A CI calculation is carried out in which the
active orbitals are occupied. The orbitals and CI expansion coefficients are optimized,
giving a very general description of the electronic structure of the molecule [13]. If
a full CI calculation is used, and all possible occupations of the active orbitals are
considered, the calculation is called a Complete Active Space SCF (CASSCF) [14] or
Fully Optimized Reactive Space (FORS) [15] calculation.

CASSCF wavefunctions were calculated for the molecules using the same active
orbitals as the GVB calculations. CASSCF wavefunctions with an active space of

four electrons in four orbitals and eight electrons in eight orbitals were calculated for
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reaction 1. An active space of six electrons in six orbitals was used for reaction 2, and
four electrons in four orbitals for reaction 3. For simplicity, the MCSCF wavefunctions
were labeled in the same manner as the GVB wavefunctions.

Density functional theory (DFT) is currently the most popular way for researchers
to include the effects of electron correlation in calculations. The small expense, ac-
curacy, and favorable scaling of DFT calculations have enabled theorists to make
significant contributions to chemistry, physics, and materials science. DF'T methods
are based on the theorem of Hohenberg and Kohn, which proves the existence of
a functional of the electron density that will give the exact energy [27]. Practical
implementations do not deal with the electron density directly, but use the orbital
formulation of Kohn and Sham to express the wavefunction [28]. New density func-
tionals are constantly being introduced with parameters optimized for certain classes
of reactions, but the goal of consistent results within chemical accuracy for a broad
range of systems has not yet been achieved. The most widely used DFT method is
B3LYP, introduced by Becke in 1993 [33].

In this work, we carried out calculations on reactions 1, 2, and 3 using three
recently introduced density functional methods.

The X3LYP functional is based on the exact form of the exchange energy density
for an electron density decaying with Gaussian-like behavior at long range [34]. An
exchange functional with the correct behavior is described as a linear combination of
the Becke [30] and Perdew-Wang [105] exchange functionals. X3LYP was designed
to improve the accuracy for noncovalent interactions, such as hydrogen bonds and
electrostatic and van der Waals interactions, for use in simulating the binding of
ligand molecules with proteins. X3LYP was demonstrated to have excellent results
for nonbonded systems such as noble gas dimers and water clusters, as well as for
heats of formation, ionization potentials, and electron affinities.

The MO6 suite is a family of four density functional methods, each parameterized
for different systems. MO6 is parameterized for both metals and nonmetals, while
MO06-2X has twice the nonlocal exchange and is intended for nonmetals only [35].

MO6-L is a local functional, which reduces the computational expense for large sys-
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tems [106]. M06-HF includes the full HF exchange energy for the Kohn-Sham orbitals,
which makes it suitable for one electron systems and long range charge transfer excited
states [107].

The XYG3 functional includes an exact exchange term as well as information
about the unoccupied Kohn-Sham orbitals in a second-order perturbation theory
term [36]. The PT2 term causes the method to scale less favorably than other density
functionals, as O (N®) instead of O (N*), but gives XYG3 extremely high accuracy

for enthalpies of formation and reaction barriers.

6.4.1 Quantum Monte Carlo

The distinguishing feature of QMC calculations is the use of electronic configura-
tions generated randomly with respect to quantum mechanical probability densities
to calculate expectation values [56, 66]. In variational Monte Carlo (VMC), the con-
figurations are used to optimize the adjustable parameters of the wavefunction.
First, the expression for the expectation value of the energy of a trial wavefunction
is rewritten as a weighted average:
B JdE Wy (R) HYr () 6o
JdR |97 (R) |2
J dR ¥y (R) PEL (R)
JdR |Wr (R) |2
— / dR pyae (R) By (), (6.3)

(6.2)

where H is the Hamiltonian operator for the system and R is a 3N-dimensional
vector containing the coordinates of the N electrons of the molecule. In equation 6.3,

PV MC (ﬁ) is the probability density for the electronic configuration R:

W (ﬁ) K

= = - 6.4
J R [vr (R) | .

pvmMc (é)



73
Ly (ﬁ) is its local energy:
i ()

Ey, (R) = T(ﬁ)' (6.5)

A series of M independent electronic configurations, {ﬁz}, is generated with re-
spect to py e using the Metropolis algorithm [54]. The configurations are used to

calculate the expectation value of the energy:

(E) = % > EL (F:) 0 ( %) . (6.6)

Because the trial functions are evaluated stochastically, they do not have to be
analytically integrable, which gives researchers considerable freedom in choosing their

form. In most cases, the trial functions are written in the following form:

Uy = (Z ciqffCF> J, (6.7)

where the WP are one or a small number of Slater determinant wavefunctions
calculated by traditional electronic structure methods such as HF, GVB, or MCSCF.
The Jastrow function, J, is a symmetric function of the interparticle coordinates
that accounts for short range correlations and allows the trial function to satisfy the
quantum mechanical cusp conditions for collisions between particles [9].

Most VMC methods employ correlated sampling, in which expectation values for
several sets of parameters are calculated with one set of configurations. This technique
allows the differences between sets of parameters to be determined with much higher
precision than if the results from separate runs are compared [66]. Algorithms that
minimize a combination of the expectation value of the energy and its variance to
optimize the adjustable parameters of the trial functions Jastrow have been shown to
be effective and efficient [67].

In Diffusion Monte Carlo (DMC), a mixed distribution is defined:

fome (R, 7) =@ (R, 7) vy (R), (6.8)
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where W (R) is a trial function that approximates the ground state of the system
and ¢ (ﬁ, 7') satisfies the time-dependent Schrodinger equation for the system.

The mixed distribution satisfies a Fokker-Planck equation:
(R =[5+ Vv (B) -5 (B)] £ () (6.9)
or ’ 2 T

where V/ (ﬁ) is the local velocity of the trial function:

. VU ()
V(R) = T(ﬁ)’ (6.10)
and S (ﬁ) is defined in terms of its local energy:
S (R) = Br - B, (H). (6.11)

Er is a shift in energy that approximates the true ground state energy.
In order to propagate equation 6.9 with 7, an equivalent integral equation is

written:

f (Y7 +dr) = etrtntredn / iR G (Y, R,dr) f (R,7), (6.12)

where G (}7, ﬁ, dT) is the Green’s function for the case £y = 0.
The three terms on the right side of equation 6.9 describe diffusion, drift, and
branching processes. The exact Green’s function cannot be written, but it can be

approximated by a product of Green’s functions for the three individual processes:

1

G(?,E,dT) ~ Wa[i—ﬁ—v(ﬁ)dﬂx
(v 2)2
/dZ exp 277 x (6.13)

¢ 3B (V)+E(R)]dr 4 ) (de) :

Because the diffusion, drift, and branching terms do not commute, equation 6.13 is



75
exact only for dr = 0. In DMC calculations, expectation values are calculated for
several values of dr and extrapolated to dr = 0. Because configuration space is
sampled more slowly, the number of iterations needed to achieve a certain level of
convergence increases when the time step size is decreased.

As 7 — o0, fpmc approaches fy = &gV, where ®q is the true ground state
wavefunction for the system. For operators that commute with the Hamiltonian,
expectation values calculated using this distribution equal those of the exact ground
state. In order for fj to be sampled, it must be interpreted as a density. Since a density
cannot be negative, ¥ and ®;, must have the same sign throughout configuration
space.

Many electron wavefunctions have positive and negative regions separated by
nodes, on which they have zero value. In order for U7 and @, to have the same
sign throughout configuration space, they must have the same nodal structure. Un-
fortunately, it is impossible to construct a trial function with the nodal structure of
the exact ground state.

The simplest solution to the nodal problem is known as the fixed node approxi-
mation, in which the nodes of the exact wavefunction are assumed to be the same as
those of the trial function. The nodes are enforced by rejecting any proposed move
that crosses a node and changes the sign of Wy.

Fixed node DMC imposes a boundary condition on the ground state wavefunction
that it vanish at the nodes of the trial function. The simulation will converge to the
best possible solution to the Schrodinger equation within the nodal structure of the
trial function. The resulting energy will be an upper bound to the true energy and
will be variational with respect to the nodal structure [73]. It has been shown that
the error in the fixed node energy is second order in the error of the nodes [74].

Because the Jastrow function is symmetric with respect to particle interchange, the
SCF part of the trial function determines its nodal structure. For a DMC calculation
to give accurate expectation values, it is essential that the trial function use the

appropriate SCF wavefunction.
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6.4.2 QMC Procedures

A Jastrow function similar to that of Drummond et al. [71] was used for all of the
trial functions. Their two body Jastrow is a polynomial that goes to zero at a cutoff

distance:

Xij (rig) = (rig = Lij)© © (Liy — 145) (am’j + [

where 7; is the distance between particles ¢ and j. © is the Heaviside function, and
L;; is the cutoff distance. I';; enforces the cusp condition for the particles: it is set
to % for opposite spin electrons, i for same spin electrons, and the opposite of the
nuclear charge if particles ¢ and j are an electron and a nucleus. If C' = 2, the gradient
of xi; is continuous at the cutoff but the second derivative is discontinuous. If C' = 3,
both the gradient and second derivative are continuous at the cutoff, making the local
energy also continuous. The cutoff distance and coefficients «y;; are adjustable.

We used C' = 3 and N = 8 for every Jastrow function and scaled the interparticle

distance by letting s;; = % We found the cutoff distance and other parameters
much easier to optimize when the distances were scaled.

The molecular orbitals were modified near the nuclei using the procedure of Ma
et al. [72]. The part of an orbital arising from s-type basis functions centered on

a particular nucleus was replaced within a radius of correction of that nucleus by a

function of the following form:

6 =C+sgn b (0)] explp(r)], (6.15)

where sgn [é (O)} is +1, reflecting the sign of the replacement orbital at the nucleus. C
is a shift chosen so that the replacement orbital does not change sign within the radius
of correction. The coefficients in the polynomial p (r) are calculated by optimizing
the behavior of the local energy while requiring the replacement orbital to satisfy the
electron-nucleus cusp condition and the value and first and second derivatives to be

continuous at the radius of correction. With these modifications, the orbitals satisty
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the electron-nucleus cusp condition, so the electron-nucleus cusp parameters in the
Jastrow are set to zero.

The quantum Monte Carlo calculations were carried out with QMcBeaver, a QMC
program developed in the Goddard group at Caltech [81]. The interprocessor com-
munication and statistics gathering were were done using QMC-MW, a manager-
worker model that automatically balances the workload between the processors [50].
The statistics were analyzed by the dynamic distributed decorrelation algorithm
(DDDA) [49], a reformulation of the Flyvberg-Peterson blocking algorithm [108] that
greatly reduces the amount of data that has to be communicated when the results are
gathered. The initial electronic configurations for the walkers were generated with
STRAW, an algorithm that generates electronic configurations in regions of high
probability density [109].

The Jastrow parameters and CI expansion coefficients were optimized with the
linear method of Umrigar et al. [69]. The DMC algorithm of Umrigar et al. was used
to propose and accept electronic configurations [55], and the algorithm of Assaraf et

al. was used to reweight and branch the walkers [76].

6.5 Results and Discussion

VMC calculations were carried out for every trial function to optimize the CI coef-
ficients and adjustable Jastrow parameters. The VMC optimizations were run using
four processors with an ensemble of 100 walkers per processor. Using the optimized
trial functions, DMC calculations were carried out on supercomputers at Los Alamos
and Lawrence Livermore National Laboratories. DMC calculations run on Coyote at
LANL and hera at LLNL used 512 processors with 100 walkers per processor, while
DMC calculations run on uBGL at LLNL used 16,384 processors with 100 walkers
per processor. The DMC calculations were typically run for 12 hours at a time and
restarted from checkpoint files until the energy expectation value converged to within
1.5 x 10~* au or about 0.09 kcal/mol. DMC calculations were run with time steps

of 0.01, 0.003, and 0.001 au for every molecule. In addition, DMC calculations with
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time steps of 0.0003 and 0.0001 au were run for ethylene, cyclobutane, cyclobutene,
and butadiene. Limitations in available computer time prevented these calculations
from being run for cyclohexene and the transition states.

The DMC expectation values for each trial function and time step are shown in
figures 6.2 through 6.11. The expectation values for each trial function were fit to the
function @ + b (dr) + ¢ (dr)?. The time step error for every trial function is positive
and increases with the time step. The fit function should increase with dr, but in
some cases, it has a maximum between dr = 0.003 and dr = 0.01. Adding terms
to the polynomial did not alleviate this behavior or improve the fit of the function.
Since the function is being used to extrapolate the expectation values to the dr =0
limit and the fit is uniformly excellent in the small d7 region, the incorrect behavior

of the function for large dr was ignored.

6.5.1 Reaction 1

Figure 6.2 shows the DMC results for ethylene. It is easy to see the nodal and time
step errors in the calculations. The HF trial function has a nodal error, fairly constant
with respect to time step, of approximately 0.004 au or 2.5 kcal/mol compared to
the correlated trial functions. The DMC/GVB 1,2 and DMC/MCSCF 1,2 results
coincide for every time step. These wavefunctions differ only in their localization,
which should not affect their DMC energy. It is interesting to note the GVB 2,4 trial
function, which has lower SCF and VMC energies than the GVB 1,2 trial function,
has a DMC energy approximately 0.35 kcal /mol higher than that of the one pair GVB
trial function. The two pair MCSCF trial function has a DMC energy approximately
0.2 kcal/mol lower than the one pair trial functions. Trial functions with lower SCF
energy do not necessarily have higher quality nodes for DMC calculations.

The DMC results for TS1 are shown in figure 6.3. The results for the MC-
SCF 2,4 and MCSCF 4,8 trial functions are almost identical for every time step. The
DMC/GVB 2,4 results are approximately 6 kcal/mol higher than the DMC/MCSCF
energies. The GVB 4,8 trial function, which has lower SCF and VMC energies than
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Ethylene DMC Results
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Figure 6.2: DMC expectation values for the energy of ethylene. The expectation
values are fit to the function a + b(dr) 4 ¢ (dr)?. The expectation values for the
GVB 1,2 andMCSCF 1,2 trial functions coincide at every time step. The energy for
the GVB 2.4 trial function is slightly higher than that of the GVB 1,2 trial function
at every time step, and the energy for the HF trial function is considerably higher
those of the correlated trial functions at every time step.

the GVB 2,4 trial function, has a DMC energy approximately 1 kcal/mol higher than
the GVB 2,4 trial function. Once again, we see adding GVB pairs decreases the
quality of the nodes of the trial function and raises the DMC energy. The energies
for the HF trial function are about 1 kcal/mol above the GVB 4,8 DMC energies.
Figure 6.4 shows the DMC results for cyclobutane. The DMC results for all five
trial functions are within 1 kcal/mol of each other for every time step. Cyclobutane
is the only saturated hydrocarbon studied in this work, and these results show corre-
lating C-C ¢ bonds does not significantly change the nodes for DMC calculations.
Figure 6.5 shows the enthalpies at 0K of activation and reaction for reaction 1,
calculated using DMC electronic energies and B3LYP/6-311G** geometries and zero
point energies. The results for each time step and trial function are plotted with

points, and the results for each trial function extrapolated to dr = 0 are plotted
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TS1 DMC Results
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Figure 6.3: DMC expectation values for the energy of TS1. The expectation values
are fit to the function a+ b (d7) + ¢ (dr)*. The expectation values for the MCSCF 2,4
and MCSCF 4,8 trial functions coincide for the 0.003 and 0.001 au time steps. The
energy for the GVB 4,8 trial function is higher than that of the GVB 2.4 trial function
for every time step.

with dotted lines. The experimenal value for the overall reaction enthalpy is plotted
as a solid line. The DMC results for all four correlated trial functions are within
1 keal/mol of the experimental value, but the HF/DMC result is about 4 kcal/mol
too low. The large nodal error in the HF trial function for ethylene skews the result
for the reaction far outside the desired accuracy.

We do not have an experimental or high quality ab initio activation enthalpy for
reaction 1. The DMC/GVB activation enthalpies are about 79 kcal/mol, while the
DMC/MCSCF results are about 74 kcal/mol. The DMC/HF value of 76 kcal/mol
is closest to the MP2//CAS/6-311G(d,p) result of 77.6 kcal/mol [96], but we do not

consider that value to be definitive.
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Cyclobutane DMC Results
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Figure 6.4: DMC expectation values for the energy of cyclobutane. The expectation
values are fit to the function a+b (dr)+c (dr)*. The energies for all five trial functions
are very similar at every time step. Correlated trial functions do not significantly
change the DMC energy for cyclobutane.

6.5.2 Reaction 2

The DMC results for butadiene are shown in figure 6.6. The DMC/GVB 2,4 en-
ergies are about 4 kcal/mol below the HF values and about 1 kcal/mol above the
DMC/MCSCF 2,4 energies. Figure 6.7 shows the DMC results for TS2. The DMC/GVB 3,6
energies are about 1.25 kcal/mol below the DMC/HF energies and about 6.25 kcal /mol
above the DMC/MCSCF 3,6 energies. In figure 6.8, the DMC/GVB 3,6 and DMC/MCSCF 3,6
energies for cyclohexene are almost identical, and the DMC/HF energies are about

2.5 kcal/mol higher. In these three figures, we see that for cyclohexene, a molecule

with one C-C 7 bond, the GVB and MCSCF trial functions have almost identical
results, while for the transition state, in which three 7 bonds are being broken and

two o bonds and one 7 bond are being formed, the DMC/MCSCF 3,6 energy is sig-
nificantly lower than the DMC/GVB 3,6 energy. The nodal error for the GVB 2,4

trial function for butadiene is about 1 kcal/mol compared to the MCSCF 2,4 trial
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function.

The enthalpies of activation and reaction for reaction 2 are shown in figure 6.9.
The results for each time step and trial function are plotted with points, and the
results for each trial function extrapolated to dr = 0 are plotted with dotted lines.
The experimenal and CBS-QB3 values are plotted with solid lines. For the overall
enthalpy, the experimental, CBS-QB3, and correlated DMC results are all within
about 2 kcal/mol of each other. The DMC/HF results are about 4 kcal/mol too low.
The DMC/MCSCF 3,6 results are about 2 kcal/mol higher than the experimental
value, but only about 1 kcal/mol higher than the CBS-QB3 result. For the activation
enthalpy, the DMC/MCSCF 3,6 and DMC/HF results are within about 0.5 kcal/mol
of each other, and within about 2 kcal /mol of experiment. The DMC/GVB 3,6 result
is about 5 kcal/mol higher than the experimental value. The CBS-QB3 result is about

2 kcal/mol lower than the experimental value.

6.5.3 Reaction 3

Figure 6.10 shows the DMC results for cyclobutene. For this molecule, the DMC/GVB 2,4
and DMC/MCSCF 2,4 energies are almost identical for every time step, while the
DMC/HF energies are about 2.5 kcal/mol higher. The results for TS3 are shown in
figure 6.11. For this transition state, the DMC/GVB 2,4 energy is about 2.5 kcal /mol
below the DMC/HF result and about 2.2 kcal/mol above the DMC/MCSCF 2,4 en-
ergy.

The results for the activation and overall enthalpies for reaction 3 are shown
in figure 6.12. The DMC results for each trial function and time step are plotted
with points, and the results for each time step extrapolated to dr = 0 are plotted
with dotted lines. The experimental and CBS-QB3 results are plotted with solid
lines. In this case, the DMC/HF results for the overall change in enthalpy are within
0.5 kcal/mol of experiment, while the DMC/GVB 2,4 and DMC/MCSCF 24 re-
sults are about 2 and 3 kcal/mol too low, respectively. The correlated DMC results,

however, are both within 1 kcal/mol of the CBS-QB3 value. For the activation en-
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thalpy, the DMC/MCSCF 2,4 results are about 2 kcal/mol above the experimental
and CBS-QB3 values. The DMC/GVB 2,4 and DMC/HF values are about 4.5 and
6.5 kcal /mol, respectively, above the experimental and CBS-QB3 values.

6.5.4 Discussion

Conducting DMC calculations for several time steps and extrapolating the results to
dr = 0 greatly increases their computational expense. Although the DMC expec-
tation values for the individual molecules have considerable time step errors, they
cancel out when energy differences for reactions are calculated. In the enthalpies of
activation and reaction for reactions 1, 2, and 3, the DMC results for every time
step are within 1 kcal/mol of the extrapolated value. There is no consistent trend
in the extrapolated expectation values compared to their values at finite time steps.
Since extrapolating the energies to dr7 = 0 does not significantly change the results
for reactions, it is unnecessary when energy differences are being considered, and a
single time step can be used. For the rest of this work, only the DMC results with
dr = 0.01 au will be considered.

Table 6.1 contains the SCF, VMC, and DMC expectation values for the energy
of each trial function. The VMC and DMC calculations used a time step of 0.01 au.
The percentage of the correlation energy recovered by the Jastrow function is remark-
ably constant for every trial function, at about 77%. This result indicates the role
of the Jastrow function is very similar in all of the trial functions considered. The
trial functions represent the electronic structure of chain and cyclical, saturated and
unsaturated, stable hydrocarbons and transition states. The consistency of the abil-
ity of the Jastrow to recover correlation energy in these diverse molecules suggests
it acts primarily within the atoms, and does not have much effect in the bonding
regions. If the Jastrow only influences the electronic structure within the atoms,
it may be possible to optimize a set of electron-nuclear correlation functions using
atomic or simple molecular calculations, and use them without optimization in larger

systems. If the number of parameters to be optimized were reduced to only those in
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the electron-electron correlation functions and the CI expansion coefficients without
sacrificing accuracy, optimization would be simplified and calculations could proceed
more quickly to the DMC phase.

Table 6.2 contains the ab initio, QMC, and DFT results for the activation and
overall enthalpy changes for reaction 1. The DMC/GVB and DMC/MCSCF results
are all within about 1 kcal/mol of experiment. The B3LYP result is about 4 kcal/mol
too high, while the M06 results are between 5.5 and 2.5 kcal/mol too low. XYG3
is the best of the DFT methods, with an error of -0.7 kcal/mol. The CBS-QB3
result is within 0.2 kcal/mol of experiment, while the error for CCSD(T)/6-31G* is
-1.7 kcal /mol.

The results for reaction 2 are shown in table 6.3. For the overall enthalpy change,
the DMC/GVB 3,6 result is within about 0.1 kcal/mol of the experimental value. The
DMC/MCSCF 3,6 result is about 1.3 kcal/mol higher than experiment, but is within
0.03 kcal/mol of the CBS-QB3 value. The DMC/HF enthalpy is about 4.3 kcal/mol
below experiment, and the CCSD(T)/6-31G* result is about 0.8 kcal/mol below ex-
periment. The B3LYP result is about 9 kcal/mol higher than the experimental value,
while M06, M06-2X, and M06-HF are 2 to 2.5 kcal/mol lower than experiment. The
MO06-L and XYG3 values are about 1 kcal/mol higher than than experiment.

While the DMC/GVB 3,6 result for the overall enthalpy change of reaction 2
agrees with experiment, the DMC/GVB 3,6 activation enthalpy is about 6.5 kcal/mol
too high. The DMC/HF activation enthalpy is about 1 kcal/mol too high, and the
DMC/MCSCF 3,6 result is about 1.5 kcal/mol too high. The CBS-QB3 activation
enthalpy is about 2.1 kcal/mol below experiment, and the CCSD(T)/6-31G* result
is about 2.5 kcal/mol above experiment. The B3LYP activation enthalpy is about
2 kcal/mol higher than experiment, while the M06 results are 1.5 to 7.5 kcal/mol
lower. The XYG3 activation enthalpy is about 0.6 kcal/mol above the experimental
value.

Table 6.4 contains the results for reaction 3. The DMC/HF overall enthalpy
change is about 0.1 kcal/mol lower than experiment. The DMC/GVB 2,4 and
DMC/MCSCF 2,4 values are about 1.8 and 2.8 kcal/mol, respectively, lower than
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experiment, but are both within 1 kcal/mol of the CBS-QB3 value. The CCSD(T)/6-
31G* enthalpy is about 1.2 kcal/mol below experiment. The B3LYP enthalpy change
is about 4.5 kcal/mol lower than experiment, while the M06 results are all within
about 1 kcal/mol of experiment. The XYG3 result is about 2.4 kcal/mol below the
experimental value.

The DMC/MCSCEF 2,4 activation enthalpy is about 2.5 kcal/mol higher than ex-
periment, while the GVB 2,4 and HF values are about 4.5 and 6 kcal/mol higher than
experiment, respectively. The B3LYP activation enthalpy is the closest of all meth-
ods to experiment, agreeing within 0.16 kcal/mol. The M06-HF activation enthalpy
is about 0.5 kcal/mol higher than experiment, while the other M06 methods are 3 to
4 kecal/mol higher. The XYG3 activation enthalpy is about 1.4 kcal/mol above the
experimental value.

Table 6.5 shows the differences from the experimental values for the DMC/MCSCF
and DFT activation and overall enthalpies for reactions 1, 2, and 3. The result with

the lowest error for each quantity is in bold font.

6.6 Conclusion

In summary, we were able to calculate AHyyx and AH{ . values to within experimental
accuracy for three difficult pericyclic hydrocarbon reactions using B3LYP /6-311G**
geometries and zero point energies and DMC electronic energies. The DMC trial
functions consisted of a two body Jastrow and an antisymmetric wavefunction con-
structed with HF, GVB, or MCSCF and the aug-cc-pVTZ basis set. A time step of
0.01 au was found to be acceptable, making extrapolation to d7 = 0 unnecessary.
Because of the formation and breaking of C-C o and 7 bonds, Reactions 1, 2,
and 3 are difficult cases for DF'T. Compared to the experimental reaction enthalpies,
B3LYP has errors of about 4, 9, and -4.5 kcal/mol, respectively. X3LYP performs
somewhat better, with errors of about 3, 7, and -4 kcal/mol. The M06 family of
functionals is usually more accurate than B3LYP, but no one of the four methods is

consistently better than B3LYP or the most accurate among the M06 family. The
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results for the new XYG3 functional are excellent, with errors of about -1, 1, and
-2.5 keal/mol.

DMC using MCSCF trial functions has errors of about 1, 1, and -3 kcal/mol for
the three reactions. If the overall enthalpy for reaction 3 is compared to CBS-QB3
instead of experiment, the DMC/MCSCF error is about -1 kcal/mol. DMC/GVB 3,6
has the most accurate result for the overall enthalpy of reaction 2, and DMC/HF is
the closest to experiment for reaction 3, but DMC/MCSCEF is the only method that
performs consistently for all three reactions. When the appropriate trial function is
used, the errors of DMC for reactions 1, 2, and 3 are comparable to CBS-QB3 and
CCSD(T)/6-31G*. The favorable scaling and parallelizability of DMC, however, will
allow it to be applied to much larger systems than the ones in this work. CBS-QB3
and CCSD(T) are limited to systems with less than about twelve heavy atoms.

Based on the DMC results for individual molecules, some principles emerge as to
the trial functions necessary to give accurate results. First, HF' is sufficient for C-C o
bonds. Defining GVB pairs for C-C o bonds raises the DMC energy, and correlating
them with MCSCF does not lower the DMC energy significantly. Second, C-C 7
bonds must be correlated to give accurate trial functions. If there is one 7 bond, a
GVB trial function is sufficient. If the molecule contains more than one 7 bond, an
MCSCEF trial function must be used. For transition states, all partially formed bonds
must be correlated. If more than one bond is being formed or broken, an MCSCF
trial function is once again necessary.

The DMC time step errors for individual molecules are significant. For example,
using a time step of 0.01 au raises the expectation value for the energy of ethylene by
about 5 kcal /mol compared to the dr = 0 limit. These errors tend to cancel out when
energy differences for reactions are considered. For reactions 1, 2, and 3, extrapolating
the results to d7 = 0 did not change them significantly from the d7 = 0.01 au values.
Being able to use a single time step greatly decreases the amount of computer time
needed to calculate enthalpy differences.

To further simplify DMC calculations and make these excellent results available

for larger and more interesting systems, it will be helpful to investigate the effect of
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the basis set on the expectation values. The most time consuming parts of the QMC
algorithm scale as O (N?) with the number of basis functions, so decreasing the size of
the basis set will make the trial functions easier to construct and speed up the QMC
calculations. In addition, the VMC and DMC results in table 6.1 suggest it may be
possible to develop a single set of electron-nuclear correlation functions that could be
applied to all molecules. Eliminating these parameters from the optimization phase
of QMC calculations would make them less expensive and simpler for nonexperts to
carry out.

Finally, the GVB and particularly the MCSCF trial functions in this work included
large numbers of configurations. Increasing the length of the CI expansion greatly
increases the time needed to evaluate and optimize a trial function. While it was
shown that HF trial functions are not acceptable for transition states or molecules
with C-C 7 bonds, it is likely that the CI expansions could be truncated after a fairly
small number of terms without sacrificing accuracy. Comparing DMC expectation
values for trial functions with different CI expansion lengths will give researchers
guidelines to identify which configurations must be included, and which can safely be

ignored.
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Reaction 1 DMC results
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Figure 6.5: DMC results for the activation and overall enthalpies of reaction 1. The
dotted lines are the values for each level of correlation extrapolated to dr = 0. All
four correlated trial functions give overall DMC enthalpies within 1 kcal/mol of ex-
periment, but the value for the HF trial function is about 4 kcal/mol too low.
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Butadiene DMC Results
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Figure 6.6: DMC expectation values for the energy of butadiene. The expectation
values are fit to the function a+b (dr)+c (dr). In this case, increasing the correlation
of the trial function lowers the DMC energy for every time step.
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TS2 DMC Results
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Figure 6.7: DMC expectation values for the energy of TS2. The expectation values
are fit to the function a + b (d7) + ¢ (d7)*. The DMC/HF and DMC/GVB 3,6 DMC
energies are very close for every time step, but the DMC/MCSCF 3,6 expectation
values are significantly lower.
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Cyclohexene DMC Results
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Figure 6.8: DMC expectation values for the energy of cyclohexene. The expectation
values are fit to the function a+b (d7)+c (dr)’. In contrast to TS2, the DMC/GVB 3,6
and DMC/MCSCEF 3,6 expectation values are similar, while the HF expectation values
are higher.
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Reaction 2 DMC results

MCSCEF 3,6 dt=0

GVB 3,6 dt=0

AHyk (kcal/mol)

HF
GVB 3,6
MCSCF 3,6

+
X
*

HF dt=0

-44

0.001

0.003

dt (au)

0.01

33

30
29
28 r

HF
GVB 3,6
MCSCF 3,6

+
X
*

GVB 3,6 dt=0

MCSCF 3,6 dt=0

AHZ, (kcal/mol)

25

HF dt=0

24
23

Exp

CBS-QB3

22

0.001

0.003

dt (au)

0.01

Figure 6.9: DMC results for the activation and overall enthalpies of reaction 2. The
dotted lines are the values for each level of correlation extrapolated to dr7 = 0, and
the solid lines are the experimental and CBS-QB3 results. The DMC/GVB 3,6 re-
sult is within 1 kcal/mol of experiment for the overall enthalpy change, but about
7.5 kecal/mol too high for the activation barrier.
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Cyclobutene DMC Results
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Figure 6.10: DMC expectation values for the energy of cyclobutene. The expectation
values are fit to the function a + b(dr) + ¢ (dr)?. The expectation values for the
GVB 2,4 and MCSCF 2,4 trial functions are almost identical for every time step,
while the DMC/HF expectation values are higher.
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TS3 DMC Results
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Figure 6.11: DMC expectation values for the energy of TS3. The expectation values
are fit to the function a + b(dr) + ¢ (dr)®. Increasing the correlation of the trial
function lowers the DMC expectation value for every time step.
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Reaction 3 DMC results
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Figure 6.12: DMC results for the activation and overall enthalpies of reaction 3. The
dotted lines are the values for each level of correlation extrapolated to dr = 0, and the
solid lines are the experimental and CBS-QB3 results. The DMC/HF result is within
0.5 kcal /mol of experiment for the overall enthalpy, but off by about 6 kcal/mol for the
activation barrier. The correlated trial functions’ results are closer to the CBS-QB3
result than the experimental value for the overall enthalpy.
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Molecule SCF Nyet | (E)scr | Params | (EYvyce | (E)pmce | % Eeorr
wavefunction
Ethylene HF 1 -78.0652 36 -78.4461 | -78.5578 77.3
GVB 1,2 2 -78.0921 37 -78.4574 | -78.5624 T
GVB 2,4 4 -78.1027 39 -78.4589 | -78.5616 77.6
MCSCF 1,2 2 -78.0921 37 -78.4574 | -78.5623 T
MCSCF 2,4 12 | -78.1178 45 -78.4629 | -78.5629 77.5
TS1 HF 1 |-155.9731 36 -156.7596 | -156.9970 76.8
GVB 24 4 | -156.0219 39 -156.7774 | -157.0008 77.2
GVB 4,8 16 | -156.0467 51 -156.7809 | -156.9993 77.1
MCSCF 2,4 16 | -156.0413 47 -156.7902 | -157.0090 77.4
MCSCF 4,8 61 | -156.0885 72 -156.7994 | -157.0097 77.2
Cyclobutane | HF 1 |-156.1515 36 -156.9323 | -157.1578 77.6
GVB 24 4 | -156.1849 39 -156.9411 | -157.1581 77T
GVB 4,8 16 | -156.2171 41 -156.9475 | -157.1592 77.5
MCSCF 2,4 12 | -156.1855 45 -156.9400 | -157.1583 77.6
MCSCF 4,8 75 | -156.2325 7 -156.9498 | -157.1594 77.4
Butadiene HF 1 | -154.9799 36 -155.7125 | -155.9326 76.9
GVB 2,4 4 | -155.0288 39 -155.7342 | -155.9392 77.5
MCSCF 2,4 16 | -155.0332 47 -155.7367 | -155.9412 77.5
TS2 HF 1 |-232.9672 36 -234.1120 | -234.4526 77.1
GVB 3,6 8 | -233.0269 43 -234.1251 | -234.4550 76.9
MCSCF 3,6 51 | -233.0510 68 -234.1425 | -234.4650 77.2
Cyclohexene | HF 1 |-233.1005 36 -234.2376 | -234.5706 77.3
GVB 3,6 8 | -233.1578 42 -234.2522 | -234.5747 77.2
MCSCF 3,6 50 | -233.1586 67 -234.2530 | -234.5746 77.3
Cyclobutene | HF 1 | -154.9551 36 -155.6979 | -155.9168 77.2
GVB 24 4 | -154.9989 39 -155.7123 | -155.9207 77.4
MCSCF 2,4 8 | -154.9997 40 -155.7132 | -155.9210 77.4
TS3 HF 1 | -154.8840 36 -155.6325 | -155.8539 77.2
GVB 2,4 4 | -154.9340 39 -155.6518 | -155.8600 77.5
MCSCF 2,4 20 | -154.9423 49 -155.6553 | -155.8635 77.5
Table 6.1: QMC results using HF, GVB, and MCSCF trial functions. Energies

reported in atomic units.
B3LYP/6-311G** geometries. QMC calculations used a 0.01 au time step and the
2 body Jastrow described in Eq 6.14, and were run until the energy converged to
within 1.5 x 10™* au. The number of parameters optimized in the Jastrow function
and CI expansion for each trial function is shown in the Params column. The percent
of the correlation energy recovered by the Jastrow was calculated using the formula

% Ecorr = 100

(E)vmc—(E)pMmC

(E)scr—(E)pmc

All calculations used the aug-cc-pV'TZ basis set and

. The percent of correlation energy recovered by the

Jastrow is remarkably constant across all trial functions, which suggests the Jastrow

acts mostly within the atoms.
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Geom Energy ZPE | AHl, | AHyk
Exp [94, 95] -16.48
MP2//CAS/6-311G(d,p) [96] 77.6
CBS-QB3 [98] -16.66
CCSD(T)/6-31G* [110] -18.18
B3LYP B3LYP B3LYP | 74.37 | -12.55
HF 100.18 | -7.85
GVB 2,4 103.41 | 5.01
GVB 4,8 101.14 | -1.84
MCSCF 2,4 91.21 | 4.66
MCSCF 4,8 93.81 | 7.37
DMC/HF 76.00 | -21.02
DMC/GVB 2,4 79.42 | -15.40
DMC/GVB 4,8 79.37 | -17.10
DMC/MCSCF 2,4 74.13 | -15.66
DMC/MCSCF 4,8 74.42 | -15.61
MO06 70.63 | -22.02
MO06-2X 71.78 | -21.11
MO6-HF 69.37 | -18.94
MO6-L 70.58 | -20.94
X3LYP X3LYP X3LYP | 73.89 | -13.79
B3LYP XYG3 B3LYP | 73.21 | -17.21

Table 6.2: SCF and DMC results for the enthalpies of activation and reaction at
0K for reaction 1. All enthalpy differences reported in kcal/mol. The geometry,
energy, and ZPE columns contain the methods used to optimize geometries, calculate
electronic energies, and calculate zero point energies, respectively. B3LYP, MO06,
and X3LYP calculations used the 6-311G** basis set. The XYG3 calculations used
B3LYP/6-311+G(d,p) geometries and frequencies scaled by 0.9877 with XYG3/6-
311+G(3df,2p) electronic energies [111]. HF, GVB, and MCSCF calculations used

the aug-cc-pV'TZ basis set. DMC calculations used a 0.01 au time step.
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Geometry Energy ZPE | AHl. | AHyx
Exp [99] 25.0 | -39.6
CBS-QB3 [99] 22.9 | -38.3
CCSD(T)/6-31G* [112, 113] B3LYP | 27.48 | -40.36
B3LYP B3LYP B3LYP | 27.10 | -30.80
HF 51.24 | -28.48
GVB 3,6 61.41 | -16.77
MCSCF 3,6 49.06 | -14.50
DMC/HF 26.08 | -43.96
DMC/GVB 3,6 31.67 | -39.48
DMC/MCSCF 3,6 26.55 | -38.27
MO06 23.38 | -41.48
MO06-2X 21.60 | -42.19
MO06-HF 17.26 | -42.21
MO06-L 22.36 | -38.56
X3LYP X3LYP X3LYP | 26.34 | -32.37
B3LYP XYG3 B3LYP | 24.44 | -38.55

Table 6.3: SCF and DMC results for the enthalpies of activation and reaction at
0K for reaction 2. All enthalpy differences reported in kcal/mol. The geometry,
energy, and ZPE columns contain the methods used to optimize geometries, calculate
electronic energies, and calculate zero point energies, respectively. B3LYP, MO06,
and X3LYP calculations used the 6-311G** basis set. The XYG3 calculations used
B3LYP/6-311+G(d,p) geometries and frequencies scaled by 0.9877 with XYG3/6-
311+G(3df,2p) electronic energies [111]. HF, GVB, and MCSCF calculations used

the aug-cc-pV'TZ basis set. DMC calculations used a 0.01 au time step.
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Geometry Energy ZPE AH:, | AHyk
Exp [99] 31.9 | -10.6
CBS-QB3 [99] 32.0 | -12.6
CCSD(T)/6-31G* [110] -11.83
B3LYP B3LYP B3LYP | 32.15 | -15.11
HF 42.94 |-16.39
GVB 2,4 39.07 | -19.61
MCSCF 2.4 34.37 | -21.87
DMC/HF 37.79 | -10.73
DMC/GVB 2,4 36.44 | -12.44
DMC/MCSCF 2,4 34.42 | -13.47
MO06 35.24 | -10.27
M06-2X 35.37 | -10.91
MO06-HF 32.54 | -11.68
MO06-L 36.07 | -10.14
X3LYP X3LYP X3LYP | 32.47 | -14.87
B3LYP XYG3 B3LYP | 33.73 | -12.98

Table 6.4: SCF and DMC results for the enthalpies of activation and reaction at
0K for reaction 3. All enthalpy differences reported in kcal/mol. The geometry,
energy, and ZPE columns contain the methods used to optimize geometries, calculate
electronic energies, and calculate zero point energies, respectively. B3LYP, MO06,
and X3LYP calculations used the 6-311G** basis set. The XYG3 calculations used
B3LYP/6-311+G(d,p) geometries and frequencies scaled by 0.9877 with XYG3/6-
311+G(3df,2p) electronic energies [111]. HF, GVB, and MCSCF calculations used
the aug-cc-pV'TZ basis set. DMC calculations used a 0.01 au time step.

Reaction 1 Reaction 2 Reaction 3
Method AHj, | AHog | AHS, | AHox | AHS, | AHok
B3LYP 3.93 2.10 8.80 0.25 | -4.51
X3LYP 2.69 1.34 7.23 0.56 -4.27
XYG3 -0.73 | 0.56 1.05 1.83 -2.38
MO06 -5.54 | -1.62 | -1.88 3.34 0.33
M06-2X -4.63 | -3.40 | -2.59 3.47 | -0.31
MO6-HF -2.46 | -7.74 | -2.61 0.64 -1.08
MO6-L -4.46 | -2.64 | 1.04 4.17 0.46
DMC/MCSCF 0.82 1.55 1.32 2.52 -2.87

Table 6.5: Differences from experiment for the DMC/MCSCF and DFT activation
and overall enthalpies for reactions 1, 2, and 3. The result with the lowest error for
each quantity is in bold font.
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Chapter 7

Conclusion

The QMC calculations presented in this thesis were carried out using QMcBeaver, a
program written in the Goddard group to develop, demonstrate, and apply new QMC
algorithms [81]. Quantum Monte Carlo has the potential to calculate expectation val-
ues to within experimental accuracy, and its favorable scaling and parallelizability will
allow it to be applied to much larger systems than comparably accurate traditional
electronic structure methods.

QMC is a relatively new class of methods, with new algorithms being developed
by a small number of experts, most of whom have written their own QMC programs.
Most applications of QMC to chemical and materials systems have been done by
these developers to demonstrate their algorithms, not by researchers interested in the
systems themselves. The computational expense and theoretical complexity of QMC
have kept it from becoming a “black box” method for nonexperts to use.

Algorithms developed using QMcBeaver have made progress in bringing QMC
to nonexpert users by providing simple, automatic tools for setting up and carrying
out calculations. The Dynamic Distributed Decorrelation Algorithm (DDDA) au-
tomatically calculates the standard deviation of expectation values during a QMC
calculation, taking the serial correlation of the samples into account, while greatly
reducing the amount of data that has to be communicated among the processors to
gather results [49]. The manager-worker parallelization (QMC-MW) automatically
balances the work between processors running at different speeds, allowing the effi-

cient use of heterogeneous computers. QMC-MW also makes it possible to terminate
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a calculation based on the convergence of the expectation values rather than the
completion of a certain number of iterations [50].

In chapter 5 of this work, we demonstrated the importance of initial walker con-
figurations to the efficiency and accuracy of QMC calculations. STRAW is a simple,
automatic method that requires no user input to generate statistically independent
initial walker configurations in regions of high density and low local energy [109].
Avoiding contamination by configurations that do not represent the desired density
ensures the accuracy of the results and allows the efficient use of large numbers of
processors. DDDA, QMC-MW, and STRAW combine to make it straightforward
to set up QMC calculations that will efficiently use the next generation of homoge-
neous supercomputers, inexpensive heterogeneous beowulf clusters, and distributed
computing resources.

The two sources of error in a DMC calculation are the time step and the nodal
structure of the SCF part of the trial function. In order to have confidence in the
results of their calculations, researchers need guidelines as to the appropriate time
steps and trial functions to use for the functional groups in their systems. In chapter 6,
we explored the time step and nodal errors for three pericyclic hydrocarbon reactions.
DMC results calculated with HF, GVB, and MCSCEF trial functions were compared to
experiment, high quality ab initio calculations, and the recently introduced X3LYP,
MO06, and XYG3 DFT functionals. From the results, it was determined that the time
step error cancels out when energy differences are considered, making extrapolation
to zero time step unnecessary. HF trial functions were shown to be acceptable for
C-C o bonds, but to have a large nodal error for 7 bonds. GVB trial functions
are sufficient for molecules with one © bond, while MCSCF wavefunctions must be
used for molecules with multiple 7 bonds and transition states with several bonds
being broken and formed. When the appropriate trial function is used, DMC results
are consistently as accurate as CCSD(T) and CBS-QB3 for the three hydrocarbon
reactions.

In order to allow researchers to construct trial functions for larger and more com-

plicated molecules, the nodal errors for more functional groups must be investigated.
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Carrying out DMC calculations with a variety of trial functions for small model
systems, for which experimental and high quality ab initio results are available for
comparison, can provide this information.

All of the trial functions in chapter 6 used the aug-cc-pVTZ basis set, which is
probably larger than necessary to give accurate DMC results. In addition, the MCSCF
trial functions used long CI expansions. A systematic comparison of the results and
rate of convergence of DMC calculations carried out with different basis sets and CI
expansion lengths will allow researchers to determine which basis functions can be
eliminated and where CI expansions can be truncated without sacrificing accuracy.
Since each determinant must be inverted to evaluate the trial function value and
matrix inversion scales as O (N?) with the number of basis functions, using smaller
basis sets and shorter CI expansions will greatly reduce the computational expense
of DMC calculations.

Finally, the results of chapter 6 suggest the possiblity of developing a set of
electron-nuclear Jastrow parameters to be used for all molecules without reoptimiza-
tion. If this “generic Jastrow” could be used, only the electron-electron and CI ex-
pansion parameters would have to be optimized for each system, greatly reducing the
complexity and expense of the parameter optimization phase of QMC calculations.

Quantum Monte Carlo has the potential to become a very important tool for
computational scientists. The high accuracy of QMC combined with its ability to
efficiently use the next generation of computational resources will allow it to provide
accurate expectation values to understand reaction mechanisms and train density
functional and force field methods. The continuing development of algorithms to
make QMC more accurate, straightforward, and efficient will bring it into common

use among researchers in chemistry and materials science.
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