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Abstrat
Quantum Monte Carlo is a relatively new lass of eletroni struture methods thathas the potential to alulate expetation values for atomi, moleular, and materialssystems to within hemial auray. QMC sales as O (N3) or better with the sizeof the system, whih is muh more favorable than traditional eletroni struturemethods apable of omparable auray. In addition, the stohasti nature of QMCmakes it relatively easy to parallelize over multiple proessors.QMC alulations use the Metropolis algorithm to sample the eletron densityof the system. This method has an inherent equilibration phase, during whih theon�gurations do not represent the desired density and must be disarded. Beausethe time spent on equilibration inreases linearly with the number of proessors, thisphase limits the eÆieny of parallel alulations, making it impossible to use largenumbers of proessors to speed onvergene.This thesis presents an algorithm that generates statistially independent walkeron�gurations in regions of high probability density, shortening the length of the equi-libration phase and ensuring the auray of alulations. Shortening the length ofthe equilibration phase greatly improves the eÆieny of large parallel alulations,whih will allow QMC alulations to use the next generation of homogeneous, hetero-geneous, and distributed omputing resoures to ondut highly aurate simulationson large systems.The most ommon formulation of di�usion Monte Carlo has two soures of error:the time step used to propagate the walkers and the nodes of the trial funtion. Inorder to explore these soures of error, DMC alulations were arried out on threeperiyli hydroarbon reations using Hartree-Fok, generalized valene bond, and



vmultion�guration self-onsistent �eld trial funtions and time steps ranging from10�4 to 10�2 au. The results are ompared to values from experiment and highquality ab initio alulations, as well as the reently developed X3LYP, M06, andXYG3 density funtionals. The appropriate time step and trial funtions for thereatants, transition states, and produts are identi�ed to begin to develop guidelinesfor researhers arrying out alulations on larger systems.
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1
Chapter 1Eletroni Struture Theory
The goal of eletroni struture theory is to understand the geometries, reations, andother properties of moleules and materials based on simulations of their eletronistruture. The behavior of partiles on this sale is governed by the laws of quantummehanis. Although these laws are well understood, applying them to nontrivialsystems leads to equations too ompliated to solve exatly. Sine exat solutions arenot possible, researhers use approximatations that trade auray for omputationaltratability.Approximate eletroni struture methods are lassi�ed as ab initio methods,whih are based only on the laws of quantum mehanis, or semiempirial methods,whih use experimental results to determine funtional forms and �t parameters.Methods of both types are used to understand and predit experimental phenomenasuh as reation mehanisms, eletrial properties, and biologial ativity for a widevariety of systems. This hapter ontains a very basi introdution to the laws ofquantum mehanis and the approximate methods used to apply them to moleularand solid state systems. Further information on quantum mehanis an be found inreferenes [1, 2℄, while appliations to hemistry and materials siene are overed inreferenes [3, 4, 5, 6, 7℄.



21.1 Quantum MehanisThe fundamental postulate of quantum mehanis is that the energy and all other ob-servable properties of an atom or moleule are expressed in its wavefuntion, whih anbe obtained by solving the Shr�odinger equation. Exat solutions for the Shr�odingerequation are possible for only the simplest systems. Larger systems lead very quiklyto equations with too many dimensions to be solvable.Quantum mehanis ditates several neessary features for  , the wavefuntion ofa partile. The produt of the wavefuntion with its omplex onjugate,  � = j j2, isinterpreted as the probability density funtion for the position of the partile. Sinethe partile must exist somewhere, integrating j j2 over all spae must give unity.Wavefuntions that satisfy this ondition are referred to as normalized. Aordingly,we multiply  by a normalization onstant  so that R d� j j2 = 1.The mathematial framework of a many partile wavefuntion, 	, must aountfor the fat that eletrons are indistinguishable from eah other. This means that thespatial probability density, �, annot vary with the interhange of any two eletrons:� (1; 2) = j	(1; 2) j2 = j	(2; 1) j2 = � (2; 1) : (1.1)Therefore, 	 (1; 2) = �	(2; 1) : (1.2)Partiles suh as eletrons with half-integer spin are fermions, for whih the wave-funtion is antisymmetri: 	 (1; 2) = �	(2; 1).The time-dependent Shr�odinger equation determines the evolution of the wave-funtion of a system with time [8℄:i ��t j	(X; t)i = Ĥj	(X; t)i; (1.3)where Ĥ is the Hamiltonian or energy operator of the system, t is time, and X is ageneralized oordinate that inludes the spatial and spin oordinates of the partiles



3of the system.The solution to the time-dependent Shrodinger equation an be expanded asj	(X; t)i =Xj je�iEjtj�j (X)i; (1.4)where the oeÆient j = h�j (X) j	(X; 0)i and the Ej and j�j (X)i are the eigen-values and eigenfuntions of the time-independent Shrodinger equation:Ĥj�j (X)i = Ejj�j (X)i: (1.5)Beause they do not hange with time, the eigenfuntions j�j (X)i are known asthe stationary states of the system. Eah stationary state has an assoiated eigen-value, Ej, whih an be interpreted as its energy. The stationary states are usuallyordered so that E0 � E1 � E2 � � � �, with the lowest energy state, j�0 (X)i, beingalled the ground state.Beause Ĥ is a Hermitian operator, its eigenvalues are real and its eigenfuntionsare orthogonal to eah other and span the spae of all possible solutions. They analso be hosen to be normalized, so thath�i (X) j�j (X)i = Æij; (1.6)where Æij is the Kroneker delta: Æij equals 1 if i = j and 0 otherwise.1.1.1 Cusp ConditionsThe Hamiltonian operator for a system of N eletrons and K nulei with harges ZLand masses ML isĤ = �12 NXi=1r2i � 12 KXL=1 1MLr2L � NXi=1 KXL=1 ZLriL + NXi=1 NXj>i 1rij + KXI=1 KXJ>I ZIZJrIJ ; (1.7)where lowerase indies refer to eletrons, upperase indies refer to nulei, and rij isthe distane between partiles i and j.



4In equation 1.7 and throughout this work, atomi units are used, in whih �h = 1,me = 1, jej = 1, and 4��0 = 1, where me is the mass of an eletron, jej is themagnitude of its harge, and �0 is the permittivity of free spae.The Coulomb terms in the Hamiltonian diverge when two partiles approah eahother. The Shr�odinger equation an be solved analytially for these on�gurationsbeause the kineti and potential terms of the two approahing partiles dominate theothers. In order for the energy of the system to be �nite, a divergene in the kinetienergy must exatly anel the divergene in the potential. Solving the Shr�odingerequation for these on�gurations to ahieve this anellation leads to the followingusp ondition for the wavefuntion [9℄:limrij!0 �	�rij = �ijqiqjl + 1 limrij!0	; (1.8)where �ij is the redued mass of the partiles, qi and qj are their harges, and l is 1for same-spin eletrons and 0 otherwise. An aurate wave funtion must satisfy theusp ondition for eah pair of partiles in the system.1.1.2 The Variational TheoremThe most powerful tool researhers have in onstruting approximate ground statewavefuntions is the variational priniple, whih provides a way to ompare theirquality. The exat eigenfuntions, j�i (X)i, of the Hamiltonian span the spae of allpossible wavefuntions for the system. Therefore, any normalizable trial wavefun-tion, j	T (X)i, that satis�es the boundary onditions of the system an be expandedin terms of the j�i (X)i: j	T (X)i = Xi bij�i (X)i; (1.9)bi = h�i (X) j	T (X)i: (1.10)The expansion an be used to alulate the expetation value for the energy of



5the trial wavefuntion:hET i = h	T (X) jĤj	T (X)ih	T (X) j	T (X)i = Pi jbij2EiPi jbij2 � E0; (1.11)where the equality applies if j	T (X)i = j�0 (X)i.The expetation value of the energy of a trial wavefuntion is an upper bound tothe ground state energy. The loser the trial wavefuntion is to the atual groundstate, the lower its energy will be. This provides a way to approximate the groundstate. First, a parametrized wave funtion is onstruted with a form that an easilybe evaluated. Then the parameters are adjusted to minimize the expetation valueof the energy. This is the losest approximation to the ground state in the spae ofthe adjustable parameters. Physial arguments must be used in hoosing the form ofthe trial wavefuntion: it determines the restritions on the interations that an bedesribed and therefore represents a model.1.2 Approximate MethodsIn most ases, the �rst simpli�ation to the Shr�odinger equation is the Born-Oppenheimerapproximation, whih makes use of the fat that the masses of nulei are muh greaterthan that of an eletron. The eletrons see the heavy, slow-moving nulei as almoststationary harges, and the nulei see the muh faster eletrons as essentially a three-dimensional distribution of harge. The Born-Oppenheimer approximation simpli�esthe moleular problem by treating the eletroni and nulear motions separately [10℄.In this method, one assumes a �xed on�guration for the nulei, and for thison�guration solves an eletroni Shr�odinger equation to �nd the eletroni wavefuntion and energy. This proess is repeated for di�erent on�gurations to give theeletroni energy as a funtion of the positions of the nulei. The nulear on�gurationthat minimizes the energy is the equilibrium geometry of the moleule. The eletronienergy an be used as the potential energy funtion in a Shr�odinger equation for thenulear motion, whih an be solved to give the moleular vibrational and rotational



6energy levels for a given eletroni state.1.2.1 Hartree-FokThe basis for almost all methods to solve the eletroni part of the Shr�odinger equa-tion is the Hartree-Fok (HF) method. In HF, the trial wavefuntion is expressedas an antisymmetri produt of normalized, orthogonal moleular orbitals,  i. Thesimplest way to onstrut a trial wavefuntion from a set of orbitals is to use a Slaterdeterminant, a framework that ensures the antisymmetry of the overall wavefun-tion [11℄:
	AS (x1; x2; : : : ; xN) = 1pN ! ��������������

 1 (x1)  2 (x1) � � �  N (x1) 1 (x2)  2 (x2) � � �  N (x2)... ... ... 1 (xN )  2 (xN ) � � �  N (xN )
�������������� : (1.12)

In equation 1.12, xi ontains the spae and spin oordinates of eletron i. Sine thedeterminant of a matrix hanges sign if two rows or olumns are interhanged, theoverall wavefuntion will have the proper antisymmetry with respet to permutationof the eletrons.The moleular orbitals an be fatored into spatial and spin omponents: (x) =  (~r; ) = � (~r)� () ; (1.13)where � is a spatial orbital and � is a spin funtion, either � or �. The spatial orbitalsare written as linear ombinations of basis funtions:� =X� ���; (1.14)where the � are the moleular orbital expansion oeÆients. The basis funtions, ��,are usually entered on the nulei and resemble atomi orbitals, but any normalizablefuntions an be used. Beause of the ease with whih they are evaluated, Gaussian



7type orbitals (GTO) are usually used as basis funtions. GTOs have the followingradial part: �GTO� (r) = d�rl� exp ����r2� : (1.15)Sine the derivative of a Gaussian is zero at its origin, these funtions annot satisfythe eletron-nulear usp ondition of setion 1.1.1. The resulting multienter inte-grals an be evaluated analytially, however, so a large number of Gaussians an beused in the basis set with little omputational expense.Slater type orbitals (STO) have the orret form to satisfy both the eletron-nulear usp ondition and the long range behavior of moleular orbitals, but arenot typially used in basis sets beause they lead to very ompliated integrals inalulations: �STO� (r) = d�rl� exp (���r) : (1.16)Sine the moleular orbitals are onstruted from the basis funtions, the basis setrestrits them to ertain shapes and regions of spae. The more funtions in a basisset, the more exibility it has to approximate moleular orbitals. Larger basis setsgenerally produe better results in omputations, but require more omputer time.Sine an eletron has a �nite probability of existing anywhere in spae, an in�nitebasis set would be neessary to ompletely desribe its possible position.In order to solve for the orbital expansion oeÆients, the Hartree-Fok methodmakes use of the variational priniple. Minimizing the expetation value of the energyof the wavefuntion leads to a series of equations, whih an be written in matrix form:FC = SC�; (1.17)where eah element is a matrix. The Fok matrix, F , represents the average e�etsof the �eld of all the eletrons on eah orbital. The matrix C ontains the orbitaloeÆients, S indiates the overlap between the orbitals, and � is a diagonal matrixof the orbital energies.Both the Fok matrix and the orbitals depend on the moleular orbital oeÆients.



8Thus equation 1.17 is not linear and must be solved with an iterative proedurealled the self-onsistent �eld (SCF) method. First, an initial guess for the orbitaloeÆients is formed, and the orresponding density matrix is onstruted. Using it,the Fok matrix is formed. Then, solving the eigenvalue problem yields a new set oforbital oeÆients. This proedure is repeated until both the orbital oeÆients andthe energy have onverged. At this point, the orbitals generate a �eld that produesthe same orbitals. This method produes both oupied and virtual (unoupied)orbitals. The total number of orbitals formed is equal to the number of basis funtions.Solving the eigenvalue problem is the slowest step of the proess. It involvesdiagonalizing a matrix, a proess that sales as O (N3), where N is the linear size ofthe matrix. In this ase, N is the number of basis funtions.1.2.2 Post Hartree-Fok MethodsThe errors of Hartree-Fok are due to the fat that it treats the repulsion of theeletrons for eah other in an average way and neglets the details of their motion.The shape of the orbital an eletron oupies is determined by the potential �eldof the nulei and the density of the other oupied orbitals. An eletron sees onlythe \mean �eld" of the other eletrons, whih allows them to ome lose togethermore often than they should and makes it impossible for the wavefuntion to satisfythe eletron-eletron usp onditions of setion 1.1.1. The di�erene in energy thatwould result from properly allowing the eletrons to avoid eah other is alled theorrelation energy. Several methods go beyond Hartree-Fok and attempt to treatthis phenomenon properly.1.2.2.1 Con�guration InterationThe on�guration interation (CI) method uses the virtual orbitals generated byHartree-Fok in addition to the oupied orbitals to onstrut a wavefuntion as alinear ombination of Slater determinants. The determinants are formed by exitingeletrons from the ground state oupied orbitals into the virtual orbitals, and the



9expansion oeÆients are found by diagonalizing the resulting Hamiltonian matrix:	CI (~x1; ~x2; : : : ; ~xN) =Xm am	ASm (~x1; ~x2; : : : ; ~xN) : (1.18)If a Slater determinant orreponding to every possible oupation of the orbitals isinluded in the expansion, the alulation is a \full CI." In most ases, full CI isimpossible beause the number of possible Slater determinants is too large.In pratie, CI alulations are usually arried out by inluding a limited numberof determinants in the expansion. A CI singles (CIS) alulation exites one eletronat a time into a virtual orbital, a CI doubles (CID) exites two at a time, a CISD al-ulation inludes singles and doubles, a CISDT alulation inludes singles, doubles,and triples, et. CI alulations an provide quantitative results (within 2 kal/mol)for energies of moleules, but are extremely time onsuming and require immenseamounts of memory, even for small systems and minimal basis sets. In addition, theorrelation energy reovered sales poorly with the number of on�gurations inluded.1.2.2.2 Coupled ClusterIn oupled luster (CC) alulations, the trial wavefuntion is expressed as a linearombination of Slater determinants, but an exponential form of an exitation operatoris used to generate the on�gurations and alulate the energy [12℄:j	CCi = exp �T̂� j	HF i: (1.19)The exitation operator, T̂ , makes Slater determinants by exiting eletrons from theground state into virtual orbitals. Equation 1.19 an be expanded in a Taylor series:j	CCi = exp �T̂� j	HF i= j	HF i+ T̂1j	HF i+ �T̂2 + 12 T̂ 21� j	HF i+�T̂3 + T̂1T̂2 + 16 T̂ 31� j	HF i+ � � � ; (1.20)



10where T̂1 reates single exitations, T̂2 reates double exitations, and so on. In equa-tion 1.20, the terms are grouped into levels of exitation. At eah level of exitation,several terms ontribute. At the seond level, for example, T̂2 generates onneteddouble exitations, while T̂ 21 generates two disonneted single exitations.Coupled luster makes it easy to treat moleules of di�erent sizes with the samelevel of orrelation, whih is important for hemial reations, in whih bonds mayform or a large moleule may dissoiate into fragments. Treating the produts andreatants of a reation onsistently is neessary to get aurate energy di�erenes.Like on�guration interation, oupled luster alulations are named by the levelsof exitation inluded in the expansion. A CCSD alulation inludes single anddouble exitations, while CCSD(T) inludes triples as a perturbation. CCSD(T) is avery popular method for onduting aurate alulations with reasonable ost, andis often used as a benhmark to ompare the results of other methods. The expenseof CCSD(T) sales as O (N7) with the number of basis funtions, whih limits itsapplition to small moleules and basis sets.1.2.2.3 Multion�guration SCFIn a multion�guration self onsistent �eld (MCSCF) alulation, the user de�nes an\ative spae" onsisting of a subset of the elerons and orbitals of a moleule. The a-tive eletrons are exited into the ative virtual orbitals to form a set of determinants,and both the orbitals and CI expansion oeÆients are variationally optimized [13℄.If a full CI is arried out on the ative spae, and all possible oupations of theative orbitals are onsidered, the alulation is alled a omplete ative spae SCF(CASSCF) [14℄ or fully optimized reation spae (FORS) [15℄ alulation. Beauseboth the orbitals and CI oeÆients are optimized, MCSCF o�ers the most generalapproah available to omputing eletroni struture. The large number of varia-tional parameters makes the optimization a hallenge, so users must be areful toonly inlude the eletrons and orbitals involved in the reation under investigation inthe ative spae.The generalized valene bond (GVB-PP) method an be thought of as a limited



11form of MCSCF in whih eletrons are exited pairwise from valene orbitals intovirtual orbitals [16℄. Although the seletion of on�gurations is onstrained, theoptimization proedure for GVB alulations is muh more systemati and reliablethan a general MCSCF alulation. The GVB wavefuntion is the simplest form thatallows moleules to dissoiate into open shell fragments, whih allows it to produeaurate dissoiation urves for hemial bonds.1.2.3 Perturbation TheoryM�ller-Plesset (MP) perturbation theory is a non-iterative method for alulatingthe orrelation energy of a set of orbitals. In perturbation theory, the Hamiltonian isdivided into two parts: Ĥ = Ĥ0 + �V̂ ; (1.21)where Ĥ0 is exatly solvable and �V̂ is a perturbation that is assumed to be smallompared to it. The perturbed wavefuntion an be expanded as a power series in �:	 = 	0 + �	(1) + �2	(2) + �3	(3) + � � � : (1.22)The perturbed wavefuntion is substituted into the Shr�odinger equation:�Ĥ0 + �V̂ � �	0 + �	(1) + � � �� = �E0 + E(1) + � � �� �	0 + �	(1) + � � �� : (1.23)Equating terms with the same power of � gives formulas for orretions to the energyfor varying lengths of the expansion.In eletroni struture theory, the unperturbed Hamiltonian and wavefuntion arethe Fok operator and its ground state Slater determinant. The perturbation, V̂ , isthe Coulomb repulsion between the eletrons, whih is replaed with the mean �eldapproximation in Hartree-Fok. The seond-order orretion to the energy involves



12integrals between determinants:E(2) = �Xt jh	0jr�112 j	tij2Et � E0 ; (1.24)where the index t sums over determinants in whih two eletrons have been exitedinto virtual orbitals. It is easy to see from the denominator of equation 1.24 that thegreatest ontributions to the seond-order orretion will ome from low-lying exitedstates, whose energy is lose to the ground state energy.M�ller-Plesset perturbation theory is referred to by the order of the expansion ofthe perturbation. Seond order (MP2) is ommonly used, and third (MP3) and fourth(MP4) order are implemented in many quantum hemistry programs. MultirefereneMP theory, in whih an MCSCF or CI wavefuntion is used as the unperturbedwavefuntion, has also been developed [17℄.While MP2 generally gives good results for moleular geometries and hangesin energy for hemial reations, reent studies omparing levels of perturbation fordi�erent hemial systems and basis sets have shown that MP perturbation theory en-ergies are not neessarily onvergent in the limit of higher orders of perturbation [18℄.1.2.4 Extrapolated MethodsSeveral methods have been developed to approximate an extremely expensive alula-tion by systematially ombining less aurate results. Although multiple alulationsare run, the overall ost an be signi�antly less than that of the single highly auratealulation.The omplete basis set (CBS) methods address the errors due to using a �nitebasis set in alulations. They extrapolate to an in�nite basis using expressionsfor the orrelation energy reovered for eletron pairs as funtions of higher angularmomentum are inluded in the basis set [19℄. A CBS alulation onsists of a Hartree-Fok alulation with a large basis set, an MP2 alulation with a moderate basisset, and higher level alulations with progressively smaller basis sets. The resultsand several empirial orretions are ombined to estimate the results that would be



13obtained for a high level alulation with an in�nite basis set.The Gaussian-1 (G1) method approximates a quadrati CISD(T) result with alarge basis set using four smaller alulations [20℄. It orrets for trunation of thebasis set by arrying out MP4 alulations with three di�erent basis sets and for thelimited level of orrelation by arrying out a quadrati CISD(T) alulation with thesmallest basis set. The results are entered into a formula that inludes some empirialorretions for the remaining systemati errors to give the G1 energy. G2 [21℄, G3 [22℄,and G4 [23℄ methods have subsequently been developed.The foal point method expliitly examines the onvergene of the energy withrespet to both the basis set and level of orrelation to estimate the ab initio limitwithin the Born-Oppenheimer approximation [24℄. In the foal point proedure, HFenergies are extrapolated to the CBS limit, and CCSDT and CCSDT(Q) alulationsare arried out using a moderate basis set. The results are ombined to estimate theCBS limit of the CCSDT(Q) energy. Corretions for non-Born-Oppenheimer [25℄ andspeial relativisti e�ets [26℄ are added to give the foal point result.1.2.5 Density Funtional TheoryDensity funtional theory (DFT) is another widely used lass of methods for tak-ing into aount the e�ets of eletron orrelation. DFT is based on the theoremof Hohenberg and Kohn, whih proves the existene of a funtional that determinesthe exat eletron density and energy for a given a nulear potential �eld [27℄. Un-fortunately, the theorem does not provide the form of the exat funtional. Whilethe exat funtional would take an eletron density as input and return the energy,approximate funtionals partition the energy into several terms [28℄:E = ET + EV + EJ + EXC : (1.25)The �rst three terms orrespond to the kineti energy, the attration between thenulei and the eletrons, and the repulsion of the eletrons for eah other. Thefourth is alled the exhange-orrelation term and inludes the remaining interations



14between the eletrons.In priniple, a pure density funtional method would deal diretly with the eletrondensity, a funtion of the three spatial variables. No orbitals would be involved, andalulations would sale linearly with the size of the system. In pratie, however,a method similar to Hartree-Fok is used. The wavefuntion is written as a Slaterdeterminant of orbitals, and the Fok operator is replaed with one that takes thee�ets of eletron orrelation into aount.The exhange-orrelation energy of equation 1.25 is separated into exhange andorrelation terms. The exhange energy arises from the interations between samespin eletrons, whih are kept apart by the antisymmetry of the spatial part of thewave funtion. The orrelation energy is due to the interations between oppositespin eletrons.The exhange and orrelation energy terms are alulated by funtionals of thedensity. The basis for most funtionals is the loal density approximation, in whiheletrons uniformly oupy a volume with a positive bakground harge to keep theoverall harge neutral. For this system, the exhange energy has a simple form:EXLDA = �32 � 34�� 13 Z d� � 43 : (1.26)Loal orrelation funtionals are more ompliated, but are also in use [29℄.The eletron density of atoms and moleules, however, is not uniform, so re-searhers have developed exhange and orrelation funtionals that use the gradientof the density as well as its value [30, 31℄.Some of the most aurate density funtional methods in use are hybrid fun-tionals, in whih the Hartree-Fok de�nition of the exhange energy, whih is basedon moleular orbitals, is inluded as a omponent of the exhange-orrelation en-ergy [32, 33℄. The exhange-orrelation energy term for B3LYP, one of the mostpopular density funtional methods, inludes loal, gradient orreted, and Hartree-



15Fok terms:EXCB3LY P = EXLDA + 0 �EXHF � EXLDA�+ X�EXB88 + ECVWN3 + C �ECLY P � ECVWN3� ;(1.27)where �EXB88 is a gradient-orreted exhange term, ECVWN3 is a loal orrelationterm, and ECLY P is a gradient-orreted orrelation term. The oeÆients 0, X , andC were �t to experimental data.Density funtional theory is a very popular way for researhers to inlude eletronorrelation in alulations and obtain results that are aurate enough for many ap-pliations with moderate omputational expense. These methods have been appliedsuessfully to a large variety of systems and have been a bene�t to many areas of re-searh. While post-Hartree-Fok methods an always be improved by inluding moreon�gurations, using a larger basis set, or alulating higher orders of perturbation,DFT su�ers from the fat that there is no systemati way to improve its results.New density funtionals are ontinuously being developed [34, 35, 36℄, but none giveresults with errors onsistently less than 4 to 5 kal/mol for moleular systems. Ifmore aurate results are neessary, di�erent methods must be used.
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Chapter 2Parallel Computing
The extraordinary inrease in omputing power available to researhers over the last�fty years has revolutionized engineering, astronomy, biology, hemistry, physis, eo-nomis, and many other �elds. The long term trend in the number of iruits thatan be plaed on an integrated iruit inexpensively was desribed in 1965 by GordonMoore: The omplexity for minimum omponent osts has inreased at a rateof roughly a fator of two per year .... Certainly over the short term thisrate an be expeted to ontinue, if not to inrease. Over the longer term,the rate of inrease is a bit more unertain, although there is no reason tobelieve it will not remain nearly onstant for at least 10 years. That meansby 1975, the number of omponents per integrated iruit for minimumost will be 65,000. I believe that suh a large iruit an be built on asingle wafer [37℄.In 1975, Moore's predition for the time to double the number of transistors on airuit was revised to 18 months. The trends in almost every measure of eletronidevies, suh as proessing speed, memory apaity, and omputing performane perunit ost, are losely related to Moore's law.It has often been predited that hip designers would not be able to keep up withMoore's law. Gordon Moore himself has stated that the rate of inrease in omputingpower annot be sustained inde�nitely, but it has been sustained through 2009, with



17hip makers prediting new proessors onsistent with Moore's law for another tenyears.Not satis�ed with the omputing power available in a single proessor, researhershave developed tehniques for parallel omputing, in whih multiple proessors on-neted with a network are used together to solve a problem. This hapter desribessome of the ways parallel programs are designed and analyzed. Additional informa-tion an be found in referene [38℄.2.1 Designing Parallel AlgorithmsIn order for an algorithm to be exeuted in parallel, the programmer must deomposethe work into tasks and identify whih tasks an be exeuted onurrently. Theonurrent tasks an be assigned to di�erent proessors to be exeuted. In order fora proessor to be able to omplete its task, the appropriate instrutions, input, andoutput must be ommuniated.The granularity of a problem refers to the number and size of the tasks into whihit an be deomposed. The degree of onurreny is the number of tasks that an beexeuted simultaneously. This number is usually less than the total number of tasksdue to dependenies among them.There are many tehniques for deomposing a problem into tasks. The nature ofthe problem determines how it an be divided and how the di�erent tasks interatwith eah other. A problem for whih a �ne-grained deomposition into independenttasks is possible is well suited for parallel omputing, and will bene�t greatly frombeing arried out on multiple proessors. A less ideal appliation may bene�t less fromthe parallel environment. In espeially unfavorable irumstanes, suh as if manyproessors are idle while they wait for another task to supply them with input, or ifinterproessor ommuniation saturates the bandwidth of the network, an appliationmay take longer to exeute in parallel than on a single proessor.



182.2 Analyzing Parallel AlgorithmsUsing twie as many proessors to exeute a program rarely results in it ompletingin half the time or generating twie as muh useful output. Overhead expenses,unavoidable in the parallel environment, subtrat from the performane. Computersientists have developed several metris to measure the expense and performane ofparallel algorithms.The most basi measure of performane is the speedup, the ratio of the serialexeution time, TS, to the parallel exeution time, TP :Speedup = TSTP : (2.1)The largest soure of overhead is usually ommuniation of data between pro-essors. In addition, some proessors may beome idle if they �nish their task andmust wait for a new one. The parallel algorithm may also have to arry out exessomputation ompared to the serial algorithm. For example, if the result of a ertainalulation must be available to eah task, it may have to be arried out separately oneah proessor in a parallel alulation, while the serial algorithm only has to arryout the alulation one.The overhead for a parallel algorithm is the di�erene between the parallel andserial osts: To = pTP � TS; (2.2)where p is the number of proessors.An important measure for the e�etiveness of a parallel algorithm is its eÆieny,whih is the ratio of the serial ost to the parallel ost:E = TSpTP (2.3)= TSTS + To : (2.4)Beause every algorithm has at least some serial omponent, the parallel overhead



19inreases with the number of proessors. As an be seen in equation 2.4, an inreasein overhead auses a derease in eÆieny. The loss of eÆieny leads to dereasingreturns as more proessors are used to exeute an algorithm.The dereasing gain in performane as the number of proessors inreases is ex-pressed in a slightly di�erent way in Amdahl's Law [39℄. If P is the fration ofan algorithm that an be parallelized and S is the fration that must be omputedserially, the speedup an be written as a funtion of the number of proessors:Speedup (p) = S + PS + Pp (2.5)= 1S + Pp : (2.6)As the number of proessors inreases, the speedup asymptotially approahes 1S .Aording to this formula, if the serial portion of an algorithm is 10%, the greatestpossible speedup is ten times, no matter how many proessors are used. As a result,muh of the e�ort in designing parallel algorithms goes into parallelizing as muh ofthe work as possible.After examining Eqs 2.4 and 2.6, it would be easy to beome skeptial as to theviability of massively parallel omputers, sine the bene�t of using more proessorsis bounded. In pratie, however, the size of the problem usually inreases with thenumber of proessors. When given more proessors, researhers will usually inreasethe size or omplexity of the problem to keep the run time approximately onstant. Asthe problem size inreases, the fration of the run time spent on overhead dereases,whih improves the eÆieny for large numbers of proessors.2.3 SuperomputersSine 1993, the Top500 list has kept trak of the most powerful superomputers inthe world [40℄. The United States Department of Energy has onstruted severalof the highest ranking mahines to ondut simulations on nulear weapons through



20the Advaned Simulation and Computing program [41℄. These are homogeneous ma-hines, meaning they are onstruted from one type of proessor, with huge memoryand fast interonnetion hardware.Several alulations presented later in this work were arried out using BlueGene/L at Lawrene Livermore National Laboratory. The unlassi�ed portion ofthis mahine onsists of 81,920 IBM PowerPC proessors running at 700 MHz [42℄.Although the proessor speed is slow, the great number of proessors gives uBGLalmost 230 TFlops of omputing power.The most powerful omputer in the world at the moment is Roadrunner at LosAlamos National Laboratory. Roadrunner has 13,824 1.8GHz AMD Opteron proes-sors to handle operations, ommuniations, and some omputation and 116,640 IBMPowerXCell 8i proessors to handle oating point-operations. Roadrunner is the �rstmahine to have over 1 petaop sustained performane [43℄.Not to be outdone, LLNL has announed they will be onstruting Sequoia, aBlue Gene/Q mahine that will exeed 20 petaops, to go online in 2011. Sequoiawill have more omputing power than the urrent Top500 list ombined [44℄.The rate of esalation in omputing power is easy to see. Aess to the DOE ma-hines is diÆult to obtain, however, and most researhers do not have the resoures toonstrut and maintain this sort of superomputer. The advanes in proessors, inter-onnetion hardware, and management software brought about by the DOE projethave improved the performane of the mahines an individual researh group ana�ord.2.4 Beowulf Clusters and Grid ComputingIn ontrast to the massively expensive homogeneous omputers of the previous se-tion, researhers an assemble a low ost luster using o�-the-shelf proessors andonnetion hardware in a Beowulf framework [45℄. Suh a luster an be homoge-neous if one type of proessor is used, or heterogeneous if the proessors are notequivalent. This sort of luster is also salable, as researhers an add proessors as



21appliations demand and resoures allow, or retire proessors as they beome obsolete.Another development in parallel omputing is the use of loosely oupled, widelydistributed grids of proessors to arry out omputations. Some examples inludeSETI�home [46℄ and Folding�home [47℄, whih use idle internet onneted omputersto searh for extraterrestrial intelligene and simulate protein folding. BOINC is aprojet at UC Berkeley that has tools to help researhers develop software for andonnet to distributed volunteer omputing resoures [48℄.Parallel algorithms must have ertain harateristis in order to perform well in aheterogeneous, loosely oupled environment. An appliation that must ommuniatelarge amounts of data among the tasks or is unable to balane the work betweenproessors running at di�erent speeds will enounter large overhead osts and performvery poorly. A parallel algorithm with low ommuniations requirements and theablity to use proessors running at di�erent speeds will be able to eÆiently useinexpensive omputing resoures to arry out large omputing jobs.The bulk of the omputing e�ort in traditional eletroni struture methods suhas those disussed in hapter 1 is spent diagonalizing matries. This operation is verydiÆult to parallelize, sine eah step involves all of the rows. As a result, alulationssuh as DFT and oupled luster are unable to eÆiently use more than a few tensof proessors. Sine oupled luster sales as O (N7) with the size of the system,the inability to use large numbers of proessors prevents researhers from arryingout highly aurate alulations on large systems, suh as nanodevies or biologialsystems.Quantum Monte Carlo (QMC) is an alternate approah to eletroni struturesimulations that alulates expetation values stohastially rather than analytially.The stohasti nature of QMC makes it well suited for parallel implementation. QMCan, in priniple, alulate exat expetation values and sales as O (N3) with the sizeof the system. QMC an be formulated to have very small memory and ommunia-tions requirements and automatially balane the work between proessors runningat di�erent speeds [49, 50℄. The favorable saling of QMC and the ability to eÆientlyuse large numbers of proessors will allow it to provide highly aurate expetation



22values for systems too large for other methods.



23
Chapter 3Random Number Generation
Random numbers have appliations in areas suh as ryptography, eletroni gaming,and statistial sampling and analysis. In addition, stohasti, or non-deterministi,simulations an be used to model many types of physial and mathematial systems.In these simulations, the behavior of some part of the system is randomly generated.Beause of the essential role played by random numbers, they are grouped into alass alled \Monte Carlo" methods. Eletroni struture appliations inlude Vari-ational Monte Carlo (VMC), in whih the parameters of a trial wavefuntion areoptimized, and Di�usion Monte Carlo (DMC), whih has the potential to alulateexat expetation values for many-body quantum mehanial systems.3.1 Random Number GenerationTruly random numbers an be generated based on unpreditable physial phenomena,suh as the noise of an analog iruit, the deay of radioative nulei [51℄, or bak-ground atmospheri radio noise [52℄. Computers, on the other hand, only operatebased on programmed instrutions. They an generate sequenes of \pseudorandom"numbers that lak patterns, but are determined by a formula. Statistial tests havebeen developed to detet orrelations in sequenes of numbers. The quality of a pseu-dorandom number generator is judged by whih tests for randomness its sequenespass.



243.1.1 Uniform Random NumbersUniform random numbers lie within a spei�ed range, usually 0 to 1, with all numbersin the range having the same probability of being generated. Virtually every shemeto generate random numbers with respet to a desired probability density relies ononverting uniform random numbers.The most ommon way to generate uniform random numbers is with a linear on-gruential, or modulo, generator, whih generates a series of integers, fI0; I1; I2; : : :g,by the reurrene relation Ij+1 = aIj +  (mod m) ; (3.1)where m, a, and  are positive integers alled the modulus, multiplier, and inrement.They de�ne the linear ongruential generator. The �rst integer, I0, is alled the seed.Using the same seed with a ertain generator will always give the same sequene ofnumbers.Clearly, Ij < m for all j. Therefore, the algorithm an generate at most m dis-tint integers. The sequene of integers is transformed into uniform random numbersbetween 0 and 1 by letting uj = Ijm .The sequene fIjg generated by equation 3.1 will eventually repeat itself with aperiod p that is less than or equal to m. If m, a, and  are properly hosen, the periodwill be of maximal length. Several rules have been developed and implemented tomaximize p and give the best results in statistial tests for randomness [53℄.Poor hoies of a, , and m, an result in random number sequenes with veryshort periods. Many linear ongruential generators implemented as library routinesin ompilers have been shown to be deeply awed and give poor results in statistialtests.



253.1.2 The Transformation MethodMonte Carlo simulations often require random numbers distributed with respet to agiven probability density funtion, � (x). The most eÆient way to generate suh asequene is with the transformation method, whih diretly onverts uniform randomnumbers to the desired density.The umulative distribution funtion represents the probability that a point inthe given density is less than or equal to y:P (y) = Z y�1 dx� (x) : (3.2)If � (x) is normalized, P (y) will inrease monotonially from 0 to 1.To generate a random number, w, distributed with respet to � (x), a uniformrandom number, u, is generated. Then w = P�1 (u), where P�1 is the inverse of P .This method requires that the funtion P be known and invertible, whih is the asefor some very simple distributions, suh as exponential or Gaussian distributions. Formore ompliated funtions, di�erent algorithms must be used.3.1.3 The Von Neumann MethodThe Von Neumann, or rejetion, method is a less eÆient but more generally appli-able way to generate points with respet to a probability density funtion that isknown and an be alulated. The umulative distribution funtion does not have tobe known or invertible.In order to use this method, one �rst �nds a funtion, h (x), that is everywheregreater than and preferably lose to the desired probability density funtion, � (x),and for whih the transformation method an be used. A random number, z, isgenerated with respet to h (x) and the ratio A (z) = �(z)h(z) is alulated. Beause h (x)is always greater than � (x), this ratio will be between 0 and 1.The number z is aepted as a member of the probability density � with probabilityA (z). This last step involves generating a uniform random number, u, and aepting



26z if u < A (z) and rejeting z if u > A (z). The e�et of the rejetion step is to weightthe density h (x) by �(x)h(x) so that � (x) emerges. This method is very simple, but willlead to exessive rejetion and be very ineÆient if h (x) is not lose to � (x), in whihase the aeptane probability A (z) will often be small. This loss of eÆieny ispartiularly important for high-dimensional spaes.3.1.4 The Metropolis AlgorithmQuantum Monte Carlo alulations require random eletroni on�gurations dis-tributed with respet to the quantum mehanial probability density, the square ofthe magnitude of the eletroni wavefuntion. This is an extremely ompliatedand tightly oupled 3N -dimensional funtion, where N is the number of eletrons.Furthermore, it has appreiable magnitude only in a very small fration of the totalavailable on�guration volume. The transformation and rejetion methods are unableto eÆiently generate random points with respet to this sort of probability density.In order to distribute eletroni on�gurations with respet to their quantummehanial probability density, the idea of generating statistially independent on-�gurations must be abandoned. Instead, a Markov hain is used, in whih eah newon�guration is generated with respet to a probability distribution depending on theprevious on�guration. The sequene of on�gurations forms a \random walk" thatis proportional to the desired density. Beause eah on�guration depends on the onebefore it, they will have some degree of serial orrelation, whih must be onsideredwhen the variane of quantities derived from these on�gurations is alulated.A Markov hain is de�ned in terms of the transition probability T (x! x0) forhaving the point x0 after the point x in the hain. The transition probabilities dependonly on the urrent state of the system and are independent of time and the history ofthe walk. The Metropolis algorithm is a series of rules for generating a Markov hainof points distributed with respet to a desired probability density funtion, � (x) [54℄.A Markov hain will onverge to the desired density if its transition probabilities



27satisfy the following relationship:T (x! x0) � (x) = T (x0 ! x) � (x0) : (3.3)Eq 3.3 is known as the detailed balane ondition. Using it, the probability foraepting a proposed move from x to x0 isA (x! x0) = min 1; T (x0 ! x) � (x0)T (x! x0) � (x) ! : (3.4)It should be noted that in equation 3.4, only the ratio �(x0)�(x) is alulated, ratherthan the values � (x) and � (x0) separately. As a result, the probability density funtion� does not have to be normalized.In the simplest version of the Metropolis algorithm, the transition probabilitiesare hosen so that T (x! x0) = T (x0 ! x). The aeptane probability an beinreased by using importane sampling algorithms, whih manipulate the transitionprobabilities to diret the proposed moves into regions of high density [55℄.The Metropolis algorithm guarantees the Markov hain will equilibrate to a sta-tionary distribution, whih will represent the desired probability density funtion.This method allows virtually any probability density to be sampled, whih makes itan invaluable tool for high dimensional simulations. The Metropolis algorithm is om-monly used in simulations of liquids and disordered materials, as well as in moleulardynamis and quantum Monte Carlo.
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Chapter 4Quantum Monte Carlo
Quantum Monte Carlo (QMC) is a relatively new lass of methods for ondutinghighly aurate quantum mehanial simulations on atomi and moleular systems.Variational and di�usion Monte Carlo, the most ommonly used eletroni strutureQMC variants, use stohasti methods to optimize wavefuntions and alulate ex-petation values [56℄ and an provide energies to within hemial auray [57, 58, 59℄.Beause QMC trial funtions do not have to be analytially integrable, there is on-siderable freedom as to their form. The inlusion of expliit interpartile oordinates,whih is impossible with traditional eletroni struture methods, allows QMC trialfuntions to have a very ompat form ompared to SCF wavefuntions of omparableauray [60℄.The omputational expense of QMC alulations sales with the size of the systemas O (N3) or better [61, 62, 63, 64℄. Mean �eld methods apable of omparable au-ray, suh as oupled luster, sale muh less favorably, as O (N6) to O (N !). SineQMC is a stohasti method, it lends itself naturally to parallelization aross multipleproessors. Although QMC is not \perfetly parallel," as has been laimed [65℄, theparallel overhead funtion an be very small, and large numbers of proessors anbe used with high eÆieny. The use of large numbers of proessors allows QMCalulations to �nish in a reasonable amount of time, despite the slow onvergeneof Monte Carlo. The ombination of favorable saling and parallelizability of QMCmake it possible to ondut highly aurate simulations on systems that are too largefor other methods.



29Many parallel sienti� appliations require large memory and fast interproessorommuniation to run. Superomputers that satisfy these needs are very expen-sive to onstrut and maintain. The most powerful superomputers in the worldtoday are owned by the United States Department of Energy, whih has ommit-ted vast resoures to onstruting them in order to ondut simulations on nulearweapons [42, 43, 44℄.QuantumMonte Carlo, however, an be formulated to run with very small memoryand interproessor ommuniation requirements [49, 50℄. It is reasonable to envisionan inexpensive QMC spei� superomputer made of nodes with no hard drives andinexpensive onnetion hardware. Suh a mahine would give researhers who do nothave aess to national lab omputers the ability to ondut QMC alulations.4.1 Variational Monte CarloVariational quantum Monte Carlo (VMC) uses the Metropolis algorithm to minimizethe expetation value of the energy of a trial wavefuntion with respet to its ad-justable parameters. Beause the high dimensional integrals are done using MonteCarlo methods, some of the restritions on the form of the wavefuntion that areneessary when the integrals are evaluated analytially an be relaxed.The expetation value for the energy of a trial eletroni wavefuntion, j	T i, ishEi = h	T jĤj	T ih	T j	T i = R d~R 	�T �~R� Ĥ	T �~R�R d~R 	�T �~R�	T �~R� ; (4.1)where Ĥ is the Hamiltonian operator for the system and ~R is a vetor ontaining the3N spatial oordinates of the N eletrons of the moleule. The loal energy of aneletroni on�guration is de�ned asEL �~R� = Ĥ	T �~R�	T �~R� : (4.2)



30If 	T �~R� is an eigenfuntion of Ĥ, the loal energy will be onstant with respet to~R. Using the loal energy, the expetation value an be rewritten:hEi = R d~R 	�T �~R�	T �~R�EL �~R�R d~R 	�T �~R�	T �~R� (4.3)= R d~R j	T �~R� j2EL �~R�R d~R j	T �~R� j2 (4.4)= Z d~R �VMC �~R�EL �~R� ; (4.5)where �VMC �~R� is the probability density for the on�guration ~R:�VMC �~R� = j	T �~R� j2R d~R j	T �~R� j2 : (4.6)VMC employs the Metropolis algorithm to generate a series of eletroni on�g-urations, n~Rio, distributed with respet to �VMC �~R�. The expetation value of theenergy an then be evaluated ashEiVMC = 1M MXi=0EL �~Ri��O 1pM ! : (4.7)As the wavefuntion is sampled, the expetation value of the energy will utuatewithin its statistial unertainty, whih makes omparing di�erent sets of variationalparameters diÆult. This e�et an be mitigated by using orrelated sampling, inwhih expetation values for several sets of parameters are alulated using one setof on�gurations [66℄. Correlated sampling allows the di�erene between the energiesof two sets of parameters to be alulated with muh less variane than if the twoexpetation values are ompared after being alulated separately.Beause the loal energy for an eigenfuntion of Ĥ is onstant, the variane of itsexpetation value will be zero. As a trial wavefuntion is optimized and it approahesthe exat ground state, its loal energy will vary less strongly with ~R and its varianewill derease. As a result, the variane of the energy an be used as a riterion to



31optimize the parameters of the wavefuntion rather than its expetation value. Thismethod works well for Monte Carlo optimization beause the exat minimum valueof the variane of the energy is known, while the minimum of the expetation valuefor the energy is unknown. Some optimization methods minimize a ombination ofthe energy and its variane [67℄. Algorithms that sample the derivatives of the energywith respet to the adjustable parameters in the wavefuntion an be used to speedonvergene and ensure the true minimum is found [68, 69℄.4.2 VMC Trial FuntionsAs disussed in setion 1.2.1, quantum mehanial wavefuntions have spae and spinomponents. Sine the QMC Hamiltonian does not have spin terms, we integrateover spin and onsider only the spatial omponent. The spatial trial funtions usedin VMC typially have the form	T =  Xi i	ASi !J; (4.8)where the i are CI expansion oeÆients, the 	ASi are Slater determinant wave-funtions, and J is a symmetri funtion of the distanes between partiles alledthe Jastrow funtion. This results in an overall antisymmetri funtion with expliitinterpartile terms. The i and 	ASi an be obtained through standard eletronistruture methods suh as Hartree-Fok, GVB, MCSCF, CI, or DFT.There are many adjustable parameters in 	T . The i, the orbital oeÆientsand basis funtions in the 	ASi , and the parameters in the Jastrow funtion an allbe optimized through VMC. Even when orrelated sampling is used, optimizing awavefuntion with a large number of adjustable parameters is a hallenging task.The form of the trial wavefuntion must be hosen with are, so that time is notwasted optimizing parameters that have little e�et on the expetation value of theenergy.



32The two body Jastrow funtion is written asJ = exp 24Xi;j uij (rij)35 ; (4.9)where the sum is over all pairs of partiles, rij is the distane between partiles i andj, and uij (rij) is a funtion that desribes the interation between partiles i and j.The two body Jastrow funtion makes it straightforward to onstrut trial wave-funtions that satisfy the quantummehanial usp onditions for pairs of partiles [9℄.Satisfying these usp onditions removes the singularities in the loal energy that o-ur when partiles ollide, whih lowers the variane of the energy.If Gaussian orbitals are used in the SCF part of the wavefuntion, the usp ondi-tion for partiles i and j approahing eah other leads to the following ondition forthe funtion uij: limrij!0 �uij (rij)�rij = ��ijqiqjl + 1 ; (4.10)where �ij is the redued mass of the partiles, qi and qj are their harges, and l is 1for same spin eletrons and 0 otherwise.A form for the two-body orrelation funtion ommonly used for moleular systemsis the Pad�e-Jastrow funtion:uij (rij) = ijrij +PNk=2 aij;krkij1 +PMl=1 bij;lrlij ; (4.11)where the aij;k and bij;l are adjustable parameters. The onstant ij is set to the valueof the usp ondition for the partiles i and j. To ensure that the limit as r ! 1remains �nite, M and N are usually hosen so that M � N . Many other forms fororrelation funtions are in use, inluding some with saled variables and some withthree- and higher-body terms [70, 71℄.In addition to allowing 	T to have expliit intereletroni oordinates, QMC allowsfreedom in the form of the orbitals that make up the Slater determinant part of thetrial wavefuntion. Beause they are onvenient to evaluate, Gaussian basis funtionsare used by most SCF programs to onstrut orbitals.



33Gaussian funtions have zero derivative at their origin, so moleular orbitals on-struted from Gaussian basis funtions are unable to satisfy the eletron-nuleus uspondition. Although these usps an be satis�ed by two-body orrelation funtions,replaing the Gaussian orbitals with exponential funtions that satisfy the usp nearthe nulei gives muh better results in QMC alulations [72℄. When the orbitals aremodi�ed in this way, the eletron-nuleus usp values in the two body orrelationfuntions are set to zero.4.3 Di�usion Monte CarloDi�usion Monte Carlo (DMC) does not rely on the variational priniple to alulateexpetation values, but its onvergene depends on aurate trial funtions.DMC starts with the time dependent Shr�odinger equation:i ��t j	 �~R; t�i = Ĥj	 �~R; t�i: (4.12)With a hange of variables to imaginary time, � = it, equation 4.12 takes the form ofa di�usion equation: � ��� j	 �~R; ��i = Ĥj	 �~R; ��i: (4.13)The formal solution to equation 4.13 an be written:j	 �~R; ��i = e��Ĥ j	 �~R; 0�i: (4.14)At some time �1, the state j	 �~R; �1�i is expanded in eigenstates of the Hamiltonian:j	 �~R; �1�i =Xi ij�ii; (4.15)where Ĥj�ii = Eij�ii; (4.16)



34and i = h�ij	 �~R; �1�i: (4.17)The expansion in equation 4.15 is substituted into equation 4.14:j	 �~R; �1 + d��i =Xi ie�Eid� j�ii: (4.18)As equation 4.18 is propagated with � , ontributions to 	 �~R; �� with i > 0 will dieout exponentially, leaving �0, the ground state.Propagating equation 4.18 with Monte Carlo methods is ineÆient beause thepotential part of the Hamiltonian varies widely throughout on�guration spae anddiverges when harged partiles approah eah other. EÆient DMC alulations useimportane sampling, in whih 	T �~R�, a trial funtion that approximates the groundstate, is used as a guide funtion. A mixed distribution is de�ned:�DMC �~R� = �0 �~R�	T �~R�R d~R �0 �~R�	T �~R� : (4.19)The mixed expetation value for an operator, Â, has the formhAiDMC = h�0jÂj	T ih�0j	T i : (4.20)For operators that ommute with the Hamiltonian, the DMC expetation valueequals the expetation value of the true ground state:hAiDMC = h�0jÂj	T ih�0j	T i = h�0jÂj�0ih�0j�0i : (4.21)The DMC expetation value for the energy an be rewritten in a manner similarto the VMC expetation value:hEiDMC = h�0jĤj	T ih�0j	T i (4.22)



35= R d~R �0 �~R� Ĥ	T �~R�R d~R �0 �~R�	T �~R� (4.23)= R d~R �0 �~R�	T �~R� Ĥ	T (~R)	T (~R)R d~R �0 �~R�	T �~R� (4.24)= Z d~R �DMC �~R�EL �~R� : (4.25)A series of eletroni on�gurations is generated with respet to �DMC �~R�, whihallows the expetation value to be evaluated. Generating eletroni on�gurationswith respet to �DMC will be disussed in the next setion.Interpreting �DMC �~R� as a probability density is only possible if it is nonnegativefor all ~R. For bosons, this property is easily satis�ed beause the ground state wave-funtion has one sign everywhere in on�guration spae. If the trial wavefuntion hasthe same sign, �DMC �~R� will be nonnegative for all ~R. Ground state wavefuntionsfor fermions, however, have positive and negative regions separated by nodes. If thenodes of 	T �~R� and �0 �~R� are idential, the two funtions will have the same signin every nodal region, and �DMC �~R� will be nonnegative for all ~R.If the nodal strutures of 	T �~R� and �0 �~R� are di�erent, �DMC �~R� will havepositive and negative regions. This is known as the fermion problem in DMC. InVMC, the magnitude squared of the trial funtion is sampled, so there is no analagousnodal problem.The nodal surfae of an eletroni wavefuntion is a (3N � 1)-dimensional hyper-surfae where the wavefuntion vanishes. The spatial antisymmetry of the wavefun-tion de�nes a set of (3N � 3)-dimensional hyperpoints embedded in the nodal surfae.Although these points are known, no general tehniques exist for onstruting a trialwavefuntion with the same nodal struture as the true ground state.The simplest and most widely used solution to this problem is the �xed-nodeapproximation, in whih the nodes of the true ground state are assumed to be thesame as the nodes of the trial wavefuntion. When this approximation is used, �0 �~R�beomes the ground state wavefuntion onsistent with the boundary ondition that



36it vanish at the nodes of 	T �~R�. The �xed-node approximation is enfored in a DMCalulation by rejeting any proposed move that rosses a node and auses 	T �~R�to hange sign. The resulting energy lies above the exat energy and is variational inthe nodal struture of the trial funtion [73, 74℄.Other solutions to the nodal problem that do not rely on the �xed node approx-imation have been developed. For example, the transient estimator method propa-gates two bosonlike walker ensembles, representing the positive and negative parts of�0 �~R�. This method is not stable with respet to � , the imaginary time variable inwhih the ensembles are propagated, beause both parts of the simulation onvergeto the nodeless boson ground state. Expetation values an only be alulated duringthe intermediate regime before this ours, whih limits the statistial auray thatan be attained.For most small moleules, the nodes of trial wavefuntions obtained by standardSCF methods are of good enough quality for �xed node DMC alulations to yieldresults within hemial auray [57, 59℄. In some ases, suh as the beryllium atom,multi-on�guration wavefuntions are needed to obtain nodes of suÆient quality.4.4 Generating Con�gurations in DMCEletroni on�gurations are generated with respet to �DMC using the distributionf �~R; �� = � �~R; ��	T �~R� ; (4.26)where j� �~R; ��i is a solution to the time-dependent Shr�odinger equation, equa-tion 4.12.The distribution f �~R; �� is a solution to a Fokker-Plank equation:� ��� f �~R; �� = �L̂� ET� f �~R; �� ; (4.27)



37where L̂ = �12r2 +r � V �~R�+ EL �~R� : (4.28)V �~R� is the loal veloity of the trial funtion at ~R:V �~R� = r	T �~R�	T �~R� ; (4.29)and EL �~R� is its loal energy: EL �~R� = Ĥ	T �~R�	T �~R� : (4.30)In the ase 	T �~R� = 1, equations 4.27 and 4.28 redue to equation 4.13, theShr�odinger equation in imaginary time.The operator L̂ de�nes an eigenvalue equation:L̂jKi �~R�i = �ijKi �~R�i: (4.31)The Ki �~R� = �i �~R�	T �~R� and the �i = Ei, where the �i �~R� and Ei are theeigenvetors and eigenvalues of the Hamiltonian.Equations 4.27 and 4.28 desribe a di�usion proess in a potential. As withequation 4.13, the formal solution to equation 4.27 an be written:f �~R; �� = e��(L̂�ET )f �~R; 0� : (4.32)This solution an be expanded in the eigenvetors of L̂:f �~R; �� = Xi ie��(�i�ET )Ki �~R� (4.33)= Xi ie��(Ei�ET )�i �~R�	T �~R� ; (4.34)



38where i = hKi �~R� jf �~R; 0�i = h�i �~R� jf �~R; 0�	T �~R� i: (4.35)It is easy to see that if ET = E0, ontributions to f �~R; �� from the �i �~R� withi > 0 will die o� exponentially as � inreases, leaving the desired density, �DMC �~R� =�0 �~R�	T �~R�.In order to propagate Eq. 4.32 with � and obtain �DMC �~R�, it is rewritten inintegral form: f �~Y ; � + d�� = ed� �ET (�+d�) Z d~R G �~Y ; ~R; d�� f �~R; �� ; (4.36)where G �~Y ; ~R; d�� is the Green's funtion orresponding to the operator L̂. Unfortu-nately, this Green's funtion, like the Green's funtions for most ompliated physialproesses, annot be written for arbitrary d� .The three terms of equation 4.28 desribe di�usion, drift, and branhing proesses.Green's funtions an be written for eah proess individually, and an approximateGreen's funtion an be written as their produt:G �~Y ; ~R; �� � 1(2��)3N=2 Æ h~Z � ~R � V �~R� d�i� Z d~Z exp 264�~Y � ~Z�22d� 375 (4.37)�e� 12 [EL(~Y )+EL(~R)℄d� +O �d� 2� :The fatorization of the Green's funtion neglets the fat that the terms of L̂ do notommute, so equation 4.37 is exat only in the limit d� ! 0. Equation 4.34, however,is only exat in the limit � !1. Any hoie of time step is a tradeo� between thesetwo onsiderations. In pratie, runs with several values of d� must be done, and theresults are extrapolated to d� = 0.During a DMC alulation, f �~R; �� is represented by an ensemble of walkers,



39eah onsisting of an eletroni on�guration and a statistial weight:f �~R; �� =Xn wn;�Æ �~R � ~Rn;�� : (4.38)Eah iteration in a DMC alulation onsists of four stages: drift, di�usion, weight-ing, and branhing. In the drift step, the eletrons are moved aording to the timestep and the loal veloity. In the di�usion step, the eletrons are moved to newpositions with transition probabilities given by the kineti part of the Green's fun-tion. The weighting and branhing step takes into aount the potential part of theGreens's funtion.After a walker is moved from on�guration ~R to ~Y , its weight is alulated basedon the loal energy at ~R and ~Y . In the branhing step, walkers with high weight givebirth to new walkers, while low weight walkers are deleted.The trial energy, ET , serves as a normalization fator and is adjusted after eahstep based on the sum of the weights of the walkers in order to keep the populationstable. The average value of ET after many steps will onverge to the ground-stateenergy.Several DMC algorithms, eah with slightly di�erent shemes for fatoring theGreen's funtion, proposing on�gurations, alulating the weights, and branhingthe walkers have been published [66, 75℄. The DMC alulations presented later inthis work use a ombination of Umrigar's DMC algorithm [55℄ and the reweightingmethod of Assaraf et al. [76℄.
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Chapter 5An Optimized InitializationAlgorithm to Ensure Auray inQuantum Monte CarloCalulations
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Abstrat
Quantum Monte Carlo (QMC) alulations require the generation of random ele-troni on�gurations with respet to a desired probability density, usually the squareof the magnitude of the wavefuntion. In most ases, the Metropolis algorithm isused to generate a sequene of on�gurations in a Markov hain. This method hasan inherent equilibration phase, during whih the on�gurations are not representa-tive of the desired density and must be disarded. If statistis are gathered beforethe walkers have equilibrated, ontamination by nonequilibrated on�gurations angreatly redue the auray of the results. Beause separate Markov hains must beequilibrated for the walkers on eah proessor, the use of a long equilibration phasehas a profoundly detrimental e�et on the eÆieny of large parallel alulations.The strati�ed atomi walker initialization (STRAW) shortens the equilibrationphase of QMC alulations by generating statistially independent eletroni on�gu-rations in regions of high probability density. This ensures the auray of alulationsby avoiding ontamination by nonequilibrated on�gurations. Shortening the lengthof the equilibration phase also results in signi�ant improvements in the eÆieny ofparallel alulations, whih redues the total omputational run time. For example,using STRAW rather than a standard initialization method in 512 proessor alu-lations redues the amount of time needed to alulate the energy expetation valueof a trial funtion for a moleule of the energeti material RDX to within 0.01 au by33%.



425.1 IntrodutionQuantumMonte Carlo methods for simulating the eletroni struture of moleules [77,78℄ an in priniple provide energies to within hemial auray (� 2 kal/mol) [57,58, 59℄. The omputational expense of QMC sales with system size as O(N3) orbetter [61, 62, 63, 64℄, albeit with a large prefator. This is muh more favorablethan other eletroni struture methods apable of omparable auray, suh as ou-pled luster, whih tend to sale very poorly with the size of the system, generallyO(N6 to N !) [79℄. Moreover, the stohasti nature of QMC makes it relatively easyto parallelize over a large number of proessors, whih an allow alulations to �nishin a reasonable amount of time despite the slow onvergene of Monte Carlo.As superomputing resoures improve and beome more aessible to researhers [42,80℄, QMC will beome a powerful tool for onduting aurate simulations on hemi-ally interesting systems. Reent e�orts have foused making these alulations morestraightforward and eÆient on heterogeneous and homogeneous omputers. To thisend, a �nite all-eletron QMC program, QMBeaver, has been written and used todevelop and demonstrate several new algorithms [49, 50, 81℄.Before statistis gathering begins in a QMC alulation, the walkers must beallowed to equilibrate so that their on�gurations are proportional to the desireddensity. It is impossible to alulate aurate expetation values if nonequilibratedon�gurations ontaminate the statistis. In order to ensure their statistial indepen-dene, the walkers must equilibrate separately. This makes the equilibration phasea serial step of the alulation and a major limiting fator in the eÆieny of par-allel alulations. These onsiderations make it imperative that the equilibrationproess be fast and reliable. For example, we show that for the energeti materialRDX, approximately 30,000 iterations are neessary for equilibration when the initialon�gurations are generated by a standard method.We present here a simple method for hoosing initial eletroni on�gurationsdesigned to redue the length of the equilibration phase of alulations. The Strati�edAtomi Walker initialization (STRAW) for quantum Monte Carlo alulations uses a



43shell model to distribute the eletrons. When STRAW is used in RDX alulations,100 iterations are suÆient for equilibration.Avoiding ontamination by nonequilibrated on�gurations in quantum MonteCarlo alulations ensures their auray, and reduing the ost of equilibration makesalulations with large numbers of proessors muh more eÆient. Improving the par-allel eÆieny of these alulations makes better use of omputer resoures and willbroaden the range of systems for whih quantum Monte Carlo alulations are pra-tial.5.2 The Metropolis Algorithm and the Initializa-tion CatastropheQuantum Monte Carlo alulations enter around the random generation of eletronion�gurations with respet to quantum mehanial probability densities. In thiswork, we fous on variational Monte Carlo (VMC), in whih the trial wavefuntionis sampled in order to optimize its adjustable parameters [67, 68, 69℄.VMC trial funtions usually have the form 	VMC = 	SCFJ , where 	SCF is one ora sum of Slater determinant wavefuntions obtained by a standard eletroni struturemethod suh as Hartree-Fok (HF), density funtional theory (DFT), or multion�gu-ration self-onsistent �eld (MSCSF). The Jastrow fator, J [70, 71, 82℄, is a symmetrifuntion of the interpartile oordinates meant to aount for quantum mehanialusp onditions [9℄ and short range orrelations.The expetation value for the energy of this trial funtion ishEi = h	VMC jĤj	VMCih	VMC j	VMCi = R1�1 d~x	�VMC (~x) Ĥ	VMC (~x)R1�1 d~x 	�VMC (~x)	VMC (~x) ; (5.1)where ~x is a 3N -dimensional vetor of the positions of the N eletrons in the moleule.Beause the Jastrow fator inludes expliit interpartile oordinates, equation 5.1annot be separated into independent eletron problems and solved using the standardSCF proedure. Instead, the expetation value is evaluated stohastially [75℄.



44The loal energy of a on�guration, ~x, is de�ned as EL (~x) = Ĥ	VMC(~x)	VMC(~x) . Usingthis quantity, the expetation value of the energy an be rewritten:hEi = R1�1 d~x j	VMC (~x) j2EL (~x)R1�1 d~x j	VMC (~x) j2 = Z 1�1 d~x �V MC (~x)EL (~x) ; (5.2)with �VMC (~x) = j	VMC (~x) j2R1�1 d~x j	VMC (~x) j2 : (5.3)The expetation value now has the form of a weighted average. A series of M ele-troni on�gurations, f~xig, is generated with respet to �VMC and used to evaluatethe expetation value of the energy:hEi = 1M MXi=1 EL (~xi)� O 1pM ! : (5.4)The VMC probability density, �VMC , is an extremely ompliated, 3N -dimensionalfuntion. An e�etive way to generate eletroni on�gurations with respet to thistype of funtion is to use a Markov hain, whih is de�ned in terms of the transitionprobability T (~x! ~y) of having the on�guration ~y after ~x in the hain. The Metropo-lis algorithm [54℄ is a method for generating a Markov hain of points distributed withrespet to a desired probability density. It states that a Markov hain will onverge toa desired density, f (~x), if its transition probabilities satisfy the following relationship:T (~x! ~y) f (~x) = T (~y ! ~x) f (~y) : (5.5)Equation 5.5 is known as the detailed balane ondition. The most ommonlyused formula for alulating the probability of aepting a proposed move from ~x to~y that satis�es detailed balane isA (~x! ~y) = min "1; w (~y ! ~x) f (~y)w (~x! ~y) f (~x)# ; (5.6)where w (~x! ~y) is the probability for proposing a move from ~x to ~y.In this work, we use the aelerated Metropolis algorithm developed by Umrigar



45and oworkers [55, 83℄ to propose on�gurations and alulate w (~x! ~y). This al-gorithm allows di�erent length sales for the motions of ore and valene eletrons,whih inreases the size of the time step that an be used in a alulation whilemaintaining a high aeptane rate.The Metropolis algorithm guarantees that the Markov hain will equilibrate tothe desired distribution, but does not provide any riteria to predit the number ofiterations neessary for equilibration or to determine when it has ourred. It isvital to avoid ontamination by nonequilibrated points in alulations, beause it isimpossible to alulate aurate expetation values using on�gurations that do notrepresent the desired density.The equilibration time will depend strongly on the hoie of the initial on�gu-ration, ~x0. If ~x0 is in a region of low probability density, repeated iterations usingequation 5.6 will guide the hain into regions of higher probability density. The hainis equilibrated when it reahes a region whose probability density is high enoughthat sampling it is onsistent with the desired probability density and the total num-ber of iterations. Clearly, the number of iterations required for equilibration an beminimized by making an intelligent hoie for ~x0.In Monte Carlo simulations, a walker is an entity that de�nes the state of the sys-tem at a partiular instant. In QMC, a walker onsists of a 3N -dimensional eletronion�guration. An ensemble of walkers is used to arry out the integration, with eahone traing out an independent Markov hain in on�guration spae. In a parallelalulation, an ensemble of walkers is equilibrated and propagated on eah proessor,and the results are gathered to obtain the global results.In the QMBeaver program, eah proessor must have at least one walker, andthe number of walkers per proessor is a user de�ned onstant. Sine the numberof walkers inreases linearly with the number of proessors, the omputational e�ortdevoted to equilibration inreases as well. The impat of the equilibration phase onthe eÆieny of a parallel alulation was predited and demonstrated by Feldmannand Kent [50℄, and we follow their derivation.Sine separate Markov hains must be equilibrated on eah proessor, the total



46equilibration time sales as O(NProessors). The time devoted to generating statis-tis, T Propagate, sales as O(1) beause the number of independent samples needed toahieve a ertain level of onvergene does not hange with the number of proessors.From this, the eÆieny, or fration of the total alulation time devoted to usefulwork, � , is
� = T PropagateT Initialize + TEquilibrate + T Synhronize + TCommuniate + T Propagate (5.7)� O(1)O(NProessors) +O(1) : (5.8)Sine the synhronization and ommuniation osts for QMC alulations are ex-tremely small, the main threat to eÆieny in parallel alulations will be the equili-bration time. In order to use a large number of proessors eÆiently, an algorithm forquikly generating equilibrated, statistially independent eletroni on�gurations forthe walkers is neessary. The next setion examines how initial walkers are generatedin several QMC programs and onsiders possibilities for improvement.5.3 Walker InitializationThe walker initialization algorithm originally implemented in the QMBeaver pro-gram works as follows: the eletrons of the moleule are assigned to the nuleiaording to the density implied by the SCF wavefuntion. Eah nuleus and itseletrons are treated as an atom, and the eletrons are distributed with respet toa three-dimensional Gaussian entered on the nuleus whose variane is related tothe ovalent radius of that atom. The on�guration is disarded and a new one isgenerated if substituting the loations of the eletrons into the Slater determinantpart of the wavefuntion results in a singularity [81℄. This happens if there is anylinear dependene among the olumns of the determinant, whih an happen if twoparallel spin eletrons are too lose to eah other. We will refer to this method as theGaussian atomi walker initialization (GAWI).



47The initialization algorithm of Casino, a QMC program developed at Cambridge,assigns the eletrons to atoms and then plaes the eletrons randomly within spheresentered on the atoms [84℄.QMAGIC, a QMC program developed at UC Berkeley and the Lawrene Berke-ley National Laboratory, uses an initialization method similar to GAWI [85℄. Theeletrons are distributed with respet to three-dimensional Gaussians entered on thenulei, and then the on�guration is heked to ensure no two partiles are loserthan a tolerane distane to eah other. Zori, a new QMC program developed in thesame researh group, distributes eletrons randomly in spheres of the atomi ova-lent radius and heks to make sure no eletron-eletron distane is smaller than athreshold. A on�guration is disarded if its loal energy is not within a given rangeof an estimate of the energy of the system [86℄. This test is probably e�etive in elim-inating some unfavorable initial on�gurations, but requires additional user spei�edparameters and ould ause the walker initialization to sale badly if a large frationof the on�gurations generated were disarded.These initializationmethods give satisfatory performane in alulations on smallmoleules using moderately large omputers. In these alulations, the equilibrationphase is a small part of the total omputational expense and does not have a severelydetrimental e�et on the eÆieny. As the size of the moleules and the numberof proessors inrease, however, the fration of the total time spent equilibrating anbeome signi�ant. By improving the way initial on�gurations are hosen, the lengthof the equilibration phase an be redued, whih will improve the parallel saling andeÆieny of alulations using large numbers of proessors.The walker initialization algorithms desribed above su�er from several de�ien-ies. Most importantly, beause all the eletrons of an atom are distributed withrespet to the same probability distribution, the eletrons tend not to avoid eahother in the initial on�gurations. For opposite spin eletrons, this is unfavorablebeause of their oulomb repulsion. For parallel spin eletrons, however, it is evenworse. The antisymmetry of the wavefuntion ditated by the Pauli priniple foresthe wavefuntion to go to zero as two parallel spin eletrons approah eah other. In



48addition, these methods ignore the struture of the energy levels, in whih there willbe ertain numbers of eletrons mostly within annular shells.Beause the initialization methods of this setion share these de�ienies, we as-sume that their performane will be similar, and will use GAWI to represent them inomparisons.5.3.1 STRAWThe Strati�ed Atomi Walker initialization (STRAW) is a method for generatinginitial eletroni on�gurations that addresses the problems desribed above. InSTRAW, the eletrons are assigned to the nulei as in the other methods. Careis taken to ensure that, for an overall neutral moleule, eah atom is neutral. Theatoms are treated separately, and the eletrons are partitioned into energy levels,with one alpha spin and one beta spin eletron in the �rst energy level, up to fouralpha spins and four beta spins in the seond energy level, and so on. The eletronsin eah energy level are distributed using the transformation method with respetto probability densities in spherial oordinates: r; �; �. The transformation methoddiretly onverts uniform random numbers on the interval (0; 1) to random num-bers distributed with respet to a desired probability density using the inverse of itsumulative distribution funtion [53℄.To obtain the radial densities for the energy levels, Hartree-Fok/6-311G** al-ulations were arried out for eah atom in the �rst three rows of the periodi tableusing Jaguar [87℄. The oupied atomi orbitals were loalized by the Boys proe-dure, whih reates orbitals with maximum insensitivity to hanges in distant nulearharges [88℄. For moleules, the resulting orbitals are loalized around the hemialbonds and in the atomi lone pair regions. In our ase, the Boys proedure hybridizesthe valene orbitals of the atom.A representative orbital for eah energy level was hosen and expressed as a sum
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50The integrals over the angles were done analytially, and the radial integrals wereevaluated numerially by a hange of variables from the inomplete gamma funtion.Beause the orbitals are normalized and their probability densities are always positive,R (s) inreases monotonially with r from zero to one.Radial probability distributions for eah energy level of eah atom were tabulatedand inverted by interhanging the oordinates. For example, the inverted radialmarginal distributions for the �rst and seond energy levels of arbon are shown in�gure 5.1. In order to generate the radial distanes for the eletrons in an energy level,QMBeaver �ts a ubi spline to the appropriate tabulated inverted distribution. Auniform number in the range (0; 1) is generated for eah eletron and onverted to aradial oordinate by evaluating the spline.The transformation method is also used to generate the angular oordinates for theeletrons. Probability densities in � and � for s, sp, sp2, and sp3 hybrid orbitals werefound in terms of the real spherial harmonis [89℄ and integrated analytially. Theresults were tabulated and inverted. As with the radial distributions, splines are �tto the tabulated inverted distributions and used to generate the angular oordinatesof the eletrons in the energy level.The probability densities in � and � are hosen for eah eletron so that they avoideah other, with parallel spin eletrons having higher priority. For example, if thereare three alpha and two beta eletrons in an energy level, the three alpha eletronsare distributed with respet to the angular probability distributions of the three sp2orbitals in the xz plane, while the two beta eletrons are distributed with respet tothose of the sp orbitals along the y axis.One the radial and angular oordinates for the eletrons of an energy level havebeen assigned, they are onverted to Cartesian oordinates. The entire energy level isthen given a random rotation about a random axis. This rotation is easily omputedusing quaternions and prevents the distribution from beoming skewed along any axisor plane.STRAW has been implemented in QMBeaver, an open soure program [81℄. Re-searhers interested in further details of the algorithm are enouraged to download
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O2N NO2Figure 5.2: The RDX moleule.and examine the soure ode.5.3.2 Equilibration BehaviorThe omputational experiments desribed in this setion omparing the performaneof the initialization methods were onduted using QMBeaver [81℄.The VMC trial funtions used in this setion have the form 	VMC = 	SCFJ ,where 	SCF is a HF/6-311G**++ wavefuntion alulated using Jaguar [87℄ and Jis a Pade-Jastrow orrelation funtion with terms for eah pair of partiles in themoleule:
J = exp0�Xi Xj<i uij1A ; (5.12)uij = ijrij1 + bijrij : (5.13)In order to satisfy the usp ondition [9℄ for an eletron approahing a nuleus,we set  = �Z for the eletron-nulear u funtions, where Z is the harge of thenuleus. Similarly, we set  = 12 for opposite spin eletron pairs and  = 14 for samespin eletron pairs.For opposite spin eletron pairs, we use b = 3:0, and for same spin eletron pairsand all nulear-eletron terms, we use b = 100:0. Our experiene is that these valueswork reasonably well for ground states of moleules omposed of atoms from the �rstthree rows of the periodi table.
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Figure 5.3: Loal energies of two RDX walkers. The walker initialized with GAWIstarts o� with very high loal energy and approahes equilibration after several thou-sand steps, while the walker initialized with STRAW reahes a onstant distributionvery quikly.This is a very simple trial wavefuntion, and its parameters are not optimized. Inorder to alulate aurate eletroni properties for these moleules, the trial funtionould be improved by modifying the orbitals to satisfy the eletron-nuleus uspondition [72℄, using a better Jastrow form [71, 82℄, and optimizing its parameters [67,68, 69℄. In this work, however, we are fousing on equilibration and our ability tosample a wavefuntion, so the simple trial funtion is suÆient.In the alulations of this setion, we use a time step of 0.001 au for both theequilibration and propagation phases, whih results in propagation phase aeptaneprobabilities of 85% for SiCl4 and 93% for RDX. Methods suh as using a larger timestep during the equilibration phase an be used to aelerate equilibration. In orderto simplify omparisons between initialization methods, however, we use a onstanttime step in all of our alulations.The e�ort that has gone into the more ompliated initialization sheme pays o�
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Figure 5.4: Loal energies of SiCl4 walkers. The loal energy of the walker initializedwith GAWI starts in a high energy region and approahes a steady state after severalthousand steps, while the walker initialized with STRAW is equilibrated very quikly.handsomely. Figures 5.3 and 5.4 show the behavior of the loal energy of VMC walkersinitialized with GAWI and STRAW. In eah ase, we �nd that walkers initializedwith GAWI require several thousand steps to reah an equilibrium distribution, whilewalkers initialized with STRAW require very few.Figure 5.3 shows the behavior of the loal energy of two walkers during alula-tions on hexhydro-1,3,5-trinitro-1,3,5-triazine, or RDX (�gure 5.2) [90℄, an energetimaterial. The loal energy of the walker initialized with GAWI approahes a steadystate after several thousand steps. This �gure learly shows the importane of avoid-ing ontamination by the high energy nonequilibrated on�gurations in the beginningof the alulation. In ontrast, the distribution of loal energies for the walker ini-tialized with STRAW is onstant throughout the run. The initial on�guration is ina region of high probability density and low loal energy, and the long equilibrationphase we see in the ase of the GAWI walker is eliminated.In order to test the e�etiveness of STRAW on a moleule with atoms from the
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Figure 5.5: VMC alulations on RDX were arried out using 512 proessors and5 walkers per proessor. Ensembles initialized with GAWI require 30,000 equilibra-tion steps before ontamination by high energy samples is eliminated. The ensembleinitialized with STRAW is equilibrated after 100 steps.third row of the periodi table, a series of alulations was arried out with the SiCl4moleule. Figure 5.4 shows the behavior of the loal energy of walkers initializedwith GAWI and STRAW. One again, we see that the loal energy of the walkerinitialized with GAWI approahes equilibration after several thousand steps, while theloal energy of the walker initialized with STRAW reahes an equilibrium distributionvery quikly.Figures 5.3 and 5.4 examine only one walker for eah initialization method. Theresults are enouraging, but a visual examination of the loal energy is hardly aquantitative measure of equilibration. In addition, realisti QMC alulations on themoleules of this setion will use ensembles of thousands to hundreds of thousandsof walkers. In order to ompare the behavior of ensembles of walkers generated byGAWI and STRAW, VMC alulations on the RDX moleule were arried out usingthe ASCI-QSC superomputer at the Los Alamos National Laboratory. This mahine



55Initialization Eq hEi (au) Totalsteps samplesGAWI 10K -893.114 � 0.0122 26,324,421GAWI 15K -893.235 � 0.0103 26,334,855GAWI 20K -893.275 � 0.0102 26,024,948GAWI 25K -893.291 � 0.0184 26,272,857GAWI 30K -893.296 � 0.0101 26,291,124STRAW 100 -893.298 � 0.0099 25,145,777STRAW 20K -893.291 � 0.0117 26,071,024Table 5.1: VMC alulations on RDX were arried out using 512 proessors with 5walkers per proessor to ompare di�erent initialization methods and equilibrationlengths. Calulations with too few equilibration steps are ontaminated by nonequi-librated samples and do not agree with alulations that are allowed to equilibrate.RDX alulations initialized with GAWI require 30,000 steps to equilibrate, while 100steps are suÆient when STRAW is used.is omposed of 256 4 CPU HP/Compaq Alphaserver ES45s running at 1250 MHz.Calulations using 512 proessors, 5 walkers per proessor, and varying equilibrationlengths were run until about 26 million samples were olleted. The results aresummarized in table 5.1.Expetation values alulated using equilibrated walkers should be approximatelyindependent of time, with random utuations. A long term, low frequeny drift inan expetation value as samples are olleted is a sign of ontamination by nonequili-brated on�gurations. Figure 5.5 shows the energy expetation value vs the numberof samples olleted for these alulations. The left side of the �gure shows the alu-lations initialized with GAWI. In the alulations with less than 30,000 equilibrationsteps, we see a monotoni derease in the expetation value of the energy as points areolleted. These alulations are ontaminated with high energy, nonequilibrated on-�gurations from the beginning of the alulation, and the expetation value dereasesas equilibrated samples are added. The energy expetation value in the alulationwith 30,000 equilibration steps has the desired behavior, utuating about the limitwith no long term drift.The alulations initialized with STRAW used 100 and 20,000 equilibration steps.We use a minimum of 100 equilibration steps in our alulations as a safety margin to
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Figure 5.6: The energy expetation values and standard deviations for two unontam-inated RDX VMC alulations are shown. The alulations used 512 proessors with5 walkers per proessor. The eventual answer is within one standard deviation of theexpetation value at almost every point during the alulations. This shows that forunontaminated alulations, the standard deviation of the energy expetation valueis a good measure of its onvergene.be sure that eah walker has at least one aepted move during the equilibration phase.The behavior of the energy expetation value in these alulations is very similar tothat of the alulation initialized with GAWI using 30,000 equilibration steps. Thesethree alulations show no signs of ontamination. In Table 5.1, we see that theirexpetation values all agree to within one standard deviation of eah other. Theseresults demonstrate that 100 steps is suÆient for equilibration for RDX ensemblesinitialized with STRAW, while 30,000 equilibration steps are neessary when GAWIis used.In QMBeaver, standard deviations for expetation values are alulated usingDDDA [49℄, whih averages samples into bloks in order to aount for their serialorrelation. If we examine the results for the alulations initialized with GAWIusing 10,000, 15,000, and 20,000 equilibration steps in table 5.1, we see that their



57energy expetation values do not agree with eah other or those of the equilibratedalulations to within one standard deviation. This is important beause it showsthat the standard deviation alulated during a ontaminated alulation does notneessarily reet the inauray of its expetation value. If a researher spei�es anequilibration phase that is too short and nonequilibrated on�gurations ontaminatethe statistis, the expetation values will be inaurate, and their standard deviationswill not be a reliable measure of their inauray.The energy expetation value in the alulation that used GAWI and 25,000 equi-libration steps agrees with the equilibrated results to within one standard deviation,but its behavior in �gure 5.5 still shows signs of ontamination by high energy samplesin the beginning of the run.In ontrast, �gure 5.6 replots the energy expetation value for two of the unon-taminated alulations. The error bars show the standard deviation of the expetationvalue. For these unontaminated alulations, the eventual answer is within the rangehEi � �hEi at almost every point. In an unontaminated alulation, we see thatthe standard deviation alulated by DDDA as the alulation progresses is a goodmeasure of the level of onvergene of the expetation value.5.3.3 Timing and Spatial CorrelationBeause it is more ompliated than GAWI, STRAW takes more time to generatean initial eletroni on�guration for a walker. The new initialization method wouldbe of little use if the time it took to generate an initial on�guration was greaterthan the time saved in equilibration steps. Although oordinates are generated foreah eletron individually, the use of splines makes the proess very inexpensive.Generating an initial on�guration using STRAW requires less time than two VMCiterations for eah of the moleules examined in this work.The equilibration phase of a QMC alulation allows the walkers to beome in-dependent of their initial on�gurations and, by extension, eah other. Sine ourobjetive is to shorten the equilibration phase of the alulation, an important obje-
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Figure 5.7: Standard deviation of energy expetation values for single proes-sor ethanol alulations using equilibrated, idential, and STRAW ensembles after200,000 propagation steps. The points for the equilibrated and STRAW ensemblesare very lose to the funtion 0:20 �W�0:5, whih shows that walkers generated bySTRAW are statistially independent of eah other.tion to using STRAW ould be raised if it led to spatial orrelation, or any kind ofstatistial dependene within the ensemble of walkers.Testing for spatial orrelation in an ensemble of walkers is diÆult. Vetors an betested for spatial orrelation by taking dot produts, but a omparison of eletronion�gurations must take into aount the indistinguishability of idential partiles andthe symmetry of the moleule. We avoid these diÆulties by instead examining thestatistial onsequenes of spatial orrelation. If the walkers are indeed independentof eah other, we expet that for a �xed number of iterations, the standard deviationof the energy expetation value will be proportional to 1pW , where W is the numberof walkers. Any spatial orrelation among the walkers will result in a di�erent trend.Single proessor VMC alulations with 200,000 propagation steps and di�erentensemble sizes were arried out using the ethanol moleule. The trial funtion hasthe form 	VMC = 	SCFJ , where 	SCF is a HF/6-311G**++wavefuntion alulated



59using Jaguar [87℄ and J is the Jastrow funtion desribed in equations 5.12 and 5.13.One series of alulations was initialized with GAWI and allowed to equilibrate for200,000 steps. We assume the walkers in these ensembles are independent of eahother and their initial on�gurations. A seond series was started with ensemblesof idential walkers. These ensembles start with perfet spatial orrelation. A thirdseries of alulations was initialized with STRAW and used 100 equilibration steps.Figure 5.7 shows the results for the di�erent ensembles. The points for the equili-brated and STRAW ensembles are lose to eah other and the funtion 0:20 �W�0:5,whih is what we expet for independent walkers. The points for the idential en-sembles, on the other hand, are very lose to the funtion 0:24 �W�0:3. Beause theydo not sample as muh on�guration spae as independent walkers, ensembles with ahigh degree of spatial orrelation generate less information than ensembles that areindependent. Although the equilibration phase is very short, the statistial behaviorof the STRAW ensembles is very similar to that of the equilibrated ensembles and tothe behavior expeted of independent walkers.The initial eletroni on�gurations generated by STRAW are statistially inde-pendent of eah other and in regions of high enough probability density that a longequilibration phase is not neessary. The initialization algorithm is based on generalpriniples of eletroni struture, suh as energy levels and the Pauli priniple. Itdoes not, however, generate on�gurations diretly with respet to �VMC , and is notmeant to substitute for Metropolis sampling.5.3.4 Parallel Calulation EÆienyThe equilibration phase of a QMC alulation is an inherently serial step: the walk-ers on eah proessor must be equilibrated individually, so adding more proessorsinreases the time spent on this phase of the alulation. Knowing the appropriatenumber of iterations to exlude is vital, beause leaving out too many wastes omputertime, while leaving out too few will result in nonequilibrated values ontaminatingthe statistis.
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Figure 5.8: RDX alulations with one walker per proessor were run until 1,000,000total samples were olleted. The alulations initialized with GAWI used 30,000equilibration steps, while the alulations initialized with STRAW used 100 equi-libration steps. Dereasing the number of equilibration steps greatly improves theeÆieny of alulations with large numbers of proessors. The data are �t to� (NProessors) = aa+NProessors with a = 34:0 for GAWI and a = 12; 514:0 for STRAW.The alulations of setions 5.3.2 and 5.3.3 give us on�dene that STRAW angenerate independent initial on�gurations for RDX and SiCl4 in regions of highenough density that one hundred equilibration steps is suÆient before alulatingexpetation values. We expet that the eletroni struture of other moleules om-posed of atoms from the �rst three rows of the periodi table will be similar enoughto these examples to allow STRAW to be suessful for them as well.To demonstrate the e�et of shortening the equilibration phase of a alulation,a saling experiment was performed on ASCI-QSC. VMC alulations on RDX wereonduted using 1,000,000 total propagation steps and 1 walker per proessor. Follow-ing the results of Setion 5.3.2, 30,000 equilibration steps were used in the alulationsinitialized with GAWI, while 100 equilibration steps were used with STRAW. TheeÆieny of eah alulation was found using equation 5.7.
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Figure 5.9: VMC alulations on RDX were arried out using 512 proessors and 5walkers per proessor. The total iterations on the x axis inlude the equilibrationphase of the alulations. Initializing the walkers with STRAW dereases the walllok time needed to alulate the RDX energy expetation value to within 0.01 aufrom 9.4 hours to 6.3 hours, an improvement of 33%.The points in �gure 5.8 were �t to the funtion a=(a + NProessors). The valuefor a for GAWI is 34.0, while for STRAW it is 12,514.0. This result learly showsthe e�et of reduing the number of equilibration steps on the eÆieny of parallelalulations. The experiment has a short statistis gathering phase, whih makes itsale partiularly badly as the number of proessors inreases. In a realisti alulationon RDX, many more steps will have to be used before the expetation values onvergeto within hemial auray. A alulation with a longer statistis gathering phasewill sale more favorably as the number of proessors inreases, whih an be seen byexamining equation 5.7. As omputers with large numbers of proessors ome intogeneral use [80, 42℄, however, the equilibration phase will limit the eÆieny of anyalulation.The most important onsequene of reduing the length of the equilibration phasewith STRAW is that the improvement in parallel eÆieny will speed the alula-



62Initialization Eq hEi (au) Steps on E� Wall loksteps root pro timeGAWI 30K -893.291 � 0.0099 85500 65.0% 9.40hSTRAW 100 -893.287 � 0.0098 57048 99.8% 6.30hTable 5.2: RDX alulations using 512 proessors and 5 walkers per proessor wererun until 0.01 au onvergene in the energy expetation value was ahieved. The al-ulation initialized with GAWI used 30,000 equilibration steps, while the alulationinitialized with STRAW used 100 equilibration steps. The alulation initialized withSTRAW took 6.3 hours to onverge, while the alulation initialized with GAWI took9.4 hours.tion of onverged expetation values. Using an automati method to terminate thealulation based on the onvergene of the energy expetation value [49, 50℄, RDXalulations using 512 proessors with �ve walkers per proessor were run until theexpetation value of the energy onverged to within 0.01 au or 6.27 kal/mol. Thealulations initialized with GAWI used 30,000 equilibration steps, while the alula-tions initialized with STRAW used 100 equilibration steps.Table 5.2 summarizes the results from these alulations, and �gure 5.9 showsthe standard deviation of the energy expetation value vs total iterations on the rootproessor. The total iterations inlude the equilibration phase, and we see that the twoalulations have very similar onvergene behavior, with the alulation initializedwith GAWI o�set by about 30,000 iterations ompared to the one initialized withSTRAW. The alulation initialized with STRAW onverged to the desired level in6.3 hours with 99.8% eÆieny, while the alulation initialized with GAWI took 9.4hours with 65.0% eÆieny.5.4 ConlusionWe have presented and tested STRAW, a simple and automati method for generat-ing initial eletroni on�gurations for QMC alulations. STRAW is based on thestruture of the energy levels of atoms and distributes the eletrons in annular shells.The eletrons in eah energy level are distributed with respet to probability distri-



63butions in the angular oordinates so that they avoid eah other. The on�gurationsgenerated by STRAW are statistially independent of eah other and are in regionsof high probability density, whih redues the length of the equilibration phase ofthe alulation, during whih the statistis must be disarded. STRAW has beenimplemented in QMBeaver, an open soure QMC program [81℄.Using an appropriate equilibration length is vital, beause when the statistisare ontaminated by nonequilibrated on�gurations, both the expetation values andtheir standard deviations an be inaurate. STRAW simpli�es the job of the user tospeify the equilibration length by generating initial on�gurations that show no signsof ontamination or spatial orrelation after an equilibration phase of one hundrediterations.Shortening the equilibration phase inreases the eÆieny of parallel QMC al-ulations and dereases the amount of omputer time needed to alulate onvergedexpetation values. For example, using STRAW instead of a standard initializationmethod in 512 proessor alulations dereases the time needed to alulate the en-ergy expetation value of a trial funtion for an RDX moleule to within 0.01 au from9.4 hours to 6.3 hours, an improvement of 33%.Using STRAW improves the parallel saling of QMC and will inrease the eÆ-ieny of alulations using tens to hundreds of thousands of proessors. This will, inturn, allow highly aurate simulations on a broader range of hemially interestingsystems than is possible today. QMC results will be useful as benhmarks for trainingfore �elds for moleular dynamis simulations and developing new density funtional(DFT) methods. There are several lasses of systems that have proven elusive for ur-rent DFT methods [91, 92℄. Reproduing QMC results for these systems will be animportant goal for the next generation of DFT methods.Clearly, many other shemes for generating initial eletroni on�gurations forQMC alulations are possible. The tests for equilibration of the Markov hain,initialization time, and spatial orrelation desribed in the setions 5.3.2 and 5.3.3will provide a basis for omparison of future initialization shemes.
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Chapter 6A Quantum Monte Carlo Study ofThree Periyli HydroarbonReations
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Abstrat
Di�usion quantum Monte Carlo alulations using Hartree-Fok, generalized valenebond, and multion�guration self-onsistent Field trial funtions were arried out forthree periyli hydroarbon reations. The enthalpies of ativation and reationare ompared to experimental, CCSD(T), and CBS-QB3 results, as well as thoseof B3LYP and the reently introdued X3LYP, XYG3, and M06 family of densityfuntional methods.For all three reations, B3LYP geometries and zero point energies ombined withDMC eletroni energies alulated with the appropriate trial funtion result in au-ray omparable to CCSD(T) and CBS-QB3. HF trial funtions are suÆient for C-C� bonds, while GVB trial funtions are neessary for � bonds. For moleules withmultiple � bonds and transition states with several bonds being formed or broken,MCSCF trial funtions must be used.



666.1 IntrodutionThe advanes in omputing power and eletroni struture theory in reent yearshave inreased the role of simulations in understanding systems in hemistry andmaterials siene. Eletroni struture alulations an provide information on thegeometry, moleular orbitals, and vibrations of not only stable moleules, but alsotransition states and reation intermediates that are impossible to observe experimen-tally. Understanding the properties of transition states is ruial in areas suh as thedevelopment of new atalysts and energeti materials. Transition states are diÆultases for eletroni struture methods, with the errors for most methods larger by afator of three or four for transition states than for stable moleules.Quantum Monte Carlo (QMC) is a lass of stohasti eletroni struture meth-ods that an, in priniple, alulate expetation values to within hemial au-ray [57, 59℄. Although the expense of QMC will keep it from replaing traditionalmethods suh as Density Funtional Theory (DFT) for routine alulations, its fa-vorable saling [62, 63, 64℄ and parallelizability [65℄ will allow QMC alulations onsystems too large for other omparably aurate methods. QMC has the potential toresolve disagreements and provide benhmark results when other eletroni struturemethods are too expensive or not reliable enough for a ertain appliation.The QMC variants used in this work are variational Monte Carlo (VMC), in whihthe adjustable parameters of a trial wavefuntion are optimized, and di�usion MonteCarlo (DMC), whih simulates a di�usion proess to sample the exat ground statewavefuntion of a system. The most ommon formulation of DMC uses two mainapproximations. First, the fatorization of the Green's funtion that propagates thewalkers is exat only for a time step of zero. In order to propagate the walkers andsample on�guration spae, however, a �nite time step must be used. As the size ofthe time step inreases, on�guration spae is sampled more quikly, but the timestep error inreases. The seond soure of error is the �xed node approximation, inwhih the nodal struture of the exat ground state is assumed to be the same asthat of the SCF part of the trial wavefuntion. In this work, we explore both soures



67of error for stable moleules and transition states by onduting DMC alulationson three periyli hydroarbon reations. Trial funtions were onstruted for eahreation using Hartree-Fok (HF), generalized valene bond (GVB) and multion�g-uration self-onsistent �eld (MCSCF) wavefuntions and used in DMC alulationswith time steps from 10�2 to 10�4 au. The time step and �xed-node errors in theativation barriers and overall reation energies are analyzed to develop guidelines foralulations on larger systems.There are many interesting systems in hemistry and materials siene that are toolarge for highly aurate SCF methods, and for whih DFT methods are unreliable.DMC has the potential to provide aurate expetation values in these ases. Beausethe DMC results will beome the benhmarks against whih other alulations arejudged, it is essential that they be aurate. In order to arry out aurate and eÆientDMC alulations, researhers will have to use the appropriate trial funtion and timestep for the system being studied. Studying reations involving small moleules, forwhih several time steps and trial funtions an be ompared, and for whih the resultsof experiments and other high quality alulations are available, will provide a baseof knowledge for researhers addressing larger problems.6.2 ReationsFigure 6.1 shows the three reations studied in this work. Reation 1 is the 2+2yloaddition of ethylene to form ylobutane. Several mehanisms have been inves-tigated for this reation. The supra-supra pathway with D2h symmetry is a lassiexample of a reation forbidden by orbital symmetry [93℄. In the supra-supra path-way with C2v symmetry, a biradial tetramethylene hain is formed, whih loses toform ylobutane. In the supra-antara pathway, whih we examine in this work, theC-C bond of one ethylene twists during the ourse of the reation. This mehanismis allowed by orbital symmetry, but has a very high ativation barrier beause bond-ing annot be maintained as the reation proeeds. In the transition state, the fourarbons have a dihedral angle of about 40 degrees.
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Figure 6.1: Reations 1, 2, and 3.Reation 2 is the 4+2 yloaddition of ethylene and butadiene to form ylo-hexene. This thermally allowed reation is the prototype Diels-Alder reation andrepresents an important lass of reations in organi synthesis. Reation 3 is the ringopening of ylobutene to form butadiene. For reation 3, we examine the symmetry-allowed onrotatory pathway, in whih the two terminal CH2 groups rotate in thesame diretion. The disrotatory pathway is forbidden by orbital symmetry.Although these reations involve small moleules, with at most six arbon atoms,the breaking and forming of � and � bonds make them diÆult ases for densityfuntional methods, with most methods prediting reation enthalpies with errors offour to �ve kal/mol. We ompare the DMC results with those of B3LYP and thereently developed X3LYP, XYG3, and the M06 family of density funtional methods.6.3 Experimental and Computational ResultsIn all three mehanisms for reation 1, bonds must be broken for the reation tohappen. As a result, the ativation enthalpies are very high and the reation is diÆultto arry out under thermal onditions. Reliable experimental results for the enthalpiesof ativation and reation are not available. Using the experimental enthalpies of



69formation of ethylene [94℄ and ylobutane [95℄, we alulate �H0K = �16:5 kal/molfor reation 1. In 2002, Sakai alulated an MP2/CAS/6-311+G(d,p) 0K ativationenthalpy for the supra-antara pathway of 77.6 kal/mol [96℄. In 2006, Sirjean et al.alulated a CBS-QB3 [97℄ 0K enthalpy for reation 1 of -16.66 kal/mol [98℄.Detailed experimental and omputational results for reations 2 and 3 were as-sembled by Guner et al. in 2003 [99℄. They ompared HF, MP2, CASSCF, CASPT2,B3LYP, BPW91, MPW1K, KMLYP, and CBS-QB3 results with experiment for 11periyli hydroarbon ativation and reation enthalpies. Reations 2 and 3 ofthis work are reations 1 and 7, respetively, of theirs. We use their experimen-tal values of �H0K = �39:6 kal/mol and �Hz0K = 23:3 � 2 kal/mol (later re-vised to 25.0 kal/mol [100℄) for reation 2 and �H0K = �10:6 � 1 kal/mol and�Hz0K = 31:9� 0:2 kal/mol for reation 3.6.4 Computational MethodsThe strutures of the reatants, produts, and transition states of reations 1, 2, and3 were optimized with Jaguar [87℄ using B3LYP DFT [33℄ and the 6-311G** basisset [101℄. Frequeny alulations were arried out to verify the optimized geometriesand alulate zero point energies. All stable moleules had no negative frequenies,and the transition states for reations 2 and 3 eah had one negative frequeny orre-sponding to the desired reation. The transition state for reation 1 had two negativefrequenies, one orresponding to the reation and the another orresponding to aroking motion. Zero point energies were alulated using unsaled frequenies.Ab initio SCF alulations were onduted with GAMESS [102℄ using the B3LYP/6-311G** geometries to provide trial funtions for the DMC alulations. The aug--pVTZ basis set was obtained from the EMSL website [103, 104℄ and used for all ofthe wavefuntions. HF wavefuntions were alulated for all moleules to provide a\zero orrelation" starting point. GVB and MCSCF wavefuntions were alulatedto see the e�et of orrelated trial funtions on the QMC results.In a GVB-PP alulation, geminal pairs are de�ned, eah of whih onsists of two



70orbitals and two singlet paired eletrons. The �rst orbital is usually a bonding orbitaloupied in the HF on�guration. The seond orbital is usually the orrespondingantibonding orbital, orthogonal to the �rst and unoupied in the HF on�guration.The two orbitals are ombined to form two singlet paired GVB orbitals that allowthe eletrons to avoid eah other [16℄.For reation 1, two sets of GVB wavefuntions were alulated. The �rst de�nedtwo geminal pairs for the produt, transition state, and reatants, ontaining theeletrons and orbitals involved in the reation. The � and �� orbitals of ethylene wereused as a geminal pair. Two nonneighboring � bonds of ylobutane were orrelatedwith their �� orbitals, and the orresponding intermediate bonds of the transitionstate were orrelated with their antibonding orbitals. Beause these wavefuntionsinvolved two eletron pairs and four orbitals, they are labeled GVB 2,4. Beause theC-C bonds of ylobutane are equivalent, a seond set of GVB wavefuntions werealulated with four geminal pairs for eah moleule. All four � bonds of ylobutane,the � and � orbitals of ethylene, and the orresponding four orbitals of the transitionstate were orrelated. These wavefuntions are labeled GVB 4,8.GVB wavefuntions were alulated for the moleules of reations 2 and 3 withgeminal pairs for the eletrons and orbitals involved in the reation. Three pairs in sixorbitals were used for reation 2, and two pairs in four orbitals were used for reation3. In an MCSCF alulation, an ative spae onsisting of a subset of the orbitalsand eletrons of a moleule is de�ned. A CI alulation is arried out in whih theative orbitals are oupied. The orbitals and CI expansion oeÆients are optimized,giving a very general desription of the eletroni struture of the moleule [13℄. Ifa full CI alulation is used, and all possible oupations of the ative orbitals areonsidered, the alulation is alled a Complete Ative Spae SCF (CASSCF) [14℄ orFully Optimized Reative Spae (FORS) [15℄ alulation.CASSCF wavefuntions were alulated for the moleules using the same ativeorbitals as the GVB alulations. CASSCF wavefuntions with an ative spae offour eletrons in four orbitals and eight eletrons in eight orbitals were alulated for



71reation 1. An ative spae of six eletrons in six orbitals was used for reation 2, andfour eletrons in four orbitals for reation 3. For simpliity, the MCSCF wavefuntionswere labeled in the same manner as the GVB wavefuntions.Density funtional theory (DFT) is urrently the most popular way for researhersto inlude the e�ets of eletron orrelation in alulations. The small expense, a-uray, and favorable saling of DFT alulations have enabled theorists to makesigni�ant ontributions to hemistry, physis, and materials siene. DFT methodsare based on the theorem of Hohenberg and Kohn, whih proves the existene ofa funtional of the eletron density that will give the exat energy [27℄. Pratialimplementations do not deal with the eletron density diretly, but use the orbitalformulation of Kohn and Sham to express the wavefuntion [28℄. New density fun-tionals are onstantly being introdued with parameters optimized for ertain lassesof reations, but the goal of onsistent results within hemial auray for a broadrange of systems has not yet been ahieved. The most widely used DFT method isB3LYP, introdued by Beke in 1993 [33℄.In this work, we arried out alulations on reations 1, 2, and 3 using threereently introdued density funtional methods.The X3LYP funtional is based on the exat form of the exhange energy densityfor an eletron density deaying with Gaussian-like behavior at long range [34℄. Anexhange funtional with the orret behavior is desribed as a linear ombination ofthe Beke [30℄ and Perdew-Wang [105℄ exhange funtionals. X3LYP was designedto improve the auray for nonovalent interations, suh as hydrogen bonds andeletrostati and van der Waals interations, for use in simulating the binding ofligand moleules with proteins. X3LYP was demonstrated to have exellent resultsfor nonbonded systems suh as noble gas dimers and water lusters, as well as forheats of formation, ionization potentials, and eletron aÆnities.The M06 suite is a family of four density funtional methods, eah parameterizedfor di�erent systems. M06 is parameterized for both metals and nonmetals, whileM06-2X has twie the nonloal exhange and is intended for nonmetals only [35℄.M06-L is a loal funtional, whih redues the omputational expense for large sys-



72tems [106℄. M06-HF inludes the full HF exhange energy for the Kohn-Sham orbitals,whih makes it suitable for one eletron systems and long range harge transfer exitedstates [107℄.The XYG3 funtional inludes an exat exhange term as well as informationabout the unoupied Kohn-Sham orbitals in a seond-order perturbation theoryterm [36℄. The PT2 term auses the method to sale less favorably than other densityfuntionals, as O (N5) instead of O (N4), but gives XYG3 extremely high aurayfor enthalpies of formation and reation barriers.6.4.1 Quantum Monte CarloThe distinguishing feature of QMC alulations is the use of eletroni on�gura-tions generated randomly with respet to quantum mehanial probability densitiesto alulate expetation values [56, 66℄. In variational Monte Carlo (VMC), the on-�gurations are used to optimize the adjustable parameters of the wavefuntion.First, the expression for the expetation value of the energy of a trial wavefuntionis rewritten as a weighted average:hEi = R d~R 	T �~R� Ĥ	T �~R�R d~R j	T �~R� j2 (6.1)= R d~R j	T �~R� j2EL �~R�R d~R j	T �~R� j2 (6.2)= Z d~R �VMC �~R�EL �~R� ; (6.3)where Ĥ is the Hamiltonian operator for the system and ~R is a 3N -dimensionalvetor ontaining the oordinates of the N eletrons of the moleule. In equation 6.3,�VMC �~R� is the probability density for the eletroni on�guration ~R:�VMC �~R� = j	T �~R� j2R d~R j	T �~R� j2 : (6.4)



73EL �~R� is its loal energy: EL �~R� = Ĥ	T �~R�	T �~R� : (6.5)A series of M independent eletroni on�gurations, n~Rio, is generated with re-spet to �V MC using the Metropolis algorithm [54℄. The on�gurations are used toalulate the expetation value of the energy:hEi = 1M MXi EL �~Ri��O0�s 1M1A : (6.6)Beause the trial funtions are evaluated stohastially, they do not have to beanalytially integrable, whih gives researhers onsiderable freedom in hoosing theirform. In most ases, the trial funtions are written in the following form:	T =  Xi i	SCFi ! J; (6.7)where the 	SCFi are one or a small number of Slater determinant wavefuntionsalulated by traditional eletroni struture methods suh as HF, GVB, or MCSCF.The Jastrow funtion, J , is a symmetri funtion of the interpartile oordinatesthat aounts for short range orrelations and allows the trial funtion to satisfy thequantum mehanial usp onditions for ollisions between partiles [9℄.Most VMC methods employ orrelated sampling, in whih expetation values forseveral sets of parameters are alulated with one set of on�gurations. This tehniqueallows the di�erenes between sets of parameters to be determined with muh higherpreision than if the results from separate runs are ompared [66℄. Algorithms thatminimize a ombination of the expetation value of the energy and its variane tooptimize the adjustable parameters of the trial funtions Jastrow have been shown tobe e�etive and eÆient [67℄.In Di�usion Monte Carlo (DMC), a mixed distribution is de�ned:fDMC �~R; �� = � �~R; ��	T �~R� ; (6.8)



74where 	T �~R� is a trial funtion that approximates the ground state of the systemand � �~R; �� satis�es the time-dependent Shr�odinger equation for the system.The mixed distribution satis�es a Fokker-Plank equation:� ��� f �~R; �� = ��12r2 +r � V �~R�� S �~R�� f �~R; �� ; (6.9)where V �~R� is the loal veloity of the trial funtion:V �~R� = r	T �~R�	T �~R� ; (6.10)and S �~R� is de�ned in terms of its loal energy:S �~R� = ET � EL �~R� : (6.11)ET is a shift in energy that approximates the true ground state energy.In order to propagate equation 6.9 with � , an equivalent integral equation iswritten: f �~Y ; � + d�� = ed�ET (�+d�) Z d~R G �~Y ; ~R; d�� f �~R; �� ; (6.12)where G �~Y ; ~R; d�� is the Green's funtion for the ase ET = 0.The three terms on the right side of equation 6.9 desribe di�usion, drift, andbranhing proesses. The exat Green's funtion annot be written, but it an beapproximated by a produt of Green's funtions for the three individual proesses:G �~Y ; ~R; d�� � 1(2��)3N=2 Æ h~Z � ~R� V �~R� d�i�Z d~Z exp 264�~Y � ~Z�22d� 375� (6.13)e� 12 [EL(~Y )+EL(~R)℄d� +O �d� 2� :Beause the di�usion, drift, and branhing terms do not ommute, equation 6.13 is



75exat only for d� = 0. In DMC alulations, expetation values are alulated forseveral values of d� and extrapolated to d� = 0. Beause on�guration spae issampled more slowly, the number of iterations needed to ahieve a ertain level ofonvergene inreases when the time step size is dereased.As � ! 1, fDMC approahes f0 = �0	T , where �0 is the true ground statewavefuntion for the system. For operators that ommute with the Hamiltonian,expetation values alulated using this distribution equal those of the exat groundstate. In order for f0 to be sampled, it must be interpreted as a density. Sine a densityannot be negative, 	T and �0 must have the same sign throughout on�gurationspae.Many eletron wavefuntions have positive and negative regions separated bynodes, on whih they have zero value. In order for 	T and �0 to have the samesign throughout on�guration spae, they must have the same nodal struture. Un-fortunately, it is impossible to onstrut a trial funtion with the nodal struture ofthe exat ground state.The simplest solution to the nodal problem is known as the �xed node approxi-mation, in whih the nodes of the exat wavefuntion are assumed to be the same asthose of the trial funtion. The nodes are enfored by rejeting any proposed movethat rosses a node and hanges the sign of 	T .Fixed node DMC imposes a boundary ondition on the ground state wavefuntionthat it vanish at the nodes of the trial funtion. The simulation will onverge to thebest possible solution to the Shr�odinger equation within the nodal struture of thetrial funtion. The resulting energy will be an upper bound to the true energy andwill be variational with respet to the nodal struture [73℄. It has been shown thatthe error in the �xed node energy is seond order in the error of the nodes [74℄.Beause the Jastrow funtion is symmetri with respet to partile interhange, theSCF part of the trial funtion determines its nodal struture. For a DMC alulationto give aurate expetation values, it is essential that the trial funtion use theappropriate SCF wavefuntion.



766.4.2 QMC ProeduresA Jastrow funtion similar to that of Drummond et al. [71℄ was used for all of thetrial funtions. Their two body Jastrow is a polynomial that goes to zero at a uto�distane:�ij (rij) = (rij � Lij)C �(Lij � rij) �0ij + " �ij(�Lu)C + �0ijCLij # rij + NXl=2 �lijrlij! ;(6.14)where rij is the distane between partiles i and j. � is the Heaviside funtion, andLij is the uto� distane. �ij enfores the usp ondition for the partiles: it is setto 12 for opposite spin eletrons, 14 for same spin eletrons, and the opposite of thenulear harge if partiles i and j are an eletron and a nuleus. If C = 2, the gradientof �ij is ontinuous at the uto� but the seond derivative is disontinuous. If C = 3,both the gradient and seond derivative are ontinuous at the uto�, making the loalenergy also ontinuous. The uto� distane and oeÆients �lij are adjustable.We used C = 3 and N = 8 for every Jastrow funtion and saled the interpartiledistane by letting sij = rijLij . We found the uto� distane and other parametersmuh easier to optimize when the distanes were saled.The moleular orbitals were modi�ed near the nulei using the proedure of Maet al. [72℄. The part of an orbital arising from s-type basis funtions entered ona partiular nuleus was replaed within a radius of orretion of that nuleus by afuntion of the following form:~� = C + sgn h~� (0)i exp [p (r)℄ ; (6.15)where sgn h~� (0)i is �1, reeting the sign of the replaement orbital at the nuleus. Cis a shift hosen so that the replaement orbital does not hange sign within the radiusof orretion. The oeÆients in the polynomial p (r) are alulated by optimizingthe behavior of the loal energy while requiring the replaement orbital to satisfy theeletron-nuleus usp ondition and the value and �rst and seond derivatives to beontinuous at the radius of orretion. With these modi�ations, the orbitals satisfy



77the eletron-nuleus usp ondition, so the eletron-nuleus usp parameters in theJastrow are set to zero.The quantum Monte Carlo alulations were arried out with QMBeaver, a QMCprogram developed in the Goddard group at Calteh [81℄. The interproessor om-muniation and statistis gathering were were done using QMC-MW, a manager-worker model that automatially balanes the workload between the proessors [50℄.The statistis were analyzed by the dynami distributed deorrelation algorithm(DDDA) [49℄, a reformulation of the Flyvberg-Peterson bloking algorithm [108℄ thatgreatly redues the amount of data that has to be ommuniated when the results aregathered. The initial eletroni on�gurations for the walkers were generated withSTRAW, an algorithm that generates eletroni on�gurations in regions of highprobability density [109℄.The Jastrow parameters and CI expansion oeÆients were optimized with thelinear method of Umrigar et al. [69℄. The DMC algorithm of Umrigar et al. was usedto propose and aept eletroni on�gurations [55℄, and the algorithm of Assaraf etal. was used to reweight and branh the walkers [76℄.6.5 Results and DisussionVMC alulations were arried out for every trial funtion to optimize the CI oef-�ients and adjustable Jastrow parameters. The VMC optimizations were run usingfour proessors with an ensemble of 100 walkers per proessor. Using the optimizedtrial funtions, DMC alulations were arried out on superomputers at Los Alamosand Lawrene Livermore National Laboratories. DMC alulations run on Coyote atLANL and hera at LLNL used 512 proessors with 100 walkers per proessor, whileDMC alulations run on uBGL at LLNL used 16,384 proessors with 100 walkersper proessor. The DMC alulations were typially run for 12 hours at a time andrestarted from hekpoint �les until the energy expetation value onverged to within1:5 � 10�4 au or about 0.09 kal/mol. DMC alulations were run with time stepsof 0.01, 0.003, and 0.001 au for every moleule. In addition, DMC alulations with



78time steps of 0.0003 and 0.0001 au were run for ethylene, ylobutane, ylobutene,and butadiene. Limitations in available omputer time prevented these alulationsfrom being run for ylohexene and the transition states.The DMC expetation values for eah trial funtion and time step are shown in�gures 6.2 through 6.11. The expetation values for eah trial funtion were �t to thefuntion a + b (d�) +  (d�)2. The time step error for every trial funtion is positiveand inreases with the time step. The �t funtion should inrease with d� , but insome ases, it has a maximum between d� = 0:003 and d� = 0:01. Adding termsto the polynomial did not alleviate this behavior or improve the �t of the funtion.Sine the funtion is being used to extrapolate the expetation values to the d� = 0limit and the �t is uniformly exellent in the small d� region, the inorret behaviorof the funtion for large d� was ignored.6.5.1 Reation 1Figure 6.2 shows the DMC results for ethylene. It is easy to see the nodal and timestep errors in the alulations. The HF trial funtion has a nodal error, fairly onstantwith respet to time step, of approximately 0.004 au or 2.5 kal/mol ompared tothe orrelated trial funtions. The DMC/GVB 1,2 and DMC/MCSCF 1,2 resultsoinide for every time step. These wavefuntions di�er only in their loalization,whih should not a�et their DMC energy. It is interesting to note the GVB 2,4 trialfuntion, whih has lower SCF and VMC energies than the GVB 1,2 trial funtion,has a DMC energy approximately 0.35 kal/mol higher than that of the one pair GVBtrial funtion. The two pair MCSCF trial funtion has a DMC energy approximately0.2 kal/mol lower than the one pair trial funtions. Trial funtions with lower SCFenergy do not neessarily have higher quality nodes for DMC alulations.The DMC results for TS1 are shown in �gure 6.3. The results for the MC-SCF 2,4 and MCSCF 4,8 trial funtions are almost idential for every time step. TheDMC/GVB 2,4 results are approximately 6 kal/mol higher than the DMC/MCSCFenergies. The GVB 4,8 trial funtion, whih has lower SCF and VMC energies than
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Figure 6.2: DMC expetation values for the energy of ethylene. The expetationvalues are �t to the funtion a + b (d�) +  (d�)2. The expetation values for theGVB 1,2 andMCSCF 1,2 trial funtions oinide at every time step. The energy forthe GVB 2,4 trial funtion is slightly higher than that of the GVB 1,2 trial funtionat every time step, and the energy for the HF trial funtion is onsiderably higherthose of the orrelated trial funtions at every time step.the GVB 2,4 trial funtion, has a DMC energy approximately 1 kal/mol higher thanthe GVB 2,4 trial funtion. One again, we see adding GVB pairs dereases thequality of the nodes of the trial funtion and raises the DMC energy. The energiesfor the HF trial funtion are about 1 kal/mol above the GVB 4,8 DMC energies.Figure 6.4 shows the DMC results for ylobutane. The DMC results for all �vetrial funtions are within 1 kal/mol of eah other for every time step. Cylobutaneis the only saturated hydroarbon studied in this work, and these results show orre-lating C-C � bonds does not signi�antly hange the nodes for DMC alulations.Figure 6.5 shows the enthalpies at 0K of ativation and reation for reation 1,alulated using DMC eletroni energies and B3LYP/6-311G** geometries and zeropoint energies. The results for eah time step and trial funtion are plotted withpoints, and the results for eah trial funtion extrapolated to d� = 0 are plotted



80

-157.025

-157.02

-157.015

-157.01

-157.005

-157

-156.995

 0.0001  0.0003  0.001  0.003  0.01

<
E

>
 (

au
)

dτ (au)

TS1 DMC Results

HF
GVB 2,4
GVB 4,8

MCSCF 2,4
MCSCF 4,8
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82funtion.The enthalpies of ativation and reation for reation 2 are shown in �gure 6.9.The results for eah time step and trial funtion are plotted with points, and theresults for eah trial funtion extrapolated to d� = 0 are plotted with dotted lines.The experimenal and CBS-QB3 values are plotted with solid lines. For the overallenthalpy, the experimental, CBS-QB3, and orrelated DMC results are all withinabout 2 kal/mol of eah other. The DMC/HF results are about 4 kal/mol too low.The DMC/MCSCF 3,6 results are about 2 kal/mol higher than the experimentalvalue, but only about 1 kal/mol higher than the CBS-QB3 result. For the ativationenthalpy, the DMC/MCSCF 3,6 and DMC/HF results are within about 0.5 kal/molof eah other, and within about 2 kal/mol of experiment. The DMC/GVB 3,6 resultis about 5 kal/mol higher than the experimental value. The CBS-QB3 result is about2 kal/mol lower than the experimental value.6.5.3 Reation 3Figure 6.10 shows the DMC results for ylobutene. For this moleule, the DMC/GVB 2,4and DMC/MCSCF 2,4 energies are almost idential for every time step, while theDMC/HF energies are about 2.5 kal/mol higher. The results for TS3 are shown in�gure 6.11. For this transition state, the DMC/GVB 2,4 energy is about 2.5 kal/molbelow the DMC/HF result and about 2.2 kal/mol above the DMC/MCSCF 2,4 en-ergy.The results for the ativation and overall enthalpies for reation 3 are shownin �gure 6.12. The DMC results for eah trial funtion and time step are plottedwith points, and the results for eah time step extrapolated to d� = 0 are plottedwith dotted lines. The experimental and CBS-QB3 results are plotted with solidlines. In this ase, the DMC/HF results for the overall hange in enthalpy are within0.5 kal/mol of experiment, while the DMC/GVB 2,4 and DMC/MCSCF 2,4 re-sults are about 2 and 3 kal/mol too low, respetively. The orrelated DMC results,however, are both within 1 kal/mol of the CBS-QB3 value. For the ativation en-



83thalpy, the DMC/MCSCF 2,4 results are about 2 kal/mol above the experimentaland CBS-QB3 values. The DMC/GVB 2,4 and DMC/HF values are about 4.5 and6.5 kal/mol, respetively, above the experimental and CBS-QB3 values.6.5.4 DisussionConduting DMC alulations for several time steps and extrapolating the results tod� = 0 greatly inreases their omputational expense. Although the DMC expe-tation values for the individual moleules have onsiderable time step errors, theyanel out when energy di�erenes for reations are alulated. In the enthalpies ofativation and reation for reations 1, 2, and 3, the DMC results for every timestep are within 1 kal/mol of the extrapolated value. There is no onsistent trendin the extrapolated expetation values ompared to their values at �nite time steps.Sine extrapolating the energies to d� = 0 does not signi�antly hange the resultsfor reations, it is unneessary when energy di�erenes are being onsidered, and asingle time step an be used. For the rest of this work, only the DMC results withd� = 0:01 au will be onsidered.Table 6.1 ontains the SCF, VMC, and DMC expetation values for the energyof eah trial funtion. The VMC and DMC alulations used a time step of 0.01 au.The perentage of the orrelation energy reovered by the Jastrow funtion is remark-ably onstant for every trial funtion, at about 77%. This result indiates the roleof the Jastrow funtion is very similar in all of the trial funtions onsidered. Thetrial funtions represent the eletroni struture of hain and ylial, saturated andunsaturated, stable hydroarbons and transition states. The onsisteny of the abil-ity of the Jastrow to reover orrelation energy in these diverse moleules suggestsit ats primarily within the atoms, and does not have muh e�et in the bondingregions. If the Jastrow only inuenes the eletroni struture within the atoms,it may be possible to optimize a set of eletron-nulear orrelation funtions usingatomi or simple moleular alulations, and use them without optimization in largersystems. If the number of parameters to be optimized were redued to only those in



84the eletron-eletron orrelation funtions and the CI expansion oeÆients withoutsari�ing auray, optimization would be simpli�ed and alulations ould proeedmore quikly to the DMC phase.Table 6.2 ontains the ab initio, QMC, and DFT results for the ativation andoverall enthalpy hanges for reation 1. The DMC/GVB and DMC/MCSCF resultsare all within about 1 kal/mol of experiment. The B3LYP result is about 4 kal/moltoo high, while the M06 results are between 5.5 and 2.5 kal/mol too low. XYG3is the best of the DFT methods, with an error of -0.7 kal/mol. The CBS-QB3result is within 0.2 kal/mol of experiment, while the error for CCSD(T)/6-31G* is-1.7 kal/mol.The results for reation 2 are shown in table 6.3. For the overall enthalpy hange,the DMC/GVB 3,6 result is within about 0.1 kal/mol of the experimental value. TheDMC/MCSCF 3,6 result is about 1.3 kal/mol higher than experiment, but is within0.03 kal/mol of the CBS-QB3 value. The DMC/HF enthalpy is about 4.3 kal/molbelow experiment, and the CCSD(T)/6-31G* result is about 0.8 kal/mol below ex-periment. The B3LYP result is about 9 kal/mol higher than the experimental value,while M06, M06-2X, and M06-HF are 2 to 2.5 kal/mol lower than experiment. TheM06-L and XYG3 values are about 1 kal/mol higher than than experiment.While the DMC/GVB 3,6 result for the overall enthalpy hange of reation 2agrees with experiment, the DMC/GVB 3,6 ativation enthalpy is about 6.5 kal/moltoo high. The DMC/HF ativation enthalpy is about 1 kal/mol too high, and theDMC/MCSCF 3,6 result is about 1.5 kal/mol too high. The CBS-QB3 ativationenthalpy is about 2.1 kal/mol below experiment, and the CCSD(T)/6-31G* resultis about 2.5 kal/mol above experiment. The B3LYP ativation enthalpy is about2 kal/mol higher than experiment, while the M06 results are 1.5 to 7.5 kal/mollower. The XYG3 ativation enthalpy is about 0.6 kal/mol above the experimentalvalue.Table 6.4 ontains the results for reation 3. The DMC/HF overall enthalpyhange is about 0.1 kal/mol lower than experiment. The DMC/GVB 2,4 andDMC/MCSCF 2,4 values are about 1.8 and 2.8 kal/mol, respetively, lower than



85experiment, but are both within 1 kal/mol of the CBS-QB3 value. The CCSD(T)/6-31G* enthalpy is about 1.2 kal/mol below experiment. The B3LYP enthalpy hangeis about 4.5 kal/mol lower than experiment, while the M06 results are all withinabout 1 kal/mol of experiment. The XYG3 result is about 2.4 kal/mol below theexperimental value.The DMC/MCSCF 2,4 ativation enthalpy is about 2.5 kal/mol higher than ex-periment, while the GVB 2,4 and HF values are about 4.5 and 6 kal/mol higher thanexperiment, respetively. The B3LYP ativation enthalpy is the losest of all meth-ods to experiment, agreeing within 0.16 kal/mol. The M06-HF ativation enthalpyis about 0.5 kal/mol higher than experiment, while the other M06 methods are 3 to4 kal/mol higher. The XYG3 ativation enthalpy is about 1.4 kal/mol above theexperimental value.Table 6.5 shows the di�erenes from the experimental values for the DMC/MCSCFand DFT ativation and overall enthalpies for reations 1, 2, and 3. The result withthe lowest error for eah quantity is in bold font.6.6 ConlusionIn summary, we were able to alulate �H0K and �Hz0K values to within experimentalauray for three diÆult periyli hydroarbon reations using B3LYP/6-311G**geometries and zero point energies and DMC eletroni energies. The DMC trialfuntions onsisted of a two body Jastrow and an antisymmetri wavefuntion on-struted with HF, GVB, or MCSCF and the aug--pVTZ basis set. A time step of0.01 au was found to be aeptable, making extrapolation to d� = 0 unneessary.Beause of the formation and breaking of C-C � and � bonds, Reations 1, 2,and 3 are diÆult ases for DFT. Compared to the experimental reation enthalpies,B3LYP has errors of about 4, 9, and -4.5 kal/mol, respetively. X3LYP performssomewhat better, with errors of about 3, 7, and -4 kal/mol. The M06 family offuntionals is usually more aurate than B3LYP, but no one of the four methods isonsistently better than B3LYP or the most aurate among the M06 family. The



86results for the new XYG3 funtional are exellent, with errors of about -1, 1, and-2.5 kal/mol.DMC using MCSCF trial funtions has errors of about 1, 1, and -3 kal/mol forthe three reations. If the overall enthalpy for reation 3 is ompared to CBS-QB3instead of experiment, the DMC/MCSCF error is about -1 kal/mol. DMC/GVB 3,6has the most aurate result for the overall enthalpy of reation 2, and DMC/HF isthe losest to experiment for reation 3, but DMC/MCSCF is the only method thatperforms onsistently for all three reations. When the appropriate trial funtion isused, the errors of DMC for reations 1, 2, and 3 are omparable to CBS-QB3 andCCSD(T)/6-31G*. The favorable saling and parallelizability of DMC, however, willallow it to be applied to muh larger systems than the ones in this work. CBS-QB3and CCSD(T) are limited to systems with less than about twelve heavy atoms.Based on the DMC results for individual moleules, some priniples emerge as tothe trial funtions neessary to give aurate results. First, HF is suÆient for C-C �bonds. De�ning GVB pairs for C-C � bonds raises the DMC energy, and orrelatingthem with MCSCF does not lower the DMC energy signi�antly. Seond, C-C �bonds must be orrelated to give aurate trial funtions. If there is one � bond, aGVB trial funtion is suÆient. If the moleule ontains more than one � bond, anMCSCF trial funtion must be used. For transition states, all partially formed bondsmust be orrelated. If more than one bond is being formed or broken, an MCSCFtrial funtion is one again neessary.The DMC time step errors for individual moleules are signi�ant. For example,using a time step of 0.01 au raises the expetation value for the energy of ethylene byabout 5 kal/mol ompared to the d� = 0 limit. These errors tend to anel out whenenergy di�erenes for reations are onsidered. For reations 1, 2, and 3, extrapolatingthe results to d� = 0 did not hange them signi�antly from the d� = 0:01 au values.Being able to use a single time step greatly dereases the amount of omputer timeneeded to alulate enthalpy di�erenes.To further simplify DMC alulations and make these exellent results availablefor larger and more interesting systems, it will be helpful to investigate the e�et of



87the basis set on the expetation values. The most time onsuming parts of the QMCalgorithm sale as O (N3) with the number of basis funtions, so dereasing the size ofthe basis set will make the trial funtions easier to onstrut and speed up the QMCalulations. In addition, the VMC and DMC results in table 6.1 suggest it may bepossible to develop a single set of eletron-nulear orrelation funtions that ould beapplied to all moleules. Eliminating these parameters from the optimization phaseof QMC alulations would make them less expensive and simpler for nonexperts toarry out.Finally, the GVB and partiularly the MCSCF trial funtions in this work inludedlarge numbers of on�gurations. Inreasing the length of the CI expansion greatlyinreases the time needed to evaluate and optimize a trial funtion. While it wasshown that HF trial funtions are not aeptable for transition states or moleuleswith C-C � bonds, it is likely that the CI expansions ould be trunated after a fairlysmall number of terms without sari�ing auray. Comparing DMC expetationvalues for trial funtions with di�erent CI expansion lengths will give researhersguidelines to identify whih on�gurations must be inluded, and whih an safely beignored.
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Figure 6.5: DMC results for the ativation and overall enthalpies of reation 1. Thedotted lines are the values for eah level of orrelation extrapolated to d� = 0. Allfour orrelated trial funtions give overall DMC enthalpies within 1 kal/mol of ex-periment, but the value for the HF trial funtion is about 4 kal/mol too low.
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96Moleule SCF Ndet hEiSCF Params hEiVMC hEiDMC % EorrwavefuntionEthylene HF 1 -78.0652 36 -78.4461 -78.5578 77.3GVB 1,2 2 -78.0921 37 -78.4574 -78.5624 77.7GVB 2,4 4 -78.1027 39 -78.4589 -78.5616 77.6MCSCF 1,2 2 -78.0921 37 -78.4574 -78.5623 77.7MCSCF 2,4 12 -78.1178 45 -78.4629 -78.5629 77.5TS1 HF 1 -155.9731 36 -156.7596 -156.9970 76.8GVB 2,4 4 -156.0219 39 -156.7774 -157.0008 77.2GVB 4,8 16 -156.0467 51 -156.7809 -156.9993 77.1MCSCF 2,4 16 -156.0413 47 -156.7902 -157.0090 77.4MCSCF 4,8 61 -156.0885 72 -156.7994 -157.0097 77.2Cylobutane HF 1 -156.1515 36 -156.9323 -157.1578 77.6GVB 2,4 4 -156.1849 39 -156.9411 -157.1581 77.7GVB 4,8 16 -156.2171 41 -156.9475 -157.1592 77.5MCSCF 2,4 12 -156.1855 45 -156.9400 -157.1583 77.6MCSCF 4,8 75 -156.2325 77 -156.9498 -157.1594 77.4Butadiene HF 1 -154.9799 36 -155.7125 -155.9326 76.9GVB 2,4 4 -155.0288 39 -155.7342 -155.9392 77.5MCSCF 2,4 16 -155.0332 47 -155.7367 -155.9412 77.5TS2 HF 1 -232.9672 36 -234.1120 -234.4526 77.1GVB 3,6 8 -233.0269 43 -234.1251 -234.4550 76.9MCSCF 3,6 51 -233.0510 68 -234.1425 -234.4650 77.2Cylohexene HF 1 -233.1005 36 -234.2376 -234.5706 77.3GVB 3,6 8 -233.1578 42 -234.2522 -234.5747 77.2MCSCF 3,6 50 -233.1586 67 -234.2530 -234.5746 77.3Cylobutene HF 1 -154.9551 36 -155.6979 -155.9168 77.2GVB 2,4 4 -154.9989 39 -155.7123 -155.9207 77.4MCSCF 2,4 8 -154.9997 40 -155.7132 -155.9210 77.4TS3 HF 1 -154.8840 36 -155.6325 -155.8539 77.2GVB 2,4 4 -154.9340 39 -155.6518 -155.8600 77.5MCSCF 2,4 20 -154.9423 49 -155.6553 -155.8635 77.5Table 6.1: QMC results using HF, GVB, and MCSCF trial funtions. Energiesreported in atomi units. All alulations used the aug--pVTZ basis set andB3LYP/6-311G** geometries. QMC alulations used a 0.01 au time step and the2 body Jastrow desribed in Eq 6.14, and were run until the energy onverged towithin 1:5 � 10�4 au. The number of parameters optimized in the Jastrow funtionand CI expansion for eah trial funtion is shown in the Params olumn. The perentof the orrelation energy reovered by the Jastrow was alulated using the formula% Eorr = 100 hEiVMC�hEiDMChEiSCF�hEiDMC . The perent of orrelation energy reovered by theJastrow is remarkably onstant aross all trial funtions, whih suggests the Jastrowats mostly within the atoms.
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Geom Energy ZPE �Hz0K �H0KExp [94, 95℄ -16.48MP2//CAS/6-311G(d,p) [96℄ 77.6CBS-QB3 [98℄ -16.66CCSD(T)/6-31G* [110℄ -18.18B3LYP B3LYP B3LYP 74.37 -12.55HF 100.18 -7.85GVB 2,4 103.41 5.01GVB 4,8 101.14 -1.84MCSCF 2,4 91.21 4.66MCSCF 4,8 93.81 7.37DMC/HF 76.00 -21.02DMC/GVB 2,4 79.42 -15.40DMC/GVB 4,8 79.37 -17.10DMC/MCSCF 2,4 74.13 -15.66DMC/MCSCF 4,8 74.42 -15.61M06 70.63 -22.02M06-2X 71.78 -21.11M06-HF 69.37 -18.94M06-L 70.58 -20.94X3LYP X3LYP X3LYP 73.89 -13.79B3LYP XYG3 B3LYP 73.21 -17.21Table 6.2: SCF and DMC results for the enthalpies of ativation and reation at0K for reation 1. All enthalpy di�erenes reported in kal/mol. The geometry,energy, and ZPE olumns ontain the methods used to optimize geometries, alulateeletroni energies, and alulate zero point energies, respetively. B3LYP, M06,and X3LYP alulations used the 6-311G** basis set. The XYG3 alulations usedB3LYP/6-311+G(d,p) geometries and frequenies saled by 0.9877 with XYG3/6-311+G(3df,2p) eletroni energies [111℄. HF, GVB, and MCSCF alulations usedthe aug--pVTZ basis set. DMC alulations used a 0.01 au time step.
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Geometry Energy ZPE �Hz0K �H0KExp [99℄ 25.0 -39.6CBS-QB3 [99℄ 22.9 -38.3CCSD(T)/6-31G* [112, 113℄ B3LYP 27.48 -40.36B3LYP B3LYP B3LYP 27.10 -30.80HF 51.24 -28.48GVB 3,6 61.41 -16.77MCSCF 3,6 49.06 -14.50DMC/HF 26.08 -43.96DMC/GVB 3,6 31.67 -39.48DMC/MCSCF 3,6 26.55 -38.27M06 23.38 -41.48M06-2X 21.60 -42.19M06-HF 17.26 -42.21M06-L 22.36 -38.56X3LYP X3LYP X3LYP 26.34 -32.37B3LYP XYG3 B3LYP 24.44 -38.55Table 6.3: SCF and DMC results for the enthalpies of ativation and reation at0K for reation 2. All enthalpy di�erenes reported in kal/mol. The geometry,energy, and ZPE olumns ontain the methods used to optimize geometries, alulateeletroni energies, and alulate zero point energies, respetively. B3LYP, M06,and X3LYP alulations used the 6-311G** basis set. The XYG3 alulations usedB3LYP/6-311+G(d,p) geometries and frequenies saled by 0.9877 with XYG3/6-311+G(3df,2p) eletroni energies [111℄. HF, GVB, and MCSCF alulations usedthe aug--pVTZ basis set. DMC alulations used a 0.01 au time step.



99Geometry Energy ZPE �Hz0K �H0KExp [99℄ 31.9 -10.6CBS-QB3 [99℄ 32.0 -12.6CCSD(T)/6-31G* [110℄ -11.83B3LYP B3LYP B3LYP 32.15 -15.11HF 42.94 -16.39GVB 2,4 39.07 -19.61MCSCF 2,4 34.37 -21.87DMC/HF 37.79 -10.73DMC/GVB 2,4 36.44 -12.44DMC/MCSCF 2,4 34.42 -13.47M06 35.24 -10.27M06-2X 35.37 -10.91M06-HF 32.54 -11.68M06-L 36.07 -10.14X3LYP X3LYP X3LYP 32.47 -14.87B3LYP XYG3 B3LYP 33.73 -12.98Table 6.4: SCF and DMC results for the enthalpies of ativation and reation at0K for reation 3. All enthalpy di�erenes reported in kal/mol. The geometry,energy, and ZPE olumns ontain the methods used to optimize geometries, alulateeletroni energies, and alulate zero point energies, respetively. B3LYP, M06,and X3LYP alulations used the 6-311G** basis set. The XYG3 alulations usedB3LYP/6-311+G(d,p) geometries and frequenies saled by 0.9877 with XYG3/6-311+G(3df,2p) eletroni energies [111℄. HF, GVB, and MCSCF alulations usedthe aug--pVTZ basis set. DMC alulations used a 0.01 au time step.Reation 1 Reation 2 Reation 3Method �Hz0K �H0K �Hz0K �H0K �Hz0K �H0KB3LYP 3.93 2.10 8.80 0.25 -4.51X3LYP 2.69 1.34 7.23 0.56 -4.27XYG3 -0.73 0.56 1.05 1.83 -2.38M06 -5.54 -1.62 -1.88 3.34 0.33M06-2X -4.63 -3.40 -2.59 3.47 -0.31M06-HF -2.46 -7.74 -2.61 0.64 -1.08M06-L -4.46 -2.64 1.04 4.17 0.46DMC/MCSCF 0.82 1.55 1.32 2.52 -2.87Table 6.5: Di�erenes from experiment for the DMC/MCSCF and DFT ativationand overall enthalpies for reations 1, 2, and 3. The result with the lowest error foreah quantity is in bold font.
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Chapter 7Conlusion
The QMC alulations presented in this thesis were arried out using QMBeaver, aprogram written in the Goddard group to develop, demonstrate, and apply new QMCalgorithms [81℄. Quantum Monte Carlo has the potential to alulate expetation val-ues to within experimental auray, and its favorable saling and parallelizability willallow it to be applied to muh larger systems than omparably aurate traditionaleletroni struture methods.QMC is a relatively new lass of methods, with new algorithms being developedby a small number of experts, most of whom have written their own QMC programs.Most appliations of QMC to hemial and materials systems have been done bythese developers to demonstrate their algorithms, not by researhers interested in thesystems themselves. The omputational expense and theoretial omplexity of QMChave kept it from beoming a \blak box" method for nonexperts to use.Algorithms developed using QMBeaver have made progress in bringing QMCto nonexpert users by providing simple, automati tools for setting up and arryingout alulations. The Dynami Distributed Deorrelation Algorithm (DDDA) au-tomatially alulates the standard deviation of expetation values during a QMCalulation, taking the serial orrelation of the samples into aount, while greatlyreduing the amount of data that has to be ommuniated among the proessors togather results [49℄. The manager-worker parallelization (QMC-MW) automatiallybalanes the work between proessors running at di�erent speeds, allowing the eÆ-ient use of heterogeneous omputers. QMC-MW also makes it possible to terminate



101a alulation based on the onvergene of the expetation values rather than theompletion of a ertain number of iterations [50℄.In hapter 5 of this work, we demonstrated the importane of initial walker on-�gurations to the eÆieny and auray of QMC alulations. STRAW is a simple,automati method that requires no user input to generate statistially independentinitial walker on�gurations in regions of high density and low loal energy [109℄.Avoiding ontamination by on�gurations that do not represent the desired densityensures the auray of the results and allows the eÆient use of large numbers ofproessors. DDDA, QMC-MW, and STRAW ombine to make it straightforwardto set up QMC alulations that will eÆiently use the next generation of homoge-neous superomputers, inexpensive heterogeneous beowulf lusters, and distributedomputing resoures.The two soures of error in a DMC alulation are the time step and the nodalstruture of the SCF part of the trial funtion. In order to have on�dene in theresults of their alulations, researhers need guidelines as to the appropriate timesteps and trial funtions to use for the funtional groups in their systems. In hapter 6,we explored the time step and nodal errors for three periyli hydroarbon reations.DMC results alulated with HF, GVB, and MCSCF trial funtions were ompared toexperiment, high quality ab initio alulations, and the reently introdued X3LYP,M06, and XYG3 DFT funtionals. From the results, it was determined that the timestep error anels out when energy di�erenes are onsidered, making extrapolationto zero time step unneessary. HF trial funtions were shown to be aeptable forC-C � bonds, but to have a large nodal error for � bonds. GVB trial funtionsare suÆient for moleules with one � bond, while MCSCF wavefuntions must beused for moleules with multiple � bonds and transition states with several bondsbeing broken and formed. When the appropriate trial funtion is used, DMC resultsare onsistently as aurate as CCSD(T) and CBS-QB3 for the three hydroarbonreations.In order to allow researhers to onstrut trial funtions for larger and more om-pliated moleules, the nodal errors for more funtional groups must be investigated.



102Carrying out DMC alulations with a variety of trial funtions for small modelsystems, for whih experimental and high quality ab initio results are available foromparison, an provide this information.All of the trial funtions in hapter 6 used the aug--pVTZ basis set, whih isprobably larger than neessary to give aurate DMC results. In addition, the MCSCFtrial funtions used long CI expansions. A systemati omparison of the results andrate of onvergene of DMC alulations arried out with di�erent basis sets and CIexpansion lengths will allow researhers to determine whih basis funtions an beeliminated and where CI expansions an be trunated without sari�ing auray.Sine eah determinant must be inverted to evaluate the trial funtion value andmatrix inversion sales as O (N3) with the number of basis funtions, using smallerbasis sets and shorter CI expansions will greatly redue the omputational expenseof DMC alulations.Finally, the results of hapter 6 suggest the possiblity of developing a set ofeletron-nulear Jastrow parameters to be used for all moleules without reoptimiza-tion. If this \generi Jastrow" ould be used, only the eletron-eletron and CI ex-pansion parameters would have to be optimized for eah system, greatly reduing theomplexity and expense of the parameter optimization phase of QMC alulations.Quantum Monte Carlo has the potential to beome a very important tool foromputational sientists. The high auray of QMC ombined with its ability toeÆiently use the next generation of omputational resoures will allow it to provideaurate expetation values to understand reation mehanisms and train densityfuntional and fore �eld methods. The ontinuing development of algorithms tomake QMC more aurate, straightforward, and eÆient will bring it into ommonuse among researhers in hemistry and materials siene.
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