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Abstra
t
Quantum Monte Carlo is a relatively new 
lass of ele
troni
 stru
ture methods thathas the potential to 
al
ulate expe
tation values for atomi
, mole
ular, and materialssystems to within 
hemi
al a

ura
y. QMC s
ales as O (N3) or better with the sizeof the system, whi
h is mu
h more favorable than traditional ele
troni
 stru
turemethods 
apable of 
omparable a

ura
y. In addition, the sto
hasti
 nature of QMCmakes it relatively easy to parallelize over multiple pro
essors.QMC 
al
ulations use the Metropolis algorithm to sample the ele
tron densityof the system. This method has an inherent equilibration phase, during whi
h the
on�gurations do not represent the desired density and must be dis
arded. Be
ausethe time spent on equilibration in
reases linearly with the number of pro
essors, thisphase limits the eÆ
ien
y of parallel 
al
ulations, making it impossible to use largenumbers of pro
essors to speed 
onvergen
e.This thesis presents an algorithm that generates statisti
ally independent walker
on�gurations in regions of high probability density, shortening the length of the equi-libration phase and ensuring the a

ura
y of 
al
ulations. Shortening the length ofthe equilibration phase greatly improves the eÆ
ien
y of large parallel 
al
ulations,whi
h will allow QMC 
al
ulations to use the next generation of homogeneous, hetero-geneous, and distributed 
omputing resour
es to 
ondu
t highly a

urate simulationson large systems.The most 
ommon formulation of di�usion Monte Carlo has two sour
es of error:the time step used to propagate the walkers and the nodes of the trial fun
tion. Inorder to explore these sour
es of error, DMC 
al
ulations were 
arried out on threeperi
y
li
 hydro
arbon rea
tions using Hartree-Fo
k, generalized valen
e bond, and



vmulti
on�guration self-
onsistent �eld trial fun
tions and time steps ranging from10�4 to 10�2 au. The results are 
ompared to values from experiment and highquality ab initio 
al
ulations, as well as the re
ently developed X3LYP, M06, andXYG3 density fun
tionals. The appropriate time step and trial fun
tions for therea
tants, transition states, and produ
ts are identi�ed to begin to develop guidelinesfor resear
hers 
arrying out 
al
ulations on larger systems.
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1
Chapter 1Ele
troni
 Stru
ture Theory
The goal of ele
troni
 stru
ture theory is to understand the geometries, rea
tions, andother properties of mole
ules and materials based on simulations of their ele
troni
stru
ture. The behavior of parti
les on this s
ale is governed by the laws of quantumme
hani
s. Although these laws are well understood, applying them to nontrivialsystems leads to equations too 
ompli
ated to solve exa
tly. Sin
e exa
t solutions arenot possible, resear
hers use approximatations that trade a

ura
y for 
omputationaltra
tability.Approximate ele
troni
 stru
ture methods are 
lassi�ed as ab initio methods,whi
h are based only on the laws of quantum me
hani
s, or semiempiri
al methods,whi
h use experimental results to determine fun
tional forms and �t parameters.Methods of both types are used to understand and predi
t experimental phenomenasu
h as rea
tion me
hanisms, ele
tri
al properties, and biologi
al a
tivity for a widevariety of systems. This 
hapter 
ontains a very basi
 introdu
tion to the laws ofquantum me
hani
s and the approximate methods used to apply them to mole
ularand solid state systems. Further information on quantum me
hani
s 
an be found inreferen
es [1, 2℄, while appli
ations to 
hemistry and materials s
ien
e are 
overed inreferen
es [3, 4, 5, 6, 7℄.



21.1 Quantum Me
hani
sThe fundamental postulate of quantum me
hani
s is that the energy and all other ob-servable properties of an atom or mole
ule are expressed in its wavefun
tion, whi
h 
anbe obtained by solving the S
hr�odinger equation. Exa
t solutions for the S
hr�odingerequation are possible for only the simplest systems. Larger systems lead very qui
klyto equations with too many dimensions to be solvable.Quantum me
hani
s di
tates several ne
essary features for  , the wavefun
tion ofa parti
le. The produ
t of the wavefun
tion with its 
omplex 
onjugate,  � = j j2, isinterpreted as the probability density fun
tion for the position of the parti
le. Sin
ethe parti
le must exist somewhere, integrating j j2 over all spa
e must give unity.Wavefun
tions that satisfy this 
ondition are referred to as normalized. A

ordingly,we multiply  by a normalization 
onstant 
 so that R d� j
 j2 = 1.The mathemati
al framework of a many parti
le wavefun
tion, 	, must a

ountfor the fa
t that ele
trons are indistinguishable from ea
h other. This means that thespatial probability density, �, 
annot vary with the inter
hange of any two ele
trons:� (1; 2) = j	(1; 2) j2 = j	(2; 1) j2 = � (2; 1) : (1.1)Therefore, 	 (1; 2) = �	(2; 1) : (1.2)Parti
les su
h as ele
trons with half-integer spin are fermions, for whi
h the wave-fun
tion is antisymmetri
: 	 (1; 2) = �	(2; 1).The time-dependent S
hr�odinger equation determines the evolution of the wave-fun
tion of a system with time [8℄:i ��t j	(X; t)i = Ĥj	(X; t)i; (1.3)where Ĥ is the Hamiltonian or energy operator of the system, t is time, and X is ageneralized 
oordinate that in
ludes the spatial and spin 
oordinates of the parti
les



3of the system.The solution to the time-dependent S
hrodinger equation 
an be expanded asj	(X; t)i =Xj 
je�iEjtj�j (X)i; (1.4)where the 
oeÆ
ient 
j = h�j (X) j	(X; 0)i and the Ej and j�j (X)i are the eigen-values and eigenfun
tions of the time-independent S
hrodinger equation:Ĥj�j (X)i = Ejj�j (X)i: (1.5)Be
ause they do not 
hange with time, the eigenfun
tions j�j (X)i are known asthe stationary states of the system. Ea
h stationary state has an asso
iated eigen-value, Ej, whi
h 
an be interpreted as its energy. The stationary states are usuallyordered so that E0 � E1 � E2 � � � �, with the lowest energy state, j�0 (X)i, being
alled the ground state.Be
ause Ĥ is a Hermitian operator, its eigenvalues are real and its eigenfun
tionsare orthogonal to ea
h other and span the spa
e of all possible solutions. They 
analso be 
hosen to be normalized, so thath�i (X) j�j (X)i = Æij; (1.6)where Æij is the Krone
ker delta: Æij equals 1 if i = j and 0 otherwise.1.1.1 Cusp ConditionsThe Hamiltonian operator for a system of N ele
trons and K nu
lei with 
harges ZLand masses ML isĤ = �12 NXi=1r2i � 12 KXL=1 1MLr2L � NXi=1 KXL=1 ZLriL + NXi=1 NXj>i 1rij + KXI=1 KXJ>I ZIZJrIJ ; (1.7)where lower
ase indi
es refer to ele
trons, upper
ase indi
es refer to nu
lei, and rij isthe distan
e between parti
les i and j.



4In equation 1.7 and throughout this work, atomi
 units are used, in whi
h �h = 1,me = 1, jej = 1, and 4��0 = 1, where me is the mass of an ele
tron, jej is themagnitude of its 
harge, and �0 is the permittivity of free spa
e.The Coulomb terms in the Hamiltonian diverge when two parti
les approa
h ea
hother. The S
hr�odinger equation 
an be solved analyti
ally for these 
on�gurationsbe
ause the kineti
 and potential terms of the two approa
hing parti
les dominate theothers. In order for the energy of the system to be �nite, a divergen
e in the kineti
energy must exa
tly 
an
el the divergen
e in the potential. Solving the S
hr�odingerequation for these 
on�gurations to a
hieve this 
an
ellation leads to the following
usp 
ondition for the wavefun
tion [9℄:limrij!0 �	�rij = �ijqiqjl + 1 limrij!0	; (1.8)where �ij is the redu
ed mass of the parti
les, qi and qj are their 
harges, and l is 1for same-spin ele
trons and 0 otherwise. An a

urate wave fun
tion must satisfy the
usp 
ondition for ea
h pair of parti
les in the system.1.1.2 The Variational TheoremThe most powerful tool resear
hers have in 
onstru
ting approximate ground statewavefun
tions is the variational prin
iple, whi
h provides a way to 
ompare theirquality. The exa
t eigenfun
tions, j�i (X)i, of the Hamiltonian span the spa
e of allpossible wavefun
tions for the system. Therefore, any normalizable trial wavefun
-tion, j	T (X)i, that satis�es the boundary 
onditions of the system 
an be expandedin terms of the j�i (X)i: j	T (X)i = Xi bij�i (X)i; (1.9)bi = h�i (X) j	T (X)i: (1.10)The expansion 
an be used to 
al
ulate the expe
tation value for the energy of



5the trial wavefun
tion:hET i = h	T (X) jĤj	T (X)ih	T (X) j	T (X)i = Pi jbij2EiPi jbij2 � E0; (1.11)where the equality applies if j	T (X)i = j�0 (X)i.The expe
tation value of the energy of a trial wavefun
tion is an upper bound tothe ground state energy. The 
loser the trial wavefun
tion is to the a
tual groundstate, the lower its energy will be. This provides a way to approximate the groundstate. First, a parametrized wave fun
tion is 
onstru
ted with a form that 
an easilybe evaluated. Then the parameters are adjusted to minimize the expe
tation valueof the energy. This is the 
losest approximation to the ground state in the spa
e ofthe adjustable parameters. Physi
al arguments must be used in 
hoosing the form ofthe trial wavefun
tion: it determines the restri
tions on the intera
tions that 
an bedes
ribed and therefore represents a model.1.2 Approximate MethodsIn most 
ases, the �rst simpli�
ation to the S
hr�odinger equation is the Born-Oppenheimerapproximation, whi
h makes use of the fa
t that the masses of nu
lei are mu
h greaterthan that of an ele
tron. The ele
trons see the heavy, slow-moving nu
lei as almoststationary 
harges, and the nu
lei see the mu
h faster ele
trons as essentially a three-dimensional distribution of 
harge. The Born-Oppenheimer approximation simpli�esthe mole
ular problem by treating the ele
troni
 and nu
lear motions separately [10℄.In this method, one assumes a �xed 
on�guration for the nu
lei, and for this
on�guration solves an ele
troni
 S
hr�odinger equation to �nd the ele
troni
 wavefun
tion and energy. This pro
ess is repeated for di�erent 
on�gurations to give theele
troni
 energy as a fun
tion of the positions of the nu
lei. The nu
lear 
on�gurationthat minimizes the energy is the equilibrium geometry of the mole
ule. The ele
troni
energy 
an be used as the potential energy fun
tion in a S
hr�odinger equation for thenu
lear motion, whi
h 
an be solved to give the mole
ular vibrational and rotational



6energy levels for a given ele
troni
 state.1.2.1 Hartree-Fo
kThe basis for almost all methods to solve the ele
troni
 part of the S
hr�odinger equa-tion is the Hartree-Fo
k (HF) method. In HF, the trial wavefun
tion is expressedas an antisymmetri
 produ
t of normalized, orthogonal mole
ular orbitals,  i. Thesimplest way to 
onstru
t a trial wavefun
tion from a set of orbitals is to use a Slaterdeterminant, a framework that ensures the antisymmetry of the overall wavefun
-tion [11℄:
	AS (x1; x2; : : : ; xN) = 1pN ! ��������������

 1 (x1)  2 (x1) � � �  N (x1) 1 (x2)  2 (x2) � � �  N (x2)... ... ... 1 (xN )  2 (xN ) � � �  N (xN )
�������������� : (1.12)

In equation 1.12, xi 
ontains the spa
e and spin 
oordinates of ele
tron i. Sin
e thedeterminant of a matrix 
hanges sign if two rows or 
olumns are inter
hanged, theoverall wavefun
tion will have the proper antisymmetry with respe
t to permutationof the ele
trons.The mole
ular orbitals 
an be fa
tored into spatial and spin 
omponents: (x) =  (~r; 
) = � (~r)� (
) ; (1.13)where � is a spatial orbital and � is a spin fun
tion, either � or �. The spatial orbitalsare written as linear 
ombinations of basis fun
tions:� =X� 
���; (1.14)where the 
� are the mole
ular orbital expansion 
oeÆ
ients. The basis fun
tions, ��,are usually 
entered on the nu
lei and resemble atomi
 orbitals, but any normalizablefun
tions 
an be used. Be
ause of the ease with whi
h they are evaluated, Gaussian



7type orbitals (GTO) are usually used as basis fun
tions. GTOs have the followingradial part: �GTO� (r) = d�rl� exp ����r2� : (1.15)Sin
e the derivative of a Gaussian is zero at its origin, these fun
tions 
annot satisfythe ele
tron-nu
lear 
usp 
ondition of se
tion 1.1.1. The resulting multi
enter inte-grals 
an be evaluated analyti
ally, however, so a large number of Gaussians 
an beused in the basis set with little 
omputational expense.Slater type orbitals (STO) have the 
orre
t form to satisfy both the ele
tron-nu
lear 
usp 
ondition and the long range behavior of mole
ular orbitals, but arenot typi
ally used in basis sets be
ause they lead to very 
ompli
ated integrals in
al
ulations: �STO� (r) = d�rl� exp (���r) : (1.16)Sin
e the mole
ular orbitals are 
onstru
ted from the basis fun
tions, the basis setrestri
ts them to 
ertain shapes and regions of spa
e. The more fun
tions in a basisset, the more 
exibility it has to approximate mole
ular orbitals. Larger basis setsgenerally produ
e better results in 
omputations, but require more 
omputer time.Sin
e an ele
tron has a �nite probability of existing anywhere in spa
e, an in�nitebasis set would be ne
essary to 
ompletely des
ribe its possible position.In order to solve for the orbital expansion 
oeÆ
ients, the Hartree-Fo
k methodmakes use of the variational prin
iple. Minimizing the expe
tation value of the energyof the wavefun
tion leads to a series of equations, whi
h 
an be written in matrix form:FC = SC�; (1.17)where ea
h element is a matrix. The Fo
k matrix, F , represents the average e�e
tsof the �eld of all the ele
trons on ea
h orbital. The matrix C 
ontains the orbital
oeÆ
ients, S indi
ates the overlap between the orbitals, and � is a diagonal matrixof the orbital energies.Both the Fo
k matrix and the orbitals depend on the mole
ular orbital 
oeÆ
ients.



8Thus equation 1.17 is not linear and must be solved with an iterative pro
edure
alled the self-
onsistent �eld (SCF) method. First, an initial guess for the orbital
oeÆ
ients is formed, and the 
orresponding density matrix is 
onstru
ted. Using it,the Fo
k matrix is formed. Then, solving the eigenvalue problem yields a new set oforbital 
oeÆ
ients. This pro
edure is repeated until both the orbital 
oeÆ
ients andthe energy have 
onverged. At this point, the orbitals generate a �eld that produ
esthe same orbitals. This method produ
es both o

upied and virtual (uno

upied)orbitals. The total number of orbitals formed is equal to the number of basis fun
tions.Solving the eigenvalue problem is the slowest step of the pro
ess. It involvesdiagonalizing a matrix, a pro
ess that s
ales as O (N3), where N is the linear size ofthe matrix. In this 
ase, N is the number of basis fun
tions.1.2.2 Post Hartree-Fo
k MethodsThe errors of Hartree-Fo
k are due to the fa
t that it treats the repulsion of theele
trons for ea
h other in an average way and negle
ts the details of their motion.The shape of the orbital an ele
tron o

upies is determined by the potential �eldof the nu
lei and the density of the other o

upied orbitals. An ele
tron sees onlythe \mean �eld" of the other ele
trons, whi
h allows them to 
ome 
lose togethermore often than they should and makes it impossible for the wavefun
tion to satisfythe ele
tron-ele
tron 
usp 
onditions of se
tion 1.1.1. The di�eren
e in energy thatwould result from properly allowing the ele
trons to avoid ea
h other is 
alled the
orrelation energy. Several methods go beyond Hartree-Fo
k and attempt to treatthis phenomenon properly.1.2.2.1 Con�guration Intera
tionThe 
on�guration intera
tion (CI) method uses the virtual orbitals generated byHartree-Fo
k in addition to the o

upied orbitals to 
onstru
t a wavefun
tion as alinear 
ombination of Slater determinants. The determinants are formed by ex
itingele
trons from the ground state o

upied orbitals into the virtual orbitals, and the



9expansion 
oeÆ
ients are found by diagonalizing the resulting Hamiltonian matrix:	CI (~x1; ~x2; : : : ; ~xN) =Xm am	ASm (~x1; ~x2; : : : ; ~xN) : (1.18)If a Slater determinant 
orreponding to every possible o

upation of the orbitals isin
luded in the expansion, the 
al
ulation is a \full CI." In most 
ases, full CI isimpossible be
ause the number of possible Slater determinants is too large.In pra
ti
e, CI 
al
ulations are usually 
arried out by in
luding a limited numberof determinants in the expansion. A CI singles (CIS) 
al
ulation ex
ites one ele
tronat a time into a virtual orbital, a CI doubles (CID) ex
ites two at a time, a CISD 
al-
ulation in
ludes singles and doubles, a CISDT 
al
ulation in
ludes singles, doubles,and triples, et
. CI 
al
ulations 
an provide quantitative results (within 2 k
al/mol)for energies of mole
ules, but are extremely time 
onsuming and require immenseamounts of memory, even for small systems and minimal basis sets. In addition, the
orrelation energy re
overed s
ales poorly with the number of 
on�gurations in
luded.1.2.2.2 Coupled ClusterIn 
oupled 
luster (CC) 
al
ulations, the trial wavefun
tion is expressed as a linear
ombination of Slater determinants, but an exponential form of an ex
itation operatoris used to generate the 
on�gurations and 
al
ulate the energy [12℄:j	CCi = exp �T̂� j	HF i: (1.19)The ex
itation operator, T̂ , makes Slater determinants by ex
iting ele
trons from theground state into virtual orbitals. Equation 1.19 
an be expanded in a Taylor series:j	CCi = exp �T̂� j	HF i= j	HF i+ T̂1j	HF i+ �T̂2 + 12 T̂ 21� j	HF i+�T̂3 + T̂1T̂2 + 16 T̂ 31� j	HF i+ � � � ; (1.20)



10where T̂1 
reates single ex
itations, T̂2 
reates double ex
itations, and so on. In equa-tion 1.20, the terms are grouped into levels of ex
itation. At ea
h level of ex
itation,several terms 
ontribute. At the se
ond level, for example, T̂2 generates 
onne
teddouble ex
itations, while T̂ 21 generates two dis
onne
ted single ex
itations.Coupled 
luster makes it easy to treat mole
ules of di�erent sizes with the samelevel of 
orrelation, whi
h is important for 
hemi
al rea
tions, in whi
h bonds mayform or a large mole
ule may disso
iate into fragments. Treating the produ
ts andrea
tants of a rea
tion 
onsistently is ne
essary to get a

urate energy di�eren
es.Like 
on�guration intera
tion, 
oupled 
luster 
al
ulations are named by the levelsof ex
itation in
luded in the expansion. A CCSD 
al
ulation in
ludes single anddouble ex
itations, while CCSD(T) in
ludes triples as a perturbation. CCSD(T) is avery popular method for 
ondu
ting a

urate 
al
ulations with reasonable 
ost, andis often used as a ben
hmark to 
ompare the results of other methods. The expenseof CCSD(T) s
ales as O (N7) with the number of basis fun
tions, whi
h limits itsappli
tion to small mole
ules and basis sets.1.2.2.3 Multi
on�guration SCFIn a multi
on�guration self 
onsistent �eld (MCSCF) 
al
ulation, the user de�nes an\a
tive spa
e" 
onsisting of a subset of the ele
rons and orbitals of a mole
ule. The a
-tive ele
trons are ex
ited into the a
tive virtual orbitals to form a set of determinants,and both the orbitals and CI expansion 
oeÆ
ients are variationally optimized [13℄.If a full CI is 
arried out on the a
tive spa
e, and all possible o

upations of thea
tive orbitals are 
onsidered, the 
al
ulation is 
alled a 
omplete a
tive spa
e SCF(CASSCF) [14℄ or fully optimized rea
tion spa
e (FORS) [15℄ 
al
ulation. Be
auseboth the orbitals and CI 
oeÆ
ients are optimized, MCSCF o�ers the most generalapproa
h available to 
omputing ele
troni
 stru
ture. The large number of varia-tional parameters makes the optimization a 
hallenge, so users must be 
areful toonly in
lude the ele
trons and orbitals involved in the rea
tion under investigation inthe a
tive spa
e.The generalized valen
e bond (GVB-PP) method 
an be thought of as a limited



11form of MCSCF in whi
h ele
trons are ex
ited pairwise from valen
e orbitals intovirtual orbitals [16℄. Although the sele
tion of 
on�gurations is 
onstrained, theoptimization pro
edure for GVB 
al
ulations is mu
h more systemati
 and reliablethan a general MCSCF 
al
ulation. The GVB wavefun
tion is the simplest form thatallows mole
ules to disso
iate into open shell fragments, whi
h allows it to produ
ea

urate disso
iation 
urves for 
hemi
al bonds.1.2.3 Perturbation TheoryM�ller-Plesset (MP) perturbation theory is a non-iterative method for 
al
ulatingthe 
orrelation energy of a set of orbitals. In perturbation theory, the Hamiltonian isdivided into two parts: Ĥ = Ĥ0 + �V̂ ; (1.21)where Ĥ0 is exa
tly solvable and �V̂ is a perturbation that is assumed to be small
ompared to it. The perturbed wavefun
tion 
an be expanded as a power series in �:	 = 	0 + �	(1) + �2	(2) + �3	(3) + � � � : (1.22)The perturbed wavefun
tion is substituted into the S
hr�odinger equation:�Ĥ0 + �V̂ � �	0 + �	(1) + � � �� = �E0 + E(1) + � � �� �	0 + �	(1) + � � �� : (1.23)Equating terms with the same power of � gives formulas for 
orre
tions to the energyfor varying lengths of the expansion.In ele
troni
 stru
ture theory, the unperturbed Hamiltonian and wavefun
tion arethe Fo
k operator and its ground state Slater determinant. The perturbation, V̂ , isthe Coulomb repulsion between the ele
trons, whi
h is repla
ed with the mean �eldapproximation in Hartree-Fo
k. The se
ond-order 
orre
tion to the energy involves



12integrals between determinants:E(2) = �Xt jh	0jr�112 j	tij2Et � E0 ; (1.24)where the index t sums over determinants in whi
h two ele
trons have been ex
itedinto virtual orbitals. It is easy to see from the denominator of equation 1.24 that thegreatest 
ontributions to the se
ond-order 
orre
tion will 
ome from low-lying ex
itedstates, whose energy is 
lose to the ground state energy.M�ller-Plesset perturbation theory is referred to by the order of the expansion ofthe perturbation. Se
ond order (MP2) is 
ommonly used, and third (MP3) and fourth(MP4) order are implemented in many quantum 
hemistry programs. Multireferen
eMP theory, in whi
h an MCSCF or CI wavefun
tion is used as the unperturbedwavefun
tion, has also been developed [17℄.While MP2 generally gives good results for mole
ular geometries and 
hangesin energy for 
hemi
al rea
tions, re
ent studies 
omparing levels of perturbation fordi�erent 
hemi
al systems and basis sets have shown that MP perturbation theory en-ergies are not ne
essarily 
onvergent in the limit of higher orders of perturbation [18℄.1.2.4 Extrapolated MethodsSeveral methods have been developed to approximate an extremely expensive 
al
ula-tion by systemati
ally 
ombining less a

urate results. Although multiple 
al
ulationsare run, the overall 
ost 
an be signi�
antly less than that of the single highly a

urate
al
ulation.The 
omplete basis set (CBS) methods address the errors due to using a �nitebasis set in 
al
ulations. They extrapolate to an in�nite basis using expressionsfor the 
orrelation energy re
overed for ele
tron pairs as fun
tions of higher angularmomentum are in
luded in the basis set [19℄. A CBS 
al
ulation 
onsists of a Hartree-Fo
k 
al
ulation with a large basis set, an MP2 
al
ulation with a moderate basisset, and higher level 
al
ulations with progressively smaller basis sets. The resultsand several empiri
al 
orre
tions are 
ombined to estimate the results that would be



13obtained for a high level 
al
ulation with an in�nite basis set.The Gaussian-1 (G1) method approximates a quadrati
 CISD(T) result with alarge basis set using four smaller 
al
ulations [20℄. It 
orre
ts for trun
ation of thebasis set by 
arrying out MP4 
al
ulations with three di�erent basis sets and for thelimited level of 
orrelation by 
arrying out a quadrati
 CISD(T) 
al
ulation with thesmallest basis set. The results are entered into a formula that in
ludes some empiri
al
orre
tions for the remaining systemati
 errors to give the G1 energy. G2 [21℄, G3 [22℄,and G4 [23℄ methods have subsequently been developed.The fo
al point method expli
itly examines the 
onvergen
e of the energy withrespe
t to both the basis set and level of 
orrelation to estimate the ab initio limitwithin the Born-Oppenheimer approximation [24℄. In the fo
al point pro
edure, HFenergies are extrapolated to the CBS limit, and CCSDT and CCSDT(Q) 
al
ulationsare 
arried out using a moderate basis set. The results are 
ombined to estimate theCBS limit of the CCSDT(Q) energy. Corre
tions for non-Born-Oppenheimer [25℄ andspe
ial relativisti
 e�e
ts [26℄ are added to give the fo
al point result.1.2.5 Density Fun
tional TheoryDensity fun
tional theory (DFT) is another widely used 
lass of methods for tak-ing into a

ount the e�e
ts of ele
tron 
orrelation. DFT is based on the theoremof Hohenberg and Kohn, whi
h proves the existen
e of a fun
tional that determinesthe exa
t ele
tron density and energy for a given a nu
lear potential �eld [27℄. Un-fortunately, the theorem does not provide the form of the exa
t fun
tional. Whilethe exa
t fun
tional would take an ele
tron density as input and return the energy,approximate fun
tionals partition the energy into several terms [28℄:E = ET + EV + EJ + EXC : (1.25)The �rst three terms 
orrespond to the kineti
 energy, the attra
tion between thenu
lei and the ele
trons, and the repulsion of the ele
trons for ea
h other. Thefourth is 
alled the ex
hange-
orrelation term and in
ludes the remaining intera
tions



14between the ele
trons.In prin
iple, a pure density fun
tional method would deal dire
tly with the ele
trondensity, a fun
tion of the three spatial variables. No orbitals would be involved, and
al
ulations would s
ale linearly with the size of the system. In pra
ti
e, however,a method similar to Hartree-Fo
k is used. The wavefun
tion is written as a Slaterdeterminant of orbitals, and the Fo
k operator is repla
ed with one that takes thee�e
ts of ele
tron 
orrelation into a

ount.The ex
hange-
orrelation energy of equation 1.25 is separated into ex
hange and
orrelation terms. The ex
hange energy arises from the intera
tions between samespin ele
trons, whi
h are kept apart by the antisymmetry of the spatial part of thewave fun
tion. The 
orrelation energy is due to the intera
tions between oppositespin ele
trons.The ex
hange and 
orrelation energy terms are 
al
ulated by fun
tionals of thedensity. The basis for most fun
tionals is the lo
al density approximation, in whi
hele
trons uniformly o

upy a volume with a positive ba
kground 
harge to keep theoverall 
harge neutral. For this system, the ex
hange energy has a simple form:EXLDA = �32 � 34�� 13 Z d� � 43 : (1.26)Lo
al 
orrelation fun
tionals are more 
ompli
ated, but are also in use [29℄.The ele
tron density of atoms and mole
ules, however, is not uniform, so re-sear
hers have developed ex
hange and 
orrelation fun
tionals that use the gradientof the density as well as its value [30, 31℄.Some of the most a

urate density fun
tional methods in use are hybrid fun
-tionals, in whi
h the Hartree-Fo
k de�nition of the ex
hange energy, whi
h is basedon mole
ular orbitals, is in
luded as a 
omponent of the ex
hange-
orrelation en-ergy [32, 33℄. The ex
hange-
orrelation energy term for B3LYP, one of the mostpopular density fun
tional methods, in
ludes lo
al, gradient 
orre
ted, and Hartree-



15Fo
k terms:EXCB3LY P = EXLDA + 
0 �EXHF � EXLDA�+ 
X�EXB88 + ECVWN3 + 
C �ECLY P � ECVWN3� ;(1.27)where �EXB88 is a gradient-
orre
ted ex
hange term, ECVWN3 is a lo
al 
orrelationterm, and ECLY P is a gradient-
orre
ted 
orrelation term. The 
oeÆ
ients 
0, 
X , and
C were �t to experimental data.Density fun
tional theory is a very popular way for resear
hers to in
lude ele
tron
orrelation in 
al
ulations and obtain results that are a

urate enough for many ap-pli
ations with moderate 
omputational expense. These methods have been appliedsu

essfully to a large variety of systems and have been a bene�t to many areas of re-sear
h. While post-Hartree-Fo
k methods 
an always be improved by in
luding more
on�gurations, using a larger basis set, or 
al
ulating higher orders of perturbation,DFT su�ers from the fa
t that there is no systemati
 way to improve its results.New density fun
tionals are 
ontinuously being developed [34, 35, 36℄, but none giveresults with errors 
onsistently less than 4 to 5 k
al/mol for mole
ular systems. Ifmore a

urate results are ne
essary, di�erent methods must be used.
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Chapter 2Parallel Computing
The extraordinary in
rease in 
omputing power available to resear
hers over the last�fty years has revolutionized engineering, astronomy, biology, 
hemistry, physi
s, e
o-nomi
s, and many other �elds. The long term trend in the number of 
ir
uits that
an be pla
ed on an integrated 
ir
uit inexpensively was des
ribed in 1965 by GordonMoore: The 
omplexity for minimum 
omponent 
osts has in
reased at a rateof roughly a fa
tor of two per year .... Certainly over the short term thisrate 
an be expe
ted to 
ontinue, if not to in
rease. Over the longer term,the rate of in
rease is a bit more un
ertain, although there is no reason tobelieve it will not remain nearly 
onstant for at least 10 years. That meansby 1975, the number of 
omponents per integrated 
ir
uit for minimum
ost will be 65,000. I believe that su
h a large 
ir
uit 
an be built on asingle wafer [37℄.In 1975, Moore's predi
tion for the time to double the number of transistors on a
ir
uit was revised to 18 months. The trends in almost every measure of ele
troni
devi
es, su
h as pro
essing speed, memory 
apa
ity, and 
omputing performan
e perunit 
ost, are 
losely related to Moore's law.It has often been predi
ted that 
hip designers would not be able to keep up withMoore's law. Gordon Moore himself has stated that the rate of in
rease in 
omputingpower 
annot be sustained inde�nitely, but it has been sustained through 2009, with
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hip makers predi
ting new pro
essors 
onsistent with Moore's law for another tenyears.Not satis�ed with the 
omputing power available in a single pro
essor, resear
hershave developed te
hniques for parallel 
omputing, in whi
h multiple pro
essors 
on-ne
ted with a network are used together to solve a problem. This 
hapter des
ribessome of the ways parallel programs are designed and analyzed. Additional informa-tion 
an be found in referen
e [38℄.2.1 Designing Parallel AlgorithmsIn order for an algorithm to be exe
uted in parallel, the programmer must de
omposethe work into tasks and identify whi
h tasks 
an be exe
uted 
on
urrently. The
on
urrent tasks 
an be assigned to di�erent pro
essors to be exe
uted. In order fora pro
essor to be able to 
omplete its task, the appropriate instru
tions, input, andoutput must be 
ommuni
ated.The granularity of a problem refers to the number and size of the tasks into whi
hit 
an be de
omposed. The degree of 
on
urren
y is the number of tasks that 
an beexe
uted simultaneously. This number is usually less than the total number of tasksdue to dependen
ies among them.There are many te
hniques for de
omposing a problem into tasks. The nature ofthe problem determines how it 
an be divided and how the di�erent tasks intera
twith ea
h other. A problem for whi
h a �ne-grained de
omposition into independenttasks is possible is well suited for parallel 
omputing, and will bene�t greatly frombeing 
arried out on multiple pro
essors. A less ideal appli
ation may bene�t less fromthe parallel environment. In espe
ially unfavorable 
ir
umstan
es, su
h as if manypro
essors are idle while they wait for another task to supply them with input, or ifinterpro
essor 
ommuni
ation saturates the bandwidth of the network, an appli
ationmay take longer to exe
ute in parallel than on a single pro
essor.



182.2 Analyzing Parallel AlgorithmsUsing twi
e as many pro
essors to exe
ute a program rarely results in it 
ompletingin half the time or generating twi
e as mu
h useful output. Overhead expenses,unavoidable in the parallel environment, subtra
t from the performan
e. Computers
ientists have developed several metri
s to measure the expense and performan
e ofparallel algorithms.The most basi
 measure of performan
e is the speedup, the ratio of the serialexe
ution time, TS, to the parallel exe
ution time, TP :Speedup = TSTP : (2.1)The largest sour
e of overhead is usually 
ommuni
ation of data between pro-
essors. In addition, some pro
essors may be
ome idle if they �nish their task andmust wait for a new one. The parallel algorithm may also have to 
arry out ex
ess
omputation 
ompared to the serial algorithm. For example, if the result of a 
ertain
al
ulation must be available to ea
h task, it may have to be 
arried out separately onea
h pro
essor in a parallel 
al
ulation, while the serial algorithm only has to 
arryout the 
al
ulation on
e.The overhead for a parallel algorithm is the di�eren
e between the parallel andserial 
osts: To = pTP � TS; (2.2)where p is the number of pro
essors.An important measure for the e�e
tiveness of a parallel algorithm is its eÆ
ien
y,whi
h is the ratio of the serial 
ost to the parallel 
ost:E = TSpTP (2.3)= TSTS + To : (2.4)Be
ause every algorithm has at least some serial 
omponent, the parallel overhead



19in
reases with the number of pro
essors. As 
an be seen in equation 2.4, an in
reasein overhead 
auses a de
rease in eÆ
ien
y. The loss of eÆ
ien
y leads to de
reasingreturns as more pro
essors are used to exe
ute an algorithm.The de
reasing gain in performan
e as the number of pro
essors in
reases is ex-pressed in a slightly di�erent way in Amdahl's Law [39℄. If P is the fra
tion ofan algorithm that 
an be parallelized and S is the fra
tion that must be 
omputedserially, the speedup 
an be written as a fun
tion of the number of pro
essors:Speedup (p) = S + PS + Pp (2.5)= 1S + Pp : (2.6)As the number of pro
essors in
reases, the speedup asymptoti
ally approa
hes 1S .A

ording to this formula, if the serial portion of an algorithm is 10%, the greatestpossible speedup is ten times, no matter how many pro
essors are used. As a result,mu
h of the e�ort in designing parallel algorithms goes into parallelizing as mu
h ofthe work as possible.After examining Eqs 2.4 and 2.6, it would be easy to be
ome skepti
al as to theviability of massively parallel 
omputers, sin
e the bene�t of using more pro
essorsis bounded. In pra
ti
e, however, the size of the problem usually in
reases with thenumber of pro
essors. When given more pro
essors, resear
hers will usually in
reasethe size or 
omplexity of the problem to keep the run time approximately 
onstant. Asthe problem size in
reases, the fra
tion of the run time spent on overhead de
reases,whi
h improves the eÆ
ien
y for large numbers of pro
essors.2.3 Super
omputersSin
e 1993, the Top500 list has kept tra
k of the most powerful super
omputers inthe world [40℄. The United States Department of Energy has 
onstru
ted severalof the highest ranking ma
hines to 
ondu
t simulations on nu
lear weapons through



20the Advan
ed Simulation and Computing program [41℄. These are homogeneous ma-
hines, meaning they are 
onstru
ted from one type of pro
essor, with huge memoryand fast inter
onne
tion hardware.Several 
al
ulations presented later in this work were 
arried out using BlueGene/L at Lawren
e Livermore National Laboratory. The un
lassi�ed portion ofthis ma
hine 
onsists of 81,920 IBM PowerPC pro
essors running at 700 MHz [42℄.Although the pro
essor speed is slow, the great number of pro
essors gives uBGLalmost 230 TFlops of 
omputing power.The most powerful 
omputer in the world at the moment is Roadrunner at LosAlamos National Laboratory. Roadrunner has 13,824 1.8GHz AMD Opteron pro
es-sors to handle operations, 
ommuni
ations, and some 
omputation and 116,640 IBMPowerXCell 8i pro
essors to handle 
oating point-operations. Roadrunner is the �rstma
hine to have over 1 peta
op sustained performan
e [43℄.Not to be outdone, LLNL has announ
ed they will be 
onstru
ting Sequoia, aBlue Gene/Q ma
hine that will ex
eed 20 peta
ops, to go online in 2011. Sequoiawill have more 
omputing power than the 
urrent Top500 list 
ombined [44℄.The rate of es
alation in 
omputing power is easy to see. A

ess to the DOE ma-
hines is diÆ
ult to obtain, however, and most resear
hers do not have the resour
es to
onstru
t and maintain this sort of super
omputer. The advan
es in pro
essors, inter-
onne
tion hardware, and management software brought about by the DOE proje
thave improved the performan
e of the ma
hines an individual resear
h group 
ana�ord.2.4 Beowulf Clusters and Grid ComputingIn 
ontrast to the massively expensive homogeneous 
omputers of the previous se
-tion, resear
hers 
an assemble a low 
ost 
luster using o�-the-shelf pro
essors and
onne
tion hardware in a Beowulf framework [45℄. Su
h a 
luster 
an be homoge-neous if one type of pro
essor is used, or heterogeneous if the pro
essors are notequivalent. This sort of 
luster is also s
alable, as resear
hers 
an add pro
essors as



21appli
ations demand and resour
es allow, or retire pro
essors as they be
ome obsolete.Another development in parallel 
omputing is the use of loosely 
oupled, widelydistributed grids of pro
essors to 
arry out 
omputations. Some examples in
ludeSETI�home [46℄ and Folding�home [47℄, whi
h use idle internet 
onne
ted 
omputersto sear
h for extraterrestrial intelligen
e and simulate protein folding. BOINC is aproje
t at UC Berkeley that has tools to help resear
hers develop software for and
onne
t to distributed volunteer 
omputing resour
es [48℄.Parallel algorithms must have 
ertain 
hara
teristi
s in order to perform well in aheterogeneous, loosely 
oupled environment. An appli
ation that must 
ommuni
atelarge amounts of data among the tasks or is unable to balan
e the work betweenpro
essors running at di�erent speeds will en
ounter large overhead 
osts and performvery poorly. A parallel algorithm with low 
ommuni
ations requirements and theablity to use pro
essors running at di�erent speeds will be able to eÆ
iently useinexpensive 
omputing resour
es to 
arry out large 
omputing jobs.The bulk of the 
omputing e�ort in traditional ele
troni
 stru
ture methods su
has those dis
ussed in 
hapter 1 is spent diagonalizing matri
es. This operation is verydiÆ
ult to parallelize, sin
e ea
h step involves all of the rows. As a result, 
al
ulationssu
h as DFT and 
oupled 
luster are unable to eÆ
iently use more than a few tensof pro
essors. Sin
e 
oupled 
luster s
ales as O (N7) with the size of the system,the inability to use large numbers of pro
essors prevents resear
hers from 
arryingout highly a

urate 
al
ulations on large systems, su
h as nanodevi
es or biologi
alsystems.Quantum Monte Carlo (QMC) is an alternate approa
h to ele
troni
 stru
turesimulations that 
al
ulates expe
tation values sto
hasti
ally rather than analyti
ally.The sto
hasti
 nature of QMC makes it well suited for parallel implementation. QMC
an, in prin
iple, 
al
ulate exa
t expe
tation values and s
ales as O (N3) with the sizeof the system. QMC 
an be formulated to have very small memory and 
ommuni
a-tions requirements and automati
ally balan
e the work between pro
essors runningat di�erent speeds [49, 50℄. The favorable s
aling of QMC and the ability to eÆ
ientlyuse large numbers of pro
essors will allow it to provide highly a

urate expe
tation



22values for systems too large for other methods.
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Chapter 3Random Number Generation
Random numbers have appli
ations in areas su
h as 
ryptography, ele
troni
 gaming,and statisti
al sampling and analysis. In addition, sto
hasti
, or non-deterministi
,simulations 
an be used to model many types of physi
al and mathemati
al systems.In these simulations, the behavior of some part of the system is randomly generated.Be
ause of the essential role played by random numbers, they are grouped into a
lass 
alled \Monte Carlo" methods. Ele
troni
 stru
ture appli
ations in
lude Vari-ational Monte Carlo (VMC), in whi
h the parameters of a trial wavefun
tion areoptimized, and Di�usion Monte Carlo (DMC), whi
h has the potential to 
al
ulateexa
t expe
tation values for many-body quantum me
hani
al systems.3.1 Random Number GenerationTruly random numbers 
an be generated based on unpredi
table physi
al phenomena,su
h as the noise of an analog 
ir
uit, the de
ay of radioa
tive nu
lei [51℄, or ba
k-ground atmospheri
 radio noise [52℄. Computers, on the other hand, only operatebased on programmed instru
tions. They 
an generate sequen
es of \pseudorandom"numbers that la
k patterns, but are determined by a formula. Statisti
al tests havebeen developed to dete
t 
orrelations in sequen
es of numbers. The quality of a pseu-dorandom number generator is judged by whi
h tests for randomness its sequen
espass.



243.1.1 Uniform Random NumbersUniform random numbers lie within a spe
i�ed range, usually 0 to 1, with all numbersin the range having the same probability of being generated. Virtually every s
hemeto generate random numbers with respe
t to a desired probability density relies on
onverting uniform random numbers.The most 
ommon way to generate uniform random numbers is with a linear 
on-gruential, or modulo, generator, whi
h generates a series of integers, fI0; I1; I2; : : :g,by the re
urren
e relation Ij+1 = aIj + 
 (mod m) ; (3.1)where m, a, and 
 are positive integers 
alled the modulus, multiplier, and in
rement.They de�ne the linear 
ongruential generator. The �rst integer, I0, is 
alled the seed.Using the same seed with a 
ertain generator will always give the same sequen
e ofnumbers.Clearly, Ij < m for all j. Therefore, the algorithm 
an generate at most m dis-tin
t integers. The sequen
e of integers is transformed into uniform random numbersbetween 0 and 1 by letting uj = Ijm .The sequen
e fIjg generated by equation 3.1 will eventually repeat itself with aperiod p that is less than or equal to m. If m, a, and 
 are properly 
hosen, the periodwill be of maximal length. Several rules have been developed and implemented tomaximize p and give the best results in statisti
al tests for randomness [53℄.Poor 
hoi
es of a, 
, and m, 
an result in random number sequen
es with veryshort periods. Many linear 
ongruential generators implemented as library routinesin 
ompilers have been shown to be deeply 
awed and give poor results in statisti
altests.



253.1.2 The Transformation MethodMonte Carlo simulations often require random numbers distributed with respe
t to agiven probability density fun
tion, � (x). The most eÆ
ient way to generate su
h asequen
e is with the transformation method, whi
h dire
tly 
onverts uniform randomnumbers to the desired density.The 
umulative distribution fun
tion represents the probability that a point inthe given density is less than or equal to y:P (y) = Z y�1 dx� (x) : (3.2)If � (x) is normalized, P (y) will in
rease monotoni
ally from 0 to 1.To generate a random number, w, distributed with respe
t to � (x), a uniformrandom number, u, is generated. Then w = P�1 (u), where P�1 is the inverse of P .This method requires that the fun
tion P be known and invertible, whi
h is the 
asefor some very simple distributions, su
h as exponential or Gaussian distributions. Formore 
ompli
ated fun
tions, di�erent algorithms must be used.3.1.3 The Von Neumann MethodThe Von Neumann, or reje
tion, method is a less eÆ
ient but more generally appli-
able way to generate points with respe
t to a probability density fun
tion that isknown and 
an be 
al
ulated. The 
umulative distribution fun
tion does not have tobe known or invertible.In order to use this method, one �rst �nds a fun
tion, h (x), that is everywheregreater than and preferably 
lose to the desired probability density fun
tion, � (x),and for whi
h the transformation method 
an be used. A random number, z, isgenerated with respe
t to h (x) and the ratio A (z) = �(z)h(z) is 
al
ulated. Be
ause h (x)is always greater than � (x), this ratio will be between 0 and 1.The number z is a

epted as a member of the probability density � with probabilityA (z). This last step involves generating a uniform random number, u, and a

epting



26z if u < A (z) and reje
ting z if u > A (z). The e�e
t of the reje
tion step is to weightthe density h (x) by �(x)h(x) so that � (x) emerges. This method is very simple, but willlead to ex
essive reje
tion and be very ineÆ
ient if h (x) is not 
lose to � (x), in whi
h
ase the a

eptan
e probability A (z) will often be small. This loss of eÆ
ien
y isparti
ularly important for high-dimensional spa
es.3.1.4 The Metropolis AlgorithmQuantum Monte Carlo 
al
ulations require random ele
troni
 
on�gurations dis-tributed with respe
t to the quantum me
hani
al probability density, the square ofthe magnitude of the ele
troni
 wavefun
tion. This is an extremely 
ompli
atedand tightly 
oupled 3N -dimensional fun
tion, where N is the number of ele
trons.Furthermore, it has appre
iable magnitude only in a very small fra
tion of the totalavailable 
on�guration volume. The transformation and reje
tion methods are unableto eÆ
iently generate random points with respe
t to this sort of probability density.In order to distribute ele
troni
 
on�gurations with respe
t to their quantumme
hani
al probability density, the idea of generating statisti
ally independent 
on-�gurations must be abandoned. Instead, a Markov 
hain is used, in whi
h ea
h new
on�guration is generated with respe
t to a probability distribution depending on theprevious 
on�guration. The sequen
e of 
on�gurations forms a \random walk" thatis proportional to the desired density. Be
ause ea
h 
on�guration depends on the onebefore it, they will have some degree of serial 
orrelation, whi
h must be 
onsideredwhen the varian
e of quantities derived from these 
on�gurations is 
al
ulated.A Markov 
hain is de�ned in terms of the transition probability T (x! x0) forhaving the point x0 after the point x in the 
hain. The transition probabilities dependonly on the 
urrent state of the system and are independent of time and the history ofthe walk. The Metropolis algorithm is a series of rules for generating a Markov 
hainof points distributed with respe
t to a desired probability density fun
tion, � (x) [54℄.A Markov 
hain will 
onverge to the desired density if its transition probabilities



27satisfy the following relationship:T (x! x0) � (x) = T (x0 ! x) � (x0) : (3.3)Eq 3.3 is known as the detailed balan
e 
ondition. Using it, the probability fora

epting a proposed move from x to x0 isA (x! x0) = min 1; T (x0 ! x) � (x0)T (x! x0) � (x) ! : (3.4)It should be noted that in equation 3.4, only the ratio �(x0)�(x) is 
al
ulated, ratherthan the values � (x) and � (x0) separately. As a result, the probability density fun
tion� does not have to be normalized.In the simplest version of the Metropolis algorithm, the transition probabilitiesare 
hosen so that T (x! x0) = T (x0 ! x). The a

eptan
e probability 
an bein
reased by using importan
e sampling algorithms, whi
h manipulate the transitionprobabilities to dire
t the proposed moves into regions of high density [55℄.The Metropolis algorithm guarantees the Markov 
hain will equilibrate to a sta-tionary distribution, whi
h will represent the desired probability density fun
tion.This method allows virtually any probability density to be sampled, whi
h makes itan invaluable tool for high dimensional simulations. The Metropolis algorithm is 
om-monly used in simulations of liquids and disordered materials, as well as in mole
ulardynami
s and quantum Monte Carlo.
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Chapter 4Quantum Monte Carlo
Quantum Monte Carlo (QMC) is a relatively new 
lass of methods for 
ondu
tinghighly a

urate quantum me
hani
al simulations on atomi
 and mole
ular systems.Variational and di�usion Monte Carlo, the most 
ommonly used ele
troni
 stru
tureQMC variants, use sto
hasti
 methods to optimize wavefun
tions and 
al
ulate ex-pe
tation values [56℄ and 
an provide energies to within 
hemi
al a

ura
y [57, 58, 59℄.Be
ause QMC trial fun
tions do not have to be analyti
ally integrable, there is 
on-siderable freedom as to their form. The in
lusion of expli
it interparti
le 
oordinates,whi
h is impossible with traditional ele
troni
 stru
ture methods, allows QMC trialfun
tions to have a very 
ompa
t form 
ompared to SCF wavefun
tions of 
omparablea

ura
y [60℄.The 
omputational expense of QMC 
al
ulations s
ales with the size of the systemas O (N3) or better [61, 62, 63, 64℄. Mean �eld methods 
apable of 
omparable a

u-ra
y, su
h as 
oupled 
luster, s
ale mu
h less favorably, as O (N6) to O (N !). Sin
eQMC is a sto
hasti
 method, it lends itself naturally to parallelization a
ross multiplepro
essors. Although QMC is not \perfe
tly parallel," as has been 
laimed [65℄, theparallel overhead fun
tion 
an be very small, and large numbers of pro
essors 
anbe used with high eÆ
ien
y. The use of large numbers of pro
essors allows QMC
al
ulations to �nish in a reasonable amount of time, despite the slow 
onvergen
eof Monte Carlo. The 
ombination of favorable s
aling and parallelizability of QMCmake it possible to 
ondu
t highly a

urate simulations on systems that are too largefor other methods.



29Many parallel s
ienti�
 appli
ations require large memory and fast interpro
essor
ommuni
ation to run. Super
omputers that satisfy these needs are very expen-sive to 
onstru
t and maintain. The most powerful super
omputers in the worldtoday are owned by the United States Department of Energy, whi
h has 
ommit-ted vast resour
es to 
onstru
ting them in order to 
ondu
t simulations on nu
learweapons [42, 43, 44℄.QuantumMonte Carlo, however, 
an be formulated to run with very small memoryand interpro
essor 
ommuni
ation requirements [49, 50℄. It is reasonable to envisionan inexpensive QMC spe
i�
 super
omputer made of nodes with no hard drives andinexpensive 
onne
tion hardware. Su
h a ma
hine would give resear
hers who do nothave a

ess to national lab 
omputers the ability to 
ondu
t QMC 
al
ulations.4.1 Variational Monte CarloVariational quantum Monte Carlo (VMC) uses the Metropolis algorithm to minimizethe expe
tation value of the energy of a trial wavefun
tion with respe
t to its ad-justable parameters. Be
ause the high dimensional integrals are done using MonteCarlo methods, some of the restri
tions on the form of the wavefun
tion that arene
essary when the integrals are evaluated analyti
ally 
an be relaxed.The expe
tation value for the energy of a trial ele
troni
 wavefun
tion, j	T i, ishEi = h	T jĤj	T ih	T j	T i = R d~R 	�T �~R� Ĥ	T �~R�R d~R 	�T �~R�	T �~R� ; (4.1)where Ĥ is the Hamiltonian operator for the system and ~R is a ve
tor 
ontaining the3N spatial 
oordinates of the N ele
trons of the mole
ule. The lo
al energy of anele
troni
 
on�guration is de�ned asEL �~R� = Ĥ	T �~R�	T �~R� : (4.2)



30If 	T �~R� is an eigenfun
tion of Ĥ, the lo
al energy will be 
onstant with respe
t to~R. Using the lo
al energy, the expe
tation value 
an be rewritten:hEi = R d~R 	�T �~R�	T �~R�EL �~R�R d~R 	�T �~R�	T �~R� (4.3)= R d~R j	T �~R� j2EL �~R�R d~R j	T �~R� j2 (4.4)= Z d~R �VMC �~R�EL �~R� ; (4.5)where �VMC �~R� is the probability density for the 
on�guration ~R:�VMC �~R� = j	T �~R� j2R d~R j	T �~R� j2 : (4.6)VMC employs the Metropolis algorithm to generate a series of ele
troni
 
on�g-urations, n~Rio, distributed with respe
t to �VMC �~R�. The expe
tation value of theenergy 
an then be evaluated ashEiVMC = 1M MXi=0EL �~Ri��O 1pM ! : (4.7)As the wavefun
tion is sampled, the expe
tation value of the energy will 
u
tuatewithin its statisti
al un
ertainty, whi
h makes 
omparing di�erent sets of variationalparameters diÆ
ult. This e�e
t 
an be mitigated by using 
orrelated sampling, inwhi
h expe
tation values for several sets of parameters are 
al
ulated using one setof 
on�gurations [66℄. Correlated sampling allows the di�eren
e between the energiesof two sets of parameters to be 
al
ulated with mu
h less varian
e than if the twoexpe
tation values are 
ompared after being 
al
ulated separately.Be
ause the lo
al energy for an eigenfun
tion of Ĥ is 
onstant, the varian
e of itsexpe
tation value will be zero. As a trial wavefun
tion is optimized and it approa
hesthe exa
t ground state, its lo
al energy will vary less strongly with ~R and its varian
ewill de
rease. As a result, the varian
e of the energy 
an be used as a 
riterion to



31optimize the parameters of the wavefun
tion rather than its expe
tation value. Thismethod works well for Monte Carlo optimization be
ause the exa
t minimum valueof the varian
e of the energy is known, while the minimum of the expe
tation valuefor the energy is unknown. Some optimization methods minimize a 
ombination ofthe energy and its varian
e [67℄. Algorithms that sample the derivatives of the energywith respe
t to the adjustable parameters in the wavefun
tion 
an be used to speed
onvergen
e and ensure the true minimum is found [68, 69℄.4.2 VMC Trial Fun
tionsAs dis
ussed in se
tion 1.2.1, quantum me
hani
al wavefun
tions have spa
e and spin
omponents. Sin
e the QMC Hamiltonian does not have spin terms, we integrateover spin and 
onsider only the spatial 
omponent. The spatial trial fun
tions usedin VMC typi
ally have the form	T =  Xi 
i	ASi !J; (4.8)where the 
i are CI expansion 
oeÆ
ients, the 	ASi are Slater determinant wave-fun
tions, and J is a symmetri
 fun
tion of the distan
es between parti
les 
alledthe Jastrow fun
tion. This results in an overall antisymmetri
 fun
tion with expli
itinterparti
le terms. The 
i and 	ASi 
an be obtained through standard ele
troni
stru
ture methods su
h as Hartree-Fo
k, GVB, MCSCF, CI, or DFT.There are many adjustable parameters in 	T . The 
i, the orbital 
oeÆ
ientsand basis fun
tions in the 	ASi , and the parameters in the Jastrow fun
tion 
an allbe optimized through VMC. Even when 
orrelated sampling is used, optimizing awavefun
tion with a large number of adjustable parameters is a 
hallenging task.The form of the trial wavefun
tion must be 
hosen with 
are, so that time is notwasted optimizing parameters that have little e�e
t on the expe
tation value of theenergy.



32The two body Jastrow fun
tion is written asJ = exp 24Xi;j uij (rij)35 ; (4.9)where the sum is over all pairs of parti
les, rij is the distan
e between parti
les i andj, and uij (rij) is a fun
tion that des
ribes the intera
tion between parti
les i and j.The two body Jastrow fun
tion makes it straightforward to 
onstru
t trial wave-fun
tions that satisfy the quantumme
hani
al 
usp 
onditions for pairs of parti
les [9℄.Satisfying these 
usp 
onditions removes the singularities in the lo
al energy that o
-
ur when parti
les 
ollide, whi
h lowers the varian
e of the energy.If Gaussian orbitals are used in the SCF part of the wavefun
tion, the 
usp 
ondi-tion for parti
les i and j approa
hing ea
h other leads to the following 
ondition forthe fun
tion uij: limrij!0 �uij (rij)�rij = ��ijqiqjl + 1 ; (4.10)where �ij is the redu
ed mass of the parti
les, qi and qj are their 
harges, and l is 1for same spin ele
trons and 0 otherwise.A form for the two-body 
orrelation fun
tion 
ommonly used for mole
ular systemsis the Pad�e-Jastrow fun
tion:uij (rij) = 
ijrij +PNk=2 aij;krkij1 +PMl=1 bij;lrlij ; (4.11)where the aij;k and bij;l are adjustable parameters. The 
onstant 
ij is set to the valueof the 
usp 
ondition for the parti
les i and j. To ensure that the limit as r ! 1remains �nite, M and N are usually 
hosen so that M � N . Many other forms for
orrelation fun
tions are in use, in
luding some with s
aled variables and some withthree- and higher-body terms [70, 71℄.In addition to allowing 	T to have expli
it interele
troni
 
oordinates, QMC allowsfreedom in the form of the orbitals that make up the Slater determinant part of thetrial wavefun
tion. Be
ause they are 
onvenient to evaluate, Gaussian basis fun
tionsare used by most SCF programs to 
onstru
t orbitals.



33Gaussian fun
tions have zero derivative at their origin, so mole
ular orbitals 
on-stru
ted from Gaussian basis fun
tions are unable to satisfy the ele
tron-nu
leus 
usp
ondition. Although these 
usps 
an be satis�ed by two-body 
orrelation fun
tions,repla
ing the Gaussian orbitals with exponential fun
tions that satisfy the 
usp nearthe nu
lei gives mu
h better results in QMC 
al
ulations [72℄. When the orbitals aremodi�ed in this way, the ele
tron-nu
leus 
usp values in the two body 
orrelationfun
tions are set to zero.4.3 Di�usion Monte CarloDi�usion Monte Carlo (DMC) does not rely on the variational prin
iple to 
al
ulateexpe
tation values, but its 
onvergen
e depends on a

urate trial fun
tions.DMC starts with the time dependent S
hr�odinger equation:i ��t j	 �~R; t�i = Ĥj	 �~R; t�i: (4.12)With a 
hange of variables to imaginary time, � = it, equation 4.12 takes the form ofa di�usion equation: � ��� j	 �~R; ��i = Ĥj	 �~R; ��i: (4.13)The formal solution to equation 4.13 
an be written:j	 �~R; ��i = e��Ĥ j	 �~R; 0�i: (4.14)At some time �1, the state j	 �~R; �1�i is expanded in eigenstates of the Hamiltonian:j	 �~R; �1�i =Xi 
ij�ii; (4.15)where Ĥj�ii = Eij�ii; (4.16)



34and 
i = h�ij	 �~R; �1�i: (4.17)The expansion in equation 4.15 is substituted into equation 4.14:j	 �~R; �1 + d��i =Xi 
ie�Eid� j�ii: (4.18)As equation 4.18 is propagated with � , 
ontributions to 	 �~R; �� with i > 0 will dieout exponentially, leaving �0, the ground state.Propagating equation 4.18 with Monte Carlo methods is ineÆ
ient be
ause thepotential part of the Hamiltonian varies widely throughout 
on�guration spa
e anddiverges when 
harged parti
les approa
h ea
h other. EÆ
ient DMC 
al
ulations useimportan
e sampling, in whi
h 	T �~R�, a trial fun
tion that approximates the groundstate, is used as a guide fun
tion. A mixed distribution is de�ned:�DMC �~R� = �0 �~R�	T �~R�R d~R �0 �~R�	T �~R� : (4.19)The mixed expe
tation value for an operator, Â, has the formhAiDMC = h�0jÂj	T ih�0j	T i : (4.20)For operators that 
ommute with the Hamiltonian, the DMC expe
tation valueequals the expe
tation value of the true ground state:hAiDMC = h�0jÂj	T ih�0j	T i = h�0jÂj�0ih�0j�0i : (4.21)The DMC expe
tation value for the energy 
an be rewritten in a manner similarto the VMC expe
tation value:hEiDMC = h�0jĤj	T ih�0j	T i (4.22)



35= R d~R �0 �~R� Ĥ	T �~R�R d~R �0 �~R�	T �~R� (4.23)= R d~R �0 �~R�	T �~R� Ĥ	T (~R)	T (~R)R d~R �0 �~R�	T �~R� (4.24)= Z d~R �DMC �~R�EL �~R� : (4.25)A series of ele
troni
 
on�gurations is generated with respe
t to �DMC �~R�, whi
hallows the expe
tation value to be evaluated. Generating ele
troni
 
on�gurationswith respe
t to �DMC will be dis
ussed in the next se
tion.Interpreting �DMC �~R� as a probability density is only possible if it is nonnegativefor all ~R. For bosons, this property is easily satis�ed be
ause the ground state wave-fun
tion has one sign everywhere in 
on�guration spa
e. If the trial wavefun
tion hasthe same sign, �DMC �~R� will be nonnegative for all ~R. Ground state wavefun
tionsfor fermions, however, have positive and negative regions separated by nodes. If thenodes of 	T �~R� and �0 �~R� are identi
al, the two fun
tions will have the same signin every nodal region, and �DMC �~R� will be nonnegative for all ~R.If the nodal stru
tures of 	T �~R� and �0 �~R� are di�erent, �DMC �~R� will havepositive and negative regions. This is known as the fermion problem in DMC. InVMC, the magnitude squared of the trial fun
tion is sampled, so there is no analagousnodal problem.The nodal surfa
e of an ele
troni
 wavefun
tion is a (3N � 1)-dimensional hyper-surfa
e where the wavefun
tion vanishes. The spatial antisymmetry of the wavefun
-tion de�nes a set of (3N � 3)-dimensional hyperpoints embedded in the nodal surfa
e.Although these points are known, no general te
hniques exist for 
onstru
ting a trialwavefun
tion with the same nodal stru
ture as the true ground state.The simplest and most widely used solution to this problem is the �xed-nodeapproximation, in whi
h the nodes of the true ground state are assumed to be thesame as the nodes of the trial wavefun
tion. When this approximation is used, �0 �~R�be
omes the ground state wavefun
tion 
onsistent with the boundary 
ondition that



36it vanish at the nodes of 	T �~R�. The �xed-node approximation is enfor
ed in a DMC
al
ulation by reje
ting any proposed move that 
rosses a node and 
auses 	T �~R�to 
hange sign. The resulting energy lies above the exa
t energy and is variational inthe nodal stru
ture of the trial fun
tion [73, 74℄.Other solutions to the nodal problem that do not rely on the �xed node approx-imation have been developed. For example, the transient estimator method propa-gates two bosonlike walker ensembles, representing the positive and negative parts of�0 �~R�. This method is not stable with respe
t to � , the imaginary time variable inwhi
h the ensembles are propagated, be
ause both parts of the simulation 
onvergeto the nodeless boson ground state. Expe
tation values 
an only be 
al
ulated duringthe intermediate regime before this o

urs, whi
h limits the statisti
al a

ura
y that
an be attained.For most small mole
ules, the nodes of trial wavefun
tions obtained by standardSCF methods are of good enough quality for �xed node DMC 
al
ulations to yieldresults within 
hemi
al a

ura
y [57, 59℄. In some 
ases, su
h as the beryllium atom,multi-
on�guration wavefun
tions are needed to obtain nodes of suÆ
ient quality.4.4 Generating Con�gurations in DMCEle
troni
 
on�gurations are generated with respe
t to �DMC using the distributionf �~R; �� = � �~R; ��	T �~R� ; (4.26)where j� �~R; ��i is a solution to the time-dependent S
hr�odinger equation, equa-tion 4.12.The distribution f �~R; �� is a solution to a Fokker-Plan
k equation:� ��� f �~R; �� = �L̂� ET� f �~R; �� ; (4.27)



37where L̂ = �12r2 +r � V �~R�+ EL �~R� : (4.28)V �~R� is the lo
al velo
ity of the trial fun
tion at ~R:V �~R� = r	T �~R�	T �~R� ; (4.29)and EL �~R� is its lo
al energy: EL �~R� = Ĥ	T �~R�	T �~R� : (4.30)In the 
ase 	T �~R� = 1, equations 4.27 and 4.28 redu
e to equation 4.13, theS
hr�odinger equation in imaginary time.The operator L̂ de�nes an eigenvalue equation:L̂jKi �~R�i = �ijKi �~R�i: (4.31)The Ki �~R� = �i �~R�	T �~R� and the �i = Ei, where the �i �~R� and Ei are theeigenve
tors and eigenvalues of the Hamiltonian.Equations 4.27 and 4.28 des
ribe a di�usion pro
ess in a potential. As withequation 4.13, the formal solution to equation 4.27 
an be written:f �~R; �� = e��(L̂�ET )f �~R; 0� : (4.32)This solution 
an be expanded in the eigenve
tors of L̂:f �~R; �� = Xi 
ie��(�i�ET )Ki �~R� (4.33)= Xi 
ie��(Ei�ET )�i �~R�	T �~R� ; (4.34)



38where 
i = hKi �~R� jf �~R; 0�i = h�i �~R� jf �~R; 0�	T �~R� i: (4.35)It is easy to see that if ET = E0, 
ontributions to f �~R; �� from the �i �~R� withi > 0 will die o� exponentially as � in
reases, leaving the desired density, �DMC �~R� =�0 �~R�	T �~R�.In order to propagate Eq. 4.32 with � and obtain �DMC �~R�, it is rewritten inintegral form: f �~Y ; � + d�� = ed� �ET (�+d�) Z d~R G �~Y ; ~R; d�� f �~R; �� ; (4.36)where G �~Y ; ~R; d�� is the Green's fun
tion 
orresponding to the operator L̂. Unfortu-nately, this Green's fun
tion, like the Green's fun
tions for most 
ompli
ated physi
alpro
esses, 
annot be written for arbitrary d� .The three terms of equation 4.28 des
ribe di�usion, drift, and bran
hing pro
esses.Green's fun
tions 
an be written for ea
h pro
ess individually, and an approximateGreen's fun
tion 
an be written as their produ
t:G �~Y ; ~R; �� � 1(2��)3N=2 Æ h~Z � ~R � V �~R� d�i� Z d~Z exp 264�~Y � ~Z�22d� 375 (4.37)�e� 12 [EL(~Y )+EL(~R)℄d� +O �d� 2� :The fa
torization of the Green's fun
tion negle
ts the fa
t that the terms of L̂ do not
ommute, so equation 4.37 is exa
t only in the limit d� ! 0. Equation 4.34, however,is only exa
t in the limit � !1. Any 
hoi
e of time step is a tradeo� between thesetwo 
onsiderations. In pra
ti
e, runs with several values of d� must be done, and theresults are extrapolated to d� = 0.During a DMC 
al
ulation, f �~R; �� is represented by an ensemble of walkers,



39ea
h 
onsisting of an ele
troni
 
on�guration and a statisti
al weight:f �~R; �� =Xn wn;�Æ �~R � ~Rn;�� : (4.38)Ea
h iteration in a DMC 
al
ulation 
onsists of four stages: drift, di�usion, weight-ing, and bran
hing. In the drift step, the ele
trons are moved a

ording to the timestep and the lo
al velo
ity. In the di�usion step, the ele
trons are moved to newpositions with transition probabilities given by the kineti
 part of the Green's fun
-tion. The weighting and bran
hing step takes into a

ount the potential part of theGreens's fun
tion.After a walker is moved from 
on�guration ~R to ~Y , its weight is 
al
ulated basedon the lo
al energy at ~R and ~Y . In the bran
hing step, walkers with high weight givebirth to new walkers, while low weight walkers are deleted.The trial energy, ET , serves as a normalization fa
tor and is adjusted after ea
hstep based on the sum of the weights of the walkers in order to keep the populationstable. The average value of ET after many steps will 
onverge to the ground-stateenergy.Several DMC algorithms, ea
h with slightly di�erent s
hemes for fa
toring theGreen's fun
tion, proposing 
on�gurations, 
al
ulating the weights, and bran
hingthe walkers have been published [66, 75℄. The DMC 
al
ulations presented later inthis work use a 
ombination of Umrigar's DMC algorithm [55℄ and the reweightingmethod of Assaraf et al. [76℄.



40
Chapter 5An Optimized InitializationAlgorithm to Ensure A

ura
y inQuantum Monte CarloCal
ulations
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Abstra
t
Quantum Monte Carlo (QMC) 
al
ulations require the generation of random ele
-troni
 
on�gurations with respe
t to a desired probability density, usually the squareof the magnitude of the wavefun
tion. In most 
ases, the Metropolis algorithm isused to generate a sequen
e of 
on�gurations in a Markov 
hain. This method hasan inherent equilibration phase, during whi
h the 
on�gurations are not representa-tive of the desired density and must be dis
arded. If statisti
s are gathered beforethe walkers have equilibrated, 
ontamination by nonequilibrated 
on�gurations 
angreatly redu
e the a

ura
y of the results. Be
ause separate Markov 
hains must beequilibrated for the walkers on ea
h pro
essor, the use of a long equilibration phasehas a profoundly detrimental e�e
t on the eÆ
ien
y of large parallel 
al
ulations.The strati�ed atomi
 walker initialization (STRAW) shortens the equilibrationphase of QMC 
al
ulations by generating statisti
ally independent ele
troni
 
on�gu-rations in regions of high probability density. This ensures the a

ura
y of 
al
ulationsby avoiding 
ontamination by nonequilibrated 
on�gurations. Shortening the lengthof the equilibration phase also results in signi�
ant improvements in the eÆ
ien
y ofparallel 
al
ulations, whi
h redu
es the total 
omputational run time. For example,using STRAW rather than a standard initialization method in 512 pro
essor 
al
u-lations redu
es the amount of time needed to 
al
ulate the energy expe
tation valueof a trial fun
tion for a mole
ule of the energeti
 material RDX to within 0.01 au by33%.



425.1 Introdu
tionQuantumMonte Carlo methods for simulating the ele
troni
 stru
ture of mole
ules [77,78℄ 
an in prin
iple provide energies to within 
hemi
al a

ura
y (� 2 k
al/mol) [57,58, 59℄. The 
omputational expense of QMC s
ales with system size as O(N3) orbetter [61, 62, 63, 64℄, albeit with a large prefa
tor. This is mu
h more favorablethan other ele
troni
 stru
ture methods 
apable of 
omparable a

ura
y, su
h as 
ou-pled 
luster, whi
h tend to s
ale very poorly with the size of the system, generallyO(N6 to N !) [79℄. Moreover, the sto
hasti
 nature of QMC makes it relatively easyto parallelize over a large number of pro
essors, whi
h 
an allow 
al
ulations to �nishin a reasonable amount of time despite the slow 
onvergen
e of Monte Carlo.As super
omputing resour
es improve and be
ome more a

essible to resear
hers [42,80℄, QMC will be
ome a powerful tool for 
ondu
ting a

urate simulations on 
hemi-
ally interesting systems. Re
ent e�orts have fo
used making these 
al
ulations morestraightforward and eÆ
ient on heterogeneous and homogeneous 
omputers. To thisend, a �nite all-ele
tron QMC program, QM
Beaver, has been written and used todevelop and demonstrate several new algorithms [49, 50, 81℄.Before statisti
s gathering begins in a QMC 
al
ulation, the walkers must beallowed to equilibrate so that their 
on�gurations are proportional to the desireddensity. It is impossible to 
al
ulate a

urate expe
tation values if nonequilibrated
on�gurations 
ontaminate the statisti
s. In order to ensure their statisti
al indepen-den
e, the walkers must equilibrate separately. This makes the equilibration phasea serial step of the 
al
ulation and a major limiting fa
tor in the eÆ
ien
y of par-allel 
al
ulations. These 
onsiderations make it imperative that the equilibrationpro
ess be fast and reliable. For example, we show that for the energeti
 materialRDX, approximately 30,000 iterations are ne
essary for equilibration when the initial
on�gurations are generated by a standard method.We present here a simple method for 
hoosing initial ele
troni
 
on�gurationsdesigned to redu
e the length of the equilibration phase of 
al
ulations. The Strati�edAtomi
 Walker initialization (STRAW) for quantum Monte Carlo 
al
ulations uses a



43shell model to distribute the ele
trons. When STRAW is used in RDX 
al
ulations,100 iterations are suÆ
ient for equilibration.Avoiding 
ontamination by nonequilibrated 
on�gurations in quantum MonteCarlo 
al
ulations ensures their a

ura
y, and redu
ing the 
ost of equilibration makes
al
ulations with large numbers of pro
essors mu
h more eÆ
ient. Improving the par-allel eÆ
ien
y of these 
al
ulations makes better use of 
omputer resour
es and willbroaden the range of systems for whi
h quantum Monte Carlo 
al
ulations are pra
-ti
al.5.2 The Metropolis Algorithm and the Initializa-tion CatastropheQuantum Monte Carlo 
al
ulations 
enter around the random generation of ele
troni

on�gurations with respe
t to quantum me
hani
al probability densities. In thiswork, we fo
us on variational Monte Carlo (VMC), in whi
h the trial wavefun
tionis sampled in order to optimize its adjustable parameters [67, 68, 69℄.VMC trial fun
tions usually have the form 	VMC = 	SCFJ , where 	SCF is one ora sum of Slater determinant wavefun
tions obtained by a standard ele
troni
 stru
turemethod su
h as Hartree-Fo
k (HF), density fun
tional theory (DFT), or multi
on�gu-ration self-
onsistent �eld (MSCSF). The Jastrow fa
tor, J [70, 71, 82℄, is a symmetri
fun
tion of the interparti
le 
oordinates meant to a

ount for quantum me
hani
al
usp 
onditions [9℄ and short range 
orrelations.The expe
tation value for the energy of this trial fun
tion ishEi = h	VMC jĤj	VMCih	VMC j	VMCi = R1�1 d~x	�VMC (~x) Ĥ	VMC (~x)R1�1 d~x 	�VMC (~x)	VMC (~x) ; (5.1)where ~x is a 3N -dimensional ve
tor of the positions of the N ele
trons in the mole
ule.Be
ause the Jastrow fa
tor in
ludes expli
it interparti
le 
oordinates, equation 5.1
annot be separated into independent ele
tron problems and solved using the standardSCF pro
edure. Instead, the expe
tation value is evaluated sto
hasti
ally [75℄.



44The lo
al energy of a 
on�guration, ~x, is de�ned as EL (~x) = Ĥ	VMC(~x)	VMC(~x) . Usingthis quantity, the expe
tation value of the energy 
an be rewritten:hEi = R1�1 d~x j	VMC (~x) j2EL (~x)R1�1 d~x j	VMC (~x) j2 = Z 1�1 d~x �V MC (~x)EL (~x) ; (5.2)with �VMC (~x) = j	VMC (~x) j2R1�1 d~x j	VMC (~x) j2 : (5.3)The expe
tation value now has the form of a weighted average. A series of M ele
-troni
 
on�gurations, f~xig, is generated with respe
t to �VMC and used to evaluatethe expe
tation value of the energy:hEi = 1M MXi=1 EL (~xi)� O 1pM ! : (5.4)The VMC probability density, �VMC , is an extremely 
ompli
ated, 3N -dimensionalfun
tion. An e�e
tive way to generate ele
troni
 
on�gurations with respe
t to thistype of fun
tion is to use a Markov 
hain, whi
h is de�ned in terms of the transitionprobability T (~x! ~y) of having the 
on�guration ~y after ~x in the 
hain. The Metropo-lis algorithm [54℄ is a method for generating a Markov 
hain of points distributed withrespe
t to a desired probability density. It states that a Markov 
hain will 
onverge toa desired density, f (~x), if its transition probabilities satisfy the following relationship:T (~x! ~y) f (~x) = T (~y ! ~x) f (~y) : (5.5)Equation 5.5 is known as the detailed balan
e 
ondition. The most 
ommonlyused formula for 
al
ulating the probability of a

epting a proposed move from ~x to~y that satis�es detailed balan
e isA (~x! ~y) = min "1; w (~y ! ~x) f (~y)w (~x! ~y) f (~x)# ; (5.6)where w (~x! ~y) is the probability for proposing a move from ~x to ~y.In this work, we use the a

elerated Metropolis algorithm developed by Umrigar



45and 
oworkers [55, 83℄ to propose 
on�gurations and 
al
ulate w (~x! ~y). This al-gorithm allows di�erent length s
ales for the motions of 
ore and valen
e ele
trons,whi
h in
reases the size of the time step that 
an be used in a 
al
ulation whilemaintaining a high a

eptan
e rate.The Metropolis algorithm guarantees that the Markov 
hain will equilibrate tothe desired distribution, but does not provide any 
riteria to predi
t the number ofiterations ne
essary for equilibration or to determine when it has o

urred. It isvital to avoid 
ontamination by nonequilibrated points in 
al
ulations, be
ause it isimpossible to 
al
ulate a

urate expe
tation values using 
on�gurations that do notrepresent the desired density.The equilibration time will depend strongly on the 
hoi
e of the initial 
on�gu-ration, ~x0. If ~x0 is in a region of low probability density, repeated iterations usingequation 5.6 will guide the 
hain into regions of higher probability density. The 
hainis equilibrated when it rea
hes a region whose probability density is high enoughthat sampling it is 
onsistent with the desired probability density and the total num-ber of iterations. Clearly, the number of iterations required for equilibration 
an beminimized by making an intelligent 
hoi
e for ~x0.In Monte Carlo simulations, a walker is an entity that de�nes the state of the sys-tem at a parti
ular instant. In QMC, a walker 
onsists of a 3N -dimensional ele
troni

on�guration. An ensemble of walkers is used to 
arry out the integration, with ea
hone tra
ing out an independent Markov 
hain in 
on�guration spa
e. In a parallel
al
ulation, an ensemble of walkers is equilibrated and propagated on ea
h pro
essor,and the results are gathered to obtain the global results.In the QM
Beaver program, ea
h pro
essor must have at least one walker, andthe number of walkers per pro
essor is a user de�ned 
onstant. Sin
e the numberof walkers in
reases linearly with the number of pro
essors, the 
omputational e�ortdevoted to equilibration in
reases as well. The impa
t of the equilibration phase onthe eÆ
ien
y of a parallel 
al
ulation was predi
ted and demonstrated by Feldmannand Kent [50℄, and we follow their derivation.Sin
e separate Markov 
hains must be equilibrated on ea
h pro
essor, the total



46equilibration time s
ales as O(NPro
essors). The time devoted to generating statis-ti
s, T Propagate, s
ales as O(1) be
ause the number of independent samples needed toa
hieve a 
ertain level of 
onvergen
e does not 
hange with the number of pro
essors.From this, the eÆ
ien
y, or fra
tion of the total 
al
ulation time devoted to usefulwork, � , is
� = T PropagateT Initialize + TEquilibrate + T Syn
hronize + TCommuni
ate + T Propagate (5.7)� O(1)O(NPro
essors) +O(1) : (5.8)Sin
e the syn
hronization and 
ommuni
ation 
osts for QMC 
al
ulations are ex-tremely small, the main threat to eÆ
ien
y in parallel 
al
ulations will be the equili-bration time. In order to use a large number of pro
essors eÆ
iently, an algorithm forqui
kly generating equilibrated, statisti
ally independent ele
troni
 
on�gurations forthe walkers is ne
essary. The next se
tion examines how initial walkers are generatedin several QMC programs and 
onsiders possibilities for improvement.5.3 Walker InitializationThe walker initialization algorithm originally implemented in the QM
Beaver pro-gram works as follows: the ele
trons of the mole
ule are assigned to the nu
leia

ording to the density implied by the SCF wavefun
tion. Ea
h nu
leus and itsele
trons are treated as an atom, and the ele
trons are distributed with respe
t toa three-dimensional Gaussian 
entered on the nu
leus whose varian
e is related tothe 
ovalent radius of that atom. The 
on�guration is dis
arded and a new one isgenerated if substituting the lo
ations of the ele
trons into the Slater determinantpart of the wavefun
tion results in a singularity [81℄. This happens if there is anylinear dependen
e among the 
olumns of the determinant, whi
h 
an happen if twoparallel spin ele
trons are too 
lose to ea
h other. We will refer to this method as theGaussian atomi
 walker initialization (GAWI).



47The initialization algorithm of Casino, a QMC program developed at Cambridge,assigns the ele
trons to atoms and then pla
es the ele
trons randomly within spheres
entered on the atoms [84℄.QMAGIC, a QMC program developed at UC Berkeley and the Lawren
e Berke-ley National Laboratory, uses an initialization method similar to GAWI [85℄. Theele
trons are distributed with respe
t to three-dimensional Gaussians 
entered on thenu
lei, and then the 
on�guration is 
he
ked to ensure no two parti
les are 
loserthan a toleran
e distan
e to ea
h other. Zori, a new QMC program developed in thesame resear
h group, distributes ele
trons randomly in spheres of the atomi
 
ova-lent radius and 
he
ks to make sure no ele
tron-ele
tron distan
e is smaller than athreshold. A 
on�guration is dis
arded if its lo
al energy is not within a given rangeof an estimate of the energy of the system [86℄. This test is probably e�e
tive in elim-inating some unfavorable initial 
on�gurations, but requires additional user spe
i�edparameters and 
ould 
ause the walker initialization to s
ale badly if a large fra
tionof the 
on�gurations generated were dis
arded.These initializationmethods give satisfa
tory performan
e in 
al
ulations on smallmole
ules using moderately large 
omputers. In these 
al
ulations, the equilibrationphase is a small part of the total 
omputational expense and does not have a severelydetrimental e�e
t on the eÆ
ien
y. As the size of the mole
ules and the numberof pro
essors in
rease, however, the fra
tion of the total time spent equilibrating 
anbe
ome signi�
ant. By improving the way initial 
on�gurations are 
hosen, the lengthof the equilibration phase 
an be redu
ed, whi
h will improve the parallel s
aling andeÆ
ien
y of 
al
ulations using large numbers of pro
essors.The walker initialization algorithms des
ribed above su�er from several de�
ien-
ies. Most importantly, be
ause all the ele
trons of an atom are distributed withrespe
t to the same probability distribution, the ele
trons tend not to avoid ea
hother in the initial 
on�gurations. For opposite spin ele
trons, this is unfavorablebe
ause of their 
oulomb repulsion. For parallel spin ele
trons, however, it is evenworse. The antisymmetry of the wavefun
tion di
tated by the Pauli prin
iple for
esthe wavefun
tion to go to zero as two parallel spin ele
trons approa
h ea
h other. In



48addition, these methods ignore the stru
ture of the energy levels, in whi
h there willbe 
ertain numbers of ele
trons mostly within annular shells.Be
ause the initialization methods of this se
tion share these de�
ien
ies, we as-sume that their performan
e will be similar, and will use GAWI to represent them in
omparisons.5.3.1 STRAWThe Strati�ed Atomi
 Walker initialization (STRAW) is a method for generatinginitial ele
troni
 
on�gurations that addresses the problems des
ribed above. InSTRAW, the ele
trons are assigned to the nu
lei as in the other methods. Careis taken to ensure that, for an overall neutral mole
ule, ea
h atom is neutral. Theatoms are treated separately, and the ele
trons are partitioned into energy levels,with one alpha spin and one beta spin ele
tron in the �rst energy level, up to fouralpha spins and four beta spins in the se
ond energy level, and so on. The ele
tronsin ea
h energy level are distributed using the transformation method with respe
tto probability densities in spheri
al 
oordinates: r; �; �. The transformation methoddire
tly 
onverts uniform random numbers on the interval (0; 1) to random num-bers distributed with respe
t to a desired probability density using the inverse of its
umulative distribution fun
tion [53℄.To obtain the radial densities for the energy levels, Hartree-Fo
k/6-311G** 
al-
ulations were 
arried out for ea
h atom in the �rst three rows of the periodi
 tableusing Jaguar [87℄. The o

upied atomi
 orbitals were lo
alized by the Boys pro
e-dure, whi
h 
reates orbitals with maximum insensitivity to 
hanges in distant nu
lear
harges [88℄. For mole
ules, the resulting orbitals are lo
alized around the 
hemi
albonds and in the atomi
 lone pair regions. In our 
ase, the Boys pro
edure hybridizesthe valen
e orbitals of the atom.A representative orbital for ea
h energy level was 
hosen and expressed as a sum
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Figure 5.1: The inverted radial distributions for the �rst and se
ond energy levelsof 
arbon. To generate the radial 
oordinate for an ele
tron in one of these energylevels, we generate a uniform random number in the range (0,1) and then evaluatethe appropriate inverted distribution.of primitive Gaussians:  =Xi dixaiybiz
i exp ���ir2� : (5.9)The di are the expansion 
oeÆ
ients and the exponents ai, bi, and 
i determine thesymmetry of the primitive Gaussians. The square of the orbital is its probabilitydensity: � = j j2 =Xi;j didjxai+ajybi+bjz
i+
j exp h� (�i + �j) r2i : (5.10)Converting the probability density into spheri
al 
oordinates and integrating over theangles yields the radial marginal probability distribution of the orbital:R (s) = Xi;j didj Z 2�0 d� 
os�ai+aj sin�bi+bj Z �0 d� sin �ai+aj+bi+bj+1 
os �
i+
jZ s0 dr r2+ai+aj+bi+bj+
i+
j exp h� (�i + �j) r2i : (5.11)



50The integrals over the angles were done analyti
ally, and the radial integrals wereevaluated numeri
ally by a 
hange of variables from the in
omplete gamma fun
tion.Be
ause the orbitals are normalized and their probability densities are always positive,R (s) in
reases monotoni
ally with r from zero to one.Radial probability distributions for ea
h energy level of ea
h atom were tabulatedand inverted by inter
hanging the 
oordinates. For example, the inverted radialmarginal distributions for the �rst and se
ond energy levels of 
arbon are shown in�gure 5.1. In order to generate the radial distan
es for the ele
trons in an energy level,QM
Beaver �ts a 
ubi
 spline to the appropriate tabulated inverted distribution. Auniform number in the range (0; 1) is generated for ea
h ele
tron and 
onverted to aradial 
oordinate by evaluating the spline.The transformation method is also used to generate the angular 
oordinates for theele
trons. Probability densities in � and � for s, sp, sp2, and sp3 hybrid orbitals werefound in terms of the real spheri
al harmoni
s [89℄ and integrated analyti
ally. Theresults were tabulated and inverted. As with the radial distributions, splines are �tto the tabulated inverted distributions and used to generate the angular 
oordinatesof the ele
trons in the energy level.The probability densities in � and � are 
hosen for ea
h ele
tron so that they avoidea
h other, with parallel spin ele
trons having higher priority. For example, if thereare three alpha and two beta ele
trons in an energy level, the three alpha ele
tronsare distributed with respe
t to the angular probability distributions of the three sp2orbitals in the xz plane, while the two beta ele
trons are distributed with respe
t tothose of the sp orbitals along the y axis.On
e the radial and angular 
oordinates for the ele
trons of an energy level havebeen assigned, they are 
onverted to Cartesian 
oordinates. The entire energy level isthen given a random rotation about a random axis. This rotation is easily 
omputedusing quaternions and prevents the distribution from be
oming skewed along any axisor plane.STRAW has been implemented in QM
Beaver, an open sour
e program [81℄. Re-sear
hers interested in further details of the algorithm are en
ouraged to download
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NO2

O2N NO2Figure 5.2: The RDX mole
ule.and examine the sour
e 
ode.5.3.2 Equilibration BehaviorThe 
omputational experiments des
ribed in this se
tion 
omparing the performan
eof the initialization methods were 
ondu
ted using QM
Beaver [81℄.The VMC trial fun
tions used in this se
tion have the form 	VMC = 	SCFJ ,where 	SCF is a HF/6-311G**++ wavefun
tion 
al
ulated using Jaguar [87℄ and Jis a Pade-Jastrow 
orrelation fun
tion with terms for ea
h pair of parti
les in themole
ule:
J = exp0�Xi Xj<i uij1A ; (5.12)uij = 
ijrij1 + bijrij : (5.13)In order to satisfy the 
usp 
ondition [9℄ for an ele
tron approa
hing a nu
leus,we set 
 = �Z for the ele
tron-nu
lear u fun
tions, where Z is the 
harge of thenu
leus. Similarly, we set 
 = 12 for opposite spin ele
tron pairs and 
 = 14 for samespin ele
tron pairs.For opposite spin ele
tron pairs, we use b = 3:0, and for same spin ele
tron pairsand all nu
lear-ele
tron terms, we use b = 100:0. Our experien
e is that these valueswork reasonably well for ground states of mole
ules 
omposed of atoms from the �rstthree rows of the periodi
 table.
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Figure 5.3: Lo
al energies of two RDX walkers. The walker initialized with GAWIstarts o� with very high lo
al energy and approa
hes equilibration after several thou-sand steps, while the walker initialized with STRAW rea
hes a 
onstant distributionvery qui
kly.This is a very simple trial wavefun
tion, and its parameters are not optimized. Inorder to 
al
ulate a

urate ele
troni
 properties for these mole
ules, the trial fun
tion
ould be improved by modifying the orbitals to satisfy the ele
tron-nu
leus 
usp
ondition [72℄, using a better Jastrow form [71, 82℄, and optimizing its parameters [67,68, 69℄. In this work, however, we are fo
using on equilibration and our ability tosample a wavefun
tion, so the simple trial fun
tion is suÆ
ient.In the 
al
ulations of this se
tion, we use a time step of 0.001 au for both theequilibration and propagation phases, whi
h results in propagation phase a

eptan
eprobabilities of 85% for SiCl4 and 93% for RDX. Methods su
h as using a larger timestep during the equilibration phase 
an be used to a

elerate equilibration. In orderto simplify 
omparisons between initialization methods, however, we use a 
onstanttime step in all of our 
al
ulations.The e�ort that has gone into the more 
ompli
ated initialization s
heme pays o�
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Figure 5.4: Lo
al energies of SiCl4 walkers. The lo
al energy of the walker initializedwith GAWI starts in a high energy region and approa
hes a steady state after severalthousand steps, while the walker initialized with STRAW is equilibrated very qui
kly.handsomely. Figures 5.3 and 5.4 show the behavior of the lo
al energy of VMC walkersinitialized with GAWI and STRAW. In ea
h 
ase, we �nd that walkers initializedwith GAWI require several thousand steps to rea
h an equilibrium distribution, whilewalkers initialized with STRAW require very few.Figure 5.3 shows the behavior of the lo
al energy of two walkers during 
al
ula-tions on hexhydro-1,3,5-trinitro-1,3,5-triazine, or RDX (�gure 5.2) [90℄, an energeti
material. The lo
al energy of the walker initialized with GAWI approa
hes a steadystate after several thousand steps. This �gure 
learly shows the importan
e of avoid-ing 
ontamination by the high energy nonequilibrated 
on�gurations in the beginningof the 
al
ulation. In 
ontrast, the distribution of lo
al energies for the walker ini-tialized with STRAW is 
onstant throughout the run. The initial 
on�guration is ina region of high probability density and low lo
al energy, and the long equilibrationphase we see in the 
ase of the GAWI walker is eliminated.In order to test the e�e
tiveness of STRAW on a mole
ule with atoms from the
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Figure 5.5: VMC 
al
ulations on RDX were 
arried out using 512 pro
essors and5 walkers per pro
essor. Ensembles initialized with GAWI require 30,000 equilibra-tion steps before 
ontamination by high energy samples is eliminated. The ensembleinitialized with STRAW is equilibrated after 100 steps.third row of the periodi
 table, a series of 
al
ulations was 
arried out with the SiCl4mole
ule. Figure 5.4 shows the behavior of the lo
al energy of walkers initializedwith GAWI and STRAW. On
e again, we see that the lo
al energy of the walkerinitialized with GAWI approa
hes equilibration after several thousand steps, while thelo
al energy of the walker initialized with STRAW rea
hes an equilibrium distributionvery qui
kly.Figures 5.3 and 5.4 examine only one walker for ea
h initialization method. Theresults are en
ouraging, but a visual examination of the lo
al energy is hardly aquantitative measure of equilibration. In addition, realisti
 QMC 
al
ulations on themole
ules of this se
tion will use ensembles of thousands to hundreds of thousandsof walkers. In order to 
ompare the behavior of ensembles of walkers generated byGAWI and STRAW, VMC 
al
ulations on the RDX mole
ule were 
arried out usingthe ASCI-QSC super
omputer at the Los Alamos National Laboratory. This ma
hine



55Initialization Eq hEi (au) Totalsteps samplesGAWI 10K -893.114 � 0.0122 26,324,421GAWI 15K -893.235 � 0.0103 26,334,855GAWI 20K -893.275 � 0.0102 26,024,948GAWI 25K -893.291 � 0.0184 26,272,857GAWI 30K -893.296 � 0.0101 26,291,124STRAW 100 -893.298 � 0.0099 25,145,777STRAW 20K -893.291 � 0.0117 26,071,024Table 5.1: VMC 
al
ulations on RDX were 
arried out using 512 pro
essors with 5walkers per pro
essor to 
ompare di�erent initialization methods and equilibrationlengths. Cal
ulations with too few equilibration steps are 
ontaminated by nonequi-librated samples and do not agree with 
al
ulations that are allowed to equilibrate.RDX 
al
ulations initialized with GAWI require 30,000 steps to equilibrate, while 100steps are suÆ
ient when STRAW is used.is 
omposed of 256 4 CPU HP/Compaq Alphaserver ES45s running at 1250 MHz.Cal
ulations using 512 pro
essors, 5 walkers per pro
essor, and varying equilibrationlengths were run until about 26 million samples were 
olle
ted. The results aresummarized in table 5.1.Expe
tation values 
al
ulated using equilibrated walkers should be approximatelyindependent of time, with random 
u
tuations. A long term, low frequen
y drift inan expe
tation value as samples are 
olle
ted is a sign of 
ontamination by nonequili-brated 
on�gurations. Figure 5.5 shows the energy expe
tation value vs the numberof samples 
olle
ted for these 
al
ulations. The left side of the �gure shows the 
al
u-lations initialized with GAWI. In the 
al
ulations with less than 30,000 equilibrationsteps, we see a monotoni
 de
rease in the expe
tation value of the energy as points are
olle
ted. These 
al
ulations are 
ontaminated with high energy, nonequilibrated 
on-�gurations from the beginning of the 
al
ulation, and the expe
tation value de
reasesas equilibrated samples are added. The energy expe
tation value in the 
al
ulationwith 30,000 equilibration steps has the desired behavior, 
u
tuating about the limitwith no long term drift.The 
al
ulations initialized with STRAW used 100 and 20,000 equilibration steps.We use a minimum of 100 equilibration steps in our 
al
ulations as a safety margin to
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Figure 5.6: The energy expe
tation values and standard deviations for two un
ontam-inated RDX VMC 
al
ulations are shown. The 
al
ulations used 512 pro
essors with5 walkers per pro
essor. The eventual answer is within one standard deviation of theexpe
tation value at almost every point during the 
al
ulations. This shows that forun
ontaminated 
al
ulations, the standard deviation of the energy expe
tation valueis a good measure of its 
onvergen
e.be sure that ea
h walker has at least one a

epted move during the equilibration phase.The behavior of the energy expe
tation value in these 
al
ulations is very similar tothat of the 
al
ulation initialized with GAWI using 30,000 equilibration steps. Thesethree 
al
ulations show no signs of 
ontamination. In Table 5.1, we see that theirexpe
tation values all agree to within one standard deviation of ea
h other. Theseresults demonstrate that 100 steps is suÆ
ient for equilibration for RDX ensemblesinitialized with STRAW, while 30,000 equilibration steps are ne
essary when GAWIis used.In QM
Beaver, standard deviations for expe
tation values are 
al
ulated usingDDDA [49℄, whi
h averages samples into blo
ks in order to a

ount for their serial
orrelation. If we examine the results for the 
al
ulations initialized with GAWIusing 10,000, 15,000, and 20,000 equilibration steps in table 5.1, we see that their



57energy expe
tation values do not agree with ea
h other or those of the equilibrated
al
ulations to within one standard deviation. This is important be
ause it showsthat the standard deviation 
al
ulated during a 
ontaminated 
al
ulation does notne
essarily re
e
t the ina

ura
y of its expe
tation value. If a resear
her spe
i�es anequilibration phase that is too short and nonequilibrated 
on�gurations 
ontaminatethe statisti
s, the expe
tation values will be ina

urate, and their standard deviationswill not be a reliable measure of their ina

ura
y.The energy expe
tation value in the 
al
ulation that used GAWI and 25,000 equi-libration steps agrees with the equilibrated results to within one standard deviation,but its behavior in �gure 5.5 still shows signs of 
ontamination by high energy samplesin the beginning of the run.In 
ontrast, �gure 5.6 replots the energy expe
tation value for two of the un
on-taminated 
al
ulations. The error bars show the standard deviation of the expe
tationvalue. For these un
ontaminated 
al
ulations, the eventual answer is within the rangehEi � �hEi at almost every point. In an un
ontaminated 
al
ulation, we see thatthe standard deviation 
al
ulated by DDDA as the 
al
ulation progresses is a goodmeasure of the level of 
onvergen
e of the expe
tation value.5.3.3 Timing and Spatial CorrelationBe
ause it is more 
ompli
ated than GAWI, STRAW takes more time to generatean initial ele
troni
 
on�guration for a walker. The new initialization method wouldbe of little use if the time it took to generate an initial 
on�guration was greaterthan the time saved in equilibration steps. Although 
oordinates are generated forea
h ele
tron individually, the use of splines makes the pro
ess very inexpensive.Generating an initial 
on�guration using STRAW requires less time than two VMCiterations for ea
h of the mole
ules examined in this work.The equilibration phase of a QMC 
al
ulation allows the walkers to be
ome in-dependent of their initial 
on�gurations and, by extension, ea
h other. Sin
e ourobje
tive is to shorten the equilibration phase of the 
al
ulation, an important obje
-
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Figure 5.7: Standard deviation of energy expe
tation values for single pro
es-sor ethanol 
al
ulations using equilibrated, identi
al, and STRAW ensembles after200,000 propagation steps. The points for the equilibrated and STRAW ensemblesare very 
lose to the fun
tion 0:20 �W�0:5, whi
h shows that walkers generated bySTRAW are statisti
ally independent of ea
h other.tion to using STRAW 
ould be raised if it led to spatial 
orrelation, or any kind ofstatisti
al dependen
e within the ensemble of walkers.Testing for spatial 
orrelation in an ensemble of walkers is diÆ
ult. Ve
tors 
an betested for spatial 
orrelation by taking dot produ
ts, but a 
omparison of ele
troni

on�gurations must take into a

ount the indistinguishability of identi
al parti
les andthe symmetry of the mole
ule. We avoid these diÆ
ulties by instead examining thestatisti
al 
onsequen
es of spatial 
orrelation. If the walkers are indeed independentof ea
h other, we expe
t that for a �xed number of iterations, the standard deviationof the energy expe
tation value will be proportional to 1pW , where W is the numberof walkers. Any spatial 
orrelation among the walkers will result in a di�erent trend.Single pro
essor VMC 
al
ulations with 200,000 propagation steps and di�erentensemble sizes were 
arried out using the ethanol mole
ule. The trial fun
tion hasthe form 	VMC = 	SCFJ , where 	SCF is a HF/6-311G**++wavefun
tion 
al
ulated



59using Jaguar [87℄ and J is the Jastrow fun
tion des
ribed in equations 5.12 and 5.13.One series of 
al
ulations was initialized with GAWI and allowed to equilibrate for200,000 steps. We assume the walkers in these ensembles are independent of ea
hother and their initial 
on�gurations. A se
ond series was started with ensemblesof identi
al walkers. These ensembles start with perfe
t spatial 
orrelation. A thirdseries of 
al
ulations was initialized with STRAW and used 100 equilibration steps.Figure 5.7 shows the results for the di�erent ensembles. The points for the equili-brated and STRAW ensembles are 
lose to ea
h other and the fun
tion 0:20 �W�0:5,whi
h is what we expe
t for independent walkers. The points for the identi
al en-sembles, on the other hand, are very 
lose to the fun
tion 0:24 �W�0:3. Be
ause theydo not sample as mu
h 
on�guration spa
e as independent walkers, ensembles with ahigh degree of spatial 
orrelation generate less information than ensembles that areindependent. Although the equilibration phase is very short, the statisti
al behaviorof the STRAW ensembles is very similar to that of the equilibrated ensembles and tothe behavior expe
ted of independent walkers.The initial ele
troni
 
on�gurations generated by STRAW are statisti
ally inde-pendent of ea
h other and in regions of high enough probability density that a longequilibration phase is not ne
essary. The initialization algorithm is based on generalprin
iples of ele
troni
 stru
ture, su
h as energy levels and the Pauli prin
iple. Itdoes not, however, generate 
on�gurations dire
tly with respe
t to �VMC , and is notmeant to substitute for Metropolis sampling.5.3.4 Parallel Cal
ulation EÆ
ien
yThe equilibration phase of a QMC 
al
ulation is an inherently serial step: the walk-ers on ea
h pro
essor must be equilibrated individually, so adding more pro
essorsin
reases the time spent on this phase of the 
al
ulation. Knowing the appropriatenumber of iterations to ex
lude is vital, be
ause leaving out too many wastes 
omputertime, while leaving out too few will result in nonequilibrated values 
ontaminatingthe statisti
s.
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Figure 5.8: RDX 
al
ulations with one walker per pro
essor were run until 1,000,000total samples were 
olle
ted. The 
al
ulations initialized with GAWI used 30,000equilibration steps, while the 
al
ulations initialized with STRAW used 100 equi-libration steps. De
reasing the number of equilibration steps greatly improves theeÆ
ien
y of 
al
ulations with large numbers of pro
essors. The data are �t to� (NPro
essors) = aa+NPro
essors with a = 34:0 for GAWI and a = 12; 514:0 for STRAW.The 
al
ulations of se
tions 5.3.2 and 5.3.3 give us 
on�den
e that STRAW 
angenerate independent initial 
on�gurations for RDX and SiCl4 in regions of highenough density that one hundred equilibration steps is suÆ
ient before 
al
ulatingexpe
tation values. We expe
t that the ele
troni
 stru
ture of other mole
ules 
om-posed of atoms from the �rst three rows of the periodi
 table will be similar enoughto these examples to allow STRAW to be su

essful for them as well.To demonstrate the e�e
t of shortening the equilibration phase of a 
al
ulation,a s
aling experiment was performed on ASCI-QSC. VMC 
al
ulations on RDX were
ondu
ted using 1,000,000 total propagation steps and 1 walker per pro
essor. Follow-ing the results of Se
tion 5.3.2, 30,000 equilibration steps were used in the 
al
ulationsinitialized with GAWI, while 100 equilibration steps were used with STRAW. TheeÆ
ien
y of ea
h 
al
ulation was found using equation 5.7.
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Figure 5.9: VMC 
al
ulations on RDX were 
arried out using 512 pro
essors and 5walkers per pro
essor. The total iterations on the x axis in
lude the equilibrationphase of the 
al
ulations. Initializing the walkers with STRAW de
reases the wall
lo
k time needed to 
al
ulate the RDX energy expe
tation value to within 0.01 aufrom 9.4 hours to 6.3 hours, an improvement of 33%.The points in �gure 5.8 were �t to the fun
tion a=(a + NPro
essors). The valuefor a for GAWI is 34.0, while for STRAW it is 12,514.0. This result 
learly showsthe e�e
t of redu
ing the number of equilibration steps on the eÆ
ien
y of parallel
al
ulations. The experiment has a short statisti
s gathering phase, whi
h makes its
ale parti
ularly badly as the number of pro
essors in
reases. In a realisti
 
al
ulationon RDX, many more steps will have to be used before the expe
tation values 
onvergeto within 
hemi
al a

ura
y. A 
al
ulation with a longer statisti
s gathering phasewill s
ale more favorably as the number of pro
essors in
reases, whi
h 
an be seen byexamining equation 5.7. As 
omputers with large numbers of pro
essors 
ome intogeneral use [80, 42℄, however, the equilibration phase will limit the eÆ
ien
y of any
al
ulation.The most important 
onsequen
e of redu
ing the length of the equilibration phasewith STRAW is that the improvement in parallel eÆ
ien
y will speed the 
al
ula-



62Initialization Eq hEi (au) Steps on E� Wall 
lo
ksteps root pro
 timeGAWI 30K -893.291 � 0.0099 85500 65.0% 9.40hSTRAW 100 -893.287 � 0.0098 57048 99.8% 6.30hTable 5.2: RDX 
al
ulations using 512 pro
essors and 5 walkers per pro
essor wererun until 0.01 au 
onvergen
e in the energy expe
tation value was a
hieved. The 
al-
ulation initialized with GAWI used 30,000 equilibration steps, while the 
al
ulationinitialized with STRAW used 100 equilibration steps. The 
al
ulation initialized withSTRAW took 6.3 hours to 
onverge, while the 
al
ulation initialized with GAWI took9.4 hours.tion of 
onverged expe
tation values. Using an automati
 method to terminate the
al
ulation based on the 
onvergen
e of the energy expe
tation value [49, 50℄, RDX
al
ulations using 512 pro
essors with �ve walkers per pro
essor were run until theexpe
tation value of the energy 
onverged to within 0.01 au or 6.27 k
al/mol. The
al
ulations initialized with GAWI used 30,000 equilibration steps, while the 
al
ula-tions initialized with STRAW used 100 equilibration steps.Table 5.2 summarizes the results from these 
al
ulations, and �gure 5.9 showsthe standard deviation of the energy expe
tation value vs total iterations on the rootpro
essor. The total iterations in
lude the equilibration phase, and we see that the two
al
ulations have very similar 
onvergen
e behavior, with the 
al
ulation initializedwith GAWI o�set by about 30,000 iterations 
ompared to the one initialized withSTRAW. The 
al
ulation initialized with STRAW 
onverged to the desired level in6.3 hours with 99.8% eÆ
ien
y, while the 
al
ulation initialized with GAWI took 9.4hours with 65.0% eÆ
ien
y.5.4 Con
lusionWe have presented and tested STRAW, a simple and automati
 method for generat-ing initial ele
troni
 
on�gurations for QMC 
al
ulations. STRAW is based on thestru
ture of the energy levels of atoms and distributes the ele
trons in annular shells.The ele
trons in ea
h energy level are distributed with respe
t to probability distri-



63butions in the angular 
oordinates so that they avoid ea
h other. The 
on�gurationsgenerated by STRAW are statisti
ally independent of ea
h other and are in regionsof high probability density, whi
h redu
es the length of the equilibration phase ofthe 
al
ulation, during whi
h the statisti
s must be dis
arded. STRAW has beenimplemented in QM
Beaver, an open sour
e QMC program [81℄.Using an appropriate equilibration length is vital, be
ause when the statisti
sare 
ontaminated by nonequilibrated 
on�gurations, both the expe
tation values andtheir standard deviations 
an be ina

urate. STRAW simpli�es the job of the user tospe
ify the equilibration length by generating initial 
on�gurations that show no signsof 
ontamination or spatial 
orrelation after an equilibration phase of one hundrediterations.Shortening the equilibration phase in
reases the eÆ
ien
y of parallel QMC 
al-
ulations and de
reases the amount of 
omputer time needed to 
al
ulate 
onvergedexpe
tation values. For example, using STRAW instead of a standard initializationmethod in 512 pro
essor 
al
ulations de
reases the time needed to 
al
ulate the en-ergy expe
tation value of a trial fun
tion for an RDX mole
ule to within 0.01 au from9.4 hours to 6.3 hours, an improvement of 33%.Using STRAW improves the parallel s
aling of QMC and will in
rease the eÆ-
ien
y of 
al
ulations using tens to hundreds of thousands of pro
essors. This will, inturn, allow highly a

urate simulations on a broader range of 
hemi
ally interestingsystems than is possible today. QMC results will be useful as ben
hmarks for trainingfor
e �elds for mole
ular dynami
s simulations and developing new density fun
tional(DFT) methods. There are several 
lasses of systems that have proven elusive for 
ur-rent DFT methods [91, 92℄. Reprodu
ing QMC results for these systems will be animportant goal for the next generation of DFT methods.Clearly, many other s
hemes for generating initial ele
troni
 
on�gurations forQMC 
al
ulations are possible. The tests for equilibration of the Markov 
hain,initialization time, and spatial 
orrelation des
ribed in the se
tions 5.3.2 and 5.3.3will provide a basis for 
omparison of future initialization s
hemes.
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Chapter 6A Quantum Monte Carlo Study ofThree Peri
y
li
 Hydro
arbonRea
tions
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Abstra
t
Di�usion quantum Monte Carlo 
al
ulations using Hartree-Fo
k, generalized valen
ebond, and multi
on�guration self-
onsistent Field trial fun
tions were 
arried out forthree peri
y
li
 hydro
arbon rea
tions. The enthalpies of a
tivation and rea
tionare 
ompared to experimental, CCSD(T), and CBS-QB3 results, as well as thoseof B3LYP and the re
ently introdu
ed X3LYP, XYG3, and M06 family of densityfun
tional methods.For all three rea
tions, B3LYP geometries and zero point energies 
ombined withDMC ele
troni
 energies 
al
ulated with the appropriate trial fun
tion result in a

u-ra
y 
omparable to CCSD(T) and CBS-QB3. HF trial fun
tions are suÆ
ient for C-C� bonds, while GVB trial fun
tions are ne
essary for � bonds. For mole
ules withmultiple � bonds and transition states with several bonds being formed or broken,MCSCF trial fun
tions must be used.



666.1 Introdu
tionThe advan
es in 
omputing power and ele
troni
 stru
ture theory in re
ent yearshave in
reased the role of simulations in understanding systems in 
hemistry andmaterials s
ien
e. Ele
troni
 stru
ture 
al
ulations 
an provide information on thegeometry, mole
ular orbitals, and vibrations of not only stable mole
ules, but alsotransition states and rea
tion intermediates that are impossible to observe experimen-tally. Understanding the properties of transition states is 
ru
ial in areas su
h as thedevelopment of new 
atalysts and energeti
 materials. Transition states are diÆ
ult
ases for ele
troni
 stru
ture methods, with the errors for most methods larger by afa
tor of three or four for transition states than for stable mole
ules.Quantum Monte Carlo (QMC) is a 
lass of sto
hasti
 ele
troni
 stru
ture meth-ods that 
an, in prin
iple, 
al
ulate expe
tation values to within 
hemi
al a

u-ra
y [57, 59℄. Although the expense of QMC will keep it from repla
ing traditionalmethods su
h as Density Fun
tional Theory (DFT) for routine 
al
ulations, its fa-vorable s
aling [62, 63, 64℄ and parallelizability [65℄ will allow QMC 
al
ulations onsystems too large for other 
omparably a

urate methods. QMC has the potential toresolve disagreements and provide ben
hmark results when other ele
troni
 stru
turemethods are too expensive or not reliable enough for a 
ertain appli
ation.The QMC variants used in this work are variational Monte Carlo (VMC), in whi
hthe adjustable parameters of a trial wavefun
tion are optimized, and di�usion MonteCarlo (DMC), whi
h simulates a di�usion pro
ess to sample the exa
t ground statewavefun
tion of a system. The most 
ommon formulation of DMC uses two mainapproximations. First, the fa
torization of the Green's fun
tion that propagates thewalkers is exa
t only for a time step of zero. In order to propagate the walkers andsample 
on�guration spa
e, however, a �nite time step must be used. As the size ofthe time step in
reases, 
on�guration spa
e is sampled more qui
kly, but the timestep error in
reases. The se
ond sour
e of error is the �xed node approximation, inwhi
h the nodal stru
ture of the exa
t ground state is assumed to be the same asthat of the SCF part of the trial wavefun
tion. In this work, we explore both sour
es



67of error for stable mole
ules and transition states by 
ondu
ting DMC 
al
ulationson three peri
y
li
 hydro
arbon rea
tions. Trial fun
tions were 
onstru
ted for ea
hrea
tion using Hartree-Fo
k (HF), generalized valen
e bond (GVB) and multi
on�g-uration self-
onsistent �eld (MCSCF) wavefun
tions and used in DMC 
al
ulationswith time steps from 10�2 to 10�4 au. The time step and �xed-node errors in thea
tivation barriers and overall rea
tion energies are analyzed to develop guidelines for
al
ulations on larger systems.There are many interesting systems in 
hemistry and materials s
ien
e that are toolarge for highly a

urate SCF methods, and for whi
h DFT methods are unreliable.DMC has the potential to provide a

urate expe
tation values in these 
ases. Be
ausethe DMC results will be
ome the ben
hmarks against whi
h other 
al
ulations arejudged, it is essential that they be a

urate. In order to 
arry out a

urate and eÆ
ientDMC 
al
ulations, resear
hers will have to use the appropriate trial fun
tion and timestep for the system being studied. Studying rea
tions involving small mole
ules, forwhi
h several time steps and trial funtions 
an be 
ompared, and for whi
h the resultsof experiments and other high quality 
al
ulations are available, will provide a baseof knowledge for resear
hers addressing larger problems.6.2 Rea
tionsFigure 6.1 shows the three rea
tions studied in this work. Rea
tion 1 is the 2+2
y
loaddition of ethylene to form 
y
lobutane. Several me
hanisms have been inves-tigated for this rea
tion. The supra-supra pathway with D2h symmetry is a 
lassi
example of a rea
tion forbidden by orbital symmetry [93℄. In the supra-supra path-way with C2v symmetry, a biradi
al tetramethylene 
hain is formed, whi
h 
loses toform 
y
lobutane. In the supra-antara pathway, whi
h we examine in this work, theC-C bond of one ethylene twists during the 
ourse of the rea
tion. This me
hanismis allowed by orbital symmetry, but has a very high a
tivation barrier be
ause bond-ing 
annot be maintained as the rea
tion pro
eeds. In the transition state, the four
arbons have a dihedral angle of about 40 degrees.



68
2

1

3

Figure 6.1: Rea
tions 1, 2, and 3.Rea
tion 2 is the 4+2 
y
loaddition of ethylene and butadiene to form 
y
lo-hexene. This thermally allowed rea
tion is the prototype Diels-Alder rea
tion andrepresents an important 
lass of rea
tions in organi
 synthesis. Rea
tion 3 is the ringopening of 
y
lobutene to form butadiene. For rea
tion 3, we examine the symmetry-allowed 
onrotatory pathway, in whi
h the two terminal CH2 groups rotate in thesame dire
tion. The disrotatory pathway is forbidden by orbital symmetry.Although these rea
tions involve small mole
ules, with at most six 
arbon atoms,the breaking and forming of � and � bonds make them diÆ
ult 
ases for densityfun
tional methods, with most methods predi
ting rea
tion enthalpies with errors offour to �ve k
al/mol. We 
ompare the DMC results with those of B3LYP and there
ently developed X3LYP, XYG3, and the M06 family of density fun
tional methods.6.3 Experimental and Computational ResultsIn all three me
hanisms for rea
tion 1, bonds must be broken for the rea
tion tohappen. As a result, the a
tivation enthalpies are very high and the rea
tion is diÆ
ultto 
arry out under thermal 
onditions. Reliable experimental results for the enthalpiesof a
tivation and rea
tion are not available. Using the experimental enthalpies of



69formation of ethylene [94℄ and 
y
lobutane [95℄, we 
al
ulate �H0K = �16:5 k
al/molfor rea
tion 1. In 2002, Sakai 
al
ulated an MP2/CAS/6-311+G(d,p) 0K a
tivationenthalpy for the supra-antara pathway of 77.6 k
al/mol [96℄. In 2006, Sirjean et al.
al
ulated a CBS-QB3 [97℄ 0K enthalpy for rea
tion 1 of -16.66 k
al/mol [98℄.Detailed experimental and 
omputational results for rea
tions 2 and 3 were as-sembled by Guner et al. in 2003 [99℄. They 
ompared HF, MP2, CASSCF, CASPT2,B3LYP, BPW91, MPW1K, KMLYP, and CBS-QB3 results with experiment for 11peri
y
li
 hydro
arbon a
tivation and rea
tion enthalpies. Rea
tions 2 and 3 ofthis work are rea
tions 1 and 7, respe
tively, of theirs. We use their experimen-tal values of �H0K = �39:6 k
al/mol and �Hz0K = 23:3 � 2 k
al/mol (later re-vised to 25.0 k
al/mol [100℄) for rea
tion 2 and �H0K = �10:6 � 1 k
al/mol and�Hz0K = 31:9� 0:2 k
al/mol for rea
tion 3.6.4 Computational MethodsThe stru
tures of the rea
tants, produ
ts, and transition states of rea
tions 1, 2, and3 were optimized with Jaguar [87℄ using B3LYP DFT [33℄ and the 6-311G** basisset [101℄. Frequen
y 
al
ulations were 
arried out to verify the optimized geometriesand 
al
ulate zero point energies. All stable mole
ules had no negative frequen
ies,and the transition states for rea
tions 2 and 3 ea
h had one negative frequen
y 
orre-sponding to the desired rea
tion. The transition state for rea
tion 1 had two negativefrequen
ies, one 
orresponding to the rea
tion and the another 
orresponding to aro
king motion. Zero point energies were 
al
ulated using uns
aled frequen
ies.Ab initio SCF 
al
ulations were 
ondu
ted with GAMESS [102℄ using the B3LYP/6-311G** geometries to provide trial fun
tions for the DMC 
al
ulations. The aug-

-pVTZ basis set was obtained from the EMSL website [103, 104℄ and used for all ofthe wavefun
tions. HF wavefun
tions were 
al
ulated for all mole
ules to provide a\zero 
orrelation" starting point. GVB and MCSCF wavefun
tions were 
al
ulatedto see the e�e
t of 
orrelated trial fun
tions on the QMC results.In a GVB-PP 
al
ulation, geminal pairs are de�ned, ea
h of whi
h 
onsists of two



70orbitals and two singlet paired ele
trons. The �rst orbital is usually a bonding orbitalo

upied in the HF 
on�guration. The se
ond orbital is usually the 
orrespondingantibonding orbital, orthogonal to the �rst and uno

upied in the HF 
on�guration.The two orbitals are 
ombined to form two singlet paired GVB orbitals that allowthe ele
trons to avoid ea
h other [16℄.For rea
tion 1, two sets of GVB wavefun
tions were 
al
ulated. The �rst de�nedtwo geminal pairs for the produ
t, transition state, and rea
tants, 
ontaining theele
trons and orbitals involved in the rea
tion. The � and �� orbitals of ethylene wereused as a geminal pair. Two nonneighboring � bonds of 
y
lobutane were 
orrelatedwith their �� orbitals, and the 
orresponding intermediate bonds of the transitionstate were 
orrelated with their antibonding orbitals. Be
ause these wavefun
tionsinvolved two ele
tron pairs and four orbitals, they are labeled GVB 2,4. Be
ause theC-C bonds of 
y
lobutane are equivalent, a se
ond set of GVB wavefun
tions were
al
ulated with four geminal pairs for ea
h mole
ule. All four � bonds of 
y
lobutane,the � and � orbitals of ethylene, and the 
orresponding four orbitals of the transitionstate were 
orrelated. These wavefun
tions are labeled GVB 4,8.GVB wavefun
tions were 
al
ulated for the mole
ules of rea
tions 2 and 3 withgeminal pairs for the ele
trons and orbitals involved in the rea
tion. Three pairs in sixorbitals were used for rea
tion 2, and two pairs in four orbitals were used for rea
tion3. In an MCSCF 
al
ulation, an a
tive spa
e 
onsisting of a subset of the orbitalsand ele
trons of a mole
ule is de�ned. A CI 
al
ulation is 
arried out in whi
h thea
tive orbitals are o

upied. The orbitals and CI expansion 
oeÆ
ients are optimized,giving a very general des
ription of the ele
troni
 stru
ture of the mole
ule [13℄. Ifa full CI 
al
ulation is used, and all possible o

upations of the a
tive orbitals are
onsidered, the 
al
ulation is 
alled a Complete A
tive Spa
e SCF (CASSCF) [14℄ orFully Optimized Rea
tive Spa
e (FORS) [15℄ 
al
ulation.CASSCF wavefun
tions were 
al
ulated for the mole
ules using the same a
tiveorbitals as the GVB 
al
ulations. CASSCF wavefun
tions with an a
tive spa
e offour ele
trons in four orbitals and eight ele
trons in eight orbitals were 
al
ulated for



71rea
tion 1. An a
tive spa
e of six ele
trons in six orbitals was used for rea
tion 2, andfour ele
trons in four orbitals for rea
tion 3. For simpli
ity, the MCSCF wavefun
tionswere labeled in the same manner as the GVB wavefun
tions.Density fun
tional theory (DFT) is 
urrently the most popular way for resear
hersto in
lude the e�e
ts of ele
tron 
orrelation in 
al
ulations. The small expense, a
-
ura
y, and favorable s
aling of DFT 
al
ulations have enabled theorists to makesigni�
ant 
ontributions to 
hemistry, physi
s, and materials s
ien
e. DFT methodsare based on the theorem of Hohenberg and Kohn, whi
h proves the existen
e ofa fun
tional of the ele
tron density that will give the exa
t energy [27℄. Pra
ti
alimplementations do not deal with the ele
tron density dire
tly, but use the orbitalformulation of Kohn and Sham to express the wavefun
tion [28℄. New density fun
-tionals are 
onstantly being introdu
ed with parameters optimized for 
ertain 
lassesof rea
tions, but the goal of 
onsistent results within 
hemi
al a

ura
y for a broadrange of systems has not yet been a
hieved. The most widely used DFT method isB3LYP, introdu
ed by Be
ke in 1993 [33℄.In this work, we 
arried out 
al
ulations on rea
tions 1, 2, and 3 using threere
ently introdu
ed density fun
tional methods.The X3LYP fun
tional is based on the exa
t form of the ex
hange energy densityfor an ele
tron density de
aying with Gaussian-like behavior at long range [34℄. Anex
hange fun
tional with the 
orre
t behavior is des
ribed as a linear 
ombination ofthe Be
ke [30℄ and Perdew-Wang [105℄ ex
hange fun
tionals. X3LYP was designedto improve the a

ura
y for non
ovalent intera
tions, su
h as hydrogen bonds andele
trostati
 and van der Waals intera
tions, for use in simulating the binding ofligand mole
ules with proteins. X3LYP was demonstrated to have ex
ellent resultsfor nonbonded systems su
h as noble gas dimers and water 
lusters, as well as forheats of formation, ionization potentials, and ele
tron aÆnities.The M06 suite is a family of four density fun
tional methods, ea
h parameterizedfor di�erent systems. M06 is parameterized for both metals and nonmetals, whileM06-2X has twi
e the nonlo
al ex
hange and is intended for nonmetals only [35℄.M06-L is a lo
al fun
tional, whi
h redu
es the 
omputational expense for large sys-



72tems [106℄. M06-HF in
ludes the full HF ex
hange energy for the Kohn-Sham orbitals,whi
h makes it suitable for one ele
tron systems and long range 
harge transfer ex
itedstates [107℄.The XYG3 fun
tional in
ludes an exa
t ex
hange term as well as informationabout the uno

upied Kohn-Sham orbitals in a se
ond-order perturbation theoryterm [36℄. The PT2 term 
auses the method to s
ale less favorably than other densityfun
tionals, as O (N5) instead of O (N4), but gives XYG3 extremely high a

ura
yfor enthalpies of formation and rea
tion barriers.6.4.1 Quantum Monte CarloThe distinguishing feature of QMC 
al
ulations is the use of ele
troni
 
on�gura-tions generated randomly with respe
t to quantum me
hani
al probability densitiesto 
al
ulate expe
tation values [56, 66℄. In variational Monte Carlo (VMC), the 
on-�gurations are used to optimize the adjustable parameters of the wavefun
tion.First, the expression for the expe
tation value of the energy of a trial wavefun
tionis rewritten as a weighted average:hEi = R d~R 	T �~R� Ĥ	T �~R�R d~R j	T �~R� j2 (6.1)= R d~R j	T �~R� j2EL �~R�R d~R j	T �~R� j2 (6.2)= Z d~R �VMC �~R�EL �~R� ; (6.3)where Ĥ is the Hamiltonian operator for the system and ~R is a 3N -dimensionalve
tor 
ontaining the 
oordinates of the N ele
trons of the mole
ule. In equation 6.3,�VMC �~R� is the probability density for the ele
troni
 
on�guration ~R:�VMC �~R� = j	T �~R� j2R d~R j	T �~R� j2 : (6.4)



73EL �~R� is its lo
al energy: EL �~R� = Ĥ	T �~R�	T �~R� : (6.5)A series of M independent ele
troni
 
on�gurations, n~Rio, is generated with re-spe
t to �V MC using the Metropolis algorithm [54℄. The 
on�gurations are used to
al
ulate the expe
tation value of the energy:hEi = 1M MXi EL �~Ri��O0�s 1M1A : (6.6)Be
ause the trial fun
tions are evaluated sto
hasti
ally, they do not have to beanalyti
ally integrable, whi
h gives resear
hers 
onsiderable freedom in 
hoosing theirform. In most 
ases, the trial fun
tions are written in the following form:	T =  Xi 
i	SCFi ! J; (6.7)where the 	SCFi are one or a small number of Slater determinant wavefun
tions
al
ulated by traditional ele
troni
 stru
ture methods su
h as HF, GVB, or MCSCF.The Jastrow fun
tion, J , is a symmetri
 fun
tion of the interparti
le 
oordinatesthat a

ounts for short range 
orrelations and allows the trial fun
tion to satisfy thequantum me
hani
al 
usp 
onditions for 
ollisions between parti
les [9℄.Most VMC methods employ 
orrelated sampling, in whi
h expe
tation values forseveral sets of parameters are 
al
ulated with one set of 
on�gurations. This te
hniqueallows the di�eren
es between sets of parameters to be determined with mu
h higherpre
ision than if the results from separate runs are 
ompared [66℄. Algorithms thatminimize a 
ombination of the expe
tation value of the energy and its varian
e tooptimize the adjustable parameters of the trial fun
tions Jastrow have been shown tobe e�e
tive and eÆ
ient [67℄.In Di�usion Monte Carlo (DMC), a mixed distribution is de�ned:fDMC �~R; �� = � �~R; ��	T �~R� ; (6.8)



74where 	T �~R� is a trial fun
tion that approximates the ground state of the systemand � �~R; �� satis�es the time-dependent S
hr�odinger equation for the system.The mixed distribution satis�es a Fokker-Plan
k equation:� ��� f �~R; �� = ��12r2 +r � V �~R�� S �~R�� f �~R; �� ; (6.9)where V �~R� is the lo
al velo
ity of the trial fun
tion:V �~R� = r	T �~R�	T �~R� ; (6.10)and S �~R� is de�ned in terms of its lo
al energy:S �~R� = ET � EL �~R� : (6.11)ET is a shift in energy that approximates the true ground state energy.In order to propagate equation 6.9 with � , an equivalent integral equation iswritten: f �~Y ; � + d�� = ed�ET (�+d�) Z d~R G �~Y ; ~R; d�� f �~R; �� ; (6.12)where G �~Y ; ~R; d�� is the Green's fun
tion for the 
ase ET = 0.The three terms on the right side of equation 6.9 des
ribe di�usion, drift, andbran
hing pro
esses. The exa
t Green's fun
tion 
annot be written, but it 
an beapproximated by a produ
t of Green's fun
tions for the three individual pro
esses:G �~Y ; ~R; d�� � 1(2��)3N=2 Æ h~Z � ~R� V �~R� d�i�Z d~Z exp 264�~Y � ~Z�22d� 375� (6.13)e� 12 [EL(~Y )+EL(~R)℄d� +O �d� 2� :Be
ause the di�usion, drift, and bran
hing terms do not 
ommute, equation 6.13 is
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t only for d� = 0. In DMC 
al
ulations, expe
tation values are 
al
ulated forseveral values of d� and extrapolated to d� = 0. Be
ause 
on�guration spa
e issampled more slowly, the number of iterations needed to a
hieve a 
ertain level of
onvergen
e in
reases when the time step size is de
reased.As � ! 1, fDMC approa
hes f0 = �0	T , where �0 is the true ground statewavefun
tion for the system. For operators that 
ommute with the Hamiltonian,expe
tation values 
al
ulated using this distribution equal those of the exa
t groundstate. In order for f0 to be sampled, it must be interpreted as a density. Sin
e a density
annot be negative, 	T and �0 must have the same sign throughout 
on�gurationspa
e.Many ele
tron wavefun
tions have positive and negative regions separated bynodes, on whi
h they have zero value. In order for 	T and �0 to have the samesign throughout 
on�guration spa
e, they must have the same nodal stru
ture. Un-fortunately, it is impossible to 
onstru
t a trial fun
tion with the nodal stru
ture ofthe exa
t ground state.The simplest solution to the nodal problem is known as the �xed node approxi-mation, in whi
h the nodes of the exa
t wavefun
tion are assumed to be the same asthose of the trial fun
tion. The nodes are enfor
ed by reje
ting any proposed movethat 
rosses a node and 
hanges the sign of 	T .Fixed node DMC imposes a boundary 
ondition on the ground state wavefun
tionthat it vanish at the nodes of the trial fun
tion. The simulation will 
onverge to thebest possible solution to the S
hr�odinger equation within the nodal stru
ture of thetrial fun
tion. The resulting energy will be an upper bound to the true energy andwill be variational with respe
t to the nodal stru
ture [73℄. It has been shown thatthe error in the �xed node energy is se
ond order in the error of the nodes [74℄.Be
ause the Jastrow fun
tion is symmetri
 with respe
t to parti
le inter
hange, theSCF part of the trial fun
tion determines its nodal stru
ture. For a DMC 
al
ulationto give a

urate expe
tation values, it is essential that the trial fun
tion use theappropriate SCF wavefun
tion.



766.4.2 QMC Pro
eduresA Jastrow fun
tion similar to that of Drummond et al. [71℄ was used for all of thetrial fun
tions. Their two body Jastrow is a polynomial that goes to zero at a 
uto�distan
e:�ij (rij) = (rij � Lij)C �(Lij � rij) �0ij + " �ij(�Lu)C + �0ijCLij # rij + NXl=2 �lijrlij! ;(6.14)where rij is the distan
e between parti
les i and j. � is the Heaviside fun
tion, andLij is the 
uto� distan
e. �ij enfor
es the 
usp 
ondition for the parti
les: it is setto 12 for opposite spin ele
trons, 14 for same spin ele
trons, and the opposite of thenu
lear 
harge if parti
les i and j are an ele
tron and a nu
leus. If C = 2, the gradientof �ij is 
ontinuous at the 
uto� but the se
ond derivative is dis
ontinuous. If C = 3,both the gradient and se
ond derivative are 
ontinuous at the 
uto�, making the lo
alenergy also 
ontinuous. The 
uto� distan
e and 
oeÆ
ients �lij are adjustable.We used C = 3 and N = 8 for every Jastrow fun
tion and s
aled the interparti
ledistan
e by letting sij = rijLij . We found the 
uto� distan
e and other parametersmu
h easier to optimize when the distan
es were s
aled.The mole
ular orbitals were modi�ed near the nu
lei using the pro
edure of Maet al. [72℄. The part of an orbital arising from s-type basis fun
tions 
entered ona parti
ular nu
leus was repla
ed within a radius of 
orre
tion of that nu
leus by afun
tion of the following form:~� = C + sgn h~� (0)i exp [p (r)℄ ; (6.15)where sgn h~� (0)i is �1, re
e
ting the sign of the repla
ement orbital at the nu
leus. Cis a shift 
hosen so that the repla
ement orbital does not 
hange sign within the radiusof 
orre
tion. The 
oeÆ
ients in the polynomial p (r) are 
al
ulated by optimizingthe behavior of the lo
al energy while requiring the repla
ement orbital to satisfy theele
tron-nu
leus 
usp 
ondition and the value and �rst and se
ond derivatives to be
ontinuous at the radius of 
orre
tion. With these modi�
ations, the orbitals satisfy



77the ele
tron-nu
leus 
usp 
ondition, so the ele
tron-nu
leus 
usp parameters in theJastrow are set to zero.The quantum Monte Carlo 
al
ulations were 
arried out with QM
Beaver, a QMCprogram developed in the Goddard group at Calte
h [81℄. The interpro
essor 
om-muni
ation and statisti
s gathering were were done using QMC-MW, a manager-worker model that automati
ally balan
es the workload between the pro
essors [50℄.The statisti
s were analyzed by the dynami
 distributed de
orrelation algorithm(DDDA) [49℄, a reformulation of the Flyvberg-Peterson blo
king algorithm [108℄ thatgreatly redu
es the amount of data that has to be 
ommuni
ated when the results aregathered. The initial ele
troni
 
on�gurations for the walkers were generated withSTRAW, an algorithm that generates ele
troni
 
on�gurations in regions of highprobability density [109℄.The Jastrow parameters and CI expansion 
oeÆ
ients were optimized with thelinear method of Umrigar et al. [69℄. The DMC algorithm of Umrigar et al. was usedto propose and a

ept ele
troni
 
on�gurations [55℄, and the algorithm of Assaraf etal. was used to reweight and bran
h the walkers [76℄.6.5 Results and Dis
ussionVMC 
al
ulations were 
arried out for every trial fun
tion to optimize the CI 
oef-�
ients and adjustable Jastrow parameters. The VMC optimizations were run usingfour pro
essors with an ensemble of 100 walkers per pro
essor. Using the optimizedtrial fun
tions, DMC 
al
ulations were 
arried out on super
omputers at Los Alamosand Lawren
e Livermore National Laboratories. DMC 
al
ulations run on Coyote atLANL and hera at LLNL used 512 pro
essors with 100 walkers per pro
essor, whileDMC 
al
ulations run on uBGL at LLNL used 16,384 pro
essors with 100 walkersper pro
essor. The DMC 
al
ulations were typi
ally run for 12 hours at a time andrestarted from 
he
kpoint �les until the energy expe
tation value 
onverged to within1:5 � 10�4 au or about 0.09 k
al/mol. DMC 
al
ulations were run with time stepsof 0.01, 0.003, and 0.001 au for every mole
ule. In addition, DMC 
al
ulations with



78time steps of 0.0003 and 0.0001 au were run for ethylene, 
y
lobutane, 
y
lobutene,and butadiene. Limitations in available 
omputer time prevented these 
al
ulationsfrom being run for 
y
lohexene and the transition states.The DMC expe
tation values for ea
h trial fun
tion and time step are shown in�gures 6.2 through 6.11. The expe
tation values for ea
h trial fun
tion were �t to thefun
tion a + b (d�) + 
 (d�)2. The time step error for every trial fun
tion is positiveand in
reases with the time step. The �t fun
tion should in
rease with d� , but insome 
ases, it has a maximum between d� = 0:003 and d� = 0:01. Adding termsto the polynomial did not alleviate this behavior or improve the �t of the fun
tion.Sin
e the fun
tion is being used to extrapolate the expe
tation values to the d� = 0limit and the �t is uniformly ex
ellent in the small d� region, the in
orre
t behaviorof the fun
tion for large d� was ignored.6.5.1 Rea
tion 1Figure 6.2 shows the DMC results for ethylene. It is easy to see the nodal and timestep errors in the 
al
ulations. The HF trial fun
tion has a nodal error, fairly 
onstantwith respe
t to time step, of approximately 0.004 au or 2.5 k
al/mol 
ompared tothe 
orrelated trial fun
tions. The DMC/GVB 1,2 and DMC/MCSCF 1,2 results
oin
ide for every time step. These wavefun
tions di�er only in their lo
alization,whi
h should not a�e
t their DMC energy. It is interesting to note the GVB 2,4 trialfun
tion, whi
h has lower SCF and VMC energies than the GVB 1,2 trial fun
tion,has a DMC energy approximately 0.35 k
al/mol higher than that of the one pair GVBtrial fun
tion. The two pair MCSCF trial fun
tion has a DMC energy approximately0.2 k
al/mol lower than the one pair trial fun
tions. Trial fun
tions with lower SCFenergy do not ne
essarily have higher quality nodes for DMC 
al
ulations.The DMC results for TS1 are shown in �gure 6.3. The results for the MC-SCF 2,4 and MCSCF 4,8 trial fun
tions are almost identi
al for every time step. TheDMC/GVB 2,4 results are approximately 6 k
al/mol higher than the DMC/MCSCFenergies. The GVB 4,8 trial fun
tion, whi
h has lower SCF and VMC energies than
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Figure 6.2: DMC expe
tation values for the energy of ethylene. The expe
tationvalues are �t to the fun
tion a + b (d�) + 
 (d�)2. The expe
tation values for theGVB 1,2 andMCSCF 1,2 trial fun
tions 
oin
ide at every time step. The energy forthe GVB 2,4 trial fun
tion is slightly higher than that of the GVB 1,2 trial fun
tionat every time step, and the energy for the HF trial fun
tion is 
onsiderably higherthose of the 
orrelated trial fun
tions at every time step.the GVB 2,4 trial fun
tion, has a DMC energy approximately 1 k
al/mol higher thanthe GVB 2,4 trial fun
tion. On
e again, we see adding GVB pairs de
reases thequality of the nodes of the trial fun
tion and raises the DMC energy. The energiesfor the HF trial fun
tion are about 1 k
al/mol above the GVB 4,8 DMC energies.Figure 6.4 shows the DMC results for 
y
lobutane. The DMC results for all �vetrial fun
tions are within 1 k
al/mol of ea
h other for every time step. Cy
lobutaneis the only saturated hydro
arbon studied in this work, and these results show 
orre-lating C-C � bonds does not signi�
antly 
hange the nodes for DMC 
al
ulations.Figure 6.5 shows the enthalpies at 0K of a
tivation and rea
tion for rea
tion 1,
al
ulated using DMC ele
troni
 energies and B3LYP/6-311G** geometries and zeropoint energies. The results for ea
h time step and trial fun
tion are plotted withpoints, and the results for ea
h trial fun
tion extrapolated to d� = 0 are plotted
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Figure 6.3: DMC expe
tation values for the energy of TS1. The expe
tation valuesare �t to the fun
tion a+ b (d�)+ 
 (d�)2. The expe
tation values for the MCSCF 2,4and MCSCF 4,8 trial fun
tions 
oin
ide for the 0.003 and 0.001 au time steps. Theenergy for the GVB 4,8 trial fun
tion is higher than that of the GVB 2,4 trial fun
tionfor every time step.with dotted lines. The experimenal value for the overall rea
tion enthalpy is plottedas a solid line. The DMC results for all four 
orrelated trial fun
tions are within1 k
al/mol of the experimental value, but the HF/DMC result is about 4 k
al/moltoo low. The large nodal error in the HF trial fun
tion for ethylene skews the resultfor the rea
tion far outside the desired a

ura
y.We do not have an experimental or high quality ab initio a
tivation enthalpy forrea
tion 1. The DMC/GVB a
tivation enthalpies are about 79 k
al/mol, while theDMC/MCSCF results are about 74 k
al/mol. The DMC/HF value of 76 k
al/molis 
losest to the MP2//CAS/6-311G(d,p) result of 77.6 k
al/mol [96℄, but we do not
onsider that value to be de�nitive.
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Figure 6.4: DMC expe
tation values for the energy of 
y
lobutane. The expe
tationvalues are �t to the fun
tion a+b (d�)+
 (d�)2. The energies for all �ve trial fun
tionsare very similar at every time step. Correlated trial fun
tions do not signi�
antly
hange the DMC energy for 
y
lobutane.6.5.2 Rea
tion 2The DMC results for butadiene are shown in �gure 6.6. The DMC/GVB 2,4 en-ergies are about 4 k
al/mol below the HF values and about 1 k
al/mol above theDMC/MCSCF 2,4 energies. Figure 6.7 shows the DMC results for TS2. The DMC/GVB 3,6energies are about 1.25 k
al/mol below the DMC/HF energies and about 6.25 k
al/molabove the DMC/MCSCF 3,6 energies. In �gure 6.8, the DMC/GVB 3,6 and DMC/MCSCF 3,6energies for 
y
lohexene are almost identi
al, and the DMC/HF energies are about2.5 k
al/mol higher. In these three �gures, we see that for 
y
lohexene, a mole
ulewith one C-C � bond, the GVB and MCSCF trial fun
tions have almost identi
alresults, while for the transition state, in whi
h three � bonds are being broken andtwo � bonds and one � bond are being formed, the DMC/MCSCF 3,6 energy is sig-ni�
antly lower than the DMC/GVB 3,6 energy. The nodal error for the GVB 2,4trial fun
tion for butadiene is about 1 k
al/mol 
ompared to the MCSCF 2,4 trial



82fun
tion.The enthalpies of a
tivation and rea
tion for rea
tion 2 are shown in �gure 6.9.The results for ea
h time step and trial fun
tion are plotted with points, and theresults for ea
h trial fun
tion extrapolated to d� = 0 are plotted with dotted lines.The experimenal and CBS-QB3 values are plotted with solid lines. For the overallenthalpy, the experimental, CBS-QB3, and 
orrelated DMC results are all withinabout 2 k
al/mol of ea
h other. The DMC/HF results are about 4 k
al/mol too low.The DMC/MCSCF 3,6 results are about 2 k
al/mol higher than the experimentalvalue, but only about 1 k
al/mol higher than the CBS-QB3 result. For the a
tivationenthalpy, the DMC/MCSCF 3,6 and DMC/HF results are within about 0.5 k
al/molof ea
h other, and within about 2 k
al/mol of experiment. The DMC/GVB 3,6 resultis about 5 k
al/mol higher than the experimental value. The CBS-QB3 result is about2 k
al/mol lower than the experimental value.6.5.3 Rea
tion 3Figure 6.10 shows the DMC results for 
y
lobutene. For this mole
ule, the DMC/GVB 2,4and DMC/MCSCF 2,4 energies are almost identi
al for every time step, while theDMC/HF energies are about 2.5 k
al/mol higher. The results for TS3 are shown in�gure 6.11. For this transition state, the DMC/GVB 2,4 energy is about 2.5 k
al/molbelow the DMC/HF result and about 2.2 k
al/mol above the DMC/MCSCF 2,4 en-ergy.The results for the a
tivation and overall enthalpies for rea
tion 3 are shownin �gure 6.12. The DMC results for ea
h trial fun
tion and time step are plottedwith points, and the results for ea
h time step extrapolated to d� = 0 are plottedwith dotted lines. The experimental and CBS-QB3 results are plotted with solidlines. In this 
ase, the DMC/HF results for the overall 
hange in enthalpy are within0.5 k
al/mol of experiment, while the DMC/GVB 2,4 and DMC/MCSCF 2,4 re-sults are about 2 and 3 k
al/mol too low, respe
tively. The 
orrelated DMC results,however, are both within 1 k
al/mol of the CBS-QB3 value. For the a
tivation en-



83thalpy, the DMC/MCSCF 2,4 results are about 2 k
al/mol above the experimentaland CBS-QB3 values. The DMC/GVB 2,4 and DMC/HF values are about 4.5 and6.5 k
al/mol, respe
tively, above the experimental and CBS-QB3 values.6.5.4 Dis
ussionCondu
ting DMC 
al
ulations for several time steps and extrapolating the results tod� = 0 greatly in
reases their 
omputational expense. Although the DMC expe
-tation values for the individual mole
ules have 
onsiderable time step errors, they
an
el out when energy di�eren
es for rea
tions are 
al
ulated. In the enthalpies ofa
tivation and rea
tion for rea
tions 1, 2, and 3, the DMC results for every timestep are within 1 k
al/mol of the extrapolated value. There is no 
onsistent trendin the extrapolated expe
tation values 
ompared to their values at �nite time steps.Sin
e extrapolating the energies to d� = 0 does not signi�
antly 
hange the resultsfor rea
tions, it is unne
essary when energy di�eren
es are being 
onsidered, and asingle time step 
an be used. For the rest of this work, only the DMC results withd� = 0:01 au will be 
onsidered.Table 6.1 
ontains the SCF, VMC, and DMC expe
tation values for the energyof ea
h trial fun
tion. The VMC and DMC 
al
ulations used a time step of 0.01 au.The per
entage of the 
orrelation energy re
overed by the Jastrow fun
tion is remark-ably 
onstant for every trial fun
tion, at about 77%. This result indi
ates the roleof the Jastrow fun
tion is very similar in all of the trial fun
tions 
onsidered. Thetrial fun
tions represent the ele
troni
 stru
ture of 
hain and 
y
li
al, saturated andunsaturated, stable hydro
arbons and transition states. The 
onsisten
y of the abil-ity of the Jastrow to re
over 
orrelation energy in these diverse mole
ules suggestsit a
ts primarily within the atoms, and does not have mu
h e�e
t in the bondingregions. If the Jastrow only in
uen
es the ele
troni
 stru
ture within the atoms,it may be possible to optimize a set of ele
tron-nu
lear 
orrelation fun
tions usingatomi
 or simple mole
ular 
al
ulations, and use them without optimization in largersystems. If the number of parameters to be optimized were redu
ed to only those in



84the ele
tron-ele
tron 
orrelation fun
tions and the CI expansion 
oeÆ
ients withoutsa
ri�
ing a

ura
y, optimization would be simpli�ed and 
al
ulations 
ould pro
eedmore qui
kly to the DMC phase.Table 6.2 
ontains the ab initio, QMC, and DFT results for the a
tivation andoverall enthalpy 
hanges for rea
tion 1. The DMC/GVB and DMC/MCSCF resultsare all within about 1 k
al/mol of experiment. The B3LYP result is about 4 k
al/moltoo high, while the M06 results are between 5.5 and 2.5 k
al/mol too low. XYG3is the best of the DFT methods, with an error of -0.7 k
al/mol. The CBS-QB3result is within 0.2 k
al/mol of experiment, while the error for CCSD(T)/6-31G* is-1.7 k
al/mol.The results for rea
tion 2 are shown in table 6.3. For the overall enthalpy 
hange,the DMC/GVB 3,6 result is within about 0.1 k
al/mol of the experimental value. TheDMC/MCSCF 3,6 result is about 1.3 k
al/mol higher than experiment, but is within0.03 k
al/mol of the CBS-QB3 value. The DMC/HF enthalpy is about 4.3 k
al/molbelow experiment, and the CCSD(T)/6-31G* result is about 0.8 k
al/mol below ex-periment. The B3LYP result is about 9 k
al/mol higher than the experimental value,while M06, M06-2X, and M06-HF are 2 to 2.5 k
al/mol lower than experiment. TheM06-L and XYG3 values are about 1 k
al/mol higher than than experiment.While the DMC/GVB 3,6 result for the overall enthalpy 
hange of rea
tion 2agrees with experiment, the DMC/GVB 3,6 a
tivation enthalpy is about 6.5 k
al/moltoo high. The DMC/HF a
tivation enthalpy is about 1 k
al/mol too high, and theDMC/MCSCF 3,6 result is about 1.5 k
al/mol too high. The CBS-QB3 a
tivationenthalpy is about 2.1 k
al/mol below experiment, and the CCSD(T)/6-31G* resultis about 2.5 k
al/mol above experiment. The B3LYP a
tivation enthalpy is about2 k
al/mol higher than experiment, while the M06 results are 1.5 to 7.5 k
al/mollower. The XYG3 a
tivation enthalpy is about 0.6 k
al/mol above the experimentalvalue.Table 6.4 
ontains the results for rea
tion 3. The DMC/HF overall enthalpy
hange is about 0.1 k
al/mol lower than experiment. The DMC/GVB 2,4 andDMC/MCSCF 2,4 values are about 1.8 and 2.8 k
al/mol, respe
tively, lower than



85experiment, but are both within 1 k
al/mol of the CBS-QB3 value. The CCSD(T)/6-31G* enthalpy is about 1.2 k
al/mol below experiment. The B3LYP enthalpy 
hangeis about 4.5 k
al/mol lower than experiment, while the M06 results are all withinabout 1 k
al/mol of experiment. The XYG3 result is about 2.4 k
al/mol below theexperimental value.The DMC/MCSCF 2,4 a
tivation enthalpy is about 2.5 k
al/mol higher than ex-periment, while the GVB 2,4 and HF values are about 4.5 and 6 k
al/mol higher thanexperiment, respe
tively. The B3LYP a
tivation enthalpy is the 
losest of all meth-ods to experiment, agreeing within 0.16 k
al/mol. The M06-HF a
tivation enthalpyis about 0.5 k
al/mol higher than experiment, while the other M06 methods are 3 to4 k
al/mol higher. The XYG3 a
tivation enthalpy is about 1.4 k
al/mol above theexperimental value.Table 6.5 shows the di�eren
es from the experimental values for the DMC/MCSCFand DFT a
tivation and overall enthalpies for rea
tions 1, 2, and 3. The result withthe lowest error for ea
h quantity is in bold font.6.6 Con
lusionIn summary, we were able to 
al
ulate �H0K and �Hz0K values to within experimentala

ura
y for three diÆ
ult peri
y
li
 hydro
arbon rea
tions using B3LYP/6-311G**geometries and zero point energies and DMC ele
troni
 energies. The DMC trialfun
tions 
onsisted of a two body Jastrow and an antisymmetri
 wavefun
tion 
on-stru
ted with HF, GVB, or MCSCF and the aug-

-pVTZ basis set. A time step of0.01 au was found to be a

eptable, making extrapolation to d� = 0 unne
essary.Be
ause of the formation and breaking of C-C � and � bonds, Rea
tions 1, 2,and 3 are diÆ
ult 
ases for DFT. Compared to the experimental rea
tion enthalpies,B3LYP has errors of about 4, 9, and -4.5 k
al/mol, respe
tively. X3LYP performssomewhat better, with errors of about 3, 7, and -4 k
al/mol. The M06 family offun
tionals is usually more a

urate than B3LYP, but no one of the four methods is
onsistently better than B3LYP or the most a

urate among the M06 family. The



86results for the new XYG3 fun
tional are ex
ellent, with errors of about -1, 1, and-2.5 k
al/mol.DMC using MCSCF trial fun
tions has errors of about 1, 1, and -3 k
al/mol forthe three rea
tions. If the overall enthalpy for rea
tion 3 is 
ompared to CBS-QB3instead of experiment, the DMC/MCSCF error is about -1 k
al/mol. DMC/GVB 3,6has the most a

urate result for the overall enthalpy of rea
tion 2, and DMC/HF isthe 
losest to experiment for rea
tion 3, but DMC/MCSCF is the only method thatperforms 
onsistently for all three rea
tions. When the appropriate trial fun
tion isused, the errors of DMC for rea
tions 1, 2, and 3 are 
omparable to CBS-QB3 andCCSD(T)/6-31G*. The favorable s
aling and parallelizability of DMC, however, willallow it to be applied to mu
h larger systems than the ones in this work. CBS-QB3and CCSD(T) are limited to systems with less than about twelve heavy atoms.Based on the DMC results for individual mole
ules, some prin
iples emerge as tothe trial fun
tions ne
essary to give a

urate results. First, HF is suÆ
ient for C-C �bonds. De�ning GVB pairs for C-C � bonds raises the DMC energy, and 
orrelatingthem with MCSCF does not lower the DMC energy signi�
antly. Se
ond, C-C �bonds must be 
orrelated to give a

urate trial fun
tions. If there is one � bond, aGVB trial fun
tion is suÆ
ient. If the mole
ule 
ontains more than one � bond, anMCSCF trial fun
tion must be used. For transition states, all partially formed bondsmust be 
orrelated. If more than one bond is being formed or broken, an MCSCFtrial fun
tion is on
e again ne
essary.The DMC time step errors for individual mole
ules are signi�
ant. For example,using a time step of 0.01 au raises the expe
tation value for the energy of ethylene byabout 5 k
al/mol 
ompared to the d� = 0 limit. These errors tend to 
an
el out whenenergy di�eren
es for rea
tions are 
onsidered. For rea
tions 1, 2, and 3, extrapolatingthe results to d� = 0 did not 
hange them signi�
antly from the d� = 0:01 au values.Being able to use a single time step greatly de
reases the amount of 
omputer timeneeded to 
al
ulate enthalpy di�eren
es.To further simplify DMC 
al
ulations and make these ex
ellent results availablefor larger and more interesting systems, it will be helpful to investigate the e�e
t of



87the basis set on the expe
tation values. The most time 
onsuming parts of the QMCalgorithm s
ale as O (N3) with the number of basis fun
tions, so de
reasing the size ofthe basis set will make the trial fun
tions easier to 
onstru
t and speed up the QMC
al
ulations. In addition, the VMC and DMC results in table 6.1 suggest it may bepossible to develop a single set of ele
tron-nu
lear 
orrelation fun
tions that 
ould beapplied to all mole
ules. Eliminating these parameters from the optimization phaseof QMC 
al
ulations would make them less expensive and simpler for nonexperts to
arry out.Finally, the GVB and parti
ularly the MCSCF trial fun
tions in this work in
ludedlarge numbers of 
on�gurations. In
reasing the length of the CI expansion greatlyin
reases the time needed to evaluate and optimize a trial fun
tion. While it wasshown that HF trial fun
tions are not a

eptable for transition states or mole
uleswith C-C � bonds, it is likely that the CI expansions 
ould be trun
ated after a fairlysmall number of terms without sa
ri�
ing a

ura
y. Comparing DMC expe
tationvalues for trial fun
tions with di�erent CI expansion lengths will give resear
hersguidelines to identify whi
h 
on�gurations must be in
luded, and whi
h 
an safely beignored.
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96Mole
ule SCF Ndet hEiSCF Params hEiVMC hEiDMC % E
orrwavefun
tionEthylene HF 1 -78.0652 36 -78.4461 -78.5578 77.3GVB 1,2 2 -78.0921 37 -78.4574 -78.5624 77.7GVB 2,4 4 -78.1027 39 -78.4589 -78.5616 77.6MCSCF 1,2 2 -78.0921 37 -78.4574 -78.5623 77.7MCSCF 2,4 12 -78.1178 45 -78.4629 -78.5629 77.5TS1 HF 1 -155.9731 36 -156.7596 -156.9970 76.8GVB 2,4 4 -156.0219 39 -156.7774 -157.0008 77.2GVB 4,8 16 -156.0467 51 -156.7809 -156.9993 77.1MCSCF 2,4 16 -156.0413 47 -156.7902 -157.0090 77.4MCSCF 4,8 61 -156.0885 72 -156.7994 -157.0097 77.2Cy
lobutane HF 1 -156.1515 36 -156.9323 -157.1578 77.6GVB 2,4 4 -156.1849 39 -156.9411 -157.1581 77.7GVB 4,8 16 -156.2171 41 -156.9475 -157.1592 77.5MCSCF 2,4 12 -156.1855 45 -156.9400 -157.1583 77.6MCSCF 4,8 75 -156.2325 77 -156.9498 -157.1594 77.4Butadiene HF 1 -154.9799 36 -155.7125 -155.9326 76.9GVB 2,4 4 -155.0288 39 -155.7342 -155.9392 77.5MCSCF 2,4 16 -155.0332 47 -155.7367 -155.9412 77.5TS2 HF 1 -232.9672 36 -234.1120 -234.4526 77.1GVB 3,6 8 -233.0269 43 -234.1251 -234.4550 76.9MCSCF 3,6 51 -233.0510 68 -234.1425 -234.4650 77.2Cy
lohexene HF 1 -233.1005 36 -234.2376 -234.5706 77.3GVB 3,6 8 -233.1578 42 -234.2522 -234.5747 77.2MCSCF 3,6 50 -233.1586 67 -234.2530 -234.5746 77.3Cy
lobutene HF 1 -154.9551 36 -155.6979 -155.9168 77.2GVB 2,4 4 -154.9989 39 -155.7123 -155.9207 77.4MCSCF 2,4 8 -154.9997 40 -155.7132 -155.9210 77.4TS3 HF 1 -154.8840 36 -155.6325 -155.8539 77.2GVB 2,4 4 -154.9340 39 -155.6518 -155.8600 77.5MCSCF 2,4 20 -154.9423 49 -155.6553 -155.8635 77.5Table 6.1: QMC results using HF, GVB, and MCSCF trial fun
tions. Energiesreported in atomi
 units. All 
al
ulations used the aug-

-pVTZ basis set andB3LYP/6-311G** geometries. QMC 
al
ulations used a 0.01 au time step and the2 body Jastrow des
ribed in Eq 6.14, and were run until the energy 
onverged towithin 1:5 � 10�4 au. The number of parameters optimized in the Jastrow fun
tionand CI expansion for ea
h trial fun
tion is shown in the Params 
olumn. The per
entof the 
orrelation energy re
overed by the Jastrow was 
al
ulated using the formula% E
orr = 100 hEiVMC�hEiDMChEiSCF�hEiDMC . The per
ent of 
orrelation energy re
overed by theJastrow is remarkably 
onstant a
ross all trial fun
tions, whi
h suggests the Jastrowa
ts mostly within the atoms.
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Geom Energy ZPE �Hz0K �H0KExp [94, 95℄ -16.48MP2//CAS/6-311G(d,p) [96℄ 77.6CBS-QB3 [98℄ -16.66CCSD(T)/6-31G* [110℄ -18.18B3LYP B3LYP B3LYP 74.37 -12.55HF 100.18 -7.85GVB 2,4 103.41 5.01GVB 4,8 101.14 -1.84MCSCF 2,4 91.21 4.66MCSCF 4,8 93.81 7.37DMC/HF 76.00 -21.02DMC/GVB 2,4 79.42 -15.40DMC/GVB 4,8 79.37 -17.10DMC/MCSCF 2,4 74.13 -15.66DMC/MCSCF 4,8 74.42 -15.61M06 70.63 -22.02M06-2X 71.78 -21.11M06-HF 69.37 -18.94M06-L 70.58 -20.94X3LYP X3LYP X3LYP 73.89 -13.79B3LYP XYG3 B3LYP 73.21 -17.21Table 6.2: SCF and DMC results for the enthalpies of a
tivation and rea
tion at0K for rea
tion 1. All enthalpy di�eren
es reported in k
al/mol. The geometry,energy, and ZPE 
olumns 
ontain the methods used to optimize geometries, 
al
ulateele
troni
 energies, and 
al
ulate zero point energies, respe
tively. B3LYP, M06,and X3LYP 
al
ulations used the 6-311G** basis set. The XYG3 
al
ulations usedB3LYP/6-311+G(d,p) geometries and frequen
ies s
aled by 0.9877 with XYG3/6-311+G(3df,2p) ele
troni
 energies [111℄. HF, GVB, and MCSCF 
al
ulations usedthe aug-

-pVTZ basis set. DMC 
al
ulations used a 0.01 au time step.
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Geometry Energy ZPE �Hz0K �H0KExp [99℄ 25.0 -39.6CBS-QB3 [99℄ 22.9 -38.3CCSD(T)/6-31G* [112, 113℄ B3LYP 27.48 -40.36B3LYP B3LYP B3LYP 27.10 -30.80HF 51.24 -28.48GVB 3,6 61.41 -16.77MCSCF 3,6 49.06 -14.50DMC/HF 26.08 -43.96DMC/GVB 3,6 31.67 -39.48DMC/MCSCF 3,6 26.55 -38.27M06 23.38 -41.48M06-2X 21.60 -42.19M06-HF 17.26 -42.21M06-L 22.36 -38.56X3LYP X3LYP X3LYP 26.34 -32.37B3LYP XYG3 B3LYP 24.44 -38.55Table 6.3: SCF and DMC results for the enthalpies of a
tivation and rea
tion at0K for rea
tion 2. All enthalpy di�eren
es reported in k
al/mol. The geometry,energy, and ZPE 
olumns 
ontain the methods used to optimize geometries, 
al
ulateele
troni
 energies, and 
al
ulate zero point energies, respe
tively. B3LYP, M06,and X3LYP 
al
ulations used the 6-311G** basis set. The XYG3 
al
ulations usedB3LYP/6-311+G(d,p) geometries and frequen
ies s
aled by 0.9877 with XYG3/6-311+G(3df,2p) ele
troni
 energies [111℄. HF, GVB, and MCSCF 
al
ulations usedthe aug-

-pVTZ basis set. DMC 
al
ulations used a 0.01 au time step.



99Geometry Energy ZPE �Hz0K �H0KExp [99℄ 31.9 -10.6CBS-QB3 [99℄ 32.0 -12.6CCSD(T)/6-31G* [110℄ -11.83B3LYP B3LYP B3LYP 32.15 -15.11HF 42.94 -16.39GVB 2,4 39.07 -19.61MCSCF 2,4 34.37 -21.87DMC/HF 37.79 -10.73DMC/GVB 2,4 36.44 -12.44DMC/MCSCF 2,4 34.42 -13.47M06 35.24 -10.27M06-2X 35.37 -10.91M06-HF 32.54 -11.68M06-L 36.07 -10.14X3LYP X3LYP X3LYP 32.47 -14.87B3LYP XYG3 B3LYP 33.73 -12.98Table 6.4: SCF and DMC results for the enthalpies of a
tivation and rea
tion at0K for rea
tion 3. All enthalpy di�eren
es reported in k
al/mol. The geometry,energy, and ZPE 
olumns 
ontain the methods used to optimize geometries, 
al
ulateele
troni
 energies, and 
al
ulate zero point energies, respe
tively. B3LYP, M06,and X3LYP 
al
ulations used the 6-311G** basis set. The XYG3 
al
ulations usedB3LYP/6-311+G(d,p) geometries and frequen
ies s
aled by 0.9877 with XYG3/6-311+G(3df,2p) ele
troni
 energies [111℄. HF, GVB, and MCSCF 
al
ulations usedthe aug-

-pVTZ basis set. DMC 
al
ulations used a 0.01 au time step.Rea
tion 1 Rea
tion 2 Rea
tion 3Method �Hz0K �H0K �Hz0K �H0K �Hz0K �H0KB3LYP 3.93 2.10 8.80 0.25 -4.51X3LYP 2.69 1.34 7.23 0.56 -4.27XYG3 -0.73 0.56 1.05 1.83 -2.38M06 -5.54 -1.62 -1.88 3.34 0.33M06-2X -4.63 -3.40 -2.59 3.47 -0.31M06-HF -2.46 -7.74 -2.61 0.64 -1.08M06-L -4.46 -2.64 1.04 4.17 0.46DMC/MCSCF 0.82 1.55 1.32 2.52 -2.87Table 6.5: Di�eren
es from experiment for the DMC/MCSCF and DFT a
tivationand overall enthalpies for rea
tions 1, 2, and 3. The result with the lowest error forea
h quantity is in bold font.
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Chapter 7Con
lusion
The QMC 
al
ulations presented in this thesis were 
arried out using QM
Beaver, aprogram written in the Goddard group to develop, demonstrate, and apply new QMCalgorithms [81℄. Quantum Monte Carlo has the potential to 
al
ulate expe
tation val-ues to within experimental a

ura
y, and its favorable s
aling and parallelizability willallow it to be applied to mu
h larger systems than 
omparably a

urate traditionalele
troni
 stru
ture methods.QMC is a relatively new 
lass of methods, with new algorithms being developedby a small number of experts, most of whom have written their own QMC programs.Most appli
ations of QMC to 
hemi
al and materials systems have been done bythese developers to demonstrate their algorithms, not by resear
hers interested in thesystems themselves. The 
omputational expense and theoreti
al 
omplexity of QMChave kept it from be
oming a \bla
k box" method for nonexperts to use.Algorithms developed using QM
Beaver have made progress in bringing QMCto nonexpert users by providing simple, automati
 tools for setting up and 
arryingout 
al
ulations. The Dynami
 Distributed De
orrelation Algorithm (DDDA) au-tomati
ally 
al
ulates the standard deviation of expe
tation values during a QMC
al
ulation, taking the serial 
orrelation of the samples into a

ount, while greatlyredu
ing the amount of data that has to be 
ommuni
ated among the pro
essors togather results [49℄. The manager-worker parallelization (QMC-MW) automati
allybalan
es the work between pro
essors running at di�erent speeds, allowing the eÆ-
ient use of heterogeneous 
omputers. QMC-MW also makes it possible to terminate
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al
ulation based on the 
onvergen
e of the expe
tation values rather than the
ompletion of a 
ertain number of iterations [50℄.In 
hapter 5 of this work, we demonstrated the importan
e of initial walker 
on-�gurations to the eÆ
ien
y and a

ura
y of QMC 
al
ulations. STRAW is a simple,automati
 method that requires no user input to generate statisti
ally independentinitial walker 
on�gurations in regions of high density and low lo
al energy [109℄.Avoiding 
ontamination by 
on�gurations that do not represent the desired densityensures the a

ura
y of the results and allows the eÆ
ient use of large numbers ofpro
essors. DDDA, QMC-MW, and STRAW 
ombine to make it straightforwardto set up QMC 
al
ulations that will eÆ
iently use the next generation of homoge-neous super
omputers, inexpensive heterogeneous beowulf 
lusters, and distributed
omputing resour
es.The two sour
es of error in a DMC 
al
ulation are the time step and the nodalstru
ture of the SCF part of the trial fun
tion. In order to have 
on�den
e in theresults of their 
al
ulations, resear
hers need guidelines as to the appropriate timesteps and trial fun
tions to use for the fun
tional groups in their systems. In 
hapter 6,we explored the time step and nodal errors for three peri
y
li
 hydro
arbon rea
tions.DMC results 
al
ulated with HF, GVB, and MCSCF trial fun
tions were 
ompared toexperiment, high quality ab initio 
al
ulations, and the re
ently introdu
ed X3LYP,M06, and XYG3 DFT fun
tionals. From the results, it was determined that the timestep error 
an
els out when energy di�eren
es are 
onsidered, making extrapolationto zero time step unne
essary. HF trial fun
tions were shown to be a

eptable forC-C � bonds, but to have a large nodal error for � bonds. GVB trial fun
tionsare suÆ
ient for mole
ules with one � bond, while MCSCF wavefun
tions must beused for mole
ules with multiple � bonds and transition states with several bondsbeing broken and formed. When the appropriate trial fun
tion is used, DMC resultsare 
onsistently as a

urate as CCSD(T) and CBS-QB3 for the three hydro
arbonrea
tions.In order to allow resear
hers to 
onstru
t trial fun
tions for larger and more 
om-pli
ated mole
ules, the nodal errors for more fun
tional groups must be investigated.
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al
ulations with a variety of trial fun
tions for small modelsystems, for whi
h experimental and high quality ab initio results are available for
omparison, 
an provide this information.All of the trial fun
tions in 
hapter 6 used the aug-

-pVTZ basis set, whi
h isprobably larger than ne
essary to give a

urate DMC results. In addition, the MCSCFtrial fun
tions used long CI expansions. A systemati
 
omparison of the results andrate of 
onvergen
e of DMC 
al
ulations 
arried out with di�erent basis sets and CIexpansion lengths will allow resear
hers to determine whi
h basis fun
tions 
an beeliminated and where CI expansions 
an be trun
ated without sa
ri�
ing a

ura
y.Sin
e ea
h determinant must be inverted to evaluate the trial fun
tion value andmatrix inversion s
ales as O (N3) with the number of basis fun
tions, using smallerbasis sets and shorter CI expansions will greatly redu
e the 
omputational expenseof DMC 
al
ulations.Finally, the results of 
hapter 6 suggest the possiblity of developing a set ofele
tron-nu
lear Jastrow parameters to be used for all mole
ules without reoptimiza-tion. If this \generi
 Jastrow" 
ould be used, only the ele
tron-ele
tron and CI ex-pansion parameters would have to be optimized for ea
h system, greatly redu
ing the
omplexity and expense of the parameter optimization phase of QMC 
al
ulations.Quantum Monte Carlo has the potential to be
ome a very important tool for
omputational s
ientists. The high a

ura
y of QMC 
ombined with its ability toeÆ
iently use the next generation of 
omputational resour
es will allow it to providea

urate expe
tation values to understand rea
tion me
hanisms and train densityfun
tional and for
e �eld methods. The 
ontinuing development of algorithms tomake QMC more a

urate, straightforward, and eÆ
ient will bring it into 
ommonuse among resear
hers in 
hemistry and materials s
ien
e.
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