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ABSTRACT

The past decade has witnessed significant advances in the techniques
for communication, with high reliability, over noisy channels and, in
particular, in the methods of encoding for these channels. However, for
many of these encodings, including the so-called block codes, efficient
reception demands. that the receiver know the instant in time that one

block of data ends and the succeeding block begins. This synchronization

problem, as applied to an important class of block codes, which are optimum
or nearly optimum over the continuous white Gaussian channel, is the
central topic treated in this thesis. Two synchronization methods are
presented, and upper bounds on the time necessary for their operation are
determined. The first involves almost neo additional encoding or decoding
equipment, but is dependent upon the randomness of the received message.
The second technigue, while necessitating more complex decoding apparatus,
is, in general, considerably more rapid than the first and is, moreover,
independent of the statistical properties of the data. Neither method
decreases the information capacity of the channel. The performance of
both these techniques in conjunction with the binary symmetric channel is

also investigated.
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INTRODUCTION

A current problem which is receiving considerable attention under the
impetus of satellite and deep-space communication requirements is concerned
with the transmission of information through the relatively unconstrained

(1)

continuous channel‘ ‘. The communication channel model of Figure 1 may be

used to describe the conditions encountered in this situation.

Naoise

W

Encoder |- giiﬁ:; ¥} Receiver || Decoder

R T

Source

Figure 1

The source consists of, for example, the data from numerous experiments
conducted during flight. The encoder converts this scurce message into

a more convenient form for transmission, presumably with the intention of
increasing the reliability of the system, while the decoder reverses the
process. The noise is primarily thermal in origin, and its power is constant
" over a very wide bandwidth, Fading and multi-path difficulties are
negiigible. The common assumption that the noise is stationary, white, and
Gaussian would seem to be well-founded in this case, and experimental

evidence provides excellent verification of this conjecture.

The encoder is assumed to be a block encoder; that is? the data is
quantized and represented by a sequence of N-ary numbers and each of these
N possiblé data digits is represented by a particular waveform or code
- word for transmission. The collection of these code words is referred

-to as the code dictionary. It will also be assumed that each of the N data
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digits has equal probability of occurring and that the words used to transmit

these digits have equal time duration, T, and equal energy, Eo'

A continuous sequence of words selected by the source from these N
words is then used to modulate a carrier which is in turn transmitted through
the channel, After demodulation the decoder estimates which of the N possible
words is represented by each successive T seconds of the incoming sequence.
More precisely, the deqoder attempts to determine which of the N waveforms,
xi(t) (1 =1, 2y eees N), was most likely transmitted after having received
a particular waveform, y(t), which has been corrupted by additive noise.
This most probable transmitted code word is determined by the value of
i=1, 2, «esy N for which the probability P(xily) is maximized. But by

Bayes' rule

P(z,[y) p(y) dy = »(y|xy) P(x,) &y
and

max POIE) P(x;)
i o(y)

ma,xP

1 . (0.1)

(zy) =
Thus it is sufficient to find the value of i which maximizes p(y]xi) P(xi).
This decision criterion is known as the maximum a posteriori criterion. The
situation of interest here, in which the a priori probabilities P(xi) are
éither unknown, or are assumed to be-equal, results in the so-~-called maximum

. likelihood criterion in which the value of i maximizing p(yfxi) is to be deter-

(2,3,4,5)

mined. Optimum detectors are known for both these cases when the noise
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is white and Gaussian. If the energy of the transmitted signal,
T
Eo = .j‘ Xiz(t) dt, is the same for all waveforms, ;s the optimum detector
o)

according to the maximum likelihood criterion is one which forms the integral,
o
g, (t) = x, (1) y(t, - ) dr, (0.2)
.\

and selects that x, corresponding to —or F.(t ), i=1, 2, «.u, N,04t <7
i : l’to ito o)

as the received code word. ﬁi(to) is thus the response to the signal

y(to - T) of a filter whose impulse response is Xi(-T), the well-known

- matched-filter. Alternatively, setting to - n = t in the above expression

for ¢i(to), one obtains:

g.(s) = oz (b= ) y(t) at. (0.3)

tO

But this is the correlation between Xi(t - to) and y(t) and may be readily

mechanized by the following correlation detector:
¥
i

Xi(t - to)

y(t)

©

Figure 2
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where the switch is opened at time to and the output observed at time

to + T, The relative amplitude of the local waveform, xi(t - to), is, of

course, irrelevant and will be assumed, for convenience, to be unity.
Note that the maximum likelihood criterion states that the waveform

most likely transmitted and the time interval over which it occcurred is

max

"

given by N
0<t

N ¢i(to)' Thus there are N competing waveforms and

s 2y sen
0 T

a continuum of competing time instants to. A better estimate of the
complexity of the system necessary to determine the most likely code word

is obtained by‘noting that the number of independent samples per second that
can be transmitted through a channel of bandwidth W is approximately 2W.(6)
Thus there are 2WT independent parameters defining each word and N words, or
a total complexity proportional to 2WNT. Further, it is very possible that
some of the waveforms, y(t), of length T, which are not actually code words
but formed by the combination of two code words, aré nearly, or even exactly,
equivalent to true code words, The occurrence of only one such sequence
alone reduces the probability of identifying the true code word to approxi-
mately-%. In the application under consideration. here, however, a continuous
sequence of code words is being sent. The instant one word ceases, another
begins. In addition, it will be assumed that time T is known exactly

(i.e., that a common transmitter-receiver time reference exists, as provided,
for example, by the coherent reception of the carrier or subcarrier), If

the valué of to is known for one code word in the sequence, it is thus known
for the duration of the sequence, and the number of “competitors" is then

* reduced from 2WNT to just N for each code word received. The probability

of an error is thus significantly decreased and the mechanization process

vastly simplified by a good estimate of the time to.
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It is the purpose of this paper to establish ways of determining, as
rapidly and accurately as possible, the value of to (that is, to obtain

word synchronization) for a particular class of block codes.

It should be acknowledged that an obvious alternative here is to
incorporate a second chamnel in the system which sends nothing but synchro-
nization information. As soon as synchronization is obtained, however, the
power relegated to this chamnel is entirely useless and could presumably
be used to transmit information. Two-way communication could overcome this
difficulty by switching off the synchronization channel when it is no longer
needed.” For space probes, however, the round trip communication time is
appreciable and could result in meny minutes of wasted power. These comments
are equally applicable to the single channel system in which certain patterns
which are to be used for synchronization are pericdically transmitted(7)
since this, too, decreases the information capacity of the channel.
Certainly, the advantages to be gained by having "self-synchronizing® codes
in decreasing the amount and complexity of equipment carried on the probe,
as well as in the conservation of power, are not insignificant, if such
codes exist. In order not to diminish these advantages, however, several
conditions may be imposed upon the self—synchronizing code: (1) The
expected, or maximum, time necessary to obtain synchronization must be
small (if real time decoding is to be accomplished) or at least the synchro-
nization time must be no more than the minimum continuous time interval over
which fhe code is to be received (if non-real time decoding is all that is
demanded ), (2) The error probability in synchronous operation must not be
increased with a resulting decrease in the information rate due to the

addition of self-synchronizing properties, and (3) No redundancy should be
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introduced, thereby reducing the channel capacity, for purposes of

synchronization,

It might appear at first sight that from an information theoretic’ point
of view, the task outlined could not ‘be accomplished under the conditions
listed. That is, each correctly detected word conveys exactly n = log2 N
bits of information, and since no redundancy is to be added to facilitate
the synchronization process, these n bits must correspond to n bits of data
information. Thus there are no surplus bits available to carry the synchron-
ization information. However, it is also true that the asynchronous error
probability is greater and that consequently the information rate(s) is
less than that possible with the same channel_at the same signal-to-noise
ratio after synchronigzation has been obtained. This difference between the
asynchronous and synchronous information rate represents a rate at which it
is theoretically possible to send synchronization information without

violating any of the basic principles of information theory. The following

chapters are an attempt to utilize some of this synchronization capacity.
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Chapter 1

ORTHOGONAL, BI~ORTHOGONAL AND TRANS-ORTHOGONAL CODES

4.  Synchronous Word Error Probabilities

Consider now the probability of correctly determining which of the N
signals, 812 S5y eses Sy has actually been sent assuming now that word
synchronization has been established. The maximum likelihood detector
then forms the integral

T T
2 = | v s®ar = | [as®) +n()] s(®) et (1)
) o
where A represents the amplitude of the received signal relative to that of
the transmitted signal. Since si(t) is a deferministic signal, and n(t) is
(9)

produced by a Gaussian random process, Zij is a Gaussian random variable.

The joint probability density function,

e4z-mﬂk@_mﬂ (1.2)

p(zlk, ZZk’ LR sz) =

where Z is the row vector with components Zlk’ ZZk’ P ZNk’ m the vector
whose components are the expected values of the components of 2,
Dypes Doy eees me,JAL, the inverse of the covariance matrix, and[JAL l
the determinant ofJﬂ\q The qomponents of m are determined by
T
m, = B(z,,) = Alsi(t) sk(‘t) at | (1.3)

[s]

-1
since E[ﬁ(t)] = 0, Similarly, the elements of the matrixJAL ’
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-1

the covariance matrix, are given by Xig

= cf“i(k) @”j(k) ;Qij(k) where
f;’)“‘;(k) afj“j(k) ﬁ/;._j(k) = EH_(Zik - mik) (zj]:c - mjk)}

LT T
a:Ej j‘
0 o]

ug

"Ask(t) + n(t)J l‘Ask(u) + n(u)J si(t) sj(u) dtdu - m,, L

A ,
2 [
= unj s, (t) sj(t) dt (1.4)
o
since E[n(t) n(u)] = fY;Z ¢3(t = u) for white noise with 2 c:hz =N,
the noise power spectral density. Finally,
. ; ki
2 2 2 2
oy (k) = E (zik - mik) J = o3 J/ 84 (t) dt. (1.5)
0

Note that both f?i(k) and ﬁgj(k) are independent of the actual word

Sy that was transmitted.

In accordance with the maximum likelihood criterion, the largest of
the random variables Zik corresponds to the most probable signal
transmitted. The probability that a correct decision is made, given that

sk was transmitted is then:

20 hae Bac Dy
P(s) = M[ /( “/r .ee /// p(Zlk,ZZk,...,ZNk)dZngZN_l’kdzikdzkk.
D ey - O -

(1.6)

-7

. The total probability of a correct decision is
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N

N
o= ) Rlg) Re) = § ) R(s) (1.7)

k=1 k

under the assumption that the a priori probability that s, was sent,

P(sk),;is independent of k.

Consider now the special case when

T E i=3]
5 ° |
f si(t) sj(t) ¢ = E O, = (1.8)
0 0 i#3
T
where Eo = ./' sjz(t)'dt is the energy of the jth code word and is assumed

0o

to be independent of j. Then,

T
/ si(t) sj(t) at
.- S

0]
1] T, T, T 1]
. \t) dt . (t) dt
WARNOEWARROLD

=

my = AE & ik (1.9)
2 2
6. = 6—n EO
and
-1
-1
Ao (AH - ——
‘ ' O T E
n [o]

. where I is the identity‘matrix. A code dictionary with this property is

known as an orthogonal code. The error probability becomes simply:
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N
l ]
P, = ¥ >_= P(s) = P (s,) =
k=1
& Z T |N=1
(2, - A )2 K[ g2
X /2l ¥ n/2 explm — % 2 > exp( - —-——-—-—02 dZ
(2 77) 5" E 2¢-° E 20-°E
n o) P n [5] 2 sa n [+] i
L _
oo 2 s+ —> 2
= -_—:%_ﬁ7§ e 2 e 2 dt ds.
(277)
e o= A

The value of Pe =1~ Pc’ the probability of a word error for orthogonal
codes, has been calculated numerically(lo) and is plotted for a fixed

ST
1

2
A E0 b
2N in Figure 1.1, as a function of = = —— , the ratio of
Boon? &

n = log

*
the received signal energy per information bit to the noise power per unit
bandwidth, S here denotes the average received signal power, Tb = T/n is

the time per bit.

An upper bound for Pc can be obtained for the orthogonal case by

observing that in the expression

It is apparent that the signal energy per information bit, not the
signal energy per word, is the pertinent parameter since longer words,
when correctly detected, convey more information. The number of bits
of information corresponding to one of N equally probable words is,

of course, n = logzN. '

"
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o<

P = p(x) [i’(y< X)]N"l dx,

-

the term

[P(yu)}N‘l = [1 - P(y>x)]N-lz 1 - (8-1) P(y>x).

O

P > 1-(N-1) j p(x) P(y>x) dx

(o]
£ 7
N“l e 2 o ? gyax. (1.11)

- G X+—

(11)

Now letting s = %(x +y), t= jjr(x - y) and observing that the Jacobian
‘ 2 2
(7] =1, it is seen that

| e I S )
p 7 1%L [ e 4 e 4 dtds
¢ 277 My

- O . m—
Ve

G 2

& £
1 - &L e 2 ds e 2 dt (1.12)
n

- )

Bt
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"Lx
= 1—(N—1)[l-erf( '\E“T)] .

1
Since, in this case, p_ = AE and O =G Eoz, the above expression

becomes
2
0o t2 A Eo
P>1 N-1 -2 S O—n(N—l) 4S7 g
21 - T e dtz 1 - —-—_;——:1_' e
(277) 1 77 ° AE,
AE 2
— (1.13)
N\ 20~
n

The last step follows from the well-known inequality

o0
T8 _&
1 2 1 ' 2
i e dt 5— '——_?' e a z 0.
(er)E (277 )?a
a
2n ST Azﬁ
Substituting — for — g and observing that (N-1) = eloge21°32(N"l)
) n

| _ 1
< e‘lc'geZl"geN and that n ° = e——;_—,—loge(loggN), one obtains:

¥ ST,
P = 1-DP¢< 0 Loge2log N ~ ¥ — logol - $logg (logoN)
- e}

(1.14)

¥ [1 STb
No i e— = _N_(;- - logeZ] n
277 STb
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ST.

Thus, for jgb'> 210ge2, the upper bound to the error probability approaches
o

zero asymptotically as the number of bits per word, Actually, for the error

probability to become zero asymptotically with n, it is only necessary that

ST.

v > logGZ as the following argument will show. An error occurs only when
o

the random sample X, from the Gaussian distribution with & mean u = AEO
and variance C72 u‘SHZ Eo (corresponding to = the output of the correct

correlator) is less than the largest of N-1 independent samples from a
Gaussian distribution with the same variance but with zero mean (corresponding
to the largest output of the N-1 incorrect correlators). It can be
shown(12’13’14) that the distribution of the largest of N-1 samples from

a Gaussian distribution with mean y and variance© has a mean by, ™

2

B+ (Zloge(N;l) )%@r and a variance O‘i2 ~—2 __ asymptotic with N,
logz(N-l)
Thus, asymptotically, no error will occur if
x> [2loge(N-l)] o o~ [2logen]~0“
and %‘ t3
[210ge(N)] o _ (xo - ‘J')
2
P = (__e 27 ) .
e —_— o
L o0 Alers
1 1
7 ST T
b ]
~[2108.8]" ¢ )" (108,2) P2
_ e 2 4. (1.15)
27 ‘



ST
The upper limit then is asymptotically - if-—ﬁgf logeZ and the error
o
probability thus goes to zero if this inequality holds.

B. Bit Error Probabilities for Orthogonal Codes

It is sometimes preferable to specify the probability that an in-
formation bit rather than a word is in error. The former is easily
obtained from the latter in the case of orthogonal codes, due to the fact
that all N-1 incorrect words are equally likely to be misteken for the

(15)

correct word. By Baye's rule, the probability that a bit is in

error, P(v), is
P(b) = P(blw) P(w)

where P(blw) is the probability that a bit is in error given that a word
is in error and P(w) is the word error probability. The expected number

of bits in error given that a word is in error is:

n

E(blw) = n P(biw) = Z i P(i).
i=1
P(i), the probability that i bits are in error, is just the ratio of the
number of data words which differ from the true word in exactly i bits to

the total number of wrong words:

Thus



n n -1
P(blw) I S (%) = 1 ( n-1 ) (1.16)
n(2® - 1) - ot 1 J
i=1 3=0
_2 g
B Y-l

¢. Bandwidth Occupancy for Orthogonal Codes

As was mentioned earlier, a sample of duration T seconds of a signal
limited to a bandwidth W, can be specified by 2WT real numbers. Any signal

may be considered as a vector of 2WI components. An orthogonal code must

consist of a subset of these signals with the property that(l6)
T 2WT
. s(t)s(t)dtz—l—z a.(kt )a.(kt) = O.. (1.17)
B i J B iVl T3V o ij *
o ° -1

o]

where tO = 7%E-and ai(m) is the mth sample of the signal si(t) limited to a

bandwidth W. That is, the vectors‘{ai(m)} representing the signals si(t)

must consitute an orthogonal set. It is well-known that such a set is
linearly independent and, consequently, can contain only as many members

as the dimensionality, 2WT, of these vectors. Thus N = oF £ oW and

(1.18)

. D, Optimum Coding for the Continuous, Noisy Channel .

It follows from this that if the transmission rate, R = —l—, is fizxed,

To
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the bandwidth approaches infinity as n becomes large. Simultaneously, the
error probability approaches zero. It is interesting to investigate the
capacity of the channel under the same bandwidth conditions. 8ince for

white noise(l7) :

¢ = wm%u+ﬁ%)
0

then
lim S y_ lim S S
€= —>oo ¥ 1082(1 + —WNO) = 4 oo¥ loge(l + Wo)logze—) X, log,e
(1.19)
Hence, when
St
b
— = log 2
NO e
C - —S . i
No loge2 | Tb

and one may transmit information at a rate, R< -T-l—, arbitrarily close to
b
the channel capacity with an arbitrarily small probability of error, with

an orthogonal code.

ST
Let us denote the integral of equation 1.10 by EH( _N_‘h ), the probe

. o
ability of correctly determining which of an orthogonal set of N signals

.of energy Eo was sent in the presence of white Gaussian noise with variance

(Tnz. It has been shown(ls’m) that, in the particular case that the

/Oij’ (i # j), terms of equation 1.4 are all equal to some value, p,
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( ;]ii' of course, is always equal to one), the value of Pc of equation 1.7
ig given by
STb(l-p)
P = & |————]. (1.20)
o
" In addition, if the ;) 13 (i % j) are not necessarily equal, but algebraically
bounded by some ;)max’ then
QTb(l - L)max)

£
PL T T (1.21)

That is, the error probability for the general case is bounded by the error
probability obtained in the orthogonal situation when the signal energy is

Minimizing this error probability, is,
(20)

reduced by a factor of 1 - [)max.

in fact, equivalent to minimizing the value of ;Dmax‘

(21)

It is readily seen that

1 1
Prax 2 anLve = (1) 'Oij = n(w-1 <Z
i i

From equations 1.4 and 1.5,

Thus X\

| . . [ ONL SO &
| Ryve = W) | On 5 o ol
' J
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i

s (1) |°
g k| (L] el o
~1

i (continued)

E. Binary Codes

There are many practical advantages associated with the digital
processing of data in a space vehicle. The reliability of digital equip-
ment and the convenience and efficiency of storing digital information are
most important assets associated with digital, and more particularly, binary
systems. This digital data may be used to select the desired waveform to be
tranémitted. More conveniently, the data may be used to generate a binary
sequence with the desired properties which in turn is used to modulate
a subcarrier. The system we will consider here is the following: The binary
data is divided into N = 2n blocks of n digits. Bach of these blocks is
encoded into a word of M binary digits. The digits of the word which is to
be transmitted are then used to phase modulate a subcarrier by o° or 180°
depending upon whether the corresponding digit is a zero or a one. Note
that this is just a method of implementing the block encoder described

in the Introduction.

Let the binary digits comprising the word, hereafter referred to as
symbols to distinguish them from the information bits, have a time duration

of TS seconds, and let the subcarrier angular frequency ab be some multiple

of 55;’ Then since
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T

1
—,f:s— j cos(wot +k77) cos(mot + k! 77’) at
o
T T
s s
= ——%— f cos(Zwot + (k + k’)ﬁ)dt +—1-,l—- ‘[ cos(k - k')ﬁdt
s s
o 0

= cos(k - k‘)77’

the cross-correlation between a one and a zero is -1, (k—k' = tl), while the
cross—corrélation between a one (or zero) and a one (or zero) is +1,
(k - k' =0), Thus, the normalized correlation between a code word
consisting of the binary digits X, (i =1, 2, aees M), and that consisting
of the digits 5o (i =1, 2y eees M), is given by
M
Py =5 ) G-2x)0-a2y) (1.23)
i=1
since‘fhe product is one if‘ X, =7y and minus one if X, % MR The
substitution, ési = 1 - 2xi, provides an alternate way of representing the
code words under consideration and will be used later when convenient. Note

also that

_ A% y) -D(x, y) _ ‘1 _2p(x, y) (1.23a)

Xy M M

where A(x, y) is the number of times the corresponding components of the

binary vectors x and y are in agreement and D(X,y) is the number of times
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they disagree.

Suppose now that there are N possible blocks to be transmitted,
Is it possible to find N binary vectors of length M such that ljmax
(or [%Ne) is constrained to be less than a certain value ﬁ)o? This
is certainly not possible for arbitrary M, U and l%f If two of these
three parameters are given, bounds on the third can be derived. For
particular values of ‘Do’ and these include the most interesting cases,

much more complete information is available.

Consider in particular the case in which all correlations are con-
strained to be zero, the orthogonal case discussed earlier. Considering
the code words as vectors of +1l's and -1's, they are orthogonal over the
field of real numbers. Since these vectors form a basis over this field,
there cannot be more than M such vectors, where M is their dimensionality.
Thus N4 M. Let x, y, and z be three binary code vectors with components

Xis V5 and Zss Then if these three vectors are to be orthogonal

M
ﬁ Z (1-2x) (1-2y) =0
i=1
M
ﬁ- Z (1-2x) (1-22) = O

i=1

and

(1 - Zyi) (1 - 2zi) = O.
1

= |
1M =

Combining these three equations, one obtains
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3M=4(in— Zyi-z zi-i- inyi-f- inzi-&- Zyizi).

Thus 3M is a multiple of four and, if N is greater than 2, M must be
a multiple of four. It is then a necessary condition that N4M = 4t.(22)
Solutions have been obtained for M = N = 4t for all t up to 50, except
for t = 29, 47 and 49, and for many values of t»50. In addition, if
a solution is known for any value of t, it is also known for 2t due to
the following construction: Let A be a n x n matrix of ones and minus
ones such that the rows are mutually orthogonal. Then

A A ,

B = (1.24)

A -A
is a 2n x 2n matrix possessing the same properties. This is easily seen
by observing that ali the rows in [A A] are trivially mutually orthogonal
if the rows in A are orthogonal and similarly for the rows of [A —A] .
Now consider a row, ala2 ceey an 8185y eoey a, from the top half of B,

and a second row, blb2’ seey bn’ -bl -b2, seny —bn, from the bottom half

of B. Then the correlation between the two rows is:
¢

n
__1_..J -
,O- on Z aibi— Z aibi > = 0.
i=1

i=1

\ /

Using this technique, it is apparent that, beginning with the code dictionary

1 1
1 -1

any orthogonal dictionary of 2n words (n =1, 2, ...) can be obtained.
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Now consider an arbitrary binary orthogonal dictionary of 4t words,

4t
each word with 4t symbols, Since the fact that jg: Xy, = 0O implies
i=1
4t 4%
that ) x(w) == ) %y =0, it follows that if any vord
i=1 i=1

is multiplied by -1, the dictionary is still orthogonal, Thus the
dictionary may be normalized by multiplying the appropriate words by
-1, so that the initial symbol of each word is +l. If this symbol is
now removed, the correlation between any two words is

N N

L B = L I
P- N~1 Z i T ™ Z LT B TG (1.25)

since lei = 1 for any words x and y in the dictionary. Thus, if there

exists an orthogonal dictionary of size M = N of N symbol words, then

1

there exists a dictionary of size N of N-1 symbols such that ﬁ)ij = =1

for all 1 # j. This is known as a frans-orthogonal code. As was shown

earlier, this is the minimum value possible for the maximum correlation
between two words of a dictionary of size N. It is readily seen that N
words with fewer than N-1 symbols cannot have this property since the
correlation, ﬁj, between two words of length K must be some integral

K

mltiple of 1/K. Thus, k/K = - -1\%5 implies k = = -7 » but if K< -1,

k cannot be an integer,

-

v : 1 . ‘
1t was also shown above that /Dave) -1 This, of course, is
,.achieved by the dictionary described in the previous paragraph since

all cross-correlations are equal to - ﬁ%f‘ In addition, the orthogonal
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dictionary can be extended to obtain a code of N = 2M M-symbol words
achieving this minimum average correlation in a trivial manmer, namely
by also including in the dictionary the complements of all code words
(i.e., those words obtained by replacing all the symbols of each code
word by their complements). It was seen that any code word x which is
orthogonal to the code word y is also orthogonal to the complement of

y. Thus, each word of this doubled orthogonal dictionary, the so~-called
bi-orthogonal dictionary, has zero correlation with all other words but
one -— its complement -- with which its correlation is, of course, -1.

Hence,

pD = {m2)0-1 _ . (1.26)

F. Bi-Orthogonal and Trans-Orthogonal Word Error Probabilities

The érror probabilities are also readily determined for trans-
orthogonal and bi-orthogonal codes. The trans-orthogonal code word
error probability is, from eqﬁation 1,20, exactly that of orthogonal
code when the.signal-to-noise ratio of the latter is increased by a
factor of 1-[)= ﬁ§— « The error probability of the bi-orthogonal code

is evidently Jjust:

o
P = J p(x) Py <lx | (30 <lx[s veurlyyg[<lx]) ayydy, won dyy ) ax
o .
(1.27)
1
oo i AE ? -1
2 s + 2 ,
. - ‘ Sh L
= __IWE 3 e 2 /1 e 2 dt ds.
77) AR ? AE ?
- 03 -5 +—>
n ‘n
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This is apparent upon investigation of equations 1.6 and 1.7 and observing
that in this case the error probability is Jjust the probability that the

correct correlator output is greater in absolute value than all other

outputs and that it correctly represents the sign of the transmitted

code word. This value of Pc has also been determined numerically for

Ty (25)
various values of N and'—ﬁ— s The results are plotted in Figure 1.2,
0

In the pages that follow, the codes that will be considered from
a self-synchronizing point of view will be primarily the binary orthogonal

codes although the results are easily extendable to the bi-orthogonal

situation. The effective ﬁ§f energy increase inherent in the use of

the trans-orthogonal codes is certainly negligible for even moderate
values of N, and it is evident that this negative correlation between
words is actually a disadvantage if carrier coherence is not available.(24)
Excluding additional channels, sign information is not available until
synchronization has been obtained (see below). Because of this, it will
be seen that negative and positive correlation are equally disadvantageous
in the synchronization process. Bi-orthogonal codes, too, suffer from
this disadvantage even after synchronization has been obtained because,

due to the complete symmetry of the code, it is impossible to determine the

sign without some additional information.

G. Bandwidth Occupancy for Binary Orthogonal Codes

It was estimated earlier that the bandwidth occupancy for an orthogonal

n-1
code consisting of N = 2% words is 2nT where n’l‘b =T is the time
b
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necessary to transmit one word. It will now be shown that thig is indeed

a measure of the bandwidth occupancy of binary orthogonal codes.

Consider the autocorrelation of an infinite sequence of these binary

orthogonal waveforms:

. 4

/
J

-
P~ 5 .
f y(t) dt
—o0

It is apparent that C(O) = 1 and that C(T) ='% since, in an infinite

y(t) y(t + 1) dat

clr) = (1.28)

random sequence of N words, a given word will be correlated with itself
%th of the time. Thus, the autocorrelation function consists of the

sum of the following:

>2|!—J

(a) NAALAAAS
: VX ViodV Vg
(b) A A AN
-T \/'17:0 T
(c) — i

Figure 1.3
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where the fine structure of (a) and (b) can be determined for any partic-
ular orthogonal code. The component of the autbcorrelation function (a)
is periodic due to the periodic structure of C(T) for 111 7T (b) is
necessary since, for | © |<T the autocorrelation may be different due to
the fact that each word is restricted to be compared partially with a
phase shift of itself. Finally, (c) results from the contribution at

1 = O which is necessarily larger than that for any other value of 7.

" Regardless of the details of (a) and (b), the power spectral density,
obtained by taking the fourier transform of C(T), includes a

ol
sin 2
ol
2

term due to (c) and consequently extends over all finite

frequencies. This phenomenon is, of course, identical for all orthogonal
codes, binary or not. Although little signal energy is lost if all values

okl
T

of fa)[7 are suppressed, for k 2 3 for example, resulting in a

n
bandwidth of k;%— , a more accurate determination of the bandwidth
b

occupancy of these codes is afforded by the following considerations: In

m77’ mN77’

the proposed system, the subcarrier, sin abt, where ®, = —Eﬁg = o7

for some integer m, is to be phase modulated by 0° or 180° corresponding
to the occurrence of a O or a 1, respectively, in the binary code word.
Now suppose there is a second system phase coherent with the first. but
operating at a freguency sin(a% + 2'7rf) t. The correlator for the first

‘system, upon receiving a signal from the second, forms the integration:
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/N

sin(mbt + ¢l) sin( (ab +277f) t + ¢2 ) dt

T/N T/N

= cos(2TT £ t + @, - g,) Jat - cos( (2w + 2TT £) t +

(1.29)

—

(8 + ) ) av = g sin( ZEER g ) -

5;%ﬁ;ammﬂ4ﬁ%i>+%+%>x

But ¢1, ¢2 = 0 or7[ and hence if f = %%-for any non-zero integer k, this
correlation is identically zero. Consequently, identical communication
systems can be operated independently, without mutual interference, at

all frequencies separated by some multiple of'E%. The effective band-

N 2n—l
width occupancy is thus =5 =

2T nTb

as predicted.

H., Some Comments on Mechanization

As was mentioned earlier, one of the advantages of digital coding
systems is in the ease of their mechanization. If the code is a binary
group code (cf. Chapter 3), each code word is formed as one of the o
possible>linear combinations (over GF(2) ) of n generators with the
rpossible addition of an n + ISt element, the coset leader, to each code
- word, The data word may be used as one of the inputs to an "and" gate

causing the corresponding element to be added or not added to form the
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complete code word. Such a system is shown in Figure 1.4 where

4y, @5y ..., 4 Tepresent the data bits and xll, D S le the

2

symbols of the ith generator. The resultant code word is then used to

phase modulate a subcarrier.as described above.

1
1 1 1 1 1 j;
—) XN e o+ & & » e @ x4 x3 X2 X1 —(X)
d2
% 2 2 x 2 X
'% N - L] » L ® - - . o . £l X2 1 \:y
d
L) 3
3 3 3
XN * L) » - . L L . ] - X2 Xl \X}
2 - L
» . - d
n
n n n J\
s XN » . . . . . » L3 . - X2 Xl \)E’)
n+l n+lX n+l
3 XN . . » . - . . r's . . 2 l

Figure 1.4

The decoder is also vastly simplified by the use of digital codes.
A matched filter is generally difficult to construct. The correlator
mechanization of the mastched filter, while readily realizable, becomes
unwieldy for moderately large values'of N since a correlator is, in
' general, required for each code word. The digital code, hoﬁever, needs

only one correlator which integrates over each symbol time, The output
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is sampled at the end of this time and converted to digital form. The

I such results, corresponding to the duration of one word, are added

and subtracted in accordance with whether the local word symbols, yiJ ,

are ones or zeros, respectively.

largest

of these sums to determine the received code word.

The decision device then selects the

All pro-

cessing after the correlator is done digitally either by a general

purpose

or a special purpose digital computor,

schematically in Figure 1.5:

y(t)

Such 2 decoder is shown

PP

1 | !
fWﬂ*§,yN R y1 ra
| ;
Analog to | " e
“L?lgltal 7{§>wﬂww~? Accumulstor ?
{Convertor
{ ;
| 2 2
3 - >§ yN . 8 e & o y2 yl .
|
v I
MQQEZ}__@S7_Accumu1ator Decision
. Device
i .
. N NJ
Sy yN e & s s y2 yl

 Accumulator

Figure 1.5
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I. Symbol Synchronization

As mentioned earlier, the number of independent positions which
need to be investigated in order to determine the correct word synchro-
nization is indicated by the value 2WT = N. It is an additional advantage
of binary codes that this quantization of the number of positions to be
investigated is automatically assured once the knowledge of the instants
of time when the symbol can change value is known., It shall be assumed,

in fact, that this symbol synchronization has been obtained before word

synchronization is attempted. For example, if the subcarrier consists

of a sine wave of period 2T/N modulated by 0° or 180° at every zero
erossing corresponding to whether the code symbol is one or zero, the

symbol synchronization information ig available as soon as the phase of

the subcarrier has been determined. The latter may be done by squaring

the subcarrier and detecting the double frequency component with a phase-
locked loop. Note that there is a 1800 phase ambiguity here., It is apparent
that this ambiguity will always be present in a one channel space telemetry
system so long as both binary code symbols are represented by equal absolute
amplitudes and time intervals. For this reason it is impossible to determine
which symbol corresponds to a one and which corresponds to a zero. The
existence of the complement of every code word in the bi-orthogonal
dictionary prohibits this distinction even after word synchronization.

Hence, as was mentioned above, these codes cannot be used unless this

v émbiguity in sign can somehow be resolved by other means,
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Chapter 2

SYNCHRONIZATION USING THE PROPERTIES OF A RANDOM SCURCE

A. The Probability of Correct Synchronization

Any statisticali phenomenon whose expected value differs in syn-
chronous operation from that in non-synchronous operation may be used
to distinguish between the two cases if the noise has finite variance
and enough observations are made. Such a phenomenon will be investi-

gated here under the assumption that the source is completely random.

The procedure to be discussed is equally applicable to any coset
of any orthogonal group code. It is shown in Chapter 3 that one column
of the matrix of +l's and -1's representing an orthogonal group coset
contains all positive (or all negative) elements, while all other columns
contain + positive and 1 negative elements. Identifying the occurrence

of an element from this unique column obviously establishes word syn-

chronization. The method will consist of forming the integral:

w
-+
—

=

Loy = [x(t) + n(t)] dt (2.1)
kT
N
where x(t) refers to the received binary sequence and n(t) to the additive
white Gaussian noise., The "phasé" k, where k can be any integer from
zero to N-1, represents a possible starting symbol for the code word.
Without loss of generality, the unique column mentioned above may be

identified with the phase k= 0, Now evaluate the integral 1 for

k/N
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each value of k of the received sequence and observe that:

k+1 0 k#£0
N T J
E(IK/N) = E[x(t)] +E[n(t)] dt = , (2.2)
kT é% k=0
N
since E[n(t)] = 0 by assumption, and:
0 k£0
B[e(t)] = B x=4) A+ B (x= k) ¢ (-2) =
A k=0
]
Further,
k g 1 T k g 1 m
E(12 ) = B {X(t) + n(t)][x(u) + n(u)] dtdu
k/N |
kT ke
N N
*
Note that the relevant parameter here is the received signal energy
T
E. = f A2X2(t) it = AZEO = A%Fr = o7

0

where *B is the amplitude of the transmitted signal and A the factor

by which this amplitude is reduced during transmission. Since B,

in itself, is unimportant, it will be convenient to let B = 1 in this and
succeeding chapters and let A represent the amplitude of the received
signal rather than the relative amplitude.
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k+1

E+1

N N

+ 2

~
+3
-
3

E[n(t) n(u)] dtdu

K+ 1
T N

A2 dtdu +

i
==}

it
J
=3

7
E[X(t)] E[n(u)] dtdu

k+1

N T

g‘nz S(t-u) dtdu

(2.3)

(2.4)
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Since the noise is assumed to be white and therefore uncorrelated,
and since the code words to be transmitted presumably occur randomly,
the value of I at (i + k/N)T and that at (j + k/N)T are statistically

independent for i # j. Applying the Cemtral Limit Theorem to the sum
m
8y = :{: Ii+k/N , one obtains a random variable Sy the density
i=1

function of which is asymptotically normal with a standard deviation

(SR

q =n" 4]

| B
Xk and mean “k = mpk.

The probability of correctly identifying the value k = O and, in
addition, corfectly resolving the sign ambiguity mentioned above, is
then the probability that the particular value of s, so obtained is

~

positive (or negative) and greater in absolute magnitude than that of

all other s, k # 0. Thus,
7 ® -8, S,
PS = s p(so, S1s eees SN—l)dSi"'dsN;l dso
° % ~% (2.5)

where p(so, S99 wee SN_l) represents the joint probability density of
the random variables, Si’ (i =0, 1, ... N—l). Although the noise
contributions to s; are statistically independent of those contributions
to Sj’ for i # j, the signal contributions are not independent, since
they consist of different symbols from the same words. Observe,

however, that for any value of a,

=< « a
2
Fs? / / / p(syr 8y «eer sy ) Aoy dsy e doy ) dsy
a :'G -
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= P(so7 ) sl<a,\s,|<a, ...,lsN_1|<a)

| (2.6)
= 1-PF(s ¢allsf>al...U \SN_l\‘nx)

21 - [P(so< a) + P(Isl|>a) +oees + P(lsN_l{/"a)].

The last step follows from the well-known inequality

P(AlU Ay ous UAn)é P(Al) + P(Az) + oo +P(An).

Now

(2.7)

b A%T
where a = Am = and R = = 5 the ratio of the signal
o 2 Q‘"n 1og2 N

energy per bit of information to the noise power per unit bandwidth,

defined in Chapter 1., Similarly,

a-mu, t2
1 T )
P(lsiha):l——-—_f S, e dt
- (eme :
—a-mjL,
T
A w T
2 1
= 1- ——1—7‘ et /2 dt
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1

ZlogzN N Z
m R( — )i

whereyg = A Slog N .
R(—— ) + L.

Selecting a suitable value of A, one obtains the following table
giving an upper bound on the number of words, m, necessary to establish
synchronization with a probability, Ps’ of .999 and ,9999 for various

gizes of orthogonal codes.

Table 2.1

Upper Bounds on

Synchronization Times Assuming a Random Source

N=2" . R A m(,999) nT(secs. ) m'(.9999) m'T(secs.)
8 4.00 67 45 3 57 3.8
16 3.25 .65 62 5.5 80 7.1
32 2.88 .64 95 10.6 124 15.8
64 2.50 .62 165 22 220 29.3
128 2.40 ,614 280 - 43.6 380 59.1

The value of R in the above table has been chosen to correspond to a

probability of a word error of approximately 10"'3

in normal synchronous
operation and the word time T has been selected so that information is

transmitted at the standard telety*pe rate of 45 bits/second.
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B. Asymptotic Results

The convergence time is certainly not prohibitive for the smaller
dictionaries. However, the time necessary grows rather rapidly with N.

It is readily apparent, in fact, that m must grow asymptotically more

rapidly than This may be seen by an investigation of

N
log2N

equations 2.6, 2,7 and 2.8, That is,
P21 P(s°<a) (N-1) P(,sllfa) (2.6a)

and it is thus necessary that the term, P(so<'a) + (N—l) P(Hslj>-u),

does not increase with N. But for moderate values of N, the denominator
in the term ;5 of equation 2.8 is effectively 1, and hence the numerators
in the limits of the integration of both equation 2.7 and equation 2.8
must not decrease as N increases if the values of P(so< a) and P(leﬁ> a)
are not to increase. Since, for a fixed error probability, R is a
decreasing function of N, the statement concerning the rate of increase

of m as a function of N follows.

It should be remembered, too, that these time estimates depend
upon the assumption of a random distribution of the incoming sequence,
If, for example, the source is such that ohly one-half the dictionary
words are sent during the transmission, then, as investigation of the
codes under discussion reveals (See Chapter 3), there is another value
| of k, other than k = 0, for which evefy symbol is either always +A or
“always -A. Considering these two positions alone lowers the probability

of correct synchronization to %, regardless of the number of words

observed., In general, if the source limits its selection to any
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subgroup of order oHP of the dictionary group, then there are 2p~1
values of k % 0 for which the above is true. This becomes more serious
for large dictionaries for two reasons: (l) Since there are more
words from which to choose, the possibility that a sizeable subset of
the words will not be sent by a non-random selection increases, and

(2) the number of different words sent in any given time decreases if
the bit rate is held constant. The next section will be concerned
with a possible method of overcoming these difficulties inherent in

this type of synchronization.

C. An Alternate Synchronization Technigue

Before proceeding, however, another method should be mentioned
which may be shown to be equivalent to the synchronization scheme Just
discussed, when applied to the same dictionaries, so far as the
probability Pé(m) is concerned, but which has a somewhat different
mechanization. Here the quantity to be investigated, corresponding to

+ 1
K

(G + &Ly

[7(6) + n(t)] at

(i + x/N)T

in the previous case, is:
’ (i +1 + k/N)T

N

N
a0} ) ged) | [76) + n(s)] x,(0) at
: - {=1

= ] .
A (1 + X/N)T (2.9)
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where x[(t) represents the,éth locally generated dictionary word.

Thus all correlations are performed for each k and summed., The

m

statistics, as already mentioned, are the same for Zi(k) as
i=1

they were for the s, discussed above when group codes or cosets of

k
group codes are used, Non-group orthogonal codes may actually be

found which decrease the value corré;ponding to(fk above for some k,
However, the improvement seems to be slight, and the analysis con-
siderably more difficult for these codes. The main reascn for
mentioning this process is that it is similar to that used in Chapter 5
and may, in fact, be used concurrently with it with only slightly more

computing operations. Its obvious disadvantage is that more computation

is involved here than in the previous method.
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Chapter 3

COMMA-FREE CODES

A. Comma Freedom and Its Importance

In normal operation, the correlations

T

¢, = x (1) (6) + n(®)]at (G =1,2 W) (3:2)
0

are evaluated, and the largest of these integrals determines which

of the N signals was most likely sent. If synchronization has not

been obtained, there are N(N—l) other correlations of the form

T

it

1, 2, veey N) (3.2)
1, 2, ve., N-1)

i xi(t)[yk(t) + n(t)] at (4
(x

(@]
il

o)

where yk(t) is a sequence formed by the last N-k symbols of one code
word followed by the first k symbols of a second code word. If there
exists a code for which the value of cio and Cik are significantly
different, regardless of the sequence transmitted, and if this difference

is suitably exploited, a new method for synchronization may be available,

For a particular sequence yk(t), and for stationary white Gaussian
ncise, n(t), the random variable Cik is Gaussian with an expected value
T

B(G,) = R0 w0 ot = B ) (5.3)

—~ d
J

and variance



B(c?,) - [8(0,)] = | o357 5% = on (3.3b)

where X:S and ylg , of course, represent the jth symbols of the seguences
of +1's and =l's which generate the waveforms xi(t) and yk(t). Note

that when k = O, yo(t) is Just Xr(‘t) for some r.,

If the vectors x are normalized by dividing each component by
YN then, since x" e x9 = 5ij , they may be considered as an ortho—
normal basis in N-dimensional space over the complex field. Any other

vector yk can then be written as a linear combination of the vectors X"

N
k i
vy = Z 8y X (3.4)
i=1

where the subscript j denotes the jth component of the vector, The
sequence represented by yk is then completely characterized by the
vector ‘a(k) ={ai} whose components can be obtained by correlating

yk with the N code vectors x'. That is:

N N N
1 i i S § v
——B(C..)=x ° y= Sy, = X X
AL (lk) x Y Z x5 93 Z J Z au J
N =1 =1 p=1
(3.5)

N N A S

- 1Mol =

= Z . Z *5 %5 BT (TR

p=1 j=1

Obviously, the vector a(k = 0) is just one of the unit vectors ei, all

of whose components are zero except the ith which has the value one.
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A further condition on the vector, a(k), can be seen by noting that

if y is to represent a sequence of * §%=L‘s, then
N

N N N N
}: y;2 =1= E: E: a xg }: a x?
J voJd v J
j:l J:lu:l U“_‘l
(3.6)
N N N
DRI ICTCAE) eSS
s pov o w ot =
p=1l v=1 p=1

It would appear to be desirable, in view of equation 3.3, to
impose a further restriction, if possible, on the code dictionary which
would somehow maximize the difference between a(k # O) and a(O). To
do this, the term "difference" must be defined. The optimum definition,
in turn, depends upon the method in which this difference is to be used
to facilitate synchronization. An intuitively reasonable measure of the
difference between a(k) and any of the in-phase vectors iei is the

"mean square error™:

N
coE Y sy
1 J J
J=1
N
= mn Z a.2—2]ai§ +1 (3.7)

_ min 2(1 -] a,|) = 2(1-m§X|ai\).
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Note that the choice in sign results from the inherent sign ambiguity
mentioned above and must be made sc that a(k) is compared to the
tclosest™ of the unit vectors iei. Thus, maximizing the difference d
according to this definition is equivalent to minimizing the component
of a with the maximum absolute value. This criterion is, in fact,
consistent with the synchronization scheme which will be described in

Chapter 5.

Tt will be recalled from Chapter 2 that the correlation between

two vectors, x and y, may be expressed as

(3.8)

where A is the number of agreements and D is the number of disagreements
between corresponding components of the two vectors. It is evident that
for a given N, the correlation is uniquely determined if either A or D
is specified. Further, observe that if the components of the vectors

x and y are represented by O's and 1's, then D is just the number of
ones in their modulo two term-by-term sum., That is, in terms of the

so-called "Hamming distance" (the number of ones in a vector, z, of

zeros and ones, Written\ z\), D is simply equal to !X + y\ , Wwhere the
+ denotes the sums of the corresponding components over the binary field,

Several obvious identities will be useful:
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I x + y|

=ly+x]|
lx+y|=\x+I+y+I|=‘§+§‘
x+xl=0 | (3.9)
lx+§|=ix+y+lf=';+y[a N4x+yi
(x+%] = Jx+x+1l=T1l=n

where I is the vector consisting of all ones.

It is convenient at this point to refer to the concept of comma
freedom. If a dictionary of N-symbol words is comma-free, then by
definition, any series of 2N-1 symbols occurring in an arbitrary sequence
of these words must contain a unique dicticnary word of length N. That
is, the correlation between a dictionary word and any word formed from
the combination of two words must be such that the number of disagree-
ments D be greater than zero. A useful generalization of this condition,
applicable to the situation here, may be obtained by the following
considerations: d in equation 3.7 is maximized when mixl ai] =

2D,
max max if . e . e eps
i,l nyi ‘ = ' 1 - N | is minimized. Since specifying that

p4 Di{_ N-p is equivalent to requiring that \-2—1% - llﬁ m?iai"ﬁ\»l —;\%\'{E)’

maxl ail is minimized by maximizing the value of pfAE

it is seen that 5

in the above expreséion. We shall refer to a code in which Di satisfies
these inequalities for any sequence of N symbols not actually forming

a word as a comma-free code of index p. An optimum orthogonal code of
size N, then, will be one in which the index of comma freedom is

maximized.
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B. The Number of Distinct Orthogonal Dictionaries of N Words

Before proceeding with the discussion of optimum codes, it would
be useful to determine the number of different orthogonal codes which
may be considered. If, for example, the number of different dictionaries
is moderately small, perhaps they can all be systematically listed and
investigated for comma freedom and the optimum dictionary selected.
Two dictionaries are considered different if at least one word in the
first is different from all words in the second. It is observed that
if a dictionary is written as a square matrix of ones and zeros, the
words of the dictionary determining the rows, then no permutation of the
rows forms a different dictionary. If one of the rows is complemented,
however, a new dictionary may result. It is still an orthogonal dictionary
since any word orthogonal to another word is also orthogonal to its

complement., That is, if

lx+yl = -1;1

then

N N
\x +y+I|l = N-~- 5 = o

In addition, since the number of disagreements between two binary
sequences remains the same if both sequences undergo identical permu-
tations, or if the igg symbol in both sequences is complemented, the
dictionary obtained by permutation or complementation of any of the
columns of any orthogonal dictionar& is still orthogonal, although the
two may be different. Any two dictionaries, one of which may be obtained

by some complementation or permutation of the columns and rows of the
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other, are said to be in the same equivalence class. A lower bound

on the number of orthogonal dictionaries may be obtained by evaluating
the size of one eQuivalence class. This, in fact, will be done below.
The class to be investigated is that containing those code dietionaries
whose words form groups under the operation of symbol-by=symbol modulo-two
addition. That is, the following axioms are satisfied by the dictionary
words under this operation:

(l) The group (diotionary) contains an identity element &
such that x + € = x. € is obviously the vector containing all zeros.

(2) /Xl + X, = X5 where x3 is in the group if Xy and x, are
in the group.

(3) The group includes an inverse -x for any X in the group
such that x + (—X) = &, In this case, ~x 1is seen to be the element X
itself.

(4) X + (y +2z) = (X + y) + z for any x, y and z in the group.
Purther, since x +y =y + %, the group is said to be Abelian. &An

example of such a group is the following:

&= 000C
Xl = 0101
X2 = 1100
= 1001.
*3
= = . € = i
Note thet % + %, X3 and that X, + Xy & and Xl + X for all i,

An elementary theorem in group theory states that the order (number
of words or elements) of a sub—grou? must divide the order of the group.
Thus, since the orthogonal group dictionary of size N must be a sub-group

of all ZN possible vectors of N binary symbols, N must be a power
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of two., Further, it is easily shown, using axiom (2), that there are
exactly n generators Xys Foy eees X, such that any word of the group of

n ,
order 2 = N can be written as x, = a.X, +8,X, + ... + & X where a,
J 1717 7272 nn i

is either zero or one. These generators may be selected in the following
menner: X, can be any member of the group but the identity &, X, any

element except Xl\or &, x, any element except & , Xy % or X, + X

3
etc. These combinations of the n generators obviously form at most ot

elements. That these elements are distinct follows immediately from the
manner in which the generators were chosen. The following theorem will

be useful:

THEOREM: Any binary group code is orthogonal if, and only if, all
its elements, except the identity, contain exactly one half ones and

one half zeros.

Proof: Labeling the group G, one observes that for all 8 & G,
and &, ¢ G, &; + gz’ = 2n—l in order to insure orthogonality, since the

Hamming distance between two orthogonal elements of length 2™ must be

n-1 3
2 (cf. equation 3.8). Butl &, + g2( = ‘gBI, g3 & G, Thus 8 and &5

are orthogonal if, and only if, g3 contains one half ones and one half
zeros. But the sum of any two distinct elements in G is still in G and
is not the identity and, since gy + g, = g3 implies that g + g3 = &5
and that'g2 + gB = 8, any element in G, except the identity, can be

written as the sum of two other distinct elements in G. The identity,

of course, is orthogonal to any element containing one half ones and one

half zeros.
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Thus to coﬁnt the number of orthogonal group codes, it is sufficient
to enumerate the number of ways the n generators of G can be selected so
that all elements thus generated contain one half ones and one half zeros.
Any element containing half zeros and half ones is acceptable for the
first generator. For convenience, a permutation operator may be selected
which shifts all the ones to the right half of the element: 00 ..... Oll1
"eeese 1. The second generator must, of course, also contain half ones
and half zeros and be such that the element produced by it and the first
generator contains half ones and half zeros. Now assume that the first
half of this element contains v ones and the secondvhalf 2n-l“0 ones,

Then the number of ones in the sum of the two elements is v + Zn-l -

(2n—1 - v) = 20 since the summation simply inverts the last half of the

second element, Thus v = 2n—2. Since a permutation which interchanges
only those binary digits found in the same half of the elements does

not alter the identity or the first element, the second element may be

permuted to the following form:
00 veeee O11 ovwes 100 4uwes Q11 4ewee 1

where each block is of length 2n~2’ and the first element is left

invariant,

This process can be extended in a straightforward mammer. Assume
that the first m of the n generators have been obtained, and that they are
‘necessarily of the form such that for each k the following operations
may be performed. The kth generatof is divided into 2k "cells",
» Beginning from the left, the first cell consists of 2n—k zeros, the

second 2n—k consecutive digits being ones, etc. Since the k + lst
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permutation operator interchanges digits within these 2k cells only,
and never between them, all previous generators are not altered by ,
these permutations and the generators are equivalent, under permutation,
to

000000 secassssesssosssceesss 0000

00 weveosecsnes 00111 ssieveeess 11

00 ., 0011l ... 1100 , OO11ll .. 11

ete, .
Now divide each of these generators into " cells corresponding to the
2® plocks of all zeros or all ones of the mth generator. BEach set of
P digits comprising the cells of the first m generators then consists
entirely of ones or entirely of zeros. Since the group generated by
these generators is orthogonal, by assumption, the group obtained by
replacing each of the cells of "™ ones by single ones and similarly
for the cells of zeros is also orthogonal. This follows trivially from

the definition of orthogonality since the number of agreements and the

number of disagreements are each reduced by the same factor, ;Em B
' 2

The resulting array of ones and zeros has the same form as above except
that the last row is nmow OlO10L .... Ol. Designate this el W

orthogonal array by A.

In order that a new generator produce elements which are orthogonal
to each of the elements in the original group of 2" elements, the
number of ones in each resulting element must be 2n—1. This is clearly

equivalent to requiring that



— = i1
Pl 2
A ® = I
P n=1
2m 2
| _ _ -

where p; is the number of ones ih the ith cell of the m + 1St generator,

OQ=p. =D, 1 =p, = o p., and A is as defined above, Since each
i i i i

row of A except the first consists of half ones and half zeros, there are

2m~1 occurrences of the term 2n-m on the left side of each of the above

linear equations except the first. Bringing these terms to the right
side, and designating by A' the matrix resulting when the ones of A

are replaced by —~1's and the O's by ones, one obtains:

n-1

0

»

A'p =

0
- -

1
where ordinary multiplication is now intended. Since B = —E%E is a
‘ 2

unitary matrix: ™ - n ar - -

L, Ne-m—1

n-1 o

1
2m;2
0
, 1
1. _ 2 Tl .
b= 2m72 5 = 2m72
1
2m72

n~-m-1

L -

Thus each cell contains 2n-m—1 ones and 2n—m—l zeros. It now follows -

by induction that all the generators may be selected and successively

permuted into the following array:
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00uassnernreneeneesO0uuiunernnrnnnesss00
0004+ nsseennnseseasOlorennseeennaenenall
000u.+seeOleusnssad100sens 00L. es..u1l

00..01...10..0%...10.,.01,..10,..01....1

etc., where the pth generator contains alternating blocks of oBP

n=-p -

zeros and 2 P ones. Any set of generators may be obtained by the
inverse of the product . of the permutations necessary to arrange them
in the above fashion. Thus, all orthogonal groups are in the same

equivalence class,

The number of ways these generators may be selected is as follows:

The first generator may be chosen from any element of 2" digits, exactly

n

2
o0~ ¢ which are ones; i.e., in ( 4l )

2

ways. The second may be

chosen from any element with ot digits, the half corresponding to the

ones of the first element containing 222 ones and 2n—2 zeros and

2n—l

similarly for the other half. Thus, there are ( _ )
2

2 such elements.

Continuing this argument, the pth element may be chosen from any of

n-p¥l
2T (1)

the ( np ) possible elements satisfying the necessary con-
2

straints. This is continued until all n generators are selected.

Now; however, a given group cen be generated from more than one
set of generators. In particular, given a group, the first generator
. can be selected from any of the 2"_1 elements where the identity is,
of course, excluded, The second can be selected from any of the 22

elements from which the first generator and the identity are excluded,
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The third may be selected from any of the 2n-22 elements not generated
by the first two generators, etc. The number of ways in which the
generators may be selected from the total group of elements of 2"
binary digits must then be divided by the number of ways in which

the generators of a particular sub-group may be selected; that is by

(P =20 (P -2h P -2?) ... (P - 2

Thus the following theorem has been proved.

THEOREM: The total number of distinct orthogonal binary groups is:

Ne1.
2 4 8 2
2n , 2n—1 2n-2 2n—3 21

2n--l 2n—2 g 2n—3 2n—4 | 20 (3 10)

G WP SN CLP L

ot

G W AP B COlPL)

Corollary: The number of distinct bi-orthogonal groups is:

B(2") = (2): . (3.11)
A Gl B Co ) I ¢ o )

Proof: A bi-orthogonal group is generated by the same elements
as an orthogonal group with the addition of the element I containing
ones in every position. Given the n+l generators of such a group, the
n generators of an’orthogonal éroup,may be selected from them in 2"
ways since any of the n generators, X9 exc;uding I, or its complement,
Xy + I, may be selected. No orthogonal group can include both x5 and

X + I and hence all ot orthogonal groups selected from one bi-orthogonal
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group are distinct. Two orthogonal groups selected from different
bi-orthogonal groups cannot possibly have identical generators and
hence are also necessarily distinct. Thus there are o orthogonal

groups for every bi-orthogonal group. This completes the proof.
Finally, one can prove:
THEOREM: There are at least

1
(zm)t (22 -2l

s27) (2® - ©) (P -2 (@ -22) ... (-2

distinet binary orthogonal sets of length L = 2%, 1o prove this recall

an elementary theorem of group theory which states that, for each sub-
n
group of order 2n+1 of the group of order 22 (formed by all binary

n
2°=(041) 4ictinct cosets. (A

vectors of 28 components), there are 2
group coset is obtained here by adding, modulo two, a fixed binary N-tuple
to every element of the group. This is, of course, equivalent to
complementing those columns corresponding to the components of this
N-tuple which are ones.) Further, no two distinct groups can have any
cosets in common., Now consider the number of ways an orthogonal set can
be selected from a bi-orthogonal coset, noting that any orthogonal set in
the group equivalence class must form a bi-orthogonal coset when the
complements of all the elements are adjoined. The only constraint is
that if an element is selected from the coset as a member of the set,
its complement cannot be selected since complements are not orthogonal.
Thus there are two choices for each éf the 2% elements of the set.

n

That these 22 orthogonal sets selected from each coset are distinct is

readily apparent. It is equally true that any set selected from different
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cosets must also be distinct since, given any two cosets, one must have
at least one pair, X, and X+ I, which is not found in the second. Thus
' P 2% n-1
there are 2° orthogonal sets for each of the 2 cosets of each
bi~orthogonal group resulting in S(Zn) orthogonal sets which are
equivalent to the orthogonal groups under the complementation and permu-
tation operations defined above. These S(2n) sets have been obtained
from the original group by column permutation, column complementation,
row complementation and, finally, row permutation, in that order. All
sets obtainable by this sequence of operations have been counted. To
state that the?e are no more orthogonal sets in this equivalence class
requires demoﬁstration of the fact that some other order of operations
could not have resulted in still another set. By changing from 1,
0 to -1, +l1 notation, it is apparent that the complementation and permu-
tation operations may be represented by the matrices C and P where C

has only the diagonal elements +1 and -1 and P ig a conventional permu-

tation matrix. In addition, there is always a diagonal matrix, 02,

il

such that ClP PC,, for any P and Cl’ since

2

and this transformation simply takes . into cjj’ Thus, if Hl and
H2 are in the same equivalence class, there exists some set of matrices

P., C, such that
i’ i

Pl Cl P2 02 ses Pm Cm Hl Cm+l s Cn Pn = HZ”

But since C. P. =P, C, and C, C, = C and P P =P the above
i~i i7j i7] k k'r q

may be written



Pa Ca Hl Cb E% = H2 »
Again, because P and C commute in the above manmer and because matrix
multiplication is associative, it follows that the order of permutation
and complementation is irrelevant and that all sets can be obtained

by the sequence of operations described above.

A short table indicates the order of magnitude of the numbers S(2m):

m s(2™)
1 4
P 32
3 122,880
4 gt x 107

Thus, for a still relatively small orthogonal dictionary of size 24 = 16,

5

more than 8 x lOl dictionaries would need to be investigated to be

able to proclaim one of them optimum. This number obviously grows
extremely rapidly and very quickly becomes too large for any conceivable

computer.

C. The Structure of Orthogonal Groups

In the previous section it was shown that all orthogonal groups
are equivalent under permutation of columns to a group whose generators
have the form |
O0ueeesnosnsancescanaedld
00.seseseasOllouunsansnl (3.13)

00, ..0100es10s.0.010...1
ete, '
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The complete group of order four is then:

0000
0011
0101

0110,

Note that this array is symmetric. As was shown in Chapter 1, a group,B,
of order o™ can be generated from a group, 4, of order 2n—l in the
following manner:

(1.24)

A A
B =
A

g

where A consists of the complements of the elements in A, But B is just

a symmetric array of symmetric arrays and hence is symmetric. By in-
duction, then, in any group of this form there is a one to one correspond-
ence between rows and columns. As a result any such group contains

o1 columns each with one half ones and one half zeros, and one with all
7Zeros. Since any columns of the group coset may be obtained by comple-
mentation and permutation of the group B, and since neither of these
operations alters the condition described above, except that perhaps the
all zeros column becomes an all ones column, it remains true for all

cosets., This property of orthogonal cosets was used in Chapter 2.

The statement in Chapter 2, that any subgroup of order ZH_P contains
2P columns which consist of all zeros or all ones, follows immediately
from the discussion above concerning the number of orthogonal groups.

If only n-p generators have been selected, the group may be permuted
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into the form described there containing oBP cells of 2P elements each,
the leading cell containing only zeros. Thus the above statement is
true for any coset, since these 2p columns of all zeros occur in any

coset formed from this subgroup as columns of all zeros or all ones.
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Chapter 4

BOUNDS ON THE INDEX OF COMMA FREEDOM FOR ORTHOGONAL CODES

A, Upper Bounds

In order to obtain an upper bound on the maximum index of comma °
freedom, consider the maximum index of comma freedom attainable when a
code word is correlated with the cyclic permutations of itself and
other code words. Since the set of words formed by cyclic permutations
of code words is a subset of the possible out-of-synchronization comb-
inations obtainable, an upper bound on the index of comma freedom con-
sidering only this subset is certainly an upper bound for the set as a
whole. But if x is to differ from all the cyclic permutations of y in
at least p places and no more than N-p places, then all cyclic permu-
tations of x and x must differ from all the cyclic permutations of y
and 5 in at least p places. To prove this statement let X represent
the N-tuple resulting from permuting x cyclically r places; ©.8., if
X=X X, X, X xlzxxxx xzzxxxx,x3zxxxx.

1727374 4717273 37471772 2737471

. ty. r <]
Now suppose N—pZ\x +y \Zp for all t, but assume \x +y fép. Then

lxr-g.(N_.r) + ys+(1\I—r)\ - \XN + ys-r-i»I\Tk - [x + y<.s—1c'+l\T| 4 p. But

ys—-r+l\T is just some cyclic permutation of y and thus the last statement

t
is contrary to the hypothesis that ilx +y / > p. Now suppose that

\Xr +§Sll..p. Then



- 61 -

]X+§S_T+N}<p

| x +yS-HN+ I[<p

N _\X +ys—r+N|Lp

] % + ys—r+N‘7N -

which is contrary to the hypothesis that [X + ytlﬁ N -p for all t,.

S

The same argument is obviously valid for | x T +7 5\ and| =T+,

Now consider an orthogonal set of size N. From the above argument,
each of the elements of the super-set containing all the cyclic permu-
tations of the elements of this orthogonal set and their complements
must differ in at least p places from every other element. The number
of elements in this set is evidently ZN(N) = 2N2, since there are N
cyclic permutations of each of the orthogonal elements and their comple-
ments., A well-known result from the study of error-correcting codes(25)
states that if M binary vectors of dimension N are to differ from each

other in at least p = 2e + 1 components then the following inequality

must be satisfied:

. 2N
¥ £ , p=2e + 1. (4.1)

1+ (D) s+ (D)

The proof is straightforward. If a vector, which can be obtained from
one code word by complementing e or fewer of its components, can be
obtained from a second code word by' complementing e or fewer of its
components, then the two words can differ in no more than ée components.

A necessary condition for a vector to be a code word then is that none
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of its N_ = ( ? )+( g ) + eeot( g ) neighboring vectors be either a

code word or one of the Ne neighbors of any other code word. That is,
no two "spheres" of radius e, with code words as the centers, can inter-
sect. The above inequality follows from this, If no two code vectors
are to disagree in fewer than 24 components, a similar inequality can

be derived. If, for every code word x, a sphere of radius d is con-
structed with x as a center, then requiring that no two spheres intersect
except, perhaps, at a boundary point, is equivalent to demanding that
any two code words are separated by a distance of at least 2d. Note
that the possibility that two spheres contain a boundary point in

common cannot be excluded. Consider now the maximum number of spheres
which can contain the same boundary point. Let z be an equal distance

d from the code words x and y. Thenz+y=u, 2+x =V, X+y=u+V
where [u[=|v|=dand |x +y[ ={u+v|Z2d But 2d Nul +\v] 2

lu + v‘. Thus we must require that \u‘+ vl =\'u\ +\ v‘; This is easily
seen to be true only if no position occupied by a one in v is also
occupied by a one in u. Consequently, any vector x, consisting of N
components, can be common to, at mostiﬁyd] spheres, where the brackets

denote "the integral part of". Each code word x then eliminates at least

1 N
[N/d] ()

vectors from consideration. Hence the number of code words is bounded by

N N
1+ () 4o (g )+

2N

N < - | (4.2)
1+(I§)+...+(£l)+ (T

]
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for a code in which the minimum distance p = 2d. The following table
shows the maximum value of p obtained from the above inequalities for

orthogonal codes of length N for several values of N:

Table 4.1

Upper Bounds on the Indices of Comma Freedom

N p@§¥

4 0

8 2
16 4
32 13
64 - 30

An independent upper bound on the index of comma freedom for ortho-
gonal codes is readily obtainable from the fact, observed earlier, that
the sum of the squares of the N correlations of any sequence with the N

code words is constrained:

| =

" 82 = 1 (3.6)

[
i
-
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Therefore, ;

max|a, | = [max aizr

> L
v

. (4.3)

and min max | ail =

L
n

The maximum out-of-phase correlation is then at least % in
N

max | _i  max| ¥
absolute value, Thus ~_ | X * y{ =, | ———=2>="= and
i i N _VN
1 .
N(l -';f:
—_N
max Di 7 N= >
Nl = ==
. i
min D, = /N .
i 2

This provides a new upper bound on the index of comma freedom:

)

N(l -
(-

1Y £ -__é—_—— ° (404)

It may be readily verified that this upper bound on the index of comma
freedom, p, is larger than the previous upper bound for N < 64, For
N = 64 the opposite situation is true and continues to be so for all

larger values of N,

Some of these bounds can be improved slightly by some additional
observations. First note that any upper bound on p obtained by con-
sidering only cyclic permutations of the code words must be an even
integer. To verify this, let x and y be code words, and again let Xy

1-25,

<3

Vy

the ith component of x, be , and similarly, let s be



1-27,
-—-—-—-—fl—l- where §i’ ni = 0 or 1., Then

Vr
¢ N=-200) _ ¥

k W Y4k

= %Z 1- 2§i) 1 -27,.,)

D(k)=Z§i+ Zni+k"22§i7zi+k °

N N
Since Z TZ ik T Z 721 and since D{0) is an even number for two
i=1 i

i=1
orthogonal sequences of even length greater than 2, then Zg 5 +Z7Zi
is an even number., Hence D(k) is even for all k. Note that this is
also true if x = y. Since all of the bounds above for N4 64 are obtained
by considering only cyclic shifts, these bounds, if odd, can be replaced

by the next lower even number.

Tor the cases N7 64 the best upper bound thus far states that

1 5
, (¢! ‘W)

P & > . This implies that each word in the code forms a

"perfect" sequence in the sense that its correlation with all its phase

shifts is #* i:_— . Thus
N

N N
1 g
T oo - eloti] - T s
k=1 i=1

(4.5)
. .
2 (N - 2p)
= ( Xi) = N
i=1
where p is the number of--»—-/vl: 's (1's) in the code word x, and v is the
N
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. . 1
number of times the correlation + —— occurs. Hence:

—

Y

W - 2p)° = N +'V'1\'I[2u +1 - N]
(4.6)

— 2
N+ NAN - 4pN\[F + 2= - 4/5 = 20 + 1.
\n

In order that“YN be an integer we require that N = 22m

. Thus iAW

is an integer, it is an even integer. In the above equation, then,

all terms on the left side except possibly;%gi are erven, while the right
2 ! |

side is odd. UTFor a solution to exist, 4p_ must be odd, If N is of

A

the form N = 22(2m+1), no solution exists since:
2 2
qf& 22m+l 2m—l

But %qg can never be an odd integer (since, if q2 = 2s, q must be even,

2
2
q=2t; ¢ = 4t2, and 95- = 2t2). For the cases N = 22(2m+1)

the upper
bound on p can thus be reduced by 2, since no "perfect" sequences of these

lengths exist and since the number of disagreements between any sequence

and a cyclic permutation of itself is an even integer.

Finally, it will be shown in Chapter 7 that no orthogonal comma-
free group coset dictionary exists for the case N = 8, This does not
“exclude the possibility, however, that an orthogonal set obtained by

complementing some of the rows of a coset may be comme-free for N = 8,



B, Lower Bounds

In this section we show an iterative procedure for construction of
comma~free bi-orthogonal codes. This establishes a constructive lower
bound on comma-free codes for the bi-orthogonal (and, trivially, the

orthogonal) case,

Consider the following construction:

c =_AxBL}AxB (4.7)
where x denotes the "Kronecker product" defined as follows:

Ax B

(aij) x (b_)

=/ allB 8.12B a0 alMB

. (4.8)

B
a. B s DR aM]y[

Ais an M x M matrix and B is an N x N matrix. Here aij and bkm are
either +1 or ~l1. Thus C is the union of two MN x MN matrices, the
second being obtained from the first by multiplying every component by
-1, Now suppose A and B are orthogonal code dictionaries._ Consider

the correlation between two arbitrary rows of A x B, viz
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ail 31{’ aiz/gk, neecoy aiM/ék

ajlﬁm’ 255 /6131' cesoos ajMﬁm

where/é?U represents the uth row of the matrix, B. Then, ifm # k,
these two rows are certainly orthogonal due to the orthogonality of
the rows of B. Further, since the above rows can clearly be permuted

to the form

b a bk2 Uiy oeecer bkM ay

b aj, bm2 aj, seenny me aj

where aj denotes the jth row of A4, and since a permutation of the columns
of a matrix does not alter the correlations between its rows; the rows

of A x B are also orthogonal if i # j, due to the orthogonality of

the rows of A. But as inspection of equation 4.8 quickly reveals, there
are no two distinct rows of A x B for which both i = j and m = k. Hence

all rows of A x B are mutually orthogonal.

Let AUAbe a bi-orthogonal code with an indéx of comma freedom
PM and BL).E be one with an index pN. The construction, C, is then

a bi-orthogonal code in which the following represents a typical word:

X = X XXX eonses XX

where x, a row of B, contains N terms and there are a total of M x's and
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We will consider the out-of-phase correlations by investigating
the following four situations:

(a) If the phase position k # qN (g = 1, 2, +.., M~1) then
each x in X agrees with the corresponding out-of-phase symbols in not
more than Py and not less than N-pN places. This follows from the
fact that the x's are code words of B and that all possible out-of-phase
sequences of length N to which x or x can be compared here are included
in the set of overlaps generated by the code B. Thus pMN‘Z MpN for
this case.

() x=qgN¥ (@ =1, 2, eu., M-1) and X is compared to overlaps
involving only ﬁon—x and x terms. Then, since the vectors in B are
orthogonal, Py = MN/2.

(c) k = gN (q =1, 25 aeoy M—l) and the out-of-phase vector
involves only x components. Then, trivially, Py =NpM since every
disagreement in A implies N disagreements in C.

(@) k=qN (@ =1, 2, eo., M-1) and the out-of-phase vector
contains both x,'; and non—x;'; terms, If the first part of the sequence
to which X is compared contains x's, then every disagreement in A implies

N disagreements in C. In the second part of the sequence, containing

v elements of A, there are v N/2 disagreements due to orthogonality.

If the number of disagreements, d, in the corresponding comparison

in A is equal to dl + d, where dl is the number of disagreements in

2
the first M-v places and d2 the number in the last v places, then
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But in the bi-orthogonal codes, if either word of the sequence consisting
of the overlap of two words to which a code word is compared is complemented
another possible comparison results. Thus:
— 7 Lad
M pM_dl+u d2z pM
- -y 7 -
M Py vz2d d

,
17 % - Py

Combining this last equation with the equation above, one obtains:

2M - v - 2PM 2 g > 2pM -V (4.9)
2 1 2 ° ¢

Hence, since
v
dny = N(dl + 2)
then
| - 7 p
N - py) 7 dyy 2 Noyy

and thus

pm- Z NpM . (4010)

The same result obviously follows if the second part rather than the
first part of the sequence contained the x and x terms. Note that

cases (b) and (c¢) are just special cases of this last case (4).

Combining the results from these four cases, one finds that

7 mi '
Dy 2 min (Npy, Mpy) - (4,11)

IfM=N

p,7 Np. o«
W2 N



- 71 -

The index of comma freedom then grows at least as rapidly as the dictionary

size.

Note that to establish lower bounds for all bi-orthogonal dictionaries
of order 2N it must be shown that there are comma-free codes for the
cases N = 16, 32, 64 and 128, since none exist for the case N = 8. (see
Chapter 7). This follows from the fact that no product of the above
integers yields a dictionary of less than 28 = 256 words, and thus no
smaller comma-free dictionary cen be formed in the mamner described.

4 X 2n—4

To see that those numbers are sufficient, note that =2
and that, if comma-free codes exist for n =4, 5, 6, 7, they can be
obtained for all larger n by recursion. The improved upper bounds on the
index of comma freedom, Ei,and the index p', of the best code yet attained
are listed in the following table. These latter valuses were obtained

by selecting by various heuristic methods a coset-leader for a group

ictionary and determining the resulting comma freedom on a computer.

Table 4.2

Lower and Improved Upper Bounds
on the Indices of Comma: Freedom

N Py p'
8 2 (0) 0
16 4 2
32 12 6

64 26 14

128 58 34
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Before leaving this subject, consider the following estimate of
the index of comma freedom obtainable with large code dictionaries,
which, although adwmittedly heuristic in derivation is nonetheless some-
what illuminating. The method is as follows: Choose an orthogonal group
of order N and construct a coget leader by selecting N consecutive
binary symbols at random, with p(0) = p(3) = 4. Now consider the

following orthogonal coset:
H = G+c+ct+ y (4,12)

where ¢ is the random coset leader, ck is the sequence c shifted cyclically
k pogitions to the left, and y is a2 sequence consisting of the last

N~k gsymbols of one of the group elements followed by the first k symbols

of a2 second group element. G + y is an orthogonal group coset, and

c + ck is a coset leader whose symbols form a random binary segquence.

Hence, the elementsof H are also random binary sequences. But note that,

if —'% g are substituted for the 1's in H and %‘s for the O's, the sum

of the symbols forming the ith element, hl, of H is just the correlation
between the ith word of the dictionary G + c and a possible overlsp

occurring at a phase position k. Since the sequence{?zugis a random
N
sequence with p(- %0 = p(%) = %, the sum Si = ( j{: hé )2 is a random
=1

variable with a nmean
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N N N N U
2 - i.i i i o3 & 1
N = = B = N2 4 = -
) =2), ) =) ) sgE)-w) ) -y
: =1 k=1 =1 k=1 j=1 k=1
242 V(e Y V2 w20 2
and 8( ()7 ) - (8 (5,%) )? = &2(5,%) (4.15)
i N N N
: i,i.i,i 1
= E }: Z Z Z hhkhmhn-N2
J=1 k=1 m=1 n=1
N N N N (
4.13b)
- D JED DD BED N
N4 jk mn
j=1 k=1 m=1 N=1
i#m
N N N W
i Zg <
+N4 Z >: Z gm % km
J=1 k=1 m=1 n=1
i#n

j=1 k=1 m=1 n=1
_ WE-1) + W= 20 - 22
vt vt N

~ Thus the expected value of the square of the correlation between any
word and any out-of-phase sequence is %‘ with a variance that rapidly

approaches zero for large N. This suggests that a group code with a
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random coset leader tends to approach asymptotically the maximum
attainable index of comma freedom, namely that corresponding to a

correlation of * between any word and any out-of-phase sequence.

=t

(g

It is interesting to observe, in this regard, that, even for small
values of N, the best codes that have been found have generally
included those with some cyclic permutation of a pseudo~random sequence

as a coset leader.

(26

)
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Chapter 5

SYNCHRONIZATION WITH COMMA-FREE CODES

A. The Probability of Correct Synchronization

Several factors which somewhat complicate the calculation of the
time necessary to obtain synchronization to the desired accuracy should
be observed. First, the correct phase position needs to be determined only
once in any uninterrupted sequence, and since this knowledge reduces the
number of correlation variables to be considered by a factor of N, it is
clearly more efficient to estimate the correct phase initially, before
attempting to decode. Thus the optimum synchronization method need not
attempt to discern the received words at all, but only fhe correct phase
position. Second, the random variables representing the outputs of the
correlators at difference instants of time are not necessarily independent,
as will be demonstrated later, Finally, except in the case of the effectively
unattainable "perfect" comma-free codes, in which all the random variables

have means whose absolute value is L , the expected value of the

Trﬁ

¥

correlator outputs in the out-of-phase position is unknown, the only re-
strictions being on the sum of the squares of these means for any given phase
position, and an upper bound on their absolute magnitude.* Yet, it is
desirable to state that, regardless of the sequence of received words, synchro-
nization can be obtained in 1t seconds with a given probability, Ps. The

following technique for exploiting the self-synchronizing properties of

. .
Although a maximum likelihcod phase detector can be determined, it is

virtually impossible te obtain meaningful synchronization time bounds

~ with it, due, in particular, to this last situation. The upper bound
obtained by assuming that all means are at the maximum possible value
is absurdly large. ‘
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comma~free codes is evidently sub-optimum. Its justification rests, first
of all, in the results it achieves and, secondly, in the fact that an upper

bound on the synchronization time using this method is computable.
The scheme is as follows:

Congider the outputs of the N correlators at some given phase
position, k. These are mutually independent* Gaussian random variables
with one (normalized) mean at one and the rest at zero in the in-phase
position, and all the means less than some value, E%%E » in the out-of-
phase position. Now define a threshold and observe whether it has been
exceeded in absolute value by any of the random variables in question.

The probability fhat the threshold is exceeded at a given phase position,

k, is given by

p, = 1-77 P (5.1)
i=1
where
a - t2
1 o -2
P (u ) = e dt (5.2)
1 i (27_{’)-2_ /
5
*

The independence of these variables is a consequence of the ortho-
gonality of the code words. Thus, if

T - T ,
Z, = 3l xi(t)l_y(t) + n(t)] dt and Z, = 5 xj(t)[y(t) + n(t)] dt
then ° T

E(zizj) .—.[ / xi‘(t)xj(u)g(t—-u) dtdu

(o]

T rr
s xi(t)y(t)dtu s xj(t)y(t)dt}+
(¢}

o

-

T oo
- L[ xi(t)y(t)dt] L/ xj(t)y(t)dt} = B(z,) E(Zj).
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and where o represents the thresheld, and ui is the mean, and

G = CThT% the standard deviation of the Gaussian variable corresponding
to the output of the ith correlator. The distribution of the number of
times the threshold is exceeded in m trials (for a given phase position
k) is simply the binomial distribution with the probability of a success
per trial, P, @as defined above. It is desired to estimate the number
of trials necessary to assure, with a pre-assigned probability, that the
number of successes in the in-phase position is greater than the number

of successes for any other phase.

Congider now the correlation of the outputs of two different

correlators at different instants of time:

E<cik cjm) - E(Cik) E(ij)

. T T
= Ej [ Xi(t)[yr(t + l—;\%) +n(t + _1%>] xj(u)[y(u + %T-) + n{u + ENE)] dtdu

- Blcy,) E(cjm)

T T
- s‘n2 x, (t) z.(u) 6(t-u+—Q‘—;I—“1T) dtdu
o] OT(l _&’lgﬂl)
- o2 (0 2,6+ BB D 6, Gewen 603)
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Hence, the correlation between the random variables corresponding
to different phase shifts is not, in general, zero. The variables in
this case then are not statistically independent. As in Chapter 2,

however, a lower bound on the probability of identifying the correct

position is given by the following equation:
7 -
P27 Byn, z, b)) - [Bym, 7, 9,) + oo+ Pylm, 7 opy )] (54)

where the function PB(m, r, pi) represents the probability of r or more
successes in m trials when the probebility of an individual success is
P The probability PB(m, r, po) for the in-phase situvation may be
readily calculated for a given threshold from the above expression for
Pye But the out-of-phase probability depends upoﬁ the position of the

means., An upper bound for the probability Pb(m, r, pi) which is inde-
pendent of the distribution of the correlation means would be desirable.
n ; .
. - 5L n i n-i | .
Since PB(m, r, p) - ( i ) P q increases monotonically as p

increases, the above upper bound is attained for that distribution of

the means for which p is maximized., Since PN(ui) = PN(;pi>, it can
‘be assumed without loss of generality that all the means are positive.

Further, from previous considerations it is known thati:y%? = A2T2

and! ui[ £ Eﬁéﬁ JAT, where the means have not been normalized as

before. The variance, of course, is the same for all distributions,
Congider now an arbitrary arrangement of the means, pi, subject to
the above conditions. Let us select two of these means, increase one

and decrease the other in such a way that the sum of the squares is held
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fixed, and investigate the behavior of the probability p =1 - /i[ 'P(pi).

Let
22 2
Zpi «AT,pJ +p,k:=1{2, pkiua
then \ ) 5
d 0P P,
—P —k sl 7
sgn ¢ — = sgn (—-P. - P 3 ) P(u.)
Iy IR R Y *
. » (5.5)
Zp P,
= send- 1 5 X + 1 1 _
P . B N
e k My p“;) 3 aug
2P, b, 9P
The last expression was obtained by observing that —d - L
5“1: My Buj

P

and by dividing both terms by Il P, a positive quantity. Now
; W 7y i g

3 d

congider sgn{'—— -
TV !

g

%5 ) where P = PN(u). If this equation

&
=

is always positive (or negative) over the range of ¢ of interest, the
p is monotonically increasing (or decreasing) as a function of k over

this range., 3But:

cend2-(_ L 1L 2B
op’ w P Jdp
(5.6)
1 dp 1 9%py1 1 , 9P 2
= sl (— === — )=+ (<) .
2 C 2 I) 2 [
p2 oK B 3y pe - oM

Since the last term is always positive, the above expression is positive
at least over the range of 1 for which the term in the first set of

parentheses is positive. Now:



o) Lo2p 1
en 20w Tow 52
. (¢ + 1)° (a=u) )
1 oo 2 25 ?
= sgn¢ 5 (e - )
p
2 > |
(e _la-p)”
+ _l_( (o + 1) 252 Q-4 20- %
5 e + 5 e )
L &
= sgn /Qx coshj@;x-—-(l-i—xz) sinhBX (5.7)

where /3 = —(-;f—-- sy X = —O%- . Expanding the hyperbolic functions in
power series (which converge for all X) one obtains:

e

- o0 -
e dl 9B 1 3% | _ G-l ( 322 | 2|
1.2 2 [ T

pe P du -

d

Gyt (Zmr - L%
(5.8):

This last expression provides all the necessary information concerning
the conditions for which the function under consideration is monotonically
2
a <

-2 - %, then the sign of the

above expression is always negative since all terms of the series are

increasing. In particular, if /52 =

4
negative, If 2k+l < /3« 2k+3, the first k terms in the series are
positive",' the remaining terms all teing negative. Since the series is
positive for small values of x and negative for large values of x, the func-

. tion must cross the x axis for some positive value of x, Let x = X represent



- 81 -

the first zero. Then

k o0

Z ax2n+l~ Z bx2n+l=(); a, b »O0.
no no n n

n=1 n=k+1

Now let x = ?fxo, 7> 1, Then:

k : O
T a ( 3’ x )2n+1 - Z b ( Z x )2n+1
ya n (<] n 0
n=1 n=k+1
k a< 0
2k+1 an+l 2n+l 2 2n+l
< 7 ( Z &% - z L ) - (97-1) Z L
n=1 n=k+1 n=ktl -
e
g =(7%-1) Z bnx02n+l 4 0 for all 7> 1. (5.9)
n=k+1

Thus there are no more zeros to the right of X, which was by hypothesis
the first zero to the right of the origin., To recapitulate, for '5%'7’1[‘3/,
the function has one and only one‘zero and is positive for all x = 25:
less than the value of x = X, at that zero, The value of this zero is
readily calculated numerically and is tabulated in the following table
as a function of 4 :
Table 5.1
The Zeros of the Function £(5,x) =5z coshSx - (1 + x)? sinhSx
& o

1,200
o5 2,00

2.618
3,061
34735
4.795

U'!#}N\)INI\)
T



- 82 -

If the threshold —g—: 7 V3 and X S > ( -IE:I%E ) AT = max(p),then D increases
s . . 2 2
as y > pj is increased subject to the constraint that the sum By F uj =K,

Consider all possible arrays of means for the out-of-phase distributions.
Since p increases as the larger of any pair of means is increased while
the smaller is decreased so zs to keep the sum of the squares constaunt,

it is apparent that the maximum value of p is attained when as many means
as possible are at the maximum allowable value while the rest are at zero,

If k is the number of means at the maximum value,

2 2
Tl"z'}:‘ii = k(%ﬁg) = 1 implies that k = —2— , If tais
AT T (N-2p)°

is not an integer then the maximum value of p is clearly attained for

2
k = —& where the brackets denote the "integer part of". There

2
(v-2p)
are then N-k-1 means at zero with the remaining mean at some intermediate
value in order to satisfy the constraint that E: ui = A2T2, Thus, for a

given signal-to-noise ratio and given threshold, an upper bound on p is

obtained, so long as the threshold is such that x = X, is greater than

umax
o

where Woox is the maximum possible out-of-phase mean,

Under these conditions, upper bounds on the synchronization times
can be calculated., Some of these results are summarized in Table 5.2,
Again, the probability of a bit error in synchronous operation is assumed
to be .001, and the number of words, m énd n*, necessary to obtain correct
synchronization with a probability of ,999 and of .9999, respectively, is
determined., As in Chapter 2, the rate of transmission is assumed to be

45 bits per second. The probability of correct synchronization is estimated
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P Z Pym, v, p)) - (§-1) Py(m, v, p;) (5.42)

and the values of the PB(m, T, pj) terms are taken from a table of the

(27) using the bounds for

cumulative binomial probability distribution
the probabilities pj, as determined above. These latter values are

included in Table 5.2. The values of the function, PN(ui), of equation 5.2,
necessary for the calculation of these probabilities are, of course, also |

obtained from a set of tables.(28)

Table 5.2

Upper Bounds on the Synchronization Times for

Comma~Free Codes

N 8 16 32 64 128
D 0 2 6 14 34
¥ - .95 .95 9375 2925
S - .906 .906 2904 .886
R 4 3,25 2.88 2,50 2,40
m(.999) - 72 36 28 18
r - 30 13 10 6
nT(secs,) - 6.4 4.0 3.73 2,80
m'(.9999) - 110 43 34 21
rt - 46 14 11 6
‘m'T(secs,) - 9.78 4,78 4,53 3427
b, - L6010 6056 6338 6667

Py - -2134 .0796 L0587 .0168
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‘ e B 5 By
The threshold & = -5 =< = =T that was used is included
AT AT AT?

in the above table; it is not necessarily the optimum value. The quantity

by X, O

c- n . . . s s
é = —= = ——— corresponding to the zero x_ 1is also given, and it is
AT ATZ o]

observed that the threshold is always large enough so that the above

argument concerning the maximum of p is valid., That is, if
X S -
& =2 i? > ( N]§p ), then XO>
AT?

‘J“max
Sl

It is easily seen that the

necessary inequality remains valid for all larger signal-to-noise ratios

if ¥ remains fixed. This follows from the fact that XO grows at least
ST

1 1
as rapidly as,ﬁg,'and that 8 = 56('ﬁrh )2(21og2N)2 grows as rapidly wikh
0
ST i ST 1 1
b N2 b 5 v
(52 ) as =5 = (52 )( 57 )7 (20g )%
o) CThTZ o

In addition, it follows immediately that if umax'< xO(T‘, the synchro-
nigation time decreases as‘ pmax‘ is decreased as was contended in Chapter 3.
If umax‘> Xogr"this is no longer necessarily true, but at these values of

i the probability p(k#O) is very nearly equal to p(k=0) (cf. equation 5.1),

and the synchronization time is large regardless of the value of Mooy
For the case N = 16, the time necessary for synchronization with
these codes is greater than in the random source situation. This process,
of course, has the advantage that no assumptions have been made concerning
the randomness of the transmitted sequence. As N increases the synchro-

nization actually decreases; when N = 128, there is a factor of 16

improvement over the random source scheme.
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B. Asymptotic Results

It is of interest to investigate the asymptotic behavior of the
synchronization time as the number of code words, N, becomes large.
From equation 5.2 it is seen that a lower bound on the probability that

the threshold is exceeded in the in-phase position is given by:

-(1-7) 2~ 2
" _ i
1 2
p = 1- 7 P, >1-—"—T e dt  (5.10)
° i=1 1 (2 W)i
Z(147) -

while the out-of-phase probability is bounded by:

- J
eV
pp €1~ —(—%—T—);Zf e 2 at (5.11)
2/
~(7\) —%J:

where y = AT and f9= At is the maximum possible correlation between an

out-of-phase sequence and a code word.
ST

Note that, since —— = ( T, ) (2log2N) “__(ZlogeN) » D, asympto
tically‘approaches one for < 1., Since
Ps 2z PB(mv r, PO) - (N-l) PB(m’ r, Pl)
Z. PB(m’ l’ po) - (N-l) [1 - (l—Pl)m] (5.12)

iy

Pglm, 1, p,) = (¥-1) m p)

when po and pl are replaced by the bounds given above, and since the first
term asymptotically approaches one for any value of m > 1, it suffices to

show that N Py approaches zero to establish that correct synchronization is
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available asymptotically, as soon as a complete word has been received.

But: R
( o0
2 T2 >
Np, <N{1l =|1- e dt
1 ;
(277) m
[e" )
v [T
2 2
< (E ¢ e dt
U
(7-2) 2=
. 2
- (Z) ( _gh_)Z
I (5.15)
£
- — 5013
T (Fn)
§ ST
- logzN [Cﬁék)z ifh'“ 2log 2]
(2 e 0 °
- T st % .
(=2) (§2) (2Log )7
)
STb Zloge2
Thus, if 7§—-z O )2 » N P does in fact approach zero asymptotically
0 J\

with N. Since, presumably, \ approaches zero as N becomes large, and
since 7 can be nearly one, this requirement on the signal-to-noise ratio
is the same order of magnitude as that necessary to assure that the synchro-

nous error probability approaches zero as N increases.

It will be remembered, in contrast, that the value of m necessary in the

random source synchronization technique increased asymptotically more

‘rapidly than In addition, of course, that method assumed a random

N
logzN

sequence of received words, whereas the comma~-free method gives an upper

bound over all possible received sequences.
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C. Some Comments Concerning the Complexity of the Decoder

The disadvantage of this synchronization technique lies in the
increased amount of equipment necessary to decode; the amount of encoding
equipment in the satellite or probe, it should be noted, remains essentially
the same., This increase in the complexity of the decoding equipment can
be diminished or eliminated at the expense of synchronization time by not
investigating all of the phase positions simultaneously. Suppose that the

N possible phase positions are divided into S blocks of'g positions each,

Thejg positionsof each block are to be investigated simultaneously, as
before, but the bYlocks are to be investigated éerially. Since the same
threshold can be used in both cases, the time necessary to look at a
particular phase position is essentially the same regardless of how many
other phases are being simultaneously investigated. But since there are S
different blocks to be searched sequentially, and each block contains the

correct phase position with the probability”% , the expected number of

blocks, K, that need to be observed before the correct one is found, is Just:

S
E(K) = ZE: %- = S(Szg‘ll— = 2 ; 1 . (5.14)
i=1

Thus the increase in the expected search time necessitated by simultaneously
investigating only %'rather than N phase positions is given by the factor

S+ 1
2 ]

(29)

This increase can be reduced somewhat by a two-step search.
The first step consists of investigating each block for a much shorter time

than that necessary for synchronization. The resulting information is then



used to rank the blocks in decreasing order of the a posteriori probability
that they contain the correct phase position. A second search then
investigates these blocks in order of their rank until the correct position
is determined. By a judicious choice of the time spent on the first investi-
gation, the necessary search time can be reduced to approximately one-half

that necessitated by a one-step process if S is greater than 5,

This, then, is one method by which the complexity of the equipment
necessary for synchronization can be decreased by increasing the synchro-
nization time., Other methods, including, perhaps, a preliminary search
using the random,source technique, might be applicable in certain practical

gituations.
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Chapter 6

SYNCHRONIZATION OVER THE BINARY SYMMETRIC CHANNEL

A, The Binary Symmetric Channel

Binary codes, in general, and orthogonal and bi-orthogonal codes, in
particular, were originally conceived as attempts to achieve a lower error
probability over the binary symmetric channel, This channel is so named
because each transmitted symbol may be one of two possibilities, say O or
1, and the noise and signal energy are such that a zero is as likely to
be mistaken for a one as the converse, the probability of this happening

(30)

being designated by p. Shannon has shown that the channel capacity

in this case is given by:

Cb = 1+ plogp+ (1-p) log(l-p) bits/symbol, (6.1)
It is of interest to compare this capacity with that of the continuous

channel, The bandwidth occupancy of the binary channel is defined to be

5%— , as before (cf. Chapter 1), where TS is the time per symbol. Now
s
suppose that the two channels are perturbed by white Gaussian noise and

that a maximum likelihood detector is used in both cases. Then the

capacity of the continuous channel is given by

23T
s

N
)

L
27
S

| Sy .
C, = W log(l + Now) = 1ob2(1 + ) bits/second (6.2)
where NO is the noise power per unit bandwidth. The probability of

mistaking a one for a zero (or a zero for a one), p, is given by



0
% i "7 Nt
2 2
P = (./ﬁ») jEL T e
i N 9T 2
0O 8
= o0
1
ZSTS 2
- ) £2
- ° e 2
= T
(277)?
-0

it

since the maximum likelihood symbol detector integrates over one symbol
time and proclaims the signal one if the result is positive and zero if

not. The expected output if a one is sent is ATS = S_TS

and the variance < is
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23T
3= ers((27)

N T
0 8
2 -

R
2
(x S TS)

dx

(6.3)

(see Chapter 1),

The limits as 15——9-0 of CC and Cb are easily obtained (cf. equation

1.19):

28T
lim 1im 1. s
1 20C = poo zr tog(l )
s s s )
287
1im S

since 1og2(l + x)

— log.e = T
Té—?O ZNOQS 2 No

it

loge loge(l +x) = 1og?e(x -

(6.4)
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Similarly,

lim lim 1

1 -50Cp = T —30 T (1 + p log p + (1-p) log(1-p) ) bits/sec.
s s s

I _.1_1,,1?[1_(.,2_)“12'(_2.335.)%
Té——%-o T, e N, ‘
| i , 3, BT
log, 1—(-:/.7) ( T )Flogze-l (6.5)
-
. 25T q [ 4 287 . 11
1 2\ S \Z 2_\7 S \2
+5 1+ ( )2 ( ) log L].'l-("‘!_"') (== )?|loge~1
T N, e 7 TR Rt
28T
. 1l ) 2 8 2 S
= 113 —— "2‘(—") - log.e = — — log.e
TS 0 TS T NO 2 71 NO 2

where only the first two terms of the expansions of 1og2(l + x) and the

first term of erf(x) = ——1—-_; [x - 2 x3 +. .....] were taken since all
277) ’ |

succeeding terms involve powers of Ts greater than the first power and
may therefore be neglected. Thus, in the limit as Ts-—--+0, the loss due to

the quantization of the binary channel is represented by the factor —-7_2? °

The ‘advantages of using a binary channel are potentially great. While
the orthogonal codes do asymptotically achieve channel capacity over the
continuous channel, the vsize of the computer necessary to decode eventually
" becomes prohibitive. Binary codes of much greater length céuld be used,
however, with the same amount of equipment due to the existence of more

efficient decoding schemes(Bl). Unfortunately, if the orthogonal codes are to



be used in such a way that the transmission rate, and hence the time per bit
Tb is held constant, it is found that the optimum value of N is generally
rather small, That is, the orthogonal code achieving the lowest error
probability at a given signal-to-noise ratio is one of a relatively low order.
The error probability actually becomes rapidly worse for higher order codes.
Consequently, there is apparently no possibility of approaching the channel
capacity with these codes over the binary symmetric channel. Figure 6.1 shows

the bit error probability over the binary symmetric channel for orthogonal

ST.

codes of various lengths as a function of the signal-to-noise ratio, ifh .
o
(The bit error probability is %i% times the word error probability; see

Chapter_l,) Also included, for purposes of comparison, is the uncoded bit
error probability., Note that it is always considerably more advantageous
to use the channel as a continuous channel with the same codes if such a

procedure is possible,

Again, analytical comparison is difficult, but the following argument
gives credance to the above statement concerning the behavior of the error
probability as a function of thersize of the code. Consider a code that
can correct up to, and including, e errors. It can be shown(32) that if
e > Np for all N, where N is the number of symbols per code word and p
the probability of an error per symbol; then the probability of error per
word asymptotically approaches zero with increasing N. However, suppose
e + 1< Np. The probability that a word is in error when e or fewer

_ errors can be corrected is just:
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N
N, i Nei
_ 3 -
P Z () p@-p .
i=e+l

Let e+ 1 = Np(l —{f). Then by delMoivre's theorem, as N becomes large

N—2( 1-p )
N | P £
Pe = jg: - § ) Pl(l-P)N;l‘—T* ];-féj;g e 2 dt.
=Np(1 - 2707 1 _
i=lp(1 -€) L = Y- (6.6)

Thus Pe increases with increasing N for all € z 0, Consequently, a reasonable

figure of merit for an error correcting code is F ='%%§ »

Now consider the orthogonal codes. If the bit rate of transmission
ST

N
0

is fixed, then for a given signal-to-noise ratio, , Where Tb is

the time per bit, the probability of error per symbol is:

=~ . 1

€2}
=
[N

—By (Fogl | (6.3a)

e} N i

and e, the number of correctable errors is x_ 1. This follows from the

4

pij

5 symbols, If fewer

fact that two orthogonal words differ in exactly

il

than )

errors are made in any one word, it is gtill closer to the original

or more errors are made, this is not

word than to any other. If -%

_ necessarily true. Thus:



N
4
e+l
F o= - = 6.
i - s ) (6.7)
N - N erf ( ..S_T_b. ) il_?ﬁ
2 Nb N
and
N
lim B - 4 —_— 1
N —y o0 - 1 2 * (608)
1 1
2 ) 2z 72
'lé“: e (%T' ( 2log,N)
(2772 o

But, as was shown above, if F 41, the probability of error per word increases
with increasing N and it is apparent that in this case it approaches 1l as
N——>%°, It is evident that F has this same asymptotic behavior for bi-
orthogonal and trans-orthogonal codes. Thus, for a fixed, finite signal-
to-noise ratio, there is always an optimum, finite size for these codes.

Larger codes actually increase the error probability.

It should be observed that while the number of errors correctable in

N - AW

2

an orthogonal code is %’- 1, as many as errors are detectable.

(This corresponds to the fact that a vector may actually have a correlation

of ¢ —%: with every code vector, as was shown earlier.) Thus, all

NN
information is not necessarily lost if more than %‘— 1 errors are made,
However, much of the advantage of algebraic decoding would be lost if this

added information is to be used, since a much more detailed knowledge of

the coset leaders must be obtained and exploited in this case.

There is another commonly encountered situation in which it may be

advantageous to use these codes over the binary symmetricbchannel. In
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particuiar, if the symbol time is constrained, orthogonal codes provide

a useful means of exchanging transmission rate for a decreased error
probability. While this exchange may decrease the information transmitted
by the channel according to Shannon's definition (the rate of information
transmission is effectively equal to the source rate since the equivocation
is negligible at the error probabilities of interes@, nevertheless, in many

situations it is much more important to transmit one bit of information per
second with a probability of error, Pe = 10_5, for exemple, than to transmit
ten bits with Pe = 10_3. Figure 6,2 shows the bit error probability as a
function of the symbol error probability, p, for orthogonal codes. The

transmission rate is evidently reduced by the factor lﬁ .
2

B. Word Synchronization by the Random Source Method

Efficient decoding over the binary symmetric channel, as over the
continuous channel, demands word‘synchronization. Technigues completely
analogous to those used in earlier chapters to obtain this synchronization
are applicable here, although entirely different methods are required in
order to calculate the necessary convergence time. If, as in Chapter 2,
it is assumed that the source is such that a completely random sequence of
code words is transmitted and that each word has an equal probability of
being seleoted, a method similar to the one discussed there can be used.
Since any orthogonal group or group coset contains an equal number of ones
and zeros in every symbol position but one, which is all geros (or ones),

" it suffices, as before, to determine that unique position. ‘Assume, without

loss of generality, that this unique symbol is always a zero. Then this
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symbol in the received code word is a zero with probability l-p and a one
with probability p, the symbol error probability defined above. The
remainder of the symbols are equally likely to be a one or a zero. The
probability of correct synchronization after m words, then, is the proba-
bility that more zeros occurred in this unique symbol position than in any
ofrthe other positions. As before, a lower bound on this probability can be
obtained by establishing a threshold on the number of zeros occurring at
any position and determining the probability that more than this number
occur at the unique position, while fewer occur at every other position.
Again, the received symbols are not mutually independent due to the word
structure, but this difficulty is avoided exactly as before by observing
that

P(AlU A, U A

30 ...UA.N)i P(Al) + P(AZ) +oaee 4 P(AN).

Thus, the probability of correct synchronization, PS, after m words and

with a threshold r is bounded by:

r-1 m
Pyl- ) (2 ot oL yo(D)
1 2111 1

g —
i=0 i=r (69)

= Pylm, v, (1-p) ) - (8-1) Pylm, v, 2)

where PB(m, r, p) is as defined in Chapter 5. Table 6.1 shows the number
of words m necessary to establish synchronization with a probability of
0.999 and of 0,9999 and the corresponding threshold for various values of

the dictionary size, N. The value of p is chosen so that the synchronous
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word error probability is 10—3.

Table 6.1

Synchronization over the Binary Symmetric Channel

Assuming a Random Source

N he] m(.999) r(,999) m(.9999) r(.9999)
8 .01 24 21 32 28
16 03 34 29 43 36
32 .06 48 38 62 49
64 .10 72 54 84 63
128 .14, 92 68 110 79

C. Word Synchronization with Comma-Free Codes

Again, the comma-free properties of certain of these codes mway be used
to obtain the word synchronization necessary for decoding. To take
advantage of the algebraic decoding techniques which have been developed,
the code to be used must be a group or a group coset. It will be observed
that all the examples of comma-free codes given in Appendix A are, in fact,
group cosets. Let x be the vector added to the group to render it comma-
free. Then the decoding process involves subtracting (or adding, since the
arithmetic is modulo two) x from the incoming word and then determining
the coset, or the weight of the coset, to which the word belongs. The weight
of the coset, by definition the minimum Hamming weight of any element of
that coset, indicates the most probable number of errors that occurred

during trensmission. If this weight is less than e, the number of corrects
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able errors, the sequence is decoded and the word that was most probably
transmitted is determined.(BB)

If no errors occurred during transmission the weight of the coset of
the received in-phase word will be zero, while the out-of-phase weights
will be at least Do’ the index of the comma freedom. (Note, the index of
comma freedom will be denoted by Do here rather than the p of previous
chapters to avoid confusion with the customary use of the symbol p as the
probability of error in the binary symmetric charnel.) The problem is
to distinguish between the two situations with the desired accuracy even
though transmission errors do occur. As before, a synchronization schenme
is selected with no further justification than the results that are
obtained with it, and the fact that upper bounds can be calculated

rigorously. The process is as follows: A threshold, D., is selected and

1
the number of occurrences of elements whose cosets are of weight less than
or equal to D1 is counted at each phase position. In the in-phase case,
the probability that the coset will have weight Dl or less is gilven by:

D

L N i N-i
P = \Z (7)) p-p)7 . (6.10)

i=o0

Consider now an out-of-phase sequence y with the property that
lx +y| =D for some code word x., The probability that a random error
vector transfers y inte a new vgctor z with the property that
|z + zlf:Dl<.D can be calculated as follows: There are N-D component
positions in which x and y agree, and D in which they disagree. If an
error vector, which changes y to a vector agreeing with x in N-d positions,

d ¢ D, contains i ones in the N-D positions of agreement, then it must
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contain exactly D-d+i ones in the D positions of disagreement for some

i=0,1, 2, vo.y do That is,
(v-D) =i+ (D-a+1i) = N-d.

The rumber of error vectors with this property, for a given value of i,

N—D> (

is just ( The probability that any one of them occurs is

D- d+
pD—d+21 qN—D+d-2l and thus the probability that the error vector alters
y in such a way that it agrees in exactly d places with x is
d
<N—Dj ( ) p D-d+2i N—D+d—21
:E: i D_d+1

i=0

The probability that{x + 2z | £ D1 is then

D

1 d
) N-D D_a+21 N—D+d—21
4 = =
lx+z<oflxeyl =)= Y ) () Gag)e
P
N-D 1 N—D—l D—d+1 a-i
=Y |y ) (pges) P (6.11)
4 =20 i=0
Dl d
= Z Z pg(N-D, 1, p) vy(D, D-d+i, p)
d=0 i

where pB(n, r, p) is the probability of exactly r successes in n trials

when the probability of a success in one trial is p.
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In order to obtain an upper bound on the probability Pl that an
out-of-phase vector is mistaken for a code word, and to“find one which is
independent of the received error-free sequence y, it is necessary to
determine the value of D such that the probability P(D) that a random
error vector e causes y to fall within the threshold of a code word x or
its complement'E is maximized. The probability that z =y + e falls
within the threshold of X is given by equation 6.11 when D is replaced by

N-D, or equivalently, when p and q are interchanged. Thus

n |
P(D) - 'jii j{: [(N;D) (d?i)} l pD—d+2i qN—D+d—2i
d=0 1i=0

(6.12)

D-d+2i N-D+d-2i
+ g Y

»

Now consider

p(D) - P(D+1) =

by

1 | 1
Y e e @ - [l
i=0

d=20

d )
T e @ et (2] [ merd o)

where
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P. - pD—-d+21 qDI~D+d—21’ o - qD—d+21 pN-—D+d—21, and the identity
i,d i,d

n noy n+l
was used to eliminate the terms (N;D) and (31):1) But

1 d
N-D-1y , D l ]
(i) () 1Bia * %4

id=0 i=0

).

Dlwl
d=0

d .
N-D-1 D D q
Z L) (o) lq Pia ™t o Qi,d]
i=0
where i-l has been replaced by i, and d-1 by d., Similarly,

a |
 m-D-1y (D o a
), % )(d—i—l)[q Fia t o Qi,dJ
0 iz 0

1,

d

D,~1

4 )
‘ N-D-1y ( D
= Z 3 ) Q) [Pi,d * Qi,d_]
i=0

d=20

where d-1 has been replaced by d. Thus,

LRI
-2

[}

| — ]

| R T :
VP(D) - P(>+1) = (a-p) Z Z (N—];-—l) (d?i) [?11_ Pi,d -
d=0 1i=¢0

D, -1 3 ,,
N-D-1
- (g-p) dzo .ZO ) (d.]?i) H_ Fia ~ %Qi,d]
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D
1

= () ) TG )[lP - g J : (6.13)
i=20

A I ¥ N ]

But this is just g-p times the probability that a vector y' with N-1
compenents is transformed into any of the vectors located at a distance
Dl from x' minus the probability that y' is transformed into any of those
vectors at the same distance from.z}, where the distance from y! to x' is
D and that from y' to x' is N-1-D. Now, in a method entirely analogous
to that just completed, examine the expression

F(D') - F(D' + 1)
where

X 1\ (N-p-l D'
o) =3 ) (G R
i=0

and where the second subscript on P has been dropped for convenience.
As before,

D) -F(D' + 1) =

Q-

D,
N-D'-2y , D' N-D'-2y , D'
{( ;) ) 2 GG —i)J B
. 1 1
i=20

Py

T q :EZ [(N—g‘—2) (DDLi) + (N_?'—z) ( ?;—1)1 5' F
i'20 1 oo

foly | o

Dl )

_ N;D'—Z D! | | b
= ino ) G [Pi( 1-3) ]
Dl—l ) 5 .
N-D'- ! P

i=0

i

Ll
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Although more general results may be obtained, it suffices here to observe

that every term of the last summation is non-negative if D! _Z% Dl -1

D

1 N-D-12 D, and it

2

and if, of course, g7 + > p. Then if %ZD + 17

follows from repeated application of equation 6.14 that F(D) - F(N-D-1)

is positive. Consequently, equation 6,13 is positive and P(D) 7 P(D + 1)

=

if

N =

7D +12= D). This, in tum, states that the probability, p(D),

0

increases as D decreases, at least as long as D obeys these inequalities.
But since the comma-free condition assures that DZDO for all received
vectors y, then if q( Do +1)2 Dl’ an upper bound on the probability, Pl’
that the error vector e is such that y + e falls within the threshold Dl

of any code word or its complement is obtained by letting |x + y] =D

ol
and l; + y( = l\T—Do or vice versa for every code word x. Then, if
q(Do +1)2D.,
N )
P = yamx Hellzexled) £
Dl d
¥ YY) ppD, 1 0) pp(Pg, D=dti, ) (6.15)
d=0 1i=20
Dl d

+ N Z Z py(D,s i, ) P(N-D , N-D ~d+i, p) .
4=0 i=0
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- If the sign information is already available, as is often assumed for a

binary symmetric channel, the second summation may be neglected.

The probability of correct synchronization after m words, PS, is
just the probability that the received vectors fall within the threshold Dl
of a code word r or more times for the correct phase position and fewer
than r times for every other phase position, for some predetermined value

of r. Hence, as before, Ps is bounded by
P T PB(m, T, Po) - (N-1) PB(m, r, Pl).

PB(m, r, p) is, as before, the cumulative binomial distribution:
m
i -1
PB(m’ r, P) = Z (If ) P (l“P)m °
i=r

Table 6.2 lists the number of words necessary to establish synchro-
nization, with the probability .999 and .9999 for various values of
dictionary size, N. The threshold Dl ig also included, as well as the
values of PO and Pl of equations 6.10 and 6,12, respectively. Note that
(lép)(Do + 1)is, indeed, greater than Dl in every case, and hence that

the condition, upon which the above argument concerning the upper bound

on Pl depends, is satisfied.
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Table 6.2

Synchronization with Comma-Free Codes over the

Binary Symmetric Channel

¥ o D0 D B P n(.999) r(.999) m(.9999) r(.9999)
16 ,03 2 0 .614 ,009 16 4 21 5
32,06 6 2 L6777 .0016 15 3 19 3
64 .10 14 6 .539 6.62x10~° 13 2 16 2
128 .14 34 20 .827 2.56x107C 4 1 6 1

An interesting estimate of the expected synchronization time can be
obtained under the assumption that the overlaps, including the errors,
constitute a uniform random distribution over the possible ZNAbinary
vectors of N components. That is, any given vector has probability 2“N
of occurring as a particular overlap, Again, picking a threshold Dl’ the
sequence corresponding to the correct phase position will be within distance

Dl of a word with probability PO,

N i N-i

Rz Y (1) (6.10)
i=0

where, as before, the possibility that a word might be altered in such

a way that it is within a distance Dl of some other word has been neglected.

The probability that a particular out-of-phase sequence is within Dl

of a code word is given by:

D

- i ,
=75 Z (3) (6.17)

i
i=0
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Dl
since there are exactly XN j{: ( f ) different vectors of N components
i=0

within this distance of a code word. The probability of synchronization

after m word times is, as before,
P Z Fb(m, r, PO) - (m-1) PB(m, r, Pl) . (6.16)

The value of m necessary for Ps = ,999 and PS = ,9999 is shown in

Table 6.3.

Table 6.3

Synchronization Assuming A Random Distribution

of Out~of-Phase Vectors

¥ p D n(999) r(.299) =m(.9999) r(.9999) P, B

- 2 1

8 01 1 10 9 15 13,999 .28
16 .03 3 8 7 10 9 .999 .17

32 .06 7 5 4 6 5 .999 .034
64 .10 15 3 2 4 3 .99 ~107
128 Jd4 0 31 ~1 1 2 1 .999 ~1078

The results in Table 6.2, it should be noted, are rigorous upper bounds on
the number of words necessary for synchronization, regardless of the
sequence'of words transmitted. .The expected number of words given in
Tsable 6.3, however, were calculated under the unjustified assumption that
_ the out-of-phase vectors constitute a random distribution in which any one

of the ZN binary vectors of N components is equally likely, A4 heuristic
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justification of this assumption can be obtained by the same device as

that employed in Chapter 4. That is, if a random vector is added to

every element of an orthogonal group to form the code dictionary, then any
seqﬁence formed by an overlap has randonm properties. The error vector is
certainly random and consequently any given out-of-phase vector is random-
like. To the extent that there tends to be a correspondance between codes
with this randomness property and comma~free codes, the results in Table 6,3
are not unreasonable for these codes, The fact that, for codes of length
128 and greater, essentially only one word may be necessary for synchro-
nization is at first disconcerting. This suggests that probability of
correct detection for long codes is effectively the same with or without
synchronization. However, this is merely a reflection of the fact that the
longer codes become progressively less efficient as error-correcting codes.

X_4

4
That is, the X~ E:; (?) decodable vectors become a vanishingly small
i=0

part of the 2N possible vectors, If the out-of-phase vectors are truly
random, the probability that any one of them can be decoded is negligible,
It should be emphasized that this discussion refers only to the expected
synchronization time. The comma-free properties of these same codes,
however, assure that the upper bounds given previously are valid regardless

of the randomness, or lack of randomness, of the received sequence,



- 110 -

Chapter 7

A METHOD OF ANALYZING THE COMMA-FREE PROPERTIES OF GROUP CODES

A. The Matrix Equation

It was shown in Chapter 3 that all orthogonal groups of order N
are equivalent, under a permutation of columns, to the group generated
by the elements: |

00seeonceesal0ll ieaneassenll

OOO. . -Oloo n.llOOo . ocoll-t .ll

L3 L]

Olol.......‘..........Qlolol L]

This n by 2® - N matrix will be referred to as the generator matrix G.
Note that no two column vectors of G are equivalent, This may be verified

as follows: The first row establishes that none of the first g' columns

can be identical to any of the second g; the second that none of the

first %‘ columns can equal any of the second %‘ and similarly for the

third and fourth quarters. The first and second rows then guarantee that
if any column is repeated, the second must occur in the same quarter of
the matrix as the first. It readily follows that the third row provides

that any two identical columns must occur in the same ;%-rd = %-th

2

. of the matrixz, etc., until finally the nth row divides the matrix into
o™ sections, no two of which can contain identical columns. Thus, since

all 2n columns must be distinct binary vectors of n components, all of the
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possible 2% vectors are represented. A4s a result, any binary orthogonal
group generator may be represented by a matrix whose columns are some
permutation of the 2" binary numbers of n digits. Similarly, any element

in this orthogonal group may be represented by the expression y = HT“X

where HT is the transpose of a matrix H obtained by some permutation of
the columns of G, x is any of the ot binary vectors of n components and
all arithmetic operations are over the binary field, GF(2).(34) This

simply represents the fact that any member of the group may be obtained
from some linear combination of the generators. Any group coset may be
obtained by adding a fixed 2n—tup1e to the corresponding group elements.

Thus any group coset element may be expressed as
y = HTX + C (7.1)

. n . .
where c is some 2 -tuple, designated, for convenience, the coset leader.

Now let Hg(k) be the k x n matrix consisting of the first k rows

of Y and, similarly, let Hz(k) comprise the last k rows of g, In

addition, let c, be a vector formed by cyclically permuting the coset

k

leader in such a way that if Si is the ith component of c = Cyo then the

ith component of .

is §i + ) Where the subscript is to be interpreted
module N. Then any sequence of length N = 2" formed by the last k digits
of a code word of the above coset followed by the first N - k digits of

- another (not necessarily different) code word is readily seen to be

expressible as
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— -

HZ(N - k) o(N - k)

0(x) HL (k)

— -

where O(j) is an j x n matrix of zeros, and y and z are n x 1 binary
vectors. Thus the sum of any overlap with any code word or its complement

may be represented by:

HZ(NV = k) o - k)
w il + HTX + Cc_ + y o+ zZ + C
’ 0 k
o(k) HT(k)
5 i f
(7.2)
HE(N - k) (N -k) o-k) I IRE:
f e (¥ - k) v
= +te  t+o
T T Z
_He(k) o(k) Hf(k) 1(x) v

= Mku + co + ck

where w is a binary scalar (a one component vector), and I(k) isa kx1
vector consigting of all ones. If w is O, the overlap is compared to a
code word; if 1, the comparison is with the complement of a code word,
Note that M is an N x 3n + 1 maﬁrix and u a 3n+ 1 component

vector., Finally, the index of comma freedom is given by
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min
u,k

i
Nku + co + ck ’

that is, by the minimum Hamming weight of the above vector.

Let e be the vector of minimum weight such that

k

Mk uw +c¢ +c = e
o] o]
o 0

for some u = uo and for some k = ko. Then

since addition and subtraction are equivalent over GF(Z). For this to

(35)

be true, a well-known theorem of matrix algebra states that

;)(Mk ) =f](Mk , G, v o te) (7.3)

wheref] denotes "rank", and M _,c+c  +e is the matrix M,  augmented
o 0 °

*
by the column vector ¢ + ¢, + €, Thus, for example, it is easy to

k
0

establich whether a given coset is a comma~free code by letting e be the

all zeros vector and determining whether [](Mk) = [)(Mk,c + ck) for any

value of k./D(A) is perhaps most readily d&termined by reducing A to
(36)

Hermite canonical form since the necessary operations are trivial

over GF(Z).

Note that all arithmetic operations here are over the field GF(2). Most
of the results of matrix algebra, however, and certainly all those
techniques which are used here, are valid for any field.
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Unfortunately, no such convenient method exists for determining the
minimum Value of{ e | when it is not zero. The following approach is use-
ful for determining an upper bound on | e lfor a given group, for evaluating
\ ei min for a particular coset, and in some cases as a method of constructing
an optimum coset leader for a given group. The calculation involved in the
above three investigations, however, becomes increasingly tedious as the
code length increases, and the first of these is probakly  the only technique

which is useful for any but the smallest ocrthogonal codes.

The procedure is as follows: An operator matrix A is determined so.
that:

A= (g) | (7.4)

where B is an r x 3n + 1 matrix such that if the first one in row J
occurs in the kth column, then the first one in row J + 1 occurs in the
k + mth column where m?!1, and O is an N-r x Ner matrix of zeros. This
ig the Hermite canonical form, The rank of Mk is obviocusly r, If Pij
is a matrix which permutes fhe ith and jth rows, and Eij a matrix which

adds the ith to the Jjth row, then

where the elementary matrices are determined in the step-by-step reduction

of Mk’ Now applying A to the above matrix equation, one obtains:

A = 'A(c + Ck) + A e.
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Since [D(M ) =r, the vector, u, can always be chosen so that the first r
k
of the above equations can be solved. The left side of the remaining

N-r equations is always zero, and hence e must be chosen so that

N

Ale + ¢ )

~—’
k} A e

(7.5)

where the "tilde" indicates the truncated vectors consisting of the last

N-r components only. There are 2N ways of selecting the vector.e, but
Ner : o~ . . . '

only 2 possible values for 4 e, Thus, if, beginning with the vectors

of lowest weight, the ZN“r vectors for e are selected such that every

possible Efé has been obtained, then the vector of maximum weight
necessary to complete this set represents the maximum possible index of
comma freedom. This index can be obtained if & vector c¢ which satisfies
the above equation exists, and if, for every other value of k, the vector.c
also necessitates a vector e of at least this minimum weight. While this
method could conceivably be used to construct an optimum coset leader, the
process is evidently extremely laboriocus. However, it has been found that
the upper bounds obtained by investigating a given group in the above manner
for a single value of k, in particular, k = %-+ 1 or %% -1, are
generally attainable. This technique then is valuable in eliminating much
unnecessary search for a better coset leader. In addition, if a coset
leader has already been selected, this method facilitates the investigation
of the iﬁdex of comma freedom since it is given by the minimum weight of

e necessary to satisfy the above equation. Several examples of the

- application of this method to obtain least upper bounds are given in

Appendix B.
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The above technique is somewhat simplified in the investigation of
one very important orthogonal group, the cyclic group. A cyclic group
code is defined here to be a code in which every word is a cyclic shift of
a particular sequence. Except for the case N =4, noc strictly cyclic
orthogonal codes are known. However, cyclic trans-orthogonal codes exist

n 1(37)

for all values of N =2 and orthogonal codes can easily be
constructed from these by adjoining a zero to the beginning of every word.
The advantage of such a dictionary is that it can be generated by an
extremely small amount of equipment. The property of these codes that is
useful here is that the generator matrix HT obeys a linear recurrence
(38)

relationship. That is, each row of HT can be obtained by taking the

sum of no more than n = 1og2N previous rows.

hk = aihk—i for all k,
i=1

n

where a; is an element of the field GF(2), and "row sum" designates the

sums of the cofresponding components, also over GF(2). The matrix A is

thus obtained most readily in this case, as is illustrated in Appendix B.

It should also be observed that the techniques of this chapter are

equally applicable to the bi-orthogonal case. By substituting the two
O(N-k) I(N-k)

columns for the single column I(N) in the
I(k) o(x)

matrix M(k) and adding the additicnal variable w' +to the vector u, it

is possible to complement the first and second parts of an overlap inde-

pendently. This is the only change necessary to investigate a bi-~orthogonal

code for comma freedom (cf. Appendix A).
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Note that, since the expected weight of e increases as the number
of different vectors Emé “increases, this weight will tend to be greater
for larger values of 2N—r and hence for minimum rank r. The code
generated by the matrix G itself is particularly attractive in this
regard since, as may be readily verified, cyclic permutations of the
elements of G are very frequently also in G or in the complement of G.
This indicates that the matrix My constructed from G, contains a large

number of columns which are lineasr combinations of other columns, and hence

that the rank of M is generally considerably less than 3n + l.

B, The Non-Existence of Orthogonal Comma-Free Group Codes of Eight Words

Consider the binary orthogonal dictionaries consisting of eight words.

The matrix M. and M, may be represented, for an arbitrary dictionary, by:

2 3

B, = 0 o g 1 W, = o g g 1
o, g, g 1 o, o g 1
@ O g 1 a5 dg g 1
aQ g g 1 o o ¢ 1 (7.5)
o g 1 o dg g 1
a0 g 1 g g o 1
a B o 1 w f a1
ag g o, 1 ag @ o 1

where a, is some member of the fieid, GF(ZB), represented as one of the
" eight binary numbers of 3 digits and @ is the three-tuple, 000, If a

comma~free code 1s to exist, then the rank of both M2 and M3 must be
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less than eight since L?(Mk, <, + ck) cammot be greater than eight.
Thus there must be some linear combination over GF(2) of the rows of each

of these matrices which is equal to the vector of all zeros.

lMore precisely, it may be stated that some linear combination of
exactly four rows of M2 and M3 must be identically zero for the
following reasons: (l) The last column of M2 and M3 contains all
ones, and hence no odd number of rows can sum to zero, (2) No combination
of two rows can be identically zero since this would imply that o, = aj

8
for i £ 3, (3) It is easily verified that ) @, = ¢ = (000) and
i=1

hence, if some linear combination of six rows of M2 or M3 is equal to
zero, there are two ai’s vhose sum is ¢, again implying a, = aj, i#3,
and (4) If the only linear combination which yields the zerc vector
involves. all eight rows, then ﬁ)(M} = [)(M, c, + ck), and no comma

freedom is possible in this case, either, This is because the sum of all

of the components 2%.+'b£+k of the vector , + ¢ is necessarily also

8

8 : 3
zero; that is, Z (Zfi+ Zfi+k) = Z 7{i+ Z 51 = 0O,
i=1 i=1

i=1

It will be assumed that Ty Ons as % ¢° If this is not true, the

following arguments may instead be applied to MB and M6. Consider M3.

Number these Tows si(i =1, 2, eecey 8). If a4 + Ty + a3 % ¢, four of the

first five rows must sum to zeré if the rank is to be less than eight.

Suppose 811 So» s3 and s4 are linearly deperdent. Then o + a, +

a3 + a4 = ¢, a4 + a5 + ag + 37 = ¢, and hence ay + a, + a3 4 g5 + o +
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a7 ¢ a + g which implies a4 = Ggo Since this is impossible, these

four rows cannot be linearly dependent. t any four of the first five

rows of MB contain either a4 or a5 twice. If only one of the two
is contained twice, a linear combination of six ai's may be equated to ¢

implying, as before, that @ = Gy h # e, Thus the only possibility left

is that both o, and a. are involved twice in the linear combination,

4 5
and hence that 819 S2’ s4 and s5 are linearly dependent.
If a, +a, +0a, =@ then Sgr S1 Sgs Sy (i =1, 2, vo., 5) may be

1 2 %
linearly dependent, Evidently i corresponds to that ai+3 which is equal

to@d., If i=5, g

S = ¢ and a + a a7 ¢ a + o, +a, + 0. + a6 + C

2 3 5 i

which implies u4 = dge Similar conflicts result if i =4, 2 or 1., The

only possibility remaining is that i =3 and a = ¢. Hence if the rank

of ‘M, 1is to be less than eight (except in the uninteresting case (4)

5
above) either o + a, + a4 + a5 = g4 + 35 + a7 + oy = ¢ or

+ Q. = g = u3 + o + a7 + ag = ¢, But since . + a + 33 + ag = ¢

a, + a .
3

1 2

implies that a4 + a5 + a7 + tg = ¢ and a3 + g + a7 + Iy = ¢ implies that

ay + a + a4 + a5 = ¢ the second situation implies the first,

Now consider M, and identify its rows by 1, (1=1,2, v.., 8)

Since o # a.,, four of the first six rows of M2 must be linearly

_dependent, if the rank is to be less than eight (again excluding case (4) ).

The first column in the following table lists all ( i ) =15 such
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possibilities and the second column indicates the conflict, if any, resulting

if a,l+a2+a4+a5=¢=cc4+cc5+a7+a8,@

Table 7.1
Linear Dependent Rows Implication if o +oa, +
o, + 05 = g
) T, Tz T, ay = O
ry T, Ty Tg ay = 9
rp T, Tz Tg Uy = Oy
r, r, T, Tg @, = dg
ry T, T, Tg a = o
r, T, Ty T @ = g
T Ty T, Tg a, = oz
r, rzy T, Tg a, = 0,
r) Tz Tz Ty o, = O
rp T, Tg Tg a, = ag
r, Tz T, Tg a = 0y
r, Tz T, Tg a = 9
r, Tz Ty Tg o = g
r, T, Tg re @ = g
s Ty Ts Te %5 = %
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Since the condition that al + a2 + a4 + a5 = ¢ = u4 + a5 + a7 + 38
makes 1t. impossible for any four of the rows of M2 to be linearly
dependent, there are no comma-free orthogonal group codes and, a fortiori,
no comma-free bi-orthogonal group codes of order eight. It has been shown(39)
that all orthogonal, and hence all bi-orthogonal, codes containing 12 or
fewer words are in the same equivalence class. Since the above method
includes investigation of all dictiocnaries in the equivalence class of the
bi-orthogonal group codes, it follows that there are no bi-orthogonal

comma~free codes consisting of eight words, which is as contended in

Chapter 4.
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Chapter 8

SUPPLEMENTARY REMARKS CONCERNING SYNCHRONIZATION

A. Other Approaches to Synchronization

Before concluding this paper, it would be well to mention some
approaches others have taken in attempting to overcome the synchronization
problem, Most of the effort in this area has been orientated toward the
binary symmetric channel and has been concerned with uncoded data trans-
mission. The work of Gilbert(4o) has already been mentioned., This paper
investigates the maximum number, G(N), of N symbol code words which have
the following property: BEach code word is to have the same A symbol
prefix, and all other blocks of A consecutive symbols occurring in an
arbitrary sequence of code words are to be different from this prefix.
Neither the possibility of error-correction nor the cross-correlations of
the resulting code words is investigsted, and no estimate is made con-
cerning the time necessary for synchronization.

Aﬁather appfoach results in the binary N-tuples known as the Barker
sequences(4l). These are sequences,{:xi} , which have the property that
their aperiodic autocorrelation:

N-k N k=0

a) = ) @-ex)a-2x,) = (8.1)
i=1 +1,0 k£ 0
Such sequences are known to exist for N=1, 2, 3, 4, 5, 7, 11, 13, They
are known not to exist for odd N > 13. Sequences with la(k)[ < n, k # 0,

for larger integers n have been found for many lengths, N. These and
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related sequences can be used in the synchronization of the uncoded binary
symmetric channel in a straightforward mamner. If such an N-tuple is in-
serted periodically in a random sequence of binary digits, one N-tuple for
every M data bits, then the reception of this pattern tends to indicate

(42) There are three sources of errors in the synchro-

gsynchronization,
nization process: (l) The synchronizing pattern can occur in the random
part of the sequence consisting of data bits, (2) The pattern can occur

as & combination of m random bits.preceeded, or followed, by N-m bits of
the true pattern, and (3) The true pattern may be missed due to the random
errors., The purpose in using Barker~like sequences is, of course, to
decrease the probability of an error due to (2).

An alternative scheme to accomplish the same task is simply to send

(43,44) 1 tnis bit is always

a synchronization bit every D data bits.
zero (or always one ) while the data bits are equally likely to be zero
or one, then the time necessary for synchronization is calculated

essentially as in Chapter 6.

It is interesting to note that these two techniques for synchronization
are in many essentials equivalent. In particular, if one synchronizing
bit is sent after every D data bits in the second scheme, the synchro-
nization time is seen to be virtually the same as that of the first if
the ratio of M to N is D. The effect due the type (2) error in the first
process is certainly negligible for moderately large values of D, The
"second method has the advantage-that éynchronization information is
) received after every D bits, as opposed to every M bits in the first
method, This advantage may well be counterbalanced, however, if the

frame consists of more than D bits., A frame is a block of data digits
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which carry all the results of a series of experiments or observations.
Frame synchronization is often necessary in order that the user lkmow to
which observation a particular set of data bits pertains. Thus, if one
synchronizing bit per frame is not enough, it may be necessary to transmit

additional frame synchronization information when using the second method.

As was mentioned, the random scurce synchronization procedure
described in Chapter 6 is essentially the same as the methods described
above, except that the data were assumed to be uncoded in the latter. As
error-correcting codes, in fact, the orthogonal codes offer no advantage
over the trans-orthogonal codes since the column consisting of all zeros
(or all ones) can be neither an information bit nor a non-trivial parity
check bit., In this context, then, the constant column of the orthogonal
code may be considered as a device added to the trans-orthogonal codes
only for the purpose of synchronization. The same statement may be made
concerning these codes as used in Chapter 2, except that, as observed
earlier, the negative cross-correlation of the trans-orthogonal codes may
sometimes be disadvantageous. Under these circumstances, the added
column is useful both in the synchronization and in the decoding mode of
operation. To the extent that this column has no use other than synchro-
nization, however, these codes violate condition (2) in the Introduction.

Nevertheless, as was shown in Chapter 1, the effective power, for the

N-1
N

continuous channel, is decreased by at most a factor of , Which
is negligible for all but the shortest codes. The synchronizing methods
discussed in this section, of course; all suffer from the same defect to

" a greater or lesser degree, depending upon the ratio of the number of

synchronizing bits to data bits., These methods are in addition subject
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to the previously mentioned difficulties presented by the highly probable
non-random source. All are significantly less efficient that the comma~-free
codes of moderately large index, even when the source does appear to be

random,

B. PFrame Synchronization

No mention has been made in previous chapters concerning frame
synchronization., If this information is necessary, however, it is
particularly simple to obtain with orthogonal codes. The procedure is
to send the code word in complemented form to designate the béginning of
a new frame. To evaluate the effect of this perturbation on the operation
of the chamnel, observe that the increase in the probability of a word
error over the continuous channel due to the possibility of a complemented
word is negligible. This may be verified by comparing the orthogonal and
bi-orthogonal word error probabilities given in Chapter 1. The difference
is insignificant for N2 16. The probability of missing the frame
synchronization is then eséentially equivalent to that of meking a word

error in synchronous operation,

The difference in word synchronization time caused by the infrequent
occurrence of a word complement is also negligible, at least for the
comma~free codes. It will be noticed in Appendix A that the maximum index
of comma freedom found is, in every case, the samekfor the orthogonal and
 bi-orthogonal codes. Thus, even if the complemented form of the word
occurred with high frequency, the s&nchronization time would be unchanged.

In the random source technique of synchronization in Chapter 2 it is



- 126 -

easily verified that the expected value of the integra.l Io is decreased

M2

by a factor of = is a frame consists of M words., Similarly, the
27 21T 4A2T2 M=1

variance of I is increased from o~ ~ % to D T4/ =5,
o} n N n N N2 M2

The effective signal-to-noise ratio is thus reduced from

AZT 210g2N
= R( 5 ) = RsN
TN
to
21og N ( %2- )2
R( 5
, ZlogzN M1
1 + 4R( ) (=)
N 2
M
~ & 21°g2N) 1 -4 R( - - R -4g
~ N M N SN~ M SN *

Since R is generally less than five, this perturbation is seen to be small
for large values of M. The mean and variance of Ik 740 is cbviously

unchanged by this process,

Similar comments apply to the synchronous error probabilities, and
to the word synchronization time when this frame synchronization method is
used over the binary symmetric channel, For the same reason as before
almost nothing is changed by this procedure' vhen the comma-free properties
- of these codes are used, When the synchronizing:symbol is used, the
probabilit;v of a one occurring in this symbol position is evidently

: M-1l) + (1~ ' -
changed from p to p(¥-1) m (1-p) = p+ ;—I%p- which may or may not be

significant depending upon the relationship between M and p. Note that
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the synchronizing symbol need not be complemented, in this case, with

the rest of the frame word. This leaves the word synchronization time
unaltered, but does alter the word error probability, This is because
the complement of a trans-orthogonal code word is "closer" to the other
dictionary wordsthan the word itself. However, it can be verified that
this change is also slight. Which of these two methods is superior would

depend on several factors, particularly the values of M and p.

Note that the disadvantage of using a bi-orthogonal code (i.e., the
lack of sign information) is not a consideration here even though the
sign of a word is given significance. The great imbalance between the
number of frame synchronization words ("negative" sign) and the remainder
of words ("positive" sign) enables immediate distinction to be made

between the two cases.

In summary, the frame synchronization problem can be solved with
virtually no alteration in the results obtained in the previous chapters
when comma-free codes are used, The random source synchronization
techniques are slowed up soﬁewhat by this perturbation but, particularly
for the continuous channel, these effects tend to be slight. This method
has a special advantage over that mentioned in the previous section in
ithat the probability of an error in obtaining the frame synchronization
in one attempt is extremely low and consequently the frames need not be

equal in length.

C. Retention of Word Synchronization

It should be observed, for the sake of completeness, that it is

possible to lose word synchronization after it has been obtained and that
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the optimum procedure for the retention of word synchronization is not
necessarily that used to obtain it initially. In particular, the most
probable way for synchronization to be lost is by a shift of one symbol
in either direction from the correct position, This type of error is
easily guarded against by occasionally, or continuously, monitoring the
positions on either side of the position believed to be correct. This
process also results in continually increased confidence in the correct-
ness of the accepted phase position when word synchronization has,
indeed, been obtained. The criterion for deciding that the word synchro-
nization ig in error is not essentially different than the methods dis-

cussed above and hence will not be investigated further here.
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Appendix A

EXAMPLES OF COMMA-FREE DICTIONARIES

Various orthogonal and bi-orthogonal dictionaries have been in—
vestigated for comma freedom on an IBM-7090 digital computer, and some of
the codes having a high index of comma freedom are presented here. The
computer programs for dictionaries of words of 16 and 32 binary symbols
were essentially equivalent and completely straightforward in nature.
Sequences were formed by taking N (N’z 16 or 32) consecutive binary digits
from an overlap formed by adjoining two words., All Nz(N—l) such sequences,
in the orthogonal case, were compared to all N code words, and the maximum
and minimum number of agreements was recorded. For the bi-orthogonal case,
another NZ(N-I) sequences formed by taking N symbols from an overlap of one
code word followed by the complement of another were investigated. It is
evident that no other sequence need be considered, since those formed from
the overlap of the complement of one word followed by a second word, or from
the’complements of two words, are just the complements of sequences already
investigated. Since the number of agreements between two N-tuples

ix+yl=w
implies

lx + 7! = N-w
all of the necessary information is available affer consideration of the
two sets éf sequences mentioned above,

Note that since there are approximately N4 comparisons to be made,
"the computation time should increase by a facter of 16 as thé code length

doubles. This, in fact, was what happened in going from N = 16 to N = 32,
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However, since the computer word length is 36 bits, complications result
when codes with word lengths greater than 36 are to be investigated., The
computation time necessary for N = 64, while still not exorbitant, was

about sixty times as great as that for N = 32. At this rate of increase,
the I = 128 case was impossibly long. Thus for this dictionary size a

somewhat more restricted program was used which took even less time than
that necessary for N = 64, The program was restricted in the sense that

it considered only code dictionaries of the form:

A A A A
A A A A
AL AR
A A A A

where A is a 32 x 32 orthogonal array and A is its complement. Any binary
vector of length N = 128 could be added (modulo two) to each of the above
code words, Thus, investigation of the large dictionary (N = 128) for
comma freedom could be done essentially by considering only the smaller

(N‘z %2) dictionaries independently and combining the results.

Examples of bi-orthogonal codes of various lengths are presented
below. In every case, it was found that the best index of comma freedom
obtainable with an orthogonal code could also be obtained with a bi-
orthogonal code of the same word length. Only the orthogonal half of
these codes is presented; the remainder of the code dictionary consists of
the complements of the words shown. N, of course, designates the number
of symbols in the code words, while ﬁ denotes the index of comma, freedon

rassociated with them. All of these examples are of the form G of

Chapter 7 with a coset leader c which is some phase shift of a pseudo-random
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sequence of length P plus an additional symbol. These coset leaders
are identified in each dictionary with an asterisk and the extra symbol

is underlined.

Example 1

N=16, p=2

*0111010101100100
0111010110011011
0111101001101011
0111101010010100
0100011001010111
0100011010101000
0100100101011000
0100100110100111
0010000000110001
0010000011001110
0010111100111110
0010111111000001
0001001100000010
0001001111111101
0001110000601101
0001110011110010
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Example 2

N=32,p=6

*10001101110101000010010110011111
10001101110101001101101001100000
10001:101001010110010010101100000
10001101001010111101101010011111
10000010110110110010101010010000
10000010110110111101€10101101111
10000010001001000010101001101111
10000010001001001101010110010000
10111110111001110001011010101100
10111110111001111110100101010011
10111110000110000001011001010011

©10111110000110001110100110101100
10110001111010000001100110100011
10110001111010001110011001011100
10110001000101110001100101011100
10110001000101111110011016100011
11011000100000010111000011001010
11011000100000011000111100110101
11011000011111100111000000110101
11011000011111101000111111001010
11010111100011100111111111000101
11010111100011101000000000111010
11010111011100010111111100111010
11010111011100011000000011000101
11101011101100100100001111111001
11101011101100101011110000000110
11101011010011010100001100000110
11101011010011011011110011111001
11100100101111010100110011110110
11100100101111011011001100001001
11100100010000100100110000001001
11100100010000101011001111110110
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Example 3

0001110001101001000100111101010000000011000100001100010111000010
0001110010010110000100110010101100000011111011111100010100111101
0001001101100110000111001101101100001100000111111100101011001101
0001001110011001000111000010010000001100111000001100101000110010
0010111101011010001000001110011100110000001000111111011011110001
0010111110100101001000000001100000110000110111001111011000001110
0010000001010101001011111110100000111111001011001111100111111110
©010000010101010001011110001011100111111210100111111100100000001
0100100100111100010001101000000101010110010001011001000010010111
0100100111000011010001100111111001010110101110101001000001101000
0100011000110011010010011000111001011001010010101001111110011000
0100011011001100010010010111000101011001101101011001111101100111
0111101000001111011101011011001001100101011101101010001110100100
0111101011110000011101010100110101100101100010011010001101011011
0111010100000000011110101011110101101010011110011110110010101011
0111010111111111011110100100001001101010100001101010110001010100
0001110001101001000100111101010011111100111011110011101000111101
0001110010010110000100110010101111111100000100000011101.0110C0010
0001001101100110000111001101101111110011111000000011010100110010
0001001110011001000111000010010011110011000111110011010111001101
0010111101011010001000001110011111001111110111000000100100001110
0010111110100101001000000001100011001111001000110000100111110001
0010000001010101001011111110100011000000110100110000011000000001
0010000010101010001011110001011111000000001011000000011011111110
0111101000001111011101011011001010011010100010010101110001011011
0111101011110000011101010100110110011010011101100101110010100100
0111010100000000011110101011110110010101100001100101001101010100
0111010111111111011110100100001010010101011110010101001110101011
0100100100111100010001101000000110101001101110100110111101101000
0100100111000011010001100111111010101001010001010110111110010111
0100011000110011010010011000111010100110101101010110000001100111
0100011011001100010010010111000110100110010010100110000010011000
0001110001101001111011000010101100000011000100000011101000111101
0001110010010110111011001101010000000011111011110011101011000010
0001001101100110111000110010010000001100000111110011010100110010
0001001110011001111000111101101100001100111000000011010111001101
0010111101011010110111110001100000110000001000110000160100001110
0010111110100101110111111110011100110000110111000000100111110001
0010000001010101110100000001011100111111001011000000011000000001
0010000010101010110100001110100000111111110100110000011011111110
- 0100100100111100101110010111111001010110010001010110111101101000
0100100111000011101110011000000101010110101110100110111110010111
-0100011000110011101101100111000101011001010010100110000001100111
01000110110011001011011€1000111001011001101101010110000010011000
0111101000001111100010100100110101100101011101100101110001011011
0111101011110000100010101011001001100101100010010101110010100100
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Example 3 (continued)
N=64, p=14

0111010100000000100001010100001001101010011110010101001101010100
0111010111111111100001011011110101101010100001100101001110101011
0001110001101001111011000010101111111100111011111100010111000010
*0001110010010110111011001101010011111100000100001100010100111101
0001001101100110111000110010010011110011111000001100101011001101
0001001110011001111000111101101111110011000111111100101000110010
0010111101011010110111110001100011001111110111001111011011110001
0010111110100101110111111110011111001111001000111111011000001110
0010000001010101110100000001011111000000110100111111100111111110
0010000010101010110100001110100011000000001011001111100100000001
0100100100111100101110010111111010101001101110101001000010010111
0100100111000011101110011000000110101001010001011001000001101000
0100011000110011101101100111000110100110101101011001111110011000
0100011011001100101101101000111010100110010010101001111101100111
0111101000001111100010100100110110011010100010011010001110100100
0111101011110000100010101011001010011010011101101010001101011011
0111010100000000100001010100001010010101100001101010110010101011
0111010110111111100001011011110110010101011110011010110001010100

Example 4
N=128, p= 34
The dictionary matrix is of the form

ABC

e
lwe]
ol
ol o

.
o |
)
o]

where
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Example 4 (continued)

%11111111000000100000110000101000
11111111000000101111001111010111
11111111111111010000110011010111
11113111111111011111001100101000
11110000000011010000001100100111
11110000000011011111110011011000
11110000111100100000001111011000
11110000111100101111110000100111
11001100001100010011111100011011
11001100001100011100000011100100
11001100110011100011111111100100
11001100110011101100000000011011
11000011001111100011000000010100
11000011001111101100111111101011
11000011110000010011000011101011

©11000011110000011100111100010100
10101010010101110101100101111101
10101010010101111010011010000010
10101010101010000101100110000010
10101010101010001010011001111101
10100101010110000101011001110010
10100101010110001010100110001101
10100101101001110101011010001101
10100101101001111010100101110010
10011001011001000110101001001110
10011001011001001001.0101101.10001
10011001100110110110101010110001
10011001100110111001010101001110
10010110011010110110010101000001
10010110011010111001101010111110
10010110100101000110010110111110
10010110100101001001101001000001
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Example 4(continued)

¥11110010001011001110101001111101
11110010001011000001010110000010
11110010110100111110101010000010
11110010110100110001010101111101
11111101001000111110010101110010
11111101001000110001101010001101
11111101110111001110010110001101
11111101110111000001101001110010
11000001000111111101100101001110
11000001000111110010011010110001
11000001111000001101100110110001
11000001111000000010011001001110
11001110000100001101011001000001
©11001110000100000010100110111110
11001110111011111101011010111110
11001110111011110010100101000001
10100111011110011011111100101000
10100111011110010100000011010111
10100111100001101011111111010111
10100111100001100100000000101000
10101000011101101011000000100111
10101000011101100100111111011000
10101000100010011011000011011000
10101000100010010100111100100111
1001.0100010110101000110000011011
1001010001.0110100121001111100100
10010100101001011000110011100100
10010100101001010111001100011011
10011011010101011000001100010100
10011011010101010111110011101011
10011011101010101000001111101011
10011011101010100111110000010100
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Example 4 (continued)

*00001110001001001101101011011110
000011100010010000100301001.00001
00001110110110111101101000100001
00001110110110110010010111011110
00000001001010111101010111010001
00000001001010110010101000101110
00000001110101001101010100101110
00000001110101000010101011010001
00111101000101111110100111101101
0011110100010111000101100001001.0
00111101111010001110100100010010

©00111101111010000001011011101101
00110010000110001110011011100010
00110010000110000001100100011101
00110010111001111110011000011101
00110010111001110001100111100010
01011011011100011000111110001011
01011011011100010111000001110100
01011011100011101000111101110100
01011011100011100111000010001011
01010100011111101000000010000100
01010100011111100111111101111011
01010100100000011000000001111011
01010100100000010111111110000100
01101000010000101011110010111000
01101000010000100100001101000111
01101000101111011011110001000111
01101.000101111010100001110111000
01100111010011011011001110110111
01100111010011010100110001.001000
01100111101100101011001101001000
01100111101100100100110010110111
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Example 4 (continued)

%¥11000110100101110111001100101010
11000110100101111000110011010101
11000110031010000111001111010101
11000110011010001000110000101010
11001001100110000111110000100101
11001001100110001000001111011010
11001001011001110111110011011010
11001001011001111000001100100101
11110101101001000100000000011001
11110101101001001011111111100110
11110101010110110100000011100110

© 11110101010110111011111100011001
11111010101010110100111100010110
11111010101010111011000011101001
11111010010101000100111111101001
11111010010101001011000000010110
10010011110000100010011001111111
10010011110000101101100110000000
10010011001111010010011010000000
10010011001111011101100101111111
10011100110011010010100101110000
10011100110011011101011010001111
10011100001100100010100110001111
10011100001100101101011001110000
10100000111100010001010101001100
10100000111100011110101.010110011
10100000000011100001010110110011
10100000000011101110101001001100
10101111111111100001101001000011
10101111111111101110010110111100
10101111000000010001101010111100
10101111000000011110010101000011
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Appendix B

SOME PARTICULAR UPPER BOUNDS ON THE INDEX OF COMMA- FREEDOM
USING THE MATRIX EQUATION

Consider the matrix

¢e(5) GZ(S) o5)  1(5)

H GZ(ll) 0(11) Gg('ll) 1(11)

where GT is a 16 x 4 matrix of the type described in Chapter 7.

.
Substituting for Gi, one obtains

0000110100001
1000001100001
0100101100001
1100011100001
0010111100001
1010000000001
0110000010001
1110000001001
0001000011001
1001000000101
0101000010101
1101000001101
0011000011101
1011000000011
0111000010011
1111000001011

It may be verified that the matrix, A, necessary to reduce Mil to the

desired form is:
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111
1111
11 11
1111111
1111
1111 111 1
11 11
1111
1111 111 1
11 11
11 11

where the zeros have been omitted for clarity. The last five rows of

AMll are seen to contain all zeros and, hence, the rank of Mll ig 11,

Congider the vector v = Ké as defined in Chapter 7. Since there are

(%g) + (ﬁé) = 17<125, the vector e

must have weight at least two for some of the vectors v. It remains to

25 distinct vectors v, and since

be determined whether any vector v necessitates a vector e of weight
greater than two. Thus'only vectors v of weight three or greater need
be considered. Let e, be the ith component of e. It is easily verified
that the following vectors v = ﬁé can be generated by wctors e with

the indicated components one and the rest zero.:
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value of i for

v which e, =1
i
00111 6, 10
01011 12, 14
10011 6, 12
01101 3
10101 T, 14
11001 6, 15
01110 8, 14
10110 7
11010 6, 16
11100 10
01111 8, 15
10111 7, 16
11011 6
11101 10, 16
11110 10, 15

Thus all vectors v can be generated by vectors e of weight two or less,

and the maximum index of comma freedom for cosets of this orthogonal group

is two. Several orthogonal and bi-orthogonal cosets of this group have

been found which do achieve this maximum index and have been included in

Appendix A,

By way of comparison a second generator matrix H was formed by

selecting random ordering of the binary numbers from O to 15.

matrix Mil

0001101100001
0011011100001
0100100100001
0010010100001
0000110100001
0110000000011
1010000000111
1100000001001
1110000000101
1111000000001
1000000001101
1011000010101
0111000011001
1001000011101
0101000011111
1101000010001

The resulting
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can be reduced to the desired form by the matrix:

1
1
21
1
111
1111
A = 11 11
111 11
i1 1
1111 11
11117 1 1
111
11 111 11
11 1111
1 1 1111
1 11111 1111

The last three rows of the matrix AMil contain only zeros., The rank of

AMil and hence M is thus 13, the maximum possible value. It is easily

verified, by repeating the techniques of the last example, that the maxi-

mum index of comma freedom for a coset of this orthogonel group is one.
AY

Finally consider the generator matrix, H, whose columns are formed

by the following recursion formula:

= 1000, a, = 0100, a, = 0010 and a, = O00l. The reader may

2 3 4

verify that all fifteen non-zero binary 4-tuples are generated in this

where al

manner. Let the first column of H be the 4-tuple 0000 5_¢. Then:
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# 0,y P 1
ol G5y P !
a, a1234 ¢ 1
o o5y o] 1
a4 Ty g 1
%2 p g 1
a23 g o 1
Mll = a34 ¢ o, 1
oy ] o 1
o g o 1
oy g o0 !
%123 2 %3 !
TR 7R
%1234 2 %24 1
PV ST
Oq 1) Ty 1
where aijk = ay + aj + . By adding linear combinations of the second,

third, fourth and fifth rows to the remaining rows, the matrix may be

reduced in an obvious manner to the following form:



4
%2
(123
%34
%24

24

%103
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4
AT,
w v d g S S T e e e e e e .
— ™
T S N T T U S U T S
0
1
—
=
—
<
o
<@

Similarly:
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4
= S N e S S D AN Y

ABAZAlMil =

and finally:
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¢ ¢ T, 1
% TR '
% PR !
A A A B M =PAL = | oy o5y g 1
o, oy, ol 1
¢ o g 1
2 % el 1
g o a, 1
g o, a 0
# p g 0
¢ g g 0
g # g 0
2 g G4 0
g ¢ ) 1
g g ¢ 0
g @ # 0 |

Thus the matrix A is very esily obtained in this instance. In the example

here, M.. evidently has rank 11, and, as in the first example, the maxi-

11

mum index of comme freedom attainsble may be shown to be two.
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