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Abstract

This thesis is divided into two main subject areas: the fluctuation properties
of state of the art semiconductor lasers and the irnprovement of modulation
and fluctuation properties in these devices through a technique called detuned

loading.

The discussion of fluctuations in lasers is a topic as old as the device itself,
and much of the pioneering work in this field was done in the sixties. Surpris-
ingly, however, several new chapters in this field are being written, because of
certain pecularities only recently cbserved in semiconductor lasers. Chapters 2
ard 3 of this thesis will consider these pecularities, which, as it turns out, are

quite important in many potential system applications of these devices.

One of the driving forces behind the development of semiconductoer lasers has
been their application as sources and local oscillators in optical communication
systems. In general, such applications require lasers which have low phase and
intensity noise, and which can be modulated at high data rates. As is often the
case, these requirements are to a certain extent mutually exclusive. Chapter 4
introduces a technique which is an exception to this rule. It relies upon the sem-
iconductor laser physics which produces the fluctuation abnormalities dis-
cussed in Chapters 2 and 3. The technique can be used to improve modulation

speed while simultaneously reducing noise as compared to the conventional dev-

ice.
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Chapter 1

Introduction
1.1 Historical perspective

Semiconductor lasers (SL's) are a class of lasers which achieve stimulated
emission of photons from a nonequilibrium population of electrons and holes.
The population can be created by indirect pumping such as optical excitation of
the semiconductor or by directly injecting electrons and holes across a PN junc-
tion. The latter method is of greater technological importance and the devices

so formed are called injection lasers.

Over the course of two decades semiconductor lasers have evolved into
efficient, cheap and reliable sources of coherent near IR radiation. Lasing action
in semiconductors was first demonstrated in GaAs homostructure diodes late in
1962 by several groups [1,2,3,4]. In these early years lasers in general were sub-
jects of intense research. The SL's of that era operated only at low temperatures
and were thus primarily only of scientific importance. They would probably have
been recorded in the annals of technology as a scientific curiosity had it not
been for the advent in the early 70's of devices which could lase continuously at
room temperature [5,6,7]. These SL's were grown using the lattice matched sys-
tems AlGaAs and GaAs. This enables abrupt compositional changes to be
engineered into a device to provide more efficient confinement of the electron-
hole plasma and better waveguiding of the lasing mode. A state of the art double

heterostructure SL which illustrates these ideas is depicted in Fig. 1.1.

By the time the first room temperature SL's were developed there was

widespread realization that silica fibers could someday be manufactured with
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Figure 1.1 Heterostructure injection laser consisting of a low-bandgap
high-refractive index GaAs active layer imbedded in high-bandgap low-
refractive index AlGaAs. The active layer typically has dimensions
1.0um X0.2um X300um. leading to the far-field pattern indicated.



very low loss and material dispersion in the spectral region where SL's operate.
With a narrowband SL source such an optical system could convey information
over perhaps 100’s of kilometers without distortion or serious loss of signal
strength. Around the same time it was also proposed by Yariv that the dual
xerties of a direct gap and high electronic mobility in material systems such as
GaAs(AlGaAs) and InGaAsP(InP) would someday lead to a new breed of integrated
optical components [B] in which, for example, SL's and high-speed electronics
would be monolithically integrated to interface a computer to an optical fiber
communications network. These and other possible applications transformed
the image of the SL from that of a laboratory curiosity into a potentially impor-
tant commercial device, marking the beginning of a second phase in its history

and sparking an enormous development effort which continues today.

Since the start of this second phase of work both low loss Silica fibers (see
Fig. 1.2) [9] and integrated optics have become realities [10]; and the properties
of state of the art SL's have become very impressive, Extrapolated room tem-
perature lifetimes in excess of 107 hours and degradation rates of 107° hr.™! at
100°C have been obtained [11]. Devices which operate in the fundamental spatial
mode at a single frequency and have cw output powers in excess of 40 mW. have
been demonstrated [12] Differential power efficiencies (i.e., the conversion of
electrical input power to light output power) exceeding B0Z% and threshold
currents as low as 2.5 mA. [13] have been measured. Two material systems have
emerged as the workhorses of the SL industry. Devices grown in the
InGaAsP(InP) system lase in the wavelength range 1.1 pm-1.7um. This falls in
the region where modern optical fibers exhibit low loss and minimum material
dispersion making these sources the preferred choice in long distance fiber
communication systems. At the present time the record for repeaterless

transmission is 222 km. which was set using a device in this system [14]
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Devices grown in the GaAs(AlGaAs) system lase in the wavelength range 0.7um.-
0.9um. and have the advantage of a more mature material system with regard to
integration as well as importance associated with short lasing wavelength. Since
the attenuation and material dispersion of fibers are still quite low at these
wavelengths these devices can easily function as sources in short optical links
requiring high data rates. GaAs devices are alse used in laser printers and high
density storage systems, such as compact audio disc systems, which although
not mentioned until now are at least equal to communications applications in

their importance.

It is often the case as technology progresses that research and development
cycle and feed off one another in a particular area. When this happens the two
seem at times nearly indistinguishable. This is especially true in device work.
When the SL moved from the laboratory animal phase intc the development
phase a large pool of resources became focused onto problems normally
untouched by pure research (e.g., reliability). This effort has led to drastic
improvements in all device characteristics as well as improvements in the
material systems in which the devices are fabricated. As a result, state of the
art semiconductor lasers bear little resemblence to their laboratory rat prede-
cessors. They are now to a certain extent ideal, embodying the basic physics one
would hope to ascribe to the device rather than exhibiting a jumbled variety of
parasitic phenomena associated with imperfections in the material, problems
with the growth procedure, bad contacts, ete. As such, SL's, in addition to their
many uses in the 'real” world, once again are objects of basic research. Now,
however, rather than studying lasing action in a semiconductor, we can use the
in situ lasing action as a probe to study the device and the material This is the
essence of much of the device physics work done at Caltech and is part of the

motivation for the work presented in this thesis.



The other force motivating this work and all work in SL's today is simply that
whereas SL's are ideal in the sense discussed above, their intrinsic properties
are far from the ideal required in many system applications. This thesis consid-
ers the fluctuation and modulation properties of Sl's. These are considerations
essential in the design of any optical communication system. As sources, SL's
are used either to generate the optical carrier or ,as local oscillators at the
receiver end. Since there are a variety of modulation formats with correspond-
ing detection schemes both the power and the phase noise spectra of the SL are
of interest. If the information is to be impressed on the optical carrier by
directly modulating the SL, then its modulation properties (e.g., ultimate speed,
content of AM and FM components in light output) must also be considered. With
only a few exceptions to be noted in Chapter 4, it is fair to broadly summarize
the dynamic and spectral properties of conventional state of the art SL's by say-
ing they can be made to be fast and noisy (modulation bandwidths exceeding 10
GHz. [15], linewidths of 10 MHz.[16], power noise typically several orders larger

than the shot noise limit [17]) or slow and quiet.

A logical goal is to understand the device physics which sets these limits so
that device performance can be optimized for a particular application. By doing
this one might also hope to find alternatives to the rule just stated: ways to
modify either structure or material to make devices which are both fast and
quiet. It is a surprising fact that only recently has the understanding of these
properties been put on a solid foundation. To explain further and to provide an
introduction to the basic topics covered in this thesis we now review lasing

action in a semiconductor.

A basic familiarity with this topic is assumed throughout this thesis. For

more comprehensive reviews of SL's the reader is referred to References



[18,19,20].
1.2 Lasing action in semiconductors

SL’s and all other lasers are regenerative oscillators which emit at optical fre-
gquencies. All regenerative oscillators have two essential features: a gain mechan-
ism and some kind of feedback to establish a set of modes for the gain to act on.
An electronic ring oscillator is an example in which these essentials are very
clear (see Fig. 1.3). In a SL, feedback is provided by the refiecting cleaved facets
(mirrors) of the crystal (see Fig. 1.1). The optical modes of the resonator so
formed derive gain via stimulated recombination in an inverted system of elec-
trons and holes. As mentioned earlier this inversion is usually achieved by

injecting electrons and holes across a PN junctieon.

In Fig. 1.4 we give the measured luminescence {not gain) spectrum at various
pumping levels for a GaAs(AlGaAs) device like the one depicted in Fig. 1.1. The
light-output current and current voltage characteristics for the device also
appear in the figure and indicate a threshold current of 10 mA and a junction
turn on voltage of approximately 1.4 Volts. Near thresheold the luminescence
spectrum extends over approximately 1000 X As threshold is approached a
bump appears in the luminescence indicating stimulated emission is occurring
(the necessary condition for stimulated emission in a semiconductor was first
quantified by Bernard and Duraflourg [21]). At this pumping level optical gain
for a small group of modes is nearly compensating the losses these modes
experience at the mirrors or through other scattering mechanisms. In Fig. .5
we resolve these modes. Additional increases in the pumping level primarily go
inte stimulated recombination; the gain and the luminescence spectra becoming
clamped at their threshold profiles. Well above threshold the gain spectrum

profile will provide some longitudinal modal selectivity and predominantly single
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Figure 1.4 Luminescence frum a semiconductor laser at various pumping
levels below and near threshold. Near threshold a bump appears in the
luminescence indicating that stimulated emission is beginning to occur.
The upper inset gives the light output versus current curve for this dev-
ice. Nole that the threshold current is approximately 25 mA. The lower
inset gives the current-voltage characteristic for the device which is typi-
cal of a junction diode.
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Figure 1.5 Stimulated emission resolved at pumping levels near and
above threshold for the same device as Figure 1.4. The lasing wavelength
is A, = 81304



mode operation can result.

This process as seen by the longitudinal mode m (which by choice eventually
lases) is depicted in Fig. 1.6. Well below threshold the mode is fed by spontane-
ous photons or simply luminescence from the electron-hole plasma. These pho-
tons enter the mode randomly and are bled away by cavity losses. The spontane-
ous rate into the mode increases with increased pumping. Eventually, the mode
m contains enough photons se that some stimulated events begin to occur. The
stirulated photons are, in an intuitive sense, "phase coherent” with the mode.
This is to say that they do not produce fluctuations of the field upon entry.
Above threshold the spontaneous rate is clamped, but the stimulated rate con-
tinues to escalate as the number of photons in the mode and hence the output
power associated with the mode m increase. Well above threshold the mode m is
supplied primarily with stimulated photons. Barring fluctuation sources extrin-
sic to this process, such as cavity vibrations and temperature fluctuations, the
principal source of noise is spontaneous emission. This is referred to as gquan-

tum noise.

Semiconductor lasers typically have enormous threshold spontaneous rates
in comparison to other laser systems and are hence much noisier than other
lasers. This results from operation with extremely poor passive cavity Q's (the
photon lifetimes are typically a few picoseconds giving Q's of about 1000 as com-
pared to Q's of 10 million for say a HeNe laser) thereby causing threshold gains
(and spontaneous rates) to be high, This is a disadvantage from an applications
pouint of view, but an advantage in the laboratory where it enables measurement
of quantum noise effects without any special precautions to screen out extrinsic
sources of fluctuations. That semiconductor lasers can operate at all with low @

passive resonators is a result of the enormous optical gains possible with an
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Figure 1.6 Schematic of the onset of lasing action. Below threshold the
mode m and all modes are supplied by spontaneous photons at a rate 6n,
which increases with increased pumping. When a sufficient number of
photons are present in a particular mode m, the one with lowest loss.
stimulated events begin to occur at a rate S, which is proportional to the
number of photons in mode m. As threshold is reached the spontaneous
rate is clamped and additional increases in modal power come from the
increasing stimulated emission rate.
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electron-hole inversion. The results of a gain calculation based on a parabolic

band model for GaAs are presented in Fig. 1.7.

The semiconductor laser is interesting in one other respect. This is a fact only
recently appreciated and central to this thesis. It is, that as a regenerative oscil-
lator it naturally operates in a detuned fashion. Normally, tuned and detuned
operation imply operation at the gain line center or away frc')rn it as illustrated
in Fig. 1.8. In detuned operation the lasing mode sees a contribution to refrac-
tive index from the inversion. This has the effect of coupling the amplitude and
phase of the optical mode since changes in the optical intensity will disturb the
inversion, which will change the refractive index, and in turn the phase of the

optical mode.

That a semiconductor laser operates as a detuned oscillator can be seen by
considering its gain spectra depicted in Fig. 1.9. This highly asymmetric spec-
trum is to first order the product of two terms: the effective density of states
function which determines it shape near the band edge (i.e., low frequencies)
and the quasi-Fermi distribution functions which determine the shape at higher
frequencies. lasing actien occurs at the gain peak which we might guess is a
detuned point owing to the asymmetry of the spectrum. In fact, all points on
this curve are detuned in the sense discussed above: in a semiconductor,
changes in the inversion, caused say from a disturbance in the field intensity,
will shift the frequency of both the gain spectrum peak and the zero resonant
dispersion point (the result of band filling changes). Thus, wherever the optical
mode sits in the spectrum it perceives a change in refractive index and hence

some amplitude-phase coupling.

Detuning manifests itself in both the noise and the modulation properties of

semiconductor lasers. We mention two important ways which will be discussed
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plex susceptibility function.
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in greater detail later. Under currént modulation detuning causes parasitic FM
components in addition to the AM components (i.e., both gain and refractive
index are being modulated). In noise spectra its presence is observed as an
enhancement of the fundamental linewidth in single mode operation (a phase
noise enhancement) by typically a factor of 30 times. In this case the detune
induced amplitude-phase coupling allows spontaneous noise cémponents which
normally couple only into intensity noise to channel their way into the phase

noeise,.

In Chapter 3 we will consider in detail the effect of gain spectrum detuning on
the fluctuation properties of semiconductor lasers. The analysis there derives a
variety of noise spectra for single and multimode semiconductor lasers. First,
however, the rigorous quantum mechanical foundation to that analysis will be
presented in Chapter 2. In this chapter a formalism based on electronic
wavepacket operators is developed and used to derive local operator equations
of moticn for a multimode semiconductor laser. These equations can be used to
study a number of other types of fluctuations which we do not consider in this
thesis Finally, in Chapter 4, the problem of optimizing a semiconductor laser
for high-speed low-noise performance is considered. We present one possible
solution to this problem which actually turns the up-till-now iroublesome
detuned gain spectrum into an advantage. There, a technique we call detuned
loading 1s described. It is first shown theoretically that detuned loading should
simultaneously cause an increase in modulation speed, suppression of parasitic
FM, and reduclion of both phase and intensily noise. We then present data
taken with a particular detuned loading implementation which verifies some of

these predictions.
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Work presented in this thesis or related to it has been the subject of the pub-

lished articles [22-33].
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Chapter 2

Application of an electronic wave-packet
formalism to local-operator equations of motion
for semiconductor lasers

2.1. Introduction

In studying lasers, it is often necessary to consider interactions between the
lasing modes and the active medium locally (i.e., local material equations of
motion) rather than in a spatially averaged fashion. Examples of this can be
found in a myriad of topics which include intermodal beating, spatial hole burn-
ing, and diffusion damping of relaxation oscillations. In most laser systems the
development of local equations of motion to study these effects is greatly facili-
tated by the atomic nature of the active medium. In such cases the individual
components of the system, by their spatial smallness, conveniently sample the
electron-radiation interaction locally and lead naturally to local rate equations.
Exhaustive treatments by Lamb [1] and by Haken [2] can be cited which
elegantly illustrate this approach. Unfortunately, there do exist laser systems
which de not fall within the scope of these local treatments; these are systems
having delocalized eigenstates. A very important example is the semiconductor
laser (SL) system in which the preferred state space for all quantum treatments
to date has been the electronic Bloch state space (see, for example, Refs. [3-8]).
This space leads to convenient selection rules for electron-radiation-induced
transitions, but is an extremely awkward space to use for treating local

phenomena.
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Despite the difficulties involved in formulating a set of local rate equations
" for SL's from first principles, a large nurnber of treatments do exist which have
successfully accounted for many aspects of local phenomena in SL's. These seem
to fall into two categories: those which directly apply rate equations derived for
gas lasers to the SL case and thus assume forms e priori for electron-radiation
interaction terms in local rate equations; and those in which a classical electric
field interacts with an active layer crystal sliced into small local systems, each
quantized with its own Bloch state space [7]. The latter approach, albeit more
rigorous than the first, is somewhat artificial and must still treat interactions
between local cubical systems in a heuristic fashion. Even with the success of
the above methods, one is led to wonder what phenomena are overlooked
through their simplicity; a glaring example is their inability to account for quan-

tum fluctuation phenomena.

One goal of this chapter is then to derive from first principles a set of local
quantum mechanical equations of motion for a SL. To do this we will work in a
space of electronic wave-packet states. These wave-packets have well-defined
position and crystal momentum, and are often used as a conceptual tool to jus-
tify the tenets of semiclassical solid state theory in which electrons and holes
are treated in a classical fashion through the use of concepts such as effective
mass, crystal momentum, ete. [B]. In this treatment we will define operators
which create and destroy electronic wave-packets within semiclassical phase
spaces associated with each energy band of the crystal. The operators so
defined will serve as the dynamic variables characterizing the active medium. An
exact treatment based on these operators offers no advantage over a treatment
based on Bloch states. We will show, however, that for certain classes of quan-
tum interaction potentials, the electron-radiation interaction being one, a per-

turbation expansion of both matrix elements and operator anticommutators is
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possible. The approximation here requires that the system Hamiltonian and the
dynamic variables vary slowly in comparison to the extent of an electronic wave-
packet (This approximation is satisfied by a variety of interaction potentials and
is not restricted to electronic wave-packets; recently, Glushko has employed the
approximation in a treatment oﬁ exciton-phonon interactions based on an exci-
ton wave-packet state [9]). We will derive operator equations of motion correct
to first order in this approximation; higher-order corrections will also be dis-

cussed.

As a quantum analog of classical phase space dynamics the electronic wave-
packet approach is in direct competition with certain well- established tech-
niques in quantum kinetic theory [10-13]. Of these methods the wave-packet
approach is most closely related to the method of second quantization in phase
space introduced by Klimontovich [11]. In that method the dynamic variables
are quantumn fields in phase space whose quantum averages are Wigner distribu-
tion functions [10,12]. In the present method it will be seen that certain opera-
tor pairs can be interpreted as density operators whose quantum average
resembles a first order distribution function (higher-order functions are also
possible by taking groupé of operator pairs, but these will not be discussed). We
intend to contrast these methods elsewhere [14]. Very briefly, however, the
method of second quantization in phase space has the advantage of leading
naturally to representations which are diagonal in x and p. The wave-packet
approach, as a result of the overcompleteness of the electronic wave-packet
states, suffers from representations which are diagonal only to first order in the
approximation discussed above. In many cases this is a serious disadvantage.
When the approximation can be invoked, however, the wave-packet approach
can become the preferable method. In the case considered here of electronic

motion in a crystal with coupling to the radiation field, this is especially true.
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Under these circumstances the Bloch-like character of the electronic wave-
' packet states makes them approximate eigenstates of the crystal, thus simplify-
ing treatment of both the electron-lattice interaction and the electron-radiation
interaction. The second goal of this chapter is to serve as a pedagogic example
of the application of this wave-packet formalism to the specific case of the

electron-radiation interaction.

2.2 Wave-packet operators and the system Hamiltonian

In this section we define the field operators of the material and the lasing
optical modes, and then write the system Hamiltonian in terms of these opera-
tors. The field operators of this analysis distinguish it from previous quantum
treatments of the SL, giving a local description of the active medium and thus
facilitating the treatment of multimode effects as well as transport phenomena.
To illustrate some of the difficulties normally encountered in modeling a mul-
timode SL quantum mechanically (besides the obvious problems involving elec-
tronic transport) we will first review an approach frequently employed, this
being a nonlocal description based on Bloch states. Following this discussion we
introduce the field operators of this analysis and their associated anticommuta-
tion relations. These operators will be seen to create and destroy electronic
wave-packets having well- defined position and crystal momentum, in the same
sense as the electronic wave-packets which make up the semiclassical picture of
the Bloch electron. Finally, we will derive anticommutation relations and a sys-
tem Hamiltonian, both correct to first order in the approximation discussed
above. During the course of the derivation the limitations of this approximation
are discussed and it is also shown how higher-order corrections to the Hamil-

tonian can be calculated.
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A common approach to a quahtum description of the electronic system of a
 semiconductor is to assume a multielectron wavefunction given by a sym-
metrized product of single electron wavefunctions, as, for instance, cﬁn be
accomplished using a Slater determinant. Most often the single electron states
are taken as Bloch states ;om(i,i) (i.e., band index m and crystal momentum
wavevector } spin is neglected throughout this treatment) which satisfy the sin-

gle electron Schrodinger equatien,

~ -»

[T+ V)eul2) = en(Ieali®) (2.1)

where T is the kinetic energy operator and V describes only the crystal potential
(both operators in the % representation). Using the basis set of symmetrized
Bloch functions, annihilation and creation operators for these electronic states

are defined. These operators obey the Fermion anticommutation relations,

fonti 00880} = 60 - @2)
{am(f.t).an(i.t)] =0 (2.3)
{a,;(it).a;(fc.t)} =0 (2.4)

where | | represents the operation of anticommutation, 6, is the Kronecker
delta, and D(j - k) is the Dirac delta function (i.e., we assume the crystal is large
enough to justify treating the crystal momentum as a continuous quantity).
The system Hamiltonian is then expressed in terms of these operators, a simple

example being the unperturbed Bloch electron system,
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H =} fdjdk< mj|H[nk> ah(.0an(kt) = 3 fdiem(Dam()amGit) (2.5)

which is the familiar sum of number operators over all states weighted by the
energy of each state. Then, with Hamiltonian and anticommutation relations in
hand, the Heisenberg equations of moticn can be written for a particular set of

self-consistent operators. The final step is to solve these equations of motion.

Several aspects of the above approach make it unsuitable for our purposes.

First consider the electron-radiation interaction matrix element,
< mjlHnk> =< m]|-—;—§(f'.t)-f>lnf<> (2.8)

in particular, the treatment of the vector potential A(i‘,t) spatial dependence in
this matrix element. For an atomic system this spatial dependence can be
approximated by the vector potential's value at the atom's position (as given say
by its nucleus), because the atomic wave states involved in the transition are
highly localized in comparison to the scale of the optical wavelength. As such,
the resulting matrix element takes on a unique spatial dependence character-
ized by the optical mode. It is this spatial dependence which leads to spatial hole
burning of a gas of inverted atoms or molecules, and which is also of importance
in multimode lasers where the spatial dependence of the induced polarization
determines, in part, mode coupling. At the opposite extreme are the electronic
Bloch states. These states are delocalized, having the well-known translational

property,
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(2.7)

where R is a lattice translation vector. Using this property the matrix element

(2.8) can be rewritten as follows:
< mj| - ZA®F) BInk> ~ —%%e‘(r‘ “DRA(R) < mj | nk> (2.8)

where the integration now takes place over a primitive cell and, as with the
atomic system, the slowly (over a unit cell) varying vector potential has been
removed from the integral. This leaves only the evaluation of the sum over Cry-
stal translation vectors. Assuming 3.(1‘) represents a single longitudinal mode
with wavevector i,:n. it is clear that the sum is strongly peaked for k-j=¢+ f{,'n,
which is the selection rule describing a shift in crystal momentum caused by the
photon emission or absorption. This shift is relatively small in comparison to
the dimensions of the Brillouin zone and therefore it is standard practice to
neglect it altogether, resulting in the 'k selection rule” for direct optical transi-
tions in a semiconductor. Unfortunately, this rule altogether eliminates the
spatial dependence of the optical mode and therefore precludes the study of
multimode interactions and effects such as spatial hole burning. If the Em
dependence of the selection rule is retained, then the resulting equations
become rather complicated, each mode coupling different pairs of states. It is
also obvious that the inclusion of transport phenomena into the model is made
very cumbersome by this approach. The aforementioned difficulties have at

their root the delocalized nature of the chosen electronic state space.

An inherently local description of the electronic system, which successfully
explains many aspects of electronic transport, is semiclassical solid-state

theory. In this approach electrons and holes in a crystal are ascribed properties
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characteristic of their free classical counterperts (e.g., effective mass, momen-
tum, position, ete.). Such notions greatly simplify the study of transport, but
being to a certain extent classical they are either incapable of accounting for
certain quantum interactions (e.g., interband transitions) or must be modified
heuristically to do so, as, for instance, is done in writing a local carrier density
rate equation which includes electron-radiation stimulated recombination
terms. From a quantum mechanical viewpoint the semiclassical electron is a
wave-packet whose spatial extent is macroscopically small, but microscopically
large enough to give the packet a well- defined crystal momentum. Such a wave-
packet would encompass several hundred lattice sites along a given direction,
thus having a breadth in k-space much narrower than a Brillouin zone (see Fig
2.1). We now explore the use of these quasiclassical wave-packets as a basis set
instead of Bloch states. By themselves these new states will not improve matters
over an analysis based on Bloch states; in fact, they will appear at first to be a
complication. Combined with an approximation, discussed later in the Section,
however, a significant simplification of the problem occurs. With the approxima-
tion, the wave-packet states allow us to extend the semiclassical picture of the
electron to rigorously account for certain classes of perturbing potentials while

maintaining quantum mechanical consistency.

The Bloch states and their respective annihilation and creation operators will
be used as a tool to develop the quasi-classical wave-packet states and their
respective annihilation and creation operators. To begin we define a quasi-

classical wave-packet localized about X and k in the m™ band as,
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Figure 2.2 Projection of a single particle wave-packet state onto real '#>
space (upper plot) and Bloch space imj> (lower plot). The wave-packet
is macroscopically small so that it effectively samples the vector potential
A(?) locally, but is microscopically large enough to retain "Bloch” charac-
ter and have a well-defined crystal momentum and energy.
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[Wmxk)> = fdi gGRe* mj> (2.9)

where the integration is over the Brillouin zone and where g(}",fc) is a crystal
momentum weighting function localized on k; the exact nature of this weighting
function is unimportant for our purposes, so long as it leads to an electronic
wave-packet in the sense discussed above. In Fig. 2.1 we show the general shape
of [g(K)|2= | < mjl9(mzk)> |? and |Yum(ERK) |2 = | < F|9(m.xk)> | Both
are localized functions in comparison to variations of the Hamiltonian which
include variations of the unperturbed Bloch energy function sm(f) and variations
of the perturbation energy brought about through the vector potential A(%).
Expression (2.9) transforms our picture from one based on the variable ] within
a given band m to one based on the variables ()’{,]})m which represent the
semiclassical 'center of mass” position (in real and crystal wavevector space) of
a wave-packet in band m. In this picture each band has associated with it a
serniclassical phase space in which wave-packets appear highly localized. Inter-
band transitions represent particle exchanges between the phase spaces. It is

straightforward to verify that the wave-packet states satisfy the completeness

relation,

%f dxdk |Y(mxk)> < y(mx k)| = §f djlmj> < mj| =1 (2.10)
provided

(2r)® fdk|gGk) 2 = 1 (2.11)

where 1 is the identity operator. As is often true for quasi-classical states in gen-

eral, the wave-packet states are not orthogonal; from (2.9) we calculate,
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<YmER) WX K)> = by [d] g (K)e(R)AE-D) (.12)

Thus, wave-packets in different bands are orthogonal, but within a given band
are not. It is obvious, however, that packets sufficiently well separated in a given
phase space (i,l?)m are approximately orthogonal. As a specific case consider a

weighting function g(},f{) with a Gaussian shape given by,

2
32 _.‘7_.|" -k
— (;ﬂ)m et (2.13)

where ¢ has units of length in x-space and will be seen momentarily to give the
approximate spatial breadth of a wave-packet. (2.13) has been normalized in
accordance with (2.11) and when substituted into (2.12) yields,
| kB a -1 LRk k-
2 e &8 e 20

< Ym k)| ¥mEK)> = ——e

e (2.14)

where in calculating this expression we have extended the limits of integration
in (2.12) to infinity. Eqn. (2.14) shows clearly that as wave-packets of this
prescribed form become more separated within a given phase space, they also
appear to be more orthogonal. We can also use (2.13) to calculate the approxi-
mate spatial dependence for such a Gaussian wave-packet. Using (2.9) we find

the following,

o |3 -t -7 -kt

Yt 2 K) = <FlPmRK)> =[5 e ° em(k ) (2.15)

no

where we have assumed that the lattice periodic part of the Bloch state varies
slowly with respect to k. This expression shows that the Gaussian wave-packet
exhibits a Bloch state spatial dependence weighted by a Gaussian envelope func-

tion. This obvious result is in direct analogy to the minimum uncertainty wave-
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packet states which can be easily derived for a free particle [15]. The reader is

 also referred to a discussion of minimum uncertainty packets by Stoler [18].

We now return to a discussion of wave-packet states in general and define

field operators associated with these states. These operators are given by,
Ymikt) = [df g'G kel tan(t) ' (2.18)

Hmxkt) = fdjg(k)e a0 (2.27)

with associated anticommutation relations,

{1//(m.3'<.§,t),w*(n.i'('.f('.t)] = 6 < Y(mM2.K) [ ¥(m %K) > (2.18)
{wm.i.ﬁ.t).v(n.i'.ﬁ'.t)} =0 (2.19)
{w*<m.>*<.f<.t).w*(n.i'.ic'.t)] =0 (2.20)

which are easily verified using (2.2), (2.3),and {2.4); and (2.12), (2.16), and (2.17).
¥ {m%kt) and ¥(mx.kt) can be interpretted as operators which create and
destroy a wave-packet |¥(m,%k)> , a simple test of which is to apply ¥*(m, %k t)
to the vacuum state |02 . In addition, by using (2.18) and { 2.17), we can also

show that,
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[ardigtmzkOvmakt) = fdai(anit) (2.21)

from which ¥*(mxktly(mikt) is interpreted as an operator giving the
number density of electrons at a point (%,k)n in the phase space associated with

band m.

As is the case with a,,*,(},t) and amﬁ,t). any operator can be expressed in terms
of ¥*(m.k.k.t) and ¥(mxk.t). Consider, for example, a one-body Hamiltonian.

Using completeness relation {2.10) twice we find,
H =Y, fd%d% dkdk Mpmn (X % kK (m 2k y(n X & t) (2.22)
mn

where a matrix element connecting points (¥,K), and (% k), in phase spaces m

and n has been defined as,

Mme (XX kK) = < ¢(mxk) Hi¢v(nx k)> . (2.23)

To conclude the definitions associated with the wave-packet states we give the

inverted forms of (2.9), {2.18) ,and (2.27). They are:

> = fdkdk g'( kel y(m 2 k)> (2.24)
ar(it) = fdxdk g"(K)efty (mx ki) (2.25)
am(.t) = fdxdk g(.k)eHiymzkt) . (2.26)

In contrast to the electronic system, each lasing mode will be treated using
the standard delocalized annihilation and creation operators which result from
quantizing a noninteracting optical mode (for an alternate approach related to

the wave-packet formalism of this treatment, see Ref. [17] which contains an
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interesting application of optical wave-packet operators). Proceeding in the

normal fashion we quantize the vector potential as,

i - ?{sz, ];‘[bl(o + bir(O)Ja(®) (2.27)
where,

SEYE WP = O (2.28)

[b1(). bl = b (2.29)

[B1().bm()] = 0 (2.30)

[bi"().b:5()] =0 (2.31)

and where [ ] signifies commutation. This simplified approach neglects any spa-
tial modification of the mode which results from its interaction with the gain
medium. For facet reflectivities greater than 30%, however, these modifications

are not severe [1B].

The model envisioned throughout this analysis is typical of state of the art
double heterostructure SL's. In it, an active layer, having optical and carrier
confining qualities, has properties which are described in terms of the electronic
wave-packet operators discussed above. The wave-packets interact with the opti-
cal modes via dipole transitions and also with bulk crystal wave-packets, pho-
nons, crystal defects, and among themselves by various scattering mechanisms
which produce the observed transport phenomena. The lasing modes, besides
interacting with the electronic wave-packets in the crystal, also interact with the

free radiation modes since the resonator has a finite Q. Even though nearly all
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of these aspects of the model will eventually be accounted for in this treatment,
" the 'system" in our model consists only of the active layer wave-packets and the
lasing optical modes. All other interactions will be referred to as bath interac-
tions; and damping and fluctuations which result from these interactions will be
included by using the quantum mechanical fluctuation dissipation theorem
which is discussed in Section 2.3. As such, the system Hamiltonian accounts
only for the noninteracting electronic wave-packets, the lasing modes, and the
mutual interaction between these subsystems. Using the one-body representa-

tion (2.22), this Hamiltonian is given by,
H =Y [d&d% dkdie Mg, (%% kKWW m xk thyw(nk k1) + (2.32)
mn

Y fdxd¥ dkdik Mbn(2 X kLK) (m 2k t)y(n X K t) +
mn

;ﬁq[bm)b«t) + ;—]
where Mg is the free electron part,

Men(t ¥ kE) = <pmxB) [T+ V] lpn i k)> (2.33)
and M} is the electron-radiation interaction part,

Min(% X kK) = <g(m xR |- AR BIYnE K> (2.34)

These matrix elements give transition amplitudes between points (%.k), and
(X K)n in the semiclassical phase spaces. In their present form, however, they
appear only to complicate matters over a treatment based on Bloch states. To

benefit from this formalism two approximations must be made. Both take
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advantage of the localization in X and k of the electronic wave-packet states,
The first is an approximation of the electronic matrix elements. For Mg, we

write,

MEn(Z% kK) & e (K) < ¢(m iz k) [¥(m X K)> 6., (2.35)

that is, we assume the wave-packet states are approximatély electronic eigen-
states of the unperturbed crystal. Such an assumption is justified provided the

wave-packet states span only a small volume in crystal momentum space. For

ML we write,

ML (% kK t)~ —;—1 [zfmlf[b, + bf]ﬁ,(i’c)-( Y(mxk) |ply(nk k)>(2.36)

~ ;hmn(ﬁ)ul(i) [bx + b1+]< Y(m k) p(m¥ k)> (2.36a)

where the vector nature of &%) has been absorbed into hmn(k). In (2.38), the
slowly varying spatial dependence of the optical field in comparison to the elec-
tronic wave-packets has been used to remove the optical space variation (%)
outside the wave-packet bras and kets - the same approximation which
comprises the dipole approximation in an atomic system. In (2.36a), the well-
defined momentum of the wave-packets has been used again. Here we approxi-
mate a "k" conserving interband absorption or emission of a photon as a transi-
tion (X K)m » (%K), between phase spaces m and n which conserves the semic-
lassical crystal momentum and in addition leaves the electron position
unchanged. That is, the wave-packets are assumed to have enough 'Bloch” char-
acter, by virtue of their microscoptic largeness in X space, so that a 'k" conserv-
ing transition between Bloch states remains approximately a 'k" conserving

transition between wave-packet states (see Fig. 2.2). To first order the quantities



Figure 2.2 Intuitive picture of photon absorption by a wave-packet pro-
pagating in band m with group velocity ng(k) resulting in creation of a
wave-packet in band n having group velocity V,,(k) (and anthilation of the
wave-packet in band m).
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em(k) and hon(k) are, in fact, the quantities found using the true Bloch eigen-
states; the discrepency becoming smaller as the electronic wave-packets encom-
pass larger volumes of the crystal. On the other hand, this volume cannot
become so large that optical mode features or transport features become
imperceptible. Thus, the spatial breadth ¢ of the electronic wave-packets must

satisfy,

a << g << Min(A Ap) (2.37)

where a is a Lypical latlice constant, \ is the optical wavelength in ihe crysial,
and Ap is the diffusion length. This, of course, is just the condition for wave-
packet microscopic largeness and macroscopic smallness which was discussed
earlier. Higher-order corrections to the matrix elements can be calculated by
using (2.9) combined with Taylor expansion of the Hamiltonian about the center
of mass coordinates. As an example, the first two terms in such an expansion of

Tan. (2.33) are shown below.

MEn(&E K K) = bmnem(K) < Y(m 2 K) p(mX K)> + (2.38)
Smnekt [ﬁ pem(k)V ;] e %< Y(m 2 k) [Y(m.x K)>
where { = ¥ - %.

Provided condition (2.37) holds, the wave-packet states appear highly local-
ized in the various phase spaces in comparison to variations of the Hamiltonian.
This also implies that the dynamic variables will vary slowly, allowing the follow-

ing additional approximation to be made,
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< Ymx k) [Y(n X K)> + MonD(% — X)D(k - k) . (2.39)

Basically, this is a multipole expansion of < Wm.xk) |[¢n% kK)> in which only
the first term is retained. The coefficient M is the monopole term in this expan-
sion and will depend on the specific form chosen for the wave-packet states. For
simplicity, we take M=1 in this analysis. In retaining only ;he first term in the
multipole expansion, we are in a sense taking the analysis to the semiclassical
picture of the Bloch electron. Unlike the semiclassical picture, however, we now
have a means of including interband transitions and other quantum transitions
satisfying condition (2.37) in a quantum mechanically rigorous fashion. In addi-

tion, the Pauli exclusion principle is maintained through the anticommutation

relations,
{w(m.i,fq,t),w*(nsc'.*'.t)} = 8xD(% - ¥)D(k — k) (2.40)
[w(m,i,fc.t),¢(n5<',f<'.t)} =0 (2.41)
{w(m.i,kt).w(n,i',f{.t)] =0 (2.42)

where the first relation is an approximation of (2.18) using (2.39), but the latter

two relations remain exact.

Using (2.35) and (2.36) in (2.32) and then simplifying the result using (2.39),

gives for the system Hamiltonian,
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H =Y [didken(k)y* (mtktp(mzkt) + (2.43)
;ﬁq[bﬂt)b,(t) + é—] +

& ddkhum(k)u(®) [bit) + bV Mk OYnxEL

We specialize this Hamiltonian to a two-band model (see Fig 2.3),
H = faxdk{eu®vdve + a(@ww) + (2.44)

ZE‘.)J[b1+b1 + -é— +

1

¥ faxaku®{or + o) [awews + bRy

where coordinate and temporal dependences have been suppressed in the

dynamic variables.

2.3 Equations of motion

The system Hamiltonian {2.44) includes the unperturbed energy terms of the
Bloch electrens and the lasing modes as well as their interaction energy. The
time evolution predicted by this Hamiltonian represents a zeroth order descrip-
tion of the laser, which although able to account for stimulated emission and
absorption is seriously deficient in describing areas such as pumping and cavity
loss. The missing terms in the system Hamiltonian responsible for these effects
and others come under the heading of bath interactions: additional energy
terms stemming from scattering of the system with other systems having a

large number of degrees of freedom. The complete time evolution equation for
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Figure 2.3 Schematic of model system for a semiconductor laser showing
components and dynamic variables. Bath interactions are not inciuded.
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an operator A could thus be envisioned as,

dA L[

—— = + + , .
m ﬁlH° H; + Hg.A (3.1)
where H, and Hj are the unperturbed energy and interaction energy terms in the
system Hamiltonian (2.44) and Hp comprises the various bath interactions. In
this section we will develop a set of operator equations of motion governing las-
ing action and transport phenomena in SL's. We incorporate bath interactions

into these equations in a standard way which is described below.

The concepts of system and bath are of profound importance in thermo-
dynamics and statistical mechanics. The system lies at the focus of attention; its
thermodynamic state variables or dynamic variables, as the case may be, are to
be measured or calculated. The bath, on the other hand, has consequence only
through changes it causes in the system by interacting with it. It is normally
assumed to have a well-defined thermodynamic state, which, owing to its enor-
mous size relative to the system, is unaffected by interaction with the system.
These definitions put no restriction on the system seo long as the bath or baths it
interacts with can be chosen to be much larger than the system. In the present
case, however, we assume the label "system" to imply, in addition to the above
properties, an analytically managable set of dynamic variables; specifically, the
operators ¥ave, ¥y Yie tbi'). and {bj} which under the system Hamiltonian
(.44) constitute a self-consistent set. These operators interact with three
independent baths: the conduction band, valence band, and free radiation
baths. For the moment we consider the effect of these bath interactions in the
absence of interactions between the components of the system {i.e., setting
H; =0 in {3.1)). Without any interactions (i.e., setting H; = 0 and Hp = 0), the sys-

tem equations of motion are,
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b = b (8.2)
%— 0 R (3.9)
Wt (3.4)
Wit g (35)

where,

0 (k) = iik)—;ik)- (3.8)

and where equations for by and ¥;¥. are merely the Hermitian adjoints of (3.2)
and {3.3). Bath terms in the Hamiltonian affect these equations first by driving
the equilibration or damping of the dynamic variables and second by superim-
posing fluctuations on their damped motion. Damping results from the enor-
mous number of degrees of freedom in the various baths, making it highly
unlikely that energy leaking out of the system will return from the baths. Fluc-
tuations, on the other hand, are the result of bath energy which "couples into”
or 'pumps’ the system. The basic problem is to incorporate these two aspects of
the system-bath interaction into the equations of motion. One approach to this
problem is to consider the system-bath interaction explicitly. It is clear, how-
ever, that in most cases such an approach is prohibitively complicated. Another
approach, the one employed here, is to add damping phenomenologically to the
system equations of motion and then to determine fluctuations with the quan-
tum mechanical fluctuation dissipation thecrem. We give only a basic outline of
this theorem below, deferring a more rigorous explanation to comprehensive

treatments of the subject by Lax [19] and Haken et. al. {[R0]). Our particular
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formulation follows Lax's treatﬁlent.

The fluctuation dissipation theorem has both classical and quant‘um forms.
In both cases it accounts for fluctuations caused by thermal energy coupling
into a chosen system from a bath. In the gquantum case, however, it is also
essential to preserving the quantum mechanical nature of the damped system
by maintaining the canonical commutation relations of tﬁe dynamic variables.
The theorem presumes that damping can be incorporated in some way into the
dynamic equations (normally phenomenologically). The mean {i.e., quantum

average over all baths) motion of the dynamic variables {A;] is then given by,

d< A>

=< ri[zAj;]> (3.7)

where (['j{ are a set of transport functions which include damping. The unaver-
aged form of (3.7) contains a fluctuation operator to account for the thermal
nature of the bath energy which couples inte the system. Thus, the unaveraged
form of (3.7) appears as follows,

dA;

=) + 6 (3.8)

where, on account of (3.7), the fluctuation operator f;(t) must vanish upon bath

averaging,

The stochastic operators {f;(t)} are normally assumed to be Gaussian, resulting

from a central limit argument, and in addition Markovian,
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<Ht+DEY> =WD(r) (3.10)

where the normalization coefficient ¥;; is often referred to as a generalized
diffusion constant since it does, in fact, so function in Einstein's model of
Brownian motion. (Note: in this analysis we will assume the fluctuation opera-
tors are delta correlated in phase space as well as in time). The final and most
important part of the fluctuation dissipation theorem is that this diffusion con-
stant can be determined from knowledge of the transport function in (3.7) by

employing the generalized Einstein relation,

d< AA >

Wy = —4

- < Tyfmd)a> - <ariad)> (3.11)

which can be derived quite readily from (3.8) and (3.10).

To recapitulate this approach consider the problem of incorporating damping
and fluctuations into the optical field equation (see also [2]). Reasonable selec-

tions for damped unpumped optical field equatons are,
bi* = (iwx — 3)bi" + (L) (3.12)
1

. 1
by = (—uy — g)bl + at) (3.18)

where 7; is the photon lifetime of lasing mode | in the unpumped cavity, and g
and g are the fluctuation operators. To normalize these operators, the tran-
sport terms in (3.12) and (3.13) are used in the generalized Einstein relation. In

steady state the results are,
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<glt+Ngn(t)> =0 (3.14)
<gt(t +Negn(t)> =0 (3.15)
< gt + Ngm(t)> = Tl—]< bibp> D(7) = %—D(‘r)dlm (3.16)

m+1

. D(T)6im (3.17)

< glt + Nght)> = i—]< bibt> D(7) =

where n; = < bj*b;> is the number of thermal photons in the optical mode | as
given by,
m = e (3.18)
1 anl/kaR 1 .
Tgr here is the temperature of the free radiation bath. It should be noted that
lack of commutability between b;" and b; is reflected in the Einstein relations

(3.16) and (3.17). This fact is central to preserving the quantum nature of byt

and by in the damped system.

Both damping and fluctuations are introduced into Equations (3.3), (3.4), and
(3.5) as follows:

et - (10 @ - yEbew + Ak (3.19)

d"/’:‘#’c _ _#’:#’c _fc

ey + L(kEb) (3.20)




) d’¢’v+1/’v = _W’% -1y
dt Ty(%.K)

+L(tkt) . (3.21)

Each of these equations is driven by a Langevin fluctuation operator which is in
general a function of time and location in the appropriate phase space. The

second moments of these Langevin operators, found using (3.11), appear below:

< AHREL+ DAY EELD> =0 (3.22)
< ARkt + PDAREK LD = 294,(1 - (2m)3)D(% - X .k - K.7) (3.23)
< AFKL + DAY K 1)> =291 — (2m)3)D(E - % k —K.7) (3.24)
< Lkt + DLE KL = f—fc(; — (2n)3%)DE - Xk - K1) (3.25)
< LRkt + DLEE DD = ;z-fv(l - (2m)%,)D(& - X k - K.7) (3.26)

< Lkt + DL(XK > =0 . (3.27)

Damping parameters also, in general, have a phase space dependence caused by
energy dependent scattering rates and spatial inhomogeneities, such as a
nonuniform carrier density. The damping parameter (% k) describes collision-
ally induced loss of polarization between states in a transition. Between Bloch
states in the conduction and valence bands the time ™! is thought to be roughly

0.1 psec [7].

The damping form assumed in (3.20) and (3.21) is characteristic of the relax-
ation time approximation [8]. These terms give the relaxation rate of Y%, and

/¢y to their local quasi-equilibrium forms given by f. and f, where, for example,
q
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_ 1 1
<t> = (2m)? (el —nEDVIGTEY (3.28)

+

is the quasi-Fermi distribution function for the conduction band with associated
temporally and spatially varying temperature and electrochemical potential (to
allow for the possibility of internal electric potentials). The factor involving (2m)3
is a normalization which enters into this expression since f, and f, as well as
Y. and Y'Y, represent occupancy densities in {%.k) phase spaces. In SL's local
quasi-equilibrium is established extremely rapidly by intraband scattering. The
phenomenalogical relaxation times for this thermalization within each band are
the To(%.k) and 7, (%.k) appearing in (3.20) and {3.21). These times are generally
thought to lie in the range 0.1 to 1.0 psec {21]. To be strictly correct we should
also include thermal generation and spontanecus recombination rate terms in
(3.20) and (3.21). These terms are utterly negligible, however, in comparison to
the intraband scattering terms and are not considered for the moment. In fact,
the absence of noticeable spectral hole burning in SL's implies that intraband
scattering rates also dominate stimulated rate terms resulting from the
electron-radiation interaction [7,22]. This extremely rapid thermalization is the
basis for the assumption, often made, that local quasi-equilibrium holds during
lasing action. We shall assume that this is the case in the remainder of this
analysis. Local quasi-equilibrium of the conduction band and valence band
baths is always assumed to hold aad with it well-defined local temperature and
guasi-electrochemical potentials. Spatial equilibrium is not assumed, however,
as its characteristic equilibration time is comparable to relaxation times
governing photon-inversion dynamics. Currents which result from spatial none-
quilibrium (pump currents included) are assumed to be expressible as gradients

of the temperature distribution and quasi-electrochemical potentials.
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The assumption of local quasi-equilibrium means that Eqns. (3.20) and (3.21)
are approximately correct even when the electron-radiation interaction is
turned on. The short term motion of ¥ ¥, and %'y, therefore consists only of
thermal fluctuations about f; and f,. The long term motion, including the action
of stimulated rate terms, is absorbed almost completely by the quasi-Fermi
operators f. and f,. This kind of approximate picture is very similar to that
found in the Born-Oppenheimer approximation. The idea is illustrated in Fig.
2.4. Part (a) depicts a relaxation oscillation of < f.> or < f,> after the inver-
sion has been disturbed from its operating point; part {(b) shows < ¥3¢.> or
< %¥,> during the same oscillation, the added fuzziness resulting from intra-
band thermal fluctuations. The slowly varying time evolution of the quasi- Fermi

operators can be found through application of the following obvious identities to

(3.20) and (3.21):

dkf. = [dkydv. (3.29)
Jakt. = f
Jake, = [diysy, (3.30)

A further simplification can be made by assuming that intraband scattering
preserves the carrier density {there will, however, be fluctuations about an aver-
age value stemming from shot contributions of the balanced intraband scatter-
ing rates into and out of a particular location),

y #’: Ye ~ fc

fdk—;m'—:() (331)
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tnsec \/ 2nsec t

Figure 2.4 A relaxation oscillation of the Fermi number density f. and the
phase space number density ¥y, towards the operating point number
density. Intraband scattering produces the added fuzziness in the lower
plot.
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. .
Jdk V’”&" ) =0 (3.32)

Equations (3.12), (3.19), (3.20), and (3.21) describe the motion of the chosen
dynamic variables under the Hamiltonian H, + Hg. We now include the electron-
radiation interaction term given in (2.44). Neglecting nonsynchronous terms,

the resulting dynamic equations are,

b = [w] 1 }b ool @DaR I, + & () (3.39)
dy¥ v, o Y
Hebe - Lo @ -ywbww (3.54)
d c+ v *{ + E

Vebe - ) ) e O o gi)or + AGREY

dye "/’c__ chwc—fc 27

G = T T Y LR (3.35)
d'w #’V__w:-wv_fv_ -

T T Y LR (3.36)

where,
q(k) = E%-{l (3.37)
(%)

g g u I o
Y = -R(Xk) + G(x k) — LZ}: NCE [Q(k)"l/ﬁ"vbl - q (Kb wWe| (3.38)
G(%.k) and R(%.K) are generation and spontaneous recombination terms whose
explicit dependence on system operators is not important for our purposes.
From the above discussion, the operator Y can be omitted in (3.35) and (3.36)

for consideration of the rapid variations of ¥J¥. and ¥y, whereas the slow
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variations of the quasi-Fermi levels (or equivalently the carrier density) can be

determined by application of (3.29) and (3.31) to {3.35),

%}:l Saky + faRL (xk.t) (3.39)
where,
n(xt) = [fdkt, = fdkydy, (3.40)

is the electron densi'sy operator. The corresponding equation for the valence
band, found by applying (3.30) and (3.32) to (3.36), is omitted since it is deter-
mined from knowledge of f, (or n(%.t)) with the quasi-neutrality condition. We
now rewrite (3.39) using {3.38) and also reexpress the total time derivative in

the form of a conservation equation.

an +V-J = —R®) + G(X) - (3.41)
z \‘;2‘(8% ak(qB)vewb - ' (b9 + fdkLo(tkb)

where,
R(®) = fdkR(%.k) (3.42)
G(x) = [dkG(xk) (3.43)

and where J is the electron current density operator caused by drift and
diffusion, for example.” Eqn. (3.41) is a carrier density operator rate equation
which can be used to study both normal electronic transport in conjunction

with electron-radiation induced interband transitions.
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2.4 The rate equation approximation

Normally, it is possible to make one simplification of Eqns. (3.33)- (3.36), and
(3.41) without much loss of generality. To do this Eqn. {3.34) is solved for the

operator ¥, by employing the rate equation approximation. Integrating the

total time derivative in (3.34) yields,

Yeyy = - Ef dt jﬁ-“m% Yit)brre@® -7 -0 4 (4.1)

t
[ atAE & x)e® -ne-1)

where % and K are functions of t. As mentioned in Section 2.3 the damping
parameter 7 is of the order of 0.1 psec. in SL's and as such the above integrals
sample a very narrow interval of time. The rate equation approximation exploits
the rapid decay provided by ¥ to remove slowly varying quantities from these
mtegratlons From discussions in Section III variations in ¥q¥. and ¥/ ¥y can be

separated into slowly and rapidly varying parts as follows:

Yo¥e = fc + Ve (4.2)
YWy =y + vy (4.3)

where f, and f, are the slowly varying quasi Fermi operators (varying on a
nanosecond timescale) and v, and v, are the rapidly varying fluctuations caused
by intraband thermalization. The time evolution of the Fermi operators is given
by (3.41) and the time evolution of v, and v, follows immediately from (3.35) and

(3.38),
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V e d
Ve = —T—° + Le(®kt) (4.4)

v, = —:—" + L(kt) (2.5)

where we have treated f, and f, adiabatically and have also neglected the opera-
tor Y in comparison to the intraband scattering terms. In addition to intraband
scattering, multimode interactions can also cause rapid variations of the popu-
lation (i.e., modal beating [1]). Provided that the intermodal beat frequency is
smaller than the collisional dephasing rate (i.e., | —wn| < 7). however, the
rate equation approximation will remain valid. Nearly all lasing modes will
satisfy this condition, because of the large ¥ in SL's. Using the decomposition
given in (4.2) and (4.3) and also separating the rapid optical variations in the

operator bjt, we can apply the rate equation approximation to (4.1) to vield,

..

Z Uy X)q (fc - fi)bf
sﬁvl o -0 (k) +v

Yy = (4.6)

—X" kb (O (R -5 - -t
oy )q >lfdt @@ -2 Pe-0
1 —o0

t .
S dt‘A(i.E.t’)e‘mm”]“ Y

where @ is the lasing frequency of the I** mode {not necessarily equal to w). We
have also replaced % k) by (Y{.f{) throughout this expression since any point in

one of the phase spaces will not evolve significantly during the time interval !

The operators %, and % ¥, represent contributions to the active medium
polarization caused by the electron-radiation interaction between points in the
respective conduction band and valence band phase spaces. Each term in (4.6)

then represents a different contribution to polarization. The first term is the
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induced polarization, giving rise. to a complex susceptibility which depends on
the excitation of the active layer, the second term is an intraband scattering
contribution to polarization (the so called "Occupation Fluctuation” contribution
to polarization [21]); and the third term is the main contributor to quantum
fluctuations in lasers. This term in conjunction with a contribution from optical
fleld vacuum ﬂur_:tuations causes spontaneous ernission fluctuations of the las-

ing modes.

The optical field and carrier density equations (3.33) and (3.41) are now

rewritten using (4.6). We have

N - 1 - - wm = -

b]+ = [Lw] - ﬁ b]+ + LdeU.](X)%: z—gx(n.gm)b,;um(x) + (4.7)
L 19(K) Py (®)um®) (O o) -7fe 1)

2 Jdxdk SoE =—bs f dt'(v, — vy)el = 7]

b fardkatu@alske @ 0 4 g

-

dn+¥ 3= -R(n3) +GnL) + 3 EE%ﬂl(i)um(i)[x(n,Bm)bgbl ~HA] - (48)
lm

3 20 ot a2 - v papet P 7 A ] -

uy{ x)

fdkf dt[ (K)A (% k.t ) bela (0 - “/Nt-‘)—HA] JakL (k)

where in writing these equations we have defined a local complex susceptibility

operator as follows:
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7 lq(k) |2(f - £,)
t{en — O k))+7

x(nw) = EaFf (4.9)

We take the complex susceptibility to be an explicit function of the carrier den-
sity n, rather than an equivalent representation in terms of either one of the

electrochemical potentials.

Eqns. (4.4), (4.5), (4.7), and (4.8) represent the main result of cur analysis.
Although the rate equation approximation has been invoked in the case of {(4.7)
and (4.8), the equations should remain exceedingly accurate owing to the small-
ness of y~! in comparison to characteristic times of interest. Thus, these equa-
tions can be used to study a variety of phenomena ranging from multimode
interactions to the effect of carrier diffusion on optical fluctuations. Under cir-
cumstances where the rate equation approximation does not hold the more gen-

eral forms of these equations appearing in Section 2.3 can be used.

2.5 Conclusion

In this chapter we have developed an operator formalism based on electronic
wave-packets which facilitates the treatment of local phencmena in semiconduc-
tors. In addition an example of its use has been presented by developing local
operator equations of motion for a semiconductor laser. In doing this we have
rigorously incorporated the electrooptic interaction into the semiclassical pic-
ture of the Bloch electron, and have given conditions under which other quan-
tum interactions may also be treated using this formalism. Although the
analysis we have presented treats only the electronic system in a local fashion,
it 1s clear that one can do likewise for the optical field by developing a space of
optical wave-packets [17]. Such a formalism might prove to be useful for inter-

preting femtosecond pulse propagation experiments.
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* We assume it is possible to define diffusion and drift ceefficients. A more fun-
damental approach would begin with the operator version of the Boltzmann

transport equation given by Eqn. (3.35),

+
dv:t% = 0eVe + VgV WiV + RV gl = -+ Y + L,
[+

J%-f

where ¥, = % is the group velocity of a wave-packet. Using this equation one
could derive explicit formulas for the transport coefficients. For a related dis-
cussion see Ref. [B]; also see Refs. [11-13] in regard to operator transport equa-

tions.
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Chapter 3

Power, frequency, and field spectra for
single and multimode semiconductor lasers

3.1 Introduction

In the last few years it has been conclusively demonstrated that amplitude
and phase fluctuations of the lasing field in semiconductor lasers (SL's) are
strongly coupled on account of the highly detuned gain spectrum produced by
an electron-hole inversion [1,2]. Although some of the effects of detuning on
laser noise spectra were considered in the sixties by several authors [3,4,5], its
significance and strength in semiconductor lasers had long been overlooked and
latest efforts in this area have explored additional effects which were previously
neglected [6,7,8]. In this chapter we study the consequences of detuning in sin-

gle and multi-longitudinal mode semiconductor lasers.

Only noise spectra associated with the phase are modified by the detuned
gain spectrum, but for the purposes of comparison and for completeness we
also calculate certain amplitude ncise spectra for both single and multimode
operation. Although muitimode amplitude noise has been treated elsewhere [9]
we give a different presentation of results in terms of a new dimensionless
parameter that gauges the dynamic interaction strength between a mode and
the inversion. This parameter is introduced in Section 3.5 and is of central

importance in the calculation of all multimode noise spectra.

The starting point of this analysis is a set of semiclassical equations for a

multimode SL. The form of these equations is consistent with the set of operator
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equations which were derived in Chapter 2. We will take advantage of this
correspondence throughout the analysis to add both rigor and depth beyond
that normally possible in a semiclassical treatment. We do this by supplement-
ing the main text with a set of appendices. At key points in the treatment fully
quantum mechanical arguments given in an Appendix can be used in place of
the less rigorous semiclassical arguments. Fluctuations are introduced into the
semiclassical equations through the use of Langevin forces. Although fluctua-
tions in Sl's originate from many sources, our only concern in this chapter will
be the most important such source, spontaneous emission. Thus mechanisms
such as population fluctuations, diffusion, and temperature fluctuations are
neglected. The equations of motion will be solved by applying a standard lineari-
zaltion procedure which has been used by several other authors. We narrow the
scope of the treatment by focusing on the calculation of certain important opti-
cal spectra. These spectra are introduced below, followed by discussion of
related experimental work. In Section 3.4 the equations of motion are intro-
duced and linearized, and in Section 3.5 the optical spectra are calculated. We

conclude in Section 3.6 by summarizing several results of the analysis.

3.2 Optical spectra

SL applications which must include laser light output fluctuation characteris-
tics into their design and performance considerations can most often do so by
modeling the lasing field as a classical field expanded into eigenmodes of the

passive resonator,
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E(E0) = 23 [bult) + ba(0)]an(®) (2.1)
m
where the complex field amplitudes can be expressed as,

Dt + $mt)]

bm(t) = Am[l + Pm(t)]e‘l (R.2)

In (2.2) &y, is the line center frequency of the lasing mode, p,(t) is the normal-
ized field amplitude fluctuation, and ¢, (t) is a field phase fluctuation. By set-
ting these fluctuation terms equal to zerc and taking single mode operation in
(2.1), a perfectly coherent classical field results {quantum mechanically, a
quasi-classical state [11]). Square law detection of such a signal, using a unit
quantum efficiency detector, would suffer only from shot noise caused by the
Paisson statistics of the arriving photons; far above threshold the output of a
single mode laser would mimic this ideal behavior. The degree to which the laser
output deviates from this ideal, because of various noeise mechanisms, is thus
accounted for classically by the fluctuation guantities p, and ¢,,,. The amplitude
fluctuation component p.,, for instance, causes square law detection noise in
addition to the shot noise component discussed above, and the phase fluctua-
tion component ¢, is primarily responsible for smearing of the lasing frequency
or frequencies, giving each lasing mode a finite linewidth. The framework of this
analysis is based on these variables and its goal will be the calculation of noise

spectra associated with {pn,] and fgn).

With this goal in mind, we now give the definitions of six laser noise spectra.
These spectra do not fully characterize fluctuations of the electric field; such
complete characterization requiring calculation of a probability distribution
function or system density matrix {5,12,13,14). They are, however, of impor-

tance for consideration of optical information transmission and detection, and
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are readily obtained in measurément. The definitions given are similar to those
found elsewhere [7,15] with the exception of the spectra W,,"(Q) and the "off
diagonal” spectra Wi () which are new and as discussed later only significant
in lasers or oscillators with strong gain spectrum 'detuning”. In all that follows
we will invoke the so-called quasi-linear approximation in which only terms of
lowest order in pp, are retained in calculations [18]. The justification for doing
this is that gain saturation effectively damps the amplitude fluctuations of well-
excited modes so that higher-order terms in ppn, can be neglected. The quieting
effect of this damping mechanism (which is characteristic of all regenerative
oscillators) was first observed in laser oscillators by Armstrong and Smith [17].

We will quantify later in the analysis what is meant by "well-excited” mode.

A spectrum which arises in square law detection of an optical signal is the
power fluctuations spectrum of an optical carrier. It describes a component of
noise which appears in addition to the shot noise component in the detected sig-
nal, and for this reason it is sometimes referred to as excess noise. Using (2.1)
and (2.2), the instantaneous output power fluctuation to highest order in the

amplitude fluctuation is given by,
AIt) = I(t) = Iy = 321y pr(t) (2.3)
m

where It is the average total output power and {l;] are the average ouiput
powers assoclated with each lasing mode. Using the Wiener-Khintchine theorem

[ 18], the power fluctuations spectrum is defined by,
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400

Wal®) = [ <AI(t+ PAI(E)> e™07dr = Y 4l LWSQ) (2.4)
= mn
where,
W, () = f < pmlt + Tpp(t)> e 7dT (2.5)

and where < > denote appropriate classical averages (ensemble or otherwise).
An important point, first noted by McCumber [9], is that correlations exist
between the amplitude fluctuations of the lasing modes by virtue of their joint
interaction with the active medium. These correlations enter into the total out-
put power fluctuation spectrum through the "off diagonal” terms W, (Q) in

(2.4).

Analogous to the role of Wu(0?) in AM transmission, the instantaneous fre-
quency deviation spectrum Wy, (Q) sets a noise floor in FM transmission using a

particular mode m. Defined as,

+ oo

W () = f d7< ot + Dgm(t)> ™7 (2.6)

—

this spectrum will also serve as a computational tool in the field spectrum calcu-
lation below. (2.6) can also be used to define off diagonal frequency fluctuation
spectra {i.e., Wi, (Q)); these off diagonal spectra give the phase correlations
which exist between different lasing modes. Normally, such correlations would
be negligible, but in semiconductor lasers the strong amplitude phase coupling
caused by the detuned nature of the gain spectrum leads to phase coupling
between modes analogous to the amplitude coupling represented by the off diag-

onal spectra W, (Q).

The detuned induced amplitude phase coupling itself is reflected in a spec-

trum we now introduce and refer to as the fluctualion coupling spectrum.
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Defined as’,

W (Q) = J_ @< p(t)pm(t +7) = pm(t + Tgm(t)> (2.7)
= < (@ )pm(®)> = < pi(@)pa(@)> )

with pm(Q1) and ¢n{Q) the Fourier transforms of pn{t) and p,(t), the diagonal
members of this spectrum give a measure of the amplitude phase coupling
intrinsic to a single lasing mode and the off diagonal members {which are
defined analogously) give a measure of intermedal amplitude phase coupling.
Although all components of this spectrum are nonzero, we will calculate only the
diagonal spectra since they play a role in determining the structure of the field
spectrum considered below. These spectra have the interesting property of
being antisymmetric with respect to their arguments. It is a surprising fact that
this spectrum has received only scant attention in the literature and yet is a

very basic aspect of detuned oscillators.

When two optical fields are photomixed on a square law detector, as might be
done in a heterodyne detection system, or when an optical spectrum analyzer
(e.g., Fabry Perot) is used to sweep a laser's output field, it is the field spectrum
which comes under scrutiny. To avoid computational difficulties the treatment
of this spectrum is broken into two frequency regimes around the lasing fre-
quency. The first and most important regime encompasses a frequency band
surrounding the lasing linecenter frequency of a particular mode m. This band
is defined by |w - %m| < 1/ (where 1R is the relaxation oscillation damping
time); within it the inversion can eflectively track field amplitude fluctuations
and provide the gain saturation damping of amplitude fluctuations discussed

earlier. The field autocorrelation of the m™ mode is thus approximately
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described by,

< bt + MBS - AR< e.[wm(t+f)-¢m(t)]> oBa (2.8)

that is, amplitude fluctuations pp,{t) can be neglected. We digress briefly to note
that a significant anomalous 1/f component has been observed at low frequen-
cies (typically < 1 MHz.) in the power fluctuations spectra of SL's 19,20,21,22].
Such behavior indicates a breakdown of gain saturation damping at low frequen-
cies and brings into question results obtained using expression {2.8). It would
seem, however, that a meaningful comparison between theory and experiment
can be made in at least two ways: first and simplest is to use a scanning Fabry
Perot with a sweep rate adjusted so that on any given sweep the low frequency
1/f components are suppressed by the finite sampling time; a second method
would be to suppress these components by a low frequency amplitude stabiliza-

tion loop employing temperature feedback to the laser.

To simplify (2.8) further requires knowledge of the distribution function of
?m{t + T) — pm(t). Under most circumstances it is adequate to assume a Central
Limit argument applies, making gn(t + 7) — g{t) a Gaussian random variable.
The Gaussian nature of the phase fluctuation has, in fact, been observed experi-
mentally for single mode SL's [R3] It will be assumed for simplicity that
#mlt + 7) — ¢nlt) is a Gaussian stationary variable throughout this analysis.
Identifying the ensemble averaged quantity in {2.8) as the characteristic func-
tion with unity argument of a Gaussian distribution function, allows it to be

rewritten as follows,
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—;—< [wm(t +71) - pm(t)]2> e,,z,m.,.

< byt + Dbu(t)> = Ake (2.9)

It is convenient to further rewrite this expression in terms of the instantaneous

frequency deviation spectrum,

<femit+7) - «:m(t)]z> = 2£dx f:dy < #mlyen(0)> (2.10)

Q7
2

Q
2

2
e Sin
a0 WE™(0 Jey = i—f AN WI™Q)
C

. T
:

X +
wfax favf

—co

In deriving this expression we have utilized the stationary property of gn(t) and
have also assumed that W, () is an even function. Using (2.10) in (2.9) and
applying the Wiener-Khintchine theorem to the field autocorrelation (sum of
positive and negative frequency field amplitude components) yields the field

spectrum of the m™ lasing mode,

4+
W) = j:— [ a7 < byt + Tba(t) + balt + Tba(t)> ewr (2.11)
2
oo oo Sin _()2_7
1.2 — 1 mm
= EAmRef__, drexp|—t(w — Bpm)T — oy _{;dﬂ Wa, (Q) 0
2 /

When W,,(Q) is flat over the low frequency regime (which is the case for the

noise sources considered here) this expression simplifies to,
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. .

1 AnWa, (0)
Wow) = o =5 Wem oy 12 (2.12)
(C-) - am)z + 25 ‘

g

where Wf:,m(D) represents the low frequency value of W, (). {(2.12) is the fami-
liar expression for a lasing mode with a Lorentzian lineshape. The linewidth of
mode m is thus given by the low frequency value of Wiy (Q). In a multimode SL
the separation between lasing modes is normally many orders larger than this
linewidth so that the multimode field spectrum (valid only within the respective
low frequency bands surrounding each lasing mode) is simply the sum of the

single mode field spectra as given below,
Wo(w) = P W, (w) (2.13)
m

This spectrum is determined solely by the low frequency behavior of the diago-
nal frequency fluctuation spectra Wy, (). As an aside, we note that cases do
exist which require knowledge of off diagonal spectra, a good example being the
linewidth resulting from photomixing two lasing modes on a fast photodetector.

Using the same approach it can be shown that the beatnote spectrum is given

by,

ARApA
wbeat(Q) & m’n”Omn

R.14
ro TP (2.14)

2

( —op + a‘>n)2 +

where the beatnote linewidth is,
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Awmn = We™(0) + WiS(0) — 2Woo(0) . (2.15)

‘Phase correlation between the modes m and n thus alters the beatnote

linewidth in a manner prescibed by the off diagonal spectrum Wiy (Q).

Expression (2.11) and its simplified forms (2.12) and (2.13) for the field spec-
trum are valid only within the frequency bands {|w — &, | <-1/R] because of the
form assumed in (2.8). Within the complementary set of frequencies
fiw —Bm! > 1/} the neglect of amplitude fluctuations is no longer permissible.
In this region the dynamics of the inversion-photon interaction are crucial and
gain saturation damping is rendered inoperative. Fortunately, however, the
fluctuation components in this range of frequencies are normally small enough
to enable a small angle approximation of the field phase. Deing so, the fleld

autocorrelation function for mode m is given by,
bt + Dba(t)> = A3(1= 2< on(t + 1) - on(v)] "> (2.16)

+ < palt + Dom(8)> + 1< pr(B)pm{t + 7) = prlt + Then{t)> ])e‘u‘“’

where only terms up to second order in the fluctuations have been retained. The
field spectrum which results from (2.186) is,

2

A
W) = S (Do = T +

T Wao (@ — 2) (R.17)

+ W W = B) + Wog (@ = D))

where (2.10) has been used and D{w — &y,) represents a delta function like singu-
larity which results from the inadequacy of expansion {2.16) near the linecenter

frequency @, The appearance of 'W:;m(ﬂ) in this expression implies that the
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field spectrum lineshape function in a detuned laser is slightly asymmetric

about the lasing linecenter. This property has been observed by us in SL's [24].

Egns. (2.13) and (2.17) give a composite representation of the field spectrum,
and together with Eqns. (2.4), (2.5), (2.6), and (2.7) complete the noise spectra
definitions needed for this analysis. It should be noted that, whereas six spectra
have been defined, only three sets of spectra, {W, ()}, {Wsy (Q )3, and fW;5"(Q)3,
need be calculated to determine all six. Experimental and theoretical results

pertinent to some of these spectra are summarized below.

3.3 Spectral observations

As descibed earlier, the power fluctuations spectrum Wy {Q) is most readily
obtained through square law detection of the optical field followed by spectral
analysis of the detection current (Fig. 3.1). Many investigators have used this
method to study total output power fluctuations in SL's as well as the output
power fluctuations in one or several longitudinal modes of a multimode SL
[25,26,27.28,29,30,31]. These measurements have confirmed several predictions
of early theoretical work: (1) For predominantly single mode operation, the out-
put power fluctuations spectrum consists of a flat low frequency part which
decreases in strength with increasing output power, followed by a "spiking'' reso-
nance at a frequency corresponding to the relaxation resonance frequency
[9.32,33}; (R) For multimode lasers these same considerations apply to the total
output power; however, when power fluctuations in a single lasing mode or a
subgroup of all lasing modes are measured, an excess noise caused by the parti-

tioning of energy between the gain medium and all lasing modes is observed [9].

In addition to the above behavior, the W5 (Q2) spectrum alsc exhibits the 1/f

component discussed earlier. Recently, we have shown that spatially dependent
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Figure 3.1 Schematic showing measurement techniques which can be

used to obtain some of the spectra calculated in this analysis.
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temperature fluctuations can produce 1/f components of the correct strength

in the amplitude and phase noise spectra of semiconductor lasers [34].

Several groups have recently reported measurement of various portions of
the W5, (Q) spectrum for GaAs SL's [23,35,36,37,38] This spectrum has struc-
ture very similar to Wa(Q), both containing 1/f low frequency regions followed
by a flat intermediate band and a 'spiking" resonance. These results are not
surprising in light of the strong detuning effect in SL's. All regions of this spec-
trum, with the exception of the 1/f portion, can be explained by the theory
presented in this chapter. The measurement of Wy, (Q) usually involves some
kind of amplitude limiting procedure, followed by frequency discrimination and
spectral analysis. Discrimination has been accomplished optically using a
Michelson interferometer or by photomixing two sources and processing the

photocurrent (Fig. 3.1).

The field spectrum W,(Q) and its related single mode correlation function

< bmit + T)bm{t)> have been measured in several ways. In the early sixties
upper limits were set on SL field spectrum linewidth by measuring a fringe visi-
bility function using an instrument bandwidth limited Fabry Perot spectrum
analyzer [39]. In the late sixties Hinkley and Freed obtained the field spectrum
of a PbSnTe SL by heterodyning it with a COp laser at 10uM. [40] (Fig. 3.1). They
observed the inverse power field spectrum linewidth broadening characteristic
of a lasing line broadened by spontaneous emission. Homodyne measurements
of the fleld spectrum which utilize an optical fiber delay line have also been
reported [41] (Fig. 3.2). More recently a number of groups have reported meas-
urement of the SL field spectrum using one or several of the above techniques
[42,43]. The watershed of this current group of measurements was the observa-

tion of excess inverse powér linewidth broadening in the GaAs system reported
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Figure 3.2 Fiber delay-line measurement of the field spectrum of a laser.
If the delay 7, introduced by the fiber, is much longer than the coherence
time of the laser, then the photomixed signals are independent and the
resulting photocurrent contains a component related to the phase noise
in the signals. Spectrum analysis of this component produces a line-
shape function with twice the linewidth of the original signal provided the
original lineshape function is a Lorentzian. A typical photocurrent spec-
trum is shown in the lower portion of the figure. The baseline was gen-
erated by blocking one of the beam arms; the observed lineshape is
Lorentzian.
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by Mocradian, et. al. [1,44]. Their measurement was the first example of laser
phase noise enhancement caused by oscillator detuning, an effect elaborated on
this chapter. Besides an enhanced inverse power linewidth component, SL"s also
exhibit finestructure in their field spectrum [24,45]. This finestructure will be
shown to be the composite of Wy (Q), Wau (), and W, "(Q) as given in (2.17)

and are basically a manifestation of the relaxation resonance.

Finally, a power independent contribution to linewidth has been observed in
SL's [46,47]. Several fluctuation mechanisms have been proposed to explain this
anomaly and indeed it may be the case that several mechanisms cause it. Two
potential mechanisms are spatially dependent temperature fluctuations [34]
which have already been mentioned in regards to 1/f noise, and electronic state
occupation fluctuations (see Ref. [48] and discussion in Section 2.4 of Chapter
2). In this thesis we will not delve into this subject except to show that partition

noise can sometimes produce power independent behavior.

3.4 Equations of motion

The semiclassical equations of motion used in this analysis appear below,

c e 1 . F]]CJ] o . .
b = [Lw] " by + tz—ﬂa“x(n,&h)bl +51(t) (4.1)
! _\biby
n=E -R(n) - ¥ —ln. 4.2
(n) 21:#2 xi(n. &) Vi (4.2)

where (4.1) gives the time evolution of the field amplitude appearing in (2.1) and
{4.2) gives the time evolution of the carrier density n (assumed to be uniform
and to adequately characterize the state of the active medium). In {(4.1) &y and 7

are the resonant frequency and lifetime of the I*! passive mode; [} is a modal



- 74 -

confinement factor to account for incomplete spatial overlap of the I optical
mode and the active medium; u is the nonresonant contribution to refractive
index; x(n.w) = xr(n.w) + xi(n,w) is the complex susceptibility; and s(t) is a
langevin fluctuation force. In (4.2) E is a pumping rate term; R(n) is a carrier

recombination rate term; and V sub ! is the modal volume [7] of mode .

These multimode semiclassical equations can be defived by two basic
methods. The first has the advantage of simplicity but is somewhat heuristic. In
this method one begins with Maxwell's equations and a carrier density rate
equation: then introduces phenomenalogical interaction terms (involving the
complex susceptibility) to account for the electron radiation interaction, and
Langevin fluctuation terms to simulate fluctuations resulting from spontaneous
emission as well as other noise mechanisms. This method has been employed by

us in Refs. [7,8] to study fluctuations in a single mode SL.

The second method has the advantage of being a '"first principles” approach
but is for this reason much more complicated. We have presented this fully
quantized derivation in Chapter 2. The quantum treatment has the advantage
of yielding an analytic expression for the complex susceptibility, and, most
important, giving a 'first principles” relation between the Langevin sources and
the various fluctuation mechanisms in the device. Eqns. {4.1) and (4.2) are con-
sistent with the quantum treatment if we view them as operator equations of
motion driven by fluctuation operators and also take the carrier density as uni-
form over the active volume V,.yye. This matter is discussed in greater detail in

Appendix A.

Regardless of how we justify the form of {4.1) and (4.2), they will be treated
semiclassically to solve for the spectra discussed in the introduction. We further

assume the Langevin force s/'(t) accounts only for fluctuations related to
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spentaneous emission into mode 1. We will, however, take advantage of the

correspondence discussed above at certain points in the analysis.

Eqns: (4.1) and (4.2) are the working equations for the remainder of this
analysis. As is usual, it is assumed that the fluctuations of the optical modes
and the population are only perturbations to the steady-state operating point.
This allows a linearization of the equations of motion b'ased on the following

small signal representations,

bi(t) = By (t)e " = Al[l + p](t)] B+ o) (4.3)
n=n, +n, (4.4)
x(n.@) & x(no.@) + £(ne. @0y (4.5)
R(n) ® R(n,) + R(no)n, (4.6)

where py(t) and n,{t) are small signal quantities, but ¢(t) is not. As the first step
in the linearization the operating point equations of state are determined.

Using the above forms, the steady-state versions of (4.1) and {4.2) are given by,

o 1 Iy

—hay ) — ﬁ— t 212 <x'(n@)> | <Bt)>, =0 (4.7)
[}

< B'B>
‘;L“%< xin@)> =t = <E ~Rin)>, (4.8)

where < >, signifies temporal averaging. In writing these equations we have
assumed that field and suscepti‘bihty terms can be averaged separately. It
might be expected for these equations to establish the operating point, but

there is a problem in discerning the meaning of (4.7). This equation can be
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satisfied in several ways. By purely intuitive reasoning, we might conjecture
< B;> { =0 below threshold and < B;> ; # 0 above threshold. This would force

the other term in (4.7) to be zero above threshold, leading to the following set of

operating point equations,

1 _ I - .

= E Xined) (49)

=l + S (ng.&) (4.10)
- Ru? XR\To. '

which in conjunction with (4.8) would comprise the equations of state for the
laser. Although these equations are quite accurate for a laser biased well above
threshold, they are in fact only approximate, neglecting the role of spontaneous
emission in initiating lasing action. This is easily seen by substituting (4.9) into

{4£.8). For single mode operation we find,

< B]‘B} > t

v =Mm<E-R@n)> . (4.21)
1

The threshold knee predicted by this equaticn is a sharp corner, showing none
of the characteristic signs of spontaneous emission. To include this effect it

must be recognized that above threshold the field amplitude is not perfectly

coherent so that < B;> , is zero always and (4.7) remains indeterminant.

It is clear from (4.8) that the average photon number P;= < b'b> , of a
given mode 1 must be nonzero above threshold. This suggests that a photon
number rate equation will lead to meaningful steady state results. We thus con-
sider an operating point equation which results from the following photon rate

equation,
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. P T ' 2n,
p=-—L+ 2;"’ x(nB)P) + 6 + T] (4.12)

where @, is the spontaneous emission rate into mode | and the term involving n;
(number of thermal photons in mode 1) can be neglected at optical frequencies.
A derivation of this equation based on the quantum counterpart of (4.1) is
presented in Appendix B. One can choose to bypass this Appendix by noting that,
aside from the term involving n;, (4.12) is a sensible choice for a photon rate
equation, including photon gain and loss terms as well as spontaneous emission
inte the optical mode. The steady-state form of (4.12) reduces to the following,
L _ yex

_ !
= = ( + — 18
T] 2 XI\n,Q}]) P] (4 )

This should be compared to Egn. (4.9). Eqn. (4.13) contains an additional term
which involves the spontaneous emission rate For large modal energies this
term is small so that, as mentioned before, the approximation involved in the
derivation of (4.9) gets better at higher modal energies. The correction term will
be defined as,

&

28 = F}' . (£.14)

As it turns out, g is just the field spectrum linewidth of a tuned laser oscillator
(in SL's there is a correction term to this linewidth due to the detuned nature of
the gain spectrum). For index guided SL's operated only modestly above thres-
hold &' ® 100nsec., whereas 7, & 1psec. so that (4.9) is normally quite accurate.
Even so, for considerations of the power fluctuation spectrum in a multimode
laser serious problems arise (singularities in the noise spectra) unless the

discrepancy between (4.9) and (4.13) is taken into account. For this reason only
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we will use (4.8), {(4.10) and (4.13) as the operating point equations in the
analysis to follow.

After separating the steady-state operating point equations from (4.1) and

(4.2). the remaining small signal equations are,

. Ty '

f1 = ~Reo + 2—“?511’11 +Ap (4.15)

. e

o = -zlg—ean, +Ag (4.16)
o

4, = _[R«no) . zﬂg—] -y B, (4.17)

where p; = P/V) is the photon density of mode | and the following definitions

apply,
Ay= — By gre 4.18
1! ‘ZT/P—:—{SIE sre ] (4.18)
Ai] = ZL\F [s;e ! - 5 e_mlt] (419)

Equations (4.15), (4.16), and (4.17) can be made more compact by assuming
that ¢, ¢g. and [ are approximately frequency independent quantities so that

an approximately frequency independent small signal gain can be defined,

T,
n= —];;;ﬁl—n = I'1Gn, (4.20)

where a differential gain is defined by,
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4G _ @ dxa _ @b
dn 4? dn 2

G =

Doing so we arrive at the following small signal equations,

. 1
/= <Rgp + 3n*t A
: a
= - + A
€1 37 Ay

7= —T;ﬂ - Y k2o
R i

where,
1 .
—= R(n,) +
™ (ny) ;G]Pl
ok = MGGip
e b
13

(4.21)

(4.22)

(4.23)

{4.24)

Here, wg is the relaxation oscillation frequency of the I** mode and 7g is the

damping time associated with it. The parameter a, defined in (4.27), has received

considerable attention recently Referred to as the linewidth enhancement fac-

tor or amplitude phase coupling factor, it results from the detuned nature of

the gain spectrum in SL's and plays a key role in determining the form of vari-

ous phase noise spectra.

3.5 Calculation of optical spectra

In this section we will solve the fluctuation equations {4.22), (4.23), and {4.24)

for the noise spectra associated with {om} and {g}, and then apply the formulae
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of Section 3.2 to determine cerfain important SL optical spectra. The structure
of these equations enables solution of the amplitude noise spectra independent
of the phase noise spectra (i.e., the inversion reacts to the field intensity |b|?
not the field stength b). For this reason we will consider power fluctuation spec-
tra in single mode and multimoede operation before considering the phase noise
spectra for these cases. The method of solution will be to transform and solve

for pmr. ¢¥mt. and 7, where, for example,

+T
Par(Q) = fT et (t)dt . (5.1)

The assaciated spectral density function is then given by,

W:nn(Q) = lim < Pt )prr(Q )>

T+ 2T (52)

All results we obtain will be couched in terms of the spectral density functions of
the noise forces. These functions can be found by either a heuristic approach
identical to that used by us in Refs. [7,8] or a quantum approach which is given

in Appendix C. The results of either calculation are summarized below.

F‘r[< Ant + T)Arm(t) > ] = ;T]dlm = 801m (5.3)
¢ =8

F'r[< Ai]\t + T)Aim(t)> ] - "é'P_ldlm = sl‘f'lm (5'4)

F,[< An(t + DAm()> ] =0 (5.5)

where F, signifies Fourier transform with respect to 7, §i, is the Kronecker delta,

and ) is the spontaneous emission rate into mode 1.
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Power Fluctuation Spectra

SINGLE MODE OPERATION. The criterion used to determine whether é SLis las-
ing in a single mode depends on one's perspective. In an optical communications
system the criterion will be set by factors external to the SL such as receiver
performance and properties of the transmission medium. In this analysis, how-
ever, we are concerned only with characterizing the physiés involved in lasing
action, in particular, the dynamic interaction of the active medium with the las-
ing modes. From (4.24) it is clear that this interaction will involve a single mode

if it is possible to make the approximation,
lewﬁlpl R 0RmPm (5.8)

where mode m is the dominant mode. This leaves a single stimulated rate term
in the inversion equation (4.24), but does not imply that the dominant mode m
is altering inversion dynamies (i.e., is coupled strongly to the inversion). If, for
example, the dominant mode m is so weak that the inversion still exhibits a sim-
ple relaxation with time constant 7g, then it is clear that even the stimulated
rate term associated with mode m can be neglected. We thus need to quantify
what is meant by strong and weak dynamic coupling of the optical modes with
the inversion in order to identify a dominant mode or set of modes as the case
may be. Such a condition has already been stated: weak dynamic coupling

between a mode m and the inversion implies,

Refmpm << ;l—n ; (5.7)

that is, the stimulated rate term associated with mode m can be neglected in
comparison to the inversion relaxation rate. By solving (4.22) and (4.24) this

condition can be reduced to,
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WEm TR

lem(@) ] = Rem + 10

<< 1 (5.8)

where the dimensionless complex parameter c, will be referred to as the
(dynamic) coupling strength parameter. When the low frequency value of
lem(Q)! is small in comparison to unity, a mode m can be neglected in a calcu-
lation of the inversion dynamics {i.e., can be omitted in (4.'24)). Otherwise, the

mode must be included in the analysis. By using (4.14) and (4.26) we can rewrite

cm(0) as,

' mmGmTrY,
em(0) = AT pn (5.9)

where ng, = €,/ Gy is the spontaneous emission factor. In Fig. 3.3 we have plot-
ted this function versus the photon density pp, of mode m along the bottom axis
and versus the modal output power per facet along the top axis {assuming a
total facet loss rate of 2X10''sec™! and a lasing wavelength of Ay = 0.85uM.). In
making this plot we have taken ", = 0.5, Gy, = 2.5X107% cm.34ec, R(n,) = 1GHz.,
Vm = 107'%em 83, and ng, = 2.5 [7.8] (these values will be assumed in all calcula-
tions to follow). It can be seen that c¢,{0) = 1 when the photon density of mode
m reaches 5X10'® ¢cm.™ which is an eguivalent output power of approximately
0uW per facet. In Fig. 3.4 the fleld spectrum for an actual device near thres-
hold and well above threshold is presented with the optical modes labeled by

their approximate coupling strengths.

Provided {|¢{0)| << 1} holds for all but one mode m, the dominant mode, we
can easily solve for W;""(?) by applying (5.6) to (4.24). This in turn gives the

relative power noise (RPN) spectrum through (1.4),
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F'igur_'e 3.3 Dynamic coupling strength parameter plotted versus photon
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Figure 3.4 Field spectra for a semiconductor laser near threshold and
well above threshold with the modes labeled by their approximate
dynamic coupling strength parameters.
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Wo(0) TR 20
——T——";T = 4W, Q) = — — 1 o (5.10)
[wﬁm+ T—‘“—n? +0* -T—+28m]
R R

This spectrum is plotted in Fig. 3.5 for several photon densities. At modest out-
put powers the spiking resonance in the Figure is quite accurately given by wg,.
This resonance behavior was first predicted by McCumber ‘9] and first observed
in SL's by Paoli and Ripper [25]. This relaxation oscillation corner frequency also
sets the useful direct modulation bandwidth for these devices [49], and for this
reason the portion of the RPN spectrum lying below wp, is of considerable
importance in optical communication systems employing directly modulated

SL's. The RPN strength in the low frequency region (0 < 1/7g) is given by,

28m
WM(Q R O) - Pn 4em

z TR
[wEmTR + 28m wﬁm‘rﬁ

I

This function is plotted versus photon density in Fig. 3.6. It exhibits an inverse
cubic dependence at moderate power followed by an inverse power dependence
al high powers. Relative power fluctuations are thus reduced with increasing
excitation of the lasing mode. This phenomenon, characteristic of all regenera-
tive oscillators, is a consequence of the saturation of the inverted medium. At
low frequencies where the RPN is flat (i.e., 0 < 7g!) the active medium tracks
power fluctuations of the lasing mode and damps them. At higher frequencies
the active medium no longer effectively tracks these fluctuations and the RPN
rises towards wgy, (the RPN @ Q = wy, is also plotted in Fig. 3.6 for comparison).
An interesting feature of (5.11) is its dependence on the corner frequency wymy.
For all other conditions the same SLl's having faster modulation responses also

have lower RPN's. This is an added advantage of fast SL's, which often goes
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Figure 3.5 Single mode relative power noise spectra.
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unnoticed.

MULTIMODE OPERATION: If there are several modes which have comparable
coupling strength parameters of order one or greater, then the gain medium is
dynamically interacting with a group of modes. Under these circumstances the
approximation (5.8) amounts to reducing a sum over all modes to a sum over

the prescribed set of dominant modes.

Lok ™ iwﬁm (5.12)

H 1

where there are N dominant modes.

Solving the set of N+1 equations given by (4.22) and (4.24) is easiest when a

new dynamic variable is defined as,

a iwﬁﬁp] : {(5.13)
The variable "a" is the quantity damped by gain saturation in the multimode
situation. That is, the gain reacts to fluctuations in "a" and stabilizes them. Later
in this Section it will be demonstrated that under a certain approximation
nearly always valid in SL's this variable is proportional to the total power
fluctuation resulting from fluctuations in all lasing modes. This is why it is often
said that gain saturation tends to stabilize fluctuations of total power in a mul-
timode laser when in fact it is more precise to say that fluctuations of the vari-
able "a" are stabilized. Transforming (4.22) and (4.24) according to (5.1) and
then applying definition {5.13), the system of N+1 equations reduces to a pair of
equations for ar and 7. With knowledge of 7r the fluctuations o} and their
associated spectral density functions are then easily found. For later reference

we give the spectral density functions of a and 7,
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u+M@2%mmw
! . . (5.14)

Wa(Q) =

- N
1+ +ZC](Q)
1

Nag ()2
W, (Q) = ] 3 (5.15)
1+LQTR+§:01(Q) :

1

If a single mode m is isolated, then its RPN will be given by 4W;""(Q). Using
the prescription for solution outlined above we find for this quantity the follow-

ing rather complicated expression,

2

Em ;17(1 + D) + 0?1 - ;1};-92 + ;%—Ds
R
W;nm(Q) = ” - i (5'16)
[Lﬁm(l+D4)+_m_Qz +QZ 1—+28m+w&mD5]
™R R
_ L)1
P = 1;;11 ¢)(0) (5.16a)
le(Q)]*
P2 = 1;m c(0)Rg (5.16b)
Ds= ¥ &lc(@)]® (5.16¢)
1# m
4 22
48 &
p—t 2 m .
De = 1;,,1'0‘(0)! ¢(0)en,(0) (5.164d)
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11
Ds = ]§m|q<n>12§‘gﬁ‘r (5.16¢)

This expfession should be compared to (5.10). In the case where
{e1 = m(0) < en(0), (5.16) reduces to the single mode expression (5.10). In gen-
eral, however, additional terms enter the RPN expression for a single mode m
which can enhance it by several orders of magnitude. This enhancement is the
so-called mode partition noise discussed by McCumber [9]. Gain saturation,
which in the single mode case worked to reduce power fluctuations of the lasing
mode, acts to reduce the total power fluctuations in the multimode case (a point
discussed in some detail below). A single lasing mode amidst the ensemble of las-
ing modes thus suffers an enhancement of its power fluctuations on account of
the partitioning of energy from the gain medium into all lasing medes. To illus-
trate how large the partition noise can be for a single mode we now use (5.18) to
consider a worst possible case in which the number of dominant modes N is very
large and all of the dominant modes couple equally well to the inversion (i.e., we
assume identical ¢'s and £'s). Under these circumstances the RPN for a single

mode m is approximately given by,

1 it
+ —
(D 4e” (5.17)
. TR 2E 1 ¢
CJEN + "F— Qz + QE ;"‘ + 2¢&
R R

where we have neglected a term of order ¢?(N — 1) in the numerator. This
eXpression reduceé to the single mode expression (5.10) when N=1. For N>> 1
the form of the denominator remains essentially the same except for an
enhancement of the cofner frequency by a factor of N; the numerator, however,

contains a new term which is quite large and has a lorentzian frequency
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dependence. (5.17) is plotted in'Fig. 3.7 for N = 10. To effectively illustrate the
partition noise contribution we have also plotted (5.17) without the numerator
term involving (N — 1)?. Next consider the low frequency RPN in the multimode

worst case versus the single mode case. From (5.17) we have,

1 1+ (N-1)>3*
48 (Nc + 1)?

W, ~0) = (5.18)

As N-oeo, W"(Q ~ 0) becomes independent of the dynamic coupling parameter
c. In this worst case situation, it is as though gain saturation quieting is com-

pletely unable to stabilize the mode. Using (5.18) we find the ratio,

> ( N> =Cig_1_ (5.19)

W (0~ 0) [N =y N

where the subscripts indicate the number of lasing modes. Partition noise thus
enhances the low frequency RPN by a factor cf over that for an equivalently
excited mode in the single mode case. Well-excited modes exhibit ¢'s of order
100 (see Figs. 3.3,3.4) so that partition noise degradation of the single mode RPN

can be quite severe.

An important observation made by McCumber is that gain saturation quieting
of power fluctuations in a homogeneousiy broadened laser (a SL has effectively a
homogenously broadened gain spectrum owing to rapid intraband thermaliza-
tion) works to quiet total power fluctuations. The partition noise contribution to
single mode RPN is a direct consequence of this principle. A straightforward but
tedious method for demonstrating this effect is to construct the total RPN for a
group or subgroup of lasing modes as prescribed by (2.4). This calculation
requires the off diagonal spectra W;nn(Q) in addition to the diagonal spectra

given by (5.18). McCumber has actually carried out such a calculation showing
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Figure 3.7 Solid curves are relative power noise spectra for a single mode
amidst nine other modes of equal strength. Dashed curves are the same
spectra with partition noise contributions omitted.
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that negative fluctuation correlations exist between the lasing modes. These
negative correlations appear as negative terms in the off diagonal spectra and
their effect is to offset partition contributions in the diagqnal spectra., Thé sum
total contribution from the diagonal and the off diagonal spectra yield a total
RPN which exhibits gain saturation damping. The negative cross correlation

terms have also been observed experimentally by Armstrong and Smith [17].

To calculate the total RPN in the present analysis we will elaborate on a point
made earlier in this section. This is, that the dynamic variable a is approxi-
mately proportional to the total power fluctuation. The approximation involved
here assumes that IY;, G) and G are nearly frequency independent over the range
of frequency space spanned by the lasing modes (part of this approximation,
assuming frequency independent I'y and G;, has already been invoked in writing
the equations (4.22), (4.23), and (4.24)). It must be remembered that whereas
this constitutes an excellent approximation for SL's operating at their gain
peak, this is not always the case so that the results we obtain must be applied
with some caution. In addition, the approximation is invoked only in the
dynamic equations, never in the steady-state operating point equations. There
the small variations in G, which do exist lead to large differences in the distribu-
tion of steady-state stimulated power among the lasing modes. With these com-

ments in mind we write,

N o Al(t
a = Yoo ~ of AIT (5.20)

where (2.3) and (4.26) have been used and we have defined,
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§I
it

N N '
Zl,‘ ;wé (5.21)

with subscripts on I', G, and G suppressed. It is now very easy to write the total

RPN. Combining (5.20) and (2.4) we find,

— = —W,(0) ' (5.22)

which upon substitution for Wo(Q) using (5.14) followed by expansion of the

resulting expression yields,

0f+ —{Y 40t ———
WAI(Q) 1 Z 0 2 + 482
T OR Zwﬁl 0 ]+Q[1+zcl\)48]
QZ+4£2J T}%l 102+4812
In the low frequency limit (5.23) reduces to,
X 2
4
Wa@ o) g e
I-? = iz R (5.24)
1+ ;Cl

This expression is very similar in form to the low frequency limit of (5.10) (Eqn.
(5.11)) for the RPN in single mode operation. The differences are first, the
replacement of g in (5.11) by an effective £ which is an average over all lasing
modes weighted by their coupling strength pafameters, and second, the appear-
ance of an eﬂectiye corner frequency @y in the present expression. To see that
the frequency dependence of (5.23) is also very similar to that of Eqn. (5.10) we
will simplify (5.23) by dividing the N lasing modes into Q 'strong” modes and N-Q
'weak" modes. We conjecture that (5.23) will exhibit a corner frequency wg which

lies in the band of frequencies Reatrong < {1 < R&weak Where ggrong is the largest g
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in the strong mode set and gwe.k is the smallest g in the weak mode set.

Confining attention to this band we can approximate {5.23) as,

02+ 1—2] Y 4nuh

WAI(Q ) TR strong

if 51*‘—[ - % |

(5.25)

+ ?[1 + Yo o)]2

strong weak

Thus within this particular band of frequencies the form of the total RPN is
identical to the RPN derived for the single mode case. In the multimode case the
strong modes determine the amplitude of the RPN as well as its approximate

corner frequency wy where,

= Y ok . (5.26)

strong

Weak modes, on the other hand, contribute to increased damping of the spiking
resonanc’e (This dynamic classification of modes we describe here is illustrated
in Fig. 3.8). For this reason the spiking resonance in Fig. 3.5, predicted by the
single mode expression (5.10), is found in practice to be less pronounced. The
séme is also true for our worst case multimode plot in Fig. 3.7, since there we
assumed that all modes were equally well excited (in practice there will always
be weak modes). For further comparison the exact expression (5.23) has been
plotted in Fig. 3.9 for the worst possible case conditions described earlier. It is

clear from the plot that gain saturation damping is operative.
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Figure 3.8 A classification of the modes in a SL according to their
dynamic interaction with the inversion as given by the coupling strength
parameter c.
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Figure 3.9 Total relative power noise spectra for multimode semiconduc-
tor laser consisting of ten equally excited modes. Photon density quoted

is per mode.
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Frequency Fluctuation Spectra and [inewidth

Using (4.23) and the defining relation (2.6) we find for the frequency fluctua-

tion specira,

2
Wao (Q) = -i—w,,(n) + &mOmn , (5.27)

where W,(Q) is given by (5.15). W5,(Q) is now expanded for single mode and

multimode operation.

2
o
Wao () = em|1 + = ”ﬁ"; 2] (5.28)
w§m+ = Qz] +0°% —1—+28m] J
TR
mn 2 q")‘%]()2+42
Wi, (0) = .6, + B 5.29
Aw A ) m~“mn ﬁ + Qz[l+§ C](O)4‘&‘]2 2 ( )
QR]QZ+4£2 5 | T Q2+ 42f

As a result of amplitude phase coupling (i.e., a nonzero a parameter) these spec-
tra bear a strong similarity to the RPN spectra. A plot of this spectrum at vari-

ous output powers appears in Fig. 3.10.

For practical considerations by far the most important aspect of these spec-
tra is their flat low frequency region. In accordance with the considerations of
Section | the low frequency value of the diagonal frequency fluctuation spec-

trum gives the field spectrum linewidth Awp, of mode m. From (2.12) we write,
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Figure 3.10 Frequency fluctuation spectra at various photon densities.
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Awm = Wag(Q = 0) . ‘ (5.30)

For single mode operation the substitution of (5.28) into this expression yields,

Awp = Em[l + az] : (5.31)

where we have assumed Rem/ Th << w&m The linewidth Em. Which is given by
(4.14), is thus the fleld spectrum linewidth in the perfectly tuned case (a = 0).
This linewidth has long been known as the modified Schawlow Townes linewidth.
The enhancement factor 1 + of was first theoretically predicted by Haug and
Haken [3], Lax [4], and Arzt et. al. [5]. More recently it has been invoked by
several groups to explain the linewidth versus power measurements made by
Fleming and Mooradian [1]. Data taken at Caltech showing this enhancement
are presented in Figs. 3.11 and 3.12. Experimental estimates of « place it in the
range -4 to -6 for bulk GaAs at room temperature [41,43]. These values are also
in close agreement with theoretical calculations of the parameter based on Eqn.
(4.27) of this chapter and Eqn. (4.9) of Chapter 2 (see Fig. 3.13) [2]. The net
effect of the o parameter is thus to degrade spectral purity {enhance linewidth)

by nearly 30X.

The o parameter is also responsible for FM generation under direct current
modulation of a SL. In fact, it controls the apportioning of modulation energy
into FM and AM components. We have conducted an experiment exploiting this
fact to measure the a of an undoped active layer in a BOG laser [50]. The

results of that measurement are summarized in Appendix D.

For the multimode case the substitution of (5.29) into (5.30) yields the follow-
ing expression for the linewidth of a single lasing mode among an ensemble of

lasing modes,
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Figure 3.11 Field spectrum data for a single mode Mitsubishi crank
transverse junction stripe (TJS) laser measured with a Tropel 240 confo-
cal scanning Fabry Perot etalon having an instrumental bandwidth of 7.5
MHz. The upper portion of the figure shows the Lorentzian field spectrum
resolved by the etalon. The lower portion of the figure gives the linewidth
versus power data measured for this device. Also shown is the linewidth
power relation predicted by the Schalow-Townes linewidth formula.
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Figure 3.12 Additional linewidth power data taken with Hitachi buried
optical guide (BOG HLP 3400) and channeled substrate planar (CSP HLP
1400) lasers.
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Figure 3.13 The linewidth enhancement factor spectrum at two excita-
tion levels. The shaded area is a region within one laser free spectral
range (typically ® 120GHz.) of gain peak. This spectrum was calculated
for bulk GaAs assuming parabolic bands and includes only the interband
contribution to o The free carrier contribution is approximately unity.
giving a total magnitude for a of about 4 at the gain peak. The inset
shows the gain spectrum at these excitation levels.
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Yef(0)em

AQm =gy, + az—[ll*'_ZCl(OT . \ (5.32)
1 .

This expfession contains the normal "tuned” Schawlow Townes contribution &,
and in addition a 'detuned"” contribution consisting of a sum over all lasing
modes of the Schawlow Townes linewidths for each mode weighted by the cou-
pling strength parameter. When there is one very strong mode, this expression
reduces to (5.31) and the standard inverse power dependence of linewidth
results. In general, however, this relationship predicts a rather complicated
linewidth power dependence. A specific example of one of the many possibilities
is to consider the linewidth of a weak mode, having coupling strength cy, in the
presence of a strong mode having a coupling strength eg >> cy. Under these

circumstances the linewidth of the weak mode is given approximately by,

Awy R gy + Peg R gy + Do . (5.33)

A measurement of Awy versus the power in the weak mode would thus show, in
addition to an inverse power component due to &y, a large component which is
approximately the linewidth of the dominant mode. There is mounting experi-
mental evidence which seems to confirm the existence of such a partition ncise
contribution to linewidth. Elsaber and Gobel have observed large, apparently
power independent, contributions te linewidth in multimode lasers and have

proposed partition noise as a possible explanation of their findings [47].

This intermodal phase coupling which results from the a parameter has
another interesting consequence which was first conjectured by Henry [6] and
which we now verify theoretically. We will show that, whereas the linewidths of
individual lasing modes shqw considerable enhancement on account of detuning,

their photomixed beatnote linewidth shows little or no such enhancement. A
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strong phase noise correlation between modes causes this effect (see (5.29) for
m # n). From (2.15) and (5.27) the beatnote linewidth generated by photomixing

modes m and n is given by,

-
Aomn = Awnp + Aoy, — %—W,,(Q N Q) =gy, + e, (5.34)

which is also the result one would obtain in a ‘tuned"” laser, thus confirming
theoretically Henry's conjecture. If we use values typical for a this result
predicts that the spectral purity of beatnotes generated by photomixing SL las-
ing modes should be at least an order of magnitude better than the modes
themselves, independent of the relative strengths of the modes. Recently, in

work not yet published, we have observed this effect [50].

Fleld Spectrum Finestructure

The preceding calculation of linewidth was based on Eqn. (2.12) which
predicts a Lorentzian lineshape function for each lasing mode. As discussed in
Section 1, however, the derivation of that result remains valid only within the
optical frequency band |0 —wy| < 1/7g where the assumptions of: (1), a flat
Wi (Q) spectrum, and (2) gain saturation damping of amplitude fluctuations
are justified. We will now discuss the shape of the field spectrum for a single las-
ing mode outside this band of frequencies. At these frequencies relaxation reso-
nance effects become important so that conditions (1) and (2) are no longer
satisfied, and Eqn. (2.17) must be utilized for the calculation. As can be seen
from inspection of (2.17) the shape of this portion of the field spectrum is deter-
mined by contributions from two spectra already calculated, the RPN spectrum
and the frequency fluctuation spectrum, and in addition the fluctuation cou-

pling spectrum which is now calculated using the dynamic equations and (2.7):
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W;f“(Q) is plotted in Fig. 3.14 and exhibits the asymmetry with repect to its
argument which was discussed in Section 1. In Fig. 3.15 we have plotted the field
spectrum using (5.10), (5.2B), and (5.35) in (2.17) (the sidebands are normalized
by the value of the field spectrum at line center). The effect of the relaxation
resonance is thus seen to cause the appearance of sidebands accompanying the
central lasing peak. These sidebands are the result of spontaneous emi;sion
noise driving the photon-carrier resonance and subsequently causing phase and
amplitude "'modulation” of the lasing frequency. The asymmetry of the sidebands
is due solely to the fluctuation coupling spectrum. As can be seen the finestruc-
ture peaks are normally quite small in amplitude. Aging or degradation, how-
ever, can have a destabilizing influence on the relaxation resonance and can
lead to larg'er relative amplitudes, as well as higher order finestructure com-
ponents. These higher-order components do not represent distortion but merely

higher order sidebands due to increased phase modulation.

In Fig. 3.18 is finestructure which was observed in the field spectrum of an
Hitachi CSP laser at an output power of 1 mW. per facet. These data were taken
by first filtering out all weakly excited longitudinal modes with a wideband filter
(grating spectrometer) followed by spectrum analysis with a scanning Fabry-
Perot having a free spectral range of 7.5 GHz. and an instrumental bandwidth of

75 MHz. Fig. 3.17 gives the calculated finestructure for this device at the quoted
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Figure 3.14 Diagonal fluctuation coupling spectra.
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Figure 3.15 Field spectrum finestructure normalized by the field spec-
trum value at line center.
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Figure 3.16 Two traces of field spectrum finestructure observed in an
Hitachi CSP laser. The vertical scale gives the amplitudes relative to the

lasing line center. Note the sideband asymmetry which results from
amplitude phase coupling.

810 RE T T T
\
'
1
i
t
1
<3
- 6107~ :
= |
2 \
w |
E \
£ o \ B
wl 407 \ —
> \
[ i
< \
| 1
x \
-3 ‘
2407 \
i
)
.
-7
—===T 1 i

-3 -2 -l 0
RELATIVE FREQUENCY (Ghz)

Figure 3.17 Solid curve gives the calculated field spectrum finestructure
using parameters characteristic of a CSP laser {see Ref. 24). Dashed curve
is the solid curve convolved with a 75 MHz instrumental bandwidth

Lorentzian; the comparison with the observed finestructure in Fig. 3.16 is
good.
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power level. The dashed curve in that figure was obtained by convolving the cal-
culated curve with an instrumental bandwidth Lorentzian. The agreement is
good, including the asymmetry. The drive current dependence of the sideband
spacing was also measured and is presented in Fig. 3.18. The variation obeys the
square relation indicative of the relaxation resonance frequency. (Note that the

threshold for this device was 62 mA.)

3.6 Conclusion

In this chapter we have derived a variety of fluctuation spectra for single and
multimode semniconductor lasers, emphasizing the effects of gain spectrum
detuning on phase noise spectra. Detuning has long been known to cause
intramodal amplitude-phase coupling. We have shown that under single mode
operation this coupling leads to a striking similarity between amplitude and
phase noise spectra: the frequency fluctuation spectrum, which is flat in the
tuned case, exhibits a resonance similar to the well-known spiking resonance in
the relative power noise spectrum. A further consequence of the coupling is that
low frequency phase noise {and thus linewidth) are enhanced. For multimode
operation, detuning produces additional effects. When combined with the inter-
modal amplitude coupling present in multimode operation, it results effectively
in intermodal amplitude-phase and intermodal phase c?mphng. Thus all fluctua-
tions in a multimode semiconductor laser are coupled (see Fig. 3.19). It is well
established that intermodal amplitude coupling is responsible for phenomena
associated with partition noise. In this paper we have seen that intermodal
phase coupling leéds to equally interesting effects. To accommodate the new
fluctuation coupling possibilities we have introduced two new spectral density
functions: the off diagorial frequency fluctuation spectrum and the fluctuation

coupling spectrum.
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Figure 3.18 Measured frequency separation from line center of field spec-
trum finestructure as a function of injection current. The dependence is
that characteristic of the relaxation oscillation frequency.
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Figure 3.19 Summary of fluctuation coupling in a semiconductor laser.
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Certain single mode and muitirnode amplitude noise spectra were also calcu-
lated in the treatment. Discussion of all multimode effects was facilitated by use
of a new "dimensionless parameter which gauges the dynamic interaction
strength between the active medium and a particular mode. Referred to as the
dynamic coupling strength parameter, its value relative to unity leads to a
dynamic classification of the modes in a SL. We mention again that only sources
of noise related to spontaneous emission were considered in the treatment, this
being the dominant fluctuation mechanism in semiconductor lasers. In doing
this we have neglected noise mechanisms such as population fluctuations,
diffusion, and temperature fluctuations which will be discussed separately in

Chapter 5.

The two most important quantities in this analysis have been the spontane-
ous emission rate 8, into a given mode m and the complex susceptibility x. We

rewrite these quantities below from Appendix B and Chapter 2 for convenience,

_ 1-1)
O = (2n)3 fdxdkum(i)M(k)lzm(E)_Em)2+72 (6.1)
_ - lq(k)iz(f - f,)
x(n.w) = f2~r)3 Wf NPT (6.2)

Gain G and the resonant contribution to refractive index up are given by (see

Ref. [8]),

wxi{n,w)

G(n.w) = : (6.3)
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xg(n.w)

malne) = Mo (6.4)

The fact that ug(n.w;) is nonzero for w; at the gain peak is a staternent that sem-
iconductor lasers are detuned oscillators. A variety of other parameters defined
in terms of {6.1) and (6.2) determine the spectral and dynamic features of sem-

iconductoer lasers. We have surnmarized these parameters below,

Amplitude-phase coupling factor (linewidth enhancement factor)

XR _ o BR

a{n,w) = = =2w— (86.5)
X1 G
Tuned laser linewidth
—_ em
Em = 3P, (6.6)
SINGLE MODE OPERATION
Felazxation oscillation frequency and damping rate
L G
“fm = TGG Py = 0 (67)
Tm
1 _ o .
— =R +Gpp (6.8)
TR

Linewidth
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Aom = (1 + o)
MULTIMODE OPERATION

Dynamic boupl-i,ng strength parameter

_ wEmTr

m

Relazxation oscillation frequency and damping rate

2 2
wEN Y wfn
strong modes

o R‘+2c;'pm][1+ T enl0)
T m weak modes
Linewidth

chz(o)sm
1
[1 + Z]:C](O)]z

, = 2
Aop =g +

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

where prime indicates differentiation with respect to carrier density and where

we have suppressed frequency dependences inT', G, G, and «.

Appendix A

In this Appendix we show how the semiclassical equations (4.1) and (4.2) are

related to a set of fully quantum mechanical equations of motion. This estab-

lishes the framework necessary for the supplements given in the remaining

appendices. In Chapter 2 a set of local operator equations of motion for the SL

were derived. In that treatment the lasing field vector potential is modeled

using the standard delocalized annihilation and creation operators which result
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from quantizing a passive cavity optical mode as follows,

G0 = 21:[28591 ];—[bm + b (V) a(d) @

where,

SN (E) Um(E) = 6im (A2)
bi(1).b4(0)] = bim (A3)
bi(t) bm(t)] = 0 (A4)
bir(t).ba(t)] =0 . (A.5)

In (A1) £ is the nonresonant dielectric constant of the crystal and ¢ is the
resonant frequency of the I** passive mode. In (A.3), (A.4), and {A.5) [ ] signifies
commutation. The model for the electronic system employs a nonstandard
approach, however. It is based on the operators YHm % kt) and ¥(m.% k.t) which
are defined so as to create and destroy electronic wave-packet states
[Y(m.%k)> having well-defined position % and crystal momentum FK in the m*
energy band of the crystal. These operators obey the following set of anticom-

mutation relations,

{w(m,s’(,f{.t).w(n,s{,i’('.t) = b < Ym.2.K) | Y(m % &) > (A.8)
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'{wm.i,kt).w<n5c'.ic'.t>} =0 | (A7)

{#/*(m.f(,f{,t),w*(n.i',ﬁ',t)] =0 . (A.B)

By spatially averaging the local operator equations (Eqns. (4.7) and (4.8) in

Chapter 2) we arrive at the quantum counterparts of (4.1) and (4.2),

. T
Bt = | — o—bj* + L k(@b + S{F(t) + g (1) (A.9)
27 AT
. A _ .\ bi'b;
n=E-R(n)—> —vn, A.10
() - ¥ Zox(na) (A.10)

where we have neglected population fluctuation operators and defined an aver-

age carrier density operator as follows,

1

active

n= [dxdkydy, (A.11)

The complex susceptibility function which results from the quantum treatment

appears in the conclusion of this chapter.

By comparing (4.1) and (A.9) we get the following correspondence between

classical and quantum fluctuation sources,

sr(t) » Sf(t) + g (t) . (A1R)

The fluctuation operator S)*(t) is actually defined in terms of another fluctua-

tion operator A{% k.t) as follows,
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Sit(t) = VZ_:E - [axdkdt u(X)q(K)A (% k& t)el0 @ -t - 1) (A.13)

where 7 is the collisional dephasing rate between states in the conductioﬁ band
and states in the valence bang; q(ﬁ) is the matrix element for an electrooptic
interband transition involving wavepackets having 'center of motion" wave vec-
tor k; Q (k) is the frequency associated with an interband transition between

states having energy e.(k) and (k). i.e.,

sc(r{) - sv(lz)

0(k) = 5

(A.14)

In Chapter 2 the quantum fluctuation dissipation theorem [52,53] is used to
derive the second moments of the fluctuation operators A(%.k.t) and gi(t). These
results appear below and will be used in conjunction with (A.12) and (A.13) in

the remaining appendices.

<glt+nent)> =0 (A.15)
<g'(t+negm(t)> =0 (A.18)
< gt + Dan(t)> = %—< bi*by> D(7) = %’-D(T)alm (A.17)

m+1

< glt + Dgh(t)> = i—l< bib> D(7) = D(7) b (A.18)

< ARkt + DATE ELD> =0 (A.19)
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< Akt + DAFEE D> =0 (A.20)
<AHREL + DARE DD =291,(1 - (23 )D& -% k - k.7 (A.21)
< AFREL + DAYE K )D> =21 — @r)PL)D(X - %k —K.7) . (A.22)

In these expressions f. and f, are operators giving the thermodynamic occu-
pancy density in the phase spaces associated with the conduction and valence
bands. They are given by f. = fo/(2m)° and f, = f,/(2n)3 where f and f, are quasi-
Fermi distribution operators. D(x) is the delta function and ny is the number of

thermal photons in the optical mode 1.

Appendix B

In Section 3.4 it was necessary to use a photon rate equation (Eqn. (4.12)) in
order to obtain the operating point equations. The derivation of this equation is

now given. We dc this by applying the following identity,

_ d< bi'by>

P] at =< b]+b1> + < b]+bl> (Bl)

where < > signify quantum averaging. Applying this identity to the quantum
counterpart of (4.1), given in Appendix A as (A.9), gives the following,
Py Tyw

P] =—-——+ > xl(n,Bl)Pl + (B.Z)
n M
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<S> + < b OS> + < gUb(t)> + < b (t)a(t)>

‘The correlation terms in (B.l) can be expanded by using the integral of (A.9) to

replace Bj(t) and By*(t). For example,
< br(R)Si(t)> = < B (t)e™'Sy(t)> = (B.3)

ft < [H](n)Bl*(z) + g{’(z)e_ﬂ:’]z + Sl+(z)e_‘ulz]e‘ult81(t)> dz

where

B = oy =) - g+ (3 B.4)

In (B.3) S(t) is approximately a 'white" noise source in comparison to the slowly
varying term Hj(n)B;*(z) and thus by causality these terms are uncorrelated.
The second term involving g*(z) is also uncorrelated with Sy(t) since these noise
sources have their origins at independent baths. This reduces {B.3) to the follow-
ing,

<brHYSI(H)> = [ e ¢ SH(2)S)(t)> dz = f:e‘r’l’< Si(0)S)(7)> dz (B.5)

—0

with similar expressions holding for the other correlation terms in (B.2). In the
second equality in (B.5) we have used the stationary property to shift the time

coordinate,

Substituting for S(t) and 5i*(t) in (B.5) using (A.13) and then simplifying the

result using (A.22) gives,
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< SHOSDD = i [dkdikuf (%) | q(&) [2.(1 ~ £))e (a7 =717 (B.6)

(Rm )32 eben

From which we find,

fo(1 - 1)
(k) - @) +y

< b ()S)(t)> = —g——=—[dxdkuf(¥) | q(k)|? (B.7)

(2m )32 ehe

Combining all such results for the correlation terms in (B.2) we find,

< SHbi(t)> + < b (B)Si()> + < g't)b(t)> + <bf(Lg(t)> =  (B.B)

71 —1,) 2y 2y
Q& -@mP+y> 7 A

W—f dxdkuf(%)|q(k) |2

which, upon identification of & as the spontaneous emission rate into mode 1,

gives the desired result.

Appendix C

In this Appendix we calculate the spectral density functions associated with
the noise operators Ap(t) and Ay(t) which are defined by (4.18) and (4.19) and
correspondence relation (A.12). First, it is necessary to calculate time correla-
tion functions for the operators 5;'(t) and S){t) by using (A.13) and (A.19)-(A.R2).
Deing so yields,

< SHMSu0)> = b fatalup(®) a0 211 - @77 e

(m )32 el



-121 -

<SUNSHO)> = b g fatakaf(®) | q(R) 11 ~ 1) ™ “”“""kce)
<FSI+.(T)S|;(O)> =0 (C.3)
< S{TISm(0)> =0 . (C.4)

These results can now be used to form the desired spectral density functions.

The case of Ap(t) is worked through as an example. Applying the Wiener-

Khintchine Theorem yields,

‘5lm h 7“]2()() Q(k)S c(1 _fv) +1 ( c)

B emein @@ - s O

FeBat + DAm(V)] lawo =

6]m 211] +1
4P] it

where, to simplify matters, the low frequency form of this function is taken. This
approximation is allowed since this spectrum is effectively "white" in comparison

to all frequencies of interest.

This expression can be simplified by reexpressing 1/7 in terms of the suscep-

tibility through the use of (4.13),

1 anlXI no wr) = [axdk YUR(R) | q(R) |2 fe —fy

> @n)oEn () —o)f 7 7 (€6

where the expanded form of i(n,») (see Eqn. (8.2)) and the definition of I'y (see

[7.8]) have been used here. Using this result, (C.5) reduces to ,
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- 2 -_—
F [A,l(t+T)A,m(t)] [ + fardk 7“‘2’;)):'33&)' 5 (é o1 )f;)+ 2} (c.7)
_ 5l_m n)
) ﬁ[?+ o

where 6 is the spontaneous emission rate into mode |1 (see B.B) and where the
'"low frequency reminder” has been omitted. Using the same approach the other

possible spectral density functions are found to be,

F,[( Ag(t + DAR(L)> ] = ngn; :—]l + e,] (C.8)
F,[< Baft + DAm)>] =0 (C.9)

In using these results the term involving n; can be neglected since it is minute at

optical frequencies.

Appendix D

The o parameter defined by (4.27) was seen in this chapter to pervade the
noise specira of semiconductor lasers. a gives a measure of gain spectrum
detuning and is one of a few parameters which characterize SL noise and
dynamics. One way to deduce its value in a given device is to measure linewidth
versus power as was done in Figs. 3.11 and 3.12. From the slope of the resulting
curve one can deduce o provided o, and P (i.e., the spontaneous emission rate
and photon density for mode 1) are known. In practice these quantities must be

calculated from other quantities and are not known with good accuracy.

In this Appendix we outline a technique which can be used to directly meas-

ure a [50]. It was mentioned in Chapter 3 and will be discussed further in
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Chapter 4 that «, in addition to its role in determining phase noise spectra, also
controls the apportioning of FM and AM when a semiconductor laser is directly
modulated; by measuring this apporticning the value of a can be determined

directly.

To see how this can be done consider (4.22) and (4.23) with the spontaneous

fluctuation sources omitted,
. 1
p = —Rep + =7 (D.1)

o= - (D.2)

l\‘gp

where the mode index subscript has been suppressed. These equations can be
used to study direct modulation as well as fluctuations. If the SLis modulated at
a frequency 1, then the small signal gain will be given by n(t) = 7,(Q )sin(Qt)
where the frequency dependence of 7,{(} ) is unimportant for this analysis. Using

this in (D.1) and {D.R) gives,

7(Q) —Qcos(Qt) + 2esin(Q t -
o(t) = > COS(Q 2)+ 4£gs1n\ ) (D.3)
p(t) = Ln0) 2L (D.4)

If the modulation frequency Q0 is much larger than Re (recall ¢ is the conven-

tional Schawlow-Townes linewidth and is therefore typically a few MHz.) then,
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¢ =—ap | (D.5)
p(t) = pcos(Qt) | (D.6)
p(t) = peos(Qt) (D.7)

where E(t), the real electric field amplitude, is given by,

E(t) = Ao[l + pcos(Q) t)]cos{wt + peos(Qt)| . (D.B)

The experimental arrangement for measureing the intensity and phase
modulation index is shown in Fig. 3.20. The semiconductoer laser is biased above
threshold and a small sinusoidally varying current at frequency () is superim-

posed. The power modulation and spectral density of the radiation field are

given by,
0P = 2A%5cos(Qt) (D.9)
Minecenter _ 5202y 1 5272(5) (D.10)
AZ =do\p) T PUI\Y .
Wtsi e an [PR e
s = 535) + |p1a(@) - 19| (D11)

where Jn(@ is the n'" order Bessel function. Note that the calculated spectrum

is symmetric.

The intensity modulation index was measured with an avalanche photodiode
(S171P Telefunken) calibrated in the measurement setup from D.C. to 3.7 GHz.
to an accuracy of + 1dB. The optical spectrum was measured with a confocal
scanning Fabry-Perot (Tropel R40). Care was taken to avoid any feedback into

“the laser. In a typical measurement, as shown in Fig. 3.21, the modulation
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Figure 3.20 AM-FM modulation measurement experimental setup.
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Figure 3.21 Observed and calculated field spectra under different power

modulation indices m.
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current at frequency ) was adjﬁsted to produce a desired intensity modulation
depth, which was measured with the photodiode. The phase modulation index
can bé fognd by measuring the relative sideband amplitude and using (D.lb) and
(D.11). The factor a is then obtained from {D.5). Since only the absolute value of

{5 can be measured, the sign of a must be determined by other means.

A measurement of the o of a buried optical guide lasef (BOG Hitachi 3400,
A =816nm) at (! =2GHz., a bias level of 1.3 times threshold, and an intensity
modulation depth of 10% gave |a| = 4.5. Repetition of this measurement for
about 50 different conditions (? varied between 1 and 3.5 GHz., bias level varied
between 1.3 and 1.9 times threshold, and modulation depth varied between 10%
and 30%) gave |a| = 4.5 + 0.5. This value has an additional uncertainty of + 10%
due to inaccuracy of the photodiode calibration. This value is consistent with

the linewidth power data presented in Fig. 3.12 for this device.
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Chapter 4

Detuned loading in semiconductor lasers

4.1 Intmduct.ion

In Chapter 3 the fluctuation properties of semiconductor lasers were con-
sidered in detail. In this chapter we expand the scope to include modulation pro-
perties. Unlike Chapter 3, however, which characterized the state of the art dev-
ice, this chapter will address the problem of improving the state of the art. Only
a cursory overview of modulation properties will be provided, enough to estab-
lish what is important. More detailed discussions of these properties can be

found in Refs. [1,2].

Ideally, one would like to find techniques which improve modulation speed,
control the generation of FM (dynamic linewidth broadening or chirp), and
reduce power noise and phase noise. Such techniques exist, but often a penalty
is exacted on one property for improvements made in another. Reduction of
noise, for insiance. by increasing facet reflectivity (i.e., improving the passive
cavity Q) also degrades modulation performance [3.4]. In fact, to date only two
techniques are available which simultaneously improve modulation speed and
reduce noise: operation at high modal photon densities or operation at reduced

temperatures [4,5,6].

This chapter considers the control of these properties by a technique we call
"detuned loading" [7.8]. It involves the introduction of a frequency dependent
loss mechanism in the spectral proximity of the lasing frequency and relies

upon the strong carrier density depéndent refractive index component of the
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active medium (resulting from the detuned gain spectrum). Such a frequency
4 dependent loss mechanism can be implemented in several ways which include
coupled-cavity devices and lasers with distributed feedback. In this chapfer a
generic déscription of the detuned loading mechanism is presented and its
effect on modulation and noise performance is calculated from this general
point of view. This formalism is then applied to study a specific implementation
consisting of an active cavity loaded by a passive cavity. Measurement of modu-
lation speed, linewidth, and chirp in this system will be compared with calcula-

tions based on the formalism.

To begin we will first review results for the solitary single mode SL: modula-
tion repense, frequency modulation, power noise, and phase noise. We then con-
sider the control of these properties using the detuned loading mechanism.
Specifically, we show that by using this technique it is possible to simultaneously
increase device speed, suppress or altogether eliminate dynamic linewidth
broadening (chirp), and reduce spontaneous power noise and phase noise as
compared to the conventional device. Finally, data and calculations are

presented for the coupled-cavity implementation.

4.2 The conventional device

In this section modulation dynamics and noise in the conventional SL are
reviewed. This will establish the framework necessary for the discussion of the

detuned loading mechanism in the next section.

The essential features of modulation and noise in a conventional SL can be
described in terms of a field equation and a carrier density rate equation as fol-

lows (see Chapter 3 Section 2 and Appendix D or see Ref. [3,7]),



-133-

a= [—LAQ —-7]a + —g—g(n) - L%Z—L—u(n) a+A | (2.1)
n = —g(n)Plal® =R(n) +B . ‘ (2.2)

In Eqn. (2.1) a(t) is the slowly varying normalized complex field amplitude (i.e.,
the lasing field amplitude is given by E(t) = VPa(t)exp(tort) where wy, is the lasing
frequency and field normalization is defined so that P is the photon density of
the lasing mode); Aw = &y, — @y gives the pulling of the lasing frequency w from
the unpumped cavity resonance at wp; 7y is the cavity loss rate (note: (2y)~! is
the unpumped cavity photon lifetime); A is a Langevin noise source to account
for fluctuations resulting from spontaneous emission into the lasing mode; g4, is
the nonresonant component of refractive index; and I' is a filling factor to
account for incomplete spatial overlap of the lasing mode and the active
medium (assumed to be spatially uniform with gain g(n) and resonant refractive
index u(n) which depend on carrier density n). In the carrier density rate equa-
tion, Eqn. (2.R), R(n) is a combined spontaneous and nonradiative recombina-

tion rate term and B is a pumping term.

In practice one solves this set of equations by linearization based on the fol-

lowing representations.

n=n,+n; (2.3a)

g(n) = g(n,) + gn, (2.3b)
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w(n) = u(n) + wn, | (2.3¢)
R(n) = R(n,) + Rn, | (2.3d)
B=B, + B, | (2.3e)

where n, is the operating point carrier density and n,; is a small signal variation
of carrier demnsity; B, is the DC pumping and B, is the pumé variation. For the
purposes here it is only necessary to consider the effect of this linearization on
Eqn. (2.1) (we have defined the carrier density rate equation and associated
terms in it to merely clarify certain results to be quoted momentarily). Using
the representations given by (2.3b) and (2.3¢) in Eqn (2.1) we find (upon time

averaging) the following equations of state,
I'g(ng) =Ry (R4a)
WL
—-I'—uln,) = Aw 2.4b
% #4(1,) (.4b)

which in part establish the operating point (P, wy, n,) for a given device being
pumped at rate B, (the complete operating point equations would also include
the time averaged carrier rate equation). Upon separation of (2.4a) and (2.4b)

from Eqn. (2.1) the following dynamic equation results.

a= qg' - Lge-pf]nla +A . (2.5a)
2 Ho

For later discussion we define a normalized complex differential gain as,
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Eun.londed =1-w | (2'5b)
2 ,

a= ZLE (2.5¢)
Mo g

where a is the linewidth enhancement factor. Although (2.5a) is still nonlinear it
can be simplified by dividing through by a(t) and absorbing a(t) into A (see Refs.
[3.9]). The result is,

d Iy 2w .
E[lna] = g{g L;o—;u.]nl +A . (2.54)

Yet another way to express this result is to separate a(t) into time dependent

amplitude and phase terms, a(t) = (1 + p(t))exp(ip(t)), which reduces (2.5d) to

the following set of equations,

-1—’:—/) = g—g'nl + Ag (R.5e)

’ [A] '

¢ = —Fu—#nl + 4 (2.5f)
C

where A = Ag + tA; and in Chapter 3 it has been shown that,

< AR(t + T)AR(t)> = 85(7') (2.6&)
< Mt + DAL)> = 6(T) (2.6b)
< Ap{t + T)Al(t)> =0 : (2.8¢)

In these expressions ¢ is the Schawlow-Townes linewidth; < > denotes ensem-
ble averaging; and §(7) is the delta function. It should be noted for later refer-

ence that the various representations given by (2.5adef) result from
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linearization of only the optical gain and the resonant refractive index.

In calculations of small signal modulation or noise spectra the additional
approximation of neglecting terms higher order than first in p is made. Small
signal results can be summarized as follows. The strength of amplitude and fre-
quency variations (dynamic linewidth broadening) under di;ect medulation are
proportional to the differential quantities g’ and w, respectively (this is obvious
from (2.5ef)). The direct modulation bandwidth is set by the relaxation oscilla-

tion corner frequency wg where (see Fig. 4.1 and ref. [4]),

wk = 2gPy ; (2.7)

the spontaneous relative power noise (RPN) spectral density for frequencies well

below wp is taken from Chapter 3 Eqn. (5.8),

4g
RPN = 2.Ba
e (R.8a)
where,
L -gP+R(): (2.8b)
TR

and the field spectrum linewidth, which is a direct measure of phase noise in the

single mode device, is taken from Chapter 3 Eqn. (5.20),

Awp = g(1 + o) . (2.9)

In the next section we show how these same properties are affected by detuned
loading. It will be seen that the only change will be to replace g, i, and & by new
effective quantities which are controlled by varying the detuned loading mechan-

ism.



Relative Power Modulation (dB)

-137-

5 - T T
L=120um
T=300K
= 4r -
s
E
&
8 2r .
a
o
i -
o) 1 1
IOmA 20mA 30mA
Current
+10 L B B B B
O_
-0
40 dB/dec
-20F =
[ Lo bl 11 LM
IOOMH2z 500MHz IGHz 2GHz 5GHz I10GHz
Frequency

Figure 4.1 Modulation response at various operating points for a conven-
tional semiconductor laser. The device in this case was an Ortel buried
heterostructure laser operated at room temperature. The modulation
corner frequency increases as the square root of the output power.
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4.3 Detuned loading

As diséussed in the introduction, 'detuned loading" is simply the introduction
of a frequency dependent loss mechanism in the spectral proximity of the lasing
frequency. Such a mechanism so configured is in fact a detuned load on the
laser oscillator, hence the name detuned loading. That one might expect
improvements in device performance from the introduction of a detuned load
can be argued intuitively as follows. Consider, for instance, the field spectrum
linewidth. A heuristic, but quite useful, interpretation of linewidth is to picture it
as many perturbations dwy, to the lasing frequency. These perturbations would
result from spontaneous photons emitted into the mode. Averaged out over time
these disturbances would smear the lasing line producing the observed
lineshape function. Now introduce a detuned load as illustrated in Fig. 4.2 and
consider its effect on the perturbations te the lasing frequency. The sequence of
events is also illustrated in Fig. 4.2. Owing to the detuned load, perturbations to
frequency now cause a change &y in the cavity loss rate. This in turn changes the
operating point carrier density by én and thus also the refractive index by du.
This finally produces a correction to the lasing frequency. Thus, a feedback loop
results which can either damp the spontaneous frequency fluctuations (i.e.,
reduce linewidth) or enhance them, depending on which side of the load spec-
trum the lasing line resides. Similar arguments can be constructed for power

noise, modulation speed, and other properties.

To quantify this mechanism we again begin with the field equation (Eqn.
(2.‘1)). The presence of the load mechanism alters not only the cavity loss rate,
but also introduces its own form of frequency pulling on the lasing mode. There-
fore, the load can be absorbed into Aw and ¥ as a strong frequency dependence

previously absent. The linearization proceeds as before, except that now
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Figure 4.2 Detuned loading is the introduction of a frequency dependent
loss in the spectral proximity of the lasing frequency. One effect of this

loading, a change in the field spectrum linewidth, is described intuitively
in the lower half of the figure.
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linearization of ¥ and Aw also occurs.

y(ep + SwpL) ® y(w L) + Bibe, (3.1a)
Aw(wy + bwpL) & Aw(wL) + Baber (3.1b)
where ,
By(wp L
B, = % (3.1c)
dAw(wr L
Be = ""%(“%L‘—) (3.1d)

The additional argument L accounts for the possibility that the loading mechan-
ism may depend on other parameters. The expansions (3.1a,b) are valid only for
load functions ¥ and Aw which are approximately linear over the frequency
range Swp where,

Sor, = -gt— 2(t) = dn(1 + p(t))] = -Li— (3.2)

is the instantaneous complex frequency deviation function.

If we rederive Eqn. (2.5a), including the new linearizations for the load func-
tions y and Aw, then the form of the operating point equations remains
unchanged aside from a new dependence on the load argument L. Eqn. (2.5a),

however, is modified as follows,
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g -2
4= L o A

= ——.————-——i) T ——— .
21+52—LBI la.+ l+Bg—Lﬁl (33&)

with a complex differential gain under loading given by,

>
—~urnloaded

Zloeded = m (3.3b)

Eqn. (3.3a) is identical in form to Eqn. (2.5a). The complex differential gain and
the Langevin fluctuation force are modified, however. Expanding (3.3a) further

as was done for (2.5a) gives,

1—3';2 g—g’eﬂnl + fg (BBC)
o= -T-Zpeen, + (3.3d)
Mo
where,
1+ B2 + a8,
' 3.4a
g = BTy )+ B (8.42)
Lt B - i—l
'e‘E 3v4b
Hon = BT+ 807 + 67 (340)
(1 + B2)Ar — 81
= 3.4c
S R (3.4}
1 A A
= (1 + B2)A1 + BAg (3.4d)

(1 + B2)° + B¢

It is easily verified that fj and fr obey the same correlation relations as Ag and A;

(see Eqns. (2.8a,b.c)) except with £ replaced by .4 Where,
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et (3'4‘9)

= &
(L + )R+ BF

We thus reach an important conclusion: the effect of the detuned loéd on
modulation dynamics and noise is solely to replace g, &, and & by new effective
quantities. It is important to realize that this conclusion holds under large sig-
nal modulation of the field, since we have not invoked the small signal approxi-
mation in (2.5a) or (3.3a) (we do, however, assume a linear complex gain depen-
dence on carrier density). This simple result has some important consequences

which are discussed below.

4.4 Discussion

To apply this formalism the operating point equations must be derived; then,
B: and Bz are calculated from the operating point equations using (3.1¢,d); and
finally, g'en. 'ep. and gep can be found and used in existing expressions for modu-
lation corner frequency, power noise spectra, linewidth, etc. In general, simul-
taneous modulation speed enhancement, chirp suppression, and reduction of
noise are possible. All of these improvements can be accomplished from an
increase in g'eﬂ and reduction of u'ep (see discussion in Section 4.2). From
(3.4a,b) it is apparent that such a complementary variation is possible with
detuned loading because of the term involving a (« is typically in the range -4 to
-8). A negative 8, thus tends to increase g'ey and decrease u'eg. A very important

case is where u.g = 0 which occurs for,
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Br=aofl +8) . (4.1)
This is the criterion for elimination of chirp by detuned loading.

Perhaps of less importance, but equally interesting, is the case of positive ;.
In this case g'ey decreases and p'en increases. For |8, large enough, g'es passes
through zero an_d becomes negative. In this case the lasing mode is unstable to
small changes in amplitude and we would expect pulsations to occur. These
results can be reformulated in terms of the phasor representation of the com-
plex differential gain Z as illustrated in Fig. 4.3. There we have drawn the
unloaded phasor assuming an « of -5. The projection of this phasor on the verti-
cal axis is proportional to the differential refractive index and thus indicates the
amount of phase noise or chirp under modulation; the horizontal projection is
proportional to the differential gain and thus determines modulation speed and
intensity noise {negative horizontal projections indicate the system is unstable
to variations in intensity). The effect of detuned loading is to both rescale and
rotate this phasor thus varying the magnitude of the effective differential gain
and refractive index. To reduce chirp, phase noise, and intensity noise while
enhancing modulation speed the phasor could be rotated as shown. The zero

chirp condition occurs when the phasor lies along the positive horizontal axis.

The varicus possibilities we have discussed here are summarized in Fig. 4.4. It
should be stressed that 8, and Bz (and hence g'eq, L'en and geq) are functions of
the lasing frequency wp which is normally not a parameter under direct control.
Therefore whether specific tuning regions illustrated in Fig. 4.4 are in practice
obtainable is a question which must be answered on a case by case basis

through consideration of the operating point equations.
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Figure 4.4 Summary of the effects of detuned loading.
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So far we have discussed only the consequences of control of g'eg and p'eg with
- detuned loading. g also is under control and affects the strength of the spon-
taneous power noise and phase noise through expressions (2.8a) and (2.92). To
conclude this section we give the loaded forms for the low frequency RPN spec-
trum and the field spectrum linewidth Awp normalized by their conventional

forms.

RPNleaded (1 + f,)% + Bf
RPN (1 +8; +aBy)? (42a)

Aw{oaded N 1
bar (1% 6: + ofi) (430)

A term involving a again makes possible improvements in device performance
and negative §,'s, as mentioned earlier, lead to reductions in noise as compared

to the conventional case.

4.5 An application of the formalism

One method for introducing a strongly frequency dependent loss into the SL
system to échieve detuned loading is to couple it to a passive resonator. In this
section we apply the formalism of Section 4.3 to consider this possibility and
then present measurements of modulation speed, linewidth, and frequency

modulation in an active-passive coupled-cavity device.

A schematic of the system we consider here is shown in Fig. 4.5. Henry and
Kazarinov [10] have shown that the eigenvalue equation for such a system is

given by,
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Figure 4.5 Schematic of the active-passive coupled-cavity system studied
as an implementation of the detuned loading mechanism.
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xe2¥ala ~Ba ten) _ l] {ye(z"kP]P" PP _ 4| = ot (5.1a)
with,
xe® = 1(RR]) (5.1b)
ye*®* = 1/ReRy) ’ (5.1¢)
T Ty
R L
e R (5.1d)

and where R,, Ry, T;, and T; describe the interface between the two cavities (this
could be a simple air-semiconductor interface or could be more complex such
as the air gap in a cleave coupled cavity device [11]). k and kp are propagation
constants in the active and passive cavities, and g is the optical gain in units of

[em.™].

When « = 0 (i.e, no coupling) Eqn. (5.1a) has the following solutions,

gc(nnmr%) -
5T, =1 (5.2a)

xexp[—go(n.wé)lp,] = Xexp

A
2Kals + ga = ?—'Z— + ga = 2mm (5.2b)

P

2kplp + ¢, = % + op = 2710 (5.2¢)

where ['y and ['p are the free spectral ranges of the active and the passive reso-
nators; m and n Are integers; g, is the optical gain in units of [sec.”']; {wl] are
the resonant frequencies of the uncoupled passive cavity. w4} are potential las-
ing frequencies with threshold gains given by (18a). In writing g, we have expli-

citly shown its dependence on excitation and frequency. Also, note that T, is
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weakly dependent on excitation (n) through the resonant contribution to refrac-

tive index.

When coupling is present (5.1a) again yields a multiplicity of potential lasing
freque'ncies with associated threshold gains. We assume one such frequency
has a threshold gain g lower than all others and is preferred to lase. It is con-
venient to define these solutions relative to the uncoupled sc:;lutions by defining

the following parameters,

1
Ay = 5{eg - &) (539
Ao = w—wp (5.3b)
AP = w—-of (5.3¢)

where we have suppressed the m and n dependences in Aw and AeF. Notice that
A7y is up to the additive constant —g, just the loss function ¥ and Aw is the fre-
quency pulling function which appear in (2.1). By rewriting (5.1a) in terms of

these quantities we get the simplified eigenvalue expression,

xel LI yelrP -1

= ke'? (5.4a)
which can be solved to yield,
Ay + 1Aw =T4ln|1 + ——EAEZ—P—-— (5.4b)
Lo
ye P -1

This equation can be used to find B8, and f; as given by (3.1cd). The noise and

dynamics then follow directly from (3.4abe).
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We now apply this equation‘ and our formalism to an actual device. A
schematic of this device is given in the inset of Fig. 4.6. The active resonator
was formed by an Ortel large optical cavity buried heterostructure GaAs/GaAlAs
injection laser (cavity length & 300 uM.) which lased in predominantly one mode
and had a threshold current of 25.6 mA. The passive cavity was formed by one
facet of the laser and a small gold- coated concave mirror; having an 800um.
radius of curvature. Piezoelectric micropositioners controlled the mirror's posi-

tion relative to the laser for tuning purposes.

In order to calculate the dynamics for this system it is necessary to know I'y,
Tp, k, . and y in (5.4b). We take 'y = 119GHz. and I'p = 1B8GHz. based on
knowledge of the cavity lengths and the refractive index of GaAs. Direct meas-
urement gives Ry = 0.58 and R; = 0.88 so that from (5.1c) y = 1.96. The other
quantities can be deduced by a number of methods which involve measurement
of the steady-state properties of the system. These methods are discussed in the
Appendix. The dynamic measurements presented here were taken when the sys-
tem was configured so that x=0.5 and ¢ = —0.677 and these values will be
assumed in the calculations to follow. We note that this configuration
corresponds to a condition of slight misalignment of the cavities. The reason for

choosing such a configuration is also discussed in the Appendix.

Calculations of g'eﬁ and  pes spectra for this system configuration are
presented in Fig. 4.7. These plots result from applying the prescription outlined
in Section 4.3 to Eqn. (5.4b). The complex differential gain is also plotted in Fig.
4.8, a= -3 was assumed in these calculations and those which follow. large
variations can be seen in these plot.s as a result of detuned loading. In practice,
however, the strength of the effect (i.e., steepness of the loss spectrum at the

lasing frequency) is limited by mode hopping. To see this consider Fig. 4.6.
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Figure 4.8 Loss spectrum normalized by the free spectral range of the
active resonator; coupling parameters are £ = 0.5 and ¢ = —-0.67n. The
emboldened sections are the low loss regions where lasing can be sus-
tained during tuning of the external cavity. Inset: coupled cavity device
used in the measurement of the detuned loading effect.
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Figure 4.7 Spectral variation of differential gain and differential refrac-
tive index resulting from detuned loading. The emboldened sections
correspond to the low loss tuning regions where lasing action occurs.
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which shows the loss spectrum fbr this device configuration. This function can
be seen to vary with a period given by the free spectral range of the passive cav-
ity and it Is this variation with frequency which gives rise to the detuned loéding
effect. Lasing action is preferred in the low loss regions of this spectrum {(these

emboldened tuning regions are determined in the Appendix).

When tuning the passive cavity piezoelectrically a lasing mode will sweep
through a particular emboldened region and will continue to lase until its
threshold gain exceeds that of another mode. At this point a mode hop will
occur. The tuning characteristics of the coupled-cavity system were such that
the passive cavity resonances could be shifted by 30 Ghz. (via piezoelectric con-
trol of the concave mirror) or nearly 15% of a passive free spectral range before
a longitudinal mode jump would occur in the system. (Over this tuning range
the oscillation was single mode to better than 20 dB and power in the lasing
mode varied by no meore than 20 %, peaking near the middle of the tuning
range.) The emboldened tuning ranges are also illustrated in Figs. 4.7 and 4.8,
showing clearly the limitations imposed by mode hopping on the detuned load-

ing effect in this system.

The measurement setup used here included a high speed silicon avalanche
photodetector for measurement of the modulation response, both high and low
resolution (7.5 Ghz. and 75 Ghz. instrumental bandwidth) scanning Fabry-Perot
etalons for measurement of linewidth and modulation, and a grating spectrum
analyzer equipped with a multichannel analyzer to monitor mode suppression
and modal power, Feedback effects in the system were controlled by insertion of

neutral density filters.

The measured modulation response for this device taken at extremes of the

tuning region for a single mode is presented in Fig. 4.9. The output powers (and
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Figure 4.9 Measured modulation response at extremes of the tuning
range. The observed variation of the corner frequency is caused entirely
by the detuned loading mechanism.
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hence the photon densities) at fhese points were the same (Output Power ~ 1
.mW.). The effective photon lifetimes are also equal in the two cases as'these are
endpointsv of the tuning range. Therefore, from Eqn. (2.7) the observed corner
frequency variation iromn 1.6 GHz. to 2.5 GHz. results solely irom variation of the
effective differential gain with tuning, that is from the detuned loading effect. In
this case the net variation in g'es was roughly fX. Qualitative measurements of
frequency modulation were also performed at these tuning extremes by using
the low resolution Fabry-Perot to measure suppression of the optical carrier
under direct modulation. These measurements showed that the FM component
of modulation was smaller {i.e., the optical carrier was larger) at the tuning

extreme where modulation bandwidth was enhanced.

Linewidth as a function of tuning was also measured. These data are
presented with additional modulation corner frequency data in Fig. 4.10. Again
the data were taken over a single tuning range at roughly 1 mW. output power. It
can be seen that linewidth varied from around 180 Mhz. at one extreme of the
tuning range to below 60 MHz. at the other extreme. Resolution in this measure-
ment was limited by microphonics coupling into the system through the concave

mirror mount.

It is important to note that these measured variations result from changing
the passive cavity resonances and not the lasing frequency directly. For this rea-
son the spectra of Fig. 4.7, being functions of the lasing frequency, are not
entirely helpful in making a quantitative comparison of theory and experiment.
In Fig. 4.11 a calculation of the differential gain and linewidth as functions of a
passive cavity resonance near the‘lasing frequency is given; i.e.,, these plots
correspond to the measured results of Fig. 4.10. If measurements are compared

with the predicted variations given by the emboldened tuning regions, the
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Figure 4.10 Linewidth and modulation corner frequency measured versus
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observed variations result primarily from the detuned loading mechan-
ism.
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the agreement is good. The predicted total variation of geq is roughly 2X and the
predicted total variation of linewidth is roughly 4X, both consistent with the
measuredl variations. It is also interesting to note that over the same tuning
range for which linewidth is decreasng, modulation response is increasing. RPN

was not measured in this system.

4.5 Conclusion

In this chapter we have described detuned loading as a generalized method
which can be used to improve the modulation dynamics and noise properties of
semiconductor lasers. We have also presented a generic formalism for the treat-
ment of detuned loading and have used it to show that the effect of detuned
loading on dynamics and noise can be reduced to consideration of detune
induced changes in the effective quantities g'er, i'eg and ge. General expressions
were derived which can be used to calculate these effective quantities with only
knowledge of the operating point equations for a particular implementation.
Possible implementations of this effect include coupled cavity devices and sem-

iconductor lasers employing distributed feedback or Bragg reflectors.

We have also discussed some of the potential benefits of detuned loading.
These included elimination of dynamic linewidth broadening (chirp), modulation
speed enhancement, and reduction of power noise and phase noise. To demon-
strate some of these effects we presented measurements of modulation
response, chirp, and linewidth in a coupled-cavity implementation of detuned
loading. These results were found to be in good agreement with calculations

based on the generalized formalism.

The effective quantity variations produced by detuned loading in this system

were only modest ones intended mainly to demonstrate the principle. It should
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be possible to design systems with much larger variations and we are currently

investigating this possibility.
Appendix’

In Sectién 4.5 the values of « and ¢ for the coupled-cavity system were
required for the calcultations presented there. In this Ap;ﬁendix we show how
these values were deduced from steady-state measurements on the coupled-
cavity system. In doing this it will also be seen why a slightly misaligned

configuration of the system was chosen for the measurement.

¢ and ¢ will be determined through measurement of coupling induced fre-
quency pulling. One could also perform measurements of mode suppression,
change in threshold current and change in quantum efficiency caused by cou-
pling, but we did not find this necessary. The complete steady-state characteri-
zation of this system is presented in greater detail in Ref. [12]. The discussion
here will center on two configurations of the coupled-cavity system, ane highly
aligned, one slightly misaligned. The parameter values and loss curves (calcu-
lated from {5.4b)) which will be deduced for these two cases are given in Fig.
4.12. The low loss regions where lasing is preferred are emboldened. It is clear
from these plots why the misaligned configuration of the system is desirable for
demonstration of the detuned leoading effect. In that case the emboldened
regions vary rnore rapidly with frequency and thus cause a more pronounced
detuned loading effect. To demonstrate this fact we have plotted g.q for these
two cases in Fig. 4.13. In the emboldened tuning regions the variation of guq is
much smaller in the well-aligned case. This was also born out in the measure-

ment.
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Figure 4.12 Loss spectra for the highly aligned and slightly misaligned
configurations of the coupled cavity system. The misaligned case is
preferable for the detuned loading measurement since the loss slope

varies more strongly in the emboldened tuning region. Parameter values

are « = 1.B and ¢ = = for the aligned case and x = 0.5 and ¢ = —0.687n for
the misaligned case.
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Figure 4.13 Normalized effective differential gain spectra in the aligned

-and misaligned cases. The observable detune induced variation of this
quantity is larger in the misaligned case (see emboldened tuning region).
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We will consider a measurement of coupling induced frequency pulling. This
measurement, by itself, uniquely determines x and ¢. 1t is performed by moni-
toring the lasing frequency with a scanning Fabry-Perot (having a free s/pectral
range ofl7.5 GHz. and_an instrumental bandwidth of 7.5 MHz.) while sweeping the
external cavity length, thereby tuning the passive cavity resonances. Data for
the highly aligned and slightly misaligned cases are presented in Figs. 4.14,15. As
will be seen this measurement gives a good indication of system alignment,

being very sensitive to the coupling phase ¢.

To solve for the frequency pulling curves the imaginary part of the eigenvalue

equation (5.4b) is separated,

_ P
w=-wA= I‘AUl ad F:,n ,/c,ga.y.] (A.1)
where,
Y [
U[ T ke.y.| = Imlln|1 + ——————-—-LAI?,; (A.2)
ye T -1
- b [ w
V[ FP“’“ /cqp.y,] = Rern 1+ ““%—_ , (A.3)
Ao
ye ey

Frequency pulling results from two effects: one is the direct effect of the load on
the round trip phase and is represented by the function U; the other is indirect
and results from a shift in wA as the active resonator carrier density (and thus
refractive index) changes with tuning induced changes in loss. It is straightfor-

ward to show that,
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Figure 4.14 Frequency pulling data for the highly aligned configration of
the coupled cavity system. The vertical axis gives the frequency shift of a
passive cavity resonance near the lasing frequency. The horizontal axis
gives the shift in the lasing frequency.
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wél = wx%luncoupled - aA?’ = c"rl}'tlum:nupled - aFAV . (A-4)

' Thus the pulling equatiocn becomes,

W= c"1"?1ll.mcmxpled =TaA(U —aV) . (A.5)

Frequency pulling is plotted in Figs. 4.16,17 for two sets of parameters. The
loss spectra are‘ also plotted to indicate the low loss tuning regions where lasing
is preferred (note: these spectra differ from that plotted in Fig. 4.6 because they
are plotted versus wf instead of w) Slightly "bowed" pulling curves like the curves
in Fig. 4.14 always result from taking ¢ =m. It can be shown that ¢ =7
corresponds to the case of lossless coupling (i.e., excellent alignment) between
the cavities. Therefore, the frequency pulling data in Fig. 4.14 are interpreted to
indicate a situation of excellent alignment between the cavities. When ¢ #
more complicated frequency pulling curves are possible. The "hooked" features
calculated in Fig. 4.17 resulted from taking ¢ = —-0.87m. These same features
could be produced experimentally (see Fig. 4.15) by slight lateral misalignment
of the cavities (which presumably introduces a coupling loss between the cavi-

ties).

Quantitative results in these cases were obtained by first identifying struc-
ture such as the "bowed"” or "hooked" features thereby, establishing a first guess
for ¢. Then a calculation of the pulling rate dwAdw! combined with measured
values of this quantity in the linear regions of Figs. 4.14,4.15 could be used to
determine a «. By iterating this procedure one arrives at a « and ¢ which yield a
calculated pulhng‘curve nearly identical to that measured. from the frequency

pulling data.
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Figure 4.16 Calculated frequency pulling curves using coupling parame-
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fixed). The loss function is also plotted so that the tuning region can be
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