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Abstract .

Most animals use vision as a primary sensor to interact with their environment.
Navigation or manipulation of objects are among the tasks that can be better achieved
while understanding the thre- dimensional structure of the scene.

In this thesis, we present a variety of computational techniques for estimating 3D
shape from 2D images, based on both passive and active technologies.

The first proposed method is purely passive. In this technique, a single camera is
moved in an unconstrained manner around the scene to model as it acquires a sequence
of images. The reconstruction process consists then of retrieving the trajectory of the
camera, as well as the 3D structure of the scene using only the information contained
in the images.

The second method is based on active lighting technology. In the philosophy of
standard 3D scanning methods, a projector is used to project light patterns in the
scene. The shape of the scene is then inferred from the way the patterns deform
on the objects. The main novelty of our scheme compared to traditional methods is
in the nature of the patterns, and the type of image processing associated to them.
Instead of using standard binary patterns made out of black and white stripes, our
scheme uses a sequence of grayscale patterns with a sinusoidal profile in brightness
intensity. This choice allows us to establish correspondence (between camera image,
and projector image) in a dense fashion, leading to depth computation at (almost)
every pixel in the image.

The last reconstruction method that we propose in this thesis is an alternative 3D
scanning scheme that does not require any other device besides a camera. The main
idea is to substitute the projector by a standard light source (such as a desk lamp),
and use a pencil (or any other object with a straight edge) to cast planar shadows in
the scene. The 3D geometry of the scene is then inferred from the way the shadow

naturally deforms on the objects in the scene. Since this technology is largely inspired
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from structured lighting techniques, we call it ‘weakly structured lighting.’
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Euclidean reconstruction is then achieved up to two scalar coefficients.
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Chapter 1 Introduction

1.1 Different approaches to 3D reconstruction

For more than two decades, the problem of reconstructing the three-dimensional
structure of the surrounding scene from a set of 2D images has been subject to a lot
of attention in the computational vision research community. Navigation or manipu-
lation of objects are among the tasks that can be better achieved while understanding
the three-dimensional structure of the scene.

This process of “understanding”* the three-dimensional structure of the world
from 2D visual observations (e.g., pictures) is one of the most valuable functions of
our visual system. It is believed that this task is achieved by integrating a number of
visual cues (perspective deformation, stereo, shading, shadows, occluding contours,
(de)focus, texture, motion parallax, highlights) that naturally exist in most image
observations of the world in conjunction with higher level cues (such as prior knowl-
edge about the scene). In many circumstances, even a single image of an object is
sufficient to a human subject for extracting a good mental representation of its three-
dimensional shape as well as the material it is made of. It has also been shown that
such a task may still be achieved in absence of prior knowledge' about the observed
object. See [1, 2, 3].

Figure 1.1 illustrates the remarkable ability of the human visual system to infer
3D shape from a number of “pictorial” cues.

In spite of the large research effort devoted for more than forty years in trying to
understand the fundamental neurobiological building blocks constituting our visual

system (from the retina to the visual cortex), very little is known to this day. From

“The term “understanding” has to be taken in the broad sense. It can be substituted by “ex-
tracting a representation of.”
fSometimes aside from symmetry or smoothness assumptions.



Figure 1.1: Our visual system uses many “pictorial” cues for inferring 3D shape.
Among those are shading (a,c), contours (d), and texture (d).

a biological point of view, vision is probably the sense that is the most complex, in
architectural sense as well as in functional sense [1, 2, 3].

From a computational (or engineering) point of view, the main goal of computer
vision researchers is to design artificial systems that would replicate the function of
the human visual system. In relation to the problem we are targeting, this ideal
system would be able to automatically extract the three-dimensional geometry and
surface properties of the world using only the information contained in a set of 2D
pictures of the world. Ideally, the complete 3D model of an object would be computed
(3D geometry + surface properties) as it is presented in front of a camera (possibly
with several poses).

The applications of such a 3D modeling device are numerous. Perhaps the most
important ones are animation and entertainment, industrial design, archiving, virtual
visits to museums, and commercial on-line catalogues (e-commerce).

Other techniques have been proposed to serve similar applications. Among those,
image-based approaches consist of generating novel views of a scene from an initial

set of acquired images without explicitly computing the scene geometry. Those tech-
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niques are quite successful in dealing with very complex scenes where geometry is
difficult to reconstruct* but often require a very large set of images densely acquired
throughout the entire viewing sphere. Consequently, the amount of data required to
be stored in memory is very often extremely large making these approaches difficult
to be used in internet applications®. In contrast, model-based approaches allow to
synthesize any novel view of the scene (by direct rendering) from a unique 3D model.
In comparison to image-based techniques, model-based techniques may be viewed as
ways to perform “smart” image stream compression. The information contained in
an entire set of images is summarized into a single compact 3D model that is then
rendered very efficiently using existing rendering platforms.

Then, the central goal is designing a system that would automatically acquire the
three-dimensional model of an object from a set of pictures.

Unfortunately, we are still very far from such an ideal system. To this day, the
only practical systems for 3D modeling are based on active lighting technology. Most
of these systems consist of a combination of passive imaging devices (one or more
camera(s)) and active devices (laser/LCD projectors) calibrated one with respect to
each other. The principle of these systems is quite intuitive: the projector emits
light patterns that are reflected by the scene and detected on the image acquired
by the camera. The three-dimensional structure of the scene is then computed by
geometrical triangulation (this is also known as optical triangulation). Aside from
being quite insensitive to variations in texture within the scenes, this technology has
the advantage of yielding very good accuracies (errors in reconstruction can be as
small as a part in one or two thousand). The main drawback of standard active
lighting systems is the cost: motorized transport of the object and active (laser,
LCD projector) lighting of the scene makes them very accurate, but unfortunately
expensive [4, 5,6, 7, 8 9].

An interesting challenge for vision scientists is to design systems that would use

only images acquired in natural light for computing 3D geometry. In contrast to

YFor example fur material.
$For internet applications, download time is a crucial factor.
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active techniques that use an external projecting device, this class of techniques is
also called passive. Among all the passive cues that contain information about 3D
shape (stereoscopic disparity, texture, motion parallax, (de)focus, shadows, shading
and specularities, occluding contours and other surface discontinuities), at the current
state of vision research, stereoscopic disparity is the single passive cue that reliably
gives reasonable accuracy. Unfortunately it has two major drawbacks: it requires two
cameras thus increasing complexity and cost, and it cannot be used on untextured
surfaces, which are common for industrially manufactured objects.

An extension of stereo techniques consists of substituting the pair of cameras with
a single moving camera. In that case, a single camera takes two snapshots of the world
from different locations in space at two different instants in time. The reconstruc-
tion procedure is then identical to traditional stereo scenarios: the structure of the
world is triangulated using the two camera images used as a stereo pair. The first
advantage of such an approach is in the cost: one camera is necessary instead of two.
The second advantage is in ergonomy: the camera can be moved freely by the user in
the scene, and no specific exterior calibration is required¥. This class of technique is
also known as Structure From Motion. There exists, however, two major limitations
of such an approach. First, as the camera is moved in a unconstrained manner, the
motion disparity between the two camera positions is not known, and therefore it
must be computed as well (that is a required step for enabling geometrical triangu-
lation). Second, since the two pictures are taken at different times, the world must
remain rigid between those two acquisition times. That is also known as the rigidity
assumption. Although there exist partial answers in the vision literature to the issue
regarding computing the motion disparity between the two camera positions from
the two images alone (see for example [10, 11]), this problem is still largely regarded
as an open research issue. The extent of the work that needs to be done is even
greater when considering a scenario where a longer stream of images (more than two)

is acquired as the camera explores the entire surface of the scene (in order to achieve

TWe are referring here to the measurement of the location and orientation of two cameras one
with respect to each other that is required in any stereo system.
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a complete 3D reconstruction). In that case, camera position needs to be computed
at every image prior to 3D structure reconstruction. Autonomous navigation is one
straightforward application of such systems.

In the context of this thesis, we mainly focus on 3D modeling applications, and
more specifically on the problem of estimating the 3D geometry (estimating the sur-
face properties is another important task in modeling).

With that specific goal in mind, we will present a variety of techniques for esti-

mating 3D shape, based on both passive and active technologies.

1.2 Outline of the thesis

Chapter 2 introduces the fundamental notation used in the thesis. The basic geomet-
rical elements that are used for reconstruction are presented (points, lines, planes)
together with their mathematical representations. In this chapter we also introduce a
new mathematical formalism that we call ‘B-dual-space geometry’ that enables us to
explore and compute geometrical properties of three-dimensional scenes with simple
and compact algebra. The main contribution of this work is a new parameterization
of planes in space that leads to a set of useful properties.

Chapter 3 presents a direct application of the dual-space formalism to the problem
of camera calibration. The essential results are closed-form solutions for calibration
in the case of several calibration models. In this chapter, we show how dual-space
geometry enables us to study the observability of the different camera models in a
very intuitive manner.

The four following chapters (4, 5, 6 and 7) describe four different techniques for
3D reconstruction. These schemes are in most parts independent from each other.
Therefore, a reader only interested in one particular approach for shape estimation
may read only the associated chapter describing it while skipping the other chapters.

Let us give a brief description of the content of each of those chapters.

Chapter 4 describes passive visual techniques for 3D shape estimation. The fun-

damental mathematical tools are presented, in the case of image sequences consisting



6
of 2, 3 or more than three camera views. As mentioned earlier, when the camera is
moved freely within the environment, its position must be computed at every image
to enable structure estimation. This “camera position computation” is particularly
challenging as the number of views in the sequence is large (and the camera trajectory
is long). In that chapter, we propose a technique for performing this computation
that is sufficiently reliable and consistent for enabling accurate shape estimation.

Chapter 5 introduces a novel active lighting technique for 3D scanning. In the
philosophy of standard scanning methods, a projector is used to project light patterns
in the scene. The three-dimensional shape of the scene is then inferred from the way
the patterns deform on the objects. The main difference of our scheme compared to
traditional methods is in the nature of the patterns, and the type of image processing
associated to them. Traditional techniques use binary patterns consisting of stripes,
or other sharp boundaries (e.g., a laser sheet) and depth is computed along those
boundaries through optical triangulation. Our approach uses a sequence of grayscale
patterns with a sinusoidal profile in brightness intensity. This choice of patterns
allows us to establish correspondence (between camera image, and projector image)
in a dense fashion in the image plane. This is done through a processing based on
temporal analysis. This new scheme leads to depth information at (almost) every
pixel in the image.

The following chapter 6 describes a new technique for capturing 3D surfaces that
is based on using planar shadows. As mentioned earlier, standard structured lighting
techniques use an additional computer-controlled active device (e.g., an LCD pro-
jector) to project light patterns in the sceme (see chapter 5). This device makes
most systems expensive and bulky. The main idea underlining the new method is
in substituting a simple desk lamp for the complex active device. Then, instead of
projecting stripe patterns (or grayscale patterns as described in chapter 5), the user
casts a planar shadow in the scene by holding a regular pencil (or anything else with
a straight edge) between the light source and the scene. The three-dimensional shape
of the scene is then computed from the way the shadow deforms in the scene. Since

this technology is largely inspired from structured light lighting techniques, we call it
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‘weakly structured lighting.” Once again, the processing is based on temporal analy-
sis. This enables scene depth computation at (almost) every pixel in the image. In
this chapter, we also demonstrate that this reconstruction scheme may be used in
outdoor scenes (for scanning large objects) by substituting the desk lamp with the
sun.

As described in chapter 6, our shadow scanning method requires the presence of a
background plane used as a reference surface. In the following chapter 7 we provide
a solution for 3D reconstruction (still with planar shadows) in the case where there
is no such plane in the scene. Once again, the dual-space formalism is used as a
fundamental tool for all mathematical derivations!'.

Each chapter contains an experimental section to address the accuracies of each
of those reconstruction schemes.

Finally, in chapter 8 we conclude, and discuss some directions for future develop-

ments.

IThis chapter addresses mostly theoretical aspects of Euclidean reconstructions from planar shad-
ows only. The reader interested in practical solutions for 3D scanning could concentrate on imple-
menting the shadow scanning method described in the previous chapter 6.



Chapter 2 B-Dual-Space geometry

This chapter introduces the fundamental notation used in the thesis. Section 2.1
defines the basic geometrical elements that are used for reconstruction: points, lines
and planes in space and point and lines on the image plane. This section also defines
perspective projection as the fundamental image projection operator (from 3D to 2D)
as well as rigid body motion transformation. All definitions are given in Euclidean
space as well as in projective geometry. The following section 2.2 defines a new math-
ematical formalism called B-dual-space geometry derived from projective geometry.
This formalism enables us to explore and compute geometrical properties of three-
dimensional scenes with simple and compact notation. This will be illustrated in the

following chapter when applying that formalism to the problem of camera calibration.

2.1 Standard notation

2.1.1 Euclidean space - Camera reference frame

Let (E) be the 3D Euclidean space. For a given position of a camera in space,
we define F = (0., X, Y., Z.) as the standard frame of reference (called “camera
reference frame”) where O, is the camera center of projection, and the three axes
(Oc, X¢), (O, Ye) and (O, Z.) are mutually orthogonal and right-handed ((O., X,)
and (O.,Y,) are chosen parallel to the image plane). See figure 2.1.

We may then refer to a point P in space by its corresponding Euclidean coordinate
vector X = [X Y Z]¥ in that reference frame F. The Euclidean space may also
be viewed as a three-dimensional projective space P3. In that representation, the
point P is alternatively represented by the homogeneous 4-vector X ~ [X YV Z 1]T.
The sign ~ denotes a vector equality up to a non-zero scalar. Therefore, any scaled

version of [X Y Z 1]7 represents the same point in space.
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Figure 2.1: In the reference frame attached to the camera F = (O., X, Y., Z.), a
point P in space has coordinates X = [X Y Z|T. Its perspective projection p on
the image plane has coordinates 7 = [X/Z Y/Z]T.

A plane II in space is defined as the set of points P of homogeneous coordinate

vector X that satisfy:
(7,X) =0 (2.1)

where T ~ [, m, m, m]" is the homogeneous 4-vector parameterizing the plane IT
({.) is the standard scalar product operator). Observe that if T is normalized such
that 7 + 72 + 72 = 1, then 7, = [r, m, =.]7 is the normal vector of the plane II
(in the camera reference frame F) and d, = —m; its orthogonal (algebraic) distance

to the camera center O,.

2.1.2 Image plane and perspective projection

Let (I) be the 2D image plane. The image reference frame is defined as (c, z., y.)
where c is the intersection point between (O, Z.) (optical azis) and the image plane,
and (c,z.) and (c,y.) are the two main image coordinate axes (parallel to (O,, X,)

and (O, Y.)). See figure 2.1. The point ¢ is also called optical center or principal
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point.
Let p be the projection on the image plane of a given point P of coordinates
X =[X Y Z7, and denote T = [z y|” its coordinate vector on the image
plane. Then, the two vectors X and 7 are related through the perspective projection

equation:
T = == (2.2)

This projection model is also referred to as a “pinhole” camera model.

In analogy to Euclidean space, it is sometimes useful to view the image plane as a
two-dimensional projective space P2. In that representation, a point p on the image
plane has homogeneous coordinate vector X ~ [z y 1]7. Similarly to P3, any scaled
version of [z y 1] describes the same point on the image plane.

One advantage of using projective geometry is that the projection operator defined

in equation 2.2 becomes a linear operator from P? to P
x~PX  with P=|ln, O ] (2.3)

where X and X are the homogeneous coordinates of P and p respectively, Iy is the
3 x 3 identity matrix and 03y, is the 3 x 1 zero-vector. Observe from equation 2.3
that X is equal (up to a scale) to the Euclidean coordinate vector X = [X Y Z] of
P:

X~ X (2.4)

Therefore X is also referred to as the optical ray direction associated to P.
A line X on the image plane is defined as the set of points p of homogeneous

coordinate vectors X that satisfy:

(X, %) =0 (2.5)
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where A = [\, A, A.]T is the homogeneous 3-vector defining the line A\. Observe that
if X is normalized such that A2 + A2 = 1, then 7y = [A, A,|" is the normal vector
of the line A (in the image reference frame) and d) = —\, its orthogonal (algebraic)
distance to the principal point c.
Claim 1: Let p; and py be two distinct points on the image plane with respective
homogeneous coordinate vectors X; and Xy. Then, it is straightforward to show that
the line A\ connecting p; and p, has homogeneous coordinate vector A ~ X; X Xo,
where x is the standard vector product operator in R?.
Claim 2: Let \; and )\, be two distinct lines on the image plane with respective
homogeneous coordinate vectors A1 and Xy, Then, the point of intersection p between
the two lines A\; and A, has homogeneous coordinate vector X ~~ A1 X Ao. If the two
lines are parallel then the last coordinate of X is zero. In that case p is a point at
infinity.

There exists useful relations between lines on the image plane and planes in space,

as illustrated by the two following examples.

Example 1: Consider a line A on the image plane of coordinate vector A= Az Ay AT
Then, the set of points P in space that project onto A is precisely the plane ITy spanned
by A and the camera center O, (see figure 2.2). Let 7, be the coordinate vector of
II,. Let us compute 7y as a function of A. According to equations 2.3 and 2.5, a

point P of homogeneous coordinate vector X will lie on IT if and only if:
(X, PX)=0 (2.6)

this relation enforces the projection of P to lie on A. This may be alternatively

written:

(P"A,X) =0. (2.7)
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Figure 2.2: Any point P on II, projects onto the line A on the image plane. We say
that the plane II, is spanned by A.

Therefore the plane coordinates 7, has the following expression:

Ax
_ A A
Ta~ PTN = =" (2.8)
0 A
L O N

Example 2: Consider two planes in space I1; and II, of respective coordinate vectors
T (Mg, Wy T )t and T x~ [my, m, T i)', Assume the two planes
intersect along line A in space, and call A the resulting image line after projection of
A onto the image plane. Let us compute the coordinate vector X of A as a function of
7, and Ty. Consider a point P on A and denote p its projection on the image plane.

Since P lies on II; and II,, its homogeneous coordinate vector X ~~ X v z 17
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must satisfy the following system:

oy X +7y Y +7m, Z4+m = 0 (L) 2.9)
Mgy X + 7y, Y +7,, Z+m, = 0 (Ls) ‘
This system yields:
(’/th Mgy — Ty 7T12) X+ (7rt2 Ty, — Ty 7Ty2) Y + (Wtz Tz — Ty sz) Z =0.
(2.10)

Since the homogeneous coordinate vector of pis X~ X = [X YV Z]T, equation 2.10

reduces to a standard image line equation:
(\x)=0 (2.11)

where

Ty Ty — Tty Mg
A Ty, Ty — Ty Ty, (2.12)

Ty Tgy — Tty Tz

that is the coordinate vector of A, projection of A = IT; N Il,.

2.1.3 Rigid body motion transformation

Consider a set of N points P, in space (i = 1,...,N), and let X; = [X; Y; Z]¥
be their respective coordinate vectors in the camera reference frame F. Suppose
the camera moves to a new location in space, and let 72 = (X! Y] Z]T be the
coordinate vectors of the same points P; in the new camera reference frame F' (see
figure 2.4). Then X; and X, are related to each other through a rigid body motion

transformation:

Vi=(1,....,N), X,=RX;+T (2.13)
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Figure 2.3: The two planes I1; and II, intersect along the line A in space. The line A
is the projection of A on the image plane.

y
Reference frame F'

3D rigid motion {R,T}

Figure 2.4: Rigid body motion transformation between camera frames F =
(O, X, Yo, Z,) and F' = (0, X!, Y!, Z!). The two coordinate vectors X; and X,
of P, in F and F' are related to each other through the rigid body motion equation
X, =RX;+T.
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where R € SO(3)* and T are respectively a 3 x 3 rotation matrix and a 3-vector that
uniquely define the rigid motion between the two camera positions. The matrix R is

defined by a rotation vector Q = [, €, Q,]T such that:
R =" (2.14)

where QA is the following skew-symmetric matrix:

0 -0, Q
QA= Q, 0 -9, (2.15)
-Q, Q9 0

Equation 2.14 may also be written in a compact form using the Rodrigues’ for-

mula [10]:

R = I3y3 cos(f) + [—Q/\} sin(6)

(2.16)

where 6 = |||, and Q0" is the following semi-positive definite matrix:

v
Q0 =90 9 Q0 (2.17)
0.0 2.0, O

z

The fundamental rigid body motion equation 2.13 may also be written in pro-
jective space P3. In P3, the point P, has homogeneous coordinate vectors X; ~
[(X; V; Z; 1T and X, ~ [X! Y Z! 1]7 in the first (F) and second (F’) reference
frames respectively. Then, equation 2.13 may be written:

X,~DX;, with D= (2.18)
O1><3 1

where 0,43 1s a 1 x 3 zero row vector. Observe that the inverse relation may also be

*Special Orthogonal 3 x 3 matrices.
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written as follows:

X, ~D X, with D™ = (2.19)
01><3 1
Let p; be the projection of P; onto the second camera image plane, and let X; be

the homogeneous coordinate vector. Then, following the equation 2.3, we have:

%, ~PX, (2.20)
which may be also written:
x, ~P'X; (2.21)
where: which may be also written:
P’:PD:[R T} (2.22)

The matrix P’ is the projection matrix associated to the second camera location.
Consider now a plane II of homogeneous coordinate vectors @ and 7 in both

camera reference frames F and F'. How do 7 and 7' relate to each other? Consider

a generic point P on II with homogeneous coordinate vectors X and X' in both

reference frames. According to equation 2.1, we have:
which successively implies:

7 D'X) =0 (2.24)

4

(D17 X)) =0. (2.25)

7
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Therefore:

R 03x1
-TT"R 1

=
12
3
~
3
H
=)

(2.26)

Similarly, the plane coordinate vector before motion T may be retrieved from 7
through the inverse expression:
}{T 03x1

7~ DT = 7 (2.27)
T 1

In order to put in practice these concepts, let us go through the following example:

Example 3: In the second reference frame F' (after camera motion), consider a line
A on the image plane, and the plane II that this line spans with the camera center
(similarly to example 1 - see figure 2.2). Let X and 7 be the homogeneous coordinate
vectors of X' and IT in F'. See figure 2.5. Let us compute 7, the coordinate vector of
IT in the initial camera reference frame F (before motion) as a function of X, R and
T.

According to equation 2.8, 7" and N are related through the following expression:

7T~ (2.28)

Then, 7 may be calculated from 7 using equation 2.27:

R” 0 X RTX -
7o D7 = 2 = Sl =P"X (2.29)
T 1 0 (T, \)
where P’ is the projection matrix associated to the second camera location (eq. 2.22).

Observe the similarity between equations 2.8 and 2.29.
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Figure 2.5: The plane Il is spanned by the line X’ observed on the image plane after
camera motion (in frame F').

2.2 B-dual-space geometry

2.2.1 Definition of B-dual-space

As presented in the previous section, a plane II in space is represented by an homoge-
neous 4-vector 7 ~ [m, m, 7, 7]’ in the camera reference frame F = (0., X,, Y., Z.)
(see equation 2.1). Alternatively, if IT does not contain the camera center O, (origin

of F) then it may be represented by a 3-vector @ = [w, w, w,]’, such that:
(@, X) =1 (2.30)

for any point P € II of coordinate vector X = [X Y Z]T in F. Notice that
W = T, /d, where Ti, is the unitary normal vector of the plane and d, # 0 its distance
to the origin. Let (Q) = IR®. Since every point @ € (Q) corresponds to a unique plane
IT in Euclidean space (E), we refer to (§2) as the ‘plane space’ or ‘B-dual-space’. For
brevity in notation, we will often refer to this space as the dual-space. There exists a

simple relationship between plane coordinates in projective geometry and dual-space
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geometry:

Ty
1
w=—— if 0 2.31
w p Ty if mp # ( )
7TZ

In that sense, dual-space geometry is not a new concept in computational geometry.
Originally, the dual of a given vector space (F) is defined as the set of linear forms on
(E) (linear functions of (E) into the reals R). See [12]. In the case where (E) is the
three dimensional Euclidean space, each linear form may be interpreted as a plane IT in
space that is typically parameterized by a homogeneous 4-vector 7 ~ |7, m, 7, 7).
A point P of homogeneous coordinates X = [X Y Z 1]7 lies on a generic plane
IT of coordinates 7 if and only if (7, X) = 0 (see [13]). Our contribution is mainly
the new w—parameterization. We will show that this representation exhibits useful
properties allowing us to naturally relate objects in Euclidean space (planes, lines and
points) to their perspective projections on the image plane (lines and points). One
clear limitation of that representation is that plane crossing the camera origin cannot
be parameterized using that formalism (for such planes 7, = 0). However, this will
be shown not to be a critical issue in all geometrical problems addressed in this thesis

(as most planes of interest do not contain the camera center).

2.2.2 Properties of B-dual-space

This section presents the fundamental properties attached to dual-space geometry.

The following proposition constitutes the major property associated to our choice
of parameterization:

Proposition 1: Consider two planes I1, and II, in space, with respective coor-
dinate vectors W, and w, (W, # ©,) in dual-space, and let A = II, NII, be the line
of intersection between them. Let A be the perspective projection of A on the image
plane, and X its homogeneous coordinate vector. Then X is parallel to @, — @, (see

figure 2.6). In other words, &, — @, is a valid coordinate vector of the line .
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Figure 2.6: Proposition 1 - Intersecting planes: The direction of the line connecting
two planes vectors @, and @, in plane space (£2) is precisely ), the coordinate vector
of the perspective projection A of the line of intersection A between the two planes
I1, and II, in Euclidean space (E).

Proof: Let P € A and let p be the projection of P on the image plane. Call
X =[X Y Z]" and X ~ LX the respective coordinates of P and p. We successively

have:

(Wy — Wp, X) = (since Z # 0)

Notice that this relation is significantly simpler than that derived using standard
projective geometry (equation 2.12).

In addition, observe that the coordinate vector @ of any plane IT containing the
line A lies on the line connecting @, and @, in dual-space (2). We denote that line by
A and call it the dual image of A. The following definition generalizes that concept
of dual image to other geometrical objects:

Definition: Let A be a sub-manifold of (E) (e.g., a point, line, plane, surface or
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Figure 2.7: Duality principle: The dual images of a plane II, a line A and a point P
are respectively a point, a line and a plane. Notice that the perspective projection
X of the line A is directly observable in dual-space as the direction vector of its dual
image A. Similarly, the normal vector of the plane P (dual image of P) is precisely
the homogeneous coordinate vector X of the projection of P on the image plane. If
P is a point at infinity (vanishing point), then its dual image Pisa plane containing
the origin O of the plane space reference frame.

curve). The dual image A of A is defined as the set of coordinates vectors @ in dual-
space () representing the tangent planes to A. Following that standard definition
(see [13, 14]), the dual images of points, lines and planes in (E) may be shown to
be respectively planes, lines and points in dual-space (€2), as illustrated in figure 2.7.
Further properties regarding non-linear sub-manifolds may be observed, such as for
quadric surfaces in [15] or for general apparent contours in space in [16].

The following five propositions cover the principal properties attached to the dual-
space formalism.

Proposition 2 - Parallel Planes - Horizon Line: Let II, and II, be two
parallel planes of coordinates W, and @w,. Then @, is parallel to @j,.

Proof: The planes have the same surface normals 71, = 7. Therefore, the propo-
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H Horizon line

Figure 2.8: Proposition 2 - Parallel planes - Horizon line: The projection of the
horizon line Ay is precisely the orientation of the planes I, and II,.

sition follows from definition of @.

The horizon line H represents the “intersection” of two planes at infinity. The
dual image of H is the line H connecting @, and @, and crossing the origin of the
() space. The direction of that line is not only the normal vector of the two planes
Tl, = T, but also the representative vector Ay of the projection Ay of H (horizon line)
on the image plane (according to proposition 1). Although H is not a well-defined
line in Euclidean space (being a line at infinity), under perspective projection, it may
give rise to a perfectly well defined line Ay on the image plane (for example a picture

of the ocean). Once that line is extracted, the orientation of the plane is known:
Wy ™ Wy =~ B\—H (232)

Figure 2.8 gives a geometrical illustration of that proposition.

Proposition 3 - Orthogonal Planes: If two planes I, and II, are two orthogo-
nal, then so are their coordinate vectors @, and @, in dual-space. Consequently, once
one of the plane @, is known, then @, is constrained to lie in the sub-space orthogonal
to Wy, a plane in dual-space.

Proposition 4 - Intersecting lines: Consider two lines A, and A; intersecting

at a point P, and call II the plane that contains them. In dual-space, the two dual
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Figure 2.9: Proposition 4 - Intersecting lines: The dual-images of two intersecting
lines A, and Ay (defining the plane II) are two lines A, and A, in (2) that intersect
at @ the coordinate vector of II.

lines Aa and Ab necessarily intersect at @ the coordinate vector of II (since @ is the
plane that contains both lines). Similarly, the dual image P of P is the plane in
dual-space that contains both dual lines Aa and Ab. Notice that P does not cross the
origin of (§2). See figure 2.9.

Proposition 5 - Parallel lines - Vanishing Point: Consider two parallel lines
A, and A, belonging to the plane IT of coordinates . Then @ is at the intersection of
the two dual lines A, and A;. In dual-space, the plane containing both dual lines A,
and A, is the dual image V of the vanishing point V, i.e.; the intersection point of A,
and A, in Euclidean space. If H is the horizon line associated with II, then V € H,
which translates in dual-space into H C V. Since H contains the origin, so does V.
Notice that once the perspective projection v of V' is observable on the image plane,
the plane V is entirely known (since its orientation is the coordinate vector of v). See
figure 2.10.

Proposition 6 - Orthogonal lines: Let A; and A; be two orthogonal lines
contained in the plane IT of coordinates @) and let W = A; N A,. Consider the set
of planes orthogonal to II. In the dual-space, that set is represented by a plane
containing the origin, and orthogonal to @ (see proposition 3). Call that plane V (it
can be shown to be the dual image of a vanishing point). In that set, consider the two

specific planes II; and II, that contain the lines A; and Ay (see figure 2.11). In the
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Figure 2.10: Proposition 5 - Parallel lines - Vanishing point

dual-space, the representative vectors @; and @, of those two planes are defined as
the respective intersections between V' and the two lines Ay and As,. Then, since the
two lines A; and Ay are orthogonal, the two vectors w, and @, are also orthogonal.
See figure 2.11-top. This implies that the images of the two vanishing points V; and
X72 associated to the lines A, and A, are orthogonal in the dual-space. See figure
2.11-bottom.

Two vanishing points are enough to recover the horizon line H associated with a
given plane II in space. Therefore, observing two sets of parallel lines belonging to
the same plane under perspective projection allows us to recover the horizon line, and
therefore the orientation of the plane in space (from proposition 2). This process is
illustrated in figure 2.12: The horizon line H corresponding to the ground floor II is

recovered from the two vanishing points Vi and V5.

2.2.3 Geometrical problems solved in B-dual-space

This section presents several useful geometrical problems solved using dual-space

geometry.

Example 4: Let IT be a plane in space of coordinate vector @. Let P be a point
on IT with coordinate vector X = [X Y Z]T. Let p be the projection of P onto

the image plane, and denote X ~ [z y 1] its homogeneous coordinate vector. The
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Figure 2.11: Proposition 6 - Orthogonal lines: Two lines Ay and A are orthogonal if
and only if their corresponding vanishing points’ images V; and Vs are orthogonal in

dual-space.

Figure 2.12: Recovery of the horizon line (plane orientation): Two sets of parallel lines
lying on a given plane II provide two vanishing points V; and V,. The line connecting
them is the horizon line H attached to the plane. In dual- space, H = V, N Vs.
Notice that if the two sets of lines are orthogonal then the two planes V; and V5 must
be orthogonal in the reciprocal space, or equivalently the coordinate vectors of the
projections of the vanishing points are mutually orthogonal (see figure 2.11).
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Reference frame [

Figure 2.13: The triangulation problem consists of finding P from its image projection
p and the plane II.

triangulation problem consists of finding the point P from its projection p and the
plane II, or calculating X from X and @. See figure 2.13. Since P lies on the optical
ray (O,,p), its coordinate vector satisfies X ~ X, or equivalently, X = Z7, with
Z = [z y 1]*. In addition, since P lies on the plane II, we have {w, 7} = 1. This

implies:

= X= (2.33)

(@, 7)

This is the fundamental triangulation equation between a ray and a plane in space.

Example 5: Consider two camera frames F and F' and let {R, T} be the rigid
motion parameters between F and F' (defined in figure 2.4). Let II be a plane in
space of coordinate vectors @ and @’ in F and F' respectively. How do @ and @
relate to each other?

Consider a generic point P on II of coordinate vectors X and X in F and F'
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respectively. Then, X =RX+T. Since P ¢ II, we may write:

<RTE',Y> =1— <w’,T> (2.36)
RT'w \ i
<1T—(§,—T_>’A> =1 it @, T)#1 (2.37)
Therefore:
RTw
S — <w¢;f 7 (2.38)

This expression is the equivalent of equation 2.27 in dual-space geometry. Notice that
the condition (@', T) # 1 is equivalent to enforcing the plane Il not to contain the
origin of the first camera reference frame F. That is a necessary condition in order
to have a well defined plane vector @. The inverse expression may also be derived in

a similar way:

Rw
U= 2.39
YTIY (@W,RTT) (2.39)
In that case, the condition <w, —RT T> # 1 constrains the plane IT not to contain the
origin of the second reference frame F’ (in order to have a well defined vector @').

In some cases, only one of the two plane vectors @ or @’ is well-defined. The

following example is one illustration of such a phenomenon.

Example 6: Consider the geometrical scenario of example 5 where the plane II is
now spanned by a line A’ on the image plane of the second camera reference frame
F' (after motion). This case is illustrated in figure 2.5. In that case, the coordinate
vector @' is not well defined (since by construction, the plane I contains the origin of
F'). However, the plane vector @ may very well be defined since IT does not necessarily

contain the origin of the first reference frame F. Indeed, according to equation 2.29,



Reference frame F Reference frame [

Figure 2.14: Triangulation between the optical ray (O, p) and the plane II spanned
by N.

the homogeneous coordinate vector 7 of IT in F is given by:

RTN
T < —/> (2.40)
T,

where X\ is the homogeneous coordinate vector of the image line X in F'. Then,
according to expression 2.31, the corresponding dual-space vector @ is given by:
RTX

w=— T X') (2.41)

which is perfectly well-defined as long as II does not contain O,, or equivalently if

(T, Ny 01,

Example 7: Figure 2.14 illustrates a mix of examples 4 and 6. In that case, the
problem consists of triangulating the optical ray (O,,p) with the plane II spanned
by the line \' in the other camera reference frame F'. Let X = [X Y Z|” be the

tThis condition is equivalent to enforcing the line A’ not to contain the epipole €' ~ T on the
image plane attached to camera frame F’. The point e’ is the projection of O, onto the image plane
attached to the second camera reference frame F' (see figure 4.1).
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coordinates of P in space and T = [z y 1]T the coordinates of its known projection
p on the image plane. Equation 2.41 provides then an expression for the coordinate

vector w of Il in frame F:

= (2.42)

where A is the homogeneous coordinate vector of the image line ' in F'. The
triangulation expression given by equation 2.40 returns then the final coordinate

vector of P:

X = e (2.43)

Observe that the plane IT is not allowed to cross the origin of the initial reference frame
F, otherwise, triangulation is impossible. Therefore the plane vector & is perfectly

well defined (i.e., (T, X)) # 0).
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Chapter 3 Camera Calibration in

B-dual-space geometry

In this chapter, we propose to apply the B-dual-space formalism to the problem of
camera calibration. In section 3.1, the problem of camera calibration is first defined,
followed in section 3.2 by the complete derivation of closed-form solutions for in-
trinsic and extrinsic camera parameters using dual-space geometry as fundamental

mathematical tool. Section 3.3 closes the chapter with some conclusions.

3.1 Definition of camera calibration

3.1.1 Pixel coordinates - intrinsic camera parameters

The position of a point p in a real image is originally expressed in pixel units. One can
only say that a point p is at the intersection of column p, = 150 and row p, = 50 on a
given digitized image. So far, we have been denoting 7 = [z y 1]7 the homogeneous
coordinate vector of a generic point p on the image plane. This vector (also called
normalized coordinate vector) is directly related to the 3D coordinates X = [X Y Z]7
of the corresponding point P is space through the perspective projection operator (eq.
2.2). Since in practice we only have access to pixel coordinates p = [p, p, 1]*, we
need to establish a correspondence between p and T (from pixel coordinates to optical
ray in space).

Since the origin of the image reference frame is at the optical center ¢ (or principal
point), it is necessary to know the location of that point in the image: ¢ = [c, ¢,]"
(in pixels). Let f, be the focal distance (in meters) of the camera optics (distance
of the lens focal point to the imaging sensor), and denote by d, and d, the z and

y dimensions of the pixels in the imaging sensor (in meters). Let f, = f,/d, and
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fy = fo/dy, (in pixels). Notice that for most imaging sensors currently manufactured,
pixels may be assumed perfectly square, implying d, = d, or equivalently f, = f,. In
the general case f, and f, may be different.
Then, the pixel coordinates = [p, p, 1]7 of a point on the image may be
computed from its normalized homogeneous coordinates T = [z y 1]% through the
following expression:

e = [zT+cy
Pe = J (3.1)

Py = fy Yty
That model assumes that the two axes of the imaging sensor are orthogonal. In the
case where they are not orthogonal, the pixel mapping function may be generalized
to:

r = JzT —« + ¢y
p / fyy (3.2)

Py = fy y+ Cy
where « is a scalar coefficient that controls the amount of skew between the two main
sensor axes (if & = 0, there is no skew). For now, let us consider the simple model
without skew (equation 3.1). If p is the image projection of the point P in space (of
coordinates X = [X Y Z]7), the global projection map may be written in pixel

units:

Pz = fx(X/Z)+Cx
py = [ Y/Z)+¢,

(3.3)

This equation returns the coordinates of a point projected onto the image (in
pixels) in the case of an ideal pinhole camera. Real cameras do not have pinholes,
but lenses. Unfortunately a lens will introduce some amount of distortion (also called
aberration) in the image. That makes the projected point to appear at a slightly

different position on the image. The following expression is a simple first-order model
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that captures the distortions introduced by the lens:

. .
X/Z x . .
o= = pinhole projection
Y/Z Yy
E
= || = z(1+ k|al|?) radial distortion (3.4)
by
_ Dz fmba: + C; . .
P = = pixel coordinates
L | Py fyby + ¢y

where k. is called the radial distortion factor. This model is also called first-order
symmetric radial distortion model [17, 18, 19] (“symmetric” because the amount of
distortion is directly related to the distance of the point to the optical center c).
Observe that the systems (3.4) and (3.3) are equivalent when k. = 0 (no distortion).

Therefore, if the position of the point P is known in camera reference frame,
one may calculate its projection onto the image plane given the intrinsic camera
parameters fz, fy, ¢z, ¢y and k.. That is known as the direct projection operation and
may be denoted p = II(X). However, most 3D vision applications require to solve
the “inverse problem” that is mapping pixel coordinates p to 3D world coordinates
(X Y Z]'. In particular, one necessary step is to compute normalized image
coordinates 7 = [z y 1] (3D ray direction) from pixel coordinates p (refer to
equation 3.4). The only non-trivial aspect of that inverse map computation is in
computing the vector @ from b. This is the distortion compensation step. It may
be shown that for relatively small distortions, this inverse map may be very well

approximated by the following equation:

a~ 5 (3.5)

b
L+ ke || e

Experimentally, this expression is sufficiently accurate.



Figure 3.1: Two examples of camera calibration image: (a) with a planar calibration
rig (checker board pattern) or (b) a 3D calibration rig (a corner).

3.1.2 Camera calibration

The camera calibration procedure consists of identifying the intrinsic camera param-
eters fz, fy, ¢z, ¢y and k. (and possibly «). A standard method is to acquire an image
a known 3D object (a checker board pattern, a box with known geometry...) and
look for the set of parameters that best match the computed projection of the struc-
ture with the observed projection on the image. The reference object is also called
calibration rig. Since the camera parameters are inferred from image measurements,
this approach is also called visual calibration. This technique was originally presented
by Tsai in [18, 19] and Brown in [17]. An algorithm for estimation was proposed by
Abdel-Aziz and Karara in [20] (for an overview on camera calibration, the reader may
also refer to the book Klette, Schluns and Koschan [9]).

Figure 3.1 shows two examples of calibration images when using a planar rig
(checker board pattern) and a 3D rig (two orthogonal checker board patterns).

Note that although the geometry of the calibration rig is known (i.e., the mutual
position of the grid corners in space), its absolute location with respect to the camera
is unknown. In other words, the pose of the calibration pattern is unknown. Therefore,
before applying the set of equations (3.4) to compute the image projection of every
corner in the structure, one needs to find their 3D coordinates in the camera reference
frame. We first choose a reference frame attached to the rig (called the object frame)
in which we express the known coordinates YZ of all the corners P, (i = 1...N).

This set of vectors is known since the intrinsic rig structure is known. Then, the
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Calibration rig
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3D Rigid transformation
Xc =RX; + T,
X
VY Camera reference frame

C

Figure 3.2: Camera calibration system. This figure illustrates the case where a planar
rig is used for calibration. In general, any 3D structure may be used such as a box
Or a corner.

coordinate vector ~X—:ﬁ of P; in the camera frame is related to }’—Z through a rigid

motion transformation:
Vi=1,...,N, X.=RX.+T. (3.6)

where R, and T, define the pose of the calibration rig with respect to the camera
(similarly to equation 2.13). See figure 3.2.

Notice that by adding the calibration object in the scene, more unknowns have
been added to the problem: R, and T,. Those parameters are called eztrinsic camera
parameters since they are dependent upon the pose of the calibration pattern with

respect to the camera (unlike the intrinsic parameters that remain constant as the
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rig is moved in front of the camera).
Let Q. be the rotation vector associated to the rotation matrix R, (see equation

2.13). Then, the complete set of unknowns to solve for is:
e Focal length: f,, f, (2 DOF),
e Principal point coordinates: ¢, ¢, (2 DOF),
e Radial distortion factor: k. (1 DOF),
e Calibration rig pose: €, 7. (6 DOF).

Therefore, the global calibration problem consists of solving for a total of 11 scalar
parameters (adding the skew coefficient o would bring the number of unknowns to
12).

Let p; (i = 1,..., N) be the observed image projections of the rig points P, and let
P = [, p.]" be their respective pixel coordinates (see figure 3.2). Experimentally,
the points p; are detected using the standard Harris corner finders [21].

The estimation process consists then of finding the set of calibration unknowns
(extrinsic and intrinsic) that minimizes the reprojection error. Therefore, the solution

to that problem may be written as follows:

2

5, — (R X. +T,)

(3.7)

N
{fI) fy> Ce, ny kc, ﬁc, TC} = Argmin Z (
i=1

where R, = %/, I1(.) is the image projection operator defined in equation 3.4 (func-
tion of the intrinsic parameters f,, f,, ¢;, ¢, and k.) and ||.|| is the standard distance
norm is pixel units. This non-linear optimization problem may be solved using stan-
dard gradient descent techniques. However, it is required to have a good initial guess
before starting the iterative refinement. The purpose of the next section 3.2 is to
present a method to derive closed form expressions for calibration parameters that
may be used for initialization.

Apart from numerical implementation details, it is also important to study the

observability of the model. In other words, under which conditions (type of the
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calibration rig and its position in space) can the full camera model (eq. 3.4) be
estimated from a single image projection. For example, it is worth noticing that if
the calibration rig is planar (as shown on figure 3.1-a) the optical center ¢ cannot be
estimated (the two coordinates ¢, and ¢,). Therefore, in such cases, it is necessary to
reduce the camera model to fewer intrinsic parameters and fix the optical center in
the center of the image. Further discussions on the camera model observability may

be found in the next section 3.2.

3.2 Closed-form solution in B-dual-space geome-
try

This section demonstrates how one may easily retrieve closed-form expressions for
intrinsic and extrinsic camera parameters using the dual-space formalism as a fun-
damental mathematical tool. The method is based on using vanishing points and
vanishing lines. The concept of using vanishing points for camera calibration is
not new (most of the related work on this topic may probably be found in refer-
ences [22, 23, 24, 25, 26, 27, 28, 29]). Therefore, the ambition of this work is not to
state new concepts or theories on calibration, but rather illustrate the convenience of
the dual-space formalism by applying it to the problem of calibration. We show here
that this formalism enables us to keep the algebra simple and compact while exploiting
all the geometrical constraints present in the scene (in the calibration rig). That will
also lead us to derive properties regarding the observability of several camera models
under different geometrical configurations of the setup, and types of calibration rig
used (2D or 3D). Most related work on that topic only deal with simple camera model
(unique focal length) [22, 26] and extract the extrinsic parameters through complex
3D parameterization (using Euler angles) [26, 28, 29]. Other standard methods for
deriving explicit solutions for camera calibration were presented by Abdel-Aziz and
Karara [20] and Tsai [18]. These methods are based on estimating, in a semi-linear

way, a set of parameters that is larger than the real original set of unknowns and do
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not explicitly make use of all geometrical properties of the calibration rig. For an
overview of those techniques, refer to [9].

The method that we propose here involves very compact algebra, uses intuitive and
minimal parameterizations, and naturally allows to exploit all geometrical properties
present in the observed three-dimensional scene (calibration rig). In addition, our
approach may be directly applied to natural images that do not contain a special
calibration grid (such as pictures of buildings, walls, furniture...).

Once it is computed, the closed-form solution is then fed to the non-linear iterative
optimizer as an initial guess for the calibration parameters (see previous section 3.1).
This final optimization algorithm is inspired from the method originally presented
by Tsai in [18, 19] including lens distortion (see equation 3.7). The purpose of that
analysis is to provide a good initial guess to the non-linear optimizer, to better insure
convergence, and check for the consistency of the results.

We will first consider the case of a calibration when using a planar rig (a 2D
grid), and then generalize the results to 3D rigs (such as a cube). In those two cases,

different camera models will be used.

3.2.1 When using a planar calibration rig

Consider the calibration image shown in figure 3.1-a. Assuming no lens distortion
(k. = 0) and no image noise, the grid may be summarized by its four extreme corners
on the image (intuitively, one may localize all the inside grid corners from those four
points by simple perspective warping). In practice, all points will be used in order
to be less sensitive to image noise, however the principle remains the same. Then,
the basic observed pattern is a perspective view of a rectangle of known dimensions
L x W. Without loss of generality, we can also assume that this rectangle is a square.
The reason for that is that through a similar perspective image warping, it is always
possible to convert a perspective view of a rectangle into a perspective view of a
square, given that the dimensions of the original rectangle are known (actually, only

the ratio W/L is necessary).
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Figure 3.3 shows a perspective image of a square ABC'D. The four points Ty,
To, T3 and T4 are the coordinate vectors of the detected corners of the square on the
image plane after normalization. This means that the T vectors are computed from
the pixel coordinates of the points after subtraction of the optical center coordinates
(¢z,cy) (in pixel) and scaling by the inverse of the focal length (in pixel as well). To
model the aspect ratio in z and y, one can assume two distinct focal lengths f, and
fy in both image directions (to account for non-square CCD pixels).

In the case of calibration from planar rigs, it is known that the optical center
position (cg,¢,) cannot be estimated (see [18, 19, 29]). Therefore, we will keep it
fixed at the center of the image, and take it out of the set of unknowns. The resulting
intrinsic parameters to be estimated are therefore f, and f,. Let D; >~ [ps, py, 1]°
(i = 1,...,4) be the pixel locations of the corners after subtraction of the optical

center (in homogeneous coordinates). Then one can extract the T vectors through a

linear operation involving the focal lengths f, and f,: fori=1,... 4,
1/f. 0 0
L~| 0 1/f, 0 |B=Kp (3.8)
0 0 1

where K is the intrinsic camera matrix containing the intrinsic parameters (f, and
fy). Let us now extract the set of independent constraints attached to the observation
in order to estimate the focal lengths (hence the camera matrix K).

Figure 3.3 shows the set of corner points Z; on the image plane. Following propo-
sition 5 of section 2.2.2, the lines ; (i = 1,... ,4) are used to infer the two vanishing
points V; and V; in order to recover the projection Ay of the horizon line H associated

to the plane Il;. The derivation is as follows:

X:\:T X T —- _

SR (D VN

Ao ™~ Ts X T —

T Sy~ Vi XV (3.9)
Agﬁngfg — —

N ‘/22‘)\3><)\4

)\4254)(51 J
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Square in space

Image plane

Figure 3.3: Camera calibration using a square (planar) rig: Perspective view of a
square in space contained in the plane II,. The right figure shows the corners of
the square measured on the image plane, together with the four vanishing points
{Vi1, V5, V3, V4} and the horizon line Ay associated to I1,.

where x is the standard vector product in IR®. Notice that in order to keep the nota-
tion clear, we abusively used V; and V5 to refer to the homogeneous coordinates of the
vanishing points on the image plane (quantities similar to the T;’s using homogeneous
coordinates). It is important to keep in mind that all equalities are defined “up to
scale.” For example, any vector proportional to Z; X To would be a good representa-
tive for the same line \;. The same observation holds for the coordinate vectors of
the vanishing points and that of the horizon line.

Yet, the normalized coordinates Z; of the corners are not directly available, only
the pixel coordinates p;. However, all T;’s can be retrieved from the p,’s through the
linear equation 3.8. We will make use of the following statement whose proof may be
found in [30]:

Claim 1: Let K be any 3 x 3 matrix, and % and 7 any two 3-vectors. Then the

following relation holds:
(Ku) x (K7)= K* (ux7)

where K™ is the adjoint of K (or the matrix of cofactors of K). Note that if K
is invertible (which is the case here), then K* = det(K) (K¥)™, and consequently
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K™ x K.
Using that claim, the camera matrix K (or K*) may be factored out of the suc-
cessive vector products of equations 3.9, yielding:

\

Vi~ KVP

Vo~ KVY

/

where XY Xy, A5, Ay, VP, V¥ and X}, are line and point coordinate vectors on the

image plane in pizel (directly computed from the pixel coordinates p,, P, Ps and p,):

N ~p, xP _ \

A % N U L

X~ Dy X P

oo S Ny~ VP x VP,
Ao 2Dy X D —

3 p2 p3 %pg)\gx)\z

Ev4 — —

Ay =Py X Py J

The step of inferring the vanishing points V; and V; from the pairs of lines { A1, Xg}
and {3, s} made use of the fact that ABCD is a parallelogram (proposition 5).
Using proposition 6 (in section 2.2.2), one naturally enforce orthogonality of the
pattern by stating that the two vanishing points V; and V; are mutually orthogonal

(see figure 2.11):

NlV, < (KVF)L(KVY)

- (3.10)
= () (KTK) (Vf)=0.
That provides one scalar constraint in the focal lengths f, and fy:
b
My  bibh o (3.11)

12 Iy
where ay, as, b1, by, ¢; and ¢, are the known pixel coordinates of the vanishing points

VP and VJ: VP ~Ja; b |7 and VI ~ [ays by co]f. Notice that equation 3.11
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constraints the two square focals (fZ, fZ) to lie on a fixed hyperbola. Finally, the
parallelogram ABCD is not only a rectangle, but also a square. This means that
its diagonals (AC) and (BD) are also orthogonal (see figure 3.3). This constraint is
exploited by enforcing the two vanishing points attached to the diagonal V3 and V to
be mutually orthogonal (proposition 6). Those points are extracted from intersecting
the two diagonal lines A5 and g with the horizon line Ay (see figure 3.3). Following

the same process of factoring the K matrix (or K*) out of every successive vector

product, one obtains:

X K*N, = Ve KV?P
N~ K*N, = Vi~ KV}

where VJ and V} are the two pixel coordinates of the vanishing points V3 and Vj

(pre-computed from the pixel coordinates of the corner points):

- _ ~ <P
As = Pp XT3 = V&~ x Ay
~r ~ P
Ne =Py XDy = VP Xgx Ny

Then, the orthogonality of V3 and Vj yields (V)" (KT K) (V}) =0, or:

by b
B B e =0 (3.12)
[z Iy

where a3, as, b3, bs, c5 and ¢4 are the known pixel coordinates of V¥ and V7: VI ~
[as b3 c3]T and V} ~ [ay by c4]*. This constitutes a second constraint on f, and
fy (a second hyperbola in the (f2, f) plane), which can be written together with

equation 3.11 in a form of a linear equation in @ = [u; u,]" = [1/f2 1/f2]":

_ aias bib _
Ag=5b with A=| = 7| andb=—
a3Q4 bgb4 C3C4

C1Co
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If A is invertible, then both focals f, and f, may be recovered explicitly:

2 — ./
T = 1/f:c :A_lg = fz— l/ul

1/f5 fy:\/l/UQ

or:

f . \/a1a2b3b4 — a3a4b1b2
v b1b20364 — b3b40162

f (11(12[)3[74 — a3a4b1b2
4 a3a4C1Co — A1A9C3Cy

under the condition u; > 0 and uy > 0.

If A is not invertible (or ajasb3bs — azasb1b, = 0), then both focals (f,, fy) cannot
be recovered. However, if A is of rank one (i.e. it is not the zero matrix), then a
single focal length model f. = f, = f, may be used. The following claim gives a
necessary and sufficient condition for A to be rank one:

Claim 2: The matrix A is rank one if and only if the projection Ay of the horizon
line is parallel to either the x or y axis on the image plane (its first or second coordinate
is zero, not both), or crosses the origin on the image plane (its last coordinate is zero).
Since the matrix matrix K is diagonal, this condition also applies to the horizon line
in pixel coordinates \%,.

Corollary: Since Ay is proportional to the surface normal vector 7, (from propo-
sition 2 in section 2.2.2), this degeneracy condition only depends upon the 3D orien-
tation of the plane II, with respect to the camera, and not the way the calibration
grid is positioned onto it (this is intrinsic to the geometry of the setup).

In such a rank-one degenerate case, the reduced focal model is acceptable. Then
both constraint equations 3.11 and 3.12 may be written as a function of a unique

focal f. as follows:

C1Co ai1Qo + b1b2

2
c

C3C4 a3qy —+ b3b4
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which may be solved in a least squares fashion, yielding the following solution:

fomfom f, = \/_ creo(aras + blggg + c;c;(a3a4 + b3by) (3.13)
C1Cy + €3¢

Alternative estimates may be derived by directly solving for either one of the con-
straint equations (3.11 or 3.12) taking f, = f, = f.. This may be more appropriate
in the case where one of the four vanishing points Vj is at infinity (corresponding
to ¢, = 0). It is then better to drop the associate constraint and only consider the
remaining one (remark: having a vanishing point at infinity does not necessarily mean
that the matrix A is singular). Since the vector Ay is parallel to the normal vector
iy, of the ground plane II,, this rank-one degeneracy case corresponds to having one
of the camera axis X, Y, or Z, parallel to the calibration plane II},.

Note that if two vanishing points are at infinity, then the projection of the entire
horizon line, Ay is also at infinity on the image plane (its two first coordinates are
zero). This occurs only when the calibration plane I1j, is strictly parallel to the image
plane (or 7, = [0 0 1)), which is known to be a degenerate case where there exists
no solution for calibration.

In the case where the planar pattern is a rectangle, but not necessarily a square
(or equivalently, the aspect ratio of the rectangle is not known), then the diagonal
constraint is not available (equation 3.12). In that case, only equation 3.11 is available

to estimate focal length. It is therefore necessary to use a reduced single focal model

fe= fm - fa::

This expression will be used in a calibration experiment illustrated in figure 3.5.
Once the camera matrix K is estimated, the normalized horizon vector Ay ~

K~ XI;I may be recovered. From proposition 2, this vector is known to be proportional

to the coordinate vector Wy, of Il (or its normal vector 7i,). Therefore, this directly

provides the orientation in 3D space of the ground plane. The only quantity left to
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Figure 3.4: Camera calibration image: The extreme corners of the rectangular pattern
are marked with crosses. This rectangle (of size 67.7 cm x 42.21 cm) is warped into
a perspective view of a square. This square, marked with white circles, is used for
computing the two pairs of orthogonal vanishing points (V¥, V¥) and (VI VF) .

estimate is then its absolute distance d; to the camera center, or equivalently the
norm ||wp|| = 1/dy. This step may be achieved by making use of the known area of
the square ABCD and applying an inverse perspective projection on it (possible since
the orientation of IIj is known).

Implementation details: In principle, only the four extreme corners of the
rectangular pattern are necessary to localize the four vanishing points V¥, VI, VY
and V. However, in order to be less sensitive to pixel noise, it is better in practice
to make use of all the detected corners on the grid (points extracted using the Harris
corner finder [21]). This aspect is especially important given that vanishing point
extraction is known to be very sensitive to noise in the corner point coordinates
(depending on amount of depth perspective in the image). One possible approach is
to fit a set of horizontal and vertical lines to the pattern points, and then recover the
two vanishing points V¥, VP by intersecting them in a least squares fashion. Once
these two points are extracted, the position of the extreme corners of the rectangular
pattern may be corrected by enforcing the four extreme edges of the grid to go through
those vanishing points. The next step consists of warping the perspective view of the

rectangle into a perspective view of a square (making use of the known aspect ratio

of the original rectangle). The two remaining vanishing points V¥ and V} may then
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be localized by intersecting the two diagonals of this square with the horizon line XZ
connecting V{” and V. Once those four points are extracted, the focal length may
be estimated, together with the plane coordinate vector @, following the method
described earlier (using a one or two focal model).

Experimental results: Let us apply that calibration method to the image shown
in figure 3.4. Notice that the four extreme corners of the rectangular pattern are
marked with white crosses (the pattern is 67.7 cm x 42.21 cm large). After warping
of the rectangle image into a square (whose corners are marked with white circles
on the figure), the following set of vanishing points are retrieved (in pixels): V7 =~
[14060 251.76 1)7, V{ ~ [-36.36 —809.09 1]T, VP ~ [1055.2 — 726.95 1]T and
VP~ [-132.79 —906.29 1]” (since the image is 640 x 480, the optical center is fixed
at (¢, ¢y) = (319.5,239.5)).

A two-focal model (fz, f,) returns the solution (f,, f,) = (849.40, 836.22) pixels,
leading to an horizon line Ay ~ [0.0549 — 0.7188 — 0.6931]7 = 71, and a distance
of the plane to the camera center d, = 115.09 cm. Observing that the horizon line
is almost parallel to the x axis of the image plane (which is not surprising looking at
the image), one may choose to use a single focal model instead. With that reduced
model, equation 3.13 returns the estimate f, = f, = f, = 861.12 pixels, leading to
the very similar horizon line vector Ay ~ [0.0548 — 0.7288 — 0.6825]7 = 7, and a
distance d;, = 114.91 cm.

These estimates are then fed to the non-linear optimizer (see [18, 19] and equation
3.7) as initial guess for the calibration parameters. When using a two focal model,
the final recovered set of parameters are: (f,, f,) = (855.25,857.04) pixels, Ay ~
[-0.0527 0.7335 0.6776]", dj, = 112.10 cm and k, = —0.233 (radial distortion factor).
In the case of a single focal model, the recovered solution is: f, = f, = fy = 853.67
pixels, Ay =~ [~0.0529 0.7322 0.6790]7 = 7, d), = 112.13 cm and k, = —0.233.
Notice how close the final estimates are to the ones computed using the direct closed
form method. The difference comes mostly from the radial distortion lens model that
can only be included when using all the grid points on the image.

In a second experiment, we apply the same algorithm on a “natural” image of
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Figure 3.5: Calibration on a natural image: The two sets of parallel lines on the
ground floor are used to infer the two vanishing points V? and V7 (in pixel coordi-
nates). The line connecting them is the horizon line X¢, attached to the plane. The
image is 341 x 510 pixels.

an airport corridor (see figure 3.5). On that image, the floor tiles are known to
be rectangular, but not necessarily square (or alternatively, the aspect ratio of the
rectangles is not known). Therefore, one can only apply a single focal length model
whose main solution is given by equation 3.14. The two vanishing points V¥ and
VY are first estimated by intersecting pairs of parallel lines (see figure 3.5): V7P ~
[784.53 146.22 1]7, V' ~ [-81.3234 148.1453 1]7. Then, equation 3.14 returns an
estimate for the focal f = f, = f, = 378.06 pixels. Using that focal value, we can
estimate the aspect ratio of the rectangular pattern (long segment length over short
segment length) to 1.2 which is significantly different from 1 (estimation based on the
angle between the two diagonal vanishing points V3 and V;). This confirms the fact
that the pattern is not square. The horizon line Ay, or equivalently the surface normal
vector, was then estimated to Ay >~ [0.0021 0.9623 0.2721]7. This means that the
camera was tilted down towards the floor by @ = arctan (Ag[1]/Ag[3]) = 15.8 degrees
(with the camera X-axis parallel to the ground plane). In that example, the limited
amount of information in the image does not allow us to apply a final minimization

including lens distortions.

3.2.2 When using a 3D calibration rig

Let us generalize the results to the case where a 3D rig is used for calibration. Figure

3.6 shows a perspective view of a cube in 3D. From that image, one may extract
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Figure 3.6: Camera calibration using a cubic rig: Perspective view of a cube in space.

seven vanishing points Vi, V5, ... V7. Similarly to the case of a planar square, this
set of points must satisfy five orthogonality properties: Vi 1 Vo, Vi L V5, Vo L V3,
Vy L Vs and Vg L V;. Then, similarly to equation 3.10, we can write a set of five

scalar constraints on the pixel coordinates of the vanishing points:

’

Niv = () (K"K) (V) =0
VilVy < (V) (KTEK) (V) =0
{ValVy = (VO (KTK) (V) =0 (3.15)
VilVs = (VD) (KTK)(VE) =0
| LV = (V) (KTK) (V) =0
where K is the intrinsic camera matrix and VP ~ [a; b; ¢]f (1 = 1,...,7) are

the pixel coordinate vectors of the vanishing points (see figure 3.6). Note that the
first three constraints in (3.15) enforce mutual orthogonality of the faces of the cube,
whereas the last two force the left and right faces (and therefore all the others) to be
squares.

Given those five independent constraints, one should be able to estimate a full 5
degrees of freedom (DOF) camera model for metric calibration including two focal

lengths (f, and f, in pixels), the optical center coordinates (¢, and ¢, in pixels) and
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the skew factor a (see equation 3.2). In that case, the intrinsic camera matrix K

takes its most general form [31]):

1/f$ a/fa: _Car/far
K= 0 1/fy —c/fy
0 0 1

This model matches precisely the notation introduced in equation (3.2). Then, the

semi-positive definite matrix K7 K may be written as follows:

[ 1 « —C;
K'KE==| o o+ (/) —ac—c(flf)?
T e —ac—o (/R B @ (LI? | (316)
[ 1 Us  ~—Us
:}% Us Uy —Uy (3.17)
| —us —ug ow

Notice that the vanishing point constraints (3.15) are homogeneous. Therefore, one
can substitute K7 K by its proportional matrix f2KT K. Doing so, the five con-
straints listed in equation 3.15 are linear in the vector @ = [u; --- us)?7. Indeed, for

(z,7) € {(1,2),(1,3),(2,3), (4,5), (6,7)}, we have:

l: —CiCj —bibj (aicj + CLjCZ') (bz’Cj + bjCi) —(a,-bj + (Zjbi) } U= a;aj,
(3.18)

Therefore, this set of 5 equations may be written in a form of a linear system of 5

equations in the variable u:

Au=5 (3.19)
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where A is a 5 X 5 matrix, and b a 5-vector:

—c1¢2 —biby (a1cy +ascy)  (bica + bacr)  —(arby + ash) ] [ a1as ]
—cic3 —bibs (apcs +ager) (bics +bser)  —(aibs + ash) aias
A= —coes —bobs (ages + ascy) (bacs + b3co) —(asbs + azby) |, b= a203
—cqcs —bybs (ascs + asca) (bacs + bscy) —(ashs + ashy) a4as

| —cscr —beby (ascr + arcg)  (becr + brcs)  —(aghy + a7bg) | | asar |

If the matrix A is invertible, this systems admits a solution 7 = A4~ . Finally,

the intrinsic camera parameters are retrieved from 7 as follows:

( — 2 _ (us—uzus)?
fz = Uy — Uz — PPy
fy - fac/ V Ug — Ug

§ € = uy (3.20)
Cy = ———ﬁ“g"_‘ié‘
O = Us

\

This final step consisting of de-embedding the intrinsic parameters from the vector &
is equivalent to a Choleski decomposition of the matrix K7 K in order to retrieve K.

If A is not invertible, then the camera model needs to be reduced. A similar
situation occurs when only one face of the rectangular parallelepiped is known to be
square. In that case, one of the last two constraints of (3.15) has to be dropped, leaving
only 4 equations. A first model reduction consists of setting the skew factor o = 0,
and keeping as unknowns the two focals (fz, f,) and the camera center (c,, ¢,). That
approximation is very reasonable for most cameras currently available. The resulting

camera matrix X has the form:

l/fm O _cx/fac
K=| 0 1/f, —¢/f, (3.21)
0 0 1
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leading to the following K7 K matrix:

1 0 —Cy 1 0  —us

1 1
K= 0 (f/fy) — (/L) | =m0 w —uw
Tl TGy (fx/fy)2 f£+cazc +C§ (fa:/fy)Q —Uz —Uq4 Uy

Then, each constraint (V)" (KT K) (VF) = 0 may be written in the form of a linear

equation in @ = [u; -+ uy]’:

—cic; —bb; (aic; +ajc) (bic; +bic;) | U= a;a4, (3.22)
J J 7 7 J J

resulting in a 4 x 4 linear system A% = b, admitting the solution u if A is rank 4.
The intrinsic camera parameters ( fz, fy, ¢z, ¢,) may then be computed from the vector
u following the set of equations (3.20) setting @ = us = 0. When A has rank less
than 4, the camera model needs to be further reduced (that is the case when only 3
orthogonality constraints are available). A second reduction consists of using a single
focal f. = f, = f,, leading to a 3 DOF model. In that case, the K matrix takes on

the following reduced expression:

1/fc 0 _Cx/fc
K=1 0 1/f. —¢/f

0 0 1
1 0 —Cy 1 0 —us
1 1
T g _ -
— K K= 7 0 1 —¢y =7 0 1 —us
—c —¢y (fi+c+c) —Uup —uz U

Then, each constraint listed in (3.15) can be written in the form of a linear equation

of the variable @ = [u; uy u3]”:

(V;p)T (KT K) (V;p) =0 <= {: —CiCj (aicj + CL]'Ci) (biCj + bjci) ] u = (aiaj + bzb])
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Once again, this leads to the linear problem A% = b where A is a 5 x 3 matrix, and
b a 5-vector (if all five constraints are valid). A least squares solution is in general
possible: 7 = (AT.A)—1 AT'b. Notice that if the faces of the rig are known mutually
orthogonal but not necessarily square, then only the three first constraints of (3.15)
are enforceable. In that case, the linear system is 3 x 3, and its solution is @ = A1 b.

Once the vector @ is recovered, the intrinsic camera parameters have the following

expression:
fc:fz:fy = ul_u%_ug
CI —_= U2 (323)
Cy = Uus

We applied the 3 DOF and 4 DOF camera calibration models on the image
shown in figure 3.7 (image size: 276 x 185). On this image, the edges of the
container are used to infer the first three mutually orthogonal vanishing points:
VP = [279.1375 135.2584 1]T, V) = [156.2150 — 498.7323 1] and V} =
[—21.5611 118.7831 1]T. Following the 3 DOF camera model given by equation 3.23,
we retrieve the intrinsic parameters: f = f; = f, = 146 pixels, (¢;, ¢,) = (123.9, 90.6)
pixels. Consequently, the right, left and bottom faces have the respective surface nor-
mals Tiygny = [0.6993 — 0.1356 — 0.7018]", Tiiegy = [-0.7128 —0.2052 — 0.6706]T
and Thottom = [0.0531 — 0.9693 0.2402]T. Using the four diagonal vanishing points
Vi, Vs, Vs and V; shown on figure 3.6, the aspect ratios between the segment lengths
of the container may be estimated: Lo/L, = 4.5, L3/L; = 0.98. Observing that
the left face is “almost” square (since L3/L; =~ 1), we add the corresponding con-
straint (the last one in (3.15)) and solve for the same camera model with 4 constraint
equations instead of three. The least squares problem leads then to a very similar
solution: f = f, = f, = 145.71 pixels and (cz, ¢y) = (118.7,91.4) pixels, making
Ly =4.57L; and Ly = L, (enforced by the constraint). Finally, we apply the 4 DOF
camera model onto the 4 constraints and retrieve very similar camera parameters:

(fer fy) = (146.11,143.79) pixels and (¢, ¢,) = (122.81,91.67) pixels.



Figure 3.7: Camera calibration using a 3 and 4 DOF camera model on a natural
image

When A has rank less than 3, the model needs to be further reduced to 2 or 1
DOF by taking the optical center out of the model (fixing it to the center of the
image) and then going back to the original model adopted in the planar rig case (one

or two focal models).

3.3 Conclusions

In this chapter, we applied the dual-space formalism to the problem of camera cal-
ibration. This approach enabled us to decouple intrinsic from extrinsic parameters
and derive a set of closed-form solutions for intrinsic camera calibration in the case
of five model orders: 1, 2, 3, 4 and 5 degrees of freedom. In addition, we stated
conditions of observability of those models under different experimental situations
corresponding to planar and three-dimensional rigs. The following table summarizes
the results by giving, for each model order, the list of parameters we have retrieved
explicit expressions for, as well as the minimum structural rig necessary to estimate

the model:
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Model order | Parameters Calibration rig (minimum required structure)
1 DOF f=f=1f 2D rectangle
2 DOF fz: fy 2D square
3 DOF f = fe = fy, ¢z, ¢y | 3D rectangular parallelepiped
4 DOF Jzs fys €z €y 3D rectangular parallelepiped with one square face
5 DOF fas fys Cas €y, @ 3D cube

One could use this explicit set of solutions for calibrating image sequences where

intrinsic camera parameters are time varying. A typical sequence could be a flyby

movie over a city with buildings.

In a broader sense, this work provides a general framework for approaching prob-

lems involving reconstruction of three-dimensional scenes with known structural con-

straints (for example orthogonality of building walls in a picture of a city). Indeed,

constraints, such as parallelism or orthogonality, find very compact and exploitable

representations in dual-space. This approach may avoid traditional iterative mini-

mization techniques (computationally expensive) in order to exploit constraints in a

scene.
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Chapter 4 Passive methods for 3D

reconstruction

In this chapter, we describe passive visual techniques for 3D reconstruction. This
class of methods is called “passive” because no other device besides camera(s) is
required (images are the only input data). This limited equipment cost constitutes
one competitive advantage of passive techniques compared to active techniques that
require external device such as laser or LCD projectors for projecting artificial texture
in the scene (see chapter 5). Of course, one intrinsic limitation of passive approaches
is that they may only be applied on scenes that are sufficiently textured.

The standard structure triangulation problem is first presented in Sec. 4.1, fol-
lowed in Sec. 4.2 by a description of the combined 3D motion and structure estimation
problem from two views obervation. Then, section 4.3 generalizes the problem of mo-
tion estimation to the case of three views, and then N, views (N, > 3) for both point
and line observation. Sec. 4.4 presents implementation details for processing long
sequences of images, as well as some experimental results. Finally, Sec. 4.5 closes the

chapter with some conclusions.

4.1 Structure estimation

4.1.1 Structure estimation from two views - Stereo problem

Let us model the 3D world by a set of N points P, (i =1,...,N) in space. Assume
that the cloud of points is observed from two cameras at two different positions in
space. Denote by p; and p} the two projections of P; on the two image planes, and
let 7; = [7; y; 1T and 7} = [z} y! 1] be their respective normalized homogeneous

coordinates (the two cameras are assumed to be calibrated). Let X; = [X; Y; Z;]T



R,T
Reference frame Reference frame F ’

Figure 4.1: Stereo triangulation consists of retrieving the point P; in space from
its two observed projection p; and p] onto the two image planes. Triangulation is
impossible if P; lies on (O, O.), or equivalently is p; = e or p} = €’ where e and ¢’ are
called the epipols.

and X, = [X! Y; Z!” be the Euclidean coordinates of P, in the reference frames
attached to the two camera locations (denoted F and F' respectively).

Let R and T be the rigid motion parameters (rotation matrix and translation vec-
tor) between the two camera positions (F and F'). Then, the two coordinate vectors
X; and 7; are related to each other through the standard rigid body transformation

equation (see equation 2.13):
Vi=(l,...,N), X.=RX,+T (4.1)

Then, the stereo triangulation problem consists of retrieving the 3D coordinate
vectors X; and 7; from the image coordinates Z; and T, assuming that the relative
position of the two cameras is known (R and T'). This corresponds to intersecting
the two rays (O, p;) and (O.,p}) in space (see figure 4.1). Another fundamental
assumption that is made here is that the correspondence between the two image
projections has been previously established. In other words, we assume that the point

pi in the first image is known to correspond to the point p} in the other image, and
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not to any other point p; (j # 7). This correspondence is often denoted p; > p}. In
practice, establishing correspondence between two images is not a trivial task. In the
case where the disparity between the two images is large then the only method that
can be used is global image search (this is often the case when the two camera positions
are far apart). This approach is known to be highly computationally expensive and
is often not guaranteed to find the right solution due to local minima. When the two
images are relatively similar, differential methods such as optical flow computation
may be applied [32, 33, 34, 35]. These strategies are a lot less computationally
expensive, and do not suffer from local minima as much as global search methods
(since computations are done within small image neighborhoods). On the other hand,
in order to apply optical flow methods, it is often required to have small camera
displacements, therefore small geometrical baseline for triangulation. This will be
shown to be affecting the accuracies in depth reconstruction. For now, let us go back
to the fundamental estimation problem.

According to the perspective projection operator, we have X; = Z; T; and 72 =

Z, ;. Then equation 4.1 may be written:

leading to the following linear system:

| -R7 7 | P —T (4.3)

Let A; = [ —-Rz; T ] (a 3 x 2 matrix). The least squares solution for 4.3 is then:

Z;

1= (AT A;) AT T (4.4)
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Let @; = —RT;. From equation 4.4, an close form expression for Z; may be expanded:

IR @ T) - @7 @ T)

TP I = (@7 (45)

g

In absence of noise on the point coordinate vectors Z; and T, equation 4.5 returns
the exact value for Z;, hence the exact position X; of P, in the first reference frame
F. In the case where the two vectors 7; and Zj are noisy, then the two rays (O,, p;)
and (O, p;) are not guaranteed to exactly intersect at a single point in space. Then,
the solution provided by equation 4.5 is the point that is the closest to both rays in
space.

Observe that if the two vectors @; and T, are proportional, then the denominator
of equation 4.5 vanishes. In that case, triangulation is impossible. That corresponds
to having two collinear rays (O,, p;) and (O, p}) in space. Notice that this happens
only for points in space lying on the line connecting the two optical centers (O, O"),
or equivalently when the two projection points p; and p) are at the epipoles e and ¢’
(see figure 4.1). Another singular configuration occurs when 7' = [0 0 0]”. In that
case, stereo triangulation is impossible for all points in the scene. This is also known
as the zero-parallax (or zero-baseline) degenerate case. In the limit, as the norm of
translation goes to zero, triangulation becomes numerically more and more sensitive

to noise.

4.1.2 Structure estimation from N, views (N, > 2)

Assume that the same point P in space is observed on N, > 2 different views cor-
responding to N, different camera locations. Then, in order to be more robust to
measurement noise, it is beneficial to make use of all the information coming from all
the projections for triangulation. One intuitive approach is looking for the point in
space that is the closest to the set N, optical rays generated by the N, observations
(the point in space that minimizes the sum of the squares of its distances to every

ray).

For simplicity in the notation, let us drop the subscript 7 indexing the set of points
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P; in space, and let us focus on a unique point P in space. Let p" (n = 1,...,N,)
be the projection of P on the n' view, and let " = [2" y™ 1]7 be its corresponding
homogeneous coordinate vector. Let X = [X" ¥7 Z"|T be the coordinate vector
of P in the n'™ reference frame associated to the n'® camera position. Then, all
vectors X forn =2,..., N, are related to X through a set of rigid transformation

equations. These relations can be written:
Vn=(1,...,N,), X =R, X +T, (4.6)

where R, and T, are the rotation matrix and the translation vector that define the
location of the n'" camera with respect to the first one (notice that Ry is the identity
matrix, and 77 the zero vector). Let X = X T hen, one may observe that the set of

equations (4.6) may also be written:
vn=(1,...,N,), X=0,+2"F, (4.7)

where O,, = —RI T, is the coordinates of the center of projection of the n't camera in
the first camera reference frame, and 7, = R Z" is the coordinate of the n'" optical
ray direction vector in the first camera reference frame. Once the relative positions of
the cameras are known (R, and T},), the (origin) vectors O, are known (the camera
trajectory in space). Then, the set of ray direction vectors 7,, may also be computed
from the observation vectors Z". Every optical ray will be denoted by the vector pair
A" = (0,,7,) (see figure 4.2).

The triangulation problem corresponds then to searching for the depth vector
Z =1[z" z* ... Z™|T and the point coordinate X that minimize the sum
of the squares of the orthogonal distances of the point P to the optical rays lines
A" = (0,,T,). See figure 4.2. This can be done by solving the following minimization
problem:

{X,Z}| , = Argmin C(X,,Z) (4.8)

opt =_
X,Z
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X = Optimal coordinate vector of P

Figure 4.2: Optimal 3D triangulation from N, views: The coordinate vector X cor-
responds to the optimal coordinate vector of P in space in a sense that it is point
which is the closest to all the optical rays A” = (O,,7,) in space (n = 1...N,). The
set of points -X—Z are the orthogonal projections of X on the lines A”. On this figure,
we set the number of views (rays) to N, = 3.

where the cost function C is defined as follows:
No o
C(X,Z)=> || (On+ 2"7,) — X (4.9)
n=1

Observe that Yz = O, + Z"T, is the coordinate vector of a point P" constrained to
lie on the optical ray A™. Therefore, at the optimal solution, the point P" is expected
to be the orthogonal projection of P on A”. That is illustrated on figure 4.2.

Let us now derive an analytical solution for the optimal depth vector Z and the
coordinate vector X of P in the first camera reference frame.

At the optimum, the Jacobian matrix of the cost function C is zero:

[ég %}:0 (4.10)
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That leads to the following set of equations (for i = 1,... , N,):
oC —_
==0 = X= (On+2"F 4.11
0X N, ; n) (4.11)
g; =0 = <'77Z-,_X:> — |22t = <?i’6i> (4.12)

Notice that equation 4.11 gives an direct expression for the point location vector X

as a function of the depth vector Z. If we now insert that expression into the set of

equations 4.12, we get for all e = 1,... , N,:

N,

72 7~ < 3 (7o) 27 = (7T - O (4.13)

<

n=1

where 7i is defined to be the mean value of all the vectors O, (the vector coordinate

of the centroid of all optical centers in the first camera reference frame):

N,

_ 1 —
i = YVZZO” (4.14)

n=1

Then, one can re-write the set of equations 4.13 in the following matrix form:
AZ=b (4.15)

where A is the following N, x N, matrix:

w0 -0

A= 0 H??HZ 0 —Nl—(; (416

N
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where G is the Gram matrix:

- (Fi,71)  (T1,72) (F1, 7w, ) ‘
G- <727.7°'1> <72,.F2> <"7’2a.7NU> (4.17)
| v T1) (P, T2) o (T T) |

and b the following N, vector:

<F17H— 61>
b | (A0
| (Tw., E—Ou,) |

Notice the similarity between equations (4.15) and (4.3). The optimal depth vector

7 is then computed by inverting the matrix A in equation 4.15:
Z=A"b (4.18)

and, finally, equation 4.11 provides the optimal coordinate vector X:

N, N,
_ 1 v —— 0 1 v —n
Notice that in equation 4.11, the vector YZ (forn=1,...,NN,) are the coordinates of

the closest point P™ on the line A™ to the point P (or orthogonal projection). If there
were no noise in the measurements, all the lines would intersect exactly at a unique
point in space, and then the vectors YZ would all be identical to X. In the presence
of noise, however, we have shown that the optimal vector X is the mean value (or

centroid) of the set of vectors {_Xz }n:1 from equation 4.11). Additionally, one

e, €
may make use of the standard deviation vector 6X attached to the set {X,} to
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evaluate the accuracy on estimating each coordinate of X:

60X =

Nvl_ 1 ; (X -3 (4.20)
where the square root and square are assumed to operate on each coordinate individ-
ually. This estimate gives us an indication on how well the set of lines intersect in
space.

One can finally show that, at the optimum, the standard deviation vector 6. X

satisfies the following property:

N,

— 1 —_ 1 N = —

|6X)2 = N= 1C(X,Z) =¥ 1 Y (X, - X,0n) (4.21)
v n=1

It may be shown that in the case where N, = 2, the depth solution given by
equation 4.18 is equivalent that previously derived in the special case of two views
(equation 4.4).

One may also notice that the derivations presented in that section answer the
general problem of optimally intersecting a set of lines in space. These results will be

used in several other applications (in sections 6.2.3 and 6.2.5).

4.2 Motion and structure from two views

So far, we have assumed that the relative positions of the cameras in space are known
before structure triangulation. Essentially, the motion parameters are needed to
identify the coordinates of the optical rays associated to a single point in a unique
reference frame. One question remains: what can be done when the camera motion
parameters are not available? In other words, is there a way of recovering the camera
ego-motion from point observation?

In this section, we will describe a technique for recovering the motion parameters
(R and T) between two camera locations, from point observation.

Let 5 (i = 1,...,N) be a set of points in space, and denote p; and p; the



R,T
Reference frame F (unknown) Reference frame F’

Figure 4.3: Epipolar geometry for two views: The lines \; and A] are the two epipo-
lar lines associated to the two point observation p; and p;. The line A; (X)) is the
projections of the optical ray Al (A;) on the first (second) camera image plane. The
ego-motion parameters I and T must satisfy the constraints p; € A; and p, € A for
allz =1,..., N. They are called the two-view epipolar constraints.

perspective projections of P, on the two camera image planes. Figure 4.3 illustrates
the geometry of a single point observation. On that figure, the two optical rays A;
and A} associated to p; and p} must be intersecting in space. That observation is the
fundamental basis of all motion estimation schemes. The motion parameters R and
T that brings the first camera reference frame to the second camera reference frame
must satisfy the constraint that every pair of rays must intersect in space. That is also
known as geometrical constraint. Let A} be the projection of A; on the second image
plane (see figure 4.3). Then, one may observe that the two lines A; and A/ intersect
in space if and only if the point p] lies on the line A, (for i =1,..., N). Similarly, the
two rays will intersect if and only if the point p; lies on A;, the projection of A} onto
the first camera image plane. The line A; (A}) is called the epipolar line associated
to the point P; onto the first (second) image plane. Observe that for any point P; in
space, both lines contain the epipoles e and €’ (intersections of (O., O)) with the two

image planes).
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Call ); and X; the homogeneous coordinate vectors of \; and X, respectively, and
let 7; and 7} be the coordinate vector of the two points p; and pi. Then, it may be

shown that:

N ~QF ~ (TN R) 7 (4.22)
X~ QT z ~ (RT(TN)) 7, (4.23)

where () = (I'A) R is called the essential matriz (the wedge operator A is defined in
equation 2.15). Then, the two rays A; and A} are coplanar (or intersect) if and only

if the following condition is satisfied for all 4 =1,... , N:
peEN = <a;-;,xg> =0 <« FTQm=0  (4.24)

This scalar equation is also known as the bilinear epipolar constraint. The very
same expression is retrieved through the other equivalent constraint p; € \;. Let
Q= [0, Q, €,]7 be the rotation vector associated to the rotation matrix R (eq.
2.14). Then, the 3 x 3 matrix @ is function of Q and T (6 DOF), and may be written
Q = Q(Q,T). Define the residual vector &(Q,T) = [e; e, ... en]” such that:

Vi=1,...,N, Q0 =z"Q Tz (4.25)

Then, the motion parameters  and 7' may be found by solving the set of equations
€(Q,T) = 0. In presence of noise on the measurement data 7; and T}, this equation
will not be exactly satisfied. Therefore, numerically, it is necessary to define a scalar
cost function to minimize. Experimentally, the 2-norm of the residual vector € a valid

cost function:

N N
{Q_,T}‘Opt = Argmin Z e2(Q,T) = Argmin Z (fiT QQ,T) @)2
23 i=1 ar o

(4.26)

A standard gradient descent strategy is applied to identify the optimal solution, with
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an initial guess provided by the linear method described by Longuet-Higgins [36].
Observe that the translation vector 7' can only be recovered up to a scale factor.
Indeed, if T is solution of problem (4.26), then a7 is also solution for all o # 0.
Physically, that corresponds to the very intuitive fact that it is not possible to identify
the absolute size (or dimension) of the scene from two perspective views of it (there
is no notion of a meter). Therefore, the optimization problem can only be solved
constraining the translation to be unit norm (||7’|| = 1). This corresponds to solving
for 5 DOF motion parameters (3 for rotation and 2 for translation) parameterizing the
translation vector using spherical coordinates (azimuth and elevation). A large body
of work may be found in the literature on the topic of two-view motion analysis [11,
37, 38, 10, 39, 40, 41, 42, 43]. All existing techniques for motion estimation are
based on the same principle of solving for the set of non-linear epipolar constraints
(4.24). Originally, Longuet Higgins in [36] proposed a closed-form linear method for
estimating the essential matrix ¢) from point correspondence, and then de-embed the
motion parameters R and T from () through a Singular Value Decomposition. Our
method is very much inspired from the algorithm due to Heeger and Jepson proposed
in [41, 42, 43]: minimization by iterative gradient descent in the five-dimensional
space of all unit translation motions. This technique has since been extended to
uncalibrated cases (for example by Hartley in [44]) for recovering the fundamental
matriz (the equivalent of @ for uncalibrated cameras). This closed-form technique
is still used now to retrieve an initial guess for motion parameters. Several non-
linear optimization techniques have since been proposed. Recently, some authors
have proposed a dynamical framework for motion analysis [45, 46, 47, 48, 49, 50, 51]
based on Kalman filtering for optimal estimation [52, 53]. Those techniques allow
to include complex dynamical model for motion in order to improve estimation (for
example, the dynamics of a car could be modeled if the geometry and the mass of
the vehicle is known). However, if no specific dynamical motion model is known
prior to estimation, those techniques often reduce after implementation to single
steps motion state refinements that may very well be thought of as “generalized

gradient descents.” A complete description of the theory underlining this dynamical
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framework may be found in [45]. Experimentally, we found no significant improvement
using Kalman filtering versus standard gradient descent techniques (mainly because
we never experimented using an elaborated dynamical motion model).
All those techniques are based on estimating motion from point correspondence
on two views. In the next section, we propose to extend that formalism to cases
where more than two views are used to infer 3D motion and structure. Then, not

only points can be used as basic geometric primitives, but also lines.

4.3 Motion and structure from N, views (N, > 2)

In this section, we first generalize the problem of structure and motion estimation

in the case of three view observation. This problem is tackled in such a way that

many generalization are straightforward, for example when many more frames are

observed at the same time, or when a set of points and lines are available. We will

derive geometric constraints from point and line observation on multiple views. For

example, the epipolar constraint (equation 4.24) will be a special case when having

point observation on two frames. Augmenting the observation to three frames, we |
will see appearing a new type of object, the 3 x 3 x 3 trifocal tensor, presented in

several past publications. The main work that we wish’ to cite is the one due to

Hartley [54], although other authors before him used similar mathematical objects.

We will mention for example Weng [55] who originally treated this tensor as a set

of three 3 x 3 matrices, and Shashua [56] who chose to represent it in the format of
nine 3-vectors. To our knowledge, Vieville [57] is the first author who referred to it

as a tensor. More recently, internal properties of the tensor have been quite actively

studied in the uncalibrated case [58].

The main contribution of this work is in giving a very intuitive and complete
geometrical description of the multi-view motionrv’éstimation problem, while providing
the essential mathematical tools useful for any practical implementation.

Before starting the analysis, let us define the basic notation that will be used

throughout this section. Consider a calibrated camera at three different locations in
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Figure 4.4: Geometry of three views: A point P in space is projected on the three
camera image planes at at p, p’ and p” (p < p’ < p").

space, and define by F, F' and F" the three associated camera reference frames. See
figure 4.4. Consider a generic point P in space, and call p, p’ and p” its projection
onto the three image planes. For convenience in the notation, we will denote T ~
lur ug ug)?, @~ [u) wh )" and W'~ [u] ufj ] the homogeneous coordinates
of p, p’ and p" respectively (in practice, one may always normalize those vectors
such that u3 = ufy = v§ = 1). Let X ~ [X Y Z 1]7 be the homogeneous
coordinate vector of the point P in the first reference frame F (chosen as main frame
of reference), and let R and T the rigid body motion parameters between the first
camera position and the second camera position (see equation 2.13), and S and V'

the motion parameters between position 1 and position 3. In this notation, both R

and S are rotation matrices, and T and V' are translation vectors:

T Tz 13 t 511 812 S13 v
— — _— A
R= Tor To2 Tag | > = t2 |5 S = S21 S22 Sa23 | V= VU2

31 T32 T33 i3 S31 S32 533 U3 (4-27)
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Then, following equation 2.21, the three image coordinate vectors %, @ and @" are

linearly related to X through the projection matrices P, P’ and P”:

7 ~ PX
w ~ P'X (4.28)
ﬂ” ~ P// 'X

where the three projection matrices are defined as follows (equation 2.21):

P = {]3><3 03><1]
P = [R T] (4.29)
Pl = |5 V|

The next two sections will derive the general motion constraints for line and point

observation on N, views starting with N, = 3.

4.3.1 From line correspondence

Let A be a line in 3D space, and denote by A, X' and )" its projections on the
three image planes. See figure 4.5. The goal of this section is to derive geometrical
constraints on the motion parameters R, T, S and V given the line correspondence
A N Mo Let A A Ag A)T, X = X, Xy A4)7 and X~ [A7 A2 M7 be the
homogeneous coordinates of A, \' and X" respectively. Let II, II' and IT” be the three

! T

planes spanned in space by the three images lines, and let 7, @ ~ |7} 7, w4 ]
and 7' ~ [r] 7} wy 7]" their corresponding homogeneous coordinate vectors in the
camera reference frame F. Then, following equation 2.29, the three plane coordinate

vectors are naturally related to the line coordinates vectors and the motion parameters
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S,V ¢ R,T
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Figure 4.5: Line observation on three views: The line A = A is projected on the three
camera image planes at A, A’ and \".

R, T, S and V:
_ B
T ~ PT) =
0
- [ RTY
7 ~ PTN = ~ (4.30)
()
B —n
7 ~ pTY = ST
(v, X")

It is well known that at least 3 views are necessary estimating 3D rigid motion
based on line observation [55]. This can be fairly easily understood by recalling that in
space, in general, two planes always intersect along a line. Therefore, having only two

different corresponding views of a single 3D line provides two planes of observation
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which in general intersect along a line. Therefore, for any rigid motion between those
two views, there will be an existing 3D line structure (namely the intersection between
the planes) that will match to the observation. In other words, no information what
so ever can be extracted about the rigid motion from a corresponding pair of lines
on two views. However, three planes in space do not in general intersect along a line
(generally, they intersect at a point). This means that not any rigid motions will
be permissible for the given corresponding triplet of lines on three views. In that
sense, we say that enforcing the three planes I, II' and II” to intersect along a line
in space provides a constraint on the motion between the three views. This process
is equivalent to constraining the 3 vectors 7, 7 and 7" to be linearly dependent.

An equivalent condition is to constrain the projection A of the line A = IT' N I1”
onto the first image plane (associated to the first camera position) to be identical to
the observed line X on that view. That principle is geometrically illustrated on figure
4.5. Notice that, at the solution (meaning for the right motion parameters R, T', S
and 7'), the two lines in space A and A are identical, and so are the two image lines
Aand A In general, the line A and A are function of R, T, S and T. According

to equation 2.12, the coordinate vector A ~ [A; Ay As]” of A has the following

expression:

" 7 ! "
Tymy — Ty ™y

>

~ | gy wh — 7wyl (4.31)

Ty Th — Wy Ty

or equivalently:

X~ (VNYRTX — (T, X) §T X (4.32)
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This vector expression may also be written in the following way:

)\9)\%(7"]'1?)]9 — tjskl)
X i /\;-)\Z(’T'jQ’Uk - thkQ) (433)

)\;)\Z (T’ngk - tj Skg)

where each term is summed over all values of the “dummy” indices j = 1,2,3 and k =
1,2, 3 (this compact notation convention is also known as the Einstein’s convention,
or Einstein contraction).

Following Hartley’s notations [54], we define the 3 x 3 x 3 tensor T, for i, j, k =

1,...,3 as follows:
Tijk = 750k — Sk (4.34)

Then, the coordinates A; of X have the expression:

X = XM T (4.35)

The tensor T;; is also called trifocal tensor.

Notice that taking the 3 successive “slices” of the tensor 7;;; for i = 1,2, 3, we get
three 3 x 3 matrices that Weng in [55] denoted E, F and G.

The line ) is actually the observation line transferred from the two last observation
views back to the first one given some rigid motion parameters (R,7,S,V). In that
sense, we can call that process a line transfer. This is based on constraining the
transferred line A to be identical to the actual observed one . Strict equality for lines
is well defined, this means that all the components of the two 3-vectors representing
the lines have to be equal up to a unique non zero scale. However, to write a constraint,
we need to choose a way of measuring how far, or how different two lines are on
the image plane. This “difference measurement function” will give us the motion
constraint equation.

This overall transferring process can be though as an equivalent to the epipolar
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Motion R,T,S,V——»} Line Transfer

View 2 ) , View 3

Figure 4.6: The two views 2 and 3 induce the line A on the first view. The line
constraint enforces this line to be identical to the observed one A.

constraint for point observation on two views. Indeed, in that case, the set of observed
points on the first view get transferred to lines (epipolar lines) on the second view,
given some rigid motion parameters between the two views (these are the intersecting
lines between the image plane in the second view and the planes containing both opti-
cal centers and the observation rays in the first view). Given an point correspondence
p <> p' on the two first views, the epipolar line transferred by p to the second view
is A" whose coordinate vector is given by equation 4.22. Then, the motion constraint
is based on enforcing the actual observed point on the second view p! to lie on its
associated epipolar line ); (for i = 1,..., N). The set of algebraic constraints is then
given by equation 4.24.

Concerning lines observation on three views, the overall process goes similarly
except that the types of the elements involved are different. The two “last” views
together transfer a line A on the first one that needs to be identical to the observed

line A. One can say that 2 lines on a plane are identical if and only if they have same
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“slope” and same distance to the origin. We can write the two lines A and X in the

following form:

( [ A ] I cos () ]
A=1 ) | = VAT + A% sin(9)
A3 d |
X . - o (4.36)
A cos(6)
A= X | = \/ PLETDY: sin(f)
e i

where 6 and § (in the range [—7/2,7/2]) are the direction angles of the lines, and
d and d their orthogonal distances to the origin. Then, one can write the following
equivalent expressions:

— =~ sm(ﬁ—é):() )\25\1—)\1;\2 =0
A & &

d—d=0 A/ A A2 = A /AT F A2 = 0(437)
Then one could keep the last pair of expressions in (4.37) as vector constraint on
the motion. One disadvantage of choosing such an expression is that it involves two
quantities which are not of the same nature. The first one is comparing the orientation
angles (via their sine), the other the distances to the origin. This implies that one
should appropriately weight them one with respect to the other, in order to make a
consistent measure.

Another possible choice for motion constraints is considering the three components
of the vector product X x i, and enforce them to be zero. That corresponds to taking
T x N = 0 as motion constraint, knowing that only two out of the three resulting

scalar equations are independent. That leads to:

/\25\1 - )\1;\2 = 0
MAd— M), = 0 (4.38)
/\3)\2 - ;\3)\2 = 0

>
02
>
)3
>
>
S
il
o
K>
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This is the choice that Weng made in [55]. Notice the similarities between (4.37) and
(4.38).

A third possible choice consists of using two points of the observed line A and
constrain them to lie on the transferred line . Consider that two end-points of
the line A are available: @ and b of respective coordinates @ ~ [u; wuy us]” and
T~ [vy vp w3]"). Then constraining those two points to belong to the transferred
line \ is equivalent to enforcing the two lines A and A to be identical.

This means that the two following relations must hold:
0

(4.39)
0

These are precisely the two scalar constraints that Hartley chose in [54]. This
corresponds to looking at the orthogonal distances of the two points a and b to the
line X\. This process is similar to the one used when deriving the algebraic epipolar
constraint in the case of point observation on two views (eq. 4.23).

Taking either one of the three constraints (4.37), (4.38) or (4.39) is algebraically
possible. They all extract the maximum geometrical information.

Observe that in both equations in (4.39), the first view always contributes with
its “full” point coordinates (@ or 7) whereas the two other views are used for “line
transfer” (to induce the “generalized” epipolar lines A to the first view). For this
reason, this configuration is sometimes called point-line-line configuration [59].

One important issue to address when designing estimators is numerical stabilities,
or robustness to measurement noise. Indeed, in realistic situations, all line measure-
ments will be corrupted by noise. The way the noise affect the data is very much
dependent on the line selection algorithm. Effectively, small edges on the image plane
will be noisier that long ones, considering the noise in estimating the line components
A’s. It might therefore not be appropriate to use directly the constraints (4.37) or
(4.38) involving only A’s without any weighting equally for each line. Concretely, if

for example the two lines A" and )" appear to be very small on the image plane, that
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means that their components A} and /\;’ are very unreliable because very sensitive to
image noise. That way, the transferred line \ is very noisy as well. Therefore, directly
comparing the components of the two lines A and A through (4.37) or (4.38) might
not be the best thing to do. The third constraint however would actually not be so
much affected if the center line A is itself inferred from two end-points u and v very
close together (the line is small). Indeed, in the limit when the two points u and v
are identical, the set of equations (4.39) reduces to constraining one point to lie on
the transferred line (weak condition). On the other hand, the two other sets (4.37)
and (4.38) still try to rely on the very noisy line components \;. The last proposed
set of constraints has however its own limitations. The computation of \ still relies
on the line coordinates A; and A] through equation (4.35). Therefore, if either one
of the two lines \" or \" is inaccurate (due to image noise or small line length), the
corresponding transferred line \ will itself be very inaccurate. Numerically, a way
to go around that conditioning problem would be to use weights on each individual
line. These weights would depend on the reliability of the constraint measurement
with respect to the quality of the features used. Weng in [55] was computing these
weights based on the lengths of the lines. Long lines would have a larger weighting
coefficient than small ones. An extension to choosing simple scalar weights is us-
ing the complete covariance matrices in the final numerical constraint. This would
be the covariance matrix of the measured quantities computed from the derivative
of the constraint (before modification) with respect to the feature components (the
sensitivity matrix).

This numerical conditioning issue is essential for the implementation stage of the
motion estimator. It is our believe that more effort should be put on studying it,
as well as degeneracies [59]. In this work, we chose to put the emphasis on the
geometrical properties of the system, and their associated algebraic expressions.

Regarding line observation on three views, the main observation is that one ex-
tracts exactly two independent constraints from a triplet of line correspondences.
From this point on, we will choose the last constraint (4.39) acting on the detected

end-points of A. These are precisely the two scalars that Hartley chose in [54]. We
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define the implicit measurement vector (or residual vector) hy y v as follows:

i~
~
>

h,\,,\/’,\u(R, T, S, V) = (4.40)

3|
~
>l

If N triplets of lines are available, then 2V scalar constraints may be retrieved in the
form of a 2/N-vector (residual vector). The final step consists of finding the motion
parameters R, T', S and V that minimize a (weighted) sum of the squares of the coor-
dinates of that vector. This corresponds to a (weighted) least squares minimization.
This technique may be implemented by means of gradient descent. This method gives
a unique motion solution if “enough” line measurements are provided (this issue will
be addressed later on).

Fig. 4.6 illustrates this principle of line transfer from 3 views. Note that the vector
constraint iy y v as it is written in (4.40) differs from the two geometric distances of
a and b to A by the factor \/5@ + ;\3 which is not unity since it is a function of the
motion parameters (as seen in (4.32)). This is true even if the observed line vectors
X and )" are pre-normalized.

It is well known that from 3 perspective views of a rigid scenery, we can at most
reconstruct (under calibration assumption) the 2 rigid motions (R, T) and (S, V) up
to an overall scale factor for the translations. This means that the motion problem
is an 11 degrees of freedom problem. If we wish to estimate these 11 parameters, we
need at least 11 scalar constraints. Since each triplet of corresponding lines provides
2 scalar constraints, at least 6 line correspondences are required. This is only true
while solving directly for motion parameters. An alternative way is first solving for
the tensor coefficients 7, (appearing linearly in the constraint expression (4.40))
and then de-embed the motion from this tensor. In that case, one needs to solve for
27—1 = 26 unknowns (the norm of T;;; cannot be recovered), which requires at least
26/2 = 13 line correspondences. The numerical methods for retrieving the camera
matrices P’ and P” from the tensor Ty, is largely discussed by Hartley in [54]. This is

done in two stages. In the first stage, the two unitary translation vectors T/||T|| and
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[V|| are reconstructed by looking for the null-spaces of the three 3 x 3 matrices

v/

Trij» T2i; and T3;;. The second stage consists of retrieving the remaining coefficients

(the two rotations if we are in the calibrated case). For this second stage, different
methods are possible. Under calibration assumption, one may make use of that fact
that the two matrices R and S are unitary, and then retrieve both of them and the
ratio of norms s = %‘% (also called relative scale). Weng in [55] proposes a method

for doing that. Hartley derives in [54] a numerical algorithm that deals with the

uncalibrated case.

Line observation on more than three views

As previously recalled, three is the minimum number of views required for ex-
tracting motion information from line observation. In the case of three views, one
line correspondence provides 2 scalar constraints corresponding to the three planes
I1, IT" and I1” having to intersect along a line in space. What happens if more than
3 views are available? In the case of N, = 4 views, four such planes may be inferred
(each spanned by a line on the image plane). Denote them II, IT’, II” and IT". Sim-
ilarly to the three view case, we wish then to enforce all planes to intersect along a

single line in space. Define the 4 x 4 matrix A as follows:
A — [7? w o } (4.41)

where 7, 7, 7' and 7" are the homogeneous coordinate vectors of the four planes in
the first camera reference frame.

Then, the above plane intersection condition is equivalent to enforcing any 3
vectors picked in {7, 7, 7", 7"} have to be linearly dependent. Essentially, this means
that all 4 vectors can be expressed as linear combinations of any two (i.e., the matrix
A is of rank 2). Without loss of generality, pick 7 and 7" as basis vectors, and enforce
7 and 7" to be linear combinations of them. This leads to two independent scalar
constraints for each of the two planes, or a total of 2(4 — 2) = 4 independent scalar

constraints. In the case of NNV, views, in the non-degenerate case (no 2 planes are
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identical), it is sufficient to choose any N, — 2 triplets of plane vectors, and enforce
them to be linearly dependent to the remaining two. Since each linear dependence
brings 2 scalar constraints, this leads to a total of 2(N,—2) = 2N, —4 scalar constraints
per line observation across N, views.

Notice that in the non-degenerate case, if we treat NN, views as successive overlap-
ping triplets of views, we can extract the maximum number of independent constraints
2N, — 4. We observe that the elementary observation cell for line correspondences is
3 views. Considering all frames at once would help to handle degenerate cases where
the observed line generates two planes that are identical across 3 successive views
or ¥ ~ 7" ). That way, one can pick constraints acting on planes

belonging to far apart views.

4.3.2 From point correspondence

In this section, we derive the set of geometrical constraints provided by feature point
correspondence across N, views. Since the problem of point observation on more
than two views has not yet been completely understood, we propose to address this
problem in details taking increasing number of views one, two, three and generalize

to N,.

From one view

Let us first examine what can be said about a single point observation on one
view. Consider a point P in space, and let X ~ [X Y Z 1]7 be its homogeneous
coordinate in the camera reference frame F. This point is projected onto the image
plane at p of coordinates U ~ [u; wuy us]7.

Considering the first view, the matrix P = [I3,3 0s3x1] is the projection matrix.

Therefore:
el er' X
1~PX= | |X=|a% (4.42)

%)
w

|

wlﬂ l\DH
>
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where €;, €, €3 are the following 4-vectors:

1 0 0
0 1 0
51 - -6_2 = 63 - (443)
0 0 1
0 0 0
Equation 4.42 implies:
Uy é{ i
up | = | el X (4.44)
Us égi

This “up-to-scale” vector equality gives us two linearly independent scalar constraints.

Those two constraints can be chosen among the three following ones:

|

(use; —uje3)’ X =

ol
I

(u3 € — uges)T

0
0 (4.45)
T 0

ol
]

(ug € — u183)
that can be written:

(ﬁla X) =0
(T3, X) =0 (4.46)

<73, X> = O
where the three 4-vectors Ty, T, and 75 are defined as follows:

T = U3 €1 — U _ég
7?2 = Usg 52 ~ U9 53 (447)

T3 = Ug €1 — Up €

The system (4.46) means geometrically that the point P lies on three planes I, II,

and II3 of homogeneous coordinate vectors 7;, 7 and 73 in the camera reference
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frame F. The three plane coordinate vectors may be expanded as follows:

[ % [ 0 l- Uz
0 U3 —Uy
T o o o Ty ~ (4.48)
—Uj —Us 0
0 0] 0

Let us give a geometric interpretation of these planes: Assume that the image
point coordinate vector @ is normalized to @ ~ [u; uy 1]7 (us = 1). Then, we have

the following set of equivalence:

Pell;, & X—u Z2=0
PEHg A=+ UQX—U,1Y:O

Therefore:

e II; is the plane containing the center of projection O, and the line on the image

plane going through p and parallel to the (O, Y.) axis (see Fig. 4.7a).

e Il is the plane containing the center of projection O, and the line on the image

plane going through p and parallel to the (O,, X,.) axis (see Fig. 4.7b).

e [I3 is the plane containing the center of projection O, and the line on the image

plane going through p and the optical center ¢ (see Fig. 4.7¢).

Notice that the three planes contain the optical ray (O, P), line going through the
optical center and the point P in space. Therefore they intersect along this line.
That basically says that 2 planes are enough to extract all the information about the
geometry of a single view. Equivalently, only two equations out the three present in
the system (4.46) are independent.

We choose for simplicity a 2D symbolic representation for the planes Iy, Il and
II3. Each plane is associated to the line of intersection between itself and the im-

age plane. This is shown on figure 4.8. On this figure, each of the three lines are
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Figure 4.7: The three planes II;, II; and II; observed from the projection p of a point
P in plane. Notice that all planes intersect along the optical ray (O, P).

conventionally denoted I1y, I1, and II5.
Note that II; and I, will be defined for any arbitrary image point coordinate

T on the image plane, unlike IT; which is not defined at the camera

o~ [up ug 1]
center ¢ (at that point @ ~ [0 0 1]J7). Although in principle one may choose
any pair of planes among the set {II;, I, 13} (actually linear combinations are also
permissible), in the following derivations, we will choose to keep as two independent

geometric constraints the planes IT; and Il,. This choice is motivated by two reasons:

e Both planes II; and II, are defined over the complete image plane unlike II5.



82

Image Plane
H2 Y p
c Uy
IT
3
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Figure 4.8: Representation on the image plane of the three planes I1;, Il and Il;
associated to an observed point p of coordinates @ ~ [u; us uz]’. Notice that we
take ug = 1.

e They naturally decouple the two image components of the observed points u,

and uz (u3=1), having IT; depending only on u; and II, depending on us.

Actually, the fact that II; and Iy act on the two image axes independently provides
a representation that we believe could be applied to the reduced 2 dimensional case
where the observation is restricted on a horizontal (resp. vertical) line. In this problem

only one of the two planes (II; or II,) would be available.

From two views

As we saw previously, observing a point p on the image plane can be thought of
as observing 2 planes II; and II, in space that intersect along the optical ray going
through the center of projection and the observed 3-D point P (see fig. 4.7ab).

Assume now that the same point P is observed on the second view, and denote
p' its new projection. Let @ ~ [u} uh uj]” be its homogeneous coordinate vector.
See figure 4.4. The two observation points provide two rays in space, one from each
camera position. By imposing those rays to intersect in space, we naturally reach to
the well known epipolar constraint (or coplanarity constraint) between the two views
(eq. 4.24).

Now, instead of thinking in terms of rays, let us think in terms of planes. Those
two observations actually provide two planes each. All those planes can be denoted

[Ty and II, for the first view, and TI{ and IT} for the second view (see fig. 4.9).
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First View Second View
M
1 HZ u) p

2 u, p

Figure 4.9: The two pairs of planes (I1;,II5) and (II7,II5) obtained from the two
projections p and p’ of a single point P in space. The coordinate vectors of p and p’
are U =~ [u; uy uz)]’ and @ ~ [u] uh ub]T respectively. On the figure, uz = uj = 1.

Let 71, 7o, 7} and 75 be the homogeneous coordinate vectors of the four planes I,
IT,, IT} and II} in the first camera reference frame F. Following the same derivations
as the ones done for the one view case, we obtain the following expressions for the

four plane vectors:

First view: | Second view:
ﬁl = U3 El — U 53 ( f’l == Ué a, — U”l 63 (450)
= = — = ! —= ;=
Mg = Uz €2 — Ug €3 l Ty = Uz Qg — Uy A3

where the three vectors @, @, and @3 are the homologous of €;, €;, €; for the second

view:

11 721 31

_ 12 _ T22 _ 32

a; = = a3 = (4.51)
13 T23 33
tl tg t3

These expressions are derived by substituting P with P’ and @ with @' in equation
4.42. The three vectors @1, @5 and @j are then the three row vectors of P’
The four planes II;, IIy, II] and IT), must contain the point P in space. In other

words, they have to intersect at at least one point. This is equivalent to saying that
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their coordinate vectors 7y, o, 7; and T are linearly dependent, or equivalently
that the matrix A = [ T o T Ty } has rank less than 4, or det(A) = 0. After

expansion of the determinant of A, we obtain:

Uy
det(A) = ugus { uh o ouh o oug } Q2 | uy | = usuy (ﬂ'T Q12 ﬂ)
U3 (402)

where the matrix )4 is:

[det(éz,%,@ﬁs) det(e;, €1, G2, a3) det(ey, €, Gs, a3)
Q12 = | det(ey,e3,a3,a1) det(es, e1,as,a) det(er,es,as,a;)
det(ey, €3,a1,a2) det(€s,€1,a1,a2) det(€,eq,ay,qs)

ro1t3 — T31te  Toolz — T3ty Togtz — T3t

= r3ity — Tty T3ty — riats r3zty — rizls

| rute — oty Tiaty — Tty Tista — rash (4.53)
0 t3 —t T T2 T3
= —tz3 0 ror res ro3 | = (ITA)R
to —t; O T3y T3z 733

We recognize the essential matrix () between the two views 1 and 2 (eq. 4.23). Then,
constraining the four planes to have a common point in space is equivalent to setting
det(A) = 0 or @' Q27 = 0. This is the well known epipolar constraint for a pair
of views (eq. 4.24). Observe that choosing the plane II3 or I} (the homologous of
II5 on the second view) among the pairs of planes leads to the same final constraint.
Only the scalar coefficient in the determinant expression is different (referring to the
coefficient uzufy in (4.52)).

Therefore, the two pairs of planar constraints (four planes) provided by two projec-
tive views of a point lead to the same well known epipolar constraint. Let us see now
how one can naturally extend that analysis to the case of three views. Generalization

to N, views will then be straightforward.
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Figure 4.10: The three pairs of planes (II;,11y), (IT},115) and (T1%,11%) provided by
the three projections p, p’ and p” of a single point P in space.The coordinate vectors
of p, p' and p" are W = [uy uy ws]”, W ~ [u] u) uh]" and T~ [ ul wl)T
respectively. On the figure, us = u} = uj = 1.

From three views — Generalization to N, views

Assume we have available three projective views p, p’ and p” of the point P, and
let @ ~ [u} uj uf]” be the homogeneous coordinate vector of p”. See figure 4.4
for general notation. Similarly to the case of two views, these observations provide
now three pairs of planes (II;,I1y), (I}, I15), (IT7,I1%) (see fig. 4.10). The respective

coordinate vector of those planes in the first camera reference frame F are:

First view: | Second view: { Third view:
= = — = _ - - = _ I 17
Ti=uze —ui 3 | Ty =uyl —uias | T =uhb —ulbs
— - = — = ! = =1 __ N7 "
To = U3y — Up®3 | Ty =ully—uhGy | Ty =ulby—ulbs (4.54)

where the three vectors by, by and by are the homologous of @;, @y, a3 for the third
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view:

S11 S21 531

- 512 - 529 - $32

b1 - bg - b3 = (455)
513 523 533
(%] (%) Us

Therefore, from the triplet observation p + p’ < p”, we extract the six planes
I, Iy, ITY, T15, 117, TI5 that have P as common point in space.

Define the 4 x 6 matrix A as follows:
A= [ T To W Ty T T ] (4.56)

Then, any set of four planes among {II;, Ily, [T}, IT}, II{, 115} must have a common
point in space. Consider the non-degenerate case where the three camera positions
are not aligned in space and the observed point P does not lie on either line (O,, O’),
(O, 0%) or (O.,0!). Denoting X = [X Y Z]T the Euclidean coordinate vector of

P in the first camera frame, we have successively for all scalar a:

(0,0): X # aR'T
(0, 0" : X # aS7'V (4.57)
(0,0": X # a(ST'V-R'T)-R'T

Under these conditions, any set of three vectors picked in {71, T, T, Ty, Tt , 7o } 1S
linearly independent. In other words, any three columns of A are linearly independent.

In that case, we wish to investigate how many independent conditions we can write
to make every set of four vectors picked in {7, 7o, T}, T, T}, Tg } linearly dependent.
This is satisfied if the 6 column vectors of A can be expressed as linear combinations
of any 3 basis vectors. Under the condition that we are not in a degenerate case, this
condition is fullfiled as soon as any 6 — 3 = 3 independent sets of linear dependence
equations of 4 vectors are established. In other words, we only need to enforce any

three 4 x 4 minors of A to have zero determinant. This is equivalent to having
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that the last three column vectors of A expressible as linear combinations of the
three first columns vectors. Under this condition, any set of 4 vectors picked among
{71, Ta, M), Ty, T, Ty } will be linearly dependent. This number of constraints is really
6 — 3, where 6 is the number of planes available from the 3 views, and 3 = 4 — 1 is the
rank to which we want to bring any minor of 4. In the case of N, views, we would
have 2N, — 3 independent constraints, since 2N, planes would be available (note that
in the case of NV, views, we have 6(N, — 1) — 1 = 6N, — 7 motion unknowns).

Now denote by A the 4 X 4 minor constructed by picking the 5t jth k™ and
I*h column of A (1 <i<j<k<l<6). This constitutes fifteen possible matrices.
In the non-degenerate case, we can choose any three 4 x 4 minors, and force their
determinant to zero. Doing so, we force all the others minors to have determinant zero.
For example, one can take the 3 minors Ajs34, A1o56, and Assse. This is equivalent
to considering the three pairwise of views and write the epipolar constraints (see the
previous section dealing with the two views case). Other combinations are possible,

such as Ajoss, A1236 and Ajays. For that particular choice, the set of constraints is:

det (A1235) = det<fl, ‘7—T‘2, ﬁll? 7/1,)

det(A1236) = det(fl R _7_'('—2, 7’1 R ﬁg)

0
0 (4.58)
0

I

det(A1245) = det(?ﬂ, 72, 7’2, 7_'(:,1,)

Observe that all these constraints combine informations from the 3 views (unlike
the epipolar constraints which act only on pairs of views), taking the first view as
reference. For example, det(A935) = 0 means that the two planes IT; and IT? (coming
from the two last views) intersect along a line that needs to be coplanar with the
optical ray (O.,p) provided by the first view. This is equivalent to enforcing the
point p (on the first view) to lie on the projection of the line of intersection between
the planes [T} and IT/.

Although we know that three constraints are sufficient (and necessary) for the
non-degenerate 3 views case, we may add to these three last constraints a fourth one,

det(A;246) to make them symmetric. That way, the problem is over-constrained and
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is expected to handle better some degenerate cases (see [60]). We have for this last

equation:
det(A1246) - det(Tfl, 9, 72, _//) =0 (459)

Consider now as total set of constraints the equations given in equations (4.58)
and (4.59). Let us now give a geometrical interpretation of those algebraic equations:
The two last views generate four lines in space coming from intersections of pairs of
planes: Ay =111 NI}, Ay = ) NII5, Ay = I, NIIY and Ay = [, NIT4, and let Ay, Ao,
Az and Ay the projections of those four space lines on the first camera image plane.
The four trilinear constraints are then equivalent to enforcing the observed point p
on the initial view to lie on all four images lines A, Ay, A3 and A\y. Observe that those
lines may be thought of as generalized epipolar lines attached to P.

After expansion of the first determinants det(Aq35), we get:

det(A1235) = Ug{
usususy det(€r, 8, @1, b1) + ugupu! det(ey, &, by, @) +
uguiuy det(ey, &, b, @3) + ugu| v det (e, e,, @s, bs) +
ususuy det(es, €1, a, by) + uguiul det(es, €y, by, @

)

3, €1, b1, @3) + uguiul det(es, &, @3, b3) +
ujupuy det b)
)

(
(
(s
usuyuy det(e
(e
(€

1
)+
) +
€2, €3, 01, b1) + uyusul det(ez, 83, by, @;) +
)

ron
wuyuy det(€z, €3, by, @3) + uyul ! det(e,, €5, as, by }

or:
3
det(Auss) = Ug Z Uyg {Uﬁuqﬁss - Ufo,ulff/;m - UI1UI3’7;31 + Uéugﬁu}
—
Z (4.60)
where we recognize the trifocal tensor Tix = rju — t;s for i,j,k = 1,... , 3 pre-
g J J J

viously introduced for line correspondence (eq. 4.34). Proceeding similarly with the
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other determinants, we obtain the following set of trilinear expressions:

r

(4.61)

Therefore, setting the determinants to zero lead to the following set of algebraic

constraints:

)
3
Doy U {uiu Tiss — uhu Tis — wiul Ty + uhui T b =0
3
< D im Wi {ujus Tiss — uhuy Tig — whul Tiso 4+ ufuf Taa} = 0 (4.62)
X i
Sy u {uhul Tizs — uhu| Tias — ubul Tiar + ubul Tim } = 0

3
Yoy wi {ubul Tigs — uhul Tiog — uhul Tizo + ubuly Tion} = 0

\

These are identical to the ones obtained by Hartley in [54] and Shashua [56] and called
trilinear constraints. In their work however treat them as purely algebraic constraints
(constraints on the point locations on the image plane) in an uncalibrated scenario.
In that sense they show that they are algebraically independent (in fact, all other
combinations of algebraic constraint are also independent). In our case, we keep a
geometrical interpretation of those equations (constraints on the motion parameters,
assuming point coordinates given) and show that, in that sense, only three of them are
independent. Indeed, we recall that there are exactly three independent constraints
among the ones listed in (4.62).

Observe that this list of four trilinear constraints may also be written:

(4.63)

where X" o [\ MXET (kK =1,...,4) is the homogeneous coordinate vector of the
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transferred line Ay on the first image plane:

p
1 1,0 W [ 1,0
Ai = uwiu Tizs — usu Tig — wiul Tisy + uhult T
2 _ 1.1 ' /i I/}
4 A7 = uyuy Tiss — usul T — wjul Tise + usts Tiiz (4.64)
3 ron 1,0 oo )
/\i = U2U17;33 - U3U17;23 — U2U37;31 + U3U37;21

4 — ! 1t ! 1 ! n ! 1
A = uyuy Tiss — uay Tiog — ubusy Tizo + unuy Tioo

Observe that the four equations (4.64) provides us with closed-form expression for the
transferred line coordinate vectors as a function of the motion parameters (embedded
in the tensor 7Ti;;), similarly to the epipolar line equations 4.22 and 4.23 in the two
view case. As formulated in equations 4.62 or 4.63, the trilinear constraints have also
been called trilinearities [61, 62].

In this new derivation, we not only give a geometric understanding of these quan-
tities, but we also precisely know how many independent entities can be extracted
(three). This provides also ways to extend the analysis to N, views. Indeed, as we
mentioned earlier in this section, likewise the 2 and 3 views cases, one single point in
space observed on N, views provides 2N, planes (or 4-vectors) that have to intersect
at this point. That means that every combination of 4 vectors have to be linearly
dependent. Assuming that the observation and the camera geometry is not degener-
ate, making any 2V, — 3 combinations of four vectors linearly dependent are enough
(for N, = 2, there is only 1, the epipolar constraint, for N, = 3, there are 3). Taking
more combinations helps to handle degenerate cases and effect of noise.

In the case of N, = 4 views, one can write for a point observation 5 indepen-
dent constraints that can be again picked among pairwise epipolar constraints (for
example, between views 1-2, 2-3, 1-3, 2-4 and 3-4), or the trilinear constraints (taking
two planes on one view, and the two others on 2 different views). A new type of
constraint can be also considered by taking one vector on each view (which makes
four 4-vectors) and forcing the induced 4 x 4 matrix to have zero determinant. This
leads to the quadrilinear constraints first mentioned by Triggs [63] and more recently

by Hartley [64] and Heyden [65].
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If more than three views are used in the basic observation cell, the dimension of
the motion space is also larger. Indeed, there are N, — 1 rigid motions in a set of N,,.
This leads to estimating 6(/V,, —1) —1 motion unknowns (the overall scene scale cannot
be recovered). Under these conditions at least N, = (6N, — 7)/(2N, — 3) points are
necessary to reconstruct in the calibrated case the complete camera geometry. For
N, =2, N, = 5 points are enough (well known), and for any number of views larger
than 2, at least IV, = 4 points are necessary. Notice that in the limit, when the
number of views tends to infinity, three points is the minimum required.

It is important to notice that the set of trilinearity equations (4.62) constitutes
only one particular choice of motion constraints. The previous derivation was partic-
ularly useful for giving new interpretation of them. At this point, one can still pick
the 3 epipolar constraints as set of motion constraints for three views. That way, in
the non-degenerate case, considering any number of views as successive overlapping
triplets of views allows us to extract the maximum information in terms of motion
constraints. Indeed, if the sequence consists of a stream a N, images, applying for
example the 3 epipolar constraints to each successive overlapping triplets of views
exactly leads to 2N, ~ 3 constraints. This is however not the case while considering
only successive pairs of views (that way, only N, — 1 scalar constraints would be
retrievable).

In conclusion, three views is the fundamental observation cell for extracting all the
geometrical constraints on the motion parameter for both point or line observation.
The only advantage of processing the complete set of frames at once (in a batch
mode) would be that one can take larger processing time baselines for the observation
(by choosing constraints acting on far apart frames) and therefore make the motion
estimation more accurate (in the presence of noise). This would also help to handle

possible degenerate cases.
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4.4 Long sequence processing - Experimental re-

sults

In order to capture an entire scene, two or three images are often not enough. In most
cases, a long sequence of images will be necessary for an complete scene coverage. We
choose to describe the implementation details of motion and structure estimation in
the context of two long sequence experiments. The first one is a reconstruction of
a rock from an orbital image sequence, and the second one is a reconstruction of a

corridor in a long navigation sequence.
4.4.1 Rock experiment

Experimental setup:

Figure 4.11 shows a few images of a complete sequence acquired by a calibrated
camera while rotating around a rock. The complete sequence is 226 frames long,
each image being of size 640 x 480. For acquiring the sequence, the rock was po-
sitioned on a turn table that was rotated by 2 degrees between consecutive frames.
Consequently, throughout the whole sequence, the camera made a turn and a quar-
ter around the rock (considering the relative motion of the camera with respect to
the rock). The first processing step consists of tracking point features on the im-
ages using multi-resolution implementation of the standard optical flow algorithm
from Tomasi and Kanade [32, 33, 34, 35]. This method is applicable since the
image disparity between consecutive frames is relatively small (maximal pixel dis-
placement of about 10 pixels). Figure 4.12 shows the results of tracking on the
six images shown on figure 4.11. These feature coordinates are the input data
for our motion and structure estimator. The reader may visit our web page at
http://www.vision.caltech.edu/bouguetj/Motion/comet.html to better visual-

ize the input data (available in the form of movies).

Motion and structure estimation:
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Figure 4.11: Rock experiment: Six images among the 226 images constituting the
sequence. Between two images shown on this figure, the turn table rotation angle
was 60 degrees (images taken at position angles 0, 60, 120, 180, 240 and 300 degrees).

Figure 4.12: Rock experiment: Figure (a) shows the total set of feature points tracked
between the first image and the second one (a total of 431 features). The other figures
show similar tracking results on the 5 other images shown on figure 4.11. Notice that
the total number of tracked features varies: on the five remaining images, there are
respectively 390, 405, 415, 423 and 295 tracked points. The tracking is processed with
an accuracy of approximately 0.2 pixel.
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We separate the overall reconstruction process into two steps: first motion (and
camera positions) estimation, and then 3D structure reconstruction.

In the previous sections 4.2 and 4.3, we developed the fundamental theoretical
ground for estimating motion between a set of two or three perspective views of a
rigid scene. Using that same formalism, we also extended the analysis to any number
of frames. We choose to process the sequence by overlapping sets of three frames for
enabling relative scale estimation (recall that the relative scale is part of the motion
unknowns that can be estimated).

Observe that no feature point is tracked throughout the entire sequence. Point
feature appear and disappear from the visual field due to natural occlusions existing
in the scene, as well as changes in illumination. Experimentally, the average life-time
of a feature is between 25 to 30 frames (meaning a differential rotation angle of 50 to
60 degrees between appearance and disappearance). This constitutes an important
experimental observation since the motion estimation algorithm cannot be applied on
any set of three views picked within the sequence. The views need to be sufficiently
“close” to each other in order to share a sufficient number of feature points to allow for
motion estimation (for example, one cannot use frames taken at angles 0, 90 and 180
degrees). Therefore, one possible strategy is processing the sequence by overlapping
triplets of consecutive views. However, that strategy may not be the optimal one
given the small parallax between consecutive views. Indeed, as the motion parallax
decreases, motion parameters are more and more unreliable to estimate. In the limit,
if the translation vector is zero between consecutive views, then the full motion model
cannot be estimated (notice that a reduced motion model may be observable, but
that observation goes beyond the scope of this work). Consequently, it is beneficial
to process motion using a non unitary baseline. In other words, a number of frames
in the original sequence may be skipped between the three frames used as elementary
observation (for example processing motion between frames 1, 5 and 9 would mean
skipping frames 2, 3 , 4, 6, 7 and 8). In this experiment, we choose a baseline of
baseline = 4 frames for motion estimation. This means that within every triplet of

views, 2 * 3 = 6 frames are skipped. Observe that the final goal is reconstructing the
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three-dimensional structure of the rock. For that purpose, camera positions are the
real quantities that one needs to estimate (necessary for 3D triangulation - see section
4.1.2). Instantaneous motion is only a way to access to position (or trajectory).
The step of computing trajectory from motion is done by integration (or motion
concatenation). Therefore, all errors on the instantaneous motion are transferred
to position information via integration with no hope for recovery (since the whole
process is done in “open-loop”). Therefore, it is absolutely crucial to limit the errors
on the motion parameters (especially the bias on the motion estimator), and limit
the number of integration steps. Consequently, it is also beneficial to choose the
largest possible baseline between observation frames. Here, we experimentally picked
a fixed baseline of 4 frames (i.e., an elementary rotation of 8 degrees of the turn
table between two consecutive frames). The average number of features used for
motion estimation is 255 (i.e., average number of point features present over at least
2% 4+ 1 = 9 consecutive images of the initial sequence). One other important
component of the motion estimation stage is the rejection of false tracks. Indeed, it is
quite well known that motion estimation is very sensitive to feature outliers [45, 51].
Therefore, at every step, every point that does not closely satisfy the algebraic motion
constraints equations (4.62) are rejected (using the motion parameters of the previous
step). All the remaining points are then used for motion update (through gradient
descent). Experimentally, this segmentation step is extremely crucial [45, 51] for
avoiding divergence of the motion estimator. Notice however that a certain amount
of smoothness in motion is required for validating such a approach . Indeed, at every
estimation step, the instantaneous motion is implicitly assumed to be similar to that
of the previous step.

For addressing motion estimation accuracies, other that looking at all the motion
parameters, let us focus on the one that is most representative: the instantaneous
rotation angle. The ground truth for instantaneous rotation angle is 4+ 2 = 8 degrees
(4 for the frame baseline, and 2 for the elementary rotational motion of the turn
table between consecutive frames of the original sequence). After running the motion

estimator, this angle was estimated to 8.034 degrees (on average) with an error of 0.057
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Figure 4.13: Rock experiment: Top view of the trajectory and 3D structure recon-
structions. The 3D structure contains 5818 points.

degrees in standard deviation. The peak values for this angle throughout the sequence
were 7.934 and 8.146 degrees. The difference between the mean instantaneous rotation
angle (8.034 degrees) and the ground truth (8 degrees) is called the “bias rotation
error” (equal to 0.034 degrees). We will see later that it is essential to have this bias
as small as possible for accurate trajectory reconstruction.

Figures 4.13 and 4.14 show a top view and a side view of the overall reconstructed
camera trajectory together with the estimated 3D structure of the rock. The 3D
structure was estimated using the tools developed in section 4.1.2: every feature
point is triangulated using all the views on which it is observed (all the optical rays
are used). That is possible once all the camera positions are computed by integrat-

ing all the elementary instantaneous motions. Observe on that figure how well the
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Figure 4.14: Rock experiment: Side view of the trajectory and 3D structure recon-
structions. The 3D structure contains 5818 points.

Figure 4.15: Rock experiment: One view of the triangulated mesh (5732 vertices and
11436 triangles).
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trajectory closes onto itself (the two trajectory curves on the overlapping segment
are indistinguishable one from the other). The final absolute orientation error (about
the vertical Y, axis) is 1.84 degrees. Notice that this final orientation error directly
corresponds to the “bias rotation error” (0.034 degrees) integrated over the entire
motion length (55 motion steps): 1.84 a2 0.034 % 55. Therefore, it is absolutely crucial
to design an unbiased motion estimator. There might exist some motion algorithms
that generates less bias than the one we are using (from the trilinearities (4.62)). This
is an fundemental subject for future research.

After one complete turn, the estimated camera position differs from the true one
by 0.17 units of translations (units of the plots of figures 4.13 and 4.14)

Notice that the scale was appropriately propagated throughout the sequence: no
significantly shrinking or expansion is noticeable after a complete turn around the
rock. Of course, if we were to process a lot more than one turn in an “open loop”
fashion (a longer sequence), then scale divergence would start appearing. That is an
intrinsic behavior of all sequential motion estimators operating in open loop. One
way to avoid scale divergence would be to automatically detect trajectory closing,
and enforce it at every turn. This process could be achieved either based on motion
(by recognizing that the computed camera position overlaps with the original camera
position), or based on structure observation (by recognizing some areas in the scene
that have been already visited and match feature points). Both strategies could also
be used in conjunction for better results. That is an essential part of future work that
ought to be carried out for designing a full visual based navigation system. In that
present experiment, we illustrate the fact that at least a full orbital turn around an
compact object (that could be a comet) can be sufficiently well estimated in order to
achieve acceptable 3D reconstruction qualities.

Observe that the structure can only be reconstructed up to an overall scale. In
this experiment, the final reconstructed scene was scaled to fit in a box of size 4 x 4 x 4
units of translation (at the frame baseline 4). In this unit measure, the surface errors
are estimated to .2, which corresponds to a relative reconstruction error of 5%.

Figure 4.15 shows one view of the triangulated mesh of the reconstructed rock.
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This mesh was obtained by connecting the point features present in the structure
using standard Delaunay triangulation [66].
All data and results are available online in the form of movies and VRML (or Open

Inventor) meshes (http://www.vision.caltech.edu/bouguetj/Motion/comet.html).

4.4.2 Corridor experiment

The same reconstruction scheme was applied on a long indoor navigation sequence.
Figure 4.16 shows 6 images among the 3985 that constitute the entire sequence. The
sequence was acquired by a camera attached on a rolling cart, manually pushed by
two operators in a corridor (with almost uniform speed). Observe from the images
that the corridor walls were previously covered with black and white sheets for gener-
ating texture. Without these additional sheets, some portions of the sequence would
have been totally featureless (in such a case, no motion and structure processing is
possible).

Similarly to the previous experiment, we first track point features throughout the
image sequence. The average number of points detected and tracked on each image
1s 353. Tracking results are illustrated on figure 4.17.

The motion (and overall camera trajectory) is computed using a temporal baseline
of 16 images. That basically means that the first three images used for motion
estimation are the first, the 17'" and the 33" (recall that motion estimation is done
on the basis of overlapping triplets of frames). The average number of point feature
used per triplet of views is 128.

Figure 4.18 shows a top view of the reconstructed camera trajectory, together
with the reconstructed corridor. In that present experiment, we noticed a large scale
divergence while trying to propagate the scale factor from triplet of views to triplet of
views (from beginning till end of the sequence, the computed norm translation varies
from one to approximately two). We believe that the reason for that noticeable
divergence is the large total number of motion steps that need to be concatenated

(249 instead of 55 for the rock experiment). Although the ground truth for camera
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Figure 4.16: Corridor experiment: Six images among the 3985 images constituting
the entire sequence. Each image is 640 x 480 interlaced. After de-interlacing, they
are 640 x 240.

motion and trajectory was not known in that experiment, it is clear that the real
displacement speed did not increase by a factor of two between the beginning and
the end of the sequence. For that reason, we decided to compute camera trajectory
while enforcing unit length translation throughout the entire sequence (notice that
this is not strictly true either, since the real motion was not exactly uniform in speed).
Figure 4.18 shows the motion and structure results assuming uniform translational
speed. A side view of the same constructed scene is shown on figure 4.19. Notice that
this figure exhibits global trajectory estimation errors. Indeed, on that figure, the
camera appears to have climbed up a hill (by approximately 15 units of translation),
while the real trajectory was planar. These errors are due to the fact that a full 6 DOF
motion model was used here allowing for any type of motion is space. In practical
planar navigation scenarios, it is possible to avoid that problem by choosing a purely
planar motion model, and thereby enforcing the resulting reconstructed trajectory
to lie on a plane. This non-planarity on this current reconstruction is however quite
minimal compared to the overall trajectory length (approximately 249). In that sense,
the relative non planarity error is approximately 15/249 ~ 6%.
All data and results are available online at:

http://www.vision.caltech.edu/bouguetj/Motion/navigation.html.
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Figure 4.17: Corridor experiment: Tracking results on the six images of figure 4.16.
The baseline to display tracking results is 16 images (i.e., (a) is the computed optical
flow between the first and the 17" image).
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Figure 4.18: Corridor experiment: Top view of the camera trajectory and 3D structure
reconstructions. There are 14850 points in the structure.
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Figure 4.19: Corridor experiment: Side view of the camera trajectory and 3D struc-
ture reconstructions. There are 14850 points in the structure.
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4.5 Conclusions

We have presented in this chapter the fundamental tools for 3D modeling based on
passive visual input.

The main advantage of passive techniques for scene reconstruction is that no
other device besides a single camera is needed. In addition, by moving the camera
all around the object to acquire, it is possible to achieve a globally consistent 3D
reconstruction. This constitutes another significant advantage compared to standard
structured lighting technologies that very often require registration (or alignment) of
several individual 3D scans in order to achieve complete models.

Finally, since camera trajectory is computed together with the three-dimensional
object structure, the camera does not have to be attached to any computer-controlled
motion stages (unlike most active scanning techniques that require highly accurate
motorized transports).

However, in order to apply passive techniques for 3D modeling, the object to model
1s required to be sufficiently textured in order to allow for image feature detection and
tracking. This is the main limitation of passive technologies: if the object of interest
is textured-less or contains sparse texture, then no (or very few) point or line features
may be extracted from the acquired images. In that case, it is impossible to achieve
a dense object surface reconstruction.

The following chapters 5 and 6 propose alternative methods for modeling possibly

textured-less objects using active (or structured) lighting approaches.
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Chapter 5 Grayscale structured lighting

5.1 Introduction and motivation

In the previous chapter, we presented the basic tools for reconstructing the three-
dimensional shape of objects when using the natural texture present in the scene
for extracting elementary geometrical descriptors such as points and lines. This is
also known as passive techniques for 3D reconstruction. We also showed that 3D
reconstruction is achievable even when the overall camera motion is not previously
known.

Unfortunately, passive techniques can only be used when the scene contains a
sufficient amount of texture. For modeling textured-less objects, a different class of
techniques can be applied: active (or structured) lighting techniques.

Structured lighting is based on projecting light patterns in the scene, and infer its
three-dimensional shape from the images acquired by a camera placed at a different
location in space. The major advantage of this category of approaches is that the
complete 3D acquisition system can be made fully automatic, and very robust with
respect to changes in texture in the scene.

There exists many different versions of structured lighting methods, mainly de-
pending on the choice of projecting device (laser projector, LCD projector, sets of
mirrors) and projected patterns (points, lines, stripes, circles, ...). There exists a very
large history of past work on active lighting techniques for 3D scanning (dating back to
the early 80's). We propose here to cite a limited list of references (papers and books)
that contain most of the relevant work on the subject [6, 7, 67, 68, 69, 70, 71, 4, 72, 9].
Among those references, the book by Klette, Schluns and Koschan [9] provides a very
complete overview of most successful active lighting techniques when using laser-based
or LCD-based projecting devices, with one or more cameras. In particular, when a

LCD projector is utilized, standard active techniques are mostly based on projecting
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binary stripe patterns consisting of a succession of vertical black and white stripes
across the image at different resolutions [7, 67]. The new technique that we describe
in that chapter differs form that binary stripe technique in the nature of the pat-
terns, as well as in the type of processing [68]. It consists of projecting a sequence of
periodic gray-scale patterns (sinusoidal wave along the horizontal direction, uniform
along the vertical direction). A few sample patterns may be found on figure 5.3.
One may notice that all the patterns shown on this figure are several phase shifted
versions of a unique sinusoidal waveform. As a consequence, every physical point
in the scene is illuminated by a light intensity that is periodic in time with a phase
linearly depending upon its horizontal coordinate in the projector reference frame.
Therefore, extracting the phase of that intensity function (in time) directly leads to
an estimate of the horizontal coordinate in the projector reference frame. Once this
is done, correspondence between projector image and camera image is established (in
a dense way), and 3D shape is reconstructed using geometrical triangulation.

We first describe in section 5.2 the final 3D reconstruction stage leading to the
final 3D shape of the scene (geometrical stage). In the following section 5.3, we
explore the details of extraction of the image features necessary to perform the geo-
metrical reconstruction (dense correspondence problem). This is the main novelty of
our method. Experimental results are presented in section 5.4 followed by a complete

noise sensitivity analysis in section 5.5, and some conclusions in section 5.6.

5.2 Depth measurement

Figure 5.1 gives a description of the general setup used for 3D scanning. On this
figure, the scene is represented by an object that is faced by the two main devices
used for scanning: a camera and a light projector.

The projector projects a series of 2D patterns with varying brightness profile
along the horizontal direction (z,) and uniform brightness profile along the vertical
direction (y,). Figure 5.3 shows a few sample patterns. Consequently, only the

horizontal coordinate (x,) in the projector reference frame is directly observable (in
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Figure 5.1: General setup: The camera and the projector are facing the scene con-
sisting of one or more objects. The projected patterns are uniform along the vertical
direction and vary sinusoidally along the horizontal direction. Then, in the projector
image, two points at the same vertical locations are indistinguishable. Equivalently,
we can think of the system as follows: the projector projects vertical planes defined
by their horizontal position (similar to standard vertical stripe methods).

Horizontal coordinate
of the plane IT in the
projector reference frame

Figure 5.2: Triangulation stage: The 3D coordinates X, of a point P in the scene may
be computed from its pixel coordinates T, on the camera image, and its horizontal
projector coordinate z,. The triangulation operation consists then of intersecting the
plane IT with the optical ray (O.,Z.). This may be done only if the relative spatial
position of the projector with respect to the camera, is known (from calibration).
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the projector image, there is no disparity between points along vertical band). In
other words, one can only directly identify which vertical plane Il illuminates a given
point T, observed on the camera image, not its vertical position along that plane.
From the camera however, the full image of the scene is observed, which means that
each pixel T, = [z, v.]” in the image is the projection of a point # in the scene that
lies on the optical ray (O, T.) (see figure 5.2). Therefore, once its associated projector
coordinate z, is identified, the point P may be localized by intersecting the projector
plane IT with the corresponding optical ray (O.,T.). This final 3D recovery stage is
called triangulation. On figure 5.2, the coordinate vector of P in the camera frame
is denoted X,. A method for establishing correspondence between image coordinates
and projector coordinates (T, <+ x,) is presented in the next section 5.3.

For now, let us go through the derivation of the triangulation operator (denoted

A) that returns the coordinate vector of P in the camera reference frame X, from its

image and projector coordinates z. and xp:

X, = AT, z,) (5.1)

Let X, = | X. Y. Z ]7 and 7(—,, =[] X, Y, Z, 7 be the 3D position coordi-
nate vectors of P in the camera and the projector reference frame respectively. Let us
make a minor change in notation by denoting 7, = [z, y. 1)7 and 7, = [z, vy, 17
the respective homogeneous coordinates of the projections of P onto the camera and

projector image planes. The following expressions relate image coordinates to 3D

coordinates:
_ . -
Te=| y. | = Zic)‘(c (5.2)
L 1 A
- . Z
=l | =5 % (53)
1
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From pre-calibration, we also know the relative positions of the camera and the pro-
Jector. In other words, we know the rigid body transformation equation that leads
the 3D coordinates X, of any point P in the camera reference frame to its coordinates

in the projector reference frame jx;p:
X,=RX_+T (5.4)

where R and 7T are the rotation matrix and the translation vector that define that
rigid motion between projector and camera. We will assume those two quantities

known from pre-calibration:

Ry Ry Ris T
R= R‘Zl RQQ R23 T = TQ (35)
R31 R3y Rss 1;
By substituting equations 5.2 and 5.3 into equation 5.4, we obtain:
Lp
Zy |y | =2 RT+T (5.6)
1

Since we do not have direct access to the second projector coordinate y,, the second
equation in (5.6) may be dropped, leading to the following system of two equations

and two unknowns:

Tp

1

Zp == ZC R[I,B] TC + 7}1’3] (:)7)

where [} 3 is the 2 x 3 matrix containing the first and third row of the rotation matrix
R, and Tj; 3 = [Ty Tg}T is a 2-vector containing the first and third coordinates of the

translation vector 7.
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From 5.7, we can solve explicitly for the depths unknowns Z, and Z,,:

c

- h/_[_1 T[I,S} (58)
Zp
where M is the following 2 X 2 matrix:
_ Lp -
M = —R[1’3] e (09)
1

A closed form expression for the depth in the camera reference frame Z, may then be

derived:

TI - wp T3
(—Rp) + 7 Ria), T

Z. = (5.10)

where Ry = [Ri1 Ri Ri3]" and Rig) = [Rs1 R Ry3|" are the first and third
rows vectors of R. Notice that the denominator of equation 5.10 is a scalar product.

Observe that equation 5.10 may also be written in the form of equation 2.33:

7, = (5.11)

where @ is the coordinate vector of the plane IT in the camera reference frame (using
dual-space formalism):

—Rm + 2, R[g]

5.12
Tl — Iy T3 ( )

w =

Then, triangulation is possible if and only if the vector @& is well defined, or equiva-
lently if 77 — 2, T3 # 0. This is equivalent to enforcing the optical ray (O, T.) and
the plane IT to intersect each other (see figure 5.2).
Under that condition, the final expression for X is:
T1 — Tp T3

X, =27, = — T, = AT, 1p) (5.13)
‘ (—Rpy + 2, Ri), Te) !
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which concludes the derivation of the triangulation operator A introduced in equa-
tion 5.1.

Observe that the plane IT is the plane spanned by the vertical line X (in the
projector image) of homogeneous coordinate vector N~ [1 0 —x,]7. Therefore, the
plane coordinate vector @ could also have been easily computed from equation 2.41:

RN

W= Ty (5.14)

Equation 5.13 is then equivalent to equation 2.43:

—
— T, \) T,
(R" X\, T,)

Notice that in order to compute the scene depth at a pixel T, it is necessary to

know its corresponding horizontal projector coordinate x,,. A technique for computing

that correspondence is described in the next section 5.3.

5.3 Temporal processing for correspondence

The main novelty of our technique is in the process of computing the correspondence
between image coordinates T, and projector coordinates x,. For that purpose, we
project a succession of horizontally shifted grayscale sinusoidal patterns (see section
5.3.1). Then, from the temporal brightness information collected from the images,

we recover, at every pixel T, the corresponding projector coordinate .

5.3.1 Sequence of patterns

The projector projects a succession of N grayscale patterns which are translated from
one to another along the horizontal direction (in the z, direction). Figure 5.3 shows
four samples patterns. In this case, a sinusoidal waveform is chosen, and N = 32
patterns are projected (fewer patterns might be sufficient).

Figure 5.4 shows the horizontal profile of two patterns, the first one and the gth
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Figure 5.3: The set of projected pattern: We project a succession of N = 32 sinusoidal
wave patterns of one period over the screen width of 640 pixels. The height of the
pattern images is 480 pixels. The brightness extrema of the brightness wave are 255
and 176. Two consecutive patterns are shifted to the right by 20 pixels one with
respect to the other (640/32). We show here a sample of 4 patterns among the 32:
the first (pattern #0), 9" (pattern #8), 17*" (pattern #16) and 25™ (pattern #24).
Notice how the sinusoidal patterns translates to the right. Notice as well that all
patterns are uniform along the vertical direction.
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Figure 5.4: Brightness profile of two of the pattern: All the patterns have a similar
sinusoidal shape with extrema 255 and 176. This figure shows the horizontal bright-
ness profile of the first (pattern #0) and 9" (pattern #8) projected patterns. All
of them are horizontally shifted to the right (by 20 pixels between two consecutive
ones). Notice that the waveforms show only one period of the sinusoid.
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one (therefore as a function of x,). Notice that pattern #8 is shifted to the right by
a quarter of period (7/4 phase) with respect to pattern #0.

5.3.2 Temporal processing of the brightness function at every
pixel

As each pattern is projected onto the scene, one camera image is acquired (see figure
5.5). Throughout the sequence, one given pixel Z, corresponds to a unique point P
in the scene. This point P is also illuminated by a unique vertical stripe defined
by one horizontal coordinate z, in the projector image. We know from section 5.2
that the 3D location of P may be computed from the image-projector correspondence
Z, <> z,. We will show here that given the temporal brightness signal at a pixel T,
we can infer its corresponding projector coordinate z,.

If we observe the temporal patterns of the incident light at two points P, and P»
in the 3D scene, they only differ from the phase. Indeed, they are both sinusoidal
signals, but one is shifted with respect to the other by an amount that is directly
related to the difference of their projector coordinates x,. For example, the temporal
signal attached to a point illuminated by the medium projector stripe z, = 320 will
be 7 phase shifted with respect to that of a point illuminated by the first stripe
z, = 1. There is therefore a linear one-to-one map between the temporal phase shift,
and the projector coordinate. Extracting the phase shift of the incident light signal
corresponds to estimating the coordinate in the projector image of the vertical stripe
that lit the observed point in the scene.

However, we don’t have direct access to the incident light going in the scene, but
only the reflected light leaving the object and going to the camera sensor. If we assume
that the material reflection function in the scene and the imaging sensor (the camera)
have significantly linear behaviors, we can still make the same phase statement on
the temporal brightness waveform collected in the images for every pixel. Therefore,
the problem of extracting projector coordinate at a given pixel in the image directly

translates into estimating the phase of the temporal brightness signal at that pixel.
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Figure 5.5: The set of acquired images: One image is acquired per pattern. We show
here four of them (out of 32): the first one (#0), the 9" (#8), the 17" (#16) and
the 25" (#24). Across time, every pixel Z. in the image sees a sinusoidal wave. See
figure 5.6. From the phase shift of that sinusoidal wave, we can infer the coordinate
z, of the vertical plane in the projector that lit the point P in space. Once z, is
estimated, 3D triangulation (sec. 5.2) can be performed.

Figure 5.5 shows an example set of collected images.

Figure 5.6 shows the temporal brightness at 5 different pixels located on the same
row in the image, as a function of time (or patterns index). Notice that the waveforms
are all sinusoidal, and differ one from the other in amplitude (A), offset (B) and phase
(®). They all have the same frequency: wy = 27/N, where N = 32 is the number of
patterns.

Let us define I(n) to be the observed temporal brightness function at a given pixel
T, = (x.,¥.) in the image, as a function of n, the pattern number (n goes from 0 to
N — 1 and is sometimes associated to time). For clarity reasons, we will not index
I(n) with the pixel location Z.. However the reader needs to keep in mind that this

function is different from pixel to pixel. We can model I(n) as follows:
I(n) = A sin(won — @) + B (5.16)

Given the type of pattern we use in that particular case (a single period sinusoidal
waveform), the phase shift ® can be shown to be linearly related to the projector

coordinate z, through the following one-to-one equation:

(5.17)

if @ is assumed to be expressed in the 0 — 27 range, and N, is the width (in pixel) of
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Figure 5.6: Temporal brightness value at every pixel T, in the image: Every pixel T,
sees a sinusoidal brightness wave pattern going across it as a function of time. The
figure shows that brightness function for 5 different pixels picked on the same row
(y. = 350), at positions z. = 50, z, = 137, z, = 225, z. = 312 and z, = 400 (this
corresponds to a lower row in the images 5.5). Notice that all the wave forms are
sinusoidal with different phases, amplitudes and offsets. The phase information will
give us direct estimate of the vertical projector coordinate z,, This is that quantity
that we wish to extract from the acquired waveforms.
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the projector image (N, = 640 pixels here). Therefore, estimating z,, at every pixel
is equivalent to estimating the phase shift @ of the associate temporal brightness
function.

Define now two quantities a and b as follows:

a = (I(n),sin(wen)) = 72\[— 2 I(n)sin(wgn) (5.18)
b= —(I(n),cos(won)) % I(n) cos(won) (5.19)

=0

3

One can see that given the model equation 5.16 for the temporal brightness function

I(n), we have the following properties for a and b:

a = Acos(®P)
b = Asin(d)

(5.20)

The proof of those relations is relatively straightforward (it only involves simple
trigonometry). The most interesting feature of those relations is that neither a nor b
contain the offset B. That allows to naturally isolate the amplitude A and the phase
®. Actually, the quantities ® and A are respectively the argument and modulus of
the complex number a + ib (¢ is the pure imaginary number such as 2 = —1), and

can therefore be easily extracted independently:

® = arg(a+ib) = arctan(b/a) (5.21)
O.
A = |la+ib| =Va® +b?

Notice that the arctan function here is assumed to return the argument in the 0 — 27
range without any 7 ambiguity. In other words, we have access here to both values a
and b not only the ratio b/a between them. There is therefore no sign ambiguity in
the two terms, which means that the phase is extracted with no = ambiguity.

Finally, from relations 5.17 and 5.21 we obtain expressions for both the projector
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coordinate z, and the sine wave amplitude A:

z —M:%—arc an(b/a :&ar an _(I(n),cos(won»
= o T gy ctan(b/e) = Frarct ( <I(n),sin(w0n)>>

(5.22)

A= V@ T8 = \[{(n), sin(won))? + ((n), cos(won))’ (5.23)

Experimentally, pixels with large corresponding amplitudes A will be more reliable
for phase estimation than pixels with small amplitudes. This is used to help rejecting
noisy regions in the image. If a pixel falls in a shadow region of the scene (outside of
the field of view of the projector), it will not be lit by the projected sine wave pattern.
And therefore, its associate temporal brightness signal will almost not change across
time (except within the pixel noise). A similar situation occurs for dark regions of
the scene (with small surface albedo). In those cases, any phase extraction is hopeless
from the start. Fortunately, those situations nicely translate into significantly small
amplitude estimates A. Therefore, one can simply reject regions of the image that
have a corresponding amplitude A less than the pre-chosen threshold A;. It turns out
that this thresholding method for “good” area selection is very robust: from “good”
to “bad” regions, A typically abruptly drops by one order of magnitude, going from
50 to 5 gray levels. We consistently picked in our experiments a threshold of Apr = 20
gray levels.

From that stage, we obtain for every pixel Z, whose amplitude estimate A (given
by equation 5.23) is larger than a threshold Ar (A7 = 20 here), a corresponding
projector coordinate z, (given by equation 5.22). The final 3D shape estimation stage
can then be performed for all of those points (see section 5.2) resulting in the three-
dimensional shape of the scenery. The next section 5.4 presents some reconstruction

results.
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5.4 Experimental results

Figure 5.7 shows the recovered projector coordinate map (z,-map) over the entire
image. The way it is shown is by gray-encoded the values of z, in the 0-255 range.

Figure 5.8 shows a cross section of the z,-map over all the pixels on the row
Yo = 350 in the image. We can notice on that figure how linearly the projector
coordinate increases while going from the left to the right side of the scenery. This is
naturally expected since the observed object is planar.

After triangulation, we obtain the 3D coordinates of the observed points in the
scenery in the camera reference frame: X, = [X. Y. Z/J¥. Figure 5.9 shows the
depth coordinates 7, values for every pixel Z, in the image, in a gray-encoded fashion.
Darker pixels correspond to closer points to the camera, except for the completely
black region which is the rejected area after thresholding of A.

Figure 5.10 shows two synthetic views of the final set 3D reconstructed points from
the left and the from the right of the initial camera location. Figure 5.11 shows two
views of the 3D surface mesh generated from the cloud of points. Since reconstruction
is achieved densely in the image plane, connectivity is directly established in pixel

coordinates.

5.5 Error analysis

The method we propose here allows to compute the scene depth Z. at every pixel T, in
the image. As we noticed in the experimental section, the final 3D reconstruction re-
sults are not perfect. Depth estimates are corrupted with errors that are significantly
noticeable on the final 3D structure (see figure 5.10).

Those errors are due to brightness noise in the input image, as well as errors in the
temporal model described by equation 5.16. Since it is quite difficult to characterize
the errors introduced by the simplified sinusoidal model, let us suppose that the only
source of noise is the one attached to the input images. Let us model that brightness

noise by an additive Gaussian random variable with zero-mean and variance ¢# (uni-
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Figure 5.7: Projector coordinate x, map: The projector coordinates z, are computed
for the pixels T, whose amplitude A is larger than Ay = 20. This image shows x, in
a gray value encoded fashion. Notice that, as expected, the pixel brightness gently
increases while going from the left the the right portion of the plane. The completely
black regions of the image corresponds to rejected points after thresholding of the
amplitude A.
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600 T T T T T T
]

W

(=

o
T

[ EN P
=3 o
S S

T T

Corresponding projector coordinates x
S
3
v

100

|

0 100 200 300 400 500 600
Horizontal image coordinates X,

Figure 5.8: Projector coordinates z, of the pixels on row 350: This figure shows
a section of the z,-map of figure 5.7 at row y. = 350. Notice that the projector
coordinate varies linearly with the horizontal pixel coordinate z,. This is expected
since the observed object is a plane. The z, = 0 pixels simply correspond to rejected
area in the image after thresholding of A.
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Figure 5.9: The recovered depth map: After triangulation, every pixel in the image
has an associated point in 3D whose coordinate in the camera reference frame is
X, =[X, Y, Z.]T. This figure shows for every pixel the recovered depths Z,., which
1s the quantity estimated by triangulation. The values are linearly gray-encoded in
the 0-255 range, and points further away from the camera have a larger depth, and
therefore have a brighter associated gray value. The completely black region still
corresponds to rejected points in the image.

View from 30 degrees on the left

View from 50 degrees on the right

(b)

300

100 200 300 400 500 600
Xe (in the camera frame)

0 100 200 300 400 500
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Figure 5.10: The final 3D reconstructed shape: Figures (a) and (b) are synthetic
views of the 3D structure after rotation of the camera to the left and to the right
respectively. There are 124106 points covering the surface. One can appreciate on
that figure the type of uncertainties we are achieving on the final shape estimate. We
fit a plane across the points in space and then looked at the residual algebraic distance
of the points to the plane. The standard deviation of those distances is approximately
6mm (the overall size of the scene is approximately 30 x 30 cm?).
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Figure 5.11: The final 3D reconstructed shape: Two views of the 3D mesh generated
by the cloud of points shown on figure 5.10.

form across the whole image). The goal of a noise sensitivity analysis is to compute
the effect of this input brightness noise onto the final depth measurement Z,.

Let a:%p be the variance of the error on the projector coordinate x,. An inter-
mediate step into the analysis will be computing this variance afjp as a function
of o?. Equation 5.22 provides an expression for the projector coordinate z, (in

pixel units) as a function of the N brightness measurements at pixel T, across time

1(0), I(1), ... , I(N):

N, (I(n),cos(won))\ .
Tp = 5 arc an( T(n) sim(wom)) F(1(0),1(1),... ,I(N))

(5.24)
Since all the brightness measurements 1(0), I(1),...,I(N) are supposed to carry the

same noise term of variance o?, the final projector coordinate variance aip may be

approximated by the following expression:
N 2
oF
2 2 -
ol =Y (————) o? (5.25)
ot dI(n)
After straightforward derivation, we may show that:

OF N,

oI(n) mAN

cos(won + @) (5.26)
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where ® and A are defines in equation 5.16. Therefore, the variance of the error on

projector coordinate z, may be written:

N2
o = <7—rﬁ> ZCOSQ(WQTL—F d) (5.27)

n=0

Recalling that wy = 27/N, one may show that the following relation holds:

N
N
Vé e R, ZCOS2(Q)0TL + @) = 5 (5.28)

n=0

Therefore, the variance of the error attached to the projector coordinate x, takes the
following compact form (in pixel units):
2

o = 2—7%3’2—]\[ o? (5.29)
A set of three fundamental observations may be drawn from that relation. First,
notice that orip is inversely proportional to the number of projected patterns N. This
1s quite intuitive: as the number of patterns increases, the accuracy of phase estimate
® increases, which in turns makes the projector coordinate z, more accurate. Second,
notice that oip is inversely proportional to the square of the brightness amplitude A.
This supports the fact that pixels with larger temporal brightness variations (larger
contrasts) are more reliable for phase estimation than ones with smaller brightness
variations. This also adds a supportive argument in favor of the thresholding tech-
nique for rejecting too unreliable pixels. Finally, observe that as the projecting image
width NV, increases, the accuracy in estimating x, decreases. That is also quite intu-
itive: for a given error in phase estimate ® (in radians), the corresponding error in
estimating z, (in pixels) will be larger on wider projecting images. In consequence,
for a given pattern width, it would be beneficial to project patterns with more than
one sinusoidal period. Doing so, the effective width of a period is smaller (N, — N, /k
where k is the number of periods) decreasing the transferred error onto the projec-

tor pixel coordinate x, (the proportionality factor between @ and z, is smaller - see
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equation 5.17). However if the projecting patterns contain more than a single period,
an ambiguity in corresponding phase information to pixel coordinates is introduced
(if & = 2, there are two valid pixel coordinates associated to any given phase value
®). In order to solve for that ambiguity, one could use a combination of high and
low frequency patterns. The low frequency patterns (that could be either grayscale,
or strict black and white stripes) would help disambiguate the high frequency ones
providing the high local resolution. That is subject for future work.

Observe that before computing depth Z, by triangulation, the projector coordinate
T, needs to be normalized (from pixel coordinates to homogeneous coordinates). It
is therefore necessary to divide the pixel coordinate by the projector focal length in
pixels. Denote that focal length f,. Then, after normalization, the variance of the

error on the normalized projector coordinate becomes:

2 Ny
0y, = mol (5.30)
Observe that the units are preserved: both N, and f, are in pixels, and A and o; are
in units of brightness values. Notice that the ratio N,/ f, is directly related to the
horizontal field of view angle of the projector. Then, the variance a%c of the error on
the depth estimate Z, may be written:

0Z.\*
2 _ c 2
0y, = ((‘9%) Oy (5.31)

The Jacobian matrix (0Z./0z,) may be decomposed as follows:

07, (8Z.\ (0w
= (%) () (5:32)

where @ is the coordinate vector of the plane IT spanned by the projector in dual-space

(see figure 5.2). The expression for this vector is given by equation 5.12. From that

equation, one may derive an expression for the second Jacobian matrix appearing in
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equation 5.32:

85 _ T1 R[g] - T3 R[l]
axp (T1 — .’Ep T3)2

(5.33)

From the triangulation equation 5.11, an expression for the first Jacobian matrix may

also be derived:

%% =727! (5.34)

Equations 5.33 and 5.34 yield:

% — 72 <T1 Rz — T R[1],fc> _ <T1 Ry — T ijc>

; (5.35)
o (T = 2, 1s)° (—Rgy + 7, Ry, %)’

Notice that as the quantity (T3 — x, T3)? decreases (towards zero), the sensitivity to
noise increases. This is quite an intuitive trend, since in the limit (7} — z, T3)? = 0
corresponds to a degenerate case where triangulation is impossible (the projector
plane II contains the center projection O.). In addition, observe that (0Z./0z,) is
proportional to Z2. This intuitively means that points further away from the camera
are more sensitive to noise that ones closer to the camera.

After merging equations (5.35), (5.31) and (5.30), we reach to a final expression

for the variance U%C of the error on the depth estimate Z,:

N? (T Ry — Ty

2 P
o5, =
T AN (—Ry+a,

2
Rp), T,
% >4 o? (5.36)
Ry, )

Observe that in that equation, both vectors Z, and z, are assumed to be normalized.

We applied the projector coordinate variance expression 5.30 on our data set. We
first acquired a set of 10 images to compute experimentally the image brightness noise:
o1 &~ 2 brightness units. Then, equation 5.30 returned an estimate for oy, between 1.1
and 1.4 pixels. That error estimate is very similar to that computed experimentally:
between 1 and 1.6 pixels. Notice that we experimentally computed o, by first fitting

planes to local 20 x20 neighborhood of the z,-map (see figure 5.7) and then computing
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the residual deviations of all the points of the neighborhood to the plane. From that
result, we conclude that our error model is sufficiently accurate to capture reality.
Finally, according to the noise model of equation 5.36, the standard deviation oz, of
the error on the depth reconstruction varies from 3 and 5mm. This estimate appears
to be slightly below the actual measured errors on the final reconstruction: 6mm (see

figure 5.10).

5.6 Conclusions

In this chapter, we have presented a new method for acquiring three-dimensional
shape based on structured lighting technology. This technique consists of projecting
a sequence of grayscale patterns using a conventional LCD projector, and computing
the depth of every pixel in the image by temporal brightness processing. The main
advantage of that technique compared to standard structured lighting techniques is
that the outcome is a dense reconstruction of the scene in the pixel image. Conse-
quently, meshing and texture mapping are straightforward tasks. A complete error
analysis of the reconstruction method was also presented.

In that present description, we used a sequence of patterns with sinusoidal profiles
for establishing dense correspondence between camera image and projector image.
It is worth noticing that an identical image processing technique could be applied
when using other kind of periodic profiles (such as triangular profile). We intend to
test the method with several other grayscale pattern profiles, at potentially different
frequencies (in order to achieve best reconstruction accuracies).

The main practical drawback of this structured lighting technique is that an ex-
ternal active device is necessary (the LCD projector). In addition, that device is
required to be calibrated (intrinsically and extrinsically) as well as controlled. In
the next chapter, we propose another technique for 3D scanning - also based on the
philosophy of active lighting - that does not require any active device. We call this

new technology ‘weak structured lighting.’
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Chapter 6 Weakly structured lighting -

Scanning using shadows

6.1 Introduction and motivation

In designing a system for recovering three-dimensional shape, different engineering
tradeoffs are proposed by each application. The main parameters to be considered
are cost, accuracy, ease of use and speed of acquisition. So far the commercial 3D
scanners (e.g., the Cyberware scanner) have emphasized accuracy over the other pa-
rameters. Active illumination systems are popular in industrial applications where a
fixed installation with controlled lighting is possible. These systems use motorized
transport of the object and active (laser, LCD projector) lighting of the scene which
makes them very accurate, but unfortunately expensive [4, 5, 6, 7, 8]. Furthermore
these systems cannot be used in outdoors where lighting is difficult to control and
high power would be needed for large objects.

An interesting challenge for vision scientists is to take the opposite point of view:
emphasize low cost and simplicity and design 3D scanners that demand little more
hardware than a PC and a video camera by making better use of the data that is
available in the images.

A number of passive cues have long been known to contain information on 3D
shape: stereoscopic disparity, texture, motion parallax, (de)focus, shadows, shading
and specularities, occluding contours and other surface discontinuities. At the current
state of vision research stereoscopic disparity is the single passive cue that reliably
gives reasonable accuracy. Unfortunately it has two major drawbacks: it requires two
cameras thus increasing complexity and cost, and it cannot be used on untextured
surfaces, which are common for industrially manufactured objects.

We propose a method for capturing 3D surfaces that is based on what we call
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‘weakly structured lighting.” It yields good accuracy and requires minimal equipment
besides a computer and a camera: a stick, a checkerboard, and a point light source.
The light source may be a desk lamp for indoor scenes, and the sun for outdoor
scenes. A human operator, acting as a low precision motor, is also required. See
[73, 74, 75, 76, 77].

We start with the description of the scanning method in Sec. 6.2, followed in
Sec. 6.3 by an complete error analysis of our reconstruction technique. In Sec. 6.4,
a simple algorithm for optimally merging multiple 3D scans is presented, followed in
Sec. 6.5 by a short description of a real-time implementation of the 3D scanner. The
following Sec. 6.6 reports a number of experiments that assess the convenience and
accuracy of the system in indoor as well as outdoor scenarios. We close this chapter

with discussions and conclusions in Sec. 6.7.

6.2 Description of the method

The general principle consists of casting a moving shadow with a stick onto the scene,
and estimating the three-dimensional shape of the scene from the sequence of images
of the deformed shadow. Figures 6.1 and 6.2 show two incarnations of the scanning
setup. The objective is to extract scene depth at every pixel in the image. The
point light source and the leading edge of the stick define, at every time instant,
a plane; therefore, the boundary of the shadow that is cast by the stick on the
scene is the intersection of this plane with the surface of the object. We exploit this
geometrical insight for reconstructing the 3D shape of the object. Figure 6.3 illustrates
the geometrical principle of the method. Approximate the light source with a point
S, and denote by IIj the horizontal plane (ground, or desk plane) and II, a vertical
plane orthogonal to II, (this plane is not present in the scanning scenario shown on
figure 6.1). Assume that the position of the plane I, in the camera reference frame is
known from calibration (sec. 6.2.1). We infer the location of II, from the projection
A; (visible in the image) of the intersection line A; between II, and II, (sec. 6.2.2).

The goal is to estimate the 3D location of the point P in space corresponding to every
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Figure 6.1: The general setup of the method: (a) The camera is facing the scene
illuminated by the light source. The objects to scan are positioned on the desk
(horizontal plane). Figure (c¢) is an initial camera view of the scene. When an operator
freely moves a stick in front of the light, a shadow is cast on the scene. The camera
acquires a sequence of images I(x,y,t) as the operator moves the stick so that the
shadow scans the entire scene. A sample image is shown on figure (d). This constitutes
the input data to the 3D reconstruction system. The three-dimensional shape of
the scene is reconstructed using the spatial and temporal properties of the shadow
boundary throughout the input sequence. Figure (b) shows the necessary equipment
besides the camera: a desk lamp, a calibration grid and a pencil for calibration, and
a stick casting the shadow. One could use the pencil instead of the stick.
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Figure 6.2: Alternative geometrical setup: In this other configuration, the background
consists of two orthogonal planes (horizontal and vertical planes). Figure (a) shows
the general system setup where the light source is the same as in figure 6.1 without its
reflector (this is why its look is different). A sample image acquired during scanning
is shown on figure (b). Notice that the shadow is seen on both background planes. In
that other incarnation, it will be shown that the light source position does not need
to be known for scanning. This will be useful when using the sun as light source for
outdoor scanning.

pixel p (of coordinates Z.) in the image. Call ¢ the time when the shadow boundary
passes by a given pixel 7, (later referred to as the shadow time). Denote by I1(f) the
corresponding shadow plane at that time ¢. Assume that two portions of the shadow
projected on the two planes I, and II, are visible on the image: An(t) and A, (t). After
extracting these two lines, we deduce the location in space of the two corresponding
lines An(t) and A,(t) by intersecting the planes (O, An(t)) and (O, A (1)) with TI,,
and TI, respectively. The shadow plane II(f) is then the plane defined by the two
non-collinear lines Ay () and A, (¢) (sec. 6.2.5). In the case where the vertical plane
is not used for scanning (as in figure 6.1), the line A,(¢) is not available. In that case,
the plane II(#) may be inferred by the only available line Ap(t) and the point light
source S (which then needs to be at a fixed and known location in space - see sec.
6.2.3). Finally, the point P corresponding to T. is retrieved by intersecting I1(¢) with
the optical ray (O, p). This final stage is called triangulation (sec. 6.2.6). Notice that
the key steps are: (a) estimate the shadow time #,(Z.) at every pixel T, (temporal

processing), (b) locate the two reference lines A,(t) and A,(f) at every time instant ¢
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Figure 6.3: Geometrical principle of the method
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Figure 6.4: Camera calibration

(spatial processing), (c) calculate the shadow plane, and (d) triangulate and calculate
depth. These tasks are described in sections 6.2.4, 6.2.5 and 6.2.6.

Goshtasby et al. [78] also designed a range scanner using a shadow generated by
a fine wire in order to reconstruct the shape of dental casts. In their system, the wire
was motorized and its position calibrated.

Observe that if the light source is at a known location in space, then the shadow
plane I1(#) may be directly inferred from the point S and the line A (). Consequently,
in such cases, the additional plane T1,(#) is not required. We describe here two versions
of the setup: one containing two calibrated planes and an uncalibrated (possibly
moving) light source; the second containing one calibrated plane and a calibrated

light source.

6.2.1 Camera calibration

The goal of calibration is to recover the location of the ground plane II; and the in-
trinsic camera parameters (focal length, principal point and radial distortion factor).
The procedure consists of first placing a planar checkerboard pattern on the ground
in the location of the objects to scan (see figure 6.4-left). From the image captured
by the camera (figure 6.4-right), we infer the intrinsic and extrinsic parameters of the
camera, by matching the projections onto the image plane of the known grid corners
with the expected projection directly measured on the image (extracted corners of the

grid); the method is proposed by Tsai in [18]. We use a first-order symmetric radial
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distortion model for the lens, as proposed in [17, 18] (see equation 3.4). When using
a single image of a planar calibration rig, the principal point (i.e., the intersection of
the optical axis with the image plane) cannot be recovered. In that case it is assumed
to be identical to the image center. In order to fit a full camera model (principal point
included), we propose to extend that approach by integrating multiple images of the
planar grid positioned at different locations in space (with different orientations).
Theoretically, a minimum of two images is required to recover two focals (along x and
y), the principal point coordinates, and the lens distortion factor. We recommend to
use that method with three or four images for best accuracies on the intrinsic param-
eters. In our experience, in order to achieve good 3D reconstruction accuracies, it is
sufficient to use the simple approach with a single calibration image without estimat-
ing the camera principal point. In other words, the quality of reconstruction is quite
insensitive to errors on the principal point position. A whole body of work supporting
that observation may be found in the literature. We especially advise the reader most
interested in issues on sensitivity of 3D Euclidean reconstruction results with respect
to intrinsic calibration errors, to refer to recent publications on self-calibration, such
as Bougnoux [79] or Pollefeys et al. [80, 81, 31].

A detailed description of the fundamental calibration algorithm may be found in
chapter 3.

For more general insights on calibration techniques, we refer the reader to the
work of Faugeras [10] and others [82, 17, 22, 24, 83, 28]. A 3D rig should be used for

achieving maximum accuracy.

6.2.2 Vertical plane localization II,

Call @, and @, respectively the coordinate vectors of I1, and II, (see figure 6.3 and
section 2.2.1 for notation). After calibration, @y, is known. The two planes II; and II,
intersect along the line A; observed on the image plane at \;. Therefore, according
to proposition 1 in section 2.2.2, @, — W, is parallel to i, coordinate vector of \;, or

equivalently, there exists a scalar o such that @, = @y, + a\;. Since the two planes
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I1,, and II, are by construction orthogonal, we have (wy,w,) = 0. That leads to the
closed-form expression for calculating @,:
Oh, Tn)~
Wy, = Wp, — <—_—h—_i>)\ (6.1)
<)\i7 <")h>
Notice that in every realistic scenario, the two planes I, and II, do not contain the

camera center O,. Their coordinate vectors @y, and @, in dual-space are therefore

always well defined (see sections 2, 6.2.6 and 6.3 for further discussions).

6.2.3 Light source calibration

When using a single reference plane for scanning (for example Il, without II,), it is
required to know the location of the light source in order to infer the shadow plane
location I1(t) (see section 6.2.5 for details). Figure 6.5 illustrates a simple technique
for calibrating the light source that requires minimal extra equipment: a pencil of
known length. The operator stands a pencil on the reference plane II;, (see fig. 6.5-
top-left). The camera observes the shadow of the pencil projected on the ground
plane. The acquired image is shown on figure 6.5-top-right. From the two points b
and 7, on this image, one can infer the positions in space of B and T, respectively
the base of the pencil, and the tip of the pencil shadow (see bottom figure). This
is done by intersecting the optical rays (O.,b) and (O.,t;) with IT, (known from
camera calibration). In addition, given that the height of the pencil i is known, the
coordinates of its tip 7 can be directly inferred from B. The point light source S
has to lie on the line A = (7, T;) in space. This yields one linear constraint on the
light source position. By taking a second view, with the pencil at a different location
on the plane, one retrieves a second independent constraint with another line A’. A
closed form solution for the 3D coordinate of S is then derived by intersecting the two
lines A and A’ (in the least squares sense). Notice that since the problem is linear,
one can integrate the information from more than 2 views and make the estimation
more accurate. If N > 2 images are used, one can obtain a closed form solution

for the closest point S to the N inferred lines (in the least squares sense). We also
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Figure 6.5: Light source calibration
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estimate the uncertainty on that estimate from the distance of S to each one of the A
lines. That indicates how consistently the lines intersect a single point in space. The
complete algorithm for intersecting a set of N lines in space may be found in section
4.1.2. In this section, the derivations were made in the context of another application

(multi-view stereo triangulation). The same derivations may be found in [74].

6.2.4 Spatial and temporal shadow edge localization

A fundamental stage of the method is the detection of the lines of intersection of the
shadow plane TI(¢) with the two planes I, and II,; a simple approach to extract An(t)
and \,(t) may be used if we make sure that a number of pixel rows at the top and
bottom of the image are free from objects. Then the two tasks to accomplish are: (a)
Localize the edges of the shadow that are directly projected on the two orthogonal
planes A (t) and A, (t) at every discrete time ¢ (every frame), leading to the set of
all shadow planes TI(t) (see sec. 6.2.5), (b) Estimate the time t,(Z.) (shadow time)
where the edge of the shadow passes through any given pixel 7, = (z., y.) in the image
(see figure 6.6). Curless and Levoy [84] demonstrated that such a spatio-temporal
approach is appropriate for preserving sharp discontinuities in the scene as well as
reducing range distortions. A similar temporal processing for range sensing was used
by Gruss, Tada and Kanade in [5, 85].

Both processing tasks correspond to finding the edge of the shadow, but the search
domains are different: one operates on the spatial coordinates (image coordinates)
and the other one on the temporal coordinate. Although independent in appear-
ance, the two search procedures need to be compatible: if at time ¢, the shadow
edge passes through pixel T, = (x., y.), the two searches should find the exact same
point (., ¥, o) (in space/time). One could observe that this property does not hold
for all techniques. One example is the image gradient approach for edge detection
(e.g., Canny edge detector [86]). Indeed, the maximum spatial gradient point does
not necessarily match with the maximum temporal gradient point (which is a func-

tion of the scanning speed). In addition, the spatial gradient is a function both of
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changes in illumination due to the shadow and changes in albedo and changes in
surface orientation. Furthermore, it is preferable to avoid any spatial filtering on the
images (e.g., smoothing) which would produce blending in the final depth estimates,
especially noticeable at occlusions and surface discontinuities (corners for example).
These observations were also addressed by Curless and Levoy in [84].

It is therefore necessary to use a unique criterion that would equally describe
shadow edges in space (image coordinates) and time and is insensitive to changes
in surface albedo and surface orientation. The simple technique we propose here
that satisfies that property is spatio-temporal thresholding. This is based on the
following observation: as the shadow is scanned across the scene, each pixel (z,y)
sees its brightness intensity going from an initial maximum value I, (z,y) (when
there is no shadow yet) down to a minimum value I, (2, y) (when the pixel is within
the shadow) and then back up to its initial value as the shadow goes away. This
profile is characteristic even when there is a fair amount of internal reflections in the
scene [87, 88].

For any given pixel T, = (z,vy), define Iyn(z,y) and Inax(z,y) as its minimum

and maximum brightness throughout the entire sequence:

mtin {I(z,y,t)}

(6.2)

~

g B
=
B
s
I

We define the shadow edge to be the locations (in space-time) where the image
I(z,y,t) intersects with the threshold image Isnadow(z,y) defined as the mean value

between Iyax(z,y) and Inin(x,y):

Ishadow(l'a y) = (Irna,x(xa y) =+ Imin(l': y)) (63)

[NCREC

This may be also regarded as the zero crossings of the difference image Al(z,y,1)

defined as follows:

AI(m,y,t) = [(ZIZ,y,t) - Ishadow<I7y) (64)
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Figure 6.6: Spatial and temporal shadow localization
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The two bottom plots of fig. 6.6 illustrate shadow edge detection in the spatial
domain (to calculate A,(t) and \,(¢)) and in the temporal domain (to calculate t,(Z.)).
The bottom-left plot shows the profile of Al(x,y,t) along row y = 209 at time
t = ty = 288 versus the column pixel coordinate x. The second zero crossing of that
profile corresponds to one point Teqge(to) = (114.51, 209) belonging to A (fo), the right
edge of the shadow (computed at subpixel accuracy by linear interpolation). Identical
processing is applied on 39 other rows for A, (#,) and 70 rows for A\,(¢) in order to
retrieve the two edges (by least square line fitting across the two sets of points on the
image). Similarly, the bottom-right figure shows the temporal profile Al (z., y., 1) at
the pixel Z, = (z, y.) = (133, 120) versus time ¢ (or frame number). The shadow time
at that pixel is defined as the first zero crossing location of that profile: ¢,(133,120) =
287.95 (computed at sub-frame accuracy by linear interpolation). Notice that the
right edge of the shadow corresponds to the front edge of the temporal profile, because
the shadow was scanned from left to right in all experiments. Intuitively, pixels
corresponding to occluded regions in the scene do not provide any relevant depth
information. Therefore, we only process pixels with contrast value I.onirast(®,y) =
@nax (2, y) — Imin(x,y) larger than a pre-defined threshold Iiyresn. This threshold was
30 in all experiments reported in this chapter (recall that the intensity values are
encoded from 0 for black to 255 for white). This threshold should be proportional to
the level of noise in the image.

Due to the limited dynamic range of the camera, it is clear that one should avoid
saturating the sensor, and that one would expect poor accuracy in areas of the scene
that reflect little light towards the camera due to their orientation with respect to the
light source and/or low albedo. Our experiments were designed to test the extent of

this problem.

6.2.5 Shadow plane estimation II(%)

Denote by @(t), Ay(t) and A, (t) the coordinate vectors of the shadow plane I1(t) and
of the shadow edges A\, (t) and A, (¢) at time . Since A,(t) is the projection of the line
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Figure 6.7: Shadow plane estimation using two planes: The coordinate vector of the
shadow plane @(t) is the intersection point of the two dual lines Ay(¢) and A,(#) in
dual-space (€2). In presence of noise, the two lines do not intersect. The vector w(¢)
is then the best intersection point between the two lines (in the least squares sense).

of intersection Ay(t) between II(¢) and I, then wW(¢) lies on the line passing through
Wy, with direction A\,(t) in dual-space (from proposition 1 of section 2.2.2). That line,
denoted A, (), is the dual image of Ay (t) in dual-space (see section 2.2.2). Similarly,
w(t) lies on the line A,(t) passing through @, with direction X,(¢) (dual image of
A,(t)). Therefore, in dual-space, the coordinate vector of the shadow plane @(?) is
at the intersection between the two known lines A,(t) and A,(¢). In the presence of
noise these two lines will not exactly intersect (equivalently, the 3 lines A;, An(¢) and
Ay (t) do not necessarily intersect at one point on the image plane, or their coordinate
vectors ), Ax(t) and A,(t) are not coplanar). However, one may still identify w(¢)
with the point that is the closest to the lines in the least-squares sense. The complete
derivations for intersecting a set of lines in space may be found in section 4.1.2. When

interesting the two lines A,(¢) and A,(#) in space, the solution reduces to:

(@ (t) + Wa(t)), (6.5)
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with
O1(t) = Wh+ api(t) (6.6)
Wa(t) = @y + auAy(t)
where
(874
"l =Ab (6.7)
Qy

where A is a 2 x 2 matrix and b is a 2-vector defined as follows (for clarity, the
variable ¢ is omitted):
as | Ow sy eSS (69
= (M) (s d) (Avs @h — W)

Note that the two vectors w(t) and wWy(t) are the orthogonal projections, in dual-
space, of @(t) onto A, (t) and A,(t) respectively. The norm of the difference between
these two vectors may be used as an estimate of the error in recovering II(¢). If the
two edges An(t) and A, () are estimated with different reliabilities, a weighted least
squares method may still be used.

Figure 6.7 illustrates the principle of shadow plane estimation in dual-space when
using the two edges An(t) and A, (). This reconstruction method was used in experi-
ments 1, 4 and 5.

Notice that the additional vertical plane IT, enables us to extract the shadow plane
location without requiring the knowledge of the light source position. Consequently,
the light source is allowed to move during the scan (this may be the case of the sun,
for example).

When the light source is of fixed and known location in space, the plane II, is not

required. Then, one may directly infer the shadow plane position from the line A, (t)
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~ «— Dual image of S
Dual image of A, () — A,

Image of the shadow
Xh(t) ~—— edge projected on the
horizontal plane

Horizontal plane

Figure 6.8: Shadow plane estimation using one plane and the light source position: In
dual-space, the coordinate vector of the shadow plane @(t) is the intersection point of
the line A,(¢) and the plane S, dual image of the point light source S. This method
requires the knowledge of the light source position. A light source calibration method
is presented in section 6.2.3

and from the light source position S:
T(t) = Wp + apAn(t) (6.9)

where

— (@ Xs)

m (6.10)

S ell(t <w ), X 5> =1 & ap=
where X g = [Xs Ys Ys]7 is the coordinate vector of the light source S in the camera
reference frame. In dual-space geometry, this corresponds to intersecting the line
Ap(t) with the plane S, dual image of the source point S. This process is illustrated
in figure 6.8. Notice that <)\h ), X 5> = 0 corresponds to the case where the shadow
plane contains the camera center of projection O.. This is singular configuration that
makes the triangulation fail (||@(¢)|| — oc). This approach requires an additional
step of estimating the position of S. Section 6.2.3 describes a simple method for light

source calibration. This reconstruction method was used in experiments 2 and 3.
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Figure 6.9: Geometric setup: The camera is positioned at a distance d; away from
the plane IT, and tilted down towards it at an angle 8. The light source is located at
a height hg, with its direction defined by the azimuth and elevation angles £ and ¢
in the reference frame attached to the plane II,. Notice that the sign of cos& directly
relates to which side of the camera the lamp is standing: positive on the right, and
negative on the left.

Claim: The quantity 1 — <wh,75> reduces to hs/d, where hg and dj, are the
orthogonal distances of the light source S and the camera center O, to the plane II,
(see figure 6.9).

Proof: Since w;, is the coordinate vector of the plane I, the vector n, = d Wy, is
the normal vector of the plane ITj, in the camera reference frame (see figure 6.9). Let P
be a point in Euclidean space (E) of coordinate vector X. The quantity dj, — <'ﬁh, th>
is then the (algebraic) orthogonal distance of P to II), (positive quantity if the point
P is on the side of the camera, negative otherwise). In particular, if P lies on II,,
then (T, X) = dy, which is equivalent to (@w,, X) = 1. The orthogonal distance of
the light source S to IT, is denoted hs on figure 6.9. Therefore hs = dj, — (Tip, X ), or
equivalently 1 — <wh,'X”S> = hg/d,. B

According to that Claim, the constant o of equation 6.10 may be written as:

__hs/dn  _ 1/dy
<Xh(t)7 7S> <_Xh (t)a ——XS/hS>

Op (611)
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This expression highlights the fact that the algebra naturally generalizes to cases
where the light source is located at infinity (and calibrated). Indeed, in those cases,
the ratio X g/hg reduces to dg/ sin ¢ where dg is the normalized light source direction
vector (in the camera reference frame) and ¢ the elevation angle of the light source
with respect to the plane I, (defined on figure 6.9). In dual-space, the construction
of the shadow plane vector @(¢) remains the same: it is still at the intersection of
An(t) with S. The only difference is that the dual image S is a plane crossing the

origin in dual-space. The surface normal of that plane is simply the vector ds.

6.2.6 Triangulation

Once the shadow time #,(Z.) is estimated at a given pixel Z. = [z, y. 1]7 (in
homogeneous coordinates), the corresponding shadow plane II(¢,(Z.)) is identified
(its coordinate vector @, = W(ts(Z.))). The point P in space associated to T, is then
retrieved by intersecting I1(¢,(T.)) with the optical ray (O,,Z.) (see figure 6.3):

1 z,

Jo=o— = X, =27.T, = (6.12)
(@e, Te)

if X, =[X, Y. Z,]7 is defined as the coordinate vector of P in the camera reference
frame. This equation was first introduced in section 2.2.3 (eq. 2.33).

Notice that the shadow time ¢,(Z.) acts as an index to the shadow plane list
T1(t). Since t4(%,) is estimated at sub-frame accuracy, the plane II(Z,(Z.)) (actually
its coordinate vector @,) results from linear interpolation between the two planes

M(to — 1) and TI(¢e) if tg — 1 < t5(T.) < tp and ¢, integer:
We=AtT(to — 1) + (1 — At) w(ty), (6.13)

where At = tg — t5(T.), 0 < At < 1 (see figure 6.12).
Once the range data are recovered, a mesh is generated by connecting neighboring
points in triangles. The connectivity is directly given by the image: two vertices are

neighbors if their corresponding pixels are neighbors in the image. In addition, since
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every vertex corresponds to a unique pixel, texture mapping is also a straightforward
task. Figures 6.13, 6.15 , 6.17, 6.18, 6.19, 6.20 and 6.21 show experimental results.

Similarly to stereoscopic vision, when the baseline becomes shorter, as the shadow
plane moves closer to the camera center triangulation becomes more and more sensi-
tive to noise. In the limit, if the plane crosses the origin (or equivalently ||@.| — o)
triangulation becomes impossible. This is why it is not a big loss that we cannot rep-
resent planes going through the origin with our parameterization. This observation

will appear again in the section on error analysis (sec. 6.3).

6.2.7 Summary of the global geometry in dual-space

The global geometrical principle of the reconstruction technique may be summarized
in a very compact fashion into a single diagram in dual-space. This diagram is shown
on figure 6.10. On this figure, correspondence between Euclidean space and dual-
space is given for objects in 2D (lines and points on the image plane) as well as
objects in 3D (planes, lines and points in space).

Observe that the calibration of the vertical plane II, is also illustrated in the dual-
space diagram: its coordinate vector W, is at the intersection of the line Ai and the
set of plane vectors orthogonal to @, (defining a plane in dual-space). The line A; is
at the intersection of the two planes I, and Il,, and its dual image A; is uniquely
defined by the horizontal plane vector W) and the vector ), coordinate vector of the
line ); observed on the image plane. This calibration process is described in section
6.2.2.

Once @, is known, the shadow plane vector @(t) associated to the shadow edge
configuration at time ¢ is at the intersection between the two lines An(t) and A, (t),
dual images of A,(t) and A,(¢). Those two dual lines are defined by the two reference
plane vectors @), and @, and the direction vectors Ay (t) and A, (f) (vector coordinates
of the two image lines A, (¢) and \,(¢)). This processing step is described in details
in section 6.2.5.

The final step consisting of identifying the point P in space by intersecting the
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optical ray (O, p) with the shadow plane II is also illustrated on the dual-space
diagram. In dual-space, that stage corresponds to finding the dual image P of P that
is the unique plane in dual-space containing the point @w(¢) (shadow plane vector)
with orthogonal vector Z,. (homogeneous coordinate vector of the image point p). A
description of this triangulation step may be found in section 6.2.6.

The other scanning setup consisting of using a single reference plane (Il without
I1,) with a calibrated light source is summarized on figure 6.11. The only difference
between that figure on the previous one is in the procedure of estimating the shadow
plane coordinate vector @(¢). In that version, the vector w(t) is at the intersection of
the dual line A,(t) and the dual image of the light source S. See section 6.2.5. The
triangulation step remains unchanged.

Observe that on both figures 6.10 and 6.11, the dual-space diagrams are more

compact than their corresponding Euclidean illustrations.

6.3 Error analysis - Design Issues

When designing the scanning system, it is important to choose a spatial configuration
of the camera and the light source that maximizes the overall quality of reconstruction
of the scene.

As first mentioned in section 6.2, the method proposes to associate to every pixel
Z. the time instant ¢4(7.) at which the shadow crosses that particular pixel. That
given time corresponds to the shadow plane I1(¢s(Z.)) in space (of coordinate vector
W.), used at the triangulation step to retrieve the coordinates of the point P in space
(see figure 6.3). In addition, at every time instant ¢, a shadow plane II(¢) is estimated
based on two line segments A, (¢) and A, (¢) extracted from the image plane (see section
6.2.4).

Therefore, one clearly identifies two possible sources of error affecting the overall
reconstruction: errors in localizing the two edges An(t) and A, () leading to error
in estimating the shadow plane TI(¢) (or error on the vector @(t)), and errors in

finding the shadow time ts(Z.) (at every pixel Z.) leading to an error in shadow plane
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Figure 6.10: Summary of the global geometry of the scanning technique in Euclidean

space and dual-space. In that setup, two background planes (II, and II,) are used

and the light source is not calibrated.
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Figure 6.11: Summary of the global geometry of the scanning technique in Euclidean
space and dual-space. In that setup, a single background plane is used (II, is not
present) and the light source is assumed calibrated.
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assignment.

Experimentally, we found that the error coming from spatial processing (shadow
plane localization) was much smaller than the one coming from temporal processing
(shadow time computation). In other words, in all the experiments we carried out,
the shadow planes were localized to such a degree of accuracy that the errors induced
by the noise on W, were negligible compared to the errors induced by the noise on
ts(7.). This experimental observation is reasonable because the shadow edges A (t)
and \,(t) are recovered by fitting lines through many points on the image plane (an
order of 50 points per line) while shadow time ¢,(Z.) is estimated on a basis of a
single pixel. Notice that this is experiment dependent, and may very well not be
true if fewer points were used to extract the shadow edges, or if the image were more
noisy, or more distorted. In those cases, both error terms should be retained. In the
present analysis, we propose to derive an expression of the variance of the error in
depth estimation a%c assuming that the main source of noise comes from temporal
processing. In the experimental section, we verify that the final variance expression

agrees numerically with accuracies achieved on real scan data.

6.3.1 Derivation of the depth variance o}

Every pixel Z. on the image sees the shadow passing at time a ,(Z.), called the shadow
time, that is estimated through temporal processing (see section 6.2.4). This estima-
tion is naturally subject to errors, leading to inaccuracies in the final 3D reconstruc-
tion. The purpose of that analysis is to study how damaging those errors truly are on
the final structure, and quantify them. Assume that for a given pixel Z., an additive
temporal error 0t,(Z,) is made on its shadow time estimate: ¢,(Z.) = t,(T.) + 0ts(Te)-
This typically leads the algorithm to assign to the pixel Z, the “wrong” shadow plane
T1(t,(z.) + 0t5(T.)) for the geometrical triangulation step. Equivalently, one can think
that the plane I1(t,(Z.) + dt5) has been associated with the “wrong” pixel T, in the
image. Although it does not change anything to the problem, that way of centering

the reasoning onto the shadow plane instead of the pixel actually significantly sim-
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plifies the whole analysis. Indeed, as we will show in the following, if we assign the
noise to the pixel location itself, the time variable can then be omitted.

To be more precise, let us first define 5(%.) = [v,(T.) v,(Z.)]" to be the velocity
vector of the shadow at the pixel T, that is orthogonal to the shadow edge. Then,
the closest point to Z. that has truly been lit by the shadow plane II(¢,(Z.) + 6ts(Z.))
is T, + 6ts(T.) v(T.). Therefore, by picking Z. instead, we introduce an additive pixel
error 6%, = —0t,(T.) T(T.). This is the equivalent noise that can be attributed to the
pixel location T, before triangulation.

One can then see that this equivalent image coordinate noise is naturally related to
the speed of the shadow. Indeed, even if we assume that the time estimation error 6t
is identical for every pixel in the image, the corresponding pixel error 0z, is generally
not uniform, neither in direction, nor in magnitude. Typically, fast moving shadow
regions will be subject to larger errors than slow moving shadow regions. Variations
in apparent shadow speed can be caused by a change in the actual speed at which
the stick is moved, a change in local surface orientation of the scene, or both.

Before triangulation, the pixel coordinates have to be normalized by the intrinsic
parameters of the camera. Let us assume, for simplicity in the notation, that 7, =
[z. y. 1]7 is directly the normalized, homogeneous coordinate vector associated to
the pixel. The two coordinates z. and y. are affected by the error vector 4z, whose
variance-covariance matrix is denoted Yz, (a 2x2 matrix). Let us derive an expression
for that matrix as a function of the image brightness noise.

Lemma: Let o; be the standard deviation of the image brightness noise (esti-
mated experimentally). We can write ¥z, as a function of the image gradient VI(7.)

at pixel T, at time ¢ = t4(%,):

2 .
o? Ccos“ ¢  COSpsSIng

9 (6.14)
FZIVI@)I? | cospsing  sin’¢

Te

where f, is the focal length of the camera (in pixels), VI(Z,) is the gradient vector

of the image brightness at the shadow, and ¢ the orientation angle of that vector
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Figure 6.12: FEstimation error on the shadow time: The shadow time ¢,(Z.)
is estimated by linearly interpolating the difference temporal brightness function
AI(ze,yc,t) between times ¢ — 1 and to. The pixel noise (of standard deviation
or) on Iy = AI(ze,ye, to — 1) and I = AI(z., Y, to) induces errors on the estimation
of At, or equivalently ¢,(Z.). This error has variance o}.

(orientation of the shadow edge at pixel T):

- I.(z.) - 0S¢
VI(Z,) = =[|VI@)]| | (6.15)
I,(z.) sin ¢
where:
(@) = 20 (6.16)
T \z=7, t=ts(Zc)
_ 0I(Z, 1)
I,(z.) = (6.17)
! Oy T=Te t=ts(Tc)

Proof of lemma (eq. 6.14): Figure 6.12 shows the principle of computing the
shadow time t,(Z.) from the difference image AT (refer to section 6.2.5). For clarity

in the notation, define Iy = AlI(z.,y.,to — 1) and Iy = AI(z., Y to). Then, the
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shadow time t4(T.) is given by:

13(T,) = to — At (6.18)

where:

At = h

=77 (6.19)

Let o7 be the variance of the error 6t,(Z.) attached to the shadow time #,(Z.). In
normal sampling conditions (if the temporal brightness is sufficiently sampled within
the shadow transition area), the same error is on the variable At, and therefore oy

may be directly expressed as a function of oy, the variance of pixel noise on I and

112
OAt\?  [OAt\?
2 2
o; = ((——61()) + (—811) ) oF (6.20)

o _L+I7 ,
T

(6.21)

where 6I = I, — I, is the temporal brightness variation at the zero crossing (or
equivalently at the shadow time). One may notice from equation 6.21 that, as the
brightness difference 61 increases, the error in shadow time decreases. That is a
very intuitive behavior given that higher shadow contrasts should give rise to better
accuracies. Notice however that the variance ¢? is not only a function of 6 but also
of the absolute brightness values Iy and I;. One may then consider the maximum

value of o2 for a fixed §1 over all Iy and I, subject to the constraint I; = Io + ol:

ol = max
O<Ilp<—461I

212 421,01 + 617
{ 0 5;4 } o? (6.22)

leading to the following simplified expression for o7:

2 ‘7%
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To motivate that simplification, one may notice that the minimum and maximum
values of o2 over all values [y and I, are quite similar anyway: o%/(261%) (minimum)
and 0?/6I? (maximum). The maximum may be thought as an upper bound on
the error. Notice that 07 is nothing but the first temporal derivative of the image
brightness at the pixel 7., at the shadow time:

o0I(z,1)

5 (6.24)

0l =

T=Te,t=ts(Tc)

This temporal derivative may also be expressed as a function of the image gradi-

ent vector VI(zZ.) = [I,(Z.) I,(Z.)]" and the shadow edge velocity vector T(7.) =

[v2(@e) vy (T
0 = =VI(z)" 9(Ze) = —L(Te) va(Te) — 1y(Te) vy (Te) (6.25)

By definition, the edge velocity vector T(Z,) is orthogonal to the shadow edge. There-
fore it may be also written as a direct function of the gradient vector VI(Z,):
Vi(z.) cos

= s|[o(z.)]l (6.26)

E(Tc) =S Hi}—(fc)n m sin

where s is either +1 or —1 depending on the direction of motion of the edge. Therefore,

(s VI(z.)T VI(z.) (x
I = (—s) NI [o(z)] (6.27)
0I = (=s) [VI@)| [|5(Zo)] (6.28)

Consequently, by substituting (6.28) into (6.23), we obtain a new expression for the

temporal variance o}:

2
9

o T INIE) P IFEIP

(6.29)

Then, the error vector 07, transfered on the image plane is also related to the shadow
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edge velocity T(T,) and the temporal error 6ts(Z.):

0T, = —0ts(T.) U(T) (6.30)

CoS

0T, = (—5) [[0(zc)| 0ts(Te) (6.31)

sin
Then, the variance-covariance matrix of the noise 07, is (recall that s* = 1):

2 .
o cos @ cosgsing
Lz, = 0@ o7 7 (6.32)
coS Y sin ¢ sin® @

o2 cos?p  cospsinp

7 = ——i—E (6.33)
VIl cos Y sin sin? @

Finally, note that this relation is valid if z. is expressed in pixel coordinates. After

normalization, this variance must be scaled by the square of the inverse of focal length

Je:

o2 cos?p  cospsing (6.34)

©LIVIE)| COS Y sin sin?
which ends the proof of the lemma (eq. 6.14). B
Notice that if the shadow edge is roughly vertical on the image, one may assume
@ = 0, and therefore simplify quite significantly the variance expression:
o? 10
Sz, = == (6.35)
@) | o o
In that case, we reach the very intuitive result that only the first coordinate of . is
affected by noise.
Since ¥z, in inversely proportional to the image gradient, accuracy improves with
shadow edge sharpness. In addition, observe that ¥z does not directly depend upon

the local shadow speed. Therefore, decreasing the scanning speed would not increase
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accuracy. However, for the analysis leading to equation 6.14 to remain valid, the
temporal pixel profile must be sufficiently sampled within the transition area of the
shadow edge (the penumbra). Therefore, if the shadow edge were sharper, the scan-
ning should also be slower so that the temporal profile at every pixel would be properly
sampled. Further discussions may be found at the end of those derivations (in the
same section). Another consequence of equation 6.14 is that one may experimentally
compute the variance ¥z of the transfered error directly from the original input se-
quence: VI(ZT,) is the image gradient at the shadow edge and o7 is the pixel noise on
the image. In addition, assuming that the sharpness of the shadow is approximately
uniform over the entire image, then ¥z may also be assumed to be uniform to a first
approximation. That constitutes an additional simplification that does not have to
be retained in practice.

2

The final expression of the variance o7 of the error attached to the depth estimate

Z. may be written as follows:

YA oz \T
2 c = ¢
azc_.(é%:)zgc(éﬁ%> (6.36)

One may derive the expression for the Jacobian matrix (ggz) from the triangulation

equation 6.12:

1 07,
<wm Ec> 3Tc

Z, = :ﬁ[wwﬁ (6.37)

where w, and w, are the two first coordinates of the shadow plane vector .. This

allows to expand the expression of a%c:

. 2

= 71 (e Hae) (6.38)
f VIl

This expression is directly computable from the original input sequence, and used for

scan merging (described in section 6.4).

Three observations may be drawn from equation 6.38. First, since a%c is inversely
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proportional to [[VI(Z.)||?, the reconstruction accuracy increases with the sharpness
of the shadow boundary. This behavior has been observed in past experiments, and
discussed in [73]. This explains why scans obtained using the sun (experiments 4 and
5) are more noisy that those with a desk lamp (as the penumbra is larger with the
sun by a factor of approximately 5). Second, notice that o is proportional to @ ||?
(through the terms w? and wZ), or, equivalently, inversely proportional to the square
of the distance of the shadow plane to the camera center O.. Therefore, as the shadow
plane moves closer to the camera, triangulation becomes more and more sensitive to
noise (see discussion in section 6.2.6). The third observation is less intuitive: one may
notice that o, does not explicitly depend on the local shadow speed at T, at time
t = t,(T.). Therefore, decreasing the scanning speed would not increase accuracy.
However, for the analysis leading to equation 6.38 to remain valid, the temporal pixel
profile must be sufficiently sampled within the transition area of the shadow edge
(the penumbra). Therefore, if the shadow edge were sharper, the scanning should
also be slower so that the temporal profile at every pixel would be properly sampled.
Decreasing further the scanning speed would benefit the accuracy only if the temporal
profile were appropriately low-pass filtered or otherwise interpolated before extraction
of t,(Z.). This is an issue for future research.

An experimental validation of the variance expression (6.38) is reported in section

6.6 (figure 6.14).

6.3.2 System design issues

In the case where the light source position is known, it is possible to write the “av-
erage” depth variance as a direct function of the variables defining the geometry of
the system. For that purpose, let us consider the scanning setup as it is presented
on figure 6.9 where scanning is done roughly vertically. In that case, ¢ ~ 0, and

IX(T.) < I2(Z.) (see figure 6.14). Then, the depth variance expression (6.38) may be
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further simplified to:

4,2

o} ~ f_?ZEC;—TL) o (6.39)
It appears then that the first coordinate w, of the shadow plane vector @, carries most
of the variations in accuracy of reconstruction within a given scan. When designing
the scanning system, an important issue is to choose the spatial configurations of the
camera and the light source that maximize the overall quality of reconstruction, or
equivalently minimize |w,|. In order to address this issue, it is necessary to further
expand the term w,, and study its dependence upon the geometrical variables charac-
terizing the system. Since the light source position is of interest here, let us consider
the case where a single plane IT, is used for scanning. In that case, the shadow plane
vector @, appears as a function of the light source position vector X g, as stated by
equation 6.9. Assume that A\, = [\, A, |7 is normalized such that A\, = 1. In
addition, assume that the (O, X.) axis of the camera is approximately parallel to the

plane I, (as suggested in figure 6.9). This implies that the first coordinate of Wy, is

zero. Then, the first coordinate w, of W, reduces to:

1—(Wn, Xs)  hs/dy
Wy = T = -
(A, Xs) (An Xs)

(6.40)

where d,, and hg are the respective orthogonal distances of the camera center O, and
the light source S to the plane II,.

For simplification purposes, let us assume that the shadow edge A, appears ver-
tically on the image plane, and let z be its horizontal position (on the image). As
the shadow moves from left to right, z varies from negative values to positive values,
crossing zero when the shadow is at the center of the image. In that specific scenario,

the shadow edge vector reduces to: Ay, = [1 0 — x| simplifying equation 6.40:

1 dp
— = —(Xg—a 2 6.41
o hs( s —Zs) (6.41)

The problem of maximizing the reconstruction quality corresponds then to maximiz-
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ing |1/w,|. Since that quantity is function of the shadow edge location z, we may
observe that the accuracy of reconstruction is not uniform throughout the scene for a
given scan (unless the depth of the light source in the camera reference frame is zero:
Zs = 0). A better understanding of that relation may be achieved by expressing the
light source coordinate vector X g as a function of the angular coordinates #, ¢, and &
defining the mutual positions of the camera and the light source with respect to the

plane II, (see figure 6.9):

Xg hs 2%
Xs=|Ys | =] - hSSi—I;:fi?;ﬁ + (dg — hs) cosf (6.42)
Zs hgBESE 4 (dy — hg) sind

Following this notation, the inverse of w, may be written as follows:

1 =d, (———COS§ - (cos&smg + d — s sin 9)) (6.43)
tan ¢

Wy tan ¢ hg

Since during scanning, the shadow edge coordinate x spans a range of values going
from negative to positive values, we may consider that taking x = 0 gives us an

indication of the “average” reconstruction quality:

1

cos &

=d
htan¢

(6.44)

W Wy

average z=0

Equation 6.39 may then be used to infer an expression for the “average” depth vari-

ance:

4 402 2
9 4. tan" ¢  og
0y,

~ Ze 6.45
average di c082£ fc2 I§<fc) ( )

A next simplification step may be applied, by observing that the average depth of

the scene is approximately related to the height dj, and the tilt angle 6 of the camera
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through the following expression:

d
Z| ~ (6.46)

average sin 6

That relation leads us to a new expression for the “average” o, :

’ tan ¢ or
o ~
Ze |average h sin29 tCOSf} fc ‘ILE(ECM

(6.47)

Notice that this quantity may be computed prior to scanning knowing the geometrical
configuration of the system. From that expression, it is also possible to identify
optimal configurations of the camera and the light source that maximize the overall
quality of the reconstruction. In order to maximize the overall reconstruction quality,
the position of the light source needs then to be chosen so that the norm of the ratio
tan ¢/ cos € is minimized. Therefore, the two optimal values for the azimuth angle are
€ =0 and £ = 7 corresponding to positioning the lamp either to the right (£ = 0) or
to the left (¢ = 7) of the camera (see figure 6.9). Regarding the elevation angle ¢, it
would be beneficial to make tan ¢ as small as possible. However, making ¢ arbitrarily
small is not practically possible. Indeed, setting ¢ = 0 would constrain the light source
to lie on the plane II; which would then drastically reduce the effective coverage of
the scene due to large amount of self-shadows cast on the scenery. A reasonable
trade-off for ¢ is roughly between 60 and 70 degrees. Regarding the camera position,
it would also be beneficial to make sinf as large as possible (ideally equal to one).
However, it is very often not practical to make 6 arbitrarily close to 7/2. Indeed,
having # = 7/2 brings the reference plane Il parallel to the image plane. Then,
standard visual camera calibration algorithms are known to fail (due to lack of depth
perspective in the image). In most experiments, we set 6 to roughly /4.

Once again, for validation purposes, we may use equation 6.47 to estimate the
reconstruction error of the scans performed in experiment 3 (figure 6.19). From a
set of 10 images, we first estimate the average image brightness noise (o; = 2), and

the shadow edge sharpness (||VI|| ~ 50). After camera and light source calibration,
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the following set of parameters is recovered: f, = 428 pixels, dj, = 22 cm, 0 = 39.60
degrees, hg = 53.53 cm, £ = —4.91 degrees and ¢ = 78.39 degrees. Equation 6.47
returns then an estimate of the reconstruction error (o7, &~ 0.2 mm) very close to the
actual error experimentally measured on the final reconstructed surface (between 0.1
mm and 0.2 mm). The first expression given in equation 6.38 may also be used for

obtaining a more accurate estimate of o, specific to every point in the scene.

6.4 A simple merging technique

The range data can only be retrieved at pixels corresponding to regions in the scene
illuminated by the light source and seen by the camera. In order to obtain better
coverage of the scene, one may take multiple scans of the same scene with the light
source at different locations each time, while keeping the camera position fixed. Con-
sider the case of two scans with the lamp first on the right, and then on the left of the
camera (see figure 6.13). Assume that at a given pixel 7, on the image, two shadow
planes are available from the two scans: ITIZ and TIE. Denote by @w” and @F their
respective coordinate vectors. Then, two estimates Z* and ZF of the corresponding

depth at T, are available (from equation 6.12):

zq = 1/(@t %)

48
ZE = 1/(wf =) (6:49)

One may then calculate the depth estimate at T. by taking a weighted average of

ZE and ZE:
Ze=apZF +ap ZF (6.49)

where the weights a;, and ag are computed based on the respective reliabilities of
the two depth estimates. Assuming that Z* and ZF are random variables with

independent noise terms, they are optimally averaged (in the minimum variance sense)
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using the inverse of the variances as weights [89]:
2 — 2 2

U _Tr (6.50)
GrR 9L ar =0} /(0% +0F)

where ¢ and ¢% are the variances of the error attached to Z" and ZF respectively.
A sensitivity analysis of the method described in section 6.3 provides expressions
for those variances (given in equation 6.38). This technique was used in experiment

1 and experiment 3 (see figures 6.13 and 6.16).

6.5 Real-time implementation

We implemented a real-time version of our 3D scanning algorithm in collaboration
with Silvio Savarese of the university of Naples, Italy. In that implementation the
process is divided into two main steps. In the first step, the minimum and maximum
images Inin(z,y) and Iy (z,y) (eq. 6.2) are computed through a first fast shadow
sweep over the scene (with no shadow edge detection). That step allows to pre-
compute the threshold image Ighaqow (%, y) (eq. 6.3) which is useful to compute in real-
time the difference image Al(z,y,t) (eq. 6.4) during the next stage: the scanning
procedure itself. During scanning, temporal and spatial shadow edge detections are
performed as described in section 6.2.4: As a new image I(z,y,%) is acquired at
time t = t, the corresponding difference image Al (z,y, o) is first computed. Then,
a given pixel (2., ¥.) is selected as a pixel lying on the edge of the shadow if AI(z., y., t)
crosses zero between times ¢t = t; — 1 and ¢t = 3. In order to make that decision, and
then compute its corresponding sub-frame shadow time ¢4(z., y.), only the previous
image difference AI(x,y,t; — 1) needs to be stored in memory. Once a pixel (2., y.)
is activated and its sub-frame shadow time t¢s(x.,y.) computed, one may directly
identify its corresponding shadow plane IT by linear interpolation between the current
shadow plane II(ty) and the previous one II(ty — 1) (see sec. 6.2.5). Therefore, the
3D coordinates of the point may be directly computed by triangulation (see sec.

6.2.6). As a result, in that implementation, neither the shadow times t,(x,y), nor
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the entire list of shadow planes I1(¢) need to be stored in memory, only the previous
difference image AI(x,y,t,— 1) and the previous shadow plane IT(¢, —1). In addition,
scene depth map (or range data) is computed in real-time. The final implementation
that we designed also takes advantage of possible multiple passes of the shadow edge
over a given pixel in the image by integrating all the successive depth measurements
together based on their relative reliabilities (equations 6.48, 6.49 and 6.50 in section
6.4). Details of the implementation may be found in [90].

The real-time program was developed under Visual C++ and works at 30 frames
a second on images of size 320 x 240 on a Pentium 300MHz machine: it takes ap-
proximately 30 seconds to scan a scene with a single shadow pass (i.e., 30 x 30 = 900
frames), and between one and two minutes for a refined scan using multiple shadow
passes. The system uses the PCI frame grabber PXC200 from Imagenation, a NTSC
black and white SONY XC-73/L camera (1/3 inch CCD) with a 6mm COSMICAR
lens (leading to a 45° horizontal field of view). Source code (matlab for calibration
and C for scanning) and complete hardware references and specifications are available
online at http://www.vision.caltech.edu/bouguetj/ICCV98. At the same loca-
tion, a short demonstration movie (one minute long) of the working system is also

available.
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6.6 Experimental results

6.6.1 Calibration accuracy

Camera calibration. For a given setup, we acquired 5 images of the checkerboard
pattern (see figure 6.4-right), and performed independent calibrations on them. The
checkerboard, placed at different positions in each image, consisted of 187 visible
corners on a 16 x 10 grid. We computed both mean values and standard deviations
of all the parameters independently: the focal length f., radial distortion factor k.
and ground plane position IT,. Regarding the ground plane position, it is convenient
to look at its distance dj, to the camera origin O, and its normal vector 7, expressed
in the camera reference frame (recall: @y, = 7ip/dy). The following table summarizes

the calibration results:

Parameters Estimates Relative
errors
fo (pixels) 426.8 + 0.8 0.2%
ke —0.233 £ 0.002 1%
dp, (cm) 112.1+0.1 0.1%
—0.0529 =+ 0.0003
np 0.7322 + 0.0003 0.05%
0.6790 + 0.0003
—0.0472 £ 0.0003
@h (m™h) 0.653 % 0.006 0.1%
0.606 % 0.006

Lamp calibration. Similarly, we collected 10 images of the pencil shadow (like
figure 6.5-top-right) and performed calibration of the light source on them. See section
6.2.3. Notice that the points b and ¢, were manually extracted from the images. Define
X5 as the coordinate vector of the light source in the camera reference frame. The
following table summarizes the calibration results obtained for the setup shown in

figure 6.5 (refer to figure 6.9 for notation):
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Parameters Estimates Relative
errors
—-13.7£0.1
Se (em) ~17.2+0.3 ~ 2%
-294+0.1
hs (cm) 34.04 £ 0.15 0.5%
¢ (degrees) 146.0 £ 0.8 0.2%
¢ (degrees) 64.6 £ 0.2 0.06%

The estimated lamp height agrees with the manual measure (with a ruler) of
34 + 0.5 cm.
This accuracy is sufficient for not inducing any significant global distortion onto

the final recovered shape, as we discuss in the next section.

6.6.2 Scene reconstructions

Experiment 1 - Indoor scene: We took two scans of the same scene with the desk
lamp first on the right side and then on the left side of the camera. The two resulting
meshes are shown on the top row of figure 6.13. The meshes were then merged
together following the technique described in section 6.4. The bottom figure shows
the resulting mesh composed of 66, 579 triangles. We estimated the surface error (oz,)
to approximately .7 mm in standard deviation over 50 cm large objects, leading to a
relative reconstruction error of 0.15%. The white holes in the mesh images correspond
to either occluded regions (not observed from the camera, or not illuminated) or
very low albedo areas (such as the black squares on the horizontal plane). There
was no significant global deformation in the final structured surface: after fitting a
quadratic model through sets of points on the two planes, we only noticed a decrease
of approximately 5% in standard deviation of the surface error. One may therefore
conclude that the calibration procedure returns sufficiently accurate estimates. The
original input sequences were respectively 665 and 501 frames long, each image being
320 x 240 pixels large, captured with a grayscale camera.

Figure 6.14 reports a comparison test between the theoretical depth variances
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Figure 6.13: Experiment 1 - Indoor scene: The top figures are two scans of the scene
with the light source at two different locations (on the right, and on the left of the
camera). The bottom figure is the resulting scene surface after merging of the two

scans.
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Figure 6.14: Comparison of measured and predicted reconstruction error oz, .
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obtained from expression (6.38) and that computed from the reconstructed surface.
This test was done on the first scan of the scene shown on figure 6.13-top-left. In that
test, we experimentally compute the standard deviation o, of the error on the depth
estimate Z, at 13 points p = (A, B, ... , M) picked randomly on the horizontal plane
I, of the scan data shown on figure 6.13-top-left. Figure 6.14-top-right shows the
positions of those points in the scene. The standard deviation oz, at a given point p
in the image is experimentally calculated by first taking the 9 x 9 pixel neighborhood
around p resulting into a set of 81 points in space that should lie on II,. We then fit
a plane across those 81 points (in the least squares sense) and set o, as the standard
deviation of the residual algebraic distances of the entire set of points to this best fit
plane. The experimental estimates for oz, are reported in the last column of the table
(in mm). The second last column reports the corresponding theoretical estimates of
oz, (in mm) computed using equation 6.38. The terms involved in that equation
are also given: VI (in units of brightness per pixel), [w, wy|" (in m™') and Z (in
mm). The image noise was experimentally estimated to oy = 2 brightness values
(calculation based on 100 acquired images of the same scene), and the focal value
used was f. = 426 pixels. See sec. 6.3 for a complete description of those quantities.
The top-left figure shows a plot of the theoretical standard deviations versus the
experimental ones. Observe that the theoretical error model captures quite faithfully
the actual variations in accuracy of reconstruction within the entire scene: as the point,
of interest moves from the left to the right part of the scenery, accuracy increases due
to sharper edges, and a smaller shadow plane vector @,; in addition, deeper areas in
the scene are more noisy mainly because of larger absolute depths Z, and shallower
shadow edges (smaller || VI]|). We conclude from that experiment that equation 6.38

returns a valid estimate for oz,.

Experiment 2 - The plane/ball/corner scene: Figure 6.15 reports the scanning
results achieved on a scene composed of simple geometrical objects (scene already
seen on figure 6.1-cd). The original sequence was composed of 270 frames, 320 x 240
pixels each. Regarding the general setup, the camera was positioned at a distance

of d; = 16.7 cm away from the desk plane, tilted down by 6 = 41.3 degrees. The
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Figure 6.15: Experiment 2 - The plane/ball/corner scene: (a) The initial image of the
scene before shadow scanning, and (b), (c) and (d) are different views of the mesh
generated from the cloud of points obtained after triangulation.

calibrated light source was at height hg = 37.7 cm, on the left of the camera at
angles £ = 157.1 degrees, and ¢ = 64.8 degrees (see figure 6.9). Notice that in the
experiment, the lamp had its reflector on (as seen on figure 6.1-a). As the scanning
progresses from the left to the right part of the scene, the shadow boundary moves
away from the light source, bringing the shadow plane I1(¢) closer to the camera center
of projection Q.. This explains why the surface noise is larger on the right part of
the scene, especially noticeable on figure 6.1-c. For more details on that issue, refer
to the error analysis section 6.3.

In this experiment, we evaluated the accuracy of reconstruction based on the sizes
and shapes of the plane at the bottom left corner and the corner object on the top

of the scene (see figure 6.15a).
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Planarity of the plane: We fit a plane across the points lying on the planar patch
and estimated the standard deviation of the set of residual distances of the
points to the plane to 0.23 mm. This corresponds to the granularity (or rough-
ness) noise on the planar surface. The fit was done over a surface patch of
approximate size 4 cm x 6 cm. This leads to a relative non planarity of approx-
imately 0.23mm/5cm = 0.4%. To check for possible global deformations due
to errors in calibration, we also fit a quadratic patch across those points. We
only noticed a decrease of approximately 6% in residual standard deviation after
quadratic warping. This leads us to believe that global geometric deformations
are negligible compared to local surface noise. In other words, one may assume
that the errors of calibration do not induce significant global deformations on

the final reconstruction.

Geometry of the corner: We fit 2 planes to the corner structure, one correspond-
ing to the top surface (the horizontal plane) and the other one to the frontal
surface (vertical plane). We estimated the surface noise of the top surface to
only 0.125 mm, and that of the frontal face to 0.8 mm (almost 7 times larger).
This noise difference between the two planes can be observed on figure 6.15.
Once again, after fitting quadratic patches to the two planar portions, we did
not notice any significant global geometric distortion in the scene (from planar
to quadratic warping, the residual noise decreased by only 5% in standard de-
viation). From the reconstruction, we estimated the height H and width D of
the right angle structure, as well as the angle ¢ between the two reconstructed

planes, and compared them to their true values:

. True Relative
Parameters | Estimates
values errors
H (cm) 2.57+0.02 | 2.65+0.02 3%
D (cm) 3.06+0.02 | 3.02+0.02 1.3%
¥ (degrees) 86.21 90 1%

We can recover the height and width of the right angle structure, as well as
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the angle between the two reconstructed planes: The reconstructed width D of
the object is 3.06 £ 0.02 cm, to be compared to its real width 3.02 + 0.02 cm
(i.e., a relative error of 1.3%). For the height, we measure on the reconstruction
2.57+0.02 cm, to be compared with the real height of the object being 2.65+0.02
cm (i.e., relative error of 3%). Finally, the angle between the two reconstructed
planes is estimated to be 86.21 degrees (the true value being 90 degrees), which

means a deformation error of 4 degrees, or 4% relative angular deformation.

On average, the overall reconstructed structure does not have any major notice-
able global deformation (it seems that the calibration process gives good enough
estimates). The most noticeable source of errors is the surface noise due to local
image processing. A figure of merit to keep in mind is a surface noise between 0.1
mm (for planes roughly parallel to the desk) and 0.8 mm (for frontal plane in the
right corner). In most portions of the scene, the errors are of the order of 0.3 mm,

i.e., less than 1%.

Experiment 3 - The angel scene: In this third experiment (shown on figure 6.16),
we took two scans of a small sculpture of an angel, and then merged them together (to
obtain a better coverage of the surface, and a cleaner reconstruction). Similarly to the
second experiment, we used a scanning scenario where the light source is calibrated
(and a single plane is used for background). Notice from figures 6.16a and 6.16b that
between the two scans, we moved the lamp source from the left to the right side of the
camera, keeping the camera position unchanged. Figures 6.16c and 6.16d show the
meshes resulting from both scans. Notice that, as expected, the part of the scenery
located on the side on the lamp (with respect to the camera) is always the most
accurately reconstructed: left side for figure 6.17¢, and right side for figure 6.17d. For
a precise justification, refer to section 6.3 where a complete noise sensitivity analysis
of the method is carried out.

Figure 6.17 shows different views of the resulted 3D mesh of the angel after merg-
ing of the two scans. The merging was performed according to the method described

in section 6.4: at every pixel in the image, each scan gives one depth estimate, to-
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Figure 6.16: Experiment 3 - The angel scene: In that experiment, we took two scans
of the angel with the lamp first on the left side (a) and then on the right side (b) of
the camera. The resulted meshes after scanning are shown on figures (c) and (d) (for
respectively left and right illuminations).
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Figure 6.17: Experiment 3 - The final reconstruction: The resulting 3D model of the
angel after merging of the two meshes 6.16c and 6.16d generated from the two scans
independently. It is composed of 47076 triangles. Notice that most of the surface
of the object is nicely reconstructed, except for few occluded portions of the scene
(not observed from the camera or not illuminated by the camera) leaving small white
holes here and there (look for example at the right side of the nose). Notice the very
small surface noise: we estimated it to 0.09 mm throughout the entire reconstructed
surface.

gether with an uncertainty measure (the variance of the estimation noise). Both
depths are then combined by weighted average, resulting into the the final depth esti-
mate (equation 6.49). Notice that most of the object surface is nicely reconstructed,
except for few occluded portions of the scene (not observed from the camera or not
illuminated by the light) leaving small white holes here and there (for example the
right side of the nose).

Regarding the general setup, the camera was positioned at a height of d, = 22
cm with respect to the desk, tilted down at an angle of approximately 8 = 40 degrees

(see figure 6.9). Special care was taken in order to position the light source precisely
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in the azimuth positions £ = 0 degree and & = 180 degrees on the respective left and
right hand scans. As shown in section 6.3, this configuration maximizes the average
accuracies in shape estimation, by maximizing | cos&| = 1. The elevation angle of the
lighting direction was set to approximately ¢ = 70 degrees for both scans. Notice that
one could try smaller values in order to minimize tan ¢ and thereby further improve
global accuracies (see discussion in section 6.3). For completeness of the description,
note that the lamp was positioned at an approximate height of hg = 62 cm in both
scans. Finally, notice that for that experiment, we decided to take the lamp reflector
off, leaving the bulb naked. Consequently, we noticed a great improvement in the
sharpness of the projected shadow (compared to the two first experiments). This was
actually expected, since that way, the lamp became a better point light source. We
believe that this operation was the main reason for the noticeable improvement in
quality of reconstruction (compared with the second experiment): the surface noise
was estimated to 0.09 mm in standard deviation throughout the entire surface. Over
a depth variation of approximately 10 cm, this means a relative error of 0.1%. Once
again, there was no significant global deformation in the final structured surface: we
fit a quadratic model through the reconstructed set of points on the desk plane and
noticed from planar to quadratic warping a decrease of only 2% on the standard

deviation of surface noise.

Experiment 4 - Scanning of a textured skull: We took one scan of a small
painted skull, using a single reference plane II;, with known light source position
(pre-calibrated). Two images of the sequence are shown on the top row of figure 6.18.
The recovered shape is presented on the second row (33,533 triangles), and the last
row shows three views of the mesh textured by the top left image. Notice that the
textured regions of the object are nicely reconstructed (although these regions have
smaller contrast eonirast). Small artifacts observable at some places on the top of the
skull are due to the saturation of the pixel values to zero during shadow passage.
This effect induces a positive bias on the threshold Ighadow (since Inmiy is not as small
as it should be). Consequently, those pixels take on slightly too small shadow times

t, and are triangulated with shadow planes that are shifted to the left. In effect,
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their final 3D location is slightly off the surface of the object. One possible solution
to that problem consists of taking multiple scans of the object with different camera
apertures, and retaining each time the range results for the pixels that do not suffer
from saturation. The overall reconstruction error was estimated to approximately
0.1 mm over a 10 cm large object leading to a relative error of approximately 0.1%.
In order to check for global distortion, we measured the distances between three
characteristic points on the object: the tip of the two horns, and the top medium
corner of the mouth. The values obtained from physical measurements on the object
and the ones from the retrieved model agreed within the error of measurement (on
the order of 0.5mm over distances of approximately 12 to 13cm). The sequence of
images was 670 frames long, each image being 320 x 240 pixels large (acquired with

a grayscale camera).

Experiment 5 - Textured and colored fruits: Figure 6.19 shows the recon-
struction results on three textured and colored fruits. The second row shows the
reconstructed shapes. The three meshes with the pixel images textured on them are
shown on the third row. Similar reconstruction errors to the previous two experiments
(Experiments 3 and 4) were estimated on that data set. Notice that both textured
and colored regions of the objects were well reconstructed: the local surface errors was
estimated between 0.1 mm and 0.2 mm, leading to relative errors of approximately
0.1%.

Experiment 6 - Outdoor scene: In this experiment, the sun was used as light
source for scanning a small object. See figure 6.20. The final mesh is shown on
the bottom figure (with 106,982 triangles). The reconstruction error was estimated
to 1mm in standard deviation, leading to a relative error of approximately 0.2%.
The larger reconstruction error is possibly due to the fact that the sun is not well
approximated by a point light source leading to shallower shadow edges (see discussion
in Sec. 6.3). Once again, there was no noticeable global deformation induced by
calibration. After fitting a quadratic model to sets of points on the planes, we only

witnessed a decrease of approximately 5% on the standard deviation of the residual
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Figure 6.20: Experiment 6 - Outdoor scanning of an object

error. The original sequence was 790 images long acquired with a consumer electronics
color camcorder (at 30 Hz). After digitization, and de-interlacing, each image was
640 x 240 pixel large. The different digitalization technique may also explain the

larger reconstruction error.

Experiment 7 - Outdoor scanning of a car: Figure 6.21 shows the reconstruction
results on scanning a car with the sun. The two planes (ground floor and back wall)
approach was used to infer the shadow plane (without requiring the sun position). The
initial sequence was 636 frames long acquired with a consumer electronics color video-
camera (approximately 20 seconds long). Similarly to Experiment 4, the sequence was
digitized resulting to 640 x 240 pixel large non-interlaced images. Two images of the

sequence are presented on the top row, as well as two views of the reconstructed 3D
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Figure 6.21: Experiment 5 - Outdoor scanning of a car

mesh after scanning. The reconstruction errors were estimated to approximately 1
cm, or 0.5% of the size of the car (approximately 3 meters).

All the reconstruction results presented in that section (and more) are available
online in the form of VRML meshes at:

http://www.vision.caltech.edu/bouguetj/ICCV98/gallery.html

6.7 Conclusions

In this chapter, we have presented a simple, low cost system for 3D scanning. The

system requires very little equipment (a light source, and a straight edge to cast
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the shadow) and is very simple and intuitive to use and to calibrate. This technique
scales well to large objects and may be used in brightly lit scenes where active lighting
methods are impractical. In outdoor scenarios, the sun is used as light source and
is allowed to move during a scan. The method requires very little processing and
image storage and has been implemented in real time (30 Hz) on a Pentium 300MHz
machine. The accuracies that we obtained on the final reconstructions are reasonable
(error at most 0.5% of the size of the scene, or one part in 200). In addition, the final
outcome is a dense and conveniently organized coverage of the surface (one point in
space for each pixel in the image), allowing direct triangular meshing and texture
mapping. We also showed that using dual-space geometry enables us to keep the
mathematical formalism simple and compact throughout the successive steps of the
method. An error analysis was presented together with a description of a simple
technique for merging multiple 3D scans in order to obtain a better coverage of the
scene, and reduce the estimation error. The overall calibration procedure, even in the
case of multiple scans, is intuitive, simple, and accurate.

Our method may be used to construct complete 3D object models. One may take
multiple scans of the object at different locations in space, and then align the sets
of range images. For that purpose, a number of algorithms have been explored and
shown to yield excellent results [71, 91, 92]. The final step consists of constructing
the final object surface from the aligned views [93, 94, 92]|. In order to apply these
merging techniques, we believe it is necessary to further analyze (and control) all
possible global deformation effects due to calibration errors. Indeed, even for standard
structured lighting scanning systems, small errors on calibration may induce global
distortions in the reconstructed scene that may forbid any alignment procedure to
work at all.

It is also part of future work to incorporate a geometrical model of extended
light source to the shadow edge detection process (although we do not believe that
this will significantly improve the quality of the scans), in addition to developing an
uncalibrated (projective) version of the method.

Observe that at least one reference (and calibrated) plane is necessary for 3D
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shadow scanning. This plane is useful for directly computing the shadow plane loca-
tion from the information contained in the image only. The following chapter explores
an extension of this shadow scanning technique to cases where no reference plane is

available in the scene.
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Chapter 7 Geometry of planar shadows

in B-dual-space

7.1 Motivation: Shadow scanning without any ref-
erence plane

In the previous chapter, we presented a method for capturing cheaply and quite ac-
curately 3D surfaces based on projecting shadows onto the scene using a pencil (or
another straight edge) and a conventional desk lamp [73, 77]. This approach has the
advantage of being simple, and achieving full Euclidean reconstruction, however it
requires the presence of a background plane used as a reference plane (assuming a
calibrated light source). One question remains: Can we do without that reference
surface? Or, what can we tell about the scene geometry from a set of projected shad-
ows? In this paper, we demonstrate that, under the assumption that the light source
position is known, planar shadows provide sufficient information for Euclidean 3D
reconstruction (up to three global scalar parameters) and propose a simple algorithm
for achieving such a reconstruction [95]. All the mathematical derivations will be
using the dual-space formalism as fundamental tool.

We start with the description of the method in Sec. 7.2, followed in Sec. 7.3 by
some experimental results. Preliminary results on the generalization to more than
one light source are presented in the following section 7.4. We end with conclusions

in Sec. 7.5.
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7.2 Description of the method

Let us consider the scanning scenario as we presented in the previous chapter 6 and
in [73]. Figure 7.1 recalls the complete geometry corresponding to this technique. On
this figure, the plane II; is used as reference plane for scanning. Let us recall how 3D
reconstruction is achieved in that geometrical setup: Assume that the positions of the
light source S and the plane I1; (reference plane) in the camera reference frame are
known from calibration (see section 6.2.1). During scanning, the user casts a shadow
on the scene observed as a curved edge £ on the image. The goal is to estimate the
3D location of the point P in space corresponding to any point p on £. Denote by II
the corresponding shadow plane. Assume that two portions of the shadow projected
on the desk plane are visible on two given rows of the image (top and bottom rows
on the figure). Consider the two points a and b lying at the intersection of £ and the
two reference rows. Their corresponding points A and B in the scene may be found
by intersecting IT; with the optical rays (O,,a) and (O, b) respectively. The shadow
plane II is then inferred from the three points in space S, A and B (this technique is
essentially described in section 6.2.5). Finally, the point P is retrieved by intersecting
I1 with the optical ray (O, p) (triangulation stage - see section 6.2.6).

The central observation is that for a given stick position, once the shadow plane
I1 is identified, so is the 3D position of the entire shadow edge £ (by geometrical
triangulation). The reference plane II; constitutes then a direct mean for locating
the shadow plane in space (through the top and bottom reference rows) and achieve
Euclidean reconstruction. This paper attempts to answer the question: Is there a
way of recovering IT without I1;?

We will first describe the scanning scenario. The light source, S, is at a known
position with respect to the camera (from light source calibration - see section 6.2.3),
and the camera is calibrated (see section 6.2.1 and chapter 3). During scanning,
the user projects a succession of N shadows onto the scene (with a straight edge),
generating N shadow edges & (1 = 1,...,N) on the image plane. The problem of

reconstructing scene geometry then leads to the problem of estimating the locations
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The edge of the shadow
generated by the stick
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Figure 7.1: Scanning method using a reference plane I,.

of the associated N shadow planes II; in space. As one shadow edge is added to the
list of edges, in principle three unknowns are added to the problem, corresponding
to the three degrees of freedom of the associated shadow plane in space. Are there
enough constraints imposed by the images that allow to estimate this total of 3V

variables?

7.2.1 A constructive approach

Before getting into the mathematical details of the reconstruction algorithm, let us
first build some intuition about the geometry of the problem.

For that purpose, let us state the two following properties.
Property 1 - Depth propagation along an edge: If the depths Z4 and Zp of
two distinet points a and b along a given shadow edge £ are known, then so is the

depth Zp of any point p along that edge. In other words, depth information at two



Figure 7.2: Depth propagation from edge to edge: Depth information propagates
from the points a, b and ¢ along the edges & and & to the points p; and p, and
finally along &, to p.

distinct points on an edge propagates along the entire edge.
Proof: Let 74 and Tp be the homogeneous coordinate vectors of the two points a
and b on the image plane: T4 = [z4 ya 1)7 and g = [z yp 1]7. Then, if
the two depths Z4 and Zp are known, then so are the full coordinate vectors of the
associated points A and B in the 3D scene: X 4= Z4%T4and Xg = ZpZTp. Therefore,
the associated shadow plane II is the unique plane passing through the three points
A, B and S. Once II is recovered, any point p along the edge £ may be triangulated
leading to Zp. B

This approach was implicitly used in the scanning system presented in chapter 6
in connection with the reference plane and illustrated in figure 7.1. Consider Fig. 7.1,
where the depths of the two points a and b are known due to the fact that they lie on
the known reference plane II;. Consequently, following Property 1, depth information
at a and b propagate to every point p along the edge £.
Property 2 - Depth propagation from edge to edge (to the entire image):
Let a, b and ¢ be three distinct points on the image (in the scannable area). Assume
their respective depths Z4, Zp and Zc known. Then, by “appropriate” shadow
scanning, one may retrieve the depth at any point p on the image (in scannable
areas).

Proof: The proof of this property is constructive. First project a shadow edge &
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that goes through the points a and b, and another one (£;) through a and ¢ (see
figure 7.2). Given that two points (a and b) on &; are of known depths, according to
Property 1, one may compute the depth of every point along that edge. The same
holds for &. For any point p in the image, project an edge £, that passes through p
and intersect & and & at any two distinct points p; and p; (different from a). Since
p1 and p, lie on the two known edges & and &,, their depths are known. Therefore,
following the depth propagation principle (Property 1), the depth of every point along
&, may be computed, in particular that of the point p (see fig. 7.2). W

A direct consequence of that property is that the knowledge of the depth at
three distinct points in the image is enough to recover the entire scene depth map.
Therefore, fixing three scalar parameters (the three depths) is sufficient to retrieve a
complete Euclidean reconstruction of the scene (of course restricted to the scannable
areas). Notice that we have not yet shown that this is a necessary condition. In other
words, there could exist an alternative scanning strategy that requires only 2 or less
scalar identifications in order to achieve the same Euclidean reconstruction. Below
we show that the condition is also necessary.

Notice that the basic constraint that we used in order to propagate depth infor-
mation from {a,b, c} to p made direct use of the intersecting points p; and p, of the
shadow edges. As the scanning progresses, more edges are projected on the scene,
generating more and more intersections. In fact, while approaching the end of the
scanning procedure, it is very likely to find a lot more than two intersecting points
per edge. Therefore, in presence of noise in the measurements, this direct construc-
tive method may not be the most robust technique to propagate depth information
across the image through the edge-web (defined as the entire set of edges). A better
algorithm exists in order to make appropriate use of all the edge intersections at once.
It will be presented in section 7.2.2.

An edge £ is an isolated edge if and only if it does not intersect with at least
two other edges on the image. Notice that depth information cannot possibly be
propagated to any isolated edge from the rest of the edge-web. In other words,

any attempt to compute depth information, or shadow plane coordinates for any
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isolated edge is hopeless. Therefore, every isolated edge should be rejected prior to

any computation.

7.2.2 3D reconstruction algorithm in dual-space

In this section, we derive the complete algorithm for 3D reconstruction from planar
shadows. One may find a summary of it at the end of the section.

Let TI; be the i*® shadow plane generated by the stick (i = 1,...,N), with cor-
responding plane vector @; = [wi w! wi]” (in dual space). For all vectors @; to be
well defined, it is required that none of the planes II; contain the camera center O,.
See section 2.2.1. Denote by & the associated shadow edge observed on the image
plane. The N vectors @; constitute then the main unknowns in the reconstruction
problem. Indeed, once those vectors are identified, all edges can be triangulated in
space. Therefore, there is apparently a total of 3N unknown variables. However,
given the scanning scenario, every shadow plane II; must contain the light source
point S. Therefore, denoting X5 = [Xg Ys Zs]” the light source coordinate vector

in the camera reference frame (known), we have (see sec. 2.2.1):
Vi=1,...,N, (Wi, Xs) =1 (7.1)

Equivalently, in dual-space, all shadow plane vectors ; must lie on the plane S, dual-
image on the light source point S. One may then explicitly use that constraint, and

parameterize the vectors @; using a two-coordinate vector @; = [u}, u}|" such that:
w; = Wﬂl + W, = |: We1 Weo } Uu; + W, (72)

where @,, Wy, and Ty are three vectors defining the parameterization. For example,
if X5 # 0, one may then keep the last two coordinates of &; as parameterization:
u; = |[w Wi, picking Ty = [-Ys/Xs 1 07, @2 = [~Zs/Xs 0 1]7 and
W, = [1/Xs 0 0]T. Any other choice of linear parameterization is acceptable (there

will always exist one given that S # O,). In order to define a valid coordinate change,



Figure 7.3: Light source constraint: Every shadow plane II; contains the light source
point S. Therefore, in dual space (£2), all the shadow plane vectors @; (1 = 1,... ,N)
must lie on the plane S, the dual image of the light source S. The reduced parame-
terization u; makes explicit use of that constraint. It is defined by the three vectors
W1, Weo and W,.

the three non-zero vectors @,, @s1, and Wy must only satisfy the three conditions (a)
(@Wo, Xs) =1, (b) (@51, X 5) = Wy, X5) = 0, (¢) Ws1 # Wsa. In dual-space, {1, Wsa }
(or W) may be interpreted as a basis vector of the plane S and @, as one particular
point on that plane (see figure 7.3).

After that parameter reduction, the total number of unknown variables clearly
reduces to 2N: two coordinates u’ and u; per shadow plane I1;. Given that reduced
plane vector parameterization (called u-parameterization), let us derive the analytical
basis of the global reconstruction algorithm.

As it is described in the previous section, the only elements that lets depth in-
formation propagate from edge to edge are the intersecting points between the edges
themselves. These points actually provide the only geometrical constraints that may
be extracted from the images. Therefore, the first step consists of studying the type
of constraint provided by an elementary edge intersection.

Assume that the two edges &, and &, intersect at the point py on the image
(n # m), and let II,, and II,, be the two associated shadow planes with coordinate

vectors @, and Wp,. See figure 7.4. Let Ty be the homogeneous coordinate vector of
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} Stick at two positions

Light source

3D scene

Y, Camera

Figure 7.4: Elementary edge intersection: The point py lies at the intersection of the
two edges &£, and &, on the image plane. What does p;, tell us about the corresponding
shadow planes I1,, and II,,,? '
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pr on the image plane, and Z; the depth of the corresponding point Py in the scene.
Then, the two edges &, and &,, intersect in space at Py if and only if the planes II,
and I1,,, and the scene surface intersect at a unique point in space (Py). Equivalently,
the depth Z; may be computed by triangulation using either plane I, or II,. This
condition translates into the two constraint equations Zy = 1/(&y,, Tx) = 1/(@m, Tk)
(standard triangulation equation in dual-space - see section 2.2.3, eq. 2.33). A very
natural way of eliminating the depth variable (Zj) is to re-write the constraint as

follows:
(T, Wy, — W) =0 (7.3)

This unique equation captures then all the information that is contained into an
elementary edge intersection. There is a very intuitive geometrical interpretation of
that equation: Let A be the line of intersection between the two planes II,, and II,,
in space, and let A\, be the perspective projection of that line onto the image plane.
Then, the vector A\p = W, — @, is one coordinate vector of the line \; (see Proposition
1 in sec. 2.2.2). Therefore, equation 7.3 is merely (Tj, Ay) = 0, which is equivalent to
enforcing the point py, to lie on )y, (see figure 7.4). Equation (7.3) has both advantages
of (a) not explicitly involving the depth Z; (which may be computed afterwards from
the shadow plane vectors) and (b) being linear in the plane vectors unknowns &, and
@,,. The same constraint may also be written as a function of @, and %,,, the two

u-parameterization vectors of the shadow planes II,, and IL,:
(Ugs Tn — Um) =0 (7.4)

where 7, = WT7Z; (a 2-vector). Notice that this new equation remains linear and
homogeneous in that reduced parameter space.

Let N, be the total number of intersection points py (k = 1,... , IN,) existing in
the edge-web (the entire set of edges). Assume that a generic py lies at the intersection

of the two edges Enx) and Enpy (n(k) and m(k) are the two different edge indices).
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The total set of constraints associated to the N, intersections may then be collected

in the form of IV, linear equations:
Vk=1,...,Np, (Up>Unk) — Umx)) =0 (7.5)
which may also be written in a matrix form:
AU =0y, (7.6)

where Oy, is a vector of N, zeros, A is an N, x 2N matrix (function of the 7,
coordinate vectors only) and U is the vector of reduced plane coordinates (of length

o2N): U =[a" wf -7 =[ul ul uw2 w2 ---]7. The vector U will sometimes

v Yo U

be denoted U = {%;}i-1..y. According to eq. 7.6, the solution for the shadow plane
vectors lies in the null space of the matrix A. It is therefore essential to identify
the rank of that matrix or equivalently the dimension of its null space. As a general
remark, notice that the basic hope of solving that system comes from the fact that
the number of points of intersection grows faster than the number of edges in the
image. Essentially, the condition NV, > 2N is not too demanding.

Definition 2 - Fully connected edge-web: The edge-web is fully connected if and
only if it cannot be partitioned into two groups of edges which have less that two (zero
or one) points in common. In particular a fully connected edge-web does not contain
any isolated edge. Notice that under that condition only, depth information can freely
propagate through the entire web following the constructive approach described in
section 7.2.1. A normal scanning scenario is then defined as a scenario where the
edge-web is fully connected and the total number of intersections is larger than 2N
(this last condition will be relaxed later on).

Theorem 1: In a normal scanning scenario, the rank of the matrix A is exactly
2N — 3 (or alternatively, the null space of A is of dimension 3).

Proof: We presented in section 7.2.1 a constructive method that allows to compute

the entire geometry of the scene from the knowledge of the depth at three distinct
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points (from propagation of depth information from edge to edge). Therefore, in the
case of a normal scanning scenario, the reconstruction problem has at most three
free parameters. Consequently the dimension of the null space of A is at most 3, or
equivalently, A is of rank at least 2N — 3.

Consider now the dimension 2 linear subspace S of vectors U that have the fol-
lowing form: U = Uy =[a B8 a B ---]7 ((o, 3) € R?). It is straightforward
to show that for any value of o and (3, the vector Ua,ﬁ lies in the null space of A:
AUaﬁ = 0. Therefore, S is included in the null space of A which is therefore of
dimension at least 2. Equivalently, the rank of A is less or equal than 2N — 2.

Finally, the null space of A cannot be restricted to S, otherwise, the only solutions
to the problem would reduce to sets of identical shadow planes in space (7; = [ 3]7,
Vi = 1,...,N), which is impossible in practice. Therefore, the dimension of the
null-space of A must be at least three (in order to allow for distinct shadow planes)
leading to the rank of the matrix being at most 2N — 3. Therefore the rank of A is
exactly 2N — 3.

A direct consequence of that theorem is that no matter which strategy one adopts
in solving for the set of constraints, there will always be three free parameters to set in
order to achieve Euclidean reconstruction. In addition, since the linear system is rank
2N —3, there needs only a minimum of 2N — 3 intersection points in the edge-web (and
not 2N). It is straightforward to show that this condition is always automatically
satisfied if the edge-web is fully connected. Therefore, a normal scanning scenario may
be re-defined as a scenario in which the edge-web is fully connected. Notice that figure
7.2 shows the minimum configuration for scanning: N = 3 and N, = 2N — 3 = 3.
The following corollary is another important consequence of Theorem 1.

Corollary 1: Let U = {@’}, (i =1,...,N) be a non-trivial solution for the linear
system 7.6 (by non-trivial, we mean a solution vector such that at least two vectors
a; and W, are distinct for some i # 7). Then, for every solution vector U = {@;} to

equation 7.6, there exists three scalars a;, 3 and  such that:

Vi=1,...,N, Uy = YU + Uy (7.7)
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with 7, = [ S]". Conversely, for any scalars «, 8 and v, the vector U = {%;}
given by equation 7.7 is solution of the linear system (7.6). The vector U’ is called a
‘seed’ solution from which all solutions of the linear system may be identified. Notice
that not all these solutions lead to the exact Euclidean reconstruction of the scene,
only one of them does (corresponding to one particular set of coefficients o, 5 and
7). However, one seed vector enables to explicitly identify the whole set of possible
solutions, each one of them having a valid 3D scene interpretation agreeing with the
set, of observed shadows. The following part of the paper will focus on that seed
vector identification.

First, since any non-trivial solution vector U~ = {@¢} may be used as seed (as
long as it is one solution of (7.6)), let us pick the one (called unitary seed vector)
that satisfies the two extra normalizing conditions: (a) Zij\ilﬂf = 0 (zero mean),
(b) SN |l@||> = 1 (unit norm). Those conditions assure a non trivial solution (all
; cannot be identical). The unitary seed vector U  satisfies the linear equation

BU’ = On,+2, where B is the following augmented (N, 4+ 2) x 2N matrix:

A
B=| 1010 -- 10 (7.8)
0101 -- 01

The two last rows of B enforce the zero-mean constraint, bringing the rank of B
to 2N — 1 (= (2N — 3) + 2). Therefore, the dimension of null space of B is one,
leading to U’ being the unitary eigenvector associated to the unique zero eigenvalue
of B. Consequently, a standard a singular value decomposition (SVD) of B allows to

naturally retrieve U . Such a decomposition leads to the following relation:
B=USV? (7.9)

where U and V = [V; V3 ... V,y] are two unitary matrices of respective sizes
(Np +2) x (N, +2) and 2N x 2N, and S is the (N, + 2) x 2N matrix of singular

values. The unitary seed vector U’ is then the column vector of V associated to the
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zero singular value. Without loss of generality, assume it is the last column vector:
U’ = {u} = Vap. Alternatively, one may retrieve the same V matrix by applying
the same decomposition on the smaller 2N x 2N symmetric matrix C = B” B. Such
a matrix substitution is advantageous because the so-defined matrix, C, has a simple

block structure:

[ C,, Cu, - Ciy
C = C?’l Cop - C?’N (7.10)
| Cnva Cnp -o- Cyn |

where each matrix element C, ; is of size 2 x 2. Let us derive a closed-form expression
for C; ;. Since two shadow edges can only intersect once (two shadow planes intersect
along a line that can only intersect the scene at a single point), then for a given
pair of shadow indices (4, j) there exists at most one index k such that p, = & NE;.
This mapping will be denoted k& = k(7,j) (notice for example that k(i,j) = k(j,17)
and k(n(k'),m(k")) = k'). If the two edges do not intersect (such as an edge with
itself), or if that intersection is not visible on the image plane, then the point py,j)
does not exist. However, we will still refer to it as a phantom point of coordinate
vector Tpugy = [0 0 0]7 (leading to ¥y, = W' Tkuyy = [0 0]7). Adopting
that formalism, all the following algebraic equations remain valid even in the case

of missing intersections. Given this notation, it may be shown that all matrices C; ;

have the following expressions:

Cij=b =Ty Try) 177 (7.11)
N

Cii=1L- Z?k(i,n) ki) (7.12)
n=1

where I, is the 2 x 2 identity matrix. Observe that, every off-diagonal matrix element
C,; (i # 7) depends only on the intersection point py(; ;) between edges & and &;

(equation 7.11). Every diagonal block C;; however is function of all the intersection
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points of & with the rest of the edge-web (the sum is over all points py; ), for
n=1,...,N).

Once the C matrix is built, V is retrieved by singular value decomposition. This
technique allows then for a direct identification of the unitary seed solution U’ = {@?}
leading the set of all possible solutions of (7.6) (following equation 7.7 in Corollary
1). Euclidean reconstruction is thus achieved up to the three parameters «, 5 and ~.

From that analysis, one may question the optimality of such an estimation scheme
in presence of noise in the measurements (intersection coordinates 7). Essentially, in
a noisy situation, the matrix B becomes full rank (the smallest singular value is not
exactly zero), and then SVD really finds the (non-trivial) unit length vector U° that
minimizes the square norm of AU°. The question is really about the geometrical
meaning of such a cost minimization. Let U = {%;} be the real set of shadow plane
coordinates corresponding to Euclidean reconstruction. Then, according to Corollary
1, there exists a unique set of coefficients «, 3 and v such that: u; = yu? + @, with
U, = [ B]F, for all i = 1,...,N. Those three global scalar parameters upgrade
the reconstruction to Euclidean. Then, the full plane coordinate vectors w; have the
expression @; = W T; + @, (from equation 7.2). The depth Z; of a given intersection
point py may then be computed from either planes IL,) or I, ) leading, in an ideal
noiseless scenario, to the same estimates. In presence of noise, however, those two

quantities may be different. Let us denote them Z ,g” and Z, ,£2) :

Z/il) _ 1
7 <ﬂg(k)7-y_k> + <uovyk> + <wmfk>
1
zZ? =

Y <ﬂ;)n(k)>ylc> + <U0,-gk> =+ <wO7_'fk>

Then, the inverse depth difference is a direct function of the seed vector coordinates:
€ = 1/2,51) — l/Z,EQ) = 7 Uk Un(ky — Upmy)- This may also be written in a matrix
form: e = yATU’, where € = €1 € ... eNp]T. Therefore, independently from the

global parameters «, 3 and v, the least squares solution given by SVD minimizes the
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2-norm of €, or equivalently:

NP
—o 2
U = argmin E (1/Z,(€1) - 1/21(92))
=1 =1

Consequently, this estimation scheme is optimal in the sense of minimizing the sum,
over all intersection points, of the square of the inverse depth errors. This cost
function may not exactly achieve the goal of reconstructing the “best” possible three-
dimensional model of the scene. For example, a more natural cost function would
directly involve the depth differences Z ,(CQ) -7 ,(cl) rather than the inverse depth differ-
ences. However, the main difficulty about using such a cost function comes from the
fact that the quantity Z,g?) — Z,El) remains a function of the three scalars «, 3 and ~
that are not known until three additional geometrical constraints are enforced, such
as the depth at three points.

Once the seed solution U° = {u?} is found (by SVD), one may identify the final
“Euclidean” solution U = {%;} if the depth of (at least) three points in the scene are
known. Without loss of generality, assume that these points are py for £ = 1,2,3
(with depths Zx). Those points provide then three linear equations in the unknown

coefficient vector @ = [ 8 7|T:
[ Uk <ﬁ3(k)7yk> } a=1/Z; — (Wo, Tk) (7.13)

for £ = 1,2, 3 resulting into a linear system of three equations and three unknowns.
This system may then be solved, yielding the three coefficients «, § and -, and
therefore the final solution vector U (through eq. 7.7). Complete Euclidean shape
reconstruction is thus achieved. If more points are used as initial depths, the system
may be solved in the least squares sense (once again optimal in the inverse depth
error sense). Notice that the reference depth points do not have to be intersection
points as eq. 7.13 seem to infer. Any three (or more) points in the edge-web may be
used.

Finally, the proposed method for 3D reconstruction may be summarized into five
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successive steps:

Step 1: Acquire a set shadow images, extract the shadow edges and compute their intersections.

Step 2: Reject all isolated edges (and isolated groups of edges) so that the entire edge-web is
fully connected (def. 2). Results a set of N edges &;, and N, intersection points py.

Step 3: Build the 2N x 2N matrix C (eq. 7.10, 7.11 and 7.12), and compute the unitary seed
vector U~ by SVD. Euclidean reconstruction is then achieved up to the three scalars
a, B and 7.

Step 4: Select (at least) three points in the scene with known depths, and solve linearly for the
remaining scalars o, 8 and v (eq. 7.13).

Step 5: Compute the list of shadow plane vectors @; (eq. 7.7 and 7.2) and triangulate all the
points in the edge-web. The resulting set of 3D points may then be triangulated into

a surface mesh for visualization purposes (fig. 7.5 and 7.6).

7.2.3 Final discussion

As demonstrated in the previous section, it is necessary to compute the three global
parameters «, § and v in order to achieve Euclidean reconstruction. Shadow edges
alone can only provide reconstruction up to three scalar coefficients. The proposed
technique requires the knowledge of the depth at at least three points in the scene for
computing these coefficients. However, this condition may not always apply. Indeed,
other clues may be known about the scene, such as planarity of portions of the scene,
angles between different planes, or mutual distances between points in space. Those
clues do not constitute direct depth measurements, but may however be used as
constraints to upgrade the reconstruction to Euclidean. In those cases, it is clearly
useful to be able to keep track of all possible solutions (up to step 3), and then identify
among those the one(s) that satisfy the additional constraints (in attempt to find o,
B and ). If these extra geometrical constraints are sufficient, only one solution will
be isolated, leading to a unique possible Euclidean interpretation of the whole scene
(a new stage 4). The structure of this new reconstruction method allows for that type
of modifications. This work is part of future investigations.

Regarding that extension, it is interesting to notice that for example a planarity

constraint alone is not sufficient to recover «, 8 and . Indeed, in that case v = 0 is
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an obvious numerical solution to the problem (for any 8 and 7 values), collapsing all
shadow planes into a unique plane in space (which is of course physically impossible).
In that case, the entire scene is wrongly reconstructed flat on that single shadow
plane. That observation leads us to believe that studying the combination of multiple

geometrical constraints for Euclidean upgrade is a good initial path for investigations.

7.3 Experimental results

Figures 7.5 and 7.6 show experimental results obtained from two real scenes. The
first one consists of two parallel planes 5cm away from each other, and the second
one a small object (a moon) on a plane. In both experiments, first the seed solution
vector U’ was computed by SVD (following steps 1 to 3 of the method) and then «,
( and v were recovered using the three known depths at the three circled points on
the figures. For that purpose, the background plane was calibrated in both cases, but
only to recover the depth at the three reference points (the entire background planes
were not used for scanning).

There are different ways to assess reconstruction accuracies. The first one consists

? at the intersection points pg relative to

of looking at the depth errors Z,(Cl) - Z,E
their absolute depths in the camera reference frame. In both experiments, this error
is approximately 3mm (in standard deviation) over an average scene depth of 25cm.
This leads to a relative depth error of 1.2%. However, in modeling applications, a
more relevant quantity to look at is the reconstructed surface roughness relative to
the size of the object of interest. In that case, this error is approximately 3mm over
object sizes of 5 to 10cm, or a part in 20. In addition to surface roughness, it is
essential to check for possible global distortions in the final reconstructed scene. For
that purpose, one may quantify how well a number of intrinsic geometrical properties
of the scene are preserved after reconstruction. Planarity of planes, angles between
planes, or size of objects are typical samples of such properties. For example, in both

experiments, the reconstructed planes deviate from planarity by approximately 4mm

(in maximum). This concerns both planes of scene 1 and the background plane of
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Figure 7.5: Experiment 1 - Two planes scene: Top row: The initial scene with a
shadow projected on it and the total set of N = 26 shadow edges generating N, = 173
intersection points. Bottom row: Two views of the final 3D reconstruction (in the
form of a mesh). The processed images were 320 x 240.

Figure 7.6: Experiment 2 - Luna scene: A total number of N = 122 shadow edges
are intersecting at [V, = 3056 points.
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scene 2. The height of the top plane of scene 1 is estimated after reconstruction to
4.6cm+3mm (the error accounts for the surface roughness), its real value being 5cm.
Finally, in the first scene reconstruction, parallelism of the two planes is recovered
within approximately 3 degrees of error.

One may notice that the reconstruction accuracies achieved on those two scenes are
not as good as the ones achieved when using the original shadow scanning technique
that we described in the previous chapter 6 (for example, compare figures 7.6 and
6.17). The main reason for that is in this present method, the shadow edge was
extracted on the image through spatial processing (based on image gradient) instead
of temporal processing as in the method presented in chapter 6. This illustrates the
fact that temporal processing is more reliable than spatial processing because it is
a lot less sensitive to changes to surface albedo and occlusions. This was originally
demonstrated by Curless and Levoy in [84]. Nevertheless, it is not strictly possible to
compare reconstruction accuracies of the two shadow scanning methods, given that
we used here very few shadow edges for shape estimation (an order of N = 100 edges)
while in the previous shadow scanning technique (chapter 6), an order of 700 to 1000

images are often necessary to achieve good quality reconstructions.

7.4 Generalization to multiple light sources

In order to maximize the surface coverage of the scanning, it sometimes useful to use
multiple light sources. That technique is most useful when the surface of the scene
is not convex. Then, a question arises: When using more than one calibrated light
source for planar shadow scanning, is there more information contained in the shadow
edges that allows to achieve better than Euclidean reconstruction up to three scalar
coefficients?

Let us first consider the case where two families of shadow edges are generated by
two calibrated light sources. Then, it is interesting to observe that the rank of the
matrix A may be increased to 2N — 2 (its minimum value is 2N — 3). Under this

condition, Euclidean reconstruction is achievable up to two scalar coefficients only.
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Light source 1

3D scene

Light source 2

Y, Camera

Figure 7.7: Double edge intersection: The two shadow planes II, and II,, are gen-
erated by the two light sources Sy and S. The two corresponding shadow edges En
and &, intersect on the image plane at the two points p; and g¢. Depth information
at pr and g, propagates along &, and &,. Euclidean reconstruction is then achieved
up to two scalar coefficients.
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This situation occurs when at least two shadow planes generated by the two light
sources intersect at at least two points in the scene*. Then, depth information at those
two points will propagate along the two edges (following Property 1 of section 7.2.1),
and then to the rest of the edge web (following Property 2 of section 7.2.1). This
principle is illustrated on figure 7.7. On this figure, the two shadow planes II, and
I1,, are generated by the two light sources S; and S;. The two corresponding shadow
edges &, and &, intersect on the image plane at the two points py and gx. Depth
information at py and g, propagates along &, and &,,. One question remains: If more
pairs of edges intersect at more than one point in the image, can the dimension of
the null space of A be further reduced to 1 or 07 We do not have an answer to
that question yet. This would be part of future work. From numerical simulations,
it appears that when there exists no pair of shadow edges intersecting at more than
one point in the imagef, the rank of A remains to 2N — 3 (this result appears to
generalize to more than 2 light sources). We also keep the proof of that statement as
part of future work.

When three calibrated light sources are used for shadow scanning, the matrix
A may become full rank, leading to a direct Euclidean reconstruction of the scene.
This situation occurs when three shadow planes generated by the three light sources
mutually intersect at at least two points in the image (inducing a total of 6 intersec-
tions). Then, the total number of unknowns (2 N = 6) equals the number of scalar
constraints (one constraint per intersection point) leading to a unique solution for the
shadow plane locations, and therefore for Euclidean reconstruction. Is it a necessary
condition for direct Euclidean reconstruction? Future investigations should bring an

answer to that question.

*Qbserve that this situation cannot occur when a single light source is used.
tNotice that this will always happen when the scene is a single plane.
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7.5 Conclusions

In this chapter, we have presented a linear closed-form solution for 3D scene geome-
try recovery from planar shadows only. The method is composed of two fundamental
stages. The first one consists of retrieving the scene Euclidean geometry up to three
scalar unknowns using only the information contained in the observed shadow edges
on the image plane. The solution to that problem reduces to a singular value de-
composition of a matrix that is only function of the edge intersection coordinates.
In the second stage, the three remaining unknowns are computed making use of the
known depths at only three points in the scene. Dual-space geometry provides an
appropriate framework for carrying the complete mathematical analysis elegantly and
intuitively. As part of future work, we intend to carry out a sensitivity analysis of the
method, and study alternate geometrical clues for achieving Euclidean reconstruction
(other than direct depth measurements at three points). It is also part of future
investigations to extend the analysis of the reconstruction technique to cases where
multiple light sources are used for shadow scanning.

In addition, we intend to merge this reconstruction technique with the one pre-
sented in the previous chapter for achieving best local surface reconstruction qualities
(taking advantage of temporal processing) while dealing with scenes that do not con-

tain any reference surface.
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Chapter 8 Conclusion and future work

In this thesis, we have presented several techniques for extracting the three-dimensional
shapes of objects for 3D modeling. These methods may be decomposed into passive
and active techniques.

Passive techniques rely only on the information contained in the images acquired
under natural uncontrolled lighting for reconstructing the 3D structure of the world.
In our proposed setup (chapter 4), a single camera is freely moved around the object
of interest as it acquires a set of images. A set of salient point features are then
tracked on the images (using optical flow techniques) and their locations in space are
computed by geometrical triangulation. This set of points in space constitutes then
our 3D reconstructed model (for visualization purposes, it is often advantageous to
connect them in a surface mesh). In order to perform 3D shape estimation, it is also
necessary to compute the overall trajectory of the camera as it is moved in space.
Our scheme also includes a method for computing the trajectory of the camera that
is sufficiently accurate for 3D shape estimation, even in the challenging case of long
image sequences.

There are three main advantages of passive techniques. First, no more than one
camera is necessary for shape acquisition (unlike stereo systems that require at least
two calibrated cameras). Second, as the camera spans the entire surface of the object,
a globally consistent reconstruction is achieved. It is then not necessary to register
multiple 3D views together in order to obtain a complete 3D geometrical model.
Third, as the camera trajectory is also computed, it does not have to be monitored
using specific mechanical hardware (such as a calibrated robot arm). This last feature
is a significant ergonomical advantage as the overall size of the system is only limited
by the size of the imaging sensor (e.g., CMOS sensor + lens) and that of the computing
platform.

The main drawback of passive approaches is that they depend on the presence of
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texture in the scene. Indeed, such techniques do not work on textured-less objects
where no salient features (patches, points, lines, curves) can be selected and tracked
reliably on the images (take the example of a camera approaching a uniform white
wall). One option to solve that problem is to physically add texture the scene by
pasting landmarks on the surfaces (this is precisely what was done on the walls of
the corridor before acquiring the navigation sequence). Of course, such an alteration
of the environment is not always possible (it is very unlikely that museums would
let someone paste makers on their statues). Therefore, it is sometimes necessary to
use alternative techniques to accommodate for the absence of texture in the scene
to model. One solution is using active techniques. Active techniques are based on
projecting patterns in the scene using an additional device, and infer 3D shape from
the way the patterns “deform” on the objects. The artificial texture generated by
the active device produces then sufficient salient image features allowing for dense 3D
reconstruction. In this thesis, we have proposed three different active scanning tech-
niques. The first method (chapter 5) is directly inspired from traditional structured
lighting techniques, where a LCD (Liquid Crystal Display) projector and a camera
are used. The novel aspect of our method is in the nature of the projected patterns
used: grayscale patterns with sinusoidal brightness profiles*. This choice of projec-
tion (together with a novel type of processing) allowed us to compute scene depth at
every pixel in the camera image. Experimental results were presented, as well as a
characterization of the reconstruction method through a complete error analysis.

The projection device (LCD projector) is by far the most expensive component of
the scanning system. The second active lighting method that we presented (chapter 6)
provides an alternative scheme for 3D scanning that does not require any other device
besides a camera. The main idea behind that technique is in using a combination
of a standard light source (such as a desk lamp) and a pencil (or any other object
with a straight edge) to cast planar shadows in the scene and infer its 3D geometry
from the way the shadow naturally deforms on the objects in the scene. In this

method, a reference surface (such as a desk plane) is also necessary. We demonstrated

*Standard techniques use binary patterns consisting of sharp stripes.
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the convenience and accuracy of this new scanning technology with a number of
experimental results, in indoor as well as outdoor scenarios. In addition, we fully
characterized the performance of the method through a complete error analysis.

The last reconstruction method we proposed is an extension of the shadow scan-
ning technique (chapter 7). In that case, we studied the case where no reference
plane is present in the scene. In this context, we demonstrated that an entire refer-
ence surface is actually not necessary to achieve full Euclidean reconstruction of the
scene, and we provided a compact and intuitive numerical algorithm for computing
3D shape from a set of shadow edges only. For that purpose, we made full use of a
new mathematical formalism that we also introduced in this thesis, the dual-space
formalism (chapter 2).

Regardless of which specific active method is used (standard active lighting ap-
proaches, or the ones we described here), the main advantage of active techniques
is that dense 3D shape estimation may be achieved, even for textured-less objects.
Sometimes, even some level of specularities on the surface may be handled (although
entirely specular objects cannot be scanned with standard optical triangulation sys-
tems). On the other hand, most scanning techniques only produce partial 3D views of
the scene to model (also called range data). Then, in order to retrieve a complete 3D
model, it is often necessary to merge several 3D views together into a consistent mesh
(this phase is not needed in the first passive technique we presented). That process
is very often time consuming because it requires some significant amount of manual
intervention (to this day, there exists no fully automatic mesh alignment technique),
and it is also very sensitive to calibration errors (even a slight deformation of each
individual 3D view due to calibration errors may forbid any alignment procedure to
work at all). To this day, more that 80% of the overall modeling time is spent on 3D
view registration and global meshing.

It is an interesting research direction to develop a hybrid scanning technology that
would merge the advantages of both active and passive worlds. A passive component
of the system would first retrieve (through an orbital camera motion for example)

a coarse resolution model of the scene. This 3D model would have the advantage
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of being globally consistent. Then, individual fine 3D scans of the scene could be
acquired using an active lighting system, and then “pasted”’ onto the initial coarse
3D skeleton. We believe that such an alignment procedure would not suffer as much
from global divergence, since a unique 3D structure would be used as reference.
In order to render scenes in a photorealistic way, it is also necessary to incorporate
surface properties to the geometrical model. These properties mainly consist of the

object surface texture, and the surface reflectance function.

"This pasting step would possibly include a deformation to compensate for global distortions due
to calibration errors.
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