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Nonlinear Control of Mechanical Systems:
A Riemannian Geometry Approach
by

Francesco Bullo
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Doctor of Philosophy

Abstract

Nonlinear control of mechanical systems is a challenging discipline that lies at the intersec-
tion between control theory and geometric mechanics. This thesis sheds new light on this
interplay while investigating motion control problems for Lagrangian systems. Both stabil-
ity and motion planning aspects are treated within a unified framework that accounts for
a large class of devices such as robotic manipulators, autonomous vehicles and locomotion
systems.

One distinguishing feature of mechanical systems is the number of control forces. For sys-
tems with as many input forces as degrees of freedom, many control problems are tractable.
One contribution of this thesis is a set of trajectory tracking controllers designed via the
notions of configuration and velocity error. The proposed approach includes as special cases
a variety of results on joint and workspace control of manipulators as well as on attitude
and position control of vehicles.

Whenever fewer input forces are available than degrees of freedom, various control ques-
tions arise. The main contribution of this thesis is the design of motion algorithms for
vehicles, i.e., rigid bodies moving in Euclidean space. First, an algebraic controllability
analysis characterizes the set of reachable configurations and velocities for a system start-
ing at rest. Then, provided a certain controllability condition is satisfied, various motion
algorithms are proposed to perform tasks such as short range reconfiguration and hovering.

Finally, stabilization techniques for underactuated systems are investigated. The empha-
sis is on relative equilibria, i.e., steady motions for systems that have a conserved momen-
tum. Local exponential stabilization is achieved via an appropriate splitting of the control

authority.
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Chapter 1

Introduction

Mechanical control systems provide an important and challenging research area that fall
between the study of classical mechanics and modern nonlinear control. Mechanical and
more generally Lagrangian systems pervade modern applications in science and industry
and this thesis aims towards the development of a rigorous control theory applicable to this
large class of systems.

From a theoretical standpoint, the geometric structure of mechanical systems gives way
to stronger control algorithms than those obtained for generic nonlinear systems. In other
words, it is precisely because we specialize to this rich class that we can exploit a typical

structure and solve relevant control problems.

1.1 Nonlinear Control and Mechanics

The history of mechanics is extraordinarily rich and varied. Unlike a more classic ap-
proach in the works of Whittaker [105] and Goldstein [41], recent books by Marsden and
co-workers [1], [71] and [72] develop a geometric, covariant theory that emphasizes the role
of symmetry and reduction. Both Hamiltonian and Lagrangian viewpoints benefit greatly
from this renewed attention to the more geometric aspects.
Similarly, control theory is also a well developed field. Beginning in the late 1970s, the
results of numerous authors such as Brockett, Hermann, Isidori, Krener and Sussmann,
g., [18], [44], [46], [93], have brought the methods of differential geometry to bear on
nonlinear control problems. The classic feedback linearization problem is just an example of
control theory understood as a geometric equivalence problem. Now, various books describe

nonlinear control in a geometric light: Isidori [45], Nijmeijer and van der Schaft [78], and



Sontag [90] are examples. Recent years have also witnessed large amounts of activity on
nonlinear stability and stabilization; see for example the contribution in Khalil [51], the
development of backstepping [55] and the theory on input-to-state stability [91].

The study of mechanical control systems has always been an elegant and exciting disci-
pline that has taken advantage of, and sometimes inspired, this large body of literature. One
early reference is the work of Brockett on control theory and analytical mechanics [17], and
the related contributions [15], [16] on systems defined on groups and spheres. Optimal con-
trol, integrability, Hamiltonian and gradient flows, rigid body dynamics, and nonholonomic
constraints are only a few of the subjects treated by various authors. A very incomplete list
includes Baillieul [7], Bloch [9], Crouch [32], [34], Koditschek [53], Krishnaprasad [54], Mars-
den [10], and van der Schaft [97], [98]. Finally, recent exciting results obtained at Caltech
by Murray’s group and at Princeton by Leonard’s group are surveyed in [75] and [61].

As a side note it is worth mentioning that a number of application areas is affected by
both nonlinear control and mechanics: examples are robotic manipulation, see Murray and
co-workers [76] and Craig [31], design and control of aircrafts, see Etkin [37], and of ocean

vehicles see Fossen [40], control of electro-mechanical systems, see Arimoto [4].

Modeling via Riemannian Geometry Tools

This thesis investigates various control problems for a large class of mechanical systems.
The latter are roughly classified as robotic manipulators and multibody systems, aerospace
and underwater vehicles, and devices that locomote via nonholonomic constraints. All these
systems are described by a second order nonlinear differential equation on a manifold, and
a unified modeling approach is provided in this dissertation via some geometric tools.

In our investigation the geometry of affine connections plays a key role in modeling and
characterizing control problems for this class of systems. As opposed to the more com-
mon languages of variational principles or symplectic geometry, the treatment in this thesis
relies on some notions from Riemannian geometry, see [52] and the review in Chapter 2.
These are efficient tools, as numerous contributions on modeling [9], stabilization [53], con-
trollability [64], and [67], interpolation [79], [106] and dynamic feedback linearization [83]
attest.

It is originally in the work of Smale [89] that the notion of simple mechanical system
was formalized. These are systems whose configuration space is a tangent bundle (i.e., the
phase space is divided into configuration and velocity variables) and whose Lagrangian is

composed of kinetic and potential energy. Here we extend this definition by introducing



forces. For example we describe a robotic manipulator in terms of a configuration space, a
kinetic and a potential energy and a set of input forces. These four objects characterize a
simple mechanical control system.

Underwater vehicles, satellites, surface vessels, airships and hovercrafts are all examples
of simple mechanical control systems of a special kind. Their configuration space is endowed
with a natural group operation, e.g., composition of rotations and translations in the Eu-
clidean space. Also, their kinetic energy is invariant under this operation and the forces
applied to the vehicle are fixed with respect to a body frame. Accordingly, we say that
these are mechanical control systems on a Lie group; see Chapter 3 for a precise definition.
One fundamental assumption on these systems is that lift/drag type effects are negligible,
so that the first principle models we derive describe accurately the system’s dynamics.

Finally, constraints of both holonomic and nonholonomic type, i.e., constraints on con-
figuration or velocity variables, can also be treated within the affine connection framework.
This is obtained by means of the procedure called elimination of multipliers, see [66] and [9]

for an intrinsic exposition.

Motion Control Problems and Applications

After introducing the basic models, we now describe various control problems of interest. In
this dissertation we put the emphasis on motion control problems, where motion is intended
as movement in Euclidean space. In other words, a prototypical problem is how to steer
the configuration of a mechanical system from one point to another, either in a planar
or in a three-dimensional setting. It goes without saying that the geometry of group of
rigid displacements plays an important role. It is precisely this geometric structure that we
exploit for advantage in control.

Both theoretical and practical motivations inspire our work. The more theoretical mo-
tivations involve the desire to formalize a set of loosely connected results from the robotic
and the vehicle control literature, see Section 1.2.1, and to bring to bear some powerful
mechanics on some stabilization problems, see Section 1.2.2. In addition, inspired by the
field of robotic locomotion, we investigate how to design motion algorithms for so-called
underactuated systems; see Section 1.2.3.

The driving applications are motion control problems that arise in the study and de-
sign of aerospace and underwater vehicles. Recent important trends in this field include a
push toward the design of increasingly autonomous vehicles, an emphasis on reconfigurable

systems and on control schemes amenable to implementation on-line. Additionally, the



availability of inexpensive computing devices and sensors is leading to a renewed attention
on how to design, deploy and utilize actuators.

All these factors make it possible to introduce innovative concepts in the control design
phase. The goal of this dissertation is a deeper understanding of the interaction between
control forces and Lagrangian dynamics. We believe this will lead to improved control algo-
rithms for existing mechanisms and novel design schemes for future devices, see for example
the work on underwater vehicles [61] and carangiform locomotion [50], on nonholonomic

and multi-legged robots [42, 80], and on flatness for aerial vehicles [83, 99, 100].

1.2 Statement of Contributions

This section presents a brief outline of the contributions in this dissertation and a more
detailed description in the following three subsections. One salient feature of mechanical
control systems is the number of input forces. Control design based on Lyapunov functions
has proven successful with fully actuated systems, that is, systems with as many inputs as
degrees of freedom. More sophisticated tools are required in the underactuated case.

The first contribution of this dissertation consists of a trajectory tracking controller for
fully actuated systems. The structure of the controller is traditional in that it is the sum of
so-called proportional, derivative and feedforward terms. The way these terms are designed,
however, is innovative. The key concepts are how to define state errors on a nonlinear
space and how to perform the Lyapunov analysis in a coordinate-independent fashion. In
other words, the synthesis of the control law is intrinsic and it therefore applies to robotic
manipulators and multibody systems, as well as aerospace and underwater vehicles.

Despite the large number of fully actuated systems, the study of underactuated systems
has gained much attention in the recent literature. From a practical point of view, we
are motivated by vehicles that are underactuated either because of an actuator failure or
because of a design choice. In the former case, our results will improve robustness to
actuator failure and thus will provide autonomous vehicles with greater reliability. In the
latter case, our results may allow for vehicle designs that include fewer actuators than typical
leading to lighter, less costly designs. From a theoretical perspective, these systems when
underactuated offer a control challenge as they have non-zero drift, the linearization at
zero velocity is not controllable, and they are not stabilizable by continuous state feedback.
Further, they are generically not feedback linearizable, not “configuration flat,” as defined

in [83], and no test is available to establish whether they are differentially flat.



The second contribution of this dissertation is a systematic procedure for the exponen-
tial stabilization of relative equilibria of underactuated systems. A key design idea is to
distinguish between horizontal forces, which preserve the momentum, and vertical forces
that affect it. A proportional, derivative control in the horizontal directions and a first
order regulator in the vertical direction lead to exponential stability of the closed loop pro-
vided some assumptions hold. In particular, two necessary conditions are that the relative
equilibrium be Lyapunov stable and that the system satisfy a certain linear controllability
test.

The main contribution of this thesis is a controllability analysis and some motion control
algorithms for underactuated vehicles in the small velocity regime. Since these systems have
a non—controllable linearization at zero velocity, only a nonlinear analysis can determine
what configurations and velocities can be reached. The contribution lies in some algebraic
tests that characterize these controllability properties. These results indicate the location
and number of actuators needed for controllability.

Based on the controllability analysis, two motion primitives are designed to perform
the basic tasks of changing and maintaining the system’s velocity. This is achieved by a
perturbation analysis under the assumption of small amplitude input and velocity. The
primitives rely on in-phase sinusoidal inputs that exploit the system’s dynamics, as opposed
to traditional out-of-phase controls for kinematic systems. Using multiple calls to the motion
primitives, motion algorithms are designed to steer the system from point to point and to
exponentially stabilize the system to a fixed location.

In what follows we present a more detailed account and a review of the relevant literature

for the various contributions in the thesis.

1.2.1 Tracking for Fully Actuated Systems

Chapter 4 deals with the trajectory tracking problem for fully actuated systems: the control
objective is to track a trajectory with exponential convergence rates in order to guarantee
performance and robustness. The tracking problem for robot manipulators has received
much attention in the literature. Examples are the contributions in [95], [102] and [88],
where asymptotic, exponential and adaptive tracking are achieved via a nonlinear analysis.
These results are now standard in textbooks on control [78] and robotics [76]. Since then,
similar techniques have been applied to the attitude control problem for satellites [103], and
likewise to the attitude and position control for underwater vehicles [40, Section 4.5.4]. A

further example is the spin axis stabilization problem for satellites [96]. A common feature



in all these works is the preliminary choice of a parametrization, i.e., a choice of coordinates
for the configuration manifold. The synthesis of both control law and corresponding Lya-
punov function is performed in this specific parametrization. This set of coordinate plays
then an important role, when the control system is characterized in terms of, for example,
singularities and exponential convergence, and when adaptive capabilities are included.

In this thesis we propose a unifying framework that applies to a large class of mechanical
systems. In the spirit of Koditschek [53], this is achieved by avoiding the parametrization
step. Our design algorithm focuses on basic, intrinsic issues such as how to define a state
error and how to exploit the Lagrangian dynamics. The notions of “error function” and
“transport map” yield to a coordinate-free definition of errors between configurations and
between velocities. Together with a dissipation function these ingredients determine the
feedback law. The feedforward control is devised using the theory of Riemannian connec-
tions. Provided a compatibility condition between error function and transport map holds,
our control strategy achieves globally stable tracking. As discussed in [53], (possible) topo-
logical properties of the configuration manifold preclude global asymptotic stabilization.
However, we prove local exponential stability under some boundedness conditions and we
provide an estimate of the region of attraction. Useful extensions to adaptive control and
to more general mechanical systems can be included via standard techniques. We remark
that the design process, the statement and the proof of the main theorem are all performed
without choosing coordinates on the configuration manifold.

The resulting design algorithm is then set to work in a variety of applications, recovering
previous controllers and suggesting new ones. Examples are the standard “augmented PD
control” for robot manipulators, see [76], and the novel tracking controller for systems on
the two sphere. Most instructive is the treatment of the tracking problem on the group
of rigid rotations SO(3) and on the group of rigid motions SE(3). In the latter case, for
example, we design a large set of error functions with matrix gains and we characterize
transport maps as changes of reference frame. These ideas lead to a comparison of various
previous approaches and to new results. Finally, some computationally simple feedforward

controls are derived via an extension of the main theorem.

1.2.2 Stabilization of Relative Equilibria for Underactuated Sys-

tems

Chapter 5 presents some stabilization techniques for the steady motions called relative

equilibria. This family of trajectories is of interest in vehicle control applications; see for



example the gliding underwater motions in [61] and the so-called spin axis stabilization
problem for satellites in [96].

Point stabilization of underactuated Hamiltonian systems was originally investigated
in [98]; see [78] for a standard treatment. Recently, geometric tools have been employed to
address the class of mechanical systems with symmetries. Stability of underwater vehicles
is studied in [60] where symmetry breaking potentials were employed to shape the energy of
the closed loop system. In Bloch, Leonard and Marsden [11], a novel and powerful approach
is introduced to deal with an even larger class of systems. In Jalnapurkar and Marsden [47)
the authors obtain stabilizing controllers for underactuated mechanical systems with non-
Abelian symmetry. In their treatment the family of input forces is assumed momentum
preserving and stability in the reduced space is characterized in terms of certain Poisson
brackets.

In this thesis we build on the work of Leonard in [60] and focus on the exponential
stabilization problem (as opposed to Lyapunov or asymptotic stabilization). The control
design is based on ideas from two areas: the theory of Hamiltonian reduction (and the
Energy-Momentum method in particular), see [86], and the theory of passive nonlinear
systems, see [98]. We divide the control synthesis into three steps: first we split the control
authority along the momentum-preserving subspace and its orthogonal complement. Then
we design a controller for the reduced system employing only the momentum-preserving
forces, and finally we regulate the value of the momentum with the remaining control
authority. A set of intrinsic conditions ensures the exponential stability for the full (internal
variables and momentum) system. A key feature of this approach is that we focus on one-
dimensional (Abelian) symmetries because applications to control of vehicles usually satisfy

this assumption. This restriction leads to strong results and a simple exposition.

1.2.3 Controllability and Motion Planning for Underactuated Sys-

tems

Chapter 6 and Chapter 7 present controllability tests and motion algorithms for underactu-
ated vehicles. Relevant past contributions include work on both the nonlinear controllability
problem and the constructive controllability problem (including both motion planning and
stabilization). Within the context of this thesis, the important references for controllability
are the works of Sussmann on small-time local controllability [93] and of Lewis and Murray
on configuration controllability for simple mechanical systems [67, 68]. Other contributions

include local controllability results for other classes of mechanical systems, see [49, 80],



and work on global controllability issues, see [12, 33, 70]. Regarding the constructive con-
trollability problem, we employ the same approach as Leonard and Krishnaprasad in [62]
and [58], where motion algorithms for a class of kinematic systems on Lie groups were de-
signed with small-amplitude periodic inputs. In a later work [84] similar techniques were
applied to a different class of mechanical system. Other contributions on oscillatory controls
and Lagrangian systems include [7], [43] and [94]. A somewhat different approach, based
on homogeneous time-varying strategies, was employed in [74, 82] to design exponentially
stabilizing control laws for underactuated satellites and surface vessels.

To derive controllability tests for our class of systems, we apply the controllability anal-
ysis described in [93] and [67] to simple mechanical control systems on Lie groups. Key
features of the analysis are a focus on the evolution of the system’s configuration when the
initial velocity is zero and the result that computations are performed on the Lie algebra of
the Lie group. The local controllability properties are characterized by the algebraic opera-
tions of symmetric product and Lie bracket. The symmetric product, which is defined more
formally in Section 2.3, depends upon the metric that defines the kinetic energy and, as
we shall see, explicitly describes motions that involve both input vector fields and the drift
dynamics. Our tests describe which velocities and configurations are reachable, independent
of the initial configuration. The notions of good and bad symmetric products play a central
role.

Guided by our interpretation of the controllability tests, we apply perturbation theory
to investigate the response of the mechanical system to small-amplitude forcing. The initial
velocity is also assumed to have small amplitude. The approximations we obtain give further
insight into the controllability tests and are instrumental in the subsequent control design.
Numerous examples illustrate the meaning of good and bad symmetric products and the
effects of in-phase and out-of-phase sinusoidal inputs.

On the basis of a controllability assumption, we design two motion primitives that per-
form the basic tasks of changing and maintaining velocity. These motion primitives use
in-phase inputs and compensate for contributions along bad symmetric product directions
(see also [22]). The two motion primitives synthesize the controllability analysis and are
the building blocks for designing high-level motion procedures. Using discrete-time feed-
back and multiple calls to the motion primitives, we design motion algorithms to solve the
point-to-point reconfiguration problem (i.e., how to steer the system to a desired configu-
ration) and the static interpolation problem (i.e., how to steer the system through a set of

desired configurations). We solve point-to-point reconfiguration using a constant velocity



algorithm. A second approach to point-to-point reconfiguration consists of interpolating a
sequence of segments connecting initial to final configuration. We show the advantage of
the latter solution in the case the segments are steady motions of the unforced mechanical
system. Next, iterating an approximate stabilization step we design an algorithm that lo-
cally exponentially stabilizes the system to a desired configuration. Recall that exponential
stabilization cannot be achieved by smooth time-varying feedback, and indeed our motion
primitives are continuous, but not smooth, functions of the state. Accordingly, our approach
relies on discrete-time continuous feedback, see [92], and on the iteration of a motion plan-
ning step, see [56]. Finally, the three algorithms are implemented numerically to verify the

approximations and illustrate the control design.

1.3 Outline of the Thesis

A Dbrief outline of the content of the various chapters is as follows:

Chapter 2:  Here we review the necessary mathematical tools from differential geometry,

Lie group theory and Riemannian geometry.

Chapter 8:  In this chapter we present models based on Riemannian geometry for general
second order differential equations on a manifold. The treatment includes the notion

of simple mechanical control system, some extensions and numerous examples.

Chapter 4:  This chapter presents the solution to the trajectory tracking problem for

fully actuated mechanical systems.

Chapter 5:  Here we presents some stabilization techniques for underactuated systems

moving along a relative equilibrium.

Chapter 6:  This chapter contains a review of the theory of nonlinear controllability and
of configuration controllability. In addition, we present a novel treatment for systems

on Lie groups and some initial results for systems that undergo impacts.

Chapter 7:  In this chapter we present some approximate solutions to forced mechanical

systems and some motion algorithms for underactuated systems.

Chapter 8:  The chapter presents some conclusions, a summary and some directions for

future research.
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Chapter 2

Mathematical Preliminaries

In this chapter we review some mathematical tools. For an introduction to Riemannian
geometry, we refer to [13], [35] and [52]. For an introduction to Lie group theory, we refer
to [85] and [101].

The chapter is organized as follows. In Section 2.1 we review some notation in differential
geometry. Section 2.2 presents some notions in Lie group theory and Section 2.3 some

notions in Riemannian geometry. Finally, Section 2.4 presents some illustrative examples.

2.1 Differential Geometry

We assume the reader to be familiar with some differential geometry, to the extent presented
for example in the appendices of [76] or [78]. A complete reference is [2]. We here quickly

review some notation and state the results we will need later.

Manifolds and Tensor Fields

A smooth manifold @ is a locally Euclidean space, i.e., a space that is locally homeomorphic
to R® via a diffeomorphism. A local coordinate chart is a pair (U, ¢), where U is an open
subset of () and ¢ is a smooth map from U to R". In what follows, a differentiable object
is smooth whenever it is analytic.

We let C*°(Q) denote the set of a smooth real valued functions on Q). The tangent space
T,Q to the manifold @ at the point g is the set of all derivations on C®(Q). Elements of
the tangent space are tangent vectors. The cotangent space T;@Q is the dual space to T,Q,
i.e., the set of linear functionals on T5Q. We let (-,-) denote the standard pairing between

tangent and cotangent spaces. The tangent (and cotangent) bundle TQ (respectively T*Q)
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is defined as the union over all ¢ € @ of tangent (respectively cotangent) space.

A wvector field X on () is a smooth map that associates to each point ¢ € Q a tangent
vector Xy € T,Q). Similarly, a one-form a on @ associates to each g € @ a cotangent vector
oy. Finally, a tensor field t of contravariant order r and covariant order s associates to each
q € Q a multi-linear map ¢ : T*Q x -+ x T*Q x TQ x - -- X TQ — R (with r copies of T*Q
and s copies of 7'Q).

Given a function f in C*°(Q), we let Lx f denote the Lie derivative of f with respect
to X and we let df denote the one-form such that for all vector fields X:

(df, X)=Lxf.
Given a smooth function ® : Q — Q, define its tangent map T® : TQ — T'Q as
(Tq@Xq)féXq(fo(I))a an

where f is a real valued function in C*°(Q) and X, is a tangent vector in T,Q.
Given a pair of smooth vector fields X,Y, we let [X, Y] denote their Lie bracket and let
LxY denote the Lie derivative of Y with respect to X.

Distributions and Integrable Manifolds

Given a pair of vector fields X, Y, their Lie bracket is the vector field defined by

Lixyif =LxLyf—-LyLxf, VfeC®@Q). (2.1)

The Lie bracket operation satisfies two fundamental properties: skew symmetry and the

Jacobi identity:
[X,Y),Z]+[[Z2,X], Y]+ [Y, Z], X] = 0.

A distribution D on @ is a subbundle of T'Q, i.e., the union over all ¢ € Q of linear
subspaces of TyQ). The rank of D at ¢ is the dimension of the subspace D(g). Given a
family of vector fields X = {X;,..., Xi}, we can define a distribution by

DX = Spancm(Q){Xl, . ,Xk}.

In what follows, we assume that distributions have constant rank and that it is possible to
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find a family of smooth vector fields that span them.

A distribution Dy is involutive if for any pair of vector fields X,Y € X, their Lie
bracket [X, Y] also belongs to X. An integral manifold N of D is a submanifold of Q such
that T,N C D(q) for all ¢ € N. A distribution D is integrable if, for all ¢ € Q, there exist
an integrable manifold with the same dimension as the rank of D. This submanifold of Q
is called the mazimal integral manifold. Involutivity and integrability of a distribution are

proven equivalent in Frobenius Theorem.

Codistributions

Similarly to the notion of distribution, a codistribution Z on Q is a subbundle of T*Q, i.e.,
the union over all ¢ € @ of linear subspaces of T;Q). The rank of T at ¢ is the dimension of
the subspace Z(q).

Given a distribution D on a manifold @, we define its annihilator Ker D as the set of
one-forms « such that (o, X) = 0, for all X € D. Similarly, given a codistribution Z, we
define its annihilator Ker Z as the set of vector fields X such that (o, X) = 0, for all o € T.

The k dimensional codistribution Z is integrable if there exist k functions ¢y, ..., ¢, such
that 7 = span{d¢n,...,d¢s}. Integrability of the codistribution Z is equivalent to the inte-
grability of its annihilator Ker Z. Computable tests for the integrability of a codistribution

are found in [38].

2.2 Lie Groups

A Lie group G is a smooth manifold endowed with a smooth binary operation called group
multiplication (satisfying associativity and existence of identity and inverse elements). A Lie
algebra is a vector space endowed with a skew symmetric, bilinear operation called the Lie
bracket (satisfying the Jacobi identity).

The letters g, h denote elements in the group G and e = Id is the group identity. The
map L, : G = G;h — gh is called left translation. A vector field X is said to be left

invariant if it satisfies the equality
X(gh) = ThLy X (h),

where T}, L, is the tangent map to Ly at h. We let Greek letters denote vectors in the tangent

space at the identity T, G, for example X (e) = ¢, and we denote left invariant vector fields
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as

X(g)=TLye2g-¢.

Since the value of X (g) is uniquely determined by its values at g = e, we identify T,G with
the set of left invariant vector fields g. It can be shown that the Lie bracket of two left

invariant vector fields is still left invariant, so that we can define a Lie bracket on g by

g-lE&m=lg-€, g (2.2)

Therefore, the set of left invariant vector fields g is a (finite dimensional) Lie algebra.

We let aden = [£,n]. Let g* denote the dual space of g, that is the set of covectors a
such that {a, £) is a linear function of £ € g. Let adz : g* — g* be the dual operator of ad,
defined by (adg o, n) = (e, [¢,7)]) for all a € g*.

In a matriz Lie group the group operation is matrix multiplication. The corresponding

Lie algebra g is also a matrix Lie algebra with Lie bracket given by matrix commutation,

ie., [&n] =& —né.

The Rotation and Rigid Displacement Groups

An example of a matrix Lie group is the rotation group
SO(3) = {R € R***| RRT = I;, det(R) = +1}.

(SO stands for special orthogonal group; more details are available in [101]). Its associated

matrix Lie algebra is the space of skew symmetric matrices
50(3) = {S e R®*3| ST = —§}.

Let x denote the cross product on R® and define the operator ~: R® — 50(3) by Zy £ z x y
for all z,y € R®. The ~ operator is a Lie algebra isomorphism between s0(3) (with matrix
commutatbr) and R® (with cross product). Under this identification, the adjoint operator
on 50(3) is ad, = 7, for all z € R®.

The special Euclidean group SE(n) is the group of rigid displacements, that is rotations
and translations, on R™. In the three-dimensional case, this set of matrices has the structure

of a Cartesian product between SO(3) and R®. As a Lie group SE(3) has the structure of
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a semi-direct product between SO(3) and R®. The corresponding Lie algebra se(3) also
has the structure so(3) x R® and it is isomorphic to R®. We represent a group element
g = (R,p) € SO(3) x R and an algebra element ¢ = (Q, V) € s0(3) x R? using homogeneous
coordinates:

R D Q V

g= and €=
01><3 1 01><3 0

The adjoint operator on se(3) = R® is

o

ad(Q’V) =

<H D
o)

Exponential Coordinates

On a matrix Lie group we define the ezponential map exp: g — G as
(o0} én
expé =3 =
k=0

If the set G is the Cartesian product of an arbitrary number of copies of SE(3) and its
proper subgroups, then the exponential map is surjective and it is a local diffeomorphism
between the group and its algebra. We refer to [72] for more details. For example, given

z € s0(3), Rodrigues’ formula gives

exp(B) = Is + sin |Jal| (1 - cos ol

[l |z IP’

where || - || is the standard Euclidean norm. The logarithmic map is the local inverse of the
exponential map and provides us with a local chart on the manifold G. In other words, in
an open neighborhood of the origin Id € G, we define z = log(g) € g to be the exponential
coordinates of the group element g. For example, if R € SO(3) is such that tr(R) # —1,
then

¢

log(F) = 2sin(¢)

(R~ RT) € 50(3),

where ¢ satisfies 2 cos(¢) = tr(R) — 1 and |¢| < 7. In other words, log(R) is the product
of the axis and angle of rotation of R. Corresponding definitions for the group SE(3) are

presented in [76].
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Metrics on Lie Groups

On the Lie algebra g an inner product is defined by a self-adjoint positive definite tensor
I': g — g*, so that, for example, the inner product between ¢ and 7 is (I, 17) and the norm of
£ is ||€]] = (Tg, 5)1/ 2 Locally, this induces a metric on the group G using the logarithm map
as d(g, h) = ||log(gh™")||. We refer to [62] and to [81] for a detailed treatment on metrics

on Lie groups, and we investigate in the next section Riemannian metrics on Lie groups.

2.3 Riemannian Geometry

A Riemannian metric on a manifold @ is a smooth map that associates to each tangent
space T, an inner product (-, -));. A manifold endowed with a Riemannian metric is said

to be a Riemannian manifold.

Definition 2.1. An affine connection on @ is a smooth map that assigns to each pair of
smooth vector fields X,Y a smooth vector field VxY such that for all functions f,g on Q
and for all vector fields X,Y, Z:

() VixsgvZ = fVxZ+gVyZ,
(ii) Vx(Y -+ Z) =VxY +VxZ, and
(i) VxfY = fVxY + (Lxf)Y.
We also say that VxY is the covariant derivative of Y with respect to X. Given any
three vector fields X,Y, Z on @), we say that the affine connection V on Q is torsion-free if
[X,Y]=VxY - VyX, (2.3)
and is compatible with the metric (-, -) if

Lx{Y, Z) =(VxY, Z) + (Y, Vx Z)). (2.4)

The Levi-Civita theorem states that on the Riemannian manifold Q there exists a unique
affine connection which is torsion-free and compatible with the metric. Indeed, combining

equations (2.3), (2.4) and their permutations, one obtains the equality

22X, V2Y) =L2(X, Y) + (2, [X,Y]) + Lv{X, 2)
+H{V, (X, Z]) - Lx (Y, Z) — (X, [V, Z]), (2.5)
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which uniquely determines the connection V as a function of the metric (-, -)). We call this
V the Riemannian (or Levi-Civita) connection on Q.

In the remainder of the section, we present various constructions related to the notion of
an affine connection. First we define various covariant derivatives with respect to a vector

field X:
(i) the covariant derivative of a function f is the function defined by Vx f = Lx f,

(ii) the covariant derivative of one-form w is the one-form Vxw such that

(wa,Y> =Vx (w,Y) - (w,VXY) s VY,

(iii) the covariant derivative of a tensor field Z : T*Q x TQ, i.e., of a tensor field of order

(1,1), is the (1,1) tensor field Vxt such that

(VXZ)(LU,Y) = Vx(Z(w,Y)) - Z(VXw,Y) - Z(w,VXY).

In addition, it is possible to define covariant derivatives along curves. Consider a smooth
curve ¢ = {c(t) € @,t € [0,1]}, and a vector field {v(t) € T,(;)Q,t € [0,1]} defined along
the curve c. Let X and Y be two vector fields such that X (c(¢)) = ¢(¢) and Y (c(t)) = v(¢t).

The covariant derivative of the vector field v along c is defined by

Vé(t)v(t) = VXY(q)‘QZC(t) ’

Finally, we introduce the useful operation of symmetric product, see [67] and [32] for
more details. Given a pair of smooth vector fields X,Y on @, the symmetric product (X : Y)

is the smooth vector field defined by

(X :YY=VxY +VyX. (2.6)

2.4 Examples of Covariant Derivatives

Loosely speaking, covariant derivatives are directional derivatives of quantities defined on
manifolds. Equation (2.3) relates them to the notion of Lie differentiation, whereas equa-
tion (2.4) plays the role of the Leibniz rule. In the following we present some useful ap-

proaches on how to compute covariant derivatives.
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2.4.1 On a Submanifold of R

A first instructive case is when the manifold Q is a submanifold of R?. In this case the Eu-
clidean norm ||-|| on R™ induces a Riemannian metric and connection on the submanifold Q.
Let m; denote the orthogonal projection from R onto the tangent space T,Q. Given any

two vector fields X,Y on @, it holds that

(9x7) @) = 7 (1] _ ¥ 0®)) 27)

where {q(t),t € R} is any curve on @ with ¢(0) = ¢o and ¢(0) = X(go). We refer to [13,
Chapter VII] for more details on this description of covariant differentiation.

We further illustrate these ideas applying them to the two sphere S £ {p € R®| pTp =
1}. Since S% is embedded in R®, we identify points, tangent and cotangent vectors on the
sphere with their corresponding components in R®. If {g(¢),t € R} is a curve and Y (¢) is a
vector field on S? C R?, then

(Vg¥) (@ =7 (V(a0) =¥ (a) - (a7 ¥ (a(®))) a(¥),

where both ¢(t) and Y (¢(t)) are thought of as vectors on R3.

2.4.2 In a System of Local Coordinates

In full generality we can express covariant derivatives in a system of local coordinates. Given

the chart (¢',...,q"), we define the Christoffel symbols T¥; by

8\ . 0
i (o5) = o

where the summation convention is enforced here and in what follows. The Christoffel
symbols of a Riemannian connection are computed from equation (2.5) as follows. Let M

be a matrix representation of the metric; in other words let M;; = «aiqz , 3#2;)). We have

(2.8)

F?j - %Mmk (aMmJ’ n OM i _ 6M”> ’

aqt o¢ oq™
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where M is the inverse of the tensor M;;. The covariant derivative of a vector field is then

written as
oyt . S 0
= - X7+ T XTYh ) — .
VxY <8qJ X7+ I ) 5" (2.9)
and of a one-form as
= (% x9 Tk x7) dg 2
Vxw= % — LWk qg . ( '10)

2.4.3 On a Lie Group

Finally, we describe Riemannian connections within the context of Lie groups. Invariant
connections on Lie groups are nicely described in [85] and employed by V. 1. Arnold in the
study of hydrodynamic of ideal fluids, see [5] and [6, Appendix 1 and 2].

As in the previous section, g is an element in G and Greek letters denote vectors in the
Lie algebra g. An inner product on the Lie algebra g, that is a tensor I : g — g*, induces a

left invariant Riemannian metric on G by left translation:

(X(9), Y(@) 2Ly - X(9) (¢ - Y(g))

The Riemannian connection V associated to this metric is of interest. An application of

equation (2.5) shows that this connection satisfies
Ve (g-m=g- (Ngn) : (2.11)
where the map ,V : g X g — g is defined by
1 1 ~1 * *
Ve = 5l - Sl (adf In+ ad; 1€). (2.12)

Connections that satisfy equation (2.11) are said to be left invariant. Such connections
have the property that the Lie bracket, see equation (2.2), and the covariant derivative, see
equation (2.11), of two left invariant vector fields are still left invariant. This also applies

to the symmetric product. Specifically, it holds

(g-&:9g-m=g-(§:m),
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where the symmetric product between two vectors on g is defined as:
(€:m) & —17"(ad{ In+ ad} I¢). (2.13)

For example, on s50(3) ~ R® with the inertia tensor J and with the equality ad; = —£, we

compute (£ : 9y = J71(¢ x In+n x J€).
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Chapter 3

Models of Mechanical Control Systems

In this chapter we introduce models for various classes of mechanical systems. We focus on
writing the equations of motion for a mechanical system in a coordinate free fashion. The
key idea is to regard the kinetic energy of the system as a Riemannian metric and to write
the Euler-Lagrange equations in terms of the associated Riemannian connection. A similar
approach is taken in the dissertation of A. D. Lewis [64]. For an introduction to geometric
mechanics we refer to [72] and [6], and for a modern introduction to robotics we refer to [76].

The chapter is organized as follows. In Section 3.1 we define a mechanical control system.
Section 3.2 treats the additional structure of mechanical systems on Lie groups. Finally in
Section 3.3 and 3.4 we present mechanical systems subject to constraints and impacts. Most
of the content in this chapter is taken from the literature. For example, the treatment on
constrained mechanical systems follow the approach advocated in [9, 66]. The treatment on

hybrid mechanical systems in Section 3.4 is joint work with Milos Zefran; see [29].

3.1 Simple Mechanical Control Systems

A simple mechanical control system is defined by the following objects:
(i) an n-dimensional configuration manifold @, with local coordinates ¢ = {¢',... ,¢"},

(i) a Riemannian metric M, : TQ x T'Q — R on @ (the kinetic energy), alternatively
denoted by (-, -),

(ili) a function V on @ describing the potential energy, and

(iv) an m-dimensional codistribution F = span{F?,..., F™} defining the input forces.



21

The word “simple” refers to the Lagrangian being equal to kinetic minus potential energy
and comes originally from the definition in Smale [89]. Let ¢(t) € Q be the configuration of
the system and ¢(t) € T,Q its velocity. In a system of local coordinates, the Lagrangian is

written as
. 1 .i .j
L(g,q) = §(Mq)n §'¢ - V(q).

(Note that the summation convention is assumed throughout the dissertation.) We let
I‘;'.k(q) denote the Christoffel symbols of the Levi-Civita connection associated with M,
see equation (2.8), and we let M¥ denote the inverse matrix of M;;. Then the forced

Euler-Lagrange equations are

G+ Tk = MY (—%-{—Fj), i=1,...,n, (3.1)
where Fj is the jth component of the resultant force F(q,t) = Y.1" F*(¢)us(t) and where
the controls {u1(),...,um(t),t € R} belong to the space of piecewise smooth functions
U™. Note that the Euler-Lagrange equations are coordinate independent (intrinsic), in the
sense that they are satisfied in every system of local coordinates.

Using the formalism introduced in the previous chapter, these equations can be written
in a coordinate independent form. We let V denote the Riemannian connection of the metric
M, on Q, and with a slight abuse of notation, we let M, denote the map M, : TQ - T*Q
defined by M,(X,Y) = (M,X,Y). The forced Euler-Lagrange equations in intrinsic form

are then

m
Vgi = M7 (- Vi@ + Y Fighwm), (3:2)
k=1
where dV (g) is the differential of the potential function V.
One distinguishing feature of Lagrangian control systems is the number of input forces.

Accordingly we have the two definitions:

(i) A mechanical control system is said to be fully actuated if for all q € Q, the family of
covectors {F'(g), ..., F™(q)} spans the whole cotangent space T;Q. In other words,
a system is fully actuated if there exists an independent input force corresponding to

each degree of freedom.

(ii) A mechanical control system is said to be underactuated if the number of available
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input forces m is less than the degrees of freedom n.

Remark 3.1 (Time scaling). Consider a mechanical system without potential energy V, and
for A > 0 define 7 = At. The following property holds: if (¢(t), ¢(¢)) is a solution for ¢ € [0, 1]
to the forced system (3.2) with external forcing w;(t), then (g(v/A),4(7/A)/])) is a solution
for T € [0, A] with external forcing u;(7/A)/A2. In other words, if we find an input u(t) that

achieves a desired motion in time 1, then u(¢/))/A? achieves the same motion in time \.

3.1.1 Robotic Manipulators

In this section we relate the abstract definition above to the classical coordinate-based
description of robotic manipulators. As Figure 3.1 illustrates, the configuration of a robotic
manipulator can be described by n generalized joint angles § = (8%,...,6") € S*, where S
is the torus. The kinetic energy is described by the inertia matrix M () and the joint forces
are F = {df',...,dd"}. The equations of motion eqrefeq:mechsys:coords are then written

in vector form as
M@ +C(6,0)0 = F, (3.3)

where both left and right hand side have been pre-multiplied by the inertia matrix M (6).
C(8,6) is the Coriolis matriz and can be related to the inertia matrix M and its Christoffel
symbols by:

Cig(60,6) = > Ml 3" = 53~ ( T 39f1> " (34
k=1 k=1

The fundamental difference between equation (3.2) and equation (3.3) is that the latter is a
coordinate-dependent representation of the Euler-Lagrange differential equation, while the

first one is coordinate-free.

3.1.2 A Pointing Device on the Two Sphere

An alternative way of controlling a manipulator is to focus on the motion of the end effector,
for example the Tool in Figure 3.1. In the robotics literature this is referred to as “workspace
control.” The key idea is to rewrite the equations of motion and to specify the control goal
in terms of the end-effector variables, as opposed to the joint variables. As an example,
we study here a system whose configuration space is the two sphere S%: a fully actuated

spherical pendulum in absence of gravity. This example is motivated by applications to
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Figure 3.1: A Robotic Manipulator

workspace control of a robot manipulator such as a pan tilt unit and the so called “spin
axis stabilization” problem for a satellite.

Let ¢ € S2 be the configuration and consider a latitude /longitude parametrization:

cos{¢) cos(d)
g = 