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Abstract

Most practical control systems have significant nonlinear components.
However, these systems are typically analyzed either through robustness
analysis of their linearizations, or through extensive simulation of their
nonlinear models. Other forms of analysis of nonlinear systems have not
as yet led to computationally tractable solutions. The aim of this the-
sis is to extend the analysis methodology for linear systems given by the
structured singular value framework to nonlinear systems. We study the
question: Given an uncertain nonlinear system, driven by a nominal com-
mand signal over a finite time horizon, and subject to bounded noise, norm
bounded feedback components, and uncertain parameters, how far from
the nominal trajectory will the actual trajectory be? In order to inherit the
properties of the structured singular value, we will use the 2-norm as mea-
sure for noise signals and undermodeled feedback components. As is the
case for robustness analysis of linear systems, we can only find efficient
computation algorithms for upper and lower bounds to the answer to this
question.

To compute the lower bound we develop a power algorithm similar to
the one developed for the structured singular value. Since, as was the case
for linear systems, the algorithm is not guaranteed to converge in general,
its analysis has to be done empirically. We test this algorithm by applying
it to simulations of real systems and show that it performs better than
other available optimization methods. To develop an upper bound, we
study a class of rational nonlinear systems. We show that for problems in
this class, an uncertain, constrained linear system can be constructed that
achieves the same performance level. Upper bounds on the performance
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of these systems can be computed by solving linear matrix inequalities. Fi-
nally, we study extensions that can be obtained to these analysis methods
when the system is linear but time varying.
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Chapter 1

Introduction

Theoretical and computational tools for analysis and synthesis of ro-
bust controllers for linear systems are well developed in a variety of in-
stances. Controllers generated with these tools can provide guaranteed
performance in the presence of structured uncertainty, and the worst case
disturbances for a given controller can be determined.

For linear time invariant (LTI) systems with complex, structured uncer-
tainty, analysis of robust performance can be reduced to searching for the
solution to a set of algebraic equations which give bounds on the achiev-
able performance. One is thus able to find computationally efficient solu-
tions, such as the power algorithm for the p lower bound, without doing
an explicit parameter search involving repeated simulation. This works
because the system is linear and the performance and uncertainty descrip-
tions are chosen so as to give computationally attractive solutions, even
for large problems.

Current research in linear systems theory is devoted to extending the
existing theory to incorporate more realistic uncertainty structures (such
as real parameters) and to solving linear time varying and time invariant
problems.

Analysis of nonlinear systems on the other hand has stayed mainly at
the theoretical level. Lower bounds are usually computed through exten-
sive simulation or local optimization techniques. However, these methods
require large amounts of computation; standard optimization techniques
fail even for small problems, and a search over the parameter space ex-
hibits exponential growth with the number of parameters. Several upper
bounds for the performance of nonlinear systems have been developed in
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the last few years. Most of these results are generalizations of Lyapunov
theorems and depend on our being able to find a Lyapunov function for
the system. However, there are no general, computationally tractable ways
to accomplish this.

The aim of this thesis is to extend the linear systems analysis method-
ology, given by the structured singular value framework, to nonlinear sys-
tems. In order to achieve this, it is important to understand the charac-
teristics of linear systems that are essential to the development of their
analysis methods. Obviously, the relative simplicity of linear behavior, and
of the underlying mathematics needed for their study, is a fundamental
contributor.

There is, however, another characteristic of the problem without which
practical, computer oriented solutions never would have arisen. Linear
systems can be naturally described by finite amounts of data, and there-
fore, properties of the system can be expressed as functions on a finite
dimensional space. If we want to replicate that success for nonlinear sys-
tems, we have to restrict our search to classes of nonlinear systems that
can be described using a parameter space of finite dimension. For linear
finite dimensional time invariant systems, the state space representation
meets this criterion. The behavior of the systems can be deduced from
the state space matrices. More importantly, the additional information
needed to interpret these matrices is also finite.

What constitutes a valid finite description depends on whether we are
analyzing the problem locally or globally. In what follows, we will assume
that the performance of the system can be measured by one scalar index
J. The system meets a given performance specification y if J < y.

When computing lower bounds on the achieved performance or neces-
sary conditions for performance, we are concerned with local information.
A lower bound on the performance index is established by exhibiting a set
of signals that achieve it. Thus in order to develop computable lower
bounds, the representation of the system has to be locally finite. In other
words the local behavior of the system has to be computable in finite time.
This is true in general for systems studied over a finite time horizon, since
the behavior can be obtained by integrating the system'’s differential equa-
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tions. (Inlinear time invariant systems, the whole infinite horizon behavior
can be obtained in finite time working in the frequency domain. It is im-
portant to note that in this case infinite time horizon is used because it
is convenient and not because it is the most justified approximation from
an engineering point of view.)

Obtaining sufficient conditions for performance, or upper bounds on
the performance index, implies establishing global properties of the sys-
tem. The description of the system has to be such that these global con-
clusions can be derived in finite time. This cannot be done if all the in-
formation we have about the system is local: for a general system a finite
number of local evaluations cannot predict global behavior. We have to
restrict the set of allowable systems to a class for which global predictions
can be made from finitely many local evaluations. (Linear systems for ex-
ample form such a class.) In this case the finite description will be a set of
coordinates identifying the particular instance within the allowable class
that we are studying.

Starting from these considerations, we develop algorithms to deter-
mine upper and lower bounds on performance for nonlinear systems. The
performance problem and class of systems considered have a solid engi-
neering motivation and also meet the above conditions, which we believe
are necessary to develop efficient computation algorithms. The next sec-
tion outlines the remainder of the work.

1.1 Previous Work

The body of work done on robustness analysis of linear and nonlinear sys-
tem is extensive and this section does not pretend to be a comprehensive
review of it. The intention of this section is to place the work developed
in this thesis in its context. The need to take into account uncertainty in
modeling has been recognized from the early days of the development of
a systematic control theory. In his seminal work on feedback amplifier
design Bode introduced the concept of phase and gain margin, and with
that the principal idea behind robustness analysis, namely that a condition
of stability or performance based on a nominal model is not enough for



practical purposes. In Bode’s own words [3]:

A theoretical characteristic that just met this requirement, how-
ever, would be unsatisfactory, since it is inevitable that the lim-
iting phase would be exceeded in fact by minor deviations in-
troduced either in the detailed design of the amplifier or in its
construction.

The history of robust control of linear systems from this point on can be
understood as an effort to systematize this statement. The small gain
theorem introduced by Zames [37] in 1965 was the first significant mile-
stone in this quest, and provided an exact robust stability test with respect
to unstructured dynamic uncertainty. The flexibility and applicability of
this tests increased significantly with the introduction of structured or
block diagonal uncertainty (see, for example, [25]). A further step towards
systematization of robustness analysis was taken in 1982 with the intro-
duction of the structured singular value p [7]. In [7] the need for computa-
tionally efficient upper and lower bound to the robust stability index was
also discussed. This need was later confirmed when many of the robust-
ness analysis problems of relevance to practical problems were proved to
be NP-hard [4]. Most of the recent work has been dedicated to improving
the computational methods for these bounds [20], and by extending their
applicability to larger classes of uncertainty [34]. A large effort has been
devoted also to understanding the theoretical nature of the upper and
lower bounds and to establishing for which classes of uncertainty each of
these conditions is necessary and sufficient [24].

Robustness analysis of nonlinear systems was developed as a gener-
alization of the results obtained for linear systems. Robustness for non-
linear systems was proved to be equivalent to the existence of solution to
Hamilton-Jacobi equations [33] or non-linear matrix inequalities [14]. How-
ever computational methods to establish the existence of these solutions
have not been developed to a level comparable to their linear counterpart
(i. e., existence of solutions of Riccati equations and linear matrix inequal-
ities). These results still remain mainly of academic relevance, although
research is actively being carried out in order to make them applicable.
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The state of the art for nonlinear system analysis, as applied in indus-
try today, still relies in repetitive simulation of the system under diverse
conditions, and for a large number of randomly generated disturbances.

The work developed in this thesis significantly contributes to closing
this gap existing between the theory and practice of robustness analysis
for nonlinear systems. By studying performance over a finite time hori-
zon, we can establish computationally tractable algorithms for upper and
lower bounds on the robust performance index. Although the results pre-
sented here are not as sophisticated, from a mathematical point of view, as
those in [33, 14], they are far more applicable to problems of engineering
significance.

1.2 Contributions and Outline of This Work

The work developed in this thesis significantly contributes to closing this
gap existing between the theory and practice of robustness analysis for
nonlinear systems. By studying performance over a finite time horizon,
we can establish computationally tractable algorithms for upper and lower
bounds on the robust performance index. Although the results presented
here are not as sophisticated, from a mathematical point of view, as those
in [33, 14], they are far more applicable to problems of engineering signif-
icance.

We will organize these results as follows. In Chapter 2 we briefly review
the main ideas in robustness analysis. We place special emphasis in the p
paradigm for robustness analysis, in order to introduce the notation and
lexicon in use throughout this work.

We introduce the robust trajectory tracking problem in Chapter 3 and
describe the different performance problems than can be reduced to it
through adequate use of multiplicative and convolution weights. We also
describe the noise and uncertainty models we will use. These are general-
izations of the ones used in the p framework for linear systems. We also
point out in this chapter the similarities and differences between them.

Although we are not able to solve the robust trajectory tracking prob-
lem exactly, we can establish upper and lower bounds on the performance
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achieved. (Or correspondingly necessary conditions and sufficient con-
ditions for a given performance specification.) The next three chapters
of this thesis are devoted to the study of these necessary and sufficient
conditions.

In Chapter 4, we develop a power algorithm to compute a lower bound
on the nonlinear performance index. This algorithm is similar in nature
to the one developed for the structured singular value, and has similar
behavior. Since, as was the case for linear systems, the algorithm is not
guaranteed to converge in general, its analysis is done empirically. We test
this algorithm by applying it to simulations of real systems. We carry out
several different performance tests on two different platforms: the Cal-
tech ducted fan experiment and a simplified model of an F-16 jet fighter.
The results of these tests are reported in Chapter 5.

The lower bound requires only local information and thus is developed
for a large class of systems. In order to develop a global condition, we re-
strict the class of systems under study. In Chapter 6 we describe a class of
rational nonlinear systems. For this class, an upper bound on the perfor-
mance index for the robust trajectory tracking problem can be computed
by solving a convex optimization problem in the form of a linear matrix
inequality. We develop necessary and sufficient conditions for the solu-
tion of this problem by proving the equivalence between its performance
and the performance of a constrained, uncertain linear system, for which
u type analysis techniques have been developed by other authors.

Finally, the last two sections of this thesis present some related work
done on linear systems. Chapter 7 explores the different performance
problems that can be posed and solved using p type tests when we con-
sider linear time varying systems over a finite time horizon. Chapter 8
discusses modifications done to the standard power algorithm for p in
order to improve its behavior in the mixed case.

The thesis is closed with a summary of the work and suggestions for
future research directions.



Chapter 2

Overview of Robustness Analysis

The engineering motivation behind the theory of robust control is based
on two unavoidable facts: first, all analysis and synthesis methods are
based on the use of models. In most cases it is not practical to try the
designs in prototypes at the early stages. Furthermore, critical control
systems must have a reasonable expectation of good performance before
they are implemented, since their failure can lead to significant losses.
These factors force us to extensively analize systems using models before
we proceed to the implementation stage. The second fact is that models
are, by nature, incomplete and inaccurate. They are incomplete because
they are deduced from a finite observation of the system. They are inac-
curate because the observation is noisy and, what is even more important,
because we are trying to project a physical system into a particular class
of mathematical models we believe to be representative (e. g., the class of
linear, finite dimensional model).

Robust control analysis and synthesis techniques were developed to
deal with these inherent limitations of models. They make up for the in-
completeness and inaccuracy in the model by associating with the system
not one, but a set of models. The different models in the set will account
for possible errors in the measurements and for the limitations of the
measurements themselves. Furthermore, in an intuitive or ad hoc sense,
limitations imposed by the model structure are more or less compensated
for by the fact that several models are being considered at once.

The different branches in robust control have been developed around
the choice of noise signal models and the nature of the class of systems
under study. In this chapter we will review the main ideas behind the



8

structured singular value or p framework for robust control. Most of the
work that we will develop in the rest of this thesis shares the philosophy of
this framework, and therefore its terminology and notation. This chapter
is intended for those readers who are not familiar with this framework.
Most of the material here is standard. There are several good and complete
references for the material presented here. This section is largely based
on [22] and [34]. An extensive and in-depth analysis can also be found in
[38].

2.1 Linear Fractional Transformations
and Robust Control

Underlying every robust control paradigm there is a class or set of plants
to be associated with the real system being studied. This set has to be
rich enough to capture the behavior of the real system. It also has to
admit a simple mathematical description. In what follows we will use
extensively classes of systems described by feedback interconnections.
For linear systems these interconnections are known as Linear Fractional
Transformations or LFT’s. Consider the system M with inputs u and v,
and outputs y and z defined by the equations

Yy = Mllu + MIZV

z

M, M
M = 11 12 .
M1 My
Let A be a set of systems A with dimensions compatible with z and u.
Then for each A € A we can define the following system

M21u + MZQV,

with

y = Miu+ My
z = Myu+ Mypv 2.1)
v = Az.

We will denote the system that maps u into y, A % M. This is the standard
notation for the Redheffer star-product. Note that in the preceding devel-
opment we made no mention to the nature of the system M. It can be a
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constant matrix or a linear operator between signal spaces. If Equations
2.1 have a unique solution for every u, we say that the system A x M is
well posed. Finally, we define the set of systems

AxM={AxMA € A}

The sets of plants we will consider for robustness analysis will be of the
form BA *x M. The sets BA will be in general of the form

BA = {blockdiag (A1, Ay, ..., Am), [A;]] < 1}.

Each A; will have very simple structure, in general either diagonal or a full
operator. We will refer to the structure of the elements of the set A as the
uncertainty block structure.

2.2 The p Paradigm

The structured singular value p was introduced in [7] as a tool for the
robustness analysis of systems subject to (structured) uncertainty. The
original definition of p may be easily generalized to incorporate both real
(e. g., parametric) and complex (e. g., dynamic) uncertainties (see [9] for
example), and many robust stability/performance problems can be recast
as one of computing p with respect to an appropriate block structure. The
notation used here is fairly standard and is essentially taken from [9] and
[35]. For any square complex matrix M, we denote the complex conjugate
transpose by M*. The largest singular value and the structured singular
value are denoted by (M) and p(M) respectively. The spectral radius is
denoted p(M) and pg(M) = max{|A| : A is a real eigenvalue of M}, with
pr(M) = 0 if M has no real eigenvalues. For any complex vector x, x*
denotes the complex conjugate transpose, and |x| the Fuclidean norm.

The definition of p depends upon the underlying block structure of the
uncertainties, which is defined as follows. Given a matrix M € C™ " and
three non-negative integers m,, m., and m¢ with m := m, +m. + me < n,
the block structure X (m,, m., mc) is an m-tuple of positive integers

X = (k11 sy kmr, km1r+ly vy kMy+mC1 kmy+mc+1; ey km) (22)
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where we require .1 | k; = n in order that the dimensions are compatible.
This now determines the set of allowable perturbations, namely define

Aj( = {A = blockdiag(S{Ikl, ey S;fnylkmr, 5§Ikmr+1, v

c
O,

’

Ty ome s 05500, 05,.) 1 87 e R, 8 € C,
AIC c Ckmr+mc+i><kmrrmc+i}, (23)
where
BAx = {A: A€ Ax,0(A) <1},

and I denotes the k-dimensional identity matrix. Note that Ax € C™"
and that this block structure is sufficiently general to allow for repeated
real scalars, repeated complex scalars, and full complex blocks. The purely
complex case corresponds to m, = 0. Note also that the full complex
blocks need not be square but we restrict them as such for notational
convenience.

Definition 2.1 ([7]) The structured singular value, ux (M), of a ma-
trix M € C™" with respect to a block structure K(m,, m., mc¢) Is

defined as
-1
Hx (M) = (min {o(A) : det(I — AM) = O}) (2.4)
AeAx
with px (M) = 0 if no A € Ax solves det(I] — AM) = 0.

The following lemma will connect this definition with two commonly
used properties of matrices.

Lemma 2.1 The spectral radius p(M) of the matrix M verifies

p(M) = pa, (M),

where
As = {81,6 € C},

and the maximum singular value (M) of M verifies
G(M) = pa, (M),

where
Ap = {Ap,Ap E Cnxn}.
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Given two uncertainty structures A; and A, define a third structure

Ay O
A= AL € AL, A € Ar
0 A

Denote p,, the structured singular value computed with respect to Ay, pa,
when computed with respect to A, and p when computed with respect to
A. The following theorem will allow us to state the connection between
the structured singular value and robust performance problems.

Theorem 2.2 (Main Loop Theorem [22])

Ha, (M22) < 1

max HAI(M* Az) < 1.
AreBA2

HM) <1 <=

Theorem 2.2 can be interpreted as follows. Suppose that for a system
M, there is a property of the system (such as performance level achieved)
that is achieved if and only if pa,(M,) < 1. Then all the plants in the set
BA, * M are well posed and verify the property if and only if pa(M) < 1,
where A is in the set

A=l ® YA caA ea
- OAZ-I Uy 32 vi{-

As an example consider the discrete time system given by the equations

Xke1 = AXy+ Biug + Bovy
Vi = Cixp+Dyug +Dipvi (2.5)
zx = (Cxg+ Dyyug + Dopvy,

and the associated matrices
A B B
M, = 1 2 ,
Ci Dy Dy

A B B
M= C Dn Dy
C> Dy Do

and
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The system will be stable if and only if
p(A) < 1.

As a performance measure consider the L, into L, induced gain from u to
y. This gain is less than 1 if and only if

max oD+ Cé(I—-A8) 'B) <1.
61 eC

1011 =1

So the system is stable and the performance condition is met if and only
if
Ha, (A)

Max pa, (As * My)
AseBAg

According to Theorem 2.2 these conditions are equivalent to

< 1
< 1.

Ha, (Ml) < ]-a

A = As 0 ‘A €A, A, €A
I\OAP-S Sy ~p P

Now add to the system the following equation, describing an uncertain

where

component
vV =98,z (2.6)
with 8, € R, and [8,] < 1. The system is well posed for all &, if and only
if
p(D22) <1 e pa, (Do) <1,
where

Ay = {8,1:0, € C},

and the performance condition is met for all §,, if and only if

max Ma, (0,1 x M) < 1.
opel-1,1]

Applying Theorem 2.2 again we see that the system given by Equations

(2.5) and (2.6) is stable and well posed for all §, € [-1, 1] and has induced
gain from u to y less than 1 if and only if

qu(M) <1
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with
As 0 O
A2= O Ap O :ASEAs,ApeAp,6uEC
0 0 8,1

Several other robust performance problems for LTI systems can be writ-
ten as p computations. The reader is referred to [22] or [34] for more
examples.

2.3 Upper and Lower Bounds

The quantity introduced in the previous section — the structured singu-
lar value p — can be used to determine whether or not a family of system
meets a performance specification. The structured singular value is a func-
tion that in general has to be computed numerically. However, for many
interesting uncertainty structures, the problem of computing p has been
proven to be NP-hard. (See for example [32] or [4].) In practical terms these
complexity results mean that in general we will only be able to compute
upper and lower bounds on p. A substantial part of the research effort
in this area has been devoted to the development of practical algorithms
for the computation of these bounds. The nature of these algorithms is
of particular interest to us, since the work in this thesis extends them to
a certain class of nonlinear problems. In this section we will review these
algorithms.

Lower bound

In order to obtain a lower bound for p, we define the following sets of
block diagonal matrices (which are also dependent on the underlying block
structure).

Qx ={A€Ax:8] € [-11],8(*8 =1,A*A =1, . .} (2.7)

DK = {bZOCk dla’g(ejelDls ey e‘jemTDmV;Dn’Lr-!‘l) s meHmc,
T TT
dlIk7nT+mC+1’ ) ."dmCIkm) : Gl E [__2_ E-])

0<D;=D}feCk*ki 0<d; eR} (2.8)
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The key to obtaining a lower bound lies in the fact that the p problem
may be reformulated as a real eigenvalue maximization with respect to
the scaling set defined in (2.7). The following theorem is taken from [35].

Theorem 2.3 ([35]) For any matrix M € C™" and any compatible
block structure K,

Jnax Pr(QM) = px (M). (2.9)

This immediately gives us a theoretical lower bound since we have that
for any Q € Q«, pr(QM) < px(M). The idea then is to find an efficient
way to compute a local maximum of the function pr(QM) over Q € 9 .
Note that since this function is non-convex, we cannot guarantee to find
the global maximum and hence we only obtain a lower bound for p.

It was shown in [35] that the maximization in (2.9) can be tackled via
a power iteration. We will not go into any of the details of the theoretical
development here, but merely present the final result. This algorithm will
form the starting point for the development of an adaptive power iteration
to find a p lower bound.

In order to avoid the notation becoming excessive, we consider a simple
block structure with m, = m. = m¢ = 1 for the remainder of this section.
This is purely for notational convenience, and that the general formulae
for an arbitrary block structure, as defined earlier, are simply obtained
by duplicating the appropriate formulae for each block. So given KX =
(k1, k>, k3), the appropriate scaling set becomes

Qcup = {blockdiag(q"Iy,, q°Ix,, Q%) : q" € [-111,4*q¢ = 1,
Q*Q¢ =It,}.  (2.10)

Now consider four vectors b, a,z, w € C"* and partition them compatibly
with this block structure as

b, a; Z1 Wi
b=\ by |, a=| a |, z=1| z» |, W= W (2.11)
b3 as z3 w3

where by, a;, z;, w; € Cki. Now allow these vectors to evolve via the follow-
ing power iteration:
Br+1ars1 = Mby (2.12)
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Wﬁ‘ azy
~ k +1
21 = Ak+1 W1 Z3 =TT W2 (2.13)
k+1 k k+1 |WV§1612k+1¥
P |WV3k|
ka1 T k1
' |6l3k+1| '
Bre1Wks1 = M* 2z (2.14)
*
A, W2y
S k+1 +1
bi,,, = r+1a1,., by, = —5———az,., (2.15)

la;(ml%/zkﬂ |

las,,,|
b3k+1 = e 3k+1
| 3k+1|
where g1 and gi.; evolve as
~ ~ . 1b1,l
B = sgndi) 7= Yo 4 Re(af,  wi) (2.16)
a’lk+1l
~ ~ & ~S ~J
If |1l =1 Then dxoy = =  Else Gri1 = &pss
| g1
~ ~ 12M "
Rpr1 = sgn(qkﬂ)} 11" i +Re(af, wi.,)
k+1
N ~ & ~ o~
If [Qks1l > 1 Then Grs1 = —  Else Gray = Qper
| g1 |

and [NSkH, /Bk-;.l are chosen positive real so that |ag+1] = [Wis1] = 1.

Then it was shown in [35] that if the above iteration converges to an
equilibrium point, we have a matrix Q € 9, such that QMb = Eb and
Ww*QM = /BW*, so that max([N%, B) gives us a lower bound for px(M). Fur-
thermore, if § = ﬁ then this bound corresponds to a local maximum of
(2.9).

Substantial numerical experience with the algorithm has revealed that
it usually converges fairly rapidly, and that we do obtain [NS = ﬁ in practice
so that the resulting bound is usually a good one (i. e., close to p.) However,
in some cases the iteration does not converge, and the resulting guess for
Q € 9« vields a poor lower bound for p. For a more detailed discussion
of the power iteration performance, see [36].
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Upper bound

For any Q € Qx, for any pair of invertible matrices D; and D, such that
D;Q = QD,, the following series of inequalities hold

p(QM) < T(QM)
= E(Dl"lDlQM)
= G(D;'QDyM)
= G(QD,MD;")
< G(DMD ).

From these inequalities we can derive the following

Theorem 2.4
M) = max p(QM) < min (D, MD;}),
u(M) QEQKp(Q ) min (DyMD; ")
where D, and D, are invertible and verify

DiQ = QDy VQ € Qx.

Theorem 2.4 provides us with an upper bound to the structured sin-
gular value in the form of a minimization problem. This problem can be
shown to be convex [22]. The last inequality in the theorem can be rewrit-
ten to take the form of a Linear Matrix Inequality as shown by the following
series of inequalities

o(D,MDY) < 1
& o(D,MD;Y) -1 < O
XN u*((DyHY*M*D}D,MD ' ~Du < 0 VYu
< u*(D"Y*(M*D;D,M -D{D)D;'u < 0 VYu
= u*(M*DD,M -D/Dpu < 0 Vu
= < 0.

M*D}D,M — DD,

When parts of the uncertainty structure are real, this upper bound can
be further refined. For a complete development of this issue the reader is
referred to [34]. Recently, there has been significant progress in the de-
velopment of numerical solutions for linear matrix inequalities. Software
packages for solving LMI's are now commercially available and perform
reasonably well.
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Another significant feature of the upper bound presented here is that
it also has an interpretation as an exact test (i. e., necessary and suffi-
cient condition) for robust performance. In general terms the upper bound
given in Theorem 2.4 is a test for robust performance, when all the uncer-
tainty components are norm bounded operators from L, into L,. For a
complete treatment of this subject see [24].

2.4 Extensions to

Recent work has shown that in many cases, considering a slightly more
general version of the system described in the previous section allows us
to set additional robust performance questions in the p framework (or a
variation of it). These modifications consist of adding linear constraints
that involve all the variables in the system (states, inputs and outputs)
equally. These systems are called implicit systems, and a full treatment
of them can be found in [24]. It is shown there that robust performance
can be determined by computing a function of the system and constraints
matrices similar to p. Itis also shown that upper and lower bounds similar
to the ones for the standard structured singular value can be determined.
(Although in the case of the lower bound, computation is a lot harder.) In
this section we will present some results obtained for this class of systems.
We will use these results in Chapters 6 and 7.
Consider the following system of equations:

Yy = Mu
u = Ay (2.17)
0 = Cu,

where M and C are constant matrices, and A is a block diagonal matrix
verifying 6(A) < 1. The above system can also be written

I - AM
0= u.
C
With this representation we can define an extension to the structured sin-
gular value:
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Definition 2.2 ([24]) The structured singular value of the system de-
fined by equations (2.17) is defined as: If

ker[ I—CAM } = {0} forall A € A,

define the structured singular value of the system in 2.17 to be

Ha,c = 0;

otherwise define it as

1
Hac = (min{ﬁ(A) A€ A,ker[ ! —?M ] # {O}}) )

The connection between this definition and robust stability/robust per-
formance of the system is given by the following:

Theorem 2.5 If M and C are finite dimensional, discrete time LTI
systems and A is LTI, then the system described by equations (2.17)
is stable if and only if P c(ejvy (M (e/®) < 1 forall w € [—1T, TT].

Finally, we present a result that allows us to compute an upper bound

on the extended structured singular value. We will use this upper bound
later in this thesis.

Theorem 2.6 ([24]) If there exist invertible matrices D; and D, such
that

DA =AD, VA
and
(CH*(M*D}D,M - D/D))C* <0, (2.18)

the system of equations (2.17) has only the trivial solution.

The linear matrix inequality (2.18) gives us a sufficient condition for
robust performance in this class of systems. As was the case with the
standard p upper bound, this condition can also be proven necessary and

sufficient for robust stability for an appropriate class of uncertain opera-
tors A.
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Chapter 3

Robustness Analysis
for Nonlinear Systems

Robustness analysis for linear systems has traditionally been approached
as a disturbance rejection or gain minimization problem. This approach
relies on the fact that rejecting noise around the null trajectory is equiva-
lent to rejecting noise around any trajectory. When extending this concept
to nonlinear systems, we will have to account for the fact that the super-
position principle will not hold. A successful paradigm for robustness
analysis of nonlinear systems must be based on the study of the behavior
of the system around prespecified trajectories.

Also, linear system analysis is generally done over an infinite time hori-
zon. (Although final time horizon versions of some of the linear analysis
results have been developed.) When studying linear time invariant sys-
tems, an infinite time horizon actually simplifies both the setup of the
problem and the algorithms used to solve it. An important reason for this
simplicity is that the behavior of a linear system over an infinite horizon
can be completely characterized by a finite set of numbers. (For example,
the entries in the system matrices A, B, C, and D in the usual state space
representation.) This would only be possible for limited and highly struc-
tured subsets of the class of nonlinear systems. However, the behavior of
a fairly large class of nonlinear systems can be specified, at least locally,
with finite information if the system is studied over a finite interval.

In this thesis we develop a paradigm for robustness analysis of non-
linear systems which extends the ideas from linear theory. In doing this
we incorporate the differences noted above. Far from being a restriction,
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by taking into account these issues — analysis around fixed trajectories
and study of a finite interval — we develop an analysis procedure than can
easily be applied to a large class of practical problems.

Many nonlinear analysis problems of engineering interest can be re-
duced to a problem of tracking a nominal trajectory. We mention here a
few examples:

e A car changing lanes on an automated highway. By communicat-
ing with neighboring vehicles the car first determines that there is
sufficient clearance in the adjoining lane to change position. Then it
performs the maneuver with a nominal steering command, corrected
with an inner loop controller.

e An airplane performing an automatic change of altitude and heading.
The pilot enters the new heading and altitude and the flight computer
determines nominal commands to perform it. A second control loop
maintains the airplane around the planned trajectory.

» A power plant going through a change in load. The plant is designed
to respond to the load change in a particular manner. However, vary-
ing conditions (temperature, component wear) and external distur-
bances can cause deviations from the nominal.

In all these cases, the designer has in mind an appropriate path to be
completed in a finite predetermined time, and builds his control system
accordingly. Since the real system is not exactly the one used for the de-
sign, and since it is also subject to noise, the system will not follow the
intended trajectory. The question of interest becomes: will the real tra-
jectory, under the worst conditions possible, remain close to the nominal
one in an appropriate norm? We call this question the robust trajectory
tracking problem. (We give it a more formal definition in the next section.)

The robust trajectory problem is naturally set up as an optimization
problem: given an uncertain nonlinear system subject to noise, maximize
the distance to the nominal trajectory for allowable noise signals, param-
eter values, and uncertain dynamical components. However, in order for
this statement to be meaningful, we have to find a class of problems large
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enough to have engineering relevance, for which we can efficiently find
useful bounds to this optimization problem. In this selection there is nec-
essarily a tradeoff between the generality and applicability of the class
of problems under study, and the efficiency of the algorithms developed
to compute them. The p framework achieves such a tradeoff. The un-
certainty models include real parameters varying in intervals and norm
bounded dynamical components. This gives the framework flexibility at
a low cost: it is reasonably straightforward to reliably obtain the neces-
sary model-uncertainty pair from standard identification techniques. It
is also straightforward to include engineering knowledge about the pro-
cess (such as noise or under-modeled components bandwidth) into the
noise description. Furthermore, together with recent developments, the p
framework can be used to tackle disturbance rejection with respect to two
of the most common sources of noise: white noise and harmonic noise. Fi-
nally, the computation tools for upper and lower bounds of p are efficient:
robustness analysis for a system as sophisticated as the space shuttle are
routinely performed.

We would like to achieve this same balance between generality, ease
of use, and efficiency in computation, in the development of an analysis
paradigm for nonlinear systems. We thus the p-framework use as a start-
ing point in the development of robustness analysis tools for nonlinear
systems. In the first section of this chapter we describe the particular ro-
bust trajectory tracking problem with which this thesis is concerned. In
the second section we will show that extending the p framework to non-
linear systems makes it more flexible, and that it allows us to ask more
natural performance questions.

3.1 The Robust Trajectory Tracking Problem

We are concerned with the study of perturbations of systems around a
prespecified nominal trajectory over a finite time horizon with initial time
t; and final time t;. The performance specifications and all characteri-
zations of the noise signals, under-modeled components, and uncertain
parameters affecting the system are given over this time interval.
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We restrict our study to nonlinear systems whose dynamics can be
represented by a smooth function F of the states x, a set of signals u
corresponding to external disturbances, a set of signals v corresponding
to the effect of under-modeled components, a set of parameters §, and a
set of nominal commands U responsible for steering the nominal system
along the nominal trajectory. The evolution of the system will thus be the
solution to

x = F(x,u,v,5,U,t),

with initial conditions x = x,. The trajectory will be described by a set of
coordinates Y, given by a smooth function G of the same variables

Y =G(x,u,v,0,U,t).
The nominal trajectory Y,,, will thus be given by
Yn - G(X,O, Os 6111 Uy t)a

where §,, are the nominal values for the parameters.

The signals v are not independent of the other signals, but the exact
dependence is not known (hence the name undermodeled dynamics). We
assume, however, that v is the image under a structured, norm bounded
operator of a set of variables z, given as a smooth function of the other
variables in the problem

z=H(x,u,v,0U,t).

We will denote A the mapping from z to u, A the class of operators with
same block diagonal structure. Since we will analyze the system for a
fixed nominal trajectory, we can incorporate the nominal commands into
the functions F, G, and H, and define

Sulx,u,v,5,t) F(x,u,v,8,U,t)
hy(x,u,v,8,t) = H(x,u,v,8,U,t).

Since we are only interested in the error between the nominal trajectory
and the actual one, we will also define

gu(x,u,v,5,t) = G(x,u,v,8,U,t) - Y,.
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Whenever no confusion is possible we will drop the subscript U. The struc-
ture of the operator A we will consider is block diagonal, and will thus
induce a partition in the sets of signals v and z

v o= [VliVZs'-';v}.?]

= [leZZs'--)Zp]-

Note that v and z are divided in the same number of blocks of signals, but
correspondent blocks do not have to have the same number of signals.
The size of the noise signals entering the problem will also require the
introduction of a partition of the signal set u

u = [uliuZJ"'ium]'

Figure 3.1 shows a diagram of the system interconnection. There are sev-
eral similarities with the linear p framework reviewed in the previous chap-
ter, and some differences. The undermodeled dynamical components are
feedback loops as was the case in linear systems. However, the effect of
the parameters on the system can be more general. The dynamics are not
only nonlinear, but they are also non-autonomous: the system includes
explicit functions of time.

Yy

Figure 3.1: Uncertain system interconnection.

We will measure the sizes of all signals in the 2-norm defined as usual
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over a finite time horizon

1

1 thf ; 2

all, = ata dt| .
lall: [w—nti }

The performance index is given by the 2-norm of the error signal

J =1yl

The size of the noise signals will be specified for each block of signals in
the partition given

luill, = N; i=1,2,...,m.

All the information we have on the undermodeled dynamical components
is that A is in BA. We will use the induced 2-norm as a measure of the
size of A. This restriction is then equivalent to imposing the following
relations between the signals v and z

Ivilla = llzill2 i=12,...,p.
We will allow the parameters 6 to vary in closed intervals
di <6 <D i=1,2,...,7.

Finally, we will also allow some or all of the initial conditions to vary in
given closed intervals

cisxi(ti)sCi i=1,2,...,n.

The preceding performance, noise, and uncertainty descriptions given
in this section can be summarized as a constrained optimization problem.
Since we only use one norm, we will drop the subscript 2 from now on to
keep the notation unencumbered. We now state the following:

Problem 3.1 (Robust Trajectory Tracking) Given an uncertain non-
linear system, driven by the equation

X = fulx,u,v,5,t)
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and the nominal command signal U, with initial conditions satisfying
c; < xi(t;) < C; i=1,2,...,n,
what is the maximum value of the norm of the error signal
¥l = llgu(x,u,v,5,t)

subject to the constraints

luill. = N; i=1,2,...,m
Ivillz = llzill2 i=12,...,p
di_<_ 6i < D; i=1,2,...,v ?

This problem may seem too specific to be of any consequence in real
applications. When analyzing linear systems, we use different kinds of
multiplicative weighting functions (weights) to impose a frequency con-
tent to noise signals, to determine the bandwidth of an uncertain operator,
or to determine the region in the frequency domain over which we would
like to impose the performance specification. The use of these weights
adds flexibility to the linear analysis techniques, and is fundamental in
establishing the validity of the method. With similar techniques we can
reduce many interesting problems to a particular instance of Problem 3.1.
In the following section we present several examples showing how com-
mon performance, noise, and uncertainty specifications can be set in or
approximated by the framework proposed.

3.2 Use of Weights and Multipliers

Given that the combined system (plant plus weights) is nonlinear, we are
not restricted in our choice of weights to linear time invariant filters. Of
particular importance is the fact that we can use time domain multipliers
(e. g., smooth saturation functions) to modify the original problem. A
combination of these techniques will allow us, for example, to impose a
desired distribution of signal energy both over frequency and over the
time interval studied. Two particularly useful time domain multipliers are
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smooth steps and square pulses in time. We denote S;(t) the step function

defined as
1 t<T

S+(t) = 0 t>T1T+e¢
smooth everywhere else,

and denote P () the pulse function defined as

1 T<t=<co
P (t) 0 t>0+¢€
e 0 t<T-—¢

smooth everywhere else,

where € is small compared to the time constants for the problem at hand.
In the rest of this section we show examples of how these and other
weights, combined with 2-norm bounds on signals and the addition of
parameter and under-modeled components, can be used to represent the
performance measures, noise signals and uncertain dynamics arising in
different robust performance problems.

Performance measures

The general problem stated in the last section uses the 2-norm, computed
over the entire time horizon over which the system is allowed to evolve as
the measure of the performance attained. However, this is not necessarily
the objective of interest in engineering applications.

In many applications we are primarily interested in hitting a certain
target at the end of the trajectory. This is the case, for example, in auto-
landers, where the objective is to touch down within a certain rectangle
in the runway. It is possible, however, to approximate this performance
objective by defining a new performance variable

r_ tf—tl
Y= sy

where T is chosen so that the interval of interest for the performance
measure is [T,tr]. There is a tradeoff between the correlation between
lv'll2 and y(tf), and the ease of computation of the solution. When T —
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tr, (and € — 0), [v'll. — |y (tr)|. However, in general, the closer T is to ty,
the harder the computation becomes.

Another common performance measure is the maximum over time of
the error signal. Again this can be approximated by the use of a weighting
function and by introducing a new parameter to the system. Define the
new error variable

, tr—t;
v = fﬁ LPs, 5,45, (1)
t

and allow the parameter 8, to vary in the interval
ti <8, <ty — 8.
We will then have that
%}g})lel_{r(}n%eolx(liy ) = tirgtasr»gf(!y(t)l).

As in the previous example there is a tradeoff between the ease of com-
putation and the accuracy with which the ||y’||, approximates the desired
quantity. In Chapter 5 we will present examples of the use of these two
setups.

Remarks: We can use different weights on the different components of the
performance variable y. Ramps, or higher order functions, can be used
instead of steps to weight differently the error signal across the time hori-
zon. Different implementations can be used for the step and pulse func-
tions used in this section. Gaussian pulses can be used instead of square
ones, for example. An important issue to keep in mind when choosing
the weighting function is the numerical conditioning of the system with
respect to numerical differentiation. The weighting functions have to be
tailored to the particular dynamics under study and to the integration al-
gorithm used to solve the equations. Finally, besides the time domain
weighting functions described, we can use frequency domain filters as we
do in the linear time invariant case.

Noise signals

The general problem is limited to disturbance signals with fixed 2-norm
over the time interval under study. As was the case with the performance
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specification, with the use of adequate time and frequency domain weight-
ing functions, we can make this specification more realistic with respect
to applications of practical interest.

Although intuitively a larger disturbance should produce a larger error,
this is not necessarily the case in a nonlinear system. We may in principle
be interested in a noise specification of the form

luill < Ni. (3.1

By adding one parameter to the description of the system §,,, we can rep-
resent the constraint (3.1) within the framework of the general problem

u; = O,u;
luill = N;
16,1 < 1.

The general problem does not consider any particular distribution of
the “energy” in the disturbance signals across the interval under consid-
eration. The signals in the allowable set can have an average value over a
wide support or a peak over a narrow support. Depending on the appli-
cation we may want to study the effects on the system of the former, the
latter or a combination of the two.

If we want to study the effect of duration §; pulses on the error signals,
we can use the following setup. Add a new parameter to the description
of the system 6, and a new signal u’ verifying the equation

tr—t; ,
u = f6 1P50,50+5tu
t

and maximize the performance index with the additional constraints
lu'll < N;
and
ti <0, <ty —§.

It is harder to study the effects of signals that have a more or less uni-
form distribution over the time interval [¢;, t r], using the general setup of
Problem 3.1. A first approach is to use a low pass filter, to make sharp
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noise signals — using a sizable part of the allotted 2-norm in high fre-
quency components that are subsequently filtered and discarded — less
attractive to the optimization agent. Another possibility is to section the
interval [t;,tr] into smaller intervals and to introduce a set of signals,
each of which is allowed a fraction of the total norm, and use time domain
weights to make each of these signals act on only one of the subintervals.
If we want to divide the interval in two, for example, we introduce two new
noise signals u’ and u”’ such that

U =S, U + (1 -8, )u”

where t, is the center point of the interval [¢;, t¢], and add the constraints

lul = gNi
"l = ?Nt-

This arrangement is schematically described in Figure 3.2. The two meth-
ods described can be combined. As in previous cases, we will have a trade-
off between how accurately we want to impose the uniformity of the signal
and the size of the problem we have to solve.

O

Figure 3.2: Input energy distribution.

Under-modeled dynamics

The only constraint put on the under-modeled components in the robust
trajectory tracking problem is on their norm. This constraint will allow
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operators that are non-causal in the sense that it is possible to have

t t
J vividt > J Zizidt. t; <t <ty (3.2)

ti
The techniques described in this section do not allow us to impose con-
straints that will make inequality (3.2) impossible. We can, however, im-
pose boundaries in the time interval [¢;, t ¢ ] across which the under-modeled
operator A is not allowed to move signal energy. In many situations this
can be sufficient. (For example, a step in one of the nominal command sig-
nals can produce a pulse in the signal z at a certain instant t,. Since this
is known beforehand, we can prevent the operator A from mapping the
energy contained in that pulse to the signal v at instants previous to t,.)
If we want to impose one such barrier, for example, we introduce two new

uncertain operators A’ and A”, and two new signals v’ and v”, verifying

v = A'S,z
V' = AM(1-S,)z
v = StD'V, + (1 - Sto)'V”.

This arrangement is shown schematically in Figure 3.3.

14 4

z L i

| s L

e
T 2T

— —

Figure 3.3: Undermodeled dynamics energy distribution.

The list of examples presented in this section is not exhaustive. It
shows that even though the robust trajectory tracking problem as pre-
sented in Problem 3.1 is fairly restrictive, by using adequate filters and
multipliers, it captures a large class of problems of engineering interest.

However, merely reducing an engineering question to an optimization
problem does not necessarily get us any closer to solving it. The optimiza-
tion problem has to accept a reasonable computational solution. Reason-
able means accurate, well behaved numerically, and with slow growth in
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computation time with the size of the problem. In the following chapters
of this thesis, we will develop algorithms for computing upper and lower
bounds for the answer to Problem 3.1, and study their behavior on several
examples.

3.3 Example

In this section we will briefly introduce an example to illustrate the con-
cepts developed previously. An in-depth study of this and other examples
is reported in Chapter 5.

The vehicle under study is a flying fan attached to a rotating stand.
The flow can be vectored by means of controlled flaps. (For a complete
description of the vehicle, see Chapter 5.) The nominal trajectory is a step
in altitude, starting and ending at hover. The maneuver is to be completed
within 9 seconds. Our principal performance objective is the accuracy in
vertical position at the end of the interval. In this case Y will have only
one component, namely the altitude of the vehicle. We will penalize the
error between the actual trajectory and the nominal one on the whole 9
second interval, but we will penalize more the later instants. We choose a
ramp as weighting function. The performance index used is

J = Hé-(Y— V)

where t is time in seconds, and Y, is the nominal trajectory. The nominal
model does not account for aerodynamic forces on the vehicle. We will
model their effect through three disturbances entering as torques along
the three axes of rotation. The 2-norm of each of these noise signals is set
to be .006 Nm. The uncertain block tries to capture the undermodeled dy-
namics of the electrical motor that is driving the fan. The input to the un-
certain block is the command signal given to the motor filtered through a
high pass filter. The uncertain parameter represents the application point
of the reaction force on the vehicle, since this point changes with, among
other factors, the position of the flaps. This distance is considered to be
.25m + 6 with 8| < .1m. A schematic diagram of the necessary system
setup is given in Figure 3.4. The original performance analysis problem is
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thus rewritten as an instance of Problem 3.1 asked of the system enclosed
in the dashed rectangle.
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Figure 3.4: Ducted fan example setup.
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Chapter 4

Necessary Conditions

Evaluating worst case performance for an uncertain system, either linear
or nonlinear, is in general a non convex optimization problem. Obtaining
an exact answer is thus in general going to be extremely difficult if not
impossible. For linear systems it has been established that for many prob-
lems of interest, the associated decision problem (i. e., is the performance
level better than a given value y ?) is NP-hard, further suggesting that exact
solutions cannot be obtained using algorithms with realistic computation
growth.

In general, we will thus have to settle for upper and lower bounds on
these measures. The nature of these bounds is going to be very different.
We are looking for upper and lower bounds on a constrained maximization
problem. These problems take the general form

max F (o). (4.1)

ogeX

An upper bound is derived by constructing a set ' O ¥, such that the
optimization problem,

max F (o)
gel’

is convex and admits an exact solution or at least a practical numerical
one. Since X' > X we will have

Iglggif(c) S{ﬁ;a}f(g)-

Lower bounds are in principle much easier to obtain. Any evaluation of
the function ‘F will give us a lower bound. For every ¢ € 3,

Flo) < rglggf(cr).
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A lower bound for Equation (4.1) can then be obtained through repeated
evaluation of F. For many applications, this is actually the current state of
the art. This approach is not as naive as it may seem. It provides substan-
tially more information about the system than just the value of the lower
bound. And when applied to dynamical system problems, it provides,
without much extra computation, lower bounds for several optimization
indices at once. This follows from the fact that the most expensive com-
ponent of evaluating F in this case is the integration of the equations of
motion. Once these equations have been integrated, the evaluation of dif-
ferent performance measures is usually very simple. A better lower bound
for the specific performance objective under consideration can be obtained
by local optimization. Although in principle this optimization could be
tackled using any of the standard maximization algorithms available, our
experience with linear systems tells us that they are usually inefficient in
this kind of problem. Power-like algorithms usually obtain the same or
better answers in much shorter time. (See [20] for a comparison in the
linear case.)

In order to develop a power-like algorithm, we first have to establish
conditions that are met at a local maximum of the function (necessary
conditions) and then write an iteration whose equilibrium points verify
the same conditions.

In this chapter we will show how the robust trajectory tracking problem
presented in Chapter 3 can be recast in the standard optimization frame-
work of the Euler-Lagrange theorem, and how this theorem can be used to
derive necessary conditions for robust performance. Finally, we will de-
rive from these necessary conditions an efficient power-like algorithm to
compute a lower bound for the robust performance measure. In Chapter
6 we will develop an upper bound for this problem when the nonlinear
systems are restricted to be in a particular class.

4.1 The Euler-Lagrange Optimization Framework

The first step in deriving a power algorithm is establishing conditions
characterizing local maxima. We will use first order conditions for local
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extrema.

First order conditions for extrema of dynamical systems have been de-
veloped for different optimization indices and signal constraints. (See
for example [15] or [5].) We will derive the necessary conditions for a lo-
cal maximum of Problem 3.1 from the Euler-Lagrange optimization setup.
In this section we will review the standard Euler-Lagrange optimization
framework for dynamical systems; in the following section we will show
how the robust trajectory tracking problem reduces to an instance of the
general Euler-Lagrange problem.

The following theorem summarizes the Euler-Lagrange framework:

Theorem 4.1 [5] For a dynamical system described by the equa-
tions:
x = f(x,u,t) x(0) given, t; <t <ty
a performance index of the form
ty
J = . Lix,u,t)dt

and restrictions on the final state
G(x(tf)) =c

if the signal u, achieves an extremum of ], then there exists a vector
of constants T and a solution to the two point boundary value problem

x = f(x,u,t)

. . _a-f_ t aL t
A= “<8x) —<5;> (4.2)
_(aLy, (afy
o - (B)+ (&)
with boundary conditions:
x(0) given
G '
Mip) = (ax(tf>) &

Furthermore, if these conditions are met we will have

aJ

M) = 52007

(4.4)
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This theorem states necessary conditions for a set of signals being a first
order extremum of the performance index, in terms of the existence of a
solution of an associated adjoint system (Equation 4.2. Furthermore, the
solutions of the original and adjoint system verify the constraint equation
4.3. We will see that this constraint can be interpreted as an alignment
condition between the inputs of the original nonlinear system and a set
of outputs of the adjoint one. This structure will be exploited when we
develop the power algorithm.

4.2 Necessary Conditions

To use the Euler-Lagrange necessary conditions in the robust trajectory
tracking problem, we have to write the performance index, noise signals,
uncertain parameters, and undermodeled dynamical components of the
system as constraints compatible with the hypothesis of Theorem 4.1.

Performance index

The performance index is naturally written in the form required by Theo-
rem 4.1. Letting
1 ¢
- Zy y’

then optimizing ||| is equivalent to optimizing
ty 1

I rar =Sy
ti 2

Noise signals

The only constraints allowed by Theorem 4.1 are in the final values of
states. Thus the norm restrictions for the noise signals and the uncertain
operator have then to be imposed through final conditions on additional
states created for that purpose. We will describe the case for one noise
signal only. However, the generalization to several signals is obtained
simply by repeating the single signal case. To impose the 2-norm condition
on the noise signals, we add to the system a new state named x,, governed
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by the differential equation

Then |[ull = N if and only if x,(tf) = L32N2,

Remark: As was stated in Section 3.2 the equality condition can be
changed into an inequality with the introduction of an additional param-
eter.

Under-modeled dynamical component

The under-modeled dynamical block is characterized by a constraint on
the norms of its input signals v and output signals z

il =1lzl.

To impose this equality we add to the system a state x,, governed by the
differential equation

1
Xp = —2—(th —viy) xa(ty) = 0.

Then {|v]| = ||z|| if and only if xA(tf) = 0.

Uncertain parameters and uncertain initial conditions

Optimality with respect to uncertain initial conditions or uncertain param-
eters will be established through the gradient condition given by Equation
(4.4). To treat parameters as initial conditions we create a state that tracks
the parameter 8. Let x; follow the equation,

x5 =0 xs(t;) = 6.

At a local maximum, either a) the derivative of the performance index
with respect to the value of the parameter or the state initial condition
is zero, or b) it is negative and the parameter is at the lower end of the
interval, or ¢) it is positive and the parameter is at the higher end of the
interval.
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Summary

Summarizing, the robust trajectory tracking problem is equivalent to op-
timizing the performance index

tr
7= rar =2y

i

for the system verifying the differential equation

x = f(x,u,v,xs) (Dynamics)
Xy = ru'u (Noise constraint)
XA = %(ztz —viy) (Uncertainty constraint)
xs = 0, (Uncertain parameter)
where
y = glx,u,v,xs) (Performance output)
z = h(x,u,v,xs) (Uncertainty output)

with given initial conditions
x(t;) = xg, xu(t;) =0, xa(t;) =0, x5(t;) =6
and final conditions

tr—t;
xu(ty) = —f——z—iNZ, xalts) = 0.
This problem is in the form required by Theorem 4.1. So a set of signals
u, v, and a parameter 6 achieve the worst case value of the performance

index J only if there exists Ay, Ay, Aa, As, verifying

A= () A () - ()

: t t 0g \*

As = ~(EE)A- () - () (4.5)
A = 0

j\A = O,

with final state conditions

7\(tf) = 0
As(ty) = O,

verifying the following alignment conditions
(—S{L)t?\ + Udy + (%)tz?\A + (8
(&) A+ ((2) z=v) s (

<

)y

)’y = o

&l

(4.6)

K

[a¥]
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and such that the initial state verifies

5=-1 6=1
As(t;) =0, or and or and 4.7)
As(ti) <0 As(ti) > 0.

The nature of the performance index chosen, and the fact that none of the
functions f, g, or h depend explicitly on the additional states x;, and xa,
give Equations (4.5) and (4.6) a particular structure. The states A, and Ax
will be constants. And the choice of the 2-norm as a performance measure
is reflected in the fact that the adjoint system dynamics are driven by the
performance output of the system. In the following sections we will make
this structure clearer by introducing convenient notation, and we will show
how a natural power-like iteration can be derived from it.

Dynamical systems interpretation

For a given trajectory of the original nonlinear system, let A = (A, As)f and
define the time varying matrices

o~

of ! )\ (o
A(t) = <<§_j))t B(t) = (‘;jx %’Q)t
0X§ s

[«S MRS
o~

NN
(=¥}
=
o
—— —
o~

(%) o
C(t) =
(%) (

and consider the dynamical system driven by the equations

-l
=
|
—~
TR

Qs W

N
S o
—~ o
J%
N e
-

. A%
“A = AA+B
{E]

— Y
[ ¥ } ~ CA+D { J ,

K €
with zero final conditions. Then if the signals u and v and the value of
the parameter § achieve a local maximum, there exist constants A,, and Ax,

(4.8)
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such that the following alignment conditions are verified between inputs
and outputs of the direct and adjoint dynamical systems

= ¥
= AaZ (4.9)
and
AU = Y
AV = K. (4.10)

Equation (4.7) states that at an optimum, either the derivative of the
performance index with respect to the value of the parameter is zero, or
it is negative and the parameter is at the lower end of the interval or it is
positive and the parameter is at the higher end of the interval.

This interconnection structure is represented in Figure 4.1. Note that
although the two point boundary value problem has both initial and fi-
nal state conditions, in this case they separate into two sets. The initial
conditions are imposed on the states of the original nonlinear system and
the final conditions are imposed on the states of the adjoint system. It
is this particular structure of the two point boundary value problem that
will allow us to develop a power algorithm to solve it.

4.3 A Power Algorithm

Power algorithms are probably the simplest method to find a fixed point
of a given function ¢. Suppose x, is a fixed point of ¢, i. e.,

Xo = d(x,).

A power algorithm to find x, starts with an initial guess x; and updates
is according to the rule:

Xk+1 = Plxy)

If there exists a neighborhood of x,, in which x, is the only fixed point,
and where the following condition

P (x) — xoll < llx — x|
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?\u; ?\A
u, v, o Y,z
System
Alignment l Given initial state. | Alignment
condition . condition
(4.10) | | 4.9)
Adjoint
System
Y, K (4.8) v, §

Zero final state.

Figure 4.1: Dynamical systems interpretation of the equilibrium condi-
tions.

is verified, then it can be proven that the power algorithm converges to x,

Power algorithms have been successfully used to compute, among other
things, local maxima of nonlinear functions and eigenvalues and singular
values of matrices. The main advantage of power algorithms, when com-
pared to other iterative methods, is the simplicity of each iteration. Itera-
tions usually consist of little more than a function evaluation. In the case
of eigenvalue computations, iterations usually require simply computing
a matrix vector product. Another important characteristic of power meth-
ods is their tendency to explore a large region of the search space in their
early stages. When applied to computing lower bounds for the linear per-
formance index y, power algorithms have proven to be fast and reliable.
(Some of the implementation details of the power algorithm for the lower
bound of p will be presented in Chapter 8. Other modifications can be
found in [20].) The robust trajectory tracking problem is very similar in
nature to the structured singular value problem and when applied to lin-
ear systems, the robust trajectory tracking problem actually reduces to a
special case of u (see Chapter 7). This motivates the development of a
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power-like algorithm to compute a lower bound for Problem 3.1. In this
section we first give a qualitative description of power algorithms when
applied to matrix problems; we then briefly describe the application of the
standard p power algorithm to linear systems over a finite time horizon;
finally, we show how these ideas can be extended in an elegant way to the
general nonlinear problem.

Heuristics behind power algorithms for linear matrices

Power algorithms are normally used to compute eigenvalues and singular
values of matrices. Suppose that the matrix M is diagonalizable, and that
its largest eigenvalue is unique. Starting from a random point v, the
power algorithm produces a sequence as follows [12]:

20 o Myl
AW =20

Let x; be the eigenvectors of the matrix M. If vy has a component along
the maximum eigenvalue direction

n
vi® = aijx; + Z aixi
i=2

then it follows that
n k
MO = g 2k [xl + 1222 % (;—I) x‘,-] .

If the terms

A

A1
are sufficiently small, then the component of v(® along the maximum
eigenvector direction is amplified, while the others are contracted, and
the procedure converges to the maximum eigenvalue. Since singular val-
ues of M are eigenvectors of M*M, the same procedure can be used to
compute the maximum singular value. In this case we will have to per-
form alternating power steps by M and M*.

Power type algorithms are naturally suited for searching for directions
of maximum gain. This fact makes them appealing for the computation of
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performance measures in disturbance rejection settings. Computing the
structured singular value, for example, implies computing the largest of
the spectral radii of the matrices in a set. There are two search directions:
one within the set of matrices to find the one that has the largest spectral
radius, and one for a given matrix to find its eigen-direction of maximum
gain. The power algorithm for p does both searches simultaneously. From
a qualitative point of view, the power steps, alternating multiplications by
M and M*, help look for directions of maximum gain of the particular ma-
trix under study. The alignment conditions forced between power steps
perform the search in the matrix set. A discrete time linear system, con-
sidered over a finite time horizon, can be represented by the matrix of the
map between inputs and outputs. Many robust performance questions
asked of this type of systems can be solved by computing the structured
singular value of the map matrix with respect to an adequate structure
(see Chapter 7). It is interesting to note that in this case the power step
with respect to M is taken by integrating the difference equations of the
system forwards in time, and the power step by M* is computed by simu-
lating an adjoint dynamical system backwards in time. The succession of
simulations of linear systems amplifies the component the chosen input
has along the direction of maximum gain, while the operations carried out
in between power steps look for the system in the class with maximum
gain.

Conceptually, all the operations necessary to carry out this procedure
are still well defined when the system is nonlinear. The substitutions
needed to convert one case into the other are natural. Multiplication by
the system matrix is equivalent to integration of the equations of mo-
tion. Multiplication by the adjoint matrix is equivalent to integration of
the transposed linearized system. Although numerically harder, the op-
erations are not conceptually different than in the linear case. And in
principle, the heuristics explaining why this type of algorithm is efficient
for finding directions of maximum gain still hold even when the system is
nonlinear. In the next section we will prove that these substitutions are
the appropriate ones, and from them we will develop a power algorithm
to solve the nonlinear robust trajectory tracking problem. In Chapter 5 we
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will present numerical evidence that this heuristic justification is valid.

Power algorithm for nonlinear systems

Earlier in this section we showed how the first order necessary conditions
for robust performance could be interpreted as an interconnection of dy-
namical systems.

Four maps can be identified in the diagram in Figure 4.1. The first map
integrates the equations of motion of the original system, with the given
initial conditions and for a set of input signals u, v. The constants A, and
Aa are not changed. (These are included in the definition of the map to
simplify the final expression.)

P (u(t),v(t),0, A, An) = (¥(),z(1), 5, Ay, An).

The position of the map @ in the system interconnection corresponding
to the necessary conditions is shown in Figure 4.2. The second map gen-
erates the input signals for the adjoint system by forcing the alignment
conditions in Equation (4.9).

IT: (y (), 2(t), 8, Au, An) = (¥ (1), Aaz(8), Ay, An).

Figure 4.3 indicates the position of this map in the general interconnection.
The third map in the sequence integrates the equations for the adjoint
system along the current trajectory with the given inputs.

\Ij . (V)E)AM’AA) e (Yy K,Au,)\A).

The final map we define computes new inputs for the original system by
using the alignment condition in Equation (4.10), and also computes new
values for 8, Ay, Ax. There is more than one way of carrying out this
evaluation. We propose here one possibility

O 1 (v, KAy, An) — (ult), v(t), 8 Ay, Ar)

_ Il y-u
?\u o U, ”Y“Ue
_ Ikl k-wv
Na = TR
K
v =

XZ.



]
e
Aus Aa Aus Aa
u, v, 8 Y.z

!
{ Given initial state. | !

Figure 4.2: ® operator: Integration of system equations.
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Figure 4.3: IT operator: Forcing the alignment conditions.
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Figure 4.4: ¥ operator: Integration of adjoint system equations.
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Figure 4.5: ® operator: Forcing alignment conditions.

and 9§ is computed as follows:

X = 0+ As(ty)

-1 X < -1
o = X —-l=x=<1
1 X > 1.

Figures 4.4 and 4.5 show these maps relative to the necessary conditions
interconnection. The mappings ® and ¥ are, as described in the previous
section, the nonlinear equivalent of power steps or matrix vector multipli-
cations. The operations carried out in the mappings IT and ® impose the
alignment conditions for optimality. The diagram in Figure 4.1 commutes
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when the signals © and v and the constants §, A,,, and A, are the ones cor-
responding to an extremum point. In other words, by going once around
the diagram following the maps &, I, ¥, and ©, we should return to the
starting point. This fact is formalized in the following

Lemma 4.2 The signals u and v, and the parameter 8, verify the
optimality conditions if and only if there exists A, Ax such that

(u) v; 6! Aui AA)
is a fixed point of the composition ® o ¥ o I1 o ®.

We can now use an iterative algorithm to search for the fixed points of
this composition. The standard form of such an algorithm is given by the
pseudo-code in Table 4.1.

xM:=random;
repeat

xHD = @o¥ollo d(xD);
until (Ix(i”) - X(i)| < €|X(i)|)

Table 4.1: Power algorithm pseudo-code.

If the algorithm converges, it converges to a fixed point of the compo-

sition ® o ¥ o IT o ® and thus, according to Lemma 4.2, to a set of signals
that meet the necessary conditions for a critical point.
Remarks: In order to prove convergence, we would have to prove that the
composition @ o ¥ oIlo® is a contraction around local maxima. We can only
prove this under very limiting conditions. The standard power algorithm
for the lower bound on p has not been proven to be stable for a general
uncertainty structure, and is in fact known to be unstable in some cases
(see Chapter 8 for a discussion). Hence the evaluation of the algorithm
will have to be done empirically.

The described algorithm has many of the characteristics of the power
algorithm for linear systems. In particular, if the system is linear, the ad-
Joint system is linear time invariant, and in this case the algorithm reduces
to the standard power iteration alternating multiplication by M and M*.
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4.4 Numerical Implementation

There is more than one set of maps &, I, ¥, and © that can be constructed
from the equilibrium equations and from which we can derive a power
algorithm. Furthermore, there are several ways in which those mappings
can be implemented numerically. We will discuss in this section some
of the issues arising in this implementation, and some of the possible
variations.

Time axis discretization

The maps @, I, ¥, and © operate on infinite dimensional spaces. A digital
computer implementation of the given algorithm will thus have to restrict
these to finite dimensional spaces by discretizing the time axis.

There are several approaches to obtaining a discretization of the time
axis. It is important to allow for a non uniform time scale, since the nu-
merical sensitivity of the nonlinear system to discretization error can vary
drastically along a trajectory. Most numerical integrators of differential
equations will, however, create a partition of the time scale that minimizes
the integration error. We will use then the set of time stops provided by
the integration routine as our discretization. The discretization can be
determined at the first iteration, or it can be updated every iteration (af-
ter every system simulation). The first approach will reduce the number
of operations, since in this case it is not necessary to interpolate the old
signals at the new time instants to verify convergence. However, if the dis-
turbances are significant, the trajectories may deviate from the nominal
making a new time axis necessary.

By discretizing the time axis we lose freedom on the intersample be-
havior. We will be carrying out the maximization of the performance index
over areduced signal set. As before, knowledge of the behavior of the sys-
tem is needed to ensure that this reduction is not significant. We have two
ways of controlling the intersample behavior. Most integration algorithms
accept as parameters maximum and minimum time steps. A good under-
standing of the system will tell us what is the fastest rate of variation in
the input signals that can possibly affect its behavior. By specifying the
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maximum and minimum allowable time steps, we can guarantee that such
signals fall within the search set. We also have a certain degree of control
over the intersample behavior. We can use a hold of any given order to
interpolate the value of the signals in between time samples. The choice of
hold order will be given by the tradeoff between accuracy and computation
effort.

Alternative formulations

The iteration presented is not the only one possible. In particular it is not
necessary to update the adjoint system every iteration. The adjoint can be
computed once every n iterations for example. The effect of this modifi-
cation depends on the characteristics of the nonlinear dynamics, the size
of the disturbances and the particular trajectory under consideration. It
could in principle be harmful or beneficial. Since the behavior of nonlin-
ear system is a lot more diverse than in the linear case, it is important
to tailor the analysis tools to the particular problem at hand. An advan-
tage of the power algorithm is that due to its simplicity, it easily accepts
modifications that adapt it to the application being considered.

Computation time growth

An important characteristic of the iteration in the power algorithm is that
the number of operations necessary grows slowly with the size of the prob-
lem. There are two dimensions in the size of a problem. The length of the
time horizon, and the order of the nonlinear system (where order mea-
sures number of states, number of inputs and outputs, and number of
parameters).

The number of operations necessary to evaluate the alighment condi-
tions in the maps © and IT grows linearly with the number of subdivisions
in the time axis. The growth of simulation time with the length of the hori-
zon will depend on the type of system, and on the integration algorithm,
but will in general also be linear (although longer simulation periods may
reduce their accuracy). Numerical evaluation of the adjoint system also
requires a constant number of operations per time sample, so the growth
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will be linear.

Computation time growth with respect to the system order is per-
haps more important. Most sophisticated optimization algorithms such
as NPSOL need very expensive computations when measured with respect
to system size. Although they may be able to guarantee faster conver-
gence rates, computation time can very quickly become prohibitive. The
most expensive computation in the power algorithm is the evaluation of
the adjoint system. Jacobian computation in general requires a number of
function evaluations that grows with the square of the order of the prob-
lem. However, in the case of the power algorithm, we only need to compute
the Jacobians along known directions. In Equation (4.8) we only need to
compute the matrix vector product and not the matrices themselves. The
number of function evaluations remains only linear. (The number of oper-
ations needed to do these evaluations depends on the nature on the non-
linearities. If the original system were actually linear, evaluation of the
Jacobian would require the dimension squared operations.) The growth
of the computation effort needed to integrate the equation depends once
again on the nature of the system, but will in general grow quadratically
with the size of the problem. Finally, computation of the alignment con-
ditions grows only linearly with the number of constraints.

Another aspect of the measure in computation time is the number of
iterations needed to converge to a solution. We have no systematic way
of establishing this, although it is an important characteristic of the al-
gorithm. The numerical results we have obtained, however, suggest that
the number of iterations needed by the power algorithm compares very
favorably with other more classical approaches. This was also observed
in the linear case.

Stabilization

As we stated earlier, we have not proven that the composition of maps is a
contraction, and thus that the algorithm is stable at local maximums. It is
possible, however, to augment the stability of the algorithm by averaging
the signals over several iterations. For example, for lag 2 averaging, the
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iteration step will be
xTD = 5(@c¥ollod(x®) +x®),

There are several possible ways of deriving a set of maps whose compo-
sition has as fixed points signals verifying the necessary conditions. For
example, when deriving the map ©, we could update v and A, simulta-
neously. Since we know the norm of v and the value of @%)t Z, We can
determine v and A, by intersecting the line passing through the origin and
with direction ((%’f—)t z - v) with the circle centered at (%)tz and with
radius ||v]|. This approach requires more operations (although the num-
ber of operations still grows linearly with the number of time samples). It
is possible that different approaches have better convergence properties
in some cases and worse in others. Since it is simple to implement all the
versions, the choice of algorithm can be made an option of the function

call.
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Chapter 5

Numerical Examples

Given the wide diversity in the behavior of nonlinear systems, it is fair to
say that no one optimization algorithm will always work. This fact makes
comparison between different algorithms hard. It also makes it difficult
to prove that any given algorithm is suitable for a general purpose. Eval-
uation of the performance of the algorithms has to be done on a case by
case basis. Nonlinear systems, however, can still be classified in families
of problems. All aircraft models, for example, are very similar, and varia-
tions in the possible behaviors are more of a quantitative than a qualitative
nature. Evaluation of the algorithm can be done on test cases for classes
of problems. These examples have to be chosen so as to contain all the
important characteristics of their class.

In this chapter we present the results obtained from trying the power
algorithm developed in Chapter 4 on two different systems for several dif-
ferent disturbance and performance specifications. The systems are non-
linear, parts of the models are obtained from first principles (equations
of motion of rigid bodies), and parts of the models are obtained through
measurements and implemented with look-up tables. The models include
command and rate saturations. These systems, and the performance prob-
lems we set up for them, have many of the characteristics of typical aircraft
(or other types of vehicles) applications.

The results obtained are compared with different alternative approaches
to solving the problems. These results indicate the viability of the algo-
rithm. This chapter will be divided in two sections, corresponding to each
of the systems analyzed. A brief description of the dynamics of the Sys-
tem is included at the beginning of each section, followed by the different
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problems solved and the results obtained.

5.1 The Caltech Ducted Fan

The first example we will treat tests the noise rejection capabilities of a
full state feedback LQR design for an experimental ducted fan platform
(Figure 5.1).

Hor housin
adjustable prope e

counterbalance four-bar /
[ L 1=

ducted fan /|

/
adjustable flaps

Figure 5.1: Overview of the experimental setup.

The experimental vehicle consists of a relatively simple ducted fan air-
craft that can provide two dimensional vectored and reverse thrust. The
aircraft is bolted to a rotating arm, which limits its motion to three de-
grees of freedom: one rotational and two translational, approximately on
the surface of a sphere defined by the arm. With this geometry, the ducted
fan is completely controllable with just the vectored thrust. The ducted
fan itself consists of a wooden duct powered by a variable speed electric
motor driving a propeller. A detachable flap assembly, mounted at the
end of the duct gives the fan vectored and reverse thrust. The setup and
its nonlinear model are described in more detail in [6].
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Step in height, simple performance specification

We consider a controller whose objective is to make the vehicle track a step
in vertical position, i. e., we want to move it from hover at zero altitude
to hover at another pre-specified altitude. The performance measure for
the disturbance rejection problem will be the 2-norm of the distance from
the nominal to the actual trajectory in the y position of the vehicle from
beginning to end of the maneuver. A time domain weight multiplies the
error signal to capture the fact that we consider the error at the final time to
be more important than at the beginning. We will have three disturbances
entering as torques along the three axes of rotation. The 2-norm of each
of this noise signals is set to be 0.006 Nm over the 9 second time horizon
(i. e., the rms value of the torque is 0.006 Nm). The uncertain block tries
to capture the unmodeled dynamics of the electrical motor that is driving
the fan. The input of the uncertain block is the command signal given
to the motor filter through a high pass filter. The uncertain parameter
represents the application point of the reaction force on the vehicle, since
this point changes with, among other factors the position of the flaps.
This distance is considered to be 0.25m + 6 with |8] < 0.1m. A Simulink
schematic diagram of the simulation model is given in Figure 5.2.

In Figure 5.3 we show the evolution of the error between the nominal
and the actual trajectory starting from a random noise signal. Figure 5.4
shows the last two iterations of the same error signal.

In Figures 5.5 and 5.6 we show the disturbance signal and the square
of the input and output to the uncertain block respectively.

For this problem we also study the stabilizing effect of averaging the
signals from two consecutive iterations as discussed in Section 4.4. We ran
the algorithm 30 times starting at different random points, both with and
without averaging. Figures 5.7 and 5.8 show the corresponding frequency
distribution of results. We can see that the filtering skewed the distribu-
tion towards the largest value. We can also see from these figures that a
problem can have more than one stable point and it will be necessary in
general to run the algorithm more than once. This is, however, common
to all algorithms based on local search.

To verify the results we used the classic optimization package NPSOL
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Figure 5.3: Evolution of the worst case trajectory.
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Figure 5.4: Trajectory for the last two iterations of the algorithm.
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[11]. NPSOLis a very general optimization package for nonlinear program-
ming. It can tackle any kind of constrained and unconstrained nonlinear
program. In this particular problem, however, NPSOL proved to be very
sensitive to the initial guess. This is due to the feedback nature of the
undermodeled dynamical component. A small violation of the norm con-
straint corresponding to this component can have a significant effect on
the overall result. The behavior of NPSOL on this particular problem was
in general poor. In most runs it failed to find a feasible solution. When it
found one, the running time was at least three times longer, even though
most of the components in NPSOL were compiled, when our code was
mostly in Matlab scripts. The next example was compared to another op-
timization algorithm. As we will see in the following section, the compar-
ison also favors the power algorithm.

Step in height, full performance specification

The maneuver specifies that we start at hover, i. e., with zero velocity in
all directions, and end at hover. Furthermore, it is not only important to
reach the desired height; we also want to keep the x position constant. In
order to impose these restrictions we will use as performance signals the
error in all the six state variables for the vehicle. (These are the mechanical
states. We are not considering the states added by the controller and the
different filters.) All other specifications remained the same.

After 30 iterations the algorithm only converged to within 2 percent.
We believe that this is due to the fact that there exists a subspace of sig-
nals for which the value of the optimization index is fairly constant. The
algorithm then rotates in this subspace. The signals change, but the opti-
mization index does not. A similar situation can occur when using power
algorithms to compute the maximum eigenvalue of a matrix. If the corre-
sponding eigenspace is not of dimension 1, the algorithm will converge to
the value of the spectral radius, but not necessarily to one eigenvector.

It is very important to point out that for most of the iterations, the
system is simulated with signals that meet the constraints. (This is due to
the way signals are updated.) If the signals don’t converge, we can choose
among the simulations done with signals that meet the constraints, the
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one that yielded the largest value of the optimization index. In this case
the value reported was J = 0.411.

We compared our algorithm in this case with the one developed in [26].
Each iteration of this algorithm is more expensive than the one carried
out by the power algorithm. After 500 iterations the algorithm in [26]
reported a value for the local maximum of J = 0.431. After 30 iterations
it reported a value of J = 0.165. The comparison between power type and
gradient based algorithms shown here is very similar to the one observed
in the linear case [20]. The latter kind of algorithms requires a much larger
number of more expensive iterations to give a similar answer than the
former one. Figures 5.9 and 5.10 compare the disturbance signals obtained
by the gradient and power algorithms respectively.

5.2 F-16 Maneuvers

We want to determine whether the algorithm is suitable for aerospace ap-
plications. As a first step, the algorithm’s ability to handle a model that
includes a number of nonlinear equations and tabular data with a relatively
high number of parameters, all characteristic of a typical aircraft, must be
ascertained. In this section we study different performance problems for
a set of maneuvers using a model for an F-16 fighter. We will first briefly
review the basic ideas and the notation of aircraft dynamics. Then we will
describe the different maneuvers analyzed and the results obtained.

Aircraft dynamics

In order to make the maneuver descriptions in the next section more un-
derstandable, we will include here a brief description of aircraft dynam-
ics. There are several classical references on this subject. The material
in this section is largely based on the treatment in [16]. All vector quan-
tities, forces, momentums, velocities, and accelerations will be referred
to a vehicle fixed axis of reference as shown in Figure 5.11. To each axis
corresponds a linear velocity, an angular velocity, a force, and a momen-

tum. Table 5.1 summarizes the notation we will be using for each of these
terms.
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Figure 5.11: Aircraft-fixed axis system.

Linear = Angular
Axis  Velocity Velocity Force Momentum

X-axis 8] P Fx L
Y-axis \Y Q Fy M
Z-axis w R Fy N

Table 5.1: Velocities, forces and moments.
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Figure 5.12: Euler angle transformation from earth fixed to body fixed sys-
tems. To transform 0OX,Y,Z, to OXY Z, first rotate by ¥ around OZ,(0X,
becomes On and OY, becomes Om), then rotate by ® around Om, and
finally rotate by ¢ around OX.

X axis

Y axis

v
Figure 5.13: Orientation of relative wind in body fixed axis.

We will also need to refer the vehicle fixed reference frame to a ground
based one. For the treatment here we will assume that a ground-fixed ref-
erence is inertial. If needed, proper modifications can be made to account
for the Earth’s rotation. We will define the Euler angles ®, ®, and ¥ as
shown in Figure 5.12. To compute the aerodynamic forces and moments
on the airplane, we need to know the direction of the wind with respect to
the vehicle fixed reference frame. We will denote by —V, the velocity of
wind with respect to the vehicle. The angle B formed by the vector V,, and
the plane XoZ is called sideslip. The angle « formed by the projection of
Va on the plane XoZ and the axis 0X is called angle of attack. (See Figure
5.13))

It can be shown that the aerodynamic forces and moments will be ap-
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proximately of the form

F = %psvgcp,

where Cr is a dimensionless coefficient, p, the density of air, V,, the ve-
locity of the vehicle with respect to air, and S a characteristic surface. We
will then have

Fxa = 3pSV2Cy (Aero. force along X-axis)

Fy, = %—pS V2C, (Aero. force along Y-axis)

Fza = %pS V2C, (Aero. force along Z-axis) 5.1)
La = 3pSViC (Rolling moment) '
Ma = % pSV2Cy, (Pitching moment)

Na = % pSV2Cy. (Yawing moment)

The coefficients Cr in these formulas depend on the angle of attack,
sideslip, position of the different control surfaces of the airplane and, to
a lesser scale, on the linear and angular velocities of the airplane. We
will consider only three control surfaces: aileron, rudder, and elevator.
The other actuator we will use, throttle control of the engine, is not of an
aerodynamic nature. Although the positions of the control surfaces affect
all of the coefficients Cr defined above, the airplane is designed so that
the rudder influences mainly C,, aileron position affects mainly C;, and
elevator position affects mainly C,,.

Two other forces will appear in the dynamic equations for the airplane:
gravity and the thrust provided by the engine. Thrust will be a function
of altitude, air density, air speed, and throttle position. How the differ-
ent factors, affect thrust depends on the nature of the engine (propeller,
turboprop, or jet engine). Denoting by

(ngyng; Zcg)

the position of the center of mass of the airplane in the 0XY Z frame, the
equations of motion become

Max, = m[U+QW -RV] = Fx,-mgsin®+T
May., = m[V+RU-PW] = Fy, +mgcos®sind (5.2)
Mma;,, = m[W+PV-QU] = Fz, +mgcos®cosd,
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and _ _
QIy + PRIy —I,) = R?Iy; + P’I,, = M, (5.3)
RI, =PI, + PQ(Iy — Iy) + QRIy; = N,,

where T is the thrust provided by the engine and I;; are the inertia coeffi-
cients, and g is the gravitational constant.. Note that the rates P, Q, and
R and the derivatives &, ¥, and ® are not independent.

Although Equations (5.2) and (5.3) are complicated, it is possible to
obtain simplifications by making assumptions about the trajectory being
followed. It can be seen that, in general, lateral and longitudinal motions
are fairly independent when considering perturbations around constant
altitude and constant heading motion, for example.

Steady maneuvers

Several steady state maneuvers can be considered, e. g., constant altitude,
constant forward speed flight. In order to sustain this steady state, we
have to determine the position of the control surfaces that will provide
the necessary forces and moments. In the example mentioned, the steady
state is characterized by

Fy = 0 (Lateral acceleration)
d = 0 (No roll)
Y =0 (No yaw) (5.4)
F7c080 + Fxsin® = 0 (Constant altitude)
® =0 (Constant pitch)
—-Fz8in® + Fycos® = 0. (Constant forward speed)

Combining Equations (5.2), (5.3), and (5.4) plus the equations describing
the aerodynamic forces and momentums, we can derive the position of the
different control surfaces. We will refer to these values as the trim condi-
tion necessary for steady flight. In general the set of equations obtained
is nonlinear, and has to be solved numerically.

While planning maneuvers for aircraft it is often desirable to maintain
the sideslip angle B equal to zero. This is particularly important while
turning. (It guarantees that all accelerations are going to stay in the 0XZ
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plane of the airplane.) A turn with zero sideslip is called a coordinated
turn. Trim conditions for a coordinated turn are obtained following the
same procedure described above.

In the sections that follow, we will analyze the behavior of the airplane
when trimmed for different steady maneuvers and perturbed by atmo-
spheric disturbances and uncertainty in different parameters of operation.

Model used

The aircraft used in this example application is an F16. The aerodynamic
model is a reduced version of the full model obtained in wind tunnel tests
at NASA Langley in 1979 [28]. It consists of tabular data with typical inter-
polation routines and nonlinear equations of motion. The engine model
is that of an after-burning turbofan. The airplane model utilized in this
application is defined for speeds ranging of up to Mach 0.6 and angle of at-
tack interval between -10 and 45 degrees. The model includes 4 traditional
controls (elevator, aileron, rudder, and throttle) and 13 states (velocity vec-
tor, attitude angles, angular velocities, navigational position, altitude, and
engine power). Furthermore, the aerodynamic coefficients are built up in
a traditional way and the equations of motion are full nonlinear flat Earth
equations.

Constant height coordinated turn

The first trajectory we will analyze for this system is a constant altitude,
constant rate of turn (or “constant g”) coordinated turn. The x-coordinate
of the nominal effective center of gravity (Cg) location is set at Xxcg = 0.2¢,
where ¢ is the maximum aerodynamic chord length of the wing. This
choice makes the aircraft statically stable. The aircraft initiates the ma-
neuver at 10,000 ft flying at 500 ft/s, and performing a 4.5g turn. The
aircraft will be trimmed for this maneuver. Note, however, that there will
be no feedback loop correcting these values when the nominal system is
perturbed.

During the maneuver the aircraft is subjected to atmospheric turbu-
lence in vertical, horizontal, and lateral directions modeled by Von Kar-
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man spectra and implemented by Dryden filters [1]. The 2-norm of the
noise used is such that a constant input with the given norm will produce
at the output of the filters a wind of 44 ft/s in the X direction and .4 ft/s
in the Y and Z directions. The position of the center of gravity Cg will be
an uncertain parameter of the system. The actual location of the center
of gravity is going to be 0.1995¢ < x¢4 < 0.2005¢. The performance vari-
able will be turn radius of the trajectory, which we would like to remain
constant. The values of the disturbances and uncertain parameters are
relatively mild, except for the wind disturbance in the X direction.

The algorithm converges after 5 iterations to within 0.1 percent (i. e.,
the total relative variation of all the signals in the system between the
last two iterations was less than 0.1 percent). It converges to a value of
Cg = .2005¢ and the 2-norm of the error signal is 76 ft. Figure 5.14 shows
the nominal and perturbed trajectories.

1500 ——— Nominal 7
— — - Perturbed
1000 7
500 b
=
=3
o
.g ok |
o
%
w
-500 b
-1000+ -
-1500+ -
1 1 i i i i
-2000 -1500 -1000 -500 0 500 1000 1500 2000

N-S Position, ft

Figure 5.14: Nominal and perturbed trajectories.

In order to validate the results obtained, we will compare with the stan-
dard Monte Carlo analysis technique. For each of five possible values of
the parameter, we run 100 simulations with randomly chosen noise sig-
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nals. In Figure 5.15 we present the results of all 500 iterations, and we
compare the error obtained at each of them with the worst case value
provided by our algorithm. In Figure 5.16 we present a histogram of the
values obtained from the 500 iterations, and again compare those results
with the worst case value.

Constant rate of climb coordinated turn

The trajectory is a constant climb, constant g coordinated turn. The air-
craft initiates the maneuver at 10,000 ft flying at 500 ft/s. The F16 is
then trimmed to climb at 50 ft/s while maintaining a 4.5 g coordinated
turn. We study the maneuver over a 30s interval. Figure 5.18 illustrates
the nominal trajectory. (All other nominal conditions are identical to the
ones in the previous example.)

During the maneuver the aircraft is subjected to atmospheric turbu-
lence in vertical, horizontal, and lateral directions modeled by Von Karman
spectra and implemented by Dryden filters as in the previous example. In
addition, seven parameters in the model are allowed to vary individually
on a closed interval. These parameters include variation in Cg position
as well as uncertainty in the aerodynamic forces and moments along each
axis. For the example presented here the numerical values for the vari-
ations are shown in Table 5.2. The bounds given for the center of mass
are relative to the mean aerodynamic chord. The bounds given for the
aerodynamic forces and moments are as a fraction of the value given by
the lookup tables.

The algorithm is asked to find the combination of parameters and wind
gusts that produce the largest norm of the performance variable vector, i.
e., turning radius and altitude error. The worst case combination produced
by the algorithm gives the value of each of the parameters at the end point
of the allowable interval of variation. Table 5.3 summarizes the values
found for the parameters.

The resulting 2-norm of the performance variables is 230 ft. The model
simulation used by the algorithm was built in a Simulink diagram shown in
Figure 5.17. The behavior of the airplane under the worst case parameter
variation selected by the algorithm is illustrated in Figures 5.18 through
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Figure 5.15: Monte Carlo analysis of the perturbations.
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Lower Upper

Parameter Name Bound Bound
Center of mass Cg 0.195¢ 0.205¢
0X Force Cx .975 1.025
oY Force Cy .985 1.015
oZ Force Cz .97 1.03
Rolling Moment cl .95 1.05
Pitching Moment Cm .95 1.05
Yawing Moment Cn .95 1.05

Table 5.2: Allowed variations for the uncertain parameters.

Parameter Value

Cyg 0.195¢
Cx 1.025
Cy 985
Cz 97

Cl 95
Cm .95
Cn 1.05

Table 5.3: Final values for the uncertain parameters.
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5.21. The solid line in all of the figures represent nominal trajectory while
the dashed lines represent the perturbed trajectory.

To compare with more traditional ways of evaluating nonlinear system
behavior, Monte Carlo simulations were run. For each parameter the end-
points of the interval of variation were selected as allowable values. A
system simulation with random turbulence subjected to the same restric-
tions is run for each possible combination of parameter values, 128 in this
case. For each of these parameter combinations, ten simulations are per-
formed. The resulting 2-norm of each simulation is plotted in Figure 5.22.
The figure shows the 2-norm of the performance vector for each of the
simulations as well as the worst case 2-norm. A total of 1280 simulations
were performed. The total running time for the power algorithm was 250
minutes. The 1280 Monte Carlo simulation took 290 minutes. (It is also
important to mention that the code we use is not optimized for running
time. All the computations are done within MATLAB script files. In partic-
ular the Jacobian computations as done by the MATLAB function 11nmod
is particularly inefficient for our needs. A substantial increase in speed
could be achieved simply by writing the code in a compiled language.)

As can be seen from Figure 5.22, the 2-norm of the worst case param-
eter combination with atmospheric winds shaped by the algorithm is in-
deed larger than any combination of parameters with random atmospheric
winds. The two vertical lines demarcate the interval that corresponds to
the same combination of parameters as that selected by the algorithm for
the worst case. While this combination is not unique, as is evident from
the figure, it does provide us with a better lower bound on the worst case
behavior of the airplane for the allowable set of parameter variations than
the Monte Carlo method. In terms of computational efficiency, the worst
case algorithm is at least four times faster than the Monte Carlo simula-
tions in this particular case. Figure 5.23 presents a frequency distribution
of the error 2-norms obtained from the Monte Carlo simulations. The ver-
tical line indicates the worst case value.
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Performance specified in the “co-norm”

The last performance problem analyzed for this model is also for a con-
stant rate of climb constant rate of turn trajectory, but with a different
performance objective. Instead of finding the worst case 2-norm of the
error signal, we want to find the time instant at which the difference be-
tween the nominal and actual trajectories is largest. We will proceed in a
manner similar to the one described in Section 3.2. We will multiply each
error signal by a pulse of the form

Py, (t) = exp(—(t — t,)?)

where t, is a parameter to the problem. (We use separate parameters for
each of the error signals.) Figure 5.24 shows the function Py. The effective
width of this pulse is around 2s, and so this will be the precision with
which we are going to find the location of the maximum. The use of a
thinner pulse increases the precision but also affects the stability of the
algorithm.

For this run we consider the same perturbation as in the last example,
except the center of mass remains fixed at the nominal position. The
center of the pulses will be allowed to vary between 2 and 28 seconds.
(This is to ensure that the pulse does not go out of the interval under
consideration.) The algorithm converges in 4 iterations to within .005
percent. The values of the parameters selected are shown in Table 5.4.

Parameter Value

Cx .875
Cy 985
Cz 97
Cl 1.05
Cm 1.05
Cn .95
t,(alt.) 28

t,(turn) 28

Table 5.4: Final values for the uncertain parameters.
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The worst case for the error occurs at the end of the interval. For
the worst case signals and parameters, Figure 5.25 shows the error as a
function of the position of the pulses. It confirms that the maximum is
achieved when both are at the end of the interval.
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Figure 5.25: Error as a function of pulse position.
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Appendix: Matlab Function for the Lower Bound

Introduction

n11b.mis a Matlab script that computes a lower bound on the worst case
performance of a nonlinear system subject to noise, unmodeled dynamics,
and uncertain parameters. It is based on an iterative, power-like algorithm
that converges to points in signal and parameter space verifying necessary
conditions for a maximum of the tracking error. The theoretical details of
the algorithm and its implementation can be found in [31].

Problem Setup

The problem will be described to the algorithm via a Simulink file con-
taining a simulation model of the nonlinear vehicle and a set of variables
passed as inputs to n11b describing the uncertainty configuration and
sizes, the performance variables and other operating parameters.

Simulink file describing the System

The user provides a Simulink file meeting the following characteristics:

e Inputs, in the following order: disturbance signals, inputs corre-
sponding to outputs of the uncertain dynamics, value of the uncer-
tain parameters.

e Outputs, in the following order: performance outputs, outputs that
are connected to the inputs of the unmodeled dynamics.

Note that the performance outputs have to be the difference between
the actual and nominal trajectory. This nominal trajectory, together with
any nominal command signals that guide the system through it have to be
part of the simulation file.

Input parameters to nl11b

The calling syntax is:
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[g,nt,ubad,parbad,ybad, xbad, conv]=
nl1lb(sys,perfout,perfin,unc,par,ti,tf,simulator,
options,outfile)

The following input parameters have to be specified to describe the
problem:

sys: A string variable that contains the name of the Simulink file describ-
ing the problem.

perfout: A scalar variable describing the number of output signals that
make up the performance measure.

perfin: An m by 2 array describing the noise signals, where m is the
number of noise signal groups, perfout(i,1) is the number of in-
puts in the ith group, and perfout(i,2) is the 2-norm of the ith
group.

unc: A p by 2 array describing the uncertain dynamics, where p is the
number of uncertain dynamics blocks, unc(i,1) is the number of
output signals from the system connected to the input of the ith
block, and unc(i,2) is the number of input signals to the system
connected to the output of the ith block. All blocks have induced
norm 1.

par: A q by 2 array describing the uncertain parameters, where q is the
number of uncertain parameters, par(i,1) is the lower bound for
the ith parameter, and par(i,2) is the upper bound.

ti, tf: Scalar variables describing the beginning and end of the time
horizon considered.

simulator: A string variable containing the name of the differential
equation integrator to be used. It canbe one of euler, rk23, rk45s,
gear, adams, linsim. See the Simulink manual for a description
of their characteristics.

The function n11b also accepts some optional parameters that control
the behavior of the algorithm.
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options: A vector of 3 elements. The first element is the tolerance of
convergence tol. The algorithm stops when signals change less than
tol between iterations. The second element is the maximum number
of iterations allowed. The last element is a flag set to 1 if you want
to plot intermediate results or to zero otherwise.

outfile: The name of a file where intermediate results are to be stored.
Default is the screen.

The function n11b gives the following output variables.

g: The maximum tracking error achieved.
nt: Time axis for the worst case signals.

ubad: A T by s matrix, where T is the number of elements in the time
axis and s is the number of noise and unmodeled dynamics inputs
containing the signals that achieve the performance g.

parbad: A vector containing the values of the parameters achieving the
performance g.

xbad: A T by n matrix containing the state trajectories that achieve the
performance g.

conv: A flag set to 1 if the algorithm stopped because the tolerance re-
quirement was met or to O if it stopped because it reached the max-
imum number of iterations specified.
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Chapter 6

Sufficient Conditions

Several upper bounds for performance of nonlinear systems have been
developed in the last few years. Most of these results are generalizations
of Lyapunov theorems and depend on us being able to find a Lyapunov
function for the system, or to solve a Hamilton Jacobi equation (see for
example [33, 14, 13]). However, there are no systematic ways to accomplish
this.

The success of practical methods for analysis of linear systems can be
explained to some extent by the fact that linear systems can be naturally
described by finite amounts of data, and that therefore properties of the
system can be expressed as functions on a finite dimensional space. If we
want to replicate that success for nonlinear systems we have to restrict
our search to classes of nonlinear systems that can be described finitely.

In the preceding chapters we showed how by considering systems over
a finite time horizon, an efficient algorithm for a lower bound on the ro-
bust performance level could be developed. Since lower bounds require
only local information, the finite description of a system is in this case
simply a simulation process: a computer program that returns the out-
puts corresponding to a given input. Finite time horizon is required to
guarantee finite simulation time.

For the upper bound since we are looking for global instead of local
results we need to be able to describe the system globally with finite data.
We present in this chapter a large class of problems that accept such a rep-
resentation. We will also show that for problems in that class an important
measure of performance can be evaluated by analyzing an auxiliary linear
system constructed from the original nonlinear one.
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The linear problem belongs to a class for which analysis methods have
already been developed. In particular an upper bound on the performance
of the linear problem will also be an upper bound for the performance of
the original nonlinear one. Together with the lower bound developed in
Chapter 4, these two results extend the robustness analysis tools available
for linear systems to the nonlinear case.

The organization of this chapter is as follows: in Section 6.1 we de-
scribe the class of nonlinear systems under study; in Section 6.2 we will
build the auxiliary linear system and prove technical lemmas that connect
the behavior of the two; finally in Section 6.3 we prove the main result
of this chapter establishing the equivalence in the behavior of the nonlin-
ear and auxiliary system. From there we derive sufficient conditions for
performance. A preliminary version of these results has appeared in [30].

6.1 Rational Nonlinear Systems

Our goal is to develop an algorithm, suitable for implementation on a dig-
ital computer, to compute a global upper bound for the performance of
a nonlinear system. A fundamental precondition for the development of
such an algorithm is a finite description of the nonlinear system. Note that
a finite description implies more than specifying the problem with finitely
many characters; the decoding of such a description must be achievable by
a finite procedure as well. Given the large variety of behaviors in nonlinear
systems, it is doubtful that such an encoding exists for a general class of
problems. However, we will exhibit a large class of nonlinear problems,
that we believe to be of engineering relevance, for which we can develop a
finite representation and derive from it efficient analysis algorithms.

The class of problems we will study consists of discrete time nonlinear
systems, with a finite time horizon performance specification (. e., we
are concerned with the behavior of the system over T time steps). The
evolution of the state x and output y of the system will be governed by
the equations

Xke1 = f(xk, Uk, Op, k)

k=1,2,...,T (6.1)
yk g(xk,uk, 6pyk)y

i
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where u is the vector of input signals, 8, is a vector of uncertain parame-
ters, and x; is the initial state. The functions f and g are rational expres-
sions of the state, input, and parameter variables. The system will be well
posed in the following sense: there exist vectors of positive constants K},
K¢, and K,? such that f'(xy, ux, 8,, k) and g(xy, uk, 8y, k) are well defined
for all x, u, and o, satisfying

Ixkl < K§, |ukl <K, 1801 <K® k=1,2,...,T, (6.2)

where absolute values and inequalities are meant in the element by el-
ement sense. Furthermore, if the input signals and parameters remain
within those given bounds for all k = 1,2,...,T, and the initial state
x verifies |x;| < K{, then the state remains within its bounds for all
k =1,2,...,T. Finally, we will assume that 0 is an equilibrium point, i. e.,
f(0,0,6,,k) = g(0,0,8,,k) =0.

This class of systems admits a constant matrix representation similar
in nature to the Linear Fractional Transformation (LFT) commonly used for
linear systems. To simplify the notation we will consider a system with
one state, one scalar input, and one uncertain parameter. The extension
to a general problem in the class is straightforward.

As f and g are rational functions of x; and 1 that do not blow up at
zero, they can be expressed as linear fractional transformations on those
same variables. This means that there exists a matrix M) whose entries
only depend on k and natural numbers m, and m, such that

[ S Ok, uk, 85, k)

p = My * Dy, (6.3)
g(xkyuk’ 6}() k)

where * denotes the Redheffer star-product, and D is the diagonal matrix
Dy = blockdiag (8, xx I, wilm,).

Remarks: The LFT is just a convenient way of representing the functions
S and g. It is not meant to be interpreted as a multiplicative transfer func-
tion, the way frequency domain LFTs for linear systems are. By writing the
LFT we can separate the coefficient part of the functions f and g from the
variable names. (In the same way we can represent a polynomial by giving
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the vector of coefficients.) This LFT representation gives us the finite in-
formation description of the nonlinear system. To specify the system all
we need to give is the matrix M and the structure of the matrix D. In the
sections that follow we will build a linear system that can be represented,
in the conventional way, with a similar LFT on the matrix derived from M.
We will also show that the performances of these two systems are related.

The entries in the matrix M can be functions of the time index k.
Whether they are or not does not affect the development that follows.
For simplicity we will drop the index k. The modifications necessary to
account for the dependence of M on k are immediate.

The condition that all states remain bounded when the initial condi-
tions and inputs are bounded is restrictive. In general it may be hard to
determine whether this will be the case. In general, computing these con-
stants may be harder. It will be necessary to rely on knowledge of the
system to derive bounds on the states. For an aircraft, for example, we
can have a very good idea of how fast it can possibly accelerate, and thus
we can derive bounds on all the velocities and positions over a finite hori-
zon. The bounds don’t need to be very tight. Tighter bounds, however,
will result in an optimization problem with better numerical condition-
ing. There will be a tradeoff between the accuracy of the solution and the
amount of work devoted to obtaining the preliminary bounds.

Example

Consider the system described by the equations

1 2 1
X = (xp)? + Xy
2 1 2
Xk+l = xkuk -+ Xk
1
Yk = Xi-

The matrix Dy in this case will be
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and the matrix M; will be

— O = = O O O

O = O O = O O
o O = O O O O
O - O O C O O
O O O O O e

L

This system is defined for all values of x}, x{, and u. Furthermore, since

(A

X1 |21 + x|

the constants K} can be calculated for any k starting from bounds on the
initial conditions, and bounds on the inputs.

6.2 Auxiliary Linear System

In this section we will construct a linear system starting from the matrix
M of the finite representation of the nonlinear system discussed in the
previous section. We will do this construction in two stages. First for a
one time step system, and then for a T time steps one. Intuitively, what we
are going to do can be explained as follows: first construct an uncertain
linear system depending on a series of real parameters, entering in the
same way as the states and inputs enter in the original nonlinear system.
Then use linear constraints to force those parameters to track the corre-
sponding states and inputs. The notation necessary will be cumbersome.
To make the development easier to follow, we will first construct the aux-
iliary system for one time step, and then for two. The generalization to
T time steps follows. For the same reason we will also work with a one
state, one uncertain parameter, one input system, and we will assume that
M does not depend on k. Lifting these assumptions is immediate.
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Figure 6.1: Nonlinear system as an LFT.

Auxiliary system for a length 1 time horizon

In Section 6.1 we showed how rational nonlinear systems can be expressed
as linear fractional transformations on the states, parameters and inputs.
The system is represented by a linear fractional transformation of the form

[ X1 } — (M % D). (6.4)
Yk

Ablock diagram for this system is shown in Figure 6.1. Partition the matrix
M compatibly with the signals in Figure 6.1 and define the matrices

[ My Mi; 0 Mz 0 0 0 My |
My Mz, O My O 0 0 My
0 0 0 0 0O 0 0 1
Me=] M3; M3z 0 M3 O 0O 0 My
0 0 0 0 0O 0 0 1
My My 0 Mgz O 0O 0 My
| Ms; Ms; O Ms3 O O O Msy |
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Figure 6.2: Second step in construction of auxiliary system.

and B
8v |
8*1
5X
U1

Ae

6u

Consider the linear, uncertain, discrete time system shown in Figure 6.2.
This system has one state, two inputs and one output. The final step
in the development of the auxiliary system is adding linear implicit con-
straints on the inputs signals. Add to the system in Figure 6.2 the two

linear constraints
1
vr—-x1 = 0
) (6.5)
v-—-—w; = 0.
The resulting set of equations characterizes an implicit uncertain linear
system as those described in Section 6.3, and can be represented by the

block diagram in Figure 6.3, where C, is the matrix
001 0O0-1 0 O
C, = . (6.6)
00001 0 -10

The following lemma establishes the connection between the nonlinear
and the auxiliary system.
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Figure 6.3: Third step in construction of auxiliary system.

Lemma 6.1 Ifv=1,X; = x1, and w; = u; then

X2 = f(xlau116117)=x2

It

Y1

glxi,ug, 8) = yi. (6.7)

Proof: Note that the extension of the system was done so that

Ul

UZ

6XV1

6uV1. (68)

So by setting v; = 1 in Equations (6.8), we have v! = §F and v? = §%.
The constraints in (6.5) further impose

6)(
6u

w1, (6.9)

and thus according to the hypothesis of this lemma

5X
6“

X1
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Since

[ X2 } — (M % A)vy, (6.10)
Y1

X2
=M% D,

substitution of (6.9) in (6.10) and (6.2) gives the desired result. |

and

We finish this section with a technical lemma we will need for the main
theorem of this chapter.

Lemma 6.2 Ifv=yx;=w;=0,0 <KV, |6 <K*, and |6*| < K*,
then all signals in Figure 6.3 are Q.

Proof: The norm bound conditions in 8?, 6* and 6% imply that
M, x A, is a well posed linear fractional transformation. This means
that the system of linear equations it defines has a unique solution.
Since for a linear system O is a solution when the inputs are set to 0
the lemma follows. |

Auxiliary system for a length T time horizon

For one time step, Lemma 6.1 shows that the auxiliary linear system states
and outputs track those of the nonlinear one. This result can be extended
to any time horizon of finite length T by concatenating as many instances
of the auxiliary system in a simple fashion. In this section we show how
to carry out that concatenation. For simplicity in notation we will show
how to do this concatenation for two time steps; the generalization to any
finite number of steps is straightforward. Consider the matrices M}, M2,
A;, and AZ that define the auxiliary system for the first two time steps.
First, connect them as shown in Figure 6.4, to form another uncertain
system denoted (M.,A.;). The input vector a to the matrix M, and the
corresponding output vector will inherit from the auxiliary systems at time
steps 1 and 2 the following partition:

1 2 1 3 2 1 2 1 3 2 t
oy, 01,01, 07, 01,03, 05, 03,03, 05, X1, W1, W, V]

b = [t,t,CL 13, C 13, 15,08, 73, T3, X3, Y1, v (6.11)
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Me2

Figure 6.4: Two time-steps auxiliary system.

From Figure 6.4 note that the input X, of the second auxiliary system has
been connected to the signal

3
X2 = M410’11 +M420'12 +M43O'1 + Mygv

where M;; corresponds to the i, j element of the partition of the matrix
for the first auxiliary system used in the previous section. Since X» is a
linear combination of the entries in a, we can write it as

Wy = Cla.

Add then to the system (M., A) the following constraints in a

ui-x1 = 0

vl-w; = 0

Lo (6.12)
U; — Cla = 0

Vs —wy = O.

We can write all these constraints as one vectorial equation in a:
Ca=0.

We have thus defined a new implicit uncertain system (M., C,A,). The
following is a direct consequence of Lemma 6.1.
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Lemma 6.3 Ifv=1,%X; = X1, W = U, and w; = Uy, then

X3 = X3
Yk = Yk k=1,2. (6.13)

Proof: It follows from applying Lemma 6.1 to the first component
of M., concluding that the X, input is connected to a signal of value
x>, and applying Lemma 6.1 again to this second half. |

We can repeat this procedure for all time steps. Note that in the final
step we can include or omit the final state as part of the output. Whether
we do so or not will depend on the nature of our problem and the perfor-
mance specification being considered.

The second lemma of the preceding section also generalizes to the
length T horizon.

Lemma 6.4 Ifv=yx;=w;=w;=0and|8"| <Kl |6 <K¥, and
87| < K} fori =k, k+ 1, then all signals in Figure 6.4 are 0.

Proof: Apply Lemma 6.2 to the first block in the interconnection.
Note that all signals that are propagated to the next block are zero,
and apply Lemma 6.2 again. [ |

Once again the generalization of this lemma to T time steps is imme-
diate.

6.3 Performance Analysis

We will now proceed to show how the auxiliary system just defined can
be used to analyze performance for the class of nonlinear systems dis-
cussed in Section 6.1. We will show in this section that the performance
specification given for the nonlinear system is met if and only if a simi-
lar performance specification holds for the auxiliary linear system. We can
then test the performance of the auxiliary linear system using the standard
analysis techniques.
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Nonlinear and auxiliary performance

The performance problem that will result in the linear system is slightly
different than the most common one. In general, as was shown in Chapter
2, performance problems for linear systems have the form

Iyl = [lull,

where y is the performance output and u is the noise input. In our case
we will have a performance requirement of the form:

lul <1 = vl <1.

However, a slight modification of the linear system can convert the second
type of specification to the first. The idea for this modification is taken
from [19]. Partition the matrix M, compatibly with the signals,

12 0l 3 02 (7l (12 1l 13 12
[o7 07 V] 07 V] 0> 05 V505 V5] and  [X; W] W, V],

and denote the two parts M., and M.,. We now define the matrix

Mcl
0 0 0 1
Ma = ’
0 0 0 1

and build the uncertain constrained linear system as shown in Figure 6.5,
denoted (M,, C,A;). Define the norm bounded uncertainty structures:

BA. = {blockdiag (8%, 8 I, +1, 8% L, 41,05, 85I, <1,
61241mu+1; ey 6p, 6§C‘Imx+1; S%Im,ﬁl);
87| <KP,|8F| <K¥i=1,2,...,T}

and

BA; = {blockdiag(A,, Ay, Ax,, Aw),Ae € BA,
1Apl <= LllAx Il = 1, [Awll < 1}

where A,, Ay, and A, are full matrices with dimensions defined by Figure
6.5. (See [29] for a more detailed study of this analysis setup.)

We are now ready to state the main theorem of this chapter that will
allow us to derive a sufficient condition for performance of the original
nonlinear system.
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Figure 6.5: Analysis setup.

Theorem 6.5 For all signals w with |lull, < 1 and |ux| < K}* and
all initial states x; < K3, we will have ||v|l> < 1 if and only if the
performance auxiliary system is well posed for all A,; € BA,.

Proof: First assume the system has a nonzero solution. Thenv # 0
because otherwise all signals are 0. This follows from @ = AV,
x1 = Axv and Lemma 6.4. Since the equations are linear, then there
is also a solution with v = 1. The condition [|Ay|| < 1 implies that
lw|l < 1, and the condition [|A,| < 1 implies then that [y > 1.
Since v = 1 from Lemma 6.3, we conclude that there is an input
and initial condition for the nonlinear system within the specified
bounds such that |||l > 1, and so the performance requirement is
not met.

Conversely assume that an allowable initial state x; and an al-
lowable input signal u exist such that ||v|| = 1. Then setting v = 1,
W = u, and w; = x) in the set of equations represented by Figure
6.5, we have |ly|]| = 1, and consequently there exists a A, € BA,
such that the given system of equations has a nonzero solution.

This theorem establishes the equivalence between analysis of a nonlin-
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ear system and analysis of a linear one. The solution of the given linear
problem is NP-Complete. Theorem 6.5 thus tells us that solving the per-
formance analysis question in the class of nonlinear systems being con-
sidered is not worse than an NP-Complete problem whose size grows with
the length of the time horizon.

Implicit uncertain linear systems

In Chapter 2 we summarized some recent results in implicit systems. We
reproduce here some of the results mentioned there for continuity. An
implicit uncertain system, denoted (A, C, A) with input u and output v, is
defined by the system of equations

HEEMN

= A

y U
0 = ¢ v (6.14)

L ¥ ]

% = Auz,

where ||A,ll2 < 1 Without loss of generality we will assume ||A, ] < 1. We
can add to this system the following performance specification

Iyl < llull, (6.15)

or equivalently
Yy =»45u (6.16)

with [[A, || < 1. As usual define A = blockdiag(A,, Ap). Then the following
theorem provides us with a sufficient condition for the given performance
specification to be met.

Theorem 6.6 [24] If there is a solution to the linear matrix inequal-
ity:

C*(A'DfDA - DfD,)C*" <0 (6.17)
where D, and D, are positive definite matrices verifying D;A = AD,
for all A with || Al| < 1, then the system of Equations (6.14) and (6.16)
admits only the trivial solution (and therefore the performance spec-
ification given in (6.15) is met for all allowable A,,).
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Sufficient conditions for performance

Once the problem of performance of the nonlinear system has been re-
duced to a performance question over a linear one, we can use the results
of the linear theory to analyze problems in our class.

Without loss of generality we can assume that the performance bounds,
the norm of the input and the bounds K* and K* are all 1. Putting Theo-
rems 6.5 and 6.6 together we can prove the following

Theorem 6.7 The nonlinear system in (6.1) verifies the given per-
formance specification, if there are positive definite matrices D; and
D, verifying A;D; = D, A, for all A, € A, and such that

CH(MYD;DM, — D}D,)C*+* < 0.

A sufficient condition for performance of a nonlinear system can thus

be reduced to solving a convex optimization problem over a finite dimen-
sional space. The number of parameters in the optimization problem
grows linearly with the length of the horizon T. The optimization problem
takes the form of a Linear Matrix Inequality (LMI). Recent developments in
systems theory have shown that several important problems can be re-
duced to solving LMI's and consequently a significant effort has been put
in developing practical algorithms for them [18]. Commercial packages
are available that implement some of these methods [10].
Remarks: Current LMI solving algorithms usually have computation time
growth proportional to the cube of the size of the matrix M,. However,
these algorithms do not exploit the specific structure of our matrices and
it is conceivable that cubic growth with T can be avoided by tailoring the
standard algorithms to our specific case.
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6.4 Numerical Example

We will test the analysis technique on simplified dynamics for the Ducted
Fan experimental setup described in [6]. The nonlinear dynamics used are

X1 = X7

Xo = U]+ UX5

X3 = X

] 3 * (6.18)

Xag = —Ui1Xs5 + U2

X5 = Xg

Xe = TU + kxoxs,

with the outputs defined as

Y1 = X1
Y2 = X3 (6.19)
Y3 = Xs.

Since x5 appears in all the nonlinear terms, we will rewrite these equations

as i
X1 = X7
X = UL+ Ud
X=X (6.20)
Xy = —u10+up
Xs = Xg
L 5(5 = YU + kX26,
with the constraint
5—X5 = (), (6.21)

We will consider a 1 second time horizon. The 2-norm of the combined
inputs will be set at .1 and our performance measure will be the 2-norm
of the combined outputs. As a first step we compute a lower bound for
the performance using the procedure described in [31]. To compute an
upper bound we convert the system into a discrete time one, with a sample
time of 0.05s. The auxiliary linear system corresponding to the 20 time
samples is represented by a 147 by 127 system matrix and a 20 by 127
constraints matrix. The procedure described above answers the question,
can the norm of the output be bigger than y? Since we have a lower bound
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for the maximum y, we will ask the question for a succession of values.
The results obtained are shown in Table 6.1. The computations were made
with the Matlab toolbox LMI-Lab. The last column in the table shows the
spectral radius of the right hand side of LMI, at the final point.

Y/Yi Feasible Iter. p(RHS) &

1 no .96

3 yes 34 -496

2 yes 117 -0.8868

1.5 no 0.96

1.75 no 0.96
1.85 no 0.96
1.95 yes 160 -0.452

Table 6.1: Upper bound feasibility.

Remarks: The LMI solver stops if after a certain number of iterations it
cannot improve the performance index. Thus reports of non feasibility
could in principle not be true. This is consistent with the nature of the
test. As an upper bound it only guarantees that the error will not be worse
than a certain amount. There is a tradeoff between computation time, and
the precision with which we would like to have the answer. It is therefore
of fundamental importance to have both an upper and lower bound. In
our case computation time varied between 4 and 8 hours depending on the
number of iterations needed. After 300 iterations the LMI were assumed

not feasible.

6.5 Conclusion

The main result of this chapter (Theorem 6.5) proves the equivalence of
the questions, “Does an uncertain rational nonlinear system always meet a
given performance specification?” and the apparently simpler one, “Does
a linear uncertain system always meet a given performance specification?”

From this equivalence we derived a convex upper bound for a large
class of nonlinear performance problems that takes the form of a finite
Linear Matrix Inequality. We believe that this result, together with the
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algorithm for computing a lower bound for the same class of problems
presented in Chapter 3, provides a very good first step in the direction of
extending the tools for analysis of linear systems to nonlinear ones.

The upper bound derived from Theorem 6.5 is difficult to compute
even for a small problem with current technology, since the size of the
resulting LMI can easily exceed the capability of LMI solvers like LMI-Lab.
For example, evaluating the performance condition over a 9 second time
horizon for a complete model of the Caltech Ducted Fan experimental
setup ([6]) will give an LMI with approximately 3000 parameters. However,
a large effort is being put into the development of algorithms to solve
LMI’s, and we believe that the technology to compute the nonlinear upper
bounds derived in this paper will soon be available. Since the number
of parameter grows linearly with the time horizon, a tenfold increase in
computer speed will allow us to solve a problem ten times bigger. On
the other hand, solving the problem in the traditional way by gridding the
initial state, noise and parameter spaces in order to obtain a global answer
results in problems with exponential growth; consequently these methods
will benefit far less from increased computation speed.

Another consequence of Theorem 6.5 is that robustness analysis of
performance for the class of nonlinear systems presented in this paper is
proved to be not intrinsically harder than analysis of linear systems, from
a computational complexity point of view.
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Chapter 7

Linear Time Varying Systems

In previous chapters we showed how, when considering a nonlinear system
over a finite time horizon, we could develop analysis algorithms similar to
those used for linear time invariant systems studied over an infinite time
horizon. If the system under study is linear but time varying, additional
results can be obtained by analyzing the behavior of the system over a
finite time horizon.

In this chapter we will explore different possible setups for uncertainty
and performance requirements in the time domain based on quadratic
constraints for discrete time systems, and we will show how they can be
reduced to the computation of the structured singular value of a constant
matrix.

An important issue in time domain based tests is computational com-
plexity. It is to be expected that the complexity will grow with the length
of the time horizon. It is important to exploit the structure of the matri-
ces associated with the time domain tests to avoid this growth becoming
prohibitive. We will discuss how the standard algorithm for computing
the lower bounds for p can be modified to take advantage of the structure
of this particular problem.

We also investigate the behavior of the time domain tests in the limit
when the time horizon tends to infinity. We establish connections between
these limits and the frequency domain robustness tests. We expect these
connections to shed light on the nature of the frequency domain tests for
systems with uncertainty described by integral quadratic constraints.

The notation used here is fairly standard and is essentially taken from
[9] and [35]. For any square complex matrix M we denote the complex
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conjugate transpose by M*. The largest singular value and the structured
singular value are denoted by (M) and pu(M) respectively. The spectral
radius is denoted p(M). For any complex vector x, x* denotes the com-
plex conjugate transpose, xt, the transpose and |x/|, the Euclidean norm.
Finally, {a;}}]., denotes the sequence ag - - - ay.

7.1 Uncertain Finite Time Horizon Systems

LTI systems are normally described as transfer functions. However, in
order to derive computable tests we have to describe them in terms of
constant matrices. This is achieved in state space by incorporating the
delay operator into the uncertainty, and in the frequency domain case
by doing a search over frequency, the analysis at each frequency point
reducing to a constant matrix problem. None of these approaches can be
applied to systems considered over a finite time horizon. However, for
these systems a natural finite matrix representation can be achieved by
mapping the temporal axis into the spatial one. To illustrate this concept
consider the system that obeys the following equations

Xk+1 = ArXk + Bruyg

Yk = Cexi + Diug, (7.1)

over a time horizon of length 3. These equations can be rewritten as:

( Xkl ) - M, ( Xk ) (7.2)
Yk Uy

We can now define a mapping from the initial state and the time history
of the inputs from k = 0 to 2, to the final state and the time history of the
outputs from k = 0 to 2. Denote that mapping with the symbol M3, (see
Figure 7.1). The system is now represented by a single constant matrix
M;is;, over which we can write our performance bounds. However, the
size of the matrix M) grows with the length of the time horizon. This
means that a strong emphasis has to be put on the development of efficient
algorithms for the computation of the stability tests.
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X1 X2
X0 —» M > M > M _’_Xg
Yo Uy Y1 Uup
X0 b X3
Mis)
ul.._.,_> —————»yl
Uy ———-»yz

Figure 7.1: Conversion of the problem to a constant matrix.

My M, M,

=

Figure 7.2: Adding uncertainty as an LFT.

We can add uncertainty to this system to model time varying or time
invariant parameters or norm bounded unmodeled dynamics. As is the
case with infinite horizon systems, we will describe the uncertain model
as a linear fractional transformation of a nominal plant, and a structured
uncertainty operator. As an example, Figure 7.2 shows how time varying
parametric uncertainty can be added to the system given by Equations
(7.2).

In the sections that follow we will show how to form the uncertain
system as an LFT for the other classes of problems.

7.2 Robust Performance Problems

A wide class of system analysis problems can be characterized as noise
rejection problems. In this case, given a bound on a particular norm of the
inputs, it is desired to find the worst case norm of the output. The quotient
between those two bounds is called the performance of the system. In
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infinite horizon systems, stability is a precondition for the norms of the
outputs, and thus performance, to be defined. This is not the case in
discrete time finite horizon systems. However, for systems described as
LFT’s we will still require as a precondition for performance that when the
driving input (the one associated with the performance condition) and the
initial state are zero, then all internal signals are zero.

In what follows we will describe several robust performance problems,
and we will recast them as a p computation for an adequate constant ma-
trix and block structure. For simplicity we will write the equations for
a first order, 2 input, 2 output system considered over a 3 time steps
horizon. However, they can all be applied to an arbitrary system, and
the generalization of the formulas is straightforward. For signals that are
functions of time, we will denote by ay their value at time instant k and
by a = (ay,az,...,ar) the vector corresponding to their time history.

l>—1, performance under parametric uncertainty

We will start with the discrete time version of the standard robust per-
formance question that is answered with a p test in the LTI, infinite time
horizon case. Given a system as in Equations (7.2), and a partition of the
inputs and outputs

U = (ugv u}()t
e = Lodh,
we would like to answer the following

Question 7.1 If

uy = 8yl k=0,1,2
I 1,

IA

s it true that the following two conditions hold:

p

X3 =

xXo = 0 up =
0 _ _ =1 L0 _
W = 0 k=0,1,2 Yo =

Yi o=

k=0,1,2

O O o O
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and

Y012 + |x3]2 < [u®)? + [x0l? ?

Remark: The first condition is similar to the requirement of well posed-
ness in infinite time horizon. We require that if the system is not driven,
then all internal signals should remain zero. The second condition is the
counterpart of the performance condition in the standard setup.

When the answer to Question 7.1 is yes, we say that the system meets
the robust performance requirement. The answer to Question 7.1 is yes
if and only if for every A, € R¥>4 with [|A,ll, < 1, for all §; € [-1, 1], the
following set of equations has only the trivial solution

(x3,7% yHt = Mzy(xe, u®, ut)t
(x0,u")t = Ap(x3,¥°)!
up = &y k=123

where M|3; is constructed as it was shown in the preceding section. This
is equivalent to I — A; M[3) being invertible for every

A1 € Ay = {blockdiag(a,, 81,85,8}) : A, € R¥, 5} e R},

and thus by the definition of the structured singular value the answer to
Question 7.1 is yes if and only if

Ma, (Mp37) < 1.

Remark: It is not necessary for the parameters to vary with time. The tem-
poral nature of the parameters is reflected by the uncertainty structure in
A;. This shows an important difference between the finite and infinite
horizon cases. In the latter, the temporal nature of the uncertainty deter-
mines the test to perform (y, frequency domain upper bound, state space
upper bound). In the former the temporal nature of the uncertain opera-
tors is reflected in the block structure.

l—1, performance under parametric uncertainty

Another possible performance requirement is a bound on the total energy
in the output, given that the magnitude of the input, at each time instant,



is bounded (the bound being either constant or a function of time). We
will show how to set this performance requirement as a p problem for a

system with parametric uncertainty.

For the system in the preceding section we would like to answer now

the following:

Question 7.2 If

X0

and

=<

IA

Lk

1

1 k=0,1,2
1,

X3 = 0
u, = 0 k=0,1,2
Yo = 0
yi = 0,

V012 + |x312 <17

This question can be answered by determining whether or not the fol-

lowing set of equations has nontrivial solutions

(x3, 0, y 1)t
(%0, u%)t
a

7

for all A € R4 with [|All, < 1, forall 8 € [~1,1], 8 € [—1, 1]. Partition
the matrix R = Mp3) according to the partition in the input and output

vectors

0 ,,0 ,,0 1 1 1 0 0 0 1
[XOau()yulsu ]; [U,O,ul,uz], [X31y01y11y2]! [:yolylliy%]’

= Mi3)(xo,u’, u')t
(5, 89,89, 60)ta
Alxs, 0, 7, )"
Sivi k=1,2,3
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and build the matrix
0 Ry1 Rp

Me: .[4 O O
0 Ro1 Ry

Again from the definition of y, the system will only have trivial solutions,
and therefore the answer to Question 7.2 is yes if and only if

“Az (Me) < 11
where

A, = {blockdiag(A”,§%,8?,8!);4” € R?4, §} € [-1,11}.

Affine systems

In some applications we need to set an affine performance specification.
For example suppose the desired response to the input u? is y°. Given
that there is bounded noise added to the command signal ©°, we would
like to know whether or not the maximum possible distance from the de-
sired trajectory is smaller than a preset amount d. If y is the output
corresponding to a given input u, our performance requirement is met if
and only if
max |y —y°| <d.

[u—-ul=n
In what follows we show how this question when asked of an uncertain
system can be recast as p problem.
For the system in the preceding sections, and a given set of signals 1,
xt, v°, xf, we would like to answer the following

Question 7.3 If

[u® + u%)? + |xg + x112 < 1

Ui

i

[og
blland
<
B ot
&
I

L
=
no

|8

IA
=
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is it true that the following two conditions hold:

X3 = 0
X0 up, = 0 k=0,1,2
= 0
up = 0 k=0,1,2 ye = 0
yl% = 0,

It
O

and
0+ v+ xs+xf P <17

We proceed in the same fashion as in the previous cases. Define the
signals
(%3, 3%, 91t = Mi3y(xt,ul,0)".

The answer to Question 7.3 is yes if and only if the following system of
linear equations

(x3,9% YDt = Mi3(%o, %, ul)t + (xf = %3,9° = $°, —Phitg
a = Ap(x3ly0)t
(X0, Ut = Aja

up = &y k=123 (7.3)
has only the trivial solution for all A, € R4, A; € R¥! with [|A,ll2 < 1,
lAill2 < 1, and for all 8} € [-1, 1]. To prove this claim, note that if there

exists a solution to these equations with a # 0, then there is one with
a = 1. In this case the equations can be rewritten as

(x3, 9%, yHt = Mzi(xo,u’, ul)t + (x4, y°,0)

),\CJ() = X0+Xi
= ul+u

a = Ap(xzy!
(X, 1Y = Aja

uy = Syt k=1,2,3 (7.4)

and thus the second condition of Question 7.3 is violated. Similarly, the
reader can verify that if a nontrivial solution with a = 0 exists, the first
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condition of the question is violated. Now build the matrix

Xf—§3
s ~o Rin Riz
y —
Me: y
1 0 0
i -yl R>; Rzzm

and the set
Az = {blockdiag(Ap,Al, {81}128) 1A, e RV A, e RV 8, € R} ,

then the system given by Equations (7.3) has only trivial solutions and
therefore the answer to Question 7.3 is yes if and only if

“Ag(Me) < 1.

Performance under uncertainty with memory

In the preceding sections, we described how different performance re-
quirements could be evaluated with respect to parametric uncertainty. We
will now show how we can evaluate robustness with respect to dynamic
uncertainty. The dynamic operators we will consider can be either time
invariant (that is their matrix has a Toeplitz structure), or time varying
(the matrix is lower triangular), and they are bounded in the I, — I, in-
duced norm. For simplicity we will describe the time invariant case with
an [, into I, performance specification, but as in the preceding sections
the procedure is general.

Question 7.4 If

j=0
and
2
S8t <1,
j=0
is it true that
X3 = 0
xXo = 0 u}( = 0 k=0,1,2
W o= 0 k=012 |30 =
kK - — Yyl yk = 0
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rF----=-=---—"-=-==-—--- - == === =7 7 al
i |
| Me |
| |
i 1
v
V0,0, - : 6(1) 1,1
1 : =
V1,01 | ) V1,0
[ | 61 E
V1,1 & + | V0,0
; & —3 5(1)
-+ Y0 up
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1
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Figure 7.3: Dynamic uncertainty as an LFT with implicit equations.

and
12012 + Ix3]% < [U®)2 + |x3]2?

Again, as in the preceding sections, it can be shown that the answer to
Question 7.4 is yes if and only if the following system of equations

(x3, 7%yt = Mz(xo,u’, ul)t
(x0,u”)t = Ap(xsz, 0!
Vkj = 6k_jy} (7.5)

k
up = ka,j k=0,1,2
j=0

uht = A, H!

has only trivial solutions for all A, € R¥* with |A,ll2 < 1, for all A, €
R¥3 with [|Ayll2 < 1, for all §; € [—1,1]. This system of equations can
be represented by the diagram in Figure 7.3, where for simplicity we only
represent two time steps. This diagram is different than the one in the
preceding sections since it includes implicit equations.

To build the matrix corresponding to Figure 7.3, partition the matrix R
as in the preceding section, and introduce the variables

w o= [xo,u’v,u'lt
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z = [x3, 95 yL]%

Define also the following two matrices

041 00000 -1 0 O
C=]101x4 01 1000 0 -1 0 j,
014 0001 11 0 O -1

and M, as shown in Figure 7.3. (Note in Figure 7.3 the two first set of inputs
xo and u°, and the two first set of outputs x3 and y° have been omitted
to simplify the diagram.) It can be verified that the system in Equations
(7.5) have only trivial solutions if and only if

I - A4M -
er([ 172 ) - 4
for all Ay € A4 where

Ay = {blockdiag(Ap, {8k} 0" 0, Au),
Ap €R¥, 8L €R,A, RV

Following the definition in [24], the answer to Question 7.4 is yes if and
only if
HC,A4(Me) < 1.

Remark: For each performance requirement, we can add different kinds
of uncertainty. Thus for all the performance questions described, we can
compute robustness with respect to any mix of dynamic and parametric
uncertainty both time varying and time invariant over the horizon consid-
ered.

7.3 Computational Issues

Lower bound

It was shown in [35] that the computation of a lower bound for u(M) can
be tackled via a power iteration. Although in theory this algorithm can
be used directly to establish a sufficient condition for the time domain

performance specifications, it needs to be modified for practical consider-
ations.
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Extensive experimentation done with the power algorithm shows that
the complexity of the algorithm is dominated by the multiplication of M
and M* with corresponding vectors. The cost of these operations is pro-
portional to the square of the size of M. In time domain tests, the size
of M grows linearly with the number of time steps considered. However,
due to the special nature of the matrices involved, quadratic growth of the
computation time with the number of time steps can be avoided.

In order to see how the structure of M[x) can be exploited to reduce the
time complexity of the calculation, the multiplication

X0
Uy
Mix

Uk-1

is equivalent to computing the output of the system, when the initial con-
dition is xp and the input is given by ug...ux-;. Thus multiplication by
Mix) can be done using the following sequence of operations

(o) -l
() =)

The computation time for this set of operations grows linearly with the

i

number of time steps considered. The multiplication by M, is similar
and involves simulating backwards in time the transpose of the original
system.

Upper bound

The same computational complexity problems arising in the lower bound
arise in the computation of the upper bound. However, it is not as straight-
forward to use the structure in the matrix M{y; to reduce the growth of the
computation time, when using current state of the art optimization algo-
rithms for LMI’s.
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Using gradient search, we can develop an algorithm that is slower on
small problems when compared to the LMI methods, but whose compu-
tation time does not degrade as much with the number of time samples.
This is due to the fact that the complexity in computing the gradient de-
pends on the number of repeated singular values, and this apparently is
more strongly related to the order of the system than to the number of
time samples taken. However, our tests of this algorithm are still prelimi-
nary and more extensive experimentation and further research is needed
in this area.

7.4 Connections to the Frequency Domain Tests

If the system under consideration is LTI, the uncertainty description is
repeated at each time instant and the performance condition is given as
a full block mapping the final state to the initial state, we can develop
some connections between the time domain tests and the corresponding
frequency domain ones. From these connections we expect to derive a
better understanding of the nature of the frequency domain tests for LTI
systems.

Consider an n-dimensional linear time invariant system, defined by the

equations
Xke1 = AXp+ Bug

Vi = ka+Duk.

Let
A B

M = ,
and

G(z)=2zl, % M,

where x denotes the Redheffer star-product and let A be an uncertainty
structure. Let M(x; be the time domain mapping associated to G, with the
following uncertainty structure

Ax) = 1blockdiag(a, A, ---,A),A €A
k
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With these definitions we will have

M % A = (M x A, (7.6)
Denote
tdM, k) = pa, (M)
tdub(M,k) = uba, (M),
where

A; = {blockdiag(A,,Ay,), A, € C™" Ay € A},

and uba denotes the pa upper-bound as defined in [22]. Finally, for an
uncertainty set A we will define the set OyA of operators with same block
diagonal structure than the elements of A but with each entry in the set
O (CN) of operators defined from CV into CV.

The following theorem is adapted from [22]. It connects the robust
stability question posed for an LTI system in infinite horizon, to the per-
formance of a finite time horizon system.

Theorem 7.1 [22] Given a system M and an uncertainty structure
Ay, then there exists K > 0 such that for all k > K, td(M)) < 1, if
and only if pa(M) < 1.

By using results on the lossless-ness of the S-procedure when the sys-
tem is a constant matrix ([17], [24], [2]), we can generalize the preceding
result to the upper bounds in the frequency and time domain respectively.
The following theorem is essentially from [2]:

Theorem 7.2 [2] Given a constant matrix M and an uncertainty
structure A then uba(M) < 1 if and only if M * A is well posed
for all A € OyA, forall N € N.

We will then have the following
Theorem 7.3 There exists K > O such that
tdub(M(-),k) <1 forall k > K,

only if
fdub, (G(z)) < 1.
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Proof: Assume tdub(M(-),k) < 1.
Then according to the small gain theorem for all N for all A €
ONA(k)

HM[k] kS Auﬂ < 1.

From Equation (7.6) it follows that for all A in OnA, for all k > K

(M * A} < 1. (7.7)
Since for any operator A,

p(A* = p(A") < | AX]],

Equation (7.7) implies that for all A in OyA

p(Mx A) <1,
and thus for all 6 € C, 6| = 1, forall A € OnA

(8, x M) x Ay
is well posed. Thus according to Theorem (7.2):

uba(8IxM) <1V de(C, [0l =1

and thus

7.5 Conclusions

We present a setup in which performance of a time varying, finite time hori-
zon linear system, under uncertainty described by quadratic constraints,
can be tested. The performance conditions take the form of standard p
tests on constant matrices. However, it is not desirable to use directly the
usual computation schemes for the p lower and upper bounds, since those
do not exploit the special structure of the matrix derived from the finite
time horizon problem. We discussed a modification to the lower bound
power algorithm that achieves linear growth in the computation time with
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the number of time steps considered. We also discussed some possible
modification to the upper bound algorithms. Our results in this area are,
however, preliminary. By using lossless-ness results for the S-procedure
applied to constant matrices, we were also able to establish connections
between the frequency domain tests and the limits of time domain tests.
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Chapter 8

Improvements to the Power
Algorithm for p

The definition of p involves an associated maximization problem which is
not convex, so that it is difficult to compute p exactly, and research has
focused on the development and refinement of upper and lower bounds
(see [8, 23] for example). The p problem can be shown to be equivalent to a
real spectral radius maximization problem, and from this one can develop
a power iteration scheme to compute a lower bound. This was shown
for the purely complex case in [23], and generalized to the mixed case
in [35]. This power iteration affords an attractive method for computing
a ¢ lower bound. The iteration scheme appears typically to have good
convergence properties, and each iteration of the scheme is very cheap,
requiring only such operations as matrix-vector multiplications and vector
inner products, so that the resulting lower bound algorithm is very fast
(see [35] for details).

Unfortunately, the lower bound power iteration is not always guaran-
teed to converge. Although one can still obtain a lower bound from the
scheme in this case, it may no longer correspond to a local maximum of
the real spectral radius, and so the bound may be poor. Results in [21]
strongly suggest that the quality of the upper and lower bounds for p
are critical to the performance of any Branch and Bound scheme to refine
them. This means that any improvement in the lower (or upper) bound
performance is highly desirable, whether one wishes to use the bounds
directly, or as part of a Branch and Bound scheme. This chapter presents
some new approaches to computing an improved p lower bound.
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We would like an algorithm to compute a lower bound for p that is
fast, accurate, and reliable. For all iterative algorithms, however, there is
always a tradeoff between speed, accuracy, and reliability. The power iter-
ation algorithm for the lower bound is no exception to this rule, and there
the penalty for having an algorithm that is in general fast and accurate
is that there exist cases where it fails to converge to a solution. In this
section we will describe one set of cases where this happens and how the
algorithm can be modified to correct the problem at the cost of increasing
the growth rate. We will also describe a connection between the equilib-
rium conditions at a maximum of p(MQ) and the solution of p for rank
1 matrices. We will derive from this connection a different way of updat-
ing the real part of Q that generalizes the method used for the complex
part of Q. Finally, we will discuss how the use of an adaptive algorithm
can be used to keep the performance and the growth rate of the standard
power algorithm (SPA) for most cases, and achieve the performance of the
modified algorithm when the SPA fails to converge.

8.1 Updating the Real Perturbation

In this section we present an alternative way to update the real part of
the perturbation at each iteration of the power algorithm. This procedure
involves the solution of p for a rank one matrix and directly generalizes
the complex case.

Throughout this section we will assume that the reader is acquainted
with the results in Sections 5 and 6 of [35]. Every effort has been made to
make the notation here consistent with the one in [35].

The complex power algorithm and the rank one solution

The power algorithm can be better understood by considering the solu-
tion to the maximization of p(M,;A) for a certain rank 1 matrix M,;. For
the complex case it is particularly easy to prove this connection and it is
formalized in the following

Theorem 8.1 Foramatrix M and a given block structure K (0, m., mc),
let Q € Qx, D € D and vectors a, b, c,d verify
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Mb = Ba M*z = Bw

= Qa b = D 'w (8.1)

= Q*QDa z = Q%w,
where the components of a, b, c,d partitioned according to the per-
turbation structure verify the following non-degeneracy condition
bi,ai, zi,w; + 0 and afw; # 0.

Then Q achieves the maximum of p(M,1Q) over Q € Q x, where

M,y = aw?*. Furthermore, any Q, solving this problem will also
verify Equations (8.1).

Proof: From Lemmas 10 and 11 in [35] the components of the vec-
tors a,b, z, w partitioned according to the perturbation structure

verify .
wiras
Z¢ = L L ¢ l<i<m
i I"Wf*aﬂ i (4
bt = M c
i x4
las*wr| (8.2)
. .
z¢ = Iwilac l<i<m
i = Cc, Wi =t= C
|ai'
las]
b = —Lwf.
lwe|

Partitioning Q in the same way, and according to Equations (8.1),
the parts of Q verify

C*k a0

lai*w(|
C.C las| C (8.3)
ra; = ITV?—! o l<i<me
These conditions imply
witgia; = |wi*afl
wirQfaf = Ilwflllafll. (8.4)

It is easy to see that Equations (8.4) imply that Q maximizes

p(w*Qa) = plaw*Q) = p(M,1Q).
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Conversely, any Q; that maximizes p(M,,) has to verify Equations
(8.4). This implies that

ai; = 4;
Qfai = Qfaf (8.5)
WETQS = wEQS,

And Equations (8.5) can be rewritten as:

b = Qla
z = Q7w
So Q; verifies also Equations 8.1. |

The power algorithm consists thus conceptually of the following steps:

o Start with some given values for b, w.

Update a with a power step of the form @a = Mb.

Compute the Q that maximizes p(aw*Q).

Update z as z = Q*w.

Update w with a power step of the form gw = M*z.

Compute The Q that maximizes p(aw*Q).

Update b as z = Q*a.

Repeat the cycle.

The mixed-u case

A similar though more restrictive theorem holds for the mixed-p case.

Theorem 8.2 For a matrix M and a given block structure K (m,, m., mc),
let Q € Qx, D € Dy and vectors a, b, c,d verify

Mb = Ba M*z = Bw
= Qa b = D 'w
= Q*QDa z = Q*w,
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where the components of a, b, c,d partitioned according to the per-
turbation structure verify the following non-degeneracy condition
bi,ai, zi,w; + 0 and afw; + 0.

Then Q achieves the maximum of p(M,1Q) over Q € Q x, where
M, = aw*.

The proof of this theorem, though slightly more complex technically,
follows the same lines as that of Theorem 8.1 and can be found in [34].
Finding the Q that maximizes p(M,;Q) in the real case is slightly harder
than in the complex case. However, a simple algorithm exists that can
solve this problem in linear time. This method is described in detail in
[34].

The similarity of these two results suggests that the solution to the rank
one problem can be used to update the real part of the perturbation as
well. However, there are cases when not all solutions of the rank 1 mixed-
problem are going to be equilibrium points of the original one. Namely,
when two or more of the products w}*al are in phase (or in opposition of
phase), several solutions exist, not all of which verify Equation (8.1). When
this happens we need to have a procedure that chooses the correct one. We
have not as yet looked in detail into that problem, but evidence suggests
that such a procedure should exist. For the purpose of the numerical
experiments in this chapter we use a very simple scheme that falls back
into the standard way of updating the real perturbation (e. g., taking steps
in the direction of the gradient) when the rank one solution scheme fails
to converge.

8.2 Inverse Iteration

There is a set of matrices for which the convergence properties of the
standard power algorithm are particularly poor. Consider the set Ry of
matrices that for a given uncertainty structure verify px(MQ) < p(MQ)
where Q achieves the maximum of pgr(MQ). In this case the power step
taken to update the eigenvectors will magnify the component along the
spectral radius more than the component along the real spectral radius. A
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small error in the vectors a, b, w, z will thus tend to be amplified, and the
algorithm, even if started close to the global maximum, will drift away.
Instead of updating a and w in the standard way, we can use a step of

the form
x = (QxM — Bel) by
k+10k+1 HXH

If Q is close to the equilibrium point, then QM has a real eigenvalue close
to B. In this case the inverse of QM — By will have a very large gain along
the direction of the corresponding eigenvector. This fact can be used to
address the problem the power algorithm has with the mentioned set of
matrices. However, in order for this way of updating the vectors to have
a real effect on the algorithm, the vectors and value of § have to be close
to the equilibrium values. A way to address this difficulty is treated in the
following section.

Mixing inverse and power iteration

The power algorithm for the lower bound of p is derived by writing a
set of equations characterizing a local maximum of p(MQ) and deriving
from them a set of recursive formulas whose equilibrium point verifies
those equations. There is not a unique way of deriving recursive formulas
with such a property. Different formulations will lead to algorithms with
different convergence properties. We will present in this section a possible
formulation, that although it requires the use of higher computational
complexity operations, has proven in practice to have better convergence
behavior.

In order to do this we will introduce the following notation. We separate
the perturbation Q inits real Q; and complex (both scalars and full blocks)

Q> components
[ Q0
Q“( 0 )

Analogously we partition the vectors a, b, ¢, d:

o) = G) o (2) ()
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and the matrix M
M = My My .
M, My
We will then have the following

Theorem 8.3 For a given matrix M and a given uncertainty struc-
ture, let Q € 9 x, non-zero vectors a, b, c,d, and a positive scalar B
such that BI — M11Q; is non-singular and b, # 0, z» # 0. Assume
also that all the diagonal elements of Q, are nonzero. Then the con-
ditions:

Mb = Ba M*z = Bw (8.6)
b=Qa b=D"'w (8.7)
z=Q*QDa z=Q%w

are equivalent to the conditions

Mcbz = Baz MEEZQ = B’Wz (8.8)
b> = Qra» b, = D3 w, (8.9)
2z =Q5Q2Dca; Z = Q3w

Q1(BI = M11Q1) *M12by = D YBI - M{,Q1) M z2 (8.10)
where Mc = (M + Mp1Q1(BI — M11Q1) "1 M)2)

Proof: (=)
Rewrite Equation (8.6) in terms of the partitioned vectors

Ba; = MpQia; +Mp2Qzan (8.11)
Ba, = MxQia;+ M2Qqa; (8.12)
Bzi = QiM{iz1 + Q1M 2> (8.13)
Bz = QiMpz, +QiM5z,. (8.14)

Solving for a; and z; in Equations (8.11) and (8.13) and substituting
in Equations (8.12) and (8.14), we obtain Equation (8.8). Equations
(8.9) and (8.10) derive directly from Equations (8.7), by partitioning
the vectors and substituting a, and a- as before.
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(<)

Define a; = (BI-M;1Q,) " 'Mi2b; and wy = (BI-M{,Q1) "M} z».
Define also b; = Q1a; and z; = Qw;. Then Equations (8.8) imply
Equations (8.11) and (8.13). Finally Equations (8.9) and (8.10) imply
Equation (8.7). ||

In the same way that the standard power algorithm is derived from
conditions (8.6) and (8.7), another iterative algorithm can be derived from
Equations (8.8) through (8.10). Namely, assuming the usual non-degeneracy
conditions and using Lemmas 10 and 11 in [35], these conditions are equiv-

alent to
Bar = (Mo + M2 Qu(BI - M1Q1) 'Mi2)b
- MWC
o arwl
Bwa = (M, + M{y(BI - QuM;) 1 QiM#) 2 (8.15)
c _ ‘WJC c
zj = |a§?| a;
1 e
J |WJC| J?

where 1 <i <m, and 1 < j < m¢ plus the conditions

Re(al*w])=0 for gqi =1
Re(al*w]) <0 for gq] =-1 l<i=sm, (8.16)

Re(al*w[)=0 for |q7| <1,

where a] and w; are formed by partitioning the vectors

(BI — M11Q1) ' My2b;
(BI — M}1Q1) M52, (8.17)

a

W1

according to the perturbation structure, and the real components of b and
z are computed as

b, Qia,

zl = Qlwl.
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An iterative algorithm that will have Equations (8.15) and (8.16) as equi-
librium conditions is:

¢ Start with some given values for b, w and M.

e Update a; with the power step ﬁaz = Mcb>.

e Compute the Q» that maximizes p(a,wy Q).

o Update z; as z, = Q3ws.

e Update w; with the power step sz = Mg z,.

o Compute The Q, that maximizes p(a, w5 Q>).

o Update by as z; = Qi ay.

e Compute a; ,w; from Equation (8.17).

e Compute the Q that maximizes pg{aw* Q) and update Q.
o Update f as .S(f& + E).

e Update M¢ = (M2 + M21Q1 (BI — M11Q1) "' M3»).

Repeat the cycle.

Remarks: Although Theorem 8.3 represents a simple algebraic rearrange-
ment of conditions (8.6) and (8.7), it has a great impact on the behavior
of the power algorithm derived from them. In the standard power algo-
rithm, the equilibrium vector a is not necessarily in the direction of the
largest eigenvalue. If pr(MQ) < p(MQ) at the equilibrium point, SPA
can not converge. As in the modified algorithm, the equilibrium vector a,
corresponds always to the largest eigenvalue of M-Q, and the mentioned
obstacle to convergence has been removed.

If BI — M;:Q; is not invertible for the Q that achieves p, then there is a
perturbation Q" with Q] = Q; and Q), = 0 that achieves p. In this case the
u problem is ill posed, not being at that point continuous on the elements
of M. We will in general only be interested in problems where this does not
happen, i. e., we will only consider problems where p(M;;) < p(M).
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The matrices M¢ and Q, don’t have to be formed as we are only inter-
ested in the products of these matrices with vectors. By optimizing the
way we actually implement these operations, we can reduce the computa-
tion time.

Though the convergence properties of this scheme are better than for
the previous one, this scheme is computationally more expensive. It is
thus desirable to mix the procedures and only use the slower one in the
cases were the other fails to converge. The scheduling of the different
procedures can be done in more than one way. In the next section we
present the results obtained with a very simple one. However, more nu-
merical experimentation with more sophisticated scheduling schemes is
desirable.

Updating Q; using the solution to the rank one problem does not have
to converge always, since in some cases not all of its solutions will give
equilibrium points for the original problem. So if this algorithm fails to
converge, it is necessary to continue iterating using a different way of
updating Q;. We hope to solve this problem by getting a better under-
standing of the connections between the two problems. It is reasonable to
expect that progress can be easily made in this area.

The step where B is updated can be used to ameliorate the convergence
properties of the algorithm. For example, the value of B can be updated
through a low pass filter (e. g., average the value of the last 2 cycles).

8.3 Experimental Results

Our aim was to find an algorithm that would preserve the numerical prop-
erties (convergence, accuracy, growth rate) of the power algorithm in those
cases where the power algorithm behaves correctly and improve its con-
vergence in the other cases without excessively degrading its speed and
accuracy. A reasonable way to achieve this purpose is to have different
algorithms of increasing accuracy and complexity, and a scheduling rule
that will start with the fastest one and shift to the others progressively as
they fail to converge. The results obtained using a simple scheduling rule
are presented in this section.
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Algorithm scheduling used

The scheduling rule used to obtain the results in the following section is
rather simple. Our emphasis was put more into testing the principle of the
adaptive algorithm rather than into finding an optimal scheduling scheme.
The results obtained are nevertheless very encouraging.

The scheduling rule used is:

e Run the power algorithm for 50 iterations.

o If this fails to converge, run the mixed power algorithm for another
50 iterations, using the rank one solution to update the real pertur-
bation.

o If this fails to converge, run the mixed power algorithm for another
50 iterations, using a gradient step to update the real perturbation.

« If this fails to converge, find a destabilizing perturbation around the
latest point in the iteration.

Remarks: The limit number of iterations chosen reflects our numerical
experience with the power algorithm. To make the algorithm more general,
this number has to be made a function of the size of the problem.

It is possible to add further steps to this algorithm. Using gradient
search has proven in our experience to be slow but reliable.

Results on R 3 matrices.

When used on random system matrices, the performance of the standard
power iteration algorithm is more than satisfactory (see [35]). There is
not a noticeable change in that performance by using the new algorithm
discussed in this chapter. However, as it has been mentioned earlier, there
is a set of matrices for which the convergence properties of the power
algorithm are poor.

We tested the two algorithms on series of matrices in the set Rg. We
generated matrices in this set that for a given uncertainty structure have a
value of p = 1. We present here the results obtained for two different un-
certainty structures. In order to compare the behavior of the two systems,
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Figure 8.1: Comparison of the behavior of power iteration and mixed
power iteration on matrices where pr(MQ) <« p(MQ). The structure is 4
real parameters, 2 complex parameters and a 2 by 2 full block. (a) Standard
power algorithm, (b) Modified power algorithm.

we will present the cumulative distribution of their answers for series of
100 matrices. Figure 8.1 shows that distribution for matrices of size 8
with an uncertainty structure of 4 real parameters, 2 complexes and a 2
by 2 full block. In this case over 50 percent of the answers given by the
algorithm are larger than .9.

The performance degrades somehow when the number of real param-
eters increases. In Figure 2 we show the results obtained with matrices of
size 12 with an uncertainty structure of 8 reals, 4 complex scalars and a
2 by 2 full block. However, in both cases the algorithm converged to an
equilibrium point 95 percent of the time. (In the cases where the algo-
rithm does not converge, we compute a perturbation that will give MQ a
real eigenvalue and output that eigenvalue as a lower bound). And also in
both cases the performance is increased significantly with respect to the
original algorithm.

8.4 Conclusions

The algorithm in this chapter improves our capacity to efficiently compute
a good lower bound for the structured singular value. However, it still
is not guaranteed to converge to a local maximum in every case without
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Figure 8.2: Comparison of the behavior of power iteration and mixed
power iteration on matrices where px(MQ) <« p(MQ). The structure is 8
real parameters, 2 complex parameters and a 2 by 2 full block. (a) Standard
power algorithm, (b) Modified power algorithm.

having to fall back into gradient search methods.
It can be shown that if instead of updating Q at every iteration in the
algorithm as suggested in Section 8.1 we take a relaxed step of the form

Qi+1 = (1 -H)Qx +tQy1,

where Q, is the solution to the rank one problem mentioned in the same
section, and if the vectors a, b, z, and w and the scalars [A% and § are suf-
ficiently close to the equilibrium condition, then for t small enough, Q is
updated in the direction of the gradient. This fact, together with a suitable
scheduling algorithm for t could be used to guarantee the convergence of
the algorithm without degrading its speed excessively.

Current research in system identification leads to p problems on high
order, highly structured matrices [27]. Future research will adapt this al-
gorithm to the computation of lower bounds for these types of problems.
By exploiting the structure of the problem we will attempt to reduce the
growth rate of computation time with problem size, and in this way de-
velop an algorithm capable of handling p problems generated from prac-
tical System Identification applications (which may contain thousands of
uncertain parameters).
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Chapter 9

Concluding Remarks

In this last chapter we conclude this thesis by summarizing the results
presented and by suggesting lines of future work.

9.1 Summary

The development of numerical tools for robustness analysis of linear sys-
tems has been successful. In the last 15 years these tools have been
adopted by control engineers, to a large extent replacing the traditional
graphical tools developed in the 1950’s. Central to the success of these
techniques has been the fact that robustness properties of linear systems
can be established by computing functions of finite matrices.

The main motivation behind this thesis is to extend these methods to
nonlinear problems. Due to the wide variety of behavior in nonlinear sys-
tems, in order to develop practical computation algorithms, it is necessary
to work with a restricted class of problems and systems.

The performance problem we deal with in this work is robust trajec-
tory tracking: a system is designed to complete a prespecified path in a
known finite time. Since the real system is not exactly the one used for the
design, and since it is also subject to noise, the system will not follow the
intended trajectory. The question of interest becomes: will the real tra-
jectory, under the worst conditions possible, remain close to the nominal
one in an appropriate norm? In order achieve the same tradeoff between
generality, applicability and computational efficiency that the structured
singular value framework achieves for linear systems, we use the 2-norm
as the measure for the noise signals, the under-modeled components gain,
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and the performance objectives. Since the underlying optimization prob-
lem is not convex — as is also the case in linear system analysis — we are
not able to compute the worst case error. We have to settle for upper and
lower bounds.

In Chapter 4 we develop an algorithm to compute a lower bound on the
performance index. This algorithm is similar in nature to the power algo-
rithm for p and shares with it many of its numerical properties. Although
the algorithm is not proven to converge, a numerical study of its behavior,
carried out in Chapter 5, shows that it is well behaved when applied to
some practical examples, and that it outperform alternative methods on
those same problem.

To obtain an upper bound for the performance index, we need to have
a finite global description of the system. Such a description can only be
obtained for restricted classes of systems. In Chapter 6 we introduce a
class of rational nonlinear systems that can be represented by a linear
fractional transformation on a constant matrix. For systems in this class
we prove the equivalence of the questions “Does an uncertain rational non-
linear system always meet a given performance specification?” and “Does
a constrained linear uncertain system always meet a given performance
specification?” From this equivalence we derived a convex upper bound
for a large class of nonlinear performance problems that takes the form
of a finite linear matrix inequality.

These two results constitute a first step in the direction of extending
the tools for analysis of linear systems to nonlinear ones.

As a particular case, when the system is linear but time varying, we
show that many interesting performance questions could be answered
with p tests if the system is considered over a finite time horizon. Al-
though these systems could be tackled using the general nonlinear ma-
chinery presented before, linearity can be exploited to simplify computa-
tion, especially for the lower bound algorithms.

Finally, we present modifications of the standard power algorithms for
the mixed p problem that improve its behavior in harder to compute prob-
lems. These modifications are particularly relevant to our work, since all
the problems derived from time domain analysis have uncertainty struc-
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tures dominated by real components.

9.2 Future Research

As a first step in the direction of extending the p analysis computations
to nonlinear systems, the work in this thesis poses a set of new questions
to be answered.

More experience is needed with the behavior of the lower bound power
algorithm. It has to be tried in a larger variety of nonlinear systems, and
with a larger array of uncertainty descriptions. It is important to under-
stand the bounds on its performance in order to develop improvements
for it; this is the way the power algorithm for linear systems was perfected.
It is also important to gain experience with the setup for the robust trajec-
tory tracking problem: how to choose uncertainty descriptions, time and
frequency domain weights, noise bounds, and performance criteria.

The LMI resulting from the upper bound in Chapter 6, although large,
is highly structured. The current LMI solvers do not exploit this structure.
It is conceivable that by doing so, computation time can be reduced sig-
nificantly. Even if these computation gains are achieved, the upper bound
presented in this paper is still restricted to a limited class of systems and
needs a global bound on the states. The search for better upper bounds
is going to constitute the main thrust in this area of research.

Recent research has shown that for linear systems, model validation
can be stated as a modified robust performance problem. The results in
this thesis suggest that similar modifications can be made to the nonlinear
analysis procedures to obtain nonlinear model validation along trajecto-
ries.

A combination of linear and nonlinear techniques can be used to sys-
tematize describing function analysis. The results of Chapter 6 can be
applied to the harmonic analysis of systems whose nonlinearities have ra-
tional describing functions. These techniques will allow us to extend de-
scribing function analysis to multi-input, multi-output systems with sev-
eral nonlinear components in a systematic and practical way.

Vale.
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